Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Gamma-Ray Logging Workshop (February 1981)  

Broader source: Energy.gov (indexed) [DOE]

Borehole logging methods for exploration Borehole logging methods for exploration and evaluation o f uranium deposits . Philip H. O d d , Robert F. Bmullad and Carl P. Lathan rej~rinkttl fnlm Mining and Groundwater Geophysiall967 Borehole logging methods for exploration and evaluation of uranium deposits Philip H. Dodd, Robert F. Droullard and Carl P. Lathan US. Atomic Energy Commhwn GmrPd Jtinct&n, Colorado Abstract, M o l e 1 - i s thc geophysical methad mast exten&@ w r t i n the Udtrrd States for exploratio~ md edwtim of wanhi &pod&. dammow lop, C o r n r n d j suppkrnentd with a singbz-pobt msfstailee log, m t l y supply about 80 percent of the bask data for om regerve c W t i o R a d mu& of the w ~ k r 6 . p ~ &ngk inf~nnatio~ Tmck-mounted 'rotmy eqnipmcnt i s EMhmody emphy&& holes usually hwre a nominai b

2

Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983)  

Broader source: Energy.gov [DOE]

Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983)

3

Calibration facilities at Hanford for gamma-ray and fission-neutron well logging  

SciTech Connect (OSTI)

Well-logging tools that detect gamma rays emitted from earth formations need to be calibrated in appropriate facilities to provide quantitative assessments of concentrations o radionuclides based on detected gamma rays. These facilities are typically special models having a hole to insert tools and having sufficient physical size to simulate actual earth formations containing known amounts of radionuclides. The size, generally 3 to 5 feet in diameter and 4 to 6 feet tall, is such that the source of radiation appears infinite in extent to a tool detecting the radiation inside the model. Such models exist at Hanford as concrete cylinders having a central borehole and containing known, enhanced amounts of K, U, and Th. Data collected in these models allow calibration of the logging system to measure radionuclide concentrations in formations around boreholes in the field. The accuracy of the calculated field concentrations depends on the correctness of the original calibration, the statistical precision of the data, and the similarity of the logging conditions to the calibration conditions. Possible methods for analyzing the data collected in the calibration facilities are presented for both spectral and total-count gamma-ray systems. Corrections are typically needed for the effects of steel casing in boreholes and the presence of water rather than air in the holes. Data collected in the calibration models with various steel casings and borehole fluids allow such correction factors to be determined.

Stromswold, D.C.

1994-07-01T23:59:59.000Z

4

A Brief Review of the Basis for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976)  

Broader source: Energy.gov [DOE]

A Brief Review of the Basis for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976)

5

Interpretation of Pennsylvania Bartlesville sandstone in southeastern Kansas and northeastern Oklahoma from continuous dipmeter and gamma-ray logs  

E-Print Network [OSTI]

INTERPRETATION OF PENNSYLVANIAN BARTLESVILLE SANDSTONE IN SOUTHEASTERN KANSAS AND NORTHEASTERN OKLAHOMA FROM CONTINUOUS DIPMETER AND GAMMA-RAY LOGS A Thesis by DWIGHT STANLEY KRANZ Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1981 Major Subject: Geology INTERPRETATION OF PENNSYLVANIAN SARTLESVILLE SANDSTONE IN SOUTHEASTERN KANSAS AND NORTHEASTERN OKLAHOMA FROM CONTINUOUS DIPMETER AND GAMMA...

Kranz, Dwight Stanley

2012-06-07T23:59:59.000Z

6

Temperatures and Natural Gamma-Ray Logs Obtained in 1986 from...  

Open Energy Info (EERE)

Changes in temperature logs run in July and September appear to result from fluid loss to the formation during and following drilling and possibly to ground shaking...

7

Gamma Ray Bursts  

E-Print Network [OSTI]

Olson. “Observations of gamma-ray bursts of cosmic origin. ”E. Lingenfelter. “Gamma-ray bursts. ” Annual Review of652-654. Waxman, Eli. “Gamma-ray-burst afterglow: supporting

Stahl, Bennett

2014-01-01T23:59:59.000Z

8

Western tight gas sands advanced logging workshop proceedings  

SciTech Connect (OSTI)

An advanced logging research program is one major aspect of the Western Tight Sands Program. Purpose of this workshop is to help BETC define critical logging needs for tight gas sands and to allow free interchange of ideas on all aspects of the current logging research program. Sixteen papers and abstracts are included together with discussions. Separate abstracts have been prepared for the 12 papers. (DLC)

Jennings, J B; Carroll, Jr, H B [eds.

1982-04-01T23:59:59.000Z

9

Gamma–ray bursts  

Science Journals Connector (OSTI)

...R. Priest and N. O. Weiss Gamma-ray bursts Martin J. Rees Institute of...Road, Cambridge CB3 0HA, UK Gamma-ray bursts, an enigma for more than 25...gamma-rays|neutron stars| Gamma-ray bursts By Martin J. Rees Institute...

2000-01-01T23:59:59.000Z

10

Gamma ray generator  

DOE Patents [OSTI]

An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

Firestone, Richard B; Reijonen, Jani

2014-05-27T23:59:59.000Z

11

Gamma ray burst positrons  

Science Journals Connector (OSTI)

The international network of gamma ray burst detectors has provided redundant localizations for six gamma ray bursts with accuracies in the arcminute range. Catalog radio soft X?ray and optical searches have been performed for some of these events. The results of these searches are reviewed. Although radio X?ray and optical candidates are found in the error boxes no clear association between gamma ray bursts and other forms of emission has emerged to date. Optical radio searches are continuing.

K. Hurley

1982-01-01T23:59:59.000Z

12

Gamma Ray Bursts Sudden, intense flashes of gamma rays  

E-Print Network [OSTI]

Gamma Ray Bursts #12;The Case Sudden, intense flashes of gamma rays come from nowhere and disappear with out a trace. Incredibly powerful: A single gamma ray burst is hundreds of times brighter a supernova #12;Who Vela (1960's) Looking for arms testing, found gamma ray bursts Compton Gamma Ray Observatory

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

13

Gamma ray bursts  

Science Journals Connector (OSTI)

The time histories size spectrum spatial distribution and repetition rates of gamma ray bursts are reviewed briefly. Evidence for a neutron star origin for gamma ray bursts may be found in many of these aspects of bursters. New results from optical searches are described. Substantial progress has been made recently in the optical identificaiton of the 1978 November 19 burst.

K. Hurley

1983-01-01T23:59:59.000Z

14

Gamma-ray binaries  

E-Print Network [OSTI]

Recent observations have shown that some compact stellar binaries radiate the highest energy light in the universe. The challenge has been to determine the nature of the compact object and whether the very high energy gamma-rays are ultimately powered by pulsar winds or relativistic jets. Multiwavelength observations have shown that one of the three gamma-ray binaries known so far, PSR B1259-63, is a neutron star binary and that the very energetic gamma-rays from this source and from another gamma-ray binary, LS I +61 303, may be produced by the interaction of pulsar winds with the wind from the companion star. At this time it is an open question whether the third gamma-ray binary, LS 5039, is also powered by a pulsar wind or a microquasar jet, where relativistic particles in collimated jets would boost the energy of the wind from the stellar companion to TeV energies.

I. F. Mirabel

2006-10-24T23:59:59.000Z

15

E-Print Network 3.0 - advanced logging workshop Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ability to corrupt the log 12;les. We describe a ... Source: Schneier, Bruce - BT Group plc Collection: Computer Technologies and Information Sciences 22 Summary Workshop Report...

16

Gamma-ray Astronomy  

E-Print Network [OSTI]

The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

Jim Hinton

2007-12-20T23:59:59.000Z

17

Gamma-Ray Bursts  

E-Print Network [OSTI]

Gamma-ray bursts are the most luminous explosions in the Universe, and their origin and mechanism are the focus of intense research and debate. More than three decades after their discovery, and after pioneering breakthroughs from space and ground experiments, their study is entering a new phase with the recently launched Swift satellite. The interplay between these observations and theoretical models of the prompt gamma ray burst and its afterglow is reviewed.

P. Meszaros

2006-05-30T23:59:59.000Z

18

Gamma ray camera  

DOE Patents [OSTI]

A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

Perez-Mendez, Victor (Berkeley, CA)

1997-01-01T23:59:59.000Z

19

Gamma ray camera  

DOE Patents [OSTI]

A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

Perez-Mendez, V.

1997-01-21T23:59:59.000Z

20

Gamma Ray Bursts  

E-Print Network [OSTI]

Gamma-ray bursts have been detected at photon energies up to tens of GeV. We review some recent developments in the X-ray to GeV photon phenomenology in the light of Swift and Fermi observations, and some of the theoretical models developed to explain them, with a view towards implications for C.T.A.

Peter Mészáros

2012-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gamma-ray burst models  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...J. Wijers and Martin Rees Gamma-ray burst models Andrew King * * ( ark...various possibilities for making gamma-ray bursts, particularly from close binaries...

2007-01-01T23:59:59.000Z

22

Gamma ray bursts: A 1983 overview  

Science Journals Connector (OSTI)

Gamma?ray burst observations are reviewed with mention of new gamma?ray and optical transient measurements and with discussions of the controversial contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape implying in effect that no objective spectral resolution exists at all; burst fluxes and temporal quantities including the total event energy are characterized very differently with differing instruments implying that even elementary knowledge of their properties is instrumentally subjective; finally the log N?log S determinations are deficient in the weak bursts while there is no detection of a source direction anisotropy implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

T. L. Cline

1984-01-01T23:59:59.000Z

23

Gamma-ray burst populations.  

E-Print Network [OSTI]

??Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists… (more)

Virgili, Francisco J.

2011-01-01T23:59:59.000Z

24

Gamma?ray burst observations: Past and future  

Science Journals Connector (OSTI)

The past 20 years of gamma?ray burst observations are summarized. Time history morphologies and durations are discussed as well as continuum and line energy spectra. The results of statistical studies on the spatial distribution log N(?S)??log?S and V/V max are presented and the status of quiescent and transient counterpart searches are reviewed. A table of soon?to?be?obsolete ‘‘Gamma?ray Burst World Records’’ is given. Due to the presence of new ground?based and space experiments it seems likely that substantial progress in understanding this phenomenon will be made in the 90’s

K. Hurley

1991-01-01T23:59:59.000Z

25

Modeling gamma-ray bursts.  

E-Print Network [OSTI]

??Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground… (more)

Maxham, Amanda

2011-01-01T23:59:59.000Z

26

Gamma ray bursts ROBERT S MACKAY  

E-Print Network [OSTI]

Gamma ray bursts ROBERT S MACKAY COLIN ROURKE We propose that a gamma ray burst is a kinematic Gamma ray bursts are intense flashes of electromagnetic radiation of cosmic origin lasting from ten accepted mechanism. We propose that a gamma ray burst is simply a kinematic effect, namely the effect

Rourke, Colin

27

Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift  

E-Print Network [OSTI]

Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift to GLASTto GLAST Bing ZhangBing ZhangGehrels, et al), et al) #12;Gamma-ray bursts: the mostGamma-ray bursts: the most violent explosions fireball central photosphere internal external shocks engine (shocks) (reverse) (forward) gamma-ray UV

California at Santa Cruz, University of

28

Gamma ray bursts: The future  

Science Journals Connector (OSTI)

Gamma-ray bursts are the most dramatic and powerful cosmic explosions known. They also continue to be the most puzzling. Thanks to breakthrough observations over the last decade however a picture has emerged of gamma-ray bursts being at cosmological distances and capable of releasing more than 10 51 ergs of energy within seconds. Despite the emergence of this picture the physical origin of bursts is still unknown and the classification of different types of bursts is still in its infancy. Further understanding of gamma-ray bursts requires the wise use of our current resources and the development of new observational capabilities. We outline the current state of our knowledge of bursts and describe the present and future instrumentation which will enable us to understand these baffling blasts.

N. Gehrels; D. Macomb

2000-01-01T23:59:59.000Z

29

Neutrinos from Gamma Ray Bursts  

E-Print Network [OSTI]

We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

F. Halzen; G. Jaczko

1996-02-07T23:59:59.000Z

30

Gamma-ray Imaging Methods  

SciTech Connect (OSTI)

In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

2006-10-05T23:59:59.000Z

31

Periodicities in gamma ray bursts  

Science Journals Connector (OSTI)

Gamma ray burst models based on magnetic neutron stars face a problem of account for the scarcity of observed periods. Both this scarcity and the typical period found when any is detected are explained if the neutron stars are accreting in binary systems

Kent S. Wood

1984-01-01T23:59:59.000Z

32

Gamma-ray events thunderclouds  

E-Print Network [OSTI]

stage of rocket-triggered lightning #12;The gamma-ray flash occurred at the same time the upward leader radiation is also produced by natural lightning during the stepped leader phase. · Dwyer et al. 2003, 2004 found that x-rays are also produced by triggered lightning dart leaders. · At present, the only viable

California at Berkeley, University of

33

Pulsed Gamma-Ray-Burst Afterglows  

E-Print Network [OSTI]

provides a candidate for the central engine of the gamma-ray burst (GRB) mechanism, both long and short

J. Middleditch

2009-01-01T23:59:59.000Z

34

Light Curves of Swift Gamma Ray Bursts  

E-Print Network [OSTI]

Recent observations from the Swift gamma-ray burst mission indicate that a fraction of gamma ray bursts are characterized by a canonical behaviour of the X-ray afterglows. We present an effective theory which allows us to account for X-ray light curves of both (short - long) gamma ray bursts and X-ray rich flashes. We propose that gamma ray bursts originate from massive magnetic powered pulsars.

Paolo Cea

2006-09-22T23:59:59.000Z

35

Gamma-ray burst theory after Swift  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...J. Wijers and Martin Rees Gamma-ray burst theory after Swift Tsvi Piran...relativistic blast wave model for gamma-ray bursts (GRBs). Together with the...

2007-01-01T23:59:59.000Z

36

Gamma-ray bursts and cosmology  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...J. Wijers and Martin Rees Gamma-ray bursts and cosmology D.Q Lamb...current status of the use of gamma-ray bursts (GRBs) as probes of the early...

2007-01-01T23:59:59.000Z

37

The Universe Viewed in Gamma-Rays 1 Properties of Gamma-ray Bursts Localized by  

E-Print Network [OSTI]

The Universe Viewed in Gamma-Rays 1 Properties of Gamma-ray Bursts Localized by the HETE-2 and localize Gamma-ray bursts (GRBs) in wide field of view. HETE-2 have been localized about 20 GRBs per year hours after the burst. 1. The High Energy Transient Explorer 2 Gamma-ray burst (GRB) is the most

Enomoto, Ryoji

38

Very high-energy gamma rays from gamma-ray bursts  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...high-energy gamma rays from gamma-ray bursts Paula M Chadwick * * ( p.m...progress makes the detection of a gamma-ray burst at the highest energies much...

2007-01-01T23:59:59.000Z

39

The Diverse Environments of Gamma-Ray Bursts  

E-Print Network [OSTI]

Galaxies of Dark Gamma-Ray Bursts: Observational Constraintsof a Very Bright Gamma- Ray Burst in a Galactic Halo 3.11.3 Gamma-Ray Burst Classi?cation . . . . . . 1.4 Gamma-Ray

Perley, Daniel Alan

2011-01-01T23:59:59.000Z

40

Are gamma ray bursts nearby?  

Science Journals Connector (OSTI)

The possibility is considered that the intrinsic luminosity function of gamma ray bursters has sufficient scatter that the ln?N?ln?S relation of observed bursts not be dominated by geometric effects favoring large volumes but rather be dominated by nearby intrinsically faint bursts. It is shown that the distribution of bursts on the sky would be very granular with a significant fraction of them coming from the two or three nearest sources. Possible solutions and alternatives are briefly discussed.

David Eichler

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gamma-ray burst afterglows  

E-Print Network [OSTI]

Extended, fading emissions in multi-wavelength are observed following Gamma-ray bursts (GRBs). Recent broad-band observational campaigns led by the Swift Observatory reveal rich features of these GRB afterglows. Here we review the latest observational progress and discuss the theoretical implications for understanding the central engine, composition, and geometric configuration of GRB jets, as well as their interactions with the ambient medium.

Bing Zhang

2006-11-24T23:59:59.000Z

42

Neutrinos from Gamma Ray Bursts  

Science Journals Connector (OSTI)

The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs) following Reference [1]. It is shown that if GRBs produce the ultrahigh-energy cosmic rays they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV contrary to their observed energy flux which is only a minute fraction of this flux and (b) a cumulative neutrino flux a factor of 20 below the AMANDA-?2000 limit on isotropic neutrinos. This could have two implications either GRBs do not produce the ultrahigh energy cosmic rays [2 3] or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV [4] implausibly increasing the energy requirements but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO [5] HEGRA-AIROBICC [6] and the Tibet-Array [7]. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector (ii) GRB redshifts from HETE-2 follow-up studies and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

Karl Mannheim

2001-01-01T23:59:59.000Z

43

Neutrinos from Gamma Ray Bursts  

E-Print Network [OSTI]

The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector, (ii) GRB redshifts from HETE-2 follow-up studies, and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

Karl Mannheim

2000-10-18T23:59:59.000Z

44

Short vs. Long Gamma-Ray Bursts: A Comprehensive Study of Energetics and Prompt Gamma-Ray Correlations  

E-Print Network [OSTI]

We present the results of a comprehensive study of the luminosity function, energetics, prompt gamma-ray correlations, and classification methodology of short-hard and long-soft GRBs (SGRBs & LGRBs), based on observational data in the largest catalog of GRBs available to this date: BATSE catalog of 2130 GRBs. We find that: 1. The least-biased classification method of GRBs into short and long, solely based on prompt--emission properties appears to be the ratio of the observed spectral peak energy to the observed duration (R=Epk/T90) with the dividing line at R=50[erg/s]. 2. Once data is carefully corrected for the effects of the detection threshold of gamma-ray instruments, the population distribution of SGRBs and LGRBs can be individually well described as multivariate log-normal distribution in the 4-dimensional space of the isotropic peak gamma-ray luminosity, total isotropic gamma-ray emission, the intrinsic spectral peak energy, and the intrinsic duration. 3. Relatively large fractions of SGRBs and LG...

Shahmoradi, Amir

2014-01-01T23:59:59.000Z

45

Gamma Ray Burst Central Engines  

E-Print Network [OSTI]

I review aspects of the theory of long-duration gamma-ray burst (GRB) central engines. I focus on the requirements of any model; these include the angular momentum of the progenitor, the power, Lorentz factor, asymmetry, and duration of the flow, and both the association and the non-association with bright supernovae. I compare and contrast the collapsar and millisecond proto-magnetar models in light of these requirements. The ability of the latter model to produce a flow with Lorentz factor ~100 while simultaneously maintaining a kinetic luminosity of ~10^50 ergs/s for a timescale of ~10-100 s is emphasized.

Todd A. Thompson

2008-07-04T23:59:59.000Z

46

Gamma?ray burst spectroscopy  

Science Journals Connector (OSTI)

The statistics and physical properties of gamma ray burst spectral features are presented following a brief review of early theoretical predictions of and experimental searches for such emission. The ?100 observations of 50 keV absorption and 400 keV emission features constitute the largest data base on neutron star lines. Although the statistical significance of individual observations is often weak and interpretation of these features as cyclotron absorption and annihilation radiation poses some theoretical problems it is clear that future observations may have far?reaching implications.

K. Hurley

1988-01-01T23:59:59.000Z

47

Gamma Ray Burst Central Engines  

Science Journals Connector (OSTI)

I review aspects of the theory of long?duration gamma?ray burst (GRB) central engines. I focus on requirements of any model; these include the angular momentum of the progenitor the power Lorentz factor asymmetry and duration of the flow and both the association and the non?association with bright supernovae. I compare and contrast the collapsar and millisecond proto?magnetar models in light of these requirements. The ability of the latter model to produce a flow with Lorentz factor ?100 while simultaneously maintaining a kinetic luminosity of ?10 50 ? ergs ? s ?1 for a timescale of ?10–100? s is emphasized.

Todd A. Thompson

2008-01-01T23:59:59.000Z

48

Black Stars and Gamma Ray Bursts  

E-Print Network [OSTI]

Stars that are collapsing toward forming a black hole but are frozen near the Schwarzschild horizon are termed ``black stars''. Collisions of black stars, in contrast to black hole collisions, may be sources of gamma ray bursts, whose basic parameters are estimated quite simply and are found to be consistent with observed gamma ray bursts. Black star gamma ray bursts should be preceded by gravitational wave emission similar to that from the coalescence of black holes.

Tanmay Vachaspati

2007-06-08T23:59:59.000Z

49

Axion — Dilaton Coupling and GammaRay Bursts  

Science Journals Connector (OSTI)

Axions emitted in supernovae are interesting candidates to account for Gamma-Ray Bursts provided their energy can be effectively converted...

O. Bertolami

1999-01-01T23:59:59.000Z

50

Gamma ray burst outflows and afterglows.  

E-Print Network [OSTI]

?? We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing… (more)

Morsony, Brian J.

2009-01-01T23:59:59.000Z

51

Gravitational Waves versus X and Gamma Ray Emission in a Short Gamma-Ray Burst  

E-Print Network [OSTI]

The recent progress in the understanding the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst, GRB 090227B, allows to give an estimate of the gravitational waves versus the X and Gamma-ray emission in a short gamma-ray burst.

F. G. Oliveira; Jorge A. Rueda; Remo Ruffini

2014-03-28T23:59:59.000Z

52

CONSTRAINTS ON VERY HIGH ENERGY GAMMA-RAY EMISSION FROM GAMMA-RAY BURSTS R. Atkins,1,2  

E-Print Network [OSTI]

CONSTRAINTS ON VERY HIGH ENERGY GAMMA-RAY EMISSION FROM GAMMA-RAY BURSTS R. Atkins,1,2 W. Benbow,3 emission from gamma-ray bursts (GRBs) during the prompt emission phase. Detection of >100 GeV counterparts on potential GRB models. Subject headinggs: gamma rays: bursts -- gamma rays: observations 1. INTRODUCTION

California at Santa Cruz, University of

53

Observations of Gamma-Ray Bursts at Extreme Energies  

E-Print Network [OSTI]

of Gamma-Ray Bursts . . . . . . . . . . . . . Redshift-CRUZ OBSERVATIONS OF GAMMA-RAY BURSTS AT EXTREME ENERGIES AAncient Unvierse with Gamma-Ray Bursts, pages 330–333. AIP,

Aune, Taylor

2012-01-01T23:59:59.000Z

54

Gamma-Ray Bursts and Particle Astrophysics  

E-Print Network [OSTI]

Gamma-ray bursts are violent events occurring randomly in the sky. In this review, I will present the fireball model, proposed to explain the phenomenon of gamma-ray bursts. This model has important consequences for the production and observation at Earth of gravitational waves, high energy neutrinos, cosmic rays and high energy photons, and the second part of this review will be focused on these aspects. A last section will briefly discuss the topic of the use of gamma-ray bursts as standard candles and possible cosmological studies.

B. Gendre

2008-07-24T23:59:59.000Z

55

Gamma-Ray Burst Early Afterglows  

E-Print Network [OSTI]

The successful launch and operation of NASA's Swift Gamma-Ray Burst Explorer open a new era for the multi-wavelength study of the very early afterglow phase of gamma-ray bursts (GRBs). GRB early afterglow information is essential to explore the unknown physical composition of GRB jets, the link between the prompt gamma-ray emission and the afterglow emission, the GRB central engine activity, as well as the immediate GRB environment. Here I review some of the recent theoretical efforts to address these problems and describe how the latest Swift data give answers to these outstanding questions.

Bing Zhang

2005-09-19T23:59:59.000Z

56

Flares in Gamma Ray Bursts  

Science Journals Connector (OSTI)

The flare activity that is observed in GRBs soon after the prompt emission with the XRT (0.3–10 KeV) instrument on Board of the Swift satellite is leading to important clues in relation to the physical characteristics of the mechanism generating the emission of energy in Gamma Ray Bursts. We will briefly refer to the results obtained with the recent analysis [1] and [2] and discuss the preliminary results we obtained with a new larger sample of GRBs [limited to early flares] based on fitting of the flares using the Norris 2005 profile. We find in agreement with previous results that XRT flares follow the main characteristics observed in [3] for the prompt emission spikes. The estimate of the flare energy for the subsample with redshift is rather robust and an attempt is made using the redshisft sample to estimate how the energy emitted in flares depends on time. We used a H 0 ?=?70?km/s/Mpc ? ? ?=?0.7 ? m ?=?0.3 cosmology.

G. Chincarini; J. Mao; F. Pasotti; R. Margutti; C. Guidorzi; M. G. Bernardini; Swfit Italian team

2008-01-01T23:59:59.000Z

57

Thermal neutron capture gamma-rays  

SciTech Connect (OSTI)

The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

Tuli, J.K.

1983-01-01T23:59:59.000Z

58

Gravitational waves and gamma-ray bursts  

E-Print Network [OSTI]

Gamma-Ray Bursts are likely associated with a catastrophic energy release in stellar mass objects. Electromagnetic observations provide important, but indirect information on the progenitor. On the other hand, gravitational waves emitted from the central source, carry direct information on its nature. In this context, I give an overview of the multi-messenger study of gamma-ray bursts that can be carried out by using electromagnetic and gravitational wave observations. I also underline the importance of joint electromagnetic and gravitational wave searches, in the absence of a gamma-ray trigger. Finally, I discuss how multi-messenger observations may probe alternative gamma-ray burst progenitor models, such as the magnetar scenario.

Alessandra Corsi; for the LIGO Scientific Collaboration; for the Virgo Collaboration

2012-05-11T23:59:59.000Z

59

Studying Gamma Ray Bursts from a  

E-Print Network [OSTI]

Studying Gamma Ray Bursts from a new perspective! {... Unraveling some mysteries and adding new Radio Op0cal X-ray Short ( energy -ray photons... ... accompained by a considerable long las0ng emission

Â?umer, Slobodan

60

Can gamma-ray bursts constrain quintessence?  

E-Print Network [OSTI]

Using the narrow clustering of the geometrically corrected gamma-ray energies released by gamma-ray bursts, we investigate the possibility of using these sources as standard candles to probe cosmological parameters such as the matter density Omega_m and the cosmological constant energy density Omega_Lambda. By simulating different samples of gamma-ray bursts, we find that Omega_m can be determined with accuracy ~7% with data from 300 sources. We also show that, if Omega = 1 is due to a quintessence field, some of the models proposed in the literature may be discriminated from a Universe with cosmological constant, by a similar-sized sample of gamma-ray bursts.

T. Di Girolamo; R. Catena; M. Vietri; G. Di Sciascio

2005-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gravitational waves and short gamma ray bursts.  

E-Print Network [OSTI]

??Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC) { either double neutron stars or neutron star{black hole binaries.… (more)

Predoi, Valeriu

2012-01-01T23:59:59.000Z

62

Gamma-Ray Pulsar Studies With GLAST  

SciTech Connect (OSTI)

Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

Thompson, D.J.; /NASA, Goddard

2011-11-23T23:59:59.000Z

63

Gamma Ray Bursts from Ordinary Cosmic Strings  

E-Print Network [OSTI]

We give an upper estimate for the number of gamma ray bursts from ordinary (non-superconducting) cosmic strings expected to be observed at terrestrial detectors. Assuming that cusp annihilation is the mechanism responsible for the bursts we consider strings arising at a GUT phase transition and compare our estimate with the recent BATSE results. Further we give a lower limit for the effective area of future detectors designed to detect the cosmic string induced flux of gamma ray bursts.

R. H. Brandenberger; A. T. Sornborger; M. Trodden

1993-02-12T23:59:59.000Z

64

Neutrinos and Gamma Rays from Galaxy Clusters  

E-Print Network [OSTI]

The next generation of neutrino and gamma-ray detectors should provide new insights into the creation and propagation of high-energy protons within galaxy clusters, probing both the particle physics of cosmic rays interacting with the background medium and the mechanisms for high-energy particle production within the cluster. In this paper we examine the possible detection of gamma-rays (via the GLAST satellite) and neutrinos (via the ICECUBE and Auger experiments) from the Coma cluster of galaxies, as well as for the gamma-ray bright clusters Abell 85, 1758, and 1914. These three were selected from their possible association with unidentified EGRET sources, so it is not yet entirely certain that their gamma-rays are indeed produced diffusively within the intracluster medium, as opposed to AGNs. It is not obvious why these inconspicuous Abell-clusters should be the first to be seen in gamma-rays, but a possible reason is that all of them show direct evidence of recent or ongoing mergers. Their identification with the EGRET gamma-ray sources is also supported by the close correlation between their radio and (purported) gamma-ray fluxes. Under favorable conditions (including a proton spectral index of 2.5 in the case of Abell 85, and sim 2.3 for Coma, and Abell 1758 and 1914), we expect ICECUBE to make as many as 0.3 neutrino detections per year from the Coma cluster of galaxies, and as many as a few per year from the Abell clusters 85, 1758, and 1914. Also, Auger may detect as many as 2 events per decade at ~ EeV energies from these gamma-ray bright clusters.

Brandon Wolfe; Fulvio Melia; Roland M. Crocker; Raymond R. Volkas

2008-07-04T23:59:59.000Z

65

The gamma?ray burst capabilities of BATSE and the Gamma Ray Observatory  

Science Journals Connector (OSTI)

The Gamma Ray Observatory (GRO) scheduled for launch in 1990 will provide new and enhanced capabilities for the study of gamma?ray bursts. These include higher sensitivity increased time resolution broader energy coverage rapid burst data dissemination and burst location by a single spacecraft. All four of the GRO instruments have burst capabilities however the Burst and Transient Source Experiment (BATSE) is designed primarily for the study of gamma?ray bursts. The capabilities of BATSE and the GRO for gamma?ray burst studies are described.

G. J. Fishman

1988-01-01T23:59:59.000Z

66

On Gamma-Ray Bursts  

E-Print Network [OSTI]

(Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model. [...] We then turn to the special role of the baryon loading in discriminating between "genuine" short and long or "fake" short GRBs [...] We finally turn to the GRB-Supernova Time Sequence (GSTS) paradigm: the concept of induced gravitational collapse. [...] We then present some general conclusions.

Remo Ruffini; Maria Grazia Bernardini; Carlo Luciano Bianco; Letizia Caito; Pascal Chardonnet; Christian Cherubini; Maria Giovanna Dainotti; Federico Fraschetti; Andrea Geralico; Roberto Guida; Barbara Patricelli; Michael Rotondo; Jorge Armando Rueda Hernandez; Gregory Vereshchagin; She-Sheng Xue

2008-04-17T23:59:59.000Z

67

The Universe Viewed in Gamma-Rays 1 Toward Ultra Short Gamma Ray Burst Ground Based De-  

E-Print Network [OSTI]

The Universe Viewed in Gamma-Rays 1 Toward Ultra Short Gamma Ray Burst Ground Based De- tection- liminary data taking started in November 2002. 1. Introduction Gamma-ray bursts observed with space Tcherenkovlightfromoneshower Few 100MeV gamma-rays Fig. 1. In an imaging telescope, -ray bursts should appear as a Cherenkov

Enomoto, Ryoji

68

Gamma-Ray Studies in Boron-10  

Science Journals Connector (OSTI)

Gamma rays emanating from the 7.56-Mev level of B10 were analyzed with a five-crystal pair spectrometer. Cascade gamma rays were investigated by recording the spectra in coincidence with the 2.40, 0.72, 2.15, and 5.41-Mev gamma-ray transitions. The branching ratios for the decay of the 7.56-Mev level were found to be 76%, 9%, and 15% for 6.84, 5.41, and 2.40-Mev gamma rays, respectively. For the 2.15-Mev level, the respective branching ratios for 2.15, 1.43, and 0.41-Mev gamma rays were shown to be 16%, 29%, and 55%. The partial width for the 3.01-Mev transition was found to be less than 1% of the total width of the 5.16-Mev state in B10. Combining this result with the data of Meyer-Schützmeister and Hanna, the gamma-ray width of the 5.16-Mev level was found to be 0.51 ev and the alpha width 32gamma-ray widths may be resolved if the 5.16-Mev state in B10 is assumed to be a doublet.

Esther L. Sprenkel and James W. Daughtry

1961-11-01T23:59:59.000Z

69

Fermi Observations of Gamma-ray Bursts  

SciTech Connect (OSTI)

The gamma-ray emission mechanism of Gamma-ray bursts (GRBs) are still unknown. Fermi Gamma-ray Space Telescope successfully detected high-energy (> 100 MeV) emission from 17 GRBs since its launch. Fermi revealed the distinct temporal behaviors and extra spectral component from high-energy emission. These new observational results are driving many theoretical implications, such as leptonic, hadronic and afterglow origin. The highest energy photon detected by Fermi gives a constraint on the bulk Lorentz factor of the ultra-relativistic jets of GRBs. The impact of the Fermi GRB observations extends not only to the GRB-related issues but also to the outside GRB physics, such as quantum gravity and model of the extra galactic background light.

Ohno, Masanori [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

2010-10-15T23:59:59.000Z

70

A supersymmetric model of gamma ray bursts  

E-Print Network [OSTI]

We propose a model for gamma ray bursts in which a star subject to a high level of fermion degeneracy undergoes a phase transition to a supersymmetric state. The burst is initiated by the transition of fermion pairs to sfermion pairs which, uninhibited by the Pauli exclusion principle, can drop to the ground state of minimum momentum through photon emission. The jet structure is attributed to the Bose statistics of sfermions whereby subsequent sfermion pairs are preferentially emitted into the same state (sfermion amplification by stimulated emission). Bremsstrahlung gamma rays tend to preserve the directional information of the sfermion momenta and are themselves enhanced by stimulated emission.

L. Clavelli; G. Karatheodoris

2005-08-08T23:59:59.000Z

71

Redshift indicators for gamma-ray bursts  

E-Print Network [OSTI]

The measure of the distances and luminosities of gamma-ray bursts (GRBs) led to the discovery that many GRB properties are strongly correlated with their intrinsic luminosity, leading to the construction of reliable luminosity indicators. These GRB luminosity indicators have quickly found applications, like the construction of 'pseudo-redshifts', or the measure of luminosity distances, which can be computed independently of the measure of the redshift. In this contribution I discuss various issues connected with the construction of luminosity-redshift indicators for gamma-ray bursts.

J-L. Atteia

2005-05-04T23:59:59.000Z

72

A review of gamma ray bursts  

Science Journals Connector (OSTI)

Gamma-ray bursts have continued to puzzle astronomers since their discovery thirty years ago. The sources and emission mechanisms are still uncertain. The instruments on the Compton Gamma Ray Observatory most notably BATSE have produced a revolution in our understanding of bursts. BATSE found that the burst spatial distribution was isotropic but inhomogeneous a result inconsistent with any disk population of sources. The currently favored model is one in which the sources lie at cosmological distances. Recent apparent successes in the detection of X-ray and optical counterparts have generated renewed excitement.

Charles Meegan; Kevin Hurley; Alanna Connors; Brenda Dingus; Steven Matz

1997-01-01T23:59:59.000Z

73

Observation of the Crab Nebula in Soft Gamma Rays with the Nuclear Compton Telescope  

E-Print Network [OSTI]

Gamma-ray bursts . . . . . . . . . . . . . . . . . . . 1.268] G. J. Fishman. The gamma-ray burst capabilities of BATSEOlson. Observations of Gamma- Ray Bursts of Cosmic Origin.

Bandstra, Mark ShenYu

2010-01-01T23:59:59.000Z

74

Ultrahigh Energy Cosmic Rays and Prompt TeV Gamma Rays from Gamma Ray Bursts  

E-Print Network [OSTI]

Gamma Ray Bursts (GRBs) have been proposed as one {\\it possible} class of sources of the Ultrahigh Energy Cosmic Ray (UHECR) events observed up to energies $\\gsim10^{20}\\ev$. The synchrotron radiation of the highest energy protons accelerated within the GRB source should produce gamma rays up to TeV energies. Here we briefly discuss the implications on the energetics of the GRB from the point of view of the detectability of the prompt TeV gamma rays of proton-synchrotron origin in GRBs in the up-coming ICECUBE muon detector in the south pole.

Pijushpani Bhattacharjee; Nayantara Gupta

2003-05-12T23:59:59.000Z

75

HYPERNUCLEAR STRUCTURE FROM GAMMA-RAY SPECTROSCOPY.  

SciTech Connect (OSTI)

The energies of p-shell hypernuclear {gamma} rays obtained from recent experiments using the Hyperball at BNL and KEK are used to constrain the YN interaction which enters into shell-model calculations which include both {Lambda} and {Sigma} configurations.

MILLENER,D.J.

2003-10-14T23:59:59.000Z

76

Gamma-Ray Bursts: Restarting the Engine  

Science Journals Connector (OSTI)

Recent gamma-ray burst observations have revealed late-time, highly energetic events that deviate from the simplest expectations of the standard fireball picture. Instead, they may indicate that the central engine is active or restarted at late times. We suggest that fragmentation and subsequent accretion during the collapse of a rapidly rotating stellar core offers a natural mechanism for this.

Andrew King; Paul T. O'Brien; Michael R. Goad; Julian Osborne; Emma Olsson; Kim Page

2005-01-01T23:59:59.000Z

77

Neutrino Balls and Gamma-Ray Bursts  

E-Print Network [OSTI]

We propose a mechanism by which the neutrino emission from a supernova-type explosion can be converted into a gamma-ray burst of total energy $\\sim 10^{50}$ ergs. This occurs naturally if the explosion is situated inside a ball of trapped neutrinos, which in turn may lie at a galactic core. There are possible unique signatures of this scenario.

B. Holdom; R. A. Malaney

1993-06-17T23:59:59.000Z

78

Blazar Duty-Cycle at gamma-ray Frequecies: Constraints from Extragalactic Background Radiation and Prospects for AGILE and GLAST  

E-Print Network [OSTI]

We take into account the constraints from the observed extragalactic gamma-ray background to estimate the maximum duty cycle allowed for a selected sample of WMAP Blazars, in order to be detectable by AGILE and GLAST gamma-ray experiments. For the nominal sensitivity values of both instruments, we identify a subset of sources which can in principle be detectable also in a steady state without over-predicting the extragalactic background. This work is based on the results of a recently derived Blazar radio LogN-LogS obtained by combining several multi-frequency surveys.

Pittori, Carlotta; Colafrancesco, Sergio; Giommi, Paolo

2007-01-01T23:59:59.000Z

79

Blazar Duty-Cycle at gamma-ray Frequecies: Constraints from Extragalactic Background Radiation and Prospects for AGILE and GLAST  

E-Print Network [OSTI]

We take into account the constraints from the observed extragalactic gamma-ray background to estimate the maximum duty cycle allowed for a selected sample of WMAP Blazars, in order to be detectable by AGILE and GLAST gamma-ray experiments. For the nominal sensitivity values of both instruments, we identify a subset of sources which can in principle be detectable also in a steady state without over-predicting the extragalactic background. This work is based on the results of a recently derived Blazar radio LogN-LogS obtained by combining several multi-frequency surveys.

Carlotta Pittori; Elisabetta Cavazzuti; Sergio Colafrancesco; Paolo Giommi

2007-05-04T23:59:59.000Z

80

Observations of cosmic gamma ray sources and their contribution to the diffuse gamma ray background  

SciTech Connect (OSTI)

The objective is to study soft gamma ray emission in the 0.1 to 10 MeV energy band for selected active galactic nuclei and explore how much they contribute to the total diffuse gamma ray background. A series of imaging observations of extragalactic objects in the low energy gamma-ray region were carried out by the Coded Aperture Directional Gamma-ray Telescope (DGT). The DGT was successfully flown at stratospheric balloon altitudes, and observations were made of the Crab, NGC 1275, MKN 421, and NGC 4151. The measured Crab spectrum is consistent with a featureless power-law of the form. Significant emission was detected up to 500 keV from the Seyfert galaxy, NGC 4151. To increase the total sky exposure the extragalactic field images were analyzed, including the 3C 273 region, obtained by the DGT.

Bhattacharya, D.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gamma-Ray Bursts, Ultra High Energy Cosmic Rays, and Cosmic Gamma-Ray Background  

E-Print Network [OSTI]

We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in TeV range by synchrotron radiation of ultra-high-energy protons (\\sim 10^{20} eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.

Tomonori Totani

1998-10-14T23:59:59.000Z

82

A Gamma-Ray Bursts ’ Fluence-Duration Correlation  

E-Print Network [OSTI]

durations of gamma-ray bursts, and provide arguments that this reflects a correlation between the total

István Horváth; Lajos G. Balázs; Peter Mészáros; Zsolt Bagoly

2005-01-01T23:59:59.000Z

83

The Biggest Bangs The Mystery of Gamma-Ray Bursts,  

E-Print Network [OSTI]

The Biggest Bangs The Mystery of Gamma-Ray Bursts, The Most Violent Explosions in The Universe J. I. Did a Gamma-Ray Burst Kill the Dinosaurs? Will a Burst Kill Us? #15; Glossary #15; Sources #15; Index. On January 23, 1999, one of these four cameras recorded visible light from a gamma-ray burst

Katz, Jonathan I.

84

The Biggest Bangs The Mystery of Gamma-Ray Bursts,  

E-Print Network [OSTI]

The Biggest Bangs The Mystery of Gamma-Ray Bursts, The Most Violent Explosions in The Universe J. I a Gamma-Ray Burst Kill the Dinosaurs? Will a Burst Kill Us? · Glossary · Sources · Index viii #12;Chapter of these four cameras recorded visible light from a gamma-ray burst as it was happening, which had been the holy

Katz, Jonathan I.

85

Gamma-Ray Bursts Nuclear Test Ban Treaty, 1963  

E-Print Network [OSTI]

Lecture 18 Gamma-Ray Bursts #12;Nuclear Test Ban Treaty, 1963 First Vela satellite pair launched and their predecessors, Vela 4, discovered the first gamma-ray bursts. The discovery was announced by Klebesadel, Strong, and Olson (ApJ, 182, 85) in 1973. #12;First Gamma-Ray Burst The Vela 5 satellites functioned from July, 1969

Harrison, Thomas

86

A complete sample of long bright Swift gamma ray bursts  

Science Journals Connector (OSTI)

...complete sample of long bright Swift gamma ray bursts Gianpiero Tagliaferri 1 Ruben...subsample of Swift long bright gamma ray bursts (GRBs). The sample, made...correlations and the nature of dark bursts. gamma ray bursts|complete sample|luminosity...

2013-01-01T23:59:59.000Z

87

Gamma-ray bursts spectral correlations and their cosmological use  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...J. Wijers and Martin Rees Gamma-ray bursts spectral correlations and their...correlations involving the long-gamma-ray bursts (GRBs) prompt emission energy...

2007-01-01T23:59:59.000Z

88

Gamma-ray bursts, QSOs and active galaxies  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...J. Wijers and Martin Rees Gamma-ray bursts, QSOs and active galaxies Geoffrey...of the absorption spectra of gamma-ray burst (GRB) sources or afterglows...

2007-01-01T23:59:59.000Z

89

Short gamma-ray bursts near and far  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...Wijers and Martin Rees Short gamma-ray bursts near and far Andrew J Levan...understanding the nature of short gamma-ray bursts (GRBs) has been rapid since...

2007-01-01T23:59:59.000Z

90

TERRESTRIAL GAMMA-RAY FLASH PRODUCTION BY LIGHTNING  

E-Print Network [OSTI]

TERRESTRIAL GAMMA-RAY FLASH PRODUCTION BY LIGHTNING A DISSERTATION SUBMITTED TO THE DEPARTMENT gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated

91

SuperAGILE and Gamma Ray Bursts  

SciTech Connect (OSTI)

The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco [IASF-INAF Rome (Italy); Barbiellini, Guido [INFN Trieste (Italy); Mastropietro, Marcello [CNR Montelibretti (Italy); Morelli, Ennio [IASF-INAF-Bologna (Italy); Rapisarda, Massimo [ENEA Frascati (Italy)

2006-05-19T23:59:59.000Z

92

Lorentz violation from gamma-ray bursts  

E-Print Network [OSTI]

The constancy of light speed is a basic assumption in Einstein's special relativity, and consequently the Lorentz invariance is a fundamental symmetry of space-time in modern physics. However, it is speculated that the speed of light becomes energy-dependent due to the Lorentz invariance violation~(LV) in various new physics theories. We analyse the data of the energetic photons from the gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Space Telescope, and find more events to support the energy dependence in the light speed with both linear and quadratic form corrections. We provide two scenarios to understand all the new-released Pass~8 data of bright GRBs by the Fermi-LAT Collaboration, with predictions from such scenarios being testable by future detected GRBs.

Shu Zhang; Bo-Qiang Ma

2014-06-18T23:59:59.000Z

93

Real time gamma-ray signature identifier  

DOE Patents [OSTI]

A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

Rowland, Mark (Alamo, CA); Gosnell, Tom B. (Moraga, CA); Ham, Cheryl (Livermore, CA); Perkins, Dwight (Livermore, CA); Wong, James (Dublin, CA)

2012-05-15T23:59:59.000Z

94

Phenomenology of Gamma-Ray Jets  

E-Print Network [OSTI]

We discuss some phenomenological aspects of $\\gamma$-ray emitting jets. In particular, we present calculations of the $\\gamma$-sphere and $\\pi$-sphere for various target photon fields, and employ them to demonstrate how $\\gamma$-ray observations at very high energies can be used to constraint the Doppler factor of the emitting plasma and the production of VHE neutrinos. We also consider the implications of the rapid TeV variability observed in M87 and the TeV blazars, and propose a model for the very rapid TeV flares observed with HESS and MAGIC in some blazars,that accommodates the relatively small Doppler factors inferred from radio observations. Finally, we briefly discuss the prospects for detecting VHE neutrinos from relativistic jets.

Amir Levinson

2007-09-10T23:59:59.000Z

95

Neutron-driven gamma-ray laser  

DOE Patents [OSTI]

A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

Bowman, Charles D. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

96

MilagroA TeV Observatory for Gamma Ray Bursts  

E-Print Network [OSTI]

Milagro­A TeV Observatory for Gamma Ray Bursts B.L. Dingus and the Milagro Collaboration Los energy gamma-rays from gamma-ray bursts. The highest energy gamma rays supply very strong constraints on the nature of gamma-ray burst sources as well as fundamental physics. Because the highest energy gamma-rays

California at Santa Cruz, University of

97

Gamma Ray Bursts as cosmological tools  

E-Print Network [OSTI]

The use of Gamma Ray Bursts as ``standard candles'' has been made possible by the recent discovery of a very tight correlation between their rest frame intrinsic properties. This correlation relates the GRB prompt emission peak spectral energy E_peak to the energy E_gamma corrected for the collimation angle theta_jet of these sources. The possibility to use GRBs to constrain the cosmological parameters and to study the nature of Dark Energy are very promising.

G. Ghirlanda; G. Ghisellini; L. Nava; C. Firmani

2005-12-30T23:59:59.000Z

98

Gamma Ray Bursts as Cosmological Tools  

Science Journals Connector (OSTI)

The use of Gamma Ray Bursts as “standard candles” has been made possible by the recent discovery of a very tight correlation between their rest frame intrinsic properties. This correlation relates the GRB prompt emission peak spectral energy E peak to the energy E ? corrected for the collimation angle ?jet of these sources. The possibility to use GRBs to constrain the cosmological parameters and to study the nature of Dark Energy are very promising.

G. Ghirlanda; G. Ghisellini; L. Nava; C. Firmani

2005-01-01T23:59:59.000Z

99

The Galactic gamma-ray club  

E-Print Network [OSTI]

The exclusive Galactic gamma-ray club has opened up to new members. Supernova remnants, pulsar wind nebulae, and massive binary systems hosting a compact object have recently joined the young pulsars as firmly established sources of gamma rays in the Milky Way. Massive young stellar clusters are on the waiting list to join the club. Only the fine imaging recently obtained at TeV energies could resolve specific sources. The samples are sparse, but raise exciting questions. The jet or pulsar-wind origin of the emission in binaries has been hotly debated, but it seems that both types of systems have been recently detected. The nature of the radiation in shock accelerators is still questioned: do nuclei contribute a lot, a little, or not to the gamma rays and what energy do they carry away from the shock budget? The acceleration process and the structural evolution of the pulsar winds are still uncertain. The magnetic field distribution in all these systems is a key, but poorly constrained, ingredient to model the multi-wavelength data, particle transport and electron ageing. It must, however, be determined in order to efficiently probe particle distributions and the acceleration mechanisms. The source samples soon to be expected from GLAST and the Cherenkov telescopes should bring new valuable test cases and they will, for the first time, shed statistical light on the collective behaviour of these different types of accelerators.

Isabelle A. Grenier

2008-04-02T23:59:59.000Z

100

Remnants from Gamma-Ray Bursts  

Science Journals Connector (OSTI)

We model the intermediate-time evolution of a "jetted" gamma-ray burst (GRB) as two blobs of matter colliding with the interstellar medium. We follow the hydrodynamic evolution of this system numerically and calculate the bremsstrahlung and synchrotron images of the remnant. We find that for a burst energy of 1051 ergs the remnant becomes spherical after ~5000 yr, when it has collected ~50 M? of interstellar mass. This result is independent of the exact details of the GRB, such as the opening angle. After this time a gamma-ray burst remnant has an expanding sphere morphology. The similarity to a supernova remnant makes it difficult to distinguish between the two at this stage. The expected number of nonspherical gamma-ray burst remnants is ~0.05 per galaxy for a beaming factor of 0.01 and a burst energy of 1051 ergs. Our results suggest that the double-shell object DEM L316 is not a GRB remnant.

Shai Ayal; Tsvi Piran

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solution To The Gamma Ray Burst Mystery?  

E-Print Network [OSTI]

Photoexcitation and ionization of partially ionized heavy atoms in highly relativistic flows by interstellar photons, followed by their reemission in radiative recombination and decay, boost star-light into beamed $\\gamma$ rays along the flow direction. Repeated excitation/decay of highly relativistic baryonic ejecta from merger or accretion induced collapse of neutron stars in dense stellar regions (DSRs), like galactic cores, globular clusters and super star-clusters, can convert enough kinetic energy in such events in distant galaxies into cosmological gamma ray bursts (GRBs). The model predicts remarkably well all the main observed temporal and spectral properties of GRBs. Its success strongly suggests that GRBs are $\\gamma$ ray tomography pictures of DSRs in galaxies at cosmological distances with unprecedented resolution: A time resolution of $dt\\sim 1~ms$ in a GRB can resolve stars at a Hubble distance which are separated by only $D\\sim 10^{10}cm$. This is equivalent to the resolving power of an optical telescope with a diameter larger than one Astronomical Unit!

Nir J. Shaviv; Arnon Dar

1996-08-21T23:59:59.000Z

102

Clustering of gamma-ray selected 2LAC Fermi Blazars  

E-Print Network [OSTI]

We present the first measurement of the projected correlation function of 485 gamma-ray selected Blazars, divided in 175 BLLacertae (BL Lacs) and 310 Flat Spectrum Radio Quasars (FSRQs) detected in the 2-year all-sky survey by Fermi-Large Area Telescope. We find that Fermi BL Lacs and FSRQs reside in massive dark matter halos (DMHs) with logMh=13.35+0.20/-0.14 and logMh = 13.40+0.15/-0.19 Msun/h, respectively, at low (z=0.4) and high (z =1.2) redshift. In terms of clustering properties, these results suggest that BL Lacs and FSRQs are similar objects residing in the same dense environment typical of galaxy groups, despite their different spectral energy distribution, power and accretion rate. We find no difference in the typical bias and hosting halo mass between Fermi Blazars and radio-loud AGN, supporting the unifcation scheme simply equating radio-loud objects with misaligned Blazar counterparts. This similarity in terms of typical environment they preferentially live in, suggests that Blazars preferential...

Allevato, Viola; Cappelluti, Nico

2014-01-01T23:59:59.000Z

103

Can Naked Singularities Yield Gamma Ray Bursts?  

E-Print Network [OSTI]

Gamma-ray bursts are believed to be the most luminous objects in the Universe. There has been some suggestion that these arise from quantum processes around naked singularities. The main problem with this suggestion is that all known examples of naked singularities are massless and hence there is effectively no source of energy. It is argued that a globally naked singularity coupled with quantum processes operating within a distance of the order of Planck length of the singularity will probably yield energy burst of the order of M_pc^2\\approx2\\times 10^{16} ergs, where M_p is the Planck mass.

H. M. Antia

1998-07-09T23:59:59.000Z

104

Gamma Ray Burst Neutrinos Probing Quantum Gravity  

E-Print Network [OSTI]

Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.

M. C. Gonzalez-Garcia; F. Halzen

2006-11-28T23:59:59.000Z

105

Gamma ray bursts and spectral features  

Science Journals Connector (OSTI)

The situation concerning the presence of features in gamma ray burst (GRB) spectra is analyzed taking into account recent results obtained especially with the PHOBOS probes and GINGA satellite. If the existence of cyclotron features seems now to be generally accepted the situation for the other features reported around 400?500 keV is not completely clarified. The presence of such features is discussed. Moreover some aspects of the high and low energy variations in the GRB and on the characteristics of their total spectrum are also reviewed. Finally future missions which might have a great impact in the GRB spectral analysis will be shortly considered.

E. Jourdain

1991-01-01T23:59:59.000Z

106

Gamma Ray Bursts as Cosmological Probes  

Science Journals Connector (OSTI)

We discuss the prospects of using Gamma Ray Bursts (GRBs) as high?redshift distance estimators and consider their use in the study of two dark energy models the Generalized Chaplygin Gas (GCG) a model for the unification of dark energy and dark matter and the XCDM model a model where a generic dark energy fluid like component is described by the equation of state p = ??. Given that the GRBs range of redshifts is rather high it turns out that they are not very sensitive to the dark energy component being however fairly good estimators of the amount of dark matter in the Universe.

O. Bertolami; P. T. Silva

2006-01-01T23:59:59.000Z

107

Gamma Ray Bursts In Their Historic Context  

Science Journals Connector (OSTI)

Gamma ray bursts remained essentially non?understood or misunderstood from their 1973 discovery (not I will claim “serendipitous”) to the first 1997 redshift. This is by no means a record. The poster explored some of the examples of longer?standing puzzles and the after?dinner talk some of the details of the GRB case. The most striking feature of the GRB history is probably the unanimity with which “all we like sheep went astray ” which followed the epoch of “we have turned everyone to his own way.” Some of the reasons for this the range of hypotheses and how GRBs were presented to the astronomical and larger communities are discussed.

Virginia Trimble

2004-01-01T23:59:59.000Z

108

Neutrino Event Rates from Gamma Ray Bursts  

E-Print Network [OSTI]

We recalculate the diffuse flux of high energy neutrinos produced by Gamma Ray Bursts (GRB) in the relativistic fireball model. Although we confirm that the average single burst produces only ~10^{-2} high energy neutrino events in a detector with 1 km^2 effective area, i.e. about 10 events per year, we show that the observed rate is dominated by burst-to-burst fluctuations which are very large. We find event rates that are expected to be larger by one order of magnitude, likely more, which are dominated by a few very bright bursts. This greatly simplifies their detection.

F. Halzen; D. W. Hooper

1999-08-12T23:59:59.000Z

109

GAMQUEST, a Computer Program to Identify Gamma Rays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GAMQUEST GAMQUEST A Computer Program to Identify Gamma Rays Edgardo Browne, Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 EBROWNE@LBL.Gov Table of Contents Introduction. Program Access and Output Files. How to Run GAMQUEST. From Individual Accounts. From Guest Account. Gamma-Ray Data. GAMQUEST, a Tool for Applied Research. Searching Strategies. Examples. Neutron Activation Analysis. Gamma-Ray Spectrum Between 100 and 800 keV. Gamma-Ray Spectrum Between 800 and 1600 keV. A List of X Rays and Gamma Rays from the Decay of 192Ir (74 hr). Run GAMQUEST from Guest Account Acknowledgments. References. 1. Introduction. The characteristic energies and intensities of gamma rays emitted by radioactive isotopes are commonly used as fingerprints for isotope

110

Gamma-ray burst data from DMSP satellites  

SciTech Connect (OSTI)

A number of gamma-ray bursts have been detected by means of gamma-ray detectors aboard three Air Force Defense Meteorological Satellite Program (DMSP) satellites, in polar orbits at 800 km altitude. The gamma-ray data have a 2-second resolving time, and are usually telemetered in 5 energy bins in the range 50--1000 keV. Although it is not possible to detect gamma-ray bursts when the DMSP satellites are passing through the radiation belt or the South Atlantic Anomaly, or when the source is obscured by the Earth, a number of gamma-ray bursts have been detected by two or even three of the satellites. The DMSP data may be of considerable, assistance in evaluating time histories, locations, and spectra of gamma-ray bursts.

Terrell, J.; Klebesadel, R.W.; Lee, P. (Los Alamos National Lab., NM (United States)); Griffee, J.W. (Sandia National Labs., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

111

Gamma-ray burst data from DMSP satellites  

SciTech Connect (OSTI)

A number of gamma-ray bursts have been detected by means of gamma-ray detectors aboard three Air Force Defense Meteorological Satellite Program (DMSP) satellites, in polar orbits at 800 km altitude. The gamma-ray data have a 2-second resolving time, and are usually telemetered in 5 energy bins in the range 50--1000 keV. Although it is not possible to detect gamma-ray bursts when the DMSP satellites are passing through the radiation belt or the South Atlantic Anomaly, or when the source is obscured by the Earth, a number of gamma-ray bursts have been detected by two or even three of the satellites. The DMSP data may be of considerable, assistance in evaluating time histories, locations, and spectra of gamma-ray bursts.

Terrell, J.; Klebesadel, R.W.; Lee, P. [Los Alamos National Lab., NM (United States); Griffee, J.W. [Sandia National Labs., Albuquerque, NM (United States)

1991-12-31T23:59:59.000Z

112

Gamma-ray Bursts as Probes of Galaxy Evolution  

E-Print Network [OSTI]

Gamma-ray Bursts as Probes of Galaxy Evolution Daniele Malesani, Dark Cosmology Centre and the X of the "Universe") #12;What is a gamma-ray burst? Brief (ms - min) and intense (~10-7 erg cm­2 s­1 ) burst of soft to ongoing star formation "Naked-eye" GRB 080319B GRBs explode within star-forming galaxies Gamma-ray bursts

Â?umer, Slobodan

113

Nuclear Criticality as a Contributor to Gamma Ray Burst Events  

E-Print Network [OSTI]

Most gamma ray bursts are able to be explained using supernovae related phenomenon. Some measured results still lack compelling explanations and a contributory cause from nuclear criticality is proposed. This is shown to have general properties consistent with various known gamma ray burst properties. The galactic origin of fast rise exponential decay gamma ray bursts is considered a strong candidate for these types of events.

Robert Bruce Hayes

2013-01-15T23:59:59.000Z

114

Gamma Ray Bursts with (and without) Supernova Fireworks  

Science Journals Connector (OSTI)

We review the observational status of the Supernova/Gamma?Ray Burst connection. Observations of long duration Gamma?ray bursts suggest that they are associated with bright SNe?Ic. However recent observations of GRB 060614 puzzle this scenario pointing out the existence of long?duration Gamma?ray Burst not accompanied by a bright supernova. Current estimates of the SN and GRB rates yield a ratio GRB/SNe?Ibc in the range ?0.4%–3%.

Massimo Della Valle

2008-01-01T23:59:59.000Z

115

Gamma Ray Bursts, Neutron Star Quakes, and the Casimir Effect  

E-Print Network [OSTI]

We propose that the dynamic Casimir effect is a mechanism that converts the energy of neutron starquakes into $\\gamma$--rays. This mechanism efficiently produces photons from electromagnetic Casimir energy released by the rapid motion of a dielectric medium into a vacuum. Estimates based on the cutoff energy of the gamma ray bursts and the volume involved in a starquake indicate that the total gamma ray energy emission is consonant with observational requirements.

C. Carlson; T. Goldman; J. Perez-Mercader

1994-11-25T23:59:59.000Z

116

Very high-energy gamma rays from gamma-ray bursts  

Science Journals Connector (OSTI)

...which means that the energy thresholds of such...detecting gamma rays with energies as low as 30GeV...there have been two solar arrays in operation: STACEE in New Mexico (Hanna et al. 2002...not based around a solar array, employs rather...airshower arrays If the energy of the incoming gamma...

2007-01-01T23:59:59.000Z

117

The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope  

ScienceCinema (OSTI)

The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

Isabelle Grenier

2010-01-08T23:59:59.000Z

118

GAMUT: A computer code for. gamma. -ray energy and intensity analysis  

SciTech Connect (OSTI)

GAMUT is a computer code to analyze {gamma}-ray energies and intensities. It does a linear least-squares fit of measured {gamma}-ray energies from one or more experiments to the level scheme. GAMUT also performs a non-linear least-squares analysis of branching intensities. For both energy and intensity data, a statistical Chi-square analysis is performed with an iterative uncertainty adjustment. The uncertainties of outlying measured values and sets of measurements with x{sup 2}/f>1 are increased, and the calculation is repeated until the uncertainties are consistent with the fitted values. GAMUT accepts input from standard or special-format ENSDF data sets. The special-format ENSDF data sets were designed to permit analysis of more than one set of measurements associated with a single ENSDF data set. GAMUT prepares a standard ENSDF format output data set containing the adjusted values. If more than one input ENSDF data set is provided, GAMUT creates an ADOPTED LEVELS, GAMMAS data set containing the adjusted level and {gamma}-ray energies and branching intensities from each level normalized to 100 for the strongest {gamma}-ray. GAMUT also provides a summary of the results and an extensive log of the iterative analysis. GAMUT is interactive prompting the user for input and output file names and for default calculation options. This version of GAMUT has adjustable dimensions so that any maximum number of data sets, levels, and {gamma}-rays can be established at the time of implementation. 6 refs.

Firestone, R.B.

1991-05-01T23:59:59.000Z

119

The Diverse Environments of Gamma-Ray Bursts.  

E-Print Network [OSTI]

??I present results from several years of concerted observations of the afterglows and host galaxies of gamma-ray bursts (GRBs), the most energetic explosions in the… (more)

Perley, Daniel Alan

2011-01-01T23:59:59.000Z

120

A Closer Look at a Gamma-Ray Burst  

E-Print Network [OSTI]

A study of gamma rays produced when stars collapse or collide reveals details of the explosion mechanism, particularly the role of magnetic fields.

S. Covino

2007-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Inelastic cross sections from gamma-ray measurements  

SciTech Connect (OSTI)

Measurements of gamma rays following neutron induced reactions have been studied with the Germanium Array for Neutron-induced Excitations (GEANIE) at the Los Alamos Neutron Science Center (LANSCE) for many years. Gamma-ray excitation functions and coincidence studies provide insight into nuclear reaction mechanisms as well as expanding our knowledge of energy levels and gamma-rays. Samples studied with Ge detectors at LANSCE range from Be to Pu. Fe, Cr and Ti have been considered for use as reference cross sections. An overview of the measurements and efforts to create a reliable neutron-induced gamma-ray reference cross section will be presented.

Nelson, Ronald Owen [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

122

Compton scattering effects on the duration of terrestrial gamma-ray flashes  

E-Print Network [OSTI]

; published 18 January 2012. [1] Terrestrial gamma-ray flashes (TGFs) are gamma-ray bursts detected from space) recently discovered by the gamma-ray burst monitor (GBM) aboard the Fermi Gamma-Ray Space Telescope. Introduction [2] Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from

Pasko, Victor

123

OBSERVATIONS OF THE PROMPT GAMMA-RAY EMISSION OF GRB 070125 Eric C. Bellm,1  

E-Print Network [OSTI]

2007 November 13; accepted 2008 July 25 ABSTRACT The long, bright gamma-ray burst GRB 070125: gamma rays: bursts 1. INTRODUCTION The prompt gamma-ray emission of gamma-ray bursts (GRBs) is the mostOBSERVATIONS OF THE PROMPT GAMMA-RAY EMISSION OF GRB 070125 Eric C. Bellm,1 Kevin Hurley,1 Valentin

California at Berkeley, University of

124

Study of Celestial Objects with Very High Energy Gamma Rays CANGAROO III  

E-Print Network [OSTI]

), the doppler boosting of secondary gamma-rays is sufficient to produce TeV gamma-rays. Gamma-ray bursts: Fireballs expanding with relativistic speed explain gamma-ray bursts at cosmological distancesStudy of Celestial Objects with Very High Energy Gamma Rays CANGAROO III Project Description

Enomoto, Ryoji

125

X-RAYRICH GAMMA-RAY BURSTS, PHOTOSPHERES, AND VARIABILITY P. Meszaros,1,2  

E-Print Network [OSTI]

X-RAY­RICH GAMMA-RAY BURSTS, PHOTOSPHERES, AND VARIABILITY P. Me´sza´ros,1,2 E. Ramirez-Ruiz,3 M. J of the observational gamma-ray variability-luminosity relation. Subject headings: gamma rays: bursts -- radiation mechanisms: nonthermal 1. INTRODUCTION Gamma-ray burst (GRB) light curves at gamma-ray ener- gies are often

Zhang, Bing

126

Search for GeV Emission from Gamma-Ray Bursts Using Milagro Scaler Data  

E-Print Network [OSTI]

Search for GeV Emission from Gamma-Ray Bursts Using Milagro Scaler Data D. A. Williams to search for high energy emission from a sample of 98 gamma-ray bursts (GRB) detected from January 2000: gamma-ray sources; gamma-ray bursts; astronomical observations: gamma-ray PACS: 98.70.Rz,95.85.Pw Air

California at Santa Cruz, University of

127

Workshops  

Broader source: Energy.gov [DOE]

Presentations, video and audio files, and other information related to AMO workshops are available for review.

128

Gamma ray bursts observed with WATCH?EURECA  

Science Journals Connector (OSTI)

The WATCH wide field x?ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence of the Soft Gamma Repeater SGR 1900+14 in 1992 is verified.

S. Brandt; N. Lund; A. J. Castro?Tirado

1994-01-01T23:59:59.000Z

129

Terrestrial gamma ray flash production by active lightning leader channels  

E-Print Network [OSTI]

Terrestrial gamma ray flash production by active lightning leader channels B. E. Carlson,1 N. G 28 October 2010. [1] The production of terrestrial gamma ray flashes (TGFs) requires a seed energetic electron source and a strong electric field. Lightning leaders naturally provide seed electrons by cold

Bergen, Universitetet i

130

Constraining Lorentz violations with Gamma Ray Bursts  

E-Print Network [OSTI]

Gamma ray bursts are excellent candidates to constrain physical models which break Lorentz symmetry. We consider deformed dispersion relations which break the boost invariance and lead to an energy-dependent speed of light. In these models, simultaneously emitted photons from cosmological sources reach Earth with a spectral time delay that depends on the symmetry breaking scale. We estimate the possible bounds which can be obtained by comparing the spectral time delays with the time resolution of available telescopes. We discuss the best strategy to reach the strongest bounds. We compute the probability of detecting bursts that improve the current bounds. The results are encouraging. Depending on the model, it is possible to build a detector that within several years will improve the present limits of 0.015 m_pl.

Maria Rodriguez Martinez; Tsvi Piran

2006-05-17T23:59:59.000Z

131

Lorentz invariance violation with gamma rays  

E-Print Network [OSTI]

The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum gravity predict there could be an effective refractive index of the vacuum; the introduction of an energy dependent dispersion to photons could in turn lead to an observable Lorentz invariance violation signature. Whilst a very small effect on local scales the effect will be cumulative, and so for very high energy particles that travel very large distances the difference in arrival times could become sufficiently large to be detectable. This proceedings will look at testing for such Lorentz invariance violation (LIV) signatures in the astronomical lightcurves of gamma-ray emitting objects, with particular notice being given to the prospects for LIV testing with, the next generation observatory, the Cherenkov Telescope Array.

Daniel, Michael

2015-01-01T23:59:59.000Z

132

THE BRIGHT GAMMA-RAY BURST OF 2000 FEBRUARY 10: A CASE STUDY OF AN OPTICALLY DARK GAMMA-RAY BURST  

E-Print Network [OSTI]

THE BRIGHT GAMMA-RAY BURST OF 2000 FEBRUARY 10: A CASE STUDY OF AN OPTICALLY DARK GAMMA-RAY BURST L Received 2002 January 16; accepted 2002 June 8 ABSTRACT The gamma-ray burst GRB 000210 had the highest: observations -- gamma-rays: bursts 1. INTRODUCTION It is observationally well established that about half

Fynbo, Johan

133

Magnetic Structures in Gamma-Ray Burst Jets Probed by Gamma-Ray Polarization  

E-Print Network [OSTI]

We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the Gamma-ray burst polarimeter (GAP) aboard IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of $\\Pi = 70 \\pm 22$% with statistical significance of $3.7 \\sigma$ for GRB 110301A, and $\\Pi = 84^{+16}_{-28}$% with $3.3 \\sigma$ confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. (2011). Synchrotron emission model can be consistent with all the data of the three GRBs, while photospheric quasi-thermal emission model is not favorable. We suggest that magnetic field structures in the emission region are globally-ordered fields advected from the central engine.

Daisuke Yonetoku; Toshio Murakami; Shuichi Gunji; Tatehiro Mihara; Kenji Toma; Yoshiyuki Morihara; Takuya Takahashi; Yudai Wakashima; Hajime Yonemochi; Tomonori Sakashita; Noriyuki Toukairin; Hirofumi Fujimoto; Yoshiki Kodama

2012-08-27T23:59:59.000Z

134

MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION  

SciTech Connect (OSTI)

We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

2012-10-10T23:59:59.000Z

135

Muon Detection of TeV Gamma Rays from Gamma-Ray Bursts  

Science Journals Connector (OSTI)

Because of the limited size of the satellite-borne instruments, it has not been possible to observe the flux of gamma-ray bursts (GRBs) beyond GeV energy. We here show that it is possible to detect the GRB radiation of TeV energy and above by detecting the muon secondaries produced when the gamma rays shower in Earth's atmosphere. Observation is made possible by the recent commissioning of underground detectors (AMANDA, the Lake Baikal detector, and MILAGRO), which combine a low muon threshold of a few hundred GeV or less, with a large effective area of 103 m2 or more. Observations will not only provide new insights in the origin and characteristics of GRB, but they also will provide quantitative information on the diffuse infrared background.

J. Alvarez-Muńiz; F. Halzen

1999-01-01T23:59:59.000Z

136

Polarization mesurements of gamma ray bursts and axion like particles  

E-Print Network [OSTI]

A polarized gamma ray emission spread over a sufficiently wide energy band from a strongly magnetized astrophysical object like gamma ray bursts (GRBs) offers an opportunity to test the hypothesis of axion like particles (ALPs). Based on evidences of polarized gamma ray emission detected in several gamma ray bursts we estimated the level of ALPs induced dichroism, which could take place in the magnetized fireball environment of a GRB. This allows to estimate the sensitivity of polarization measurements of GRBs to the ALP-photon coupling. This sensitivity $\\gag\\le 2.2\\cdot 10^{-11} {\\rm GeV^{-1}}$ calculated for the ALP mass $m_a=10^{-3}~{\\rm eV}$ and MeV energy spread of gamma ray emission is competitive with the sensitivity of CAST and becomes even stronger for lower ALPs masses.

Andre Rubbia; Alexander Sakharov

2008-09-03T23:59:59.000Z

137

GRB 020410: A Gamma-ray burst afterglow discovered by its supernova light  

E-Print Network [OSTI]

Training Network “Gamma-Ray Bursts: An Enigma and a Tool”,Journal GRB 020410: A Gamma-Ray Burst Afterglow DiscoveredSubject headings: gamma rays: bursts – supernova: general

2004-01-01T23:59:59.000Z

138

Compton Recoil Electron Tracking With the TIGRE Gamma-Ray Balloon Experiment  

E-Print Network [OSTI]

AGNs), pulsars, gamma-ray bursts, cosmic ray interactionssensitive to cosmic gamma-ray bursts in the energy range ofGalactic center, a single gamma-ray burst which occurred 10

Kamiya, Kaoru

2011-01-01T23:59:59.000Z

139

The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA  

E-Print Network [OSTI]

see also the Swift Gamma-Ray Burst Mission Page: http://from Northern Hemisphere Gamma-Ray Bursts with AMANDA A.Northern Hemisphere Gamma-Ray Bursts with AMANDA The IceCube

Achterberg, A.; IceCube Collaboration

2008-01-01T23:59:59.000Z

140

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network [OSTI]

2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

Abbasi, R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Long gamma-ray bursts and core-collapse supernovae have different environments  

E-Print Network [OSTI]

Progenitor Stars of Gamma-Ray Bursts. Astrophys. J. 637, 45.massive stars towards gamma-ray bursts. Astr. Astrophys.On the Lyalpha emission from gamma-ray burst host galaxies:

2006-01-01T23:59:59.000Z

142

Physics of Gamma-ray Bursts and Multi-messenger Signals from Double Neutron Star Mergers.  

E-Print Network [OSTI]

??My dissertation includes two parts: Physics of Gamma-Ray Bursts (GRBs): Gamma-ray bursts are multi-wavelength transients, with both prompt gamma-ray emission and late time afterglow emission… (more)

Gao, He

2014-01-01T23:59:59.000Z

143

Astrophysical explosions: from solar flares to cosmic gamma-ray bursts  

Science Journals Connector (OSTI)

...from solar flares to cosmic gamma-ray bursts J. Craig Wheeler * * wheel...collapse supernovae and cosmic gamma-ray bursts, each representing a different...black holes|supernovae|gamma-ray bursts|deflagration|detonation...

2012-01-01T23:59:59.000Z

144

High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST  

SciTech Connect (OSTI)

Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

Fan, Yi-Zhong; Piran, Tsvi

2011-11-29T23:59:59.000Z

145

E-Print Network 3.0 - advanced gamma ray Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gamma ray Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced gamma ray Page: << < 1 2 3 4 5 > >> 1 Memory Referencing Behavior in...

146

Gamma-ray Astronomy: Implications for Fundamental Physics  

E-Print Network [OSTI]

Gamma-ray Astronomy studies cosmic accelerators through their electromagnetic radiation in the energy range between ~100 MeV and ~100 TeV. The present most sensitive observations in this energy band are performed, from space, by the Large Area Telescope onboard the Fermi satellite and, from Earth, by the Imaging Air Cherenkov Telescopes MAGIC, H.E.S.S. and VERITAS. These instruments have revolutionized the field of Gamma-ray Astronomy, discovering different populations of gamma-ray emitters and studying in detail the non-thermal astrophysical processes producing this high-energy radiation. The scientific objectives of these observatories include also questions of fundamental physics. With gamma-ray instruments we study the origin of Galactic cosmic rays, testing the hypothesis or whether they are mainly produced in supernova explosions. Also, we obtain the most sensitive measurement of the cosmic electron-positron spectrum between 20 GeV and 5 TeV. By observing the gamma-ray emission from sources at cosmological distances, we learn about the intensity and evolution of the extragalactic background light, and perform tests of Lorentz Invariance. Moreover, we can search for dark matter by looking for gamma-ray signals produced by its annihilation or decay in over-density sites. In this paper, we review the most recent results produced with the current generation of gamma-ray instruments in these fields of research.

Javier Rico

2011-11-28T23:59:59.000Z

147

Conservative constraints on dark matter annihilation into gamma rays  

SciTech Connect (OSTI)

Using gamma-ray data from observations of the Milky Way, Andromeda (M31), and the cosmic background, we calculate conservative upper limits on the dark matter self-annihilation cross section to monoenergetic gamma rays, <{sigma}{sub A}v>{sub {gamma}}{sub {gamma}}, over a wide range of dark matter masses. (In fact, over most of this range, our results are unchanged if one considers just the branching ratio to gamma rays with energies within a factor of a few of the endpoint at the dark matter mass.) If the final-state branching ratio to gamma rays, Br({gamma}{gamma}), were known, then <{sigma}{sub A}v>{sub {gamma}}{sub {gamma}}/Br({gamma}{gamma}) would define an upper limit on the total cross section; we conservatively assume Br({gamma}{gamma}) > or approx. 10{sup -4}. An upper limit on the total cross section can also be derived by considering the appearance rates of any standard model particles; in practice, this limit is defined by neutrinos, which are the least detectable. For intermediate dark matter masses, gamma-ray-based and neutrino-based upper limits on the total cross section are comparable, while the gamma-ray limit is stronger for small masses and the neutrino limit is stronger for large masses. We comment on how these results depend on the assumptions about astrophysical inputs and annihilation final states, and how GLAST and other gamma-ray experiments can improve upon them.

Mack, Gregory D.; Yueksel, Hasan [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Jacques, Thomas D.; Bell, Nicole F. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Beacom, John F. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Astronomy, Ohio State University, Columbus, Ohio 43210 (United States)

2008-09-15T23:59:59.000Z

148

Gamma Ray Burst Constraints on Ultraviolet Lorentz Invariance Violation  

E-Print Network [OSTI]

We present a unified general formalism for ultraviolet Lorentz invariance violation (LV) testing through electromagnetic wave propagation, based on both dispersion and rotation measure data. This allows for a direct comparison of the efficacy of different data to constrain LV. As an example we study the signature of LV on the rotation of the polarization plane of $\\gamma$-rays from gamma ray bursts in a LV model. Here $\\gamma$-ray polarization data can provide a strong constraint on LV, 13 orders of magnitude more restrictive than a potential constraint from the rotation of the cosmic microwave background polarization proposed by Gamboa, L\\'{o}pez-Sarri\\'{o}n, and Polychronakos (2006).

Tina Kahniashvili; Grigol Gogoberidze; Bharat Ratra

2006-10-20T23:59:59.000Z

149

The STACEE Ground-Based Gamma-Ray Detector  

E-Print Network [OSTI]

We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

STACEE Collaboration; D. M. Gingrich; L. M. Boone; D. Bramel; J. Carson; C. E. Covault; P. Fortin; D. S. Hanna; J. A. Hinton; A. Jarvis; J. Kildea; T. Lindner; C. Mueller; R. Mukherjee; R. A. Ong; K. Ragan; R. A. Scalzo; C. G. Theoret; D. A. Williams; J. A. Zweerink

2005-06-24T23:59:59.000Z

150

The STACEE Ground-Based Gamma-Ray Detector  

E-Print Network [OSTI]

We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

2005-01-01T23:59:59.000Z

151

An Analytical Expression for the Hubble diagram of supernovae and gamma-ray bursts  

E-Print Network [OSTI]

A recent paper by Harmut Traunm\\"uller shows that the most adequate equation to interpret the observations on magnitude and redshift from 892 type 1a supernovae would be mu = 5 log[(1+z) ln(1+z)] + const. We discuss this result which is exacly the one we have obtained few years ago when postulating a relation between the speed of light and the expansion of the universe. We also compare our analytical result to the conclusion of Marosi who studied 280 supernovae and gamma-ray bursts in the range 0.1014 < z < 8.1. The difference between his results and ours is at worst of 0.3 %.

Jean-Marie Vigoureux; Bernard Vigoureux; Michel Langlois

2014-11-12T23:59:59.000Z

152

An Analytical Expression for the Hubble diagram of supernovae and gamma-ray bursts  

E-Print Network [OSTI]

A recent paper by Harmut Traunm\\"uller shows that the most adequate equation to interpret the observations on magnitude and redshift from 892 type 1a supernovae would be mu = 5 log[(1+z) ln(1+z)] + const. We discuss this result which is exacly the one we have obtained few years ago when postulating a relation between the speed of light and the expansion of the universe. We also compare our analytical result to the conclusion of Marosi who studied 280 supernovae and gamma-ray bursts in the range 0.1014 < z < 8.1. The difference between his results and ours is at worst of 0.3 %.

Vigoureux, Jean-Marie; Langlois, Michel

2014-01-01T23:59:59.000Z

153

Gamma Ray Bursts and Their Afterglows  

Science Journals Connector (OSTI)

Gamma?Ray Bursts are extreme astrophysical events which emit the bulk of their energy as photons in the 0.1 – 1.0 MeV range and whose durations span milliseconds to tens of minutes. They are formed in extreme relativistic outflows with Lorentz factors of hundreds and reside at cosmological distances. They are followed by X?ray optical and radio afterglows which can be observed for over a year after the event. Observations of afterglows showed that the emission is from jets and when corrected for this geometry the energies of GRBs appear to cluster around 5 × 1050 erg — very comparable to that of supernovae. Evidence in the last several years shows that a significant fraction of long GRBs are related to a peculiar type of supernova explosions. These supernovae most likely mark the birth events of stellar mass black holes as the final products of the evolution of very massive stars. Short bursts are still somewhat mysterious but it is known that some of them are produced by an old population of stars. Neutron star merger is a leading candidate as the progenitor of short GRBs.

Re’em Sari

2006-01-01T23:59:59.000Z

154

Correlations with gamma?ray bursts  

Science Journals Connector (OSTI)

We performed correlation function analyses involving the first 260 BATSE detected gamma?ray bursts (GRBs) searching for evidence of bunching or repetition. The BATSE GRB two?point angular auto?correlation function shows excesses at small and high angles as noted previously by Quashnock and Lamb (1993) and Narayan and Piran (1993). The BATSE GRB two?point temporal correlation function shows no significant excesses at any times but does show a significant dip on the time scale of hours. This dip is real and corresponds to BATSE ignoring dim bursts while processing bright bursts. Even when constrained to bursts with recorded angular separations less than 20° no temporal excess is found. Therefore if GRBs repeat this analysis was unable to locate any obvious repetition timescale. We have computed the general GRB?Abell cluster angular cross?correlation function and again find no significant peaks. In sum the times and positions of the first 260 GRBs released into the public domain show no significant evidence in our opinion the GRBs correlate with themselves or Abell clusters.

Robert J. Nemiroff; Gabriela F. Marani; Juan R. Cebral; Jay P. Norris

1994-01-01T23:59:59.000Z

155

The electromagnetic model of Gamma Ray Bursts  

E-Print Network [OSTI]

I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.

Maxim Lyutikov

2005-12-13T23:59:59.000Z

156

Acceleration of particles in Gamma Ray sources: Blazars and Gamma Ray Bursts  

Science Journals Connector (OSTI)

The objectives of my talk are to indicate the requirements for particle acceleration for both electrodynamic models and hadronic models in blazars then to propose a relativistic Fermi acceleration process to achieve the goal of UHE Cosmic Ray production in relativistic flows. Relativistic magnetic fronts when they cross each other produce an efficient Fermi process. It is also indicate how forward and backward fronts can be generated. Most of the involved physics also apply to Gamma Ray Bursts provided that they are produced by a magnetically collimated relativistic flow.

Guy Pelletier

2001-01-01T23:59:59.000Z

157

Distribution of gamma-ray bursts over the celestial sphere  

Science Journals Connector (OSTI)

The fractal dimensionality of the distribution of gamma-ray bursts over the celestial sphere has been investigated....2...? 2 is obtained, corresponding to a uniform spatial distribution of burst sources.

P. A. Tarakanov

158

Detection of pseudo gamma-ray bursts of long duration  

Science Journals Connector (OSTI)

It is known that the counting rate of both Nai and Csi hard X-ray detectors can have intense enhancements of brief ... duration, which appear like very short cosmic gamma-ray bursts but probably are due to phosph...

F. Frontera; F. Fuligni; E. Morelli; G. Pizzichini…

1981-03-01T23:59:59.000Z

159

INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS  

E-Print Network [OSTI]

Between the launch of the Global Geospace Science Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified ...

Vanderspek, Roland K.

160

Redshifts of the Long Gamma-Ray Bursts  

E-Print Network [OSTI]

The low energy spectra of some gamma-ray bursts' show excess components beside the power-law dependence. The consequences of such a feature allows to estimate the gamma photometric redshift of the long gamma-ray bursts in the BATSE Catalog. There is good correlation between the measured optical and the estimated gamma photometric redshifts. The estimated redshift values for the long bright gamma-ray bursts are up to z=4, while for the the faint long bursts - which should be up to z=20 - the redshifts cannot be determined unambiguously with this method. The redshift distribution of all the gamma-ray bursts with known optical redshift agrees quite well with the BATSE based gamma photometric redshift distribution.

Z. Bagoly; I. Csabai; A. Meszaros; P. Meszaros; I. Horvath; L. G. Balazs; R. Vavrek

2007-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gamma ray burst emission: A jet and fireball model  

Science Journals Connector (OSTI)

We discuss some of the properties problems and implications of the jet and fireball model of gamma ray burst emission. This model was suggested by constraints on the opacity of MeV photons to photon?photon pair production.

Richard E. Lingenfelter; Geoffrey J. Hueter

1984-01-01T23:59:59.000Z

162

GLAST and Ground-Based Gamma-Ray Astronomy  

SciTech Connect (OSTI)

The launch of the Gamma-ray Large Area Space Telescope (GLAST) in 2007 will open the possibility of combined studies of astrophysical sources with existing ground-based VHE {gamma}-ray experiments such as H.E.S.S., VERITAS and MAGIC. Ground-based {gamma}-ray observatories provide complementary capabilities for spectral, temporal, spatial and population studies of high-energy {gamma}-ray sources. Joint observations cover a huge energy range, from 20 MeV to over 50 TeV. The LAT will survey the entire sky every three hours, allowing us to perform long-term monitoring of variable sources under uniform observation conditions and to detect flaring sources promptly. Imaging atmospheric Cherenkov telescopes (IACTs) will complement these observations with high-sensitivity pointed observations on regions of interest.

Funk, S.; Carson, J.E.; Giebels, B.; Longo, F.; McEnery, J.E.; Paneque, D.; Reimer, O.; Reyes, L.C.

2007-10-10T23:59:59.000Z

163

Observations of Gamma-Ray Bursts at Extreme Energies.  

E-Print Network [OSTI]

??Gamma-ray bursts (GRBs), thought to be produced by the core-collapse of massive stars or merging compact objects, are the most luminous events observed since the… (more)

Aune, Taylor

2012-01-01T23:59:59.000Z

164

Gamma-Ray Burst Measurements at Low Fluxes  

Science Journals Connector (OSTI)

30 June 1981 research-article Gamma-Ray Burst Measurements at Low Fluxes K. Beurle A. Bewick J. S. Mills J. J. Quenby The Royal Society is collaborating with JSTOR to...

1981-01-01T23:59:59.000Z

165

Gamma-ray emission from rotation-powered pulsars  

E-Print Network [OSTI]

Using a simplified model of cascade pair creation over pulsar polar caps presented in two previous papers, we investigate the expected gamma-ray output from pulsars' low altitude particle acceleration and pair creation regions. We divide pulsars into several categories, based on which mechanism truncates the particle acceleration off the polar cap, and give estimates for the expected luminosity of each category. We find that inverse Compton scattering above the pulsar polar cap provides the primary gamma rays which initiate the pair cascades in most pulsars. This reduces the expected $\\gamma$-ray luminosity below previous estimates which assumed curvature gamma ray emission was the dominant initiator of pair creation in all pulsars.

J. A. Hibschman

2001-11-14T23:59:59.000Z

166

Mono-Energetic Gamma-ray (MEGa-ray)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(MeV) spectral range. MEGa-ray Rendering In the mono-energetic gamma-ray (MEGA-ray) device, electrons and laser photons crash head-on, creating a backscatter of gamma...

167

Gamma-ray absorption and chemical composition of neovolcanic rocks  

Science Journals Connector (OSTI)

Gamma-ray absorption coefficients ? Cs 137 for a set of 49 neovolcanic rocks from the Bohemian Massif were measured; their values varied in the range from 0.2092 cm?1 to 0.2464 c...

V?ra Va?ková; Vladimír Kropá?ek; Reviewer J. Buben

1974-01-01T23:59:59.000Z

168

Relativity at Action or Gamma-Ray Bursts  

E-Print Network [OSTI]

Gamma ray Bursts (GRBs) - short bursts of few hundred keV $\\gamma$-rays - have fascinated astronomers since their accidental discovery in the sixties. GRBs were ignored by most relativists who did not expect that they are associated with any relativistic phenomenon. The recent observations of the BATSE detector on the Compton GRO satellite have revolutionized our ideas on these bursts and the picture that emerges shows that GRBs are the most relativistic objects discovered so far.

Tsvi Piran

1996-07-08T23:59:59.000Z

169

Hyperstars - Main Origin of Short Gamma Ray Bursts?  

E-Print Network [OSTI]

The first well-localized short-duration gamma ray bursts (GRBs), GRB 050509b, GRB 050709 and GRB 050724, could have been the narrowly beamed initial spike of a burst/hyper flare of soft gamma ray repeaters (SGRs) in host galaxies at cosmological distances. Such bursts are expected if SGRs are young hyperstars, i.e. neutron stars where a considerable fraction of their neutrons have converted to hyperons and/or strange quark matter.

Arnon Dar

2005-09-09T23:59:59.000Z

170

Penetration of 6-Mev Gamma Rays in Water  

Science Journals Connector (OSTI)

The penetration of 6-Mev gamma rays has been studied out to 190 cm in water. The dose rate has been measured with an anthracene scintillation detector as a function of the distance from the N16 source. The results agree closely out to 160 cm with the distribution calculated according to the theory of gamma-ray penetration as developed by Spencer and Fano.

P. A. Roys; K. Shure; J. J. Taylor

1954-08-15T23:59:59.000Z

171

Gamma Ray Bursts as Probes of Quantum Gravity  

E-Print Network [OSTI]

Gamma ray bursts (GRBs) are short and intense pulses of $\\gamma$-rays arriving from random directions in the sky. Several years ago Amelino-Camelia et al. pointed out that a comparison of time of arrival of photons at different energies from a GRB could be used to measure (or obtain a limit on) possible deviations from a constant speed of light at high photons energies. I review here our current understanding of GRBs and reconsider the possibility of performing these observations.

Tsvi Piran

2004-07-21T23:59:59.000Z

172

Localization of Gamma-Ray Bursts using the Fermi Gamma-Ray Burst Monitor  

E-Print Network [OSTI]

The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network (IPN), to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degree, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.7 degree Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14 degrees. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y-axis better l...

Connaughton, V; Goldstein, A; Meegan, C A; Paciesas, W S; Preece, R D; Wilson-Hodge, C A; Gibby, M H; Greiner, J; Gruber, D; Jenke, P; Kippen, R M; Pelassa, V; Xiong, S; Yu, H -F; Bhat, P N; Burgess, J M; Byrne, D; Fitzpatrick, G; Foley, S; Giles, M M; Guiriec, S; van der Horst, A J; von Kienlin, A; McBreen, S; McGlynn, S; Tierney, D; Zhang, B -B

2014-01-01T23:59:59.000Z

173

HETEROGENEITY IN SHORT GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

Norris, Jay P. [Physics and Astronomy Department, University of Denver, Denver, CO 80208 (United States); Gehrels, Neil [Astroparticle Physics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Scargle, Jeffrey D. [Space Science and Astrobiology Division, NASA/Ames Research Center, Moffett Field, CA 94035-1000 (United States)

2011-07-01T23:59:59.000Z

174

Ivan De Mitri VHE Gamma Ray Astronomy 1 Very High Energy  

E-Print Network [OSTI]

~ 1/day Gamma Ray Bursts The X-ray counterpart detection with better pointing accuracy instrumentsIvan De Mitri VHE Gamma Ray Astronomy 1 Very High Energy Gamma Ray Astronomy Ivan De Mitri'Aquila, 11- Jun -2002 Photo F. Arneodo #12;Ivan De Mitri VHE Gamma Ray Astronomy 2 Seminar Outline Background

Harrison, Thomas

175

CORRELATIONS OF PROMPT AND AFTERGLOW EMISSION IN SWIFT LONG AND SHORT GAMMA-RAY BURSTS  

E-Print Network [OSTI]

CORRELATIONS OF PROMPT AND AFTERGLOW EMISSION IN SWIFT LONG AND SHORT GAMMA-RAY BURSTS N. Gehrels,1 of prompt and afterglow emission from gamma-ray bursts (GRBs) between different spectral bands have been-limited for long events. Subject headingg: gamma rays: bursts 1. INTRODUCTION One of the longest enduring gamma-ray

Zhang, Bing

176

MILAGRO CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM SHORT-DURATION GAMMA-RAY BURSTS  

E-Print Network [OSTI]

MILAGRO CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM SHORT-DURATION GAMMA-RAY BURSTS A. A. Abdo,1 localizations of short, hard gamma-ray bursts (GRBs) by the Swift and HETE satellites have led: bursts -- gamma rays: observations Gamma-ray bursts (GRBs) have long been classified by their durations

California at Santa Cruz, University of

177

PoGO : The Polarised Gamma-ray Observer S. Larssona  

E-Print Network [OSTI]

. Recently, the detection of high linear polarisation, (80±20)%, in a gamma ray burst ob- served, this observation will have far reaching implications for models of gamma- ray bursts. Many of the X-ray and gamma-ray1 PoGO : The Polarised Gamma-ray Observer S. Larssona and M. Pearceb (for the PoGO Collaboration

Haviland, David

178

DOE Science Showcase - Gamma-Ray Bursts | OSTI, US Dept of Energy, Office  

Office of Scientific and Technical Information (OSTI)

Gamma-Ray Bursts Gamma-Ray Bursts Fermi Sees Record Gamma-ray Burst, May 3, 2013 Fermi Sees Record Gamma-ray Burst, May 3, 2013Credit: NASA/DOE/Fermi LAT Collection Gamma-ray bursts are short-lived bursts of gamma-ray photons observed in distant galaxies and thought to be triggered by supernovae or exploding stars. Gamma-ray bursts have been an observational and theoretical challenge since they were first observed in the 60s. Department of Energy physicists are participating in international collaborations of scientists to gain a better understanding of how gamma-ray bursts are formed and how they affect our universe. Learn about the science behind gamma-ray bursts In the OSTI Collections: Gamma Ray Bursts by Dr. William Watson, physicist, of OSTI's staff. This latest white paper includes a compilation of

179

NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra'anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

2013-09-01T23:59:59.000Z

180

Gamma rays from top-mediated dark matter annihilations  

SciTech Connect (OSTI)

Lines in the energy spectrum of gamma rays are a fascinating experimental signal, which are often considered ''smoking gun'' evidence of dark matter annihilation. The current generation of gamma ray observatories are currently closing in on parameter space of great interest in the context of dark matter which is a thermal relic. We consider theories in which the dark matter's primary connection to the Standard Model is via the top quark, realizing strong gamma ray lines consistent with a thermal relic through the forbidden channel mechanism proposed in the Higgs in Space Model. We consider realistic UV-completions of the Higgs in Space and related theories, and show that a rich structure of observable gamma ray lines is consistent with a thermal relic as well as constraints from dark matter searches and the LHC. Particular attention is paid to the one loop contributions to the continuum gamma rays, which can easily swamp the line signals in some cases, and have been largely overlooked in previous literature.

Jackson, C.B. [University of Texas at Arlington, Arlington, TX 76019 (United States); Servant, Géraldine [CERN Physics Department, Theory Division, CH-1211 Geneva 23 (Switzerland); Shaughnessy, Gabe [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Tait, Tim M.P. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Taoso, Marco, E-mail: geraldine.servant@cern.ch, E-mail: chris@uta.edu, E-mail: gshau@hep.wisc.edu, E-mail: ttait@uci.edu, E-mail: marco.taoso@cea.fr [Institut de Physique Théorique, CEA/Saclay, F-91191 Gif-sur-Yvette Cédex (France)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SLAC All Access: Fermi Gamma-ray Space Telescope  

SciTech Connect (OSTI)

Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

Romani, Roger

2013-05-31T23:59:59.000Z

182

Fermi GBM Observations of Terrestrial Gamma-ray Flashes  

SciTech Connect (OSTI)

Terrestrial Gamma-ray Flashes are short pulses of energetic radiation associated with thunderstorms and lightning. While the Gamma-ray Burst Monitor (GBM) on Fermi was designed to observe gamma-ray bursts, its large BGO detectors are excellent for observing TGFs. Using GBM, TGF pulses are seen to either be symmetrical or have faster rise time than fall times. Some TGFs are resolved into double, partially overlapping pulses. Using ground-based radio observations of lightning from the World Wide Lightning Location Network (WWLLN), TGFs and their associated lightning are found to be simultaneous to {approx_equal}40 {mu} s. The lightning locations are typically within 300 km of the sub-spacecraft point.

Briggs, Michael S. [CSPAR, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States)

2011-09-21T23:59:59.000Z

183

SLAC All Access: Fermi Gamma-ray Space Telescope  

ScienceCinema (OSTI)

Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

Romani, Roger

2014-06-24T23:59:59.000Z

184

COMPACT, TUNABLE COMPTON SCATTERING GAMMA-RAY SOURCES  

SciTech Connect (OSTI)

Recent progress in accelerator physics and laser technology have enabled the development of a new class of gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development at LLNL. High-brightness, relativistic electron bunches produced by the linac interact with a Joule-class, 10 ps laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. The source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented.

Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Marsh, R A; Messerly, M J; O'Neill, K L; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C J; Vlieks, A E; Jongewaard, E N; Tantawi, S G; Raubenheimer, T O

2009-08-20T23:59:59.000Z

185

Gamma-ray imaging with coaxial HPGe detector  

SciTech Connect (OSTI)

We report on the first experimental demonstration of Compton imaging of gamma rays with a single coaxial high-purity germanium (HPGe) detector. This imaging capability is realized by two-dimensional segmentation of the outside contact in combination with digital pulse-shape analysis, which enables to image gamma rays in 4{pi} without employing a collimator. We are able to demonstrate the ability to image the 662keV gamma ray from a {sup 137}Cs source with preliminary event selection with an angular accuracy of 5 degree with an relative efficiency of 0.2%. In addition to the 4{pi} imaging capability, such a system is characterized by its excellent energy resolution and can be implemented in any size possible for Ge detectors to achieve high efficiency.

Niedermayr, T; Vetter, K; Mihailescu, L; Schmid, G J; Beckedahl, D; Kammeraad, J; Blair, J

2005-04-12T23:59:59.000Z

186

Fermi Gamma-Ray “Bubbles” from Stochastic Acceleration of Electrons  

Science Journals Connector (OSTI)

Gamma-ray data from Fermi Large Area Telescope reveal a bilobular structure extending up to ?50° above and below the Galactic Center. It has been argued that the gamma rays arise from hadronic interactions of high-energy cosmic rays which are advected out by a strong wind, or from inverse-Compton scattering of relativistic electrons accelerated at plasma shocks present in the bubbles. We explore the alternative possibility that the relativistic electrons are undergoing stochastic 2nd-order Fermi acceleration by plasma wave turbulence through the entire volume of the bubbles. The observed gamma-ray spectral shape is then explained naturally by the resulting hard electron spectrum modulated by inverse-Compton energy losses. Rather than a constant volume emissivity as in other models, we predict a nearly constant surface brightness, and reproduce the observed sharp edges of the bubbles.

Philipp Mertsch and Subir Sarkar

2011-08-23T23:59:59.000Z

187

{gamma}-RAY LUMINOSITY FUNCTION AND THE CONTRIBUTION TO EXTRAGALACTIC {gamma}-RAY BACKGROUND FOR FERMI-DETECTED BLAZARS  

SciTech Connect (OSTI)

We study {gamma}-ray luminosity functions (GLFs) and the contribution to the extragalactic diffuse {gamma}-rays for blazars. After using a clean blazar sample in which 485 blazars are observed at both the 8.4 GHz and {approx} GeV bands, we investigate the radio/{gamma}-ray luminosity correlation and find out that a strong correlation exists between the radio and {gamma}-ray luminosities using the partial correlation analysis method. Based on such a correlation, we obtain the GLF, while also considering the GLF based on studies of the X-ray luminosity function of active galactic nuclei and the GLF of the EGRET blazars. K-S tests indicate that these three kinds of GLFs are consistent with the observed data of our sample in a reasonable parameter range. Using these GLFs, we further investigate the blazar contribution to the extragalactic diffuse {gamma}-ray background (EGRB). Our results show that (1) the contribution of blazars are {approx}21.3% {+-} 2.7%, {approx}12.9% {+-} 1.7%, and {approx}37.9% {+-} 4.8% of unresolved Fermi EGRB flux for the three GLFs and (2) the contribution of flat-spectrum radio quasars are {approx}11.2% {+-} 1.6%, {approx}6.9% {+-} 1.0%, and {approx}9.0% {+-} 1.2% of unresolved Fermi EGRB flux for the three GLFs.

Zeng, H. D.; Yan, D. H.; Sun, Y. Q.; Zhang, L., E-mail: lizhang@ynu.edu.cn [Department of Physics, Yunnan University, Kunming (China)

2012-04-20T23:59:59.000Z

188

Correlation between Gamma-Ray bursts and Gravitational Waves  

E-Print Network [OSTI]

The cosmological origin of $\\gamma$-ray bursts (GRBs) is now commonly accepted and, according to several models for the central engine, GRB sources should also emit at the same time gravitational waves bursts (GWBs). We have performed two correlation searches between the data of the resonant gravitational wave detector AURIGA and GRB arrival times collected in the BATSE 4B catalog. No correlation was found and an upper limit \\bbox{$h_{\\text{RMS}} \\leq 1.5 \\times 10^{-18}$} on the averaged amplitude of gravitational waves associated with $\\gamma$-ray bursts has been set for the first time.

P. Tricarico; A. Ortolan; A. Solaroli; G. Vedovato; L. Baggio; M. Cerdonio; L. Taffarello; J. Zendri; R. Mezzena; G. A. Prodi; S. Vitale; P. Fortini; M. Bonaldi; P. Falferi

2001-01-05T23:59:59.000Z

189

A Gamma-Ray Bursts' Fluence-Duration Correlation  

E-Print Network [OSTI]

We present an analysis indicating that there is a correlation between the fluences and the durations of gamma-ray bursts, and provide arguments that this reflects a correlation between the total emitted energies and the intrinsic durations. For the short (long) bursts the total emitted energies are roughly proportional to the first (second) power of the intrinsic duration. This difference in the energy-duration relationship is statistically significant, and may provide an interesting constraint on models aiming to explain the short and long gamma-ray bursts.

Istvan Horvath; Lajos G. Balazs; Peter Meszaros; Zsolt Bagoly; Attila Meszaros

2005-08-01T23:59:59.000Z

190

Varying Faces of Photospheric Emission in Gamma-Ray Bursts  

E-Print Network [OSTI]

Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

Axelsson, M

2015-01-01T23:59:59.000Z

191

High energy cosmic rays, gamma rays and neutrinos from AGN  

E-Print Network [OSTI]

The author reviews a model for the emission of high energy cosmic rays, gamma-rays and neutrinos from AGN (Active Galactic Nuclei) that he has proposed since 1985. Further discussion of the knee energy phenomenon of the cosmic ray energy spectrum requires the existence of a heavy particle with mass in the knee energy range. A possible method of detecting such a particle in the Pierre Auger Project is suggested. Also presented is a relation between the spectra of neutrinos and gamma-rays emitted from AGN. This relation can be tested by high energy neutrino detectors such as ICECUBE, the Mediterranean Sea Detector and possibly by the Pierre Auger Project.

Yukio Tomozawa

2008-02-03T23:59:59.000Z

192

X-Ray Afterglows from Gamma-Ray Bursts  

Science Journals Connector (OSTI)

We consider possible interpretations of the recently detected X-ray afterglow from the gamma-ray burst source GRB 970228. Cosmological and Galactic models of gamma-ray bursts predict different flux and spectral evolution of X-ray afterglows. We show that models based on adiabatic expansion of relativistic forward shocks require very efficient particle energization or postburst reacceleration during the expansion. Cooling neutron star models predict a very distinctive spectral and flux evolution that can be tested in current X-ray data.

M. Tavani

1997-01-01T23:59:59.000Z

193

Neutrino Tomography of Gamma Ray Bursts and Massive Stellar Collapses  

E-Print Network [OSTI]

Neutrinos at energies above TeV can serve as probes of the stellar progenitor and jet dynamics of gamma ray bursts arising from stellar core collapses. They can also probe collapses which do not lead to gamma-rays, which may be much more numerous. We calculate detailed neutrino spectra from shock accelerated protons in jets just below the outer stellar envelope, before their emergence. We present neutrino flux estimates from such pre-burst jets for two different massive stellar progenitor models. These should be distinguishable by IceCube, and we discuss the implications.

Soebur Razzaque; Peter Meszaros; Eli Waxman

2003-03-21T23:59:59.000Z

194

Large-Scale Anisotropy of EGRET Gamma Ray Sources  

E-Print Network [OSTI]

In the course of its operation, the EGRET experiment detected high-energy gamma ray sources at energies above 100 MeV over the whole sky. In this communication, we search for large-scale anisotropy patterns among the catalogued EGRET sources using an expansion in spherical harmonics, accounting for EGRET's highly non-uniform exposure. We find significant excess in the quadrupole and octopole moments. This is consistent with the hypothesis that, in addition to the galactic plane, a second mid-latitude (5^{\\circ} < |b| < 30^{\\circ}) population, perhaps associated with the Gould belt, contributes to the gamma ray flux above 100 MeV.

Luis Anchordoqui; Thomas McCauley; Thomas Paul; Olaf Reimer; Diego F. Torres

2005-06-24T23:59:59.000Z

195

Milagro all-sky TeV gamma ray observatory.  

SciTech Connect (OSTI)

Milagro is a water Cherenkov telescope sensitive to gamma rays with energies above 100 GeV. Unlike air-Cherenkov telescopes, Milagro continuously views the entire overhead sky. This capability makes it well suited to search for transient phenomena such as gamma-ray bursts and to discover new phenomena. I will review the design and construction of Milagro, detail the sensitivity of the instrument, including a discussion of background rejection with Milagro. Recent and ongoing upgrades to the instrument are discussed. The paper concludes with a summary of some recent physics results with Milagro.

Sinnis, C. (Constantine)

2002-01-01T23:59:59.000Z

196

NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

We compare the redshifts, host galaxy metallicities, and isotropic (E{sub {gamma}},iso) and beaming-corrected (E{sub {gamma}}) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z < 1. From this comparison, we find no statistically significant correlation between host metallicity and redshift, E{sub {gamma}},iso, or E{sub {gamma}}. These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

Levesque, Emily M.; Kewley, Lisa J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Soderberg, Alicia M.; Berger, Edo, E-mail: emsque@ifa.hawaii.ed, E-mail: kewley@ifa.hawaii.ed, E-mail: asoderbe@cfa.harvard.ed, E-mail: eberger@cfa.harvard.ed [Smithsonian Astrophysical Observatory, 60 Garden St., MS-20, Cambridge, MA 02138 (United States)

2010-12-10T23:59:59.000Z

197

Flux and Photon Spectral Index Distributions of Fermi-LAT Blazars and Contribution to the Extragalactic Gamma-ray Background  

SciTech Connect (OSTI)

We present a determination of the distributions of gamma-ray flux - the so called LogN-LogS relation - and photon spectral index for the 352 blazars detected with a greater than approximately seven sigma detection threshold and located above {+-} 20{sup o} Galactic latitude by the Large Area Telescope of the Fermi Gamma-ray Space Telescope in its first year catalog. Because the flux detection threshold depends on the photon index, the observed raw distributions do not provide the true LogN-LogS counts or the true distribution of the photon index. We use the non-parametric methods developed by Efron and Petrosian to reconstruct the intrinsic distributions from the observed ones which account for the data truncations introduced by observational bias and includes the effects of the possible correlation among the two variables. We demonstrate the robustness of our procedures using a simulated data set of blazars and then apply these to the real data and find that for the population as a whole the intrinsic flux distribution can be represented by a broken power law of slopes -2.37 {+-} 0.13 and -1.70 {+-} 0.26, and the intrinsic photon index distribution can be represented by a Gaussian with mean 2.41 {+-} 0.13 and 1{sigma} width of 0.25 {+-} 0.03. We also find the intrinsic distributions for the sub-populations of BL Lac and FSRQs type blazars separately. We then calculate the contribution of blazars to the diffuse cosmic gamma-ray background radiation to be 28% {+-} 19%.

Singal, J.; /KIPAC, Menlo Park /SLAC /Stanford U.; Petrosian, V.; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Ajello, M.; /KIPAC, Menlo Park /SLAC /Stanford U.

2011-12-09T23:59:59.000Z

198

Constraining axion by polarized prompt emission from gamma ray bursts  

E-Print Network [OSTI]

A polarized gamma ray emission spread over a sufficiently wide energy band from a strongly magnetized astrophysical object like gamma ray bursts (GRBs) offers an opportunity to test the hypothesis of invisible axion. The axionic induced dichroism of gamma rays at different energies should cause a misalignment of the polarization plane for higher energy events relative to that one for lower energies events resulting in the loss of statistics needed to form a pattern of the polarization signal to be recognized in a detector. According to this, any evidence of polarized gamma rays coming from an object with extended magnetic field could be interpreted as a constraint on the existence of the invisible axion for a certain parameter range. Based on reports of polarized MeV emission detected in several GRBs we derive a constraint on the axion-photon coupling. This constraint $\\g_{a\\gamma\\gamma}\\le 2.2\\cdot 10^{-11} {\\rm GeV^{-1}}$ calculated for the axion mass $m_a=10^{-3} {\\rm eV}$ is competitive with the sensitivity of CAST and becomes even stronger for lower masses.

A. Rubbia; A. S. Sakharov

2007-08-21T23:59:59.000Z

199

Constraints on relativity violations from gamma-ray bursts  

E-Print Network [OSTI]

Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation involving photons by factors ranging from ten to a million.

Alan Kostelecky; Matthew Mewes

2013-01-23T23:59:59.000Z

200

Gamma ray bursts as probes of the first stars  

Science Journals Connector (OSTI)

The redshift where the first stars formed is an important and unknown milestone in cosmological structure formation. The evidence linking gamma ray bursts (GRBs) with star formation activity implies that the first GRBs occurred shortly after the first stars formed. Gamma ray bursts and their afterglows may thus offer a unique probe of this epoch because they are bright from gamma ray to radio wavelengths and should be observable to very high redshift. Indeed our ongoing near-IR followup programs already have the potential to detect bursts at redshift z?10. In these proceedings we discuss two distinct ways of using GRBs to probe the earliest star formation. First direct GRB counts may be used as a proxy for star formation rate measurements. Second high energy cutoffs in the GeV spectra of gamma ray bursts due to pair production with high redshift optical and ultraviolet background photons contain information on early star formation history. The second method is observationally more demanding but also more rewarding because each observed pair creation cutoff in a high redshift GRB spectrum will tell us about the integrated star formation history prior to the GRB redshift.

James E. Rhoads

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Study of gamma rays from neutron inelastic scattering  

E-Print Network [OSTI]

The energy and intensity of the inelastic gamma rays of twenty low atomic number elements: Li, C, N, 0, Mg, Al, Na, Si, S, Cl, K, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Pb, are measured with a 30 cc Ge(Li) detector using an ...

Hui, Bertram Ho Wai

1970-01-01T23:59:59.000Z

202

Can Fireball or Firecone Models Explain Gamma Ray Bursts?  

E-Print Network [OSTI]

The observed afterglows of gamma ray bursts, in particular that of GRB 970228 six months later, seem to rule out relativistic fireballs and relativistic firecones driven by merger or accretion induced collapse of compact stellar objects in galaxies as the origin of GRBs. GRBs can be produced by superluminal jets from such events.

Arnon Dar

1997-09-24T23:59:59.000Z

203

Cosmic Rays and Gamma Ray Bursts From Microblazars  

E-Print Network [OSTI]

Highly relativistic jets from merger and accretion induced collapse of compact stellar objects, which may produce the cosmological gamma ray bursts (GRBs), are also very efficient and powerful cosmic ray accelerators. The expected luminosity, energy spectrum and chemical composition of cosmic rays from Galactic GRBs, most of which do not point in our direction, can explain the observed properties of Galactic cosmic rays.

Arnon Dar

1998-09-13T23:59:59.000Z

204

High-energy afterglow emission from gamma-ray bursts  

Science Journals Connector (OSTI)

......in question. High-energy emission provides a new window into afterglow...Proc. Vol. 745, High Energy Gamma-Ray Astronomy. Am. Inst. Phys., New York, p. 23. Proga D...Astrophysics. Wiley, New York. Sari R. , 1998, ApJ......

Yi-Zhong Fan; Tsvi Piran; Ramesh Narayan; Da-Ming Wei

2008-03-11T23:59:59.000Z

205

Gamma-Ray Bursts from Neutron Star Mergers  

E-Print Network [OSTI]

Binary neutron stars merger (NS$^2$M) at cosmological distances is probably the only $\\gamma$-ray bursts model based on an independently observed phenomenon which is known to be taking place at a comparable rate. We describe this model, its predictions and some open questions.

T. Piran

1994-01-17T23:59:59.000Z

206

Swift's Ability to Detect Gamma-Ray Bursts  

E-Print Network [OSTI]

The Swift satellite will be a self-contained observatory that will bring new capabilities to the observing of the early afterglow emission of Gamma-ray Bursts. Swift is completely autonomous and will do all of the observations without help from the ground. There are three instruments on Swift. A large (5200 sq cm) coded aperture imager will locate the bursts within about 15 seconds. The satellite will be able to slew to point at the location within a minute or two. There are two narrow field of view instruments: an optical telescope and an x-ray telescope. Thus, Swift will provide simultaneous gamma-ray, x-ray, and optical observations of Gamma-ray bursts soon after the burst. A key to the success of Swift will be its ability to detect and locate a large number of gamma-ray bursts quick enough that the narrow field of view instruments can follow up. The results of simulations show that Swift will be able to detect about 300 bursts a year and locate about 150. The number that Swift will be able to slew to depe...

Fenimore, E E; Palmer, D; Barthelmy, S D; Gehrels, N; Krimm, H A; Markwardt, C B; Parsons, A; Stephens, M; Tüller, J

2004-01-01T23:59:59.000Z

207

Characterization of the Germania Spraberry unit from analog studies and cased-hole neutron log data  

E-Print Network [OSTI]

a dependent variable (permeability) from multiple independent variables (rock type, shale volume and porosity) will also be investigated in this study. A log data base includes digitized formats of gamma ray, cased hole neutron, limited resistivity...

Olumide, Babajide Adelekan

2005-11-01T23:59:59.000Z

208

Study of Solar Flares and Gamma-Ray Bursts in the Helicon Experiment  

Science Journals Connector (OSTI)

Detailed data on temporal profiles, energy spectra, and spectral variability of hard X-ray and gamma-ray flares of solar origin have been obtained ... , the Helicon experiment has also investigated cosmic gamma-ray

E. P. Mazets; R. L. Aptekar; S. V. Golenetskii…

2014-01-01T23:59:59.000Z

209

E-Print Network 3.0 - analyzing plutonium gamma-ray Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plutonium gamma-ray Search Powered by Explorit Topic List Advanced Search Sample search results for: analyzing plutonium gamma-ray Page: << < 1 2 3 4 5 > >> 1 n December 30, 1958,...

210

E-Print Network 3.0 - airborne gamma-ray spectra Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: airborne gamma-ray spectra Page: << < 1 2 3 4 5 > >> 1 Ivan De Mitri VHE Gamma Ray Astronomy 1 Very High...

211

SciTech Connect: Optical Observations of Gamma-Ray Bursts: Connections...  

Office of Scientific and Technical Information (OSTI)

Conference: Optical Observations of Gamma-Ray Bursts: Connections to GeVTeV Jets Citation Details In-Document Search Title: Optical Observations of Gamma-Ray Bursts: Connections...

212

E-Print Network 3.0 - atmospheric gamma-ray imaging Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gamma-ray imaging Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric gamma-ray imaging Page: << < 1 2 3 4 5 > >> 1 Ivan De Mitri VHE Gamma...

213

E-Print Network 3.0 - accurate gamma-ray spectrometry Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gamma-ray spectrometry Search Powered by Explorit Topic List Advanced Search Sample search results for: accurate gamma-ray spectrometry Page: << < 1 2 3 4 5 > >> 1 GEOPHYSICAL...

214

1 Cactus Framework: Black Holes to Gamma Ray Bursts 7 Erik Schnetter1,2  

E-Print Network [OSTI]

Contents 1 Cactus Framework: Black Holes to Gamma Ray Bursts 7 Erik Schnetter1,2 , Christian D. Ott 94720, USA 1.1 Current challenges in relativistic astrophysics and the Gamma- Ray Burst problem

215

E-Print Network 3.0 - agata gamma-ray tracking Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gamma-ray tracking Search Powered by Explorit Topic List Advanced Search Sample search results for: agata gamma-ray tracking Page: << < 1 2 3 4 5 > >> 1 Vol. 36 (2005) ACTA PHYSICA...

216

E-Print Network 3.0 - advanced gamma-ray detection Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced gamma-ray detection Page: << < 1 2 3 4 5 > >> 1 VERY HIGH ENERGY GAMMA RAY Tadashi KIFUNE...

217

E-Print Network 3.0 - anti-compton gamma-ray spectrometer Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

compton gamma-ray spectrometer Search Powered by Explorit Topic List Advanced Search Sample search results for: anti-compton gamma-ray spectrometer Page: << < 1 2 3 4 5 > >> 1...

218

E-Print Network 3.0 - astrophysical gamma ray Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gamma ray Search Powered by Explorit Topic List Advanced Search Sample search results for: astrophysical gamma ray Page: << < 1 2 3 4 5 > >> 1 Evaluating the Impact of Advanced...

219

E-Print Network 3.0 - astronomical soft gamma-ray Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soft gamma-ray Search Powered by Explorit Topic List Advanced Search Sample search results for: astronomical soft gamma-ray Page: << < 1 2 3 4 5 > >> 1 Study of Celestial Objects...

220

E-Print Network 3.0 - airborne gamma-ray spectrometer Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: airborne gamma-ray spectrometer Page: << < 1 2 3 4 5 > >> 1 GAMMA RAYS FROM MAJOR ELEMENTS BY THERMAL...

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - amazing gamma-ray activity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

amazing gamma-ray activity Search Powered by Explorit Topic List Advanced Search Sample search results for: amazing gamma-ray activity Page: << < 1 2 3 4 5 > >> 1 GLAST SCIENCE...

222

E-Print Network 3.0 - astrophysically significant gamma-ray Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

significant gamma-ray Search Powered by Explorit Topic List Advanced Search Sample search results for: astrophysically significant gamma-ray Page: << < 1 2 3 4 5 > >> 1 The Quest...

223

E-Print Network 3.0 - aist laser-compton gamma-ray Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

laser-compton gamma-ray Search Powered by Explorit Topic List Advanced Search Sample search results for: aist laser-compton gamma-ray Page: << < 1 2 3 4 5 > >> 1 arXiv:physics...

224

E-Print Network 3.0 - analyzing compton gamma-ray Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

compton gamma-ray Search Powered by Explorit Topic List Advanced Search Sample search results for: analyzing compton gamma-ray Page: << < 1 2 3 4 5 > >> 1 The Compton...

225

E-Print Network 3.0 - applied gamma-ray spectrometry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gamma-ray spectrometry Search Powered by Explorit Topic List Advanced Search Sample search results for: applied gamma-ray spectrometry Page: << < 1 2 3 4 5 > >> 1 The detection of...

226

E-Print Network 3.0 - anti-coincidence gamma-ray spectrometry...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gamma-ray spectrometry Search Powered by Explorit Topic List Advanced Search Sample search results for: anti-coincidence gamma-ray spectrometry Page: << < 1 2 3 4 5 > >> 1...

227

E-Print Network 3.0 - accretion disk gamma-ray Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gamma-ray Search Powered by Explorit Topic List Advanced Search Sample search results for: accretion disk gamma-ray Page: << < 1 2 3 4 5 > >> 1 Lecture 4Lecture 4 Galactic...

228

Investigation of elemental analysis using neutron-capture gamma ray spectra  

E-Print Network [OSTI]

This thesis evaluated the potential of neutron-capture gamma rays in elemental analysis. A large portion of the work was devoted to the development of a method for the analysis of weak peaks in gamma ray spectra. This was ...

Hamawi, John Nicholas

1969-01-01T23:59:59.000Z

229

Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes  

E-Print Network [OSTI]

Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes] To characterize lightning processes that produce terrestrial gamma ray flashes (TGFs), we have analyzed broadband (lightning magnetic fields for TGFs detected by the Reuven Ramaty High Energy Solar

Cummer, Steven A.

230

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network [OSTI]

of California. Search for muon neutrinos from Gamma-RaySearch for muon neutrinos from Gamma-Ray Bursts with theof searches for high-energy muon neutrinos from 41 gamma-

Abbasi, R.

2010-01-01T23:59:59.000Z

231

Gamma-ray bursts in the Swift-Fermi era: Confronting data with theory  

Science Journals Connector (OSTI)

With the prompt slewing capability of the X-ray and UV-optical telescopes onboard the Swift mission and with the gamma-ray large area telescope onboard the Fermi mission, gamma-ray bursts (GRBs) are now accessibl...

EnWei Liang

2010-01-01T23:59:59.000Z

232

A search for GeV-TeV emission from Gamma-ray Bursts using the Milagro detector  

E-Print Network [OSTI]

A search for GeV-TeV emission from Gamma-ray Bursts using the Milagro detector p. M. Saz Parkinson of operation. Keywords: gamma-ray sources; gamma-ray bursts; astronomical observations gamma-ray; gamma-ray telescope; Milagro PACS: 95.55.Ka; 95.85.Pw; 98.70.Rz INTRODUCTION Gamma-ray bursts (GRBs) were detected up

California at Santa Cruz, University of

233

The Milky Way in Very High Energy Gamma-Ray Light  

E-Print Network [OSTI]

The Milky Way in Very High Energy Gamma-Ray Light 2511 Gamma-Ray Light: What is it? Detecting Very-Ray Light Weaver etal 1977 (also Swift src 5) 2 prob. 7.0x10-1 Note size of car! Very High Energy Gamma is Gamma-Ray Light so useful in Astronomy? X-rays Optical Infrared (IR) Radio Gamma-rays (low energy

Adelaide, University of

234

The Fermi Large Area gamma ray Telescope and the current searches for dark matter in space  

E-Print Network [OSTI]

production [6],[7] [9]. The temptation to claim the discovery of dark matter is strongThe Fermi Large Area gamma ray Telescope and the current searches for dark matter in space Aldo Gamma-ray Space Telescope, has detected the largest amount of gamma rays, in the 20MeV 300GeV energy

Morselli, Aldo

235

Search for Short Duration Bursts of TeV Gamma Rays with the Milagrito Telescope  

E-Print Network [OSTI]

OG 2.3.07 Search for Short Duration Bursts of TeV Gamma Rays with the Milagrito Telescope Gus for short duration bursts of TeV photons. Such bursts may result from "traditional" gamma-ray bursts to gamma-ray bursts, the final stages of black hole evaporation) the most compelling reason may

California at Santa Cruz, University of

236

Constraining the Intergalactic Magnetic Field Through its Imprint on Gamma Ray Data from Distant Sources.  

E-Print Network [OSTI]

Energy Emission of Gamma-Ray Bursts. ” ApJ, 682:127–134,1 GeV = 10 9 eV GRB Gamma-ray burst HE High energy, 100 MeVrays”-either from gamma-ray bursts or flares from blazars

Arlen, Timothy

2013-01-01T23:59:59.000Z

237

A ground level gamma-ray burst observed in association with rocket-triggered lightning  

E-Print Network [OSTI]

A ground level gamma-ray burst observed in association with rocket-triggered lightning J. R. Dwyer 2004; published 13 March 2004. [1] We report the observation of an intense gamma-ray burst observed lightning channel with gamma-ray energies extending up to more than 10 MeV. The burst consisted of 227

Florida, University of

238

Did a gamma-ray burst initiate the late Ordovician mass extinction?  

E-Print Network [OSTI]

Did a gamma-ray burst initiate the late Ordovician mass extinction? A.L. Melott1 , B.S. Lieberman2 Abstract: Gamma-ray bursts (GRBs) produce a flux of radiation detectable across the observable Universe words: Population and evolution, mass extinction, gamma-ray burst, Ordovician, ultraviolet ozone

Jackman, Charles H.

239

Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts  

E-Print Network [OSTI]

Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts V with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error

California at Berkeley, University of

240

Evolution of massive Be and Oe stars at low metallicity towards the Long Gamma Ray bursts  

E-Print Network [OSTI]

Evolution of massive Be and Oe stars at low metallicity towards the Long Gamma Ray bursts C and massive stars, and the theoretical predictions of the characteristics must have the long gamma-ray burst of that document deals with the long soft gamma ray bursts (here type 2 bursts) and their possible relationship

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BATSE CATALOGS OF UNTRIGGERED COSMIC GAMMA-RAY BURSTS  

E-Print Network [OSTI]

THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BATSE CATALOGS OF UNTRIGGERED COSMIC GAMMA-RAY BURSTS gamma-ray bursts (GRBs) observed as untriggered events by the Burst and Transient Source Experiment to detect BATSE un- triggered bursts. Subject headinggs: catalogs -- gamma rays: bursts Online material

California at Berkeley, University of

242

Studies of Gamma-Ray Burst Prompt Emission with RHESSI and NCT  

E-Print Network [OSTI]

4 RHESSI Tests of Quasi-Thermal Gamma-Ray Burst Spectral 4.1List of Tables ix Acknowledgments 1 Gamma-Ray Bursts 1.1 GRBx 2 RHESSI Gamma-Ray Burst Analysis Methods 2.1 The RHESSI

Bellm, Eric Christopher

2011-01-01T23:59:59.000Z

243

Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro  

E-Print Network [OSTI]

Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro P. M. Saz Parkinson 95064 Abstract. Gamma-Ray Bursts (GRBs) have been detected at GeV energies by EGRET and models predict for very high energy emission from a sample of 106 gamma-ray bursts (GRB) detected since the beginning

California at Santa Cruz, University of

244

Milagro Search for Very High Energy Emission from Gamma-Ray Bursts in the Swift Era  

E-Print Network [OSTI]

Milagro Search for Very High Energy Emission from Gamma-Ray Bursts in the Swift Era P. M. Saz an unprecedented number of rapid and accurate Gamma-Ray Burst (GRB) localizations, facilitating a flurry of follow as the flares. INTRODUCTION Some of the most important contributions to our understanding of gamma-ray bursts

California at Santa Cruz, University of

245

Gamma-Ray Bursts in the Swift Era N. Gehrels,1  

E-Print Network [OSTI]

1 Gamma-Ray Bursts in the Swift Era N. Gehrels,1 E. Ramirez-Ruiz,2 and D. B. Fox3 [1] NASA IS A GAMMA-RAY BURST? . . . . . . . . . . . . . . . . . . . . . . . . . 6 BURST AND AFTERGLOW OBSERVATIONS medium, high- redshift; gamma rays: observations, theory; stars: Wolf-Rayet; neutrinos; supernovae

Rodriguez, Luis F.

246

Limits on Very High Energy Emission from Gamma-Ray Bursts with the Milagro  

E-Print Network [OSTI]

Limits on Very High Energy Emission from Gamma-Ray Bursts with the Milagro Observatory Miguel F of Milagro allow it to detect very high energy (VHE) gamma-ray burst emission with much higher sensitivity gamma-ray burst satellites at keV to MeV energies. Even in the absence of a positive detection, VHE

California at Santa Cruz, University of

247

The Interplanetary Network Supplement to the BATSE 5B Catalog of Cosmic Gamma-Ray Bursts  

E-Print Network [OSTI]

The Interplanetary Network Supplement to the BATSE 5B Catalog of Cosmic Gamma-Ray Bursts K. Hurley Interplanetary Network (IPN) localization information for 343 gamma-ray bursts observed by the Burst Gamma-Ray Observatory (CGRO) mission, obtained by analyzing the arrival times of these bursts

California at Berkeley, University of

248

GAMMA-RAY BURSTS AND THE EARTH: EXPLORATION OF ATMOSPHERIC, BIOLOGICAL, CLIMATIC, AND BIOGEOCHEMICAL EFFECTS  

E-Print Network [OSTI]

GAMMA-RAY BURSTS AND THE EARTH: EXPLORATION OF ATMOSPHERIC, BIOLOGICAL, CLIMATIC Received 2005 May 19; accepted 2005 August 2 ABSTRACT Gamma-ray bursts (GRBs) are likely to have made extinction may have been initiated by a GRB. Subject headinggs: astrobiology -- gamma rays: bursts Online

Jackman, Charles H.

249

Introduction: recent developments in the study of gamma-ray bursts  

Science Journals Connector (OSTI)

...introduction Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...developments in the study of gamma-ray bursts Alan Wells 1 * Ralph A.M...Road, Cambridge CB3 0HA, UK Gamma-ray bursts (GRBs) are immensely powerful...

2007-01-01T23:59:59.000Z

250

Binary progenitor models for long-duration gamma-ray bursts  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...progenitor models for long-duration gamma-ray bursts Philipp Podsiadlowski...established that long-duration gamma-ray bursts (LGRBs) are intrinsically...

2007-01-01T23:59:59.000Z

251

No supernovae detected in two long-duration gamma-ray bursts  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...detected in two long-duration gamma-ray bursts D Watson 1 * J.P.U Fynbo...evidence that long-duration gamma-ray bursts (GRBs) are produced during...

2007-01-01T23:59:59.000Z

252

Gamma-ray bursts prompt emission spectrum: an analysis of a photosphere model  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...J. Wijers and Martin Rees Gamma-ray bursts prompt emission spectrum: an...stages of the prompt emission of gamma-ray bursts (GRBs) and X-ray flashes...

2007-01-01T23:59:59.000Z

253

Gamma-ray burst progenitors and the population of rotating Wolf–Rayet stars  

Science Journals Connector (OSTI)

...O'Brien and Stephen Smartt Gamma-ray burst progenitors and the population...the Universe . In our quest for gamma-ray burst (GRB) progenitors, it is relevant...to identify the progenitors of gamma-ray bursts (GRBs), we also need to consider...

2013-01-01T23:59:59.000Z

254

Gamma-ray burst jet dynamics and their interaction with the progenitor star  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...J. Wijers and Martin Rees Gamma-ray burst jet dynamics and their interaction...association of at least some long gamma-ray bursts with type Ic supernova explosions...

2007-01-01T23:59:59.000Z

255

The long, the short and the weak: the origin of gamma-ray bursts  

Science Journals Connector (OSTI)

...and the weak: the origin of gamma-ray-bursts Tsvi Piran 1 Omer Bromberg 1...the Universe . The origin of gamma-ray bursts (GRBs) is one of the most...the commonly used 2s limit. gamma ray bursts|supernova|neutron stars...

2013-01-01T23:59:59.000Z

256

Magnetohydrodynamic simulations of the collapsar model for early and late evolution of gamma-ray bursts  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...early and late evolution of gamma-ray bursts Daniel Proga * * ( dproga...matter of seconds associated with gamma-ray bursts (GRBs). Additionally, the...

2007-01-01T23:59:59.000Z

257

The late X-ray afterglow of gamma-ray bursts  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...The late X-ray afterglow of gamma-ray bursts Richard Willingale * Paul T...of the X-ray afterglow of gamma-ray bursts (GRBs). The fit delineates...

2007-01-01T23:59:59.000Z

258

Gamma-ray bursts: cosmic rulers for the high-redshift universe?  

Science Journals Connector (OSTI)

...research-article Discussion Meeting Issue Gamma-ray bursts organized by Alan Wells, Ralph...J. Wijers and Martin Rees Gamma-ray bursts: cosmic rulers for the high-redshift...into spectral correlations in gamma-ray bursts (GBRs), in the hope that...

2007-01-01T23:59:59.000Z

259

Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders  

E-Print Network [OSTI]

Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders Wei Xu,1 Sebastien. Pasko (2012), Source altitudes of terres- trial gamma-ray flashes produced by lightning leaders, Geophys; published 18 April 2012. [1] Terrestrial gamma-ray flashes (TGFs) are energetic photon bursts observed from

Pasko, Victor

260

Title of dissertation: A SEARCH FOR BURSTS OF VERY HIGH ENERGY GAMMA RAYS  

E-Print Network [OSTI]

ABSTRACT Title of dissertation: A SEARCH FOR BURSTS OF VERY HIGH ENERGY GAMMA RAYS WITH MILAGRO though the search was optimized primarily for detecting the emission from Gamma-Ray Bursts (GRBs) or to any other kind of phenomena that produce bursts of VHE gamma rays. Measurements of the GRB spectra

California at Santa Cruz, University of

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SOLAR SUBMILLIMETER AND GAMMA-RAY BURST EMISSION P. Kaufmann,1,2  

E-Print Network [OSTI]

SOLAR SUBMILLIMETER AND GAMMA-RAY BURST EMISSION P. Kaufmann,1,2 J.-P. Raulin,1 A. M. Melo,1 E headings: gamma rays: bursts -- Sun: flares 1. INTRODUCTION The interaction of ultrarelativistic electrons observations of a burst in the submillimeter and gamma-ray ranges were obtained for the first time on 2001

Giménez de Castro, Guillermo Carlos

262

THE NEW CANGAROO TELESCOPE AND THE PROSPECT OF VHE GAMMA RAY OBSERVATION AT  

E-Print Network [OSTI]

high energy gamma rays at Woomera, South Australia is presented to discuss the current status of VHE gamma ray astronomy that provides us with the probe for the nonthermal high energy phenomena a threshold energy of detecting gamma rays near 100 GeV. Also discussed is the next step we plan to take

Enomoto, Ryoji

263

THE NEW CANGAROO TELESCOPE AND THE PROSPECT OF VHE GAMMA RAY OBSERVATION AT  

E-Print Network [OSTI]

astronomy that provides us with the probe for the nonthermal high energy phenomena in the Universe. Gamma of the observations of very high energy gamma rays at Woomera, South Australia is presented to discuss the current status and prospect of gamma ray astronomy. Emission of gamma rays are due to copious production

Enomoto, Ryoji

264

Isotopic response with small scintillator based gamma-ray spectrometers  

DOE Patents [OSTI]

The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

Madden, Norman W. (Sparks, NV); Goulding, Frederick S. (Lafayette, CA); Asztalos, Stephen J. (Oakland, CA)

2012-01-24T23:59:59.000Z

265

EXTRAGALACTIC VERY HIGH ENERGY GAMMA-RAY BACKGROUND  

SciTech Connect (OSTI)

We study the origin of the extragalactic diffuse gamma-ray background using the data from the Fermi telescope. To estimate the background level, we count photons at high Galactic latitudes |b| > 60 Degree-Sign . Subtracting photons associated with known sources and the residual cosmic-ray and Galactic diffuse backgrounds, we estimate the extragalactic gamma-ray background (EGB) flux. We find that the spectrum of EGB in the very high energy band above 30 GeV follows the stacked spectrum of BL Lac objects. Large Area Telescope data reveal the positive (1 + z) {sup k}, 1 < k < 4 cosmological evolution of the BL Lac source population consistent with that of their parent population, Fanaroff-Riley type I radio galaxies. We show that EGB at E > 30 GeV could be completely explained by emission from unresolved BL Lac objects if k {approx_equal} 3.

Neronov, A. [ISDC Data Center for Astrophysics, Chemin d'Ecogia 16, CH-1290 Versoix (Switzerland); Semikoz, D. V. [APC, 10 rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France)

2012-09-20T23:59:59.000Z

266

THE BATSE 5B GAMMA-RAY BURST SPECTRAL CATALOG  

SciTech Connect (OSTI)

We present systematic spectral analyses of gamma-ray bursts (GRBs) detected with the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Observatory during its entire nine years of operation. This catalog contains two types of spectra extracted from 2145 GRBs, and fitted with five different spectral models resulting in a compendium of over 19,000 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedures and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the BATSE Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC)

Goldstein, Adam; Preece, Robert D.; Briggs, Michael S.; Burgess, J. Michael [University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Mallozzi, Robert S.; Fishman, Gerald J.; Kouveliotou, Chryssa [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Paciesas, William S. [Universities Space Research Association, 320 Sparkman Drive, Huntsville, AL 35805 (United States)

2013-10-01T23:59:59.000Z

267

Monte Carlo simulation of gamma ray scanning gauge  

SciTech Connect (OSTI)

A gamma ray scanning gauge was simulated with Monte Carlo to study the properties of gamma scanning gauges and to resolve the counts coming from a {sup 235}U source from those coming from a contaminant ({sup 232}U) whose daughters emit high energy gamma rays. The simulation has been used to infer the amount of the {sup 232}U contaminant in a {sup 235}U source to select the best size for the NaI(Tl) detector crystal to minimize the effect of the contaminant. The results demonstrate that Monte Carlo simulation provides a systematic tool for designing a gauge with desired properties and for estimating properties of the gamma source from measured count rates.

Hartfield, G.L.; Freeman, L.B.; Dei, D.E.; Emert, C.J.; Glickstein, S.S.; Kahler, A.C.; Niedzwecki, P.F.

1990-12-31T23:59:59.000Z

268

Gamma Rays from Kaluza-Klein Dark Matter  

Science Journals Connector (OSTI)

A TeV gamma-ray signal from the direction of the Galactic center (GC) has been detected by the HESS experiment. Here, we investigate whether Kaluza-Klein (KK) dark matter annihilations near the GC can be the explanation. Including the contributions from internal bremsstrahlung as well as subsequent decays of quarks and ? leptons, we find a very flat gamma-ray spectrum which drops abruptly at the dark matter particle mass. For a KK mass of about 1 TeV, this gives a good fit to the HESS data below 1 TeV. A similar model, with gauge coupling roughly 3 times as large and a particle mass of about 10 TeV, would give both the correct relic density and a photon spectrum that fits the complete range of data.

Lars Bergström; Torsten Bringmann; Martin Eriksson; Michael Gustafsson

2005-04-08T23:59:59.000Z

269

Radiation detection system for portable gamma-ray spectroscopy  

DOE Patents [OSTI]

A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

2006-06-20T23:59:59.000Z

270

The nature of the Diffuse Gamma-Ray Background  

E-Print Network [OSTI]

We review the current understanding of the diffuse gamma-ray background (DGRB). The DGRB is what remains of the total measured gamma-ray emission after the subtraction of the resolved sources and of the diffuse Galactic foregrounds. It is interpreted as the cumulative emission of sources that are not bright enough to be detected individually. Yet, its exact composition remains unveiled. Well-established astrophysical source populations (e.g. blazars, misaligned AGNs, star-forming galaxies and millisecond pulsars) all represent guaranteed contributors to the DGRB. More exotic scenarios, such as dark matter annihilation or decay, may contribute as well. In this review, we describe how these components have been modeled in the literature and how the DGRB can be used to provide valuable information on each of them. We summarize the observational information currently available on the DGRB, paying particular attention to the most recent measurement of its intensity energy spectrum by the Fermi LAT Collaboration. W...

Fornasa, Mattia

2015-01-01T23:59:59.000Z

271

Color Superconductivity in Compact Stars and Gamma Ray Bursts  

E-Print Network [OSTI]

We study the effects of color superconductivity on the structure and formation of compact stars. We show that it is possible to satisfy most of recent observational boundaries on masses and radii if a diquark condensate forms in a hybrid or a quark star. Moreover, we find that a huge amount of energy, of the order of $10^{53}$ erg, can be released in the conversion from a (metastable) hadronic star into a (stable) hybrid or quark star, if the presence of a color superconducting phase is taken into account. Accordingly to the scenario proposed in Astrophys.J.586(2003)1250, the energy released in this conversion can power a Gamma Ray Burst. This mechanism can explain the recent observations indicating a delay, of the order of days or years, between a few Supernova explosions and the subsequent Gamma Ray Burst.

A. Drago; A. Lavagno; G. Pagliara

2003-04-08T23:59:59.000Z

272

Gamma-ray bursts, axion emission and string theory dilaton  

E-Print Network [OSTI]

The emission of axions from supernovae is an interesting possibility to account for the Gamma-Ray Bursts provided their energy can be effectively converted into electromagnetic energy elsewhere. The connection between supernova and gamma-ray bursts has been recently confirmed by the observed correlation between the burst of April 25, 1998 and the supernova SN1998bw. We argue that the axion convertion into photons can be more efficient if one considers the coupling between an intermediate scale axion and the string theory dilaton along with the inclusion of string loops. We also discuss the way dilaton dynamics may allow for a more effective energy exchange with electromagnetic radiation in the expansion process of fireballs.

O. Bertolami

1999-01-14T23:59:59.000Z

273

DMSP satellite detections of gamma-ray bursts  

SciTech Connect (OSTI)

Gamma-ray burst detectors are aboard six U. S. Air Force defense Meteorological Satellite Program (DMSP) spacecraft, two of which are currently in use. Their 800-km altitude orbits give a field of view to 117 degrees from the zenith. A great many bursts have been detected, usually in coincidence with detections by GRO or other satellites such as PVO or ULYSSES. The directions of the sources can be determined with considerable accuracy from such correlated observations, even when GRO/BATSE with its directional capabilities is not involved. Thus these DMSP data, especially in conjunction with other observations, should be helpful in trying to understand the true nature of gamma-ray bursts. 8 refs., 5 figs.

Terrell, J.; Lee, P.; Klebesadel, R.W.

1995-12-31T23:59:59.000Z

274

Quark Stars as inner engines for Gamma Ray Bursts?  

E-Print Network [OSTI]

A model for Gamma ray bursts inner engine based on quark stars (speculated to exist in nature) is presented. We describe how and why these objects might constitute new candidates for GRB inner engines. At the heart of the model is the onset of exotic phases of quark matter at the surface of such stars, in particular the 2-flavor color superconductivity. A novel feature of such a phase is the generation of particles which are unstable to photon decay providing a natural mechanism for a fireball generation; an approach which is fundamentally different from models where the fireball is generated during collapse or conversion of neutron star to quark star processes. The model is capable of reproducing crucial features of Gamma ray bursts, such as the episodic activity of the engine (multiple and random shell emission) and the two distinct categories of the bursts (two regimes are isolated in the model with \\sim 2 s and \\sim 81 s burst total duration).

R. Ouyed; F. Sannino

2001-03-01T23:59:59.000Z

275

Neutrino signatures of the supernova - gamma ray burst relationship  

E-Print Network [OSTI]

We calculate the TeV-PeV neutrino fluxes of gamma-ray bursts associated with supernovae, based on the observed association between GRB 030329 and supernova SN 2003dh. The neutrino spectral flux distributions can test for possible delays between the supernova and the gamma-ray burst events down to much shorter timescales than what can be resolved with photons. As an illustrative example, we calculate the probability of neutrino induced muon and electron cascade events in a km scale under-ice detector at the South Pole, from the GRB 030329. Our calculations demonstrate that km scale neutrino telescopes are expected to detect signals that will allow to constrain supernova-GRB models.

Soebur Razzaque; Peter Meszaros; Eli Waxman

2003-08-13T23:59:59.000Z

276

Fiber fed x-ray/gamma ray imaging apparatus  

DOE Patents [OSTI]

X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

Hailey, Charles J. (San Francisco, CA); Ziock, Klaus-Peter (Livermore, CA)

1992-01-01T23:59:59.000Z

277

Gamma Ray Mirrors for Direct Measurement of Spent Nuclear Fuel  

SciTech Connect (OSTI)

Direct measurement of the amount of Pu and U in spent nuclear fuel represents a challenge for the safeguards community. Ideally, the characteristic gamma-ray emission lines from different isotopes provide an observable suitable for this task. However, these lines are generally lost in the fierce flux of radiation emitted by the fuel. The rates are so high that detector dead times limit measurements to only very small solid angles of the fuel. Only through the use of carefully designed view ports and long dwell times are such measurements possible. Recent advances in multilayer grazing-incidence gamma-ray optics provide one possible means of overcoming this difficulty. With a proper optical and coating design, such optics can serve as a notch filter, passing only narrow regions of the overall spectrum to a fully shielded detector that does not view the spent fuel directly. We report on the design of a mirror system and a number of experimental measurements.

Pivovaroff, Dr. Michael J. [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Ziock, Klaus-Peter [ORNL] [ORNL; Harrison, Mark J [ORNL] [ORNL; Soufli, Regina [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL)

2014-01-01T23:59:59.000Z

278

Gamma-Ray Imaging with the Coded Mask IBIS Telescope  

E-Print Network [OSTI]

The IBIS telescope onboard INTEGRAL, the ESA gamma-ray space mission to be launched in 2002, is a soft gamma-ray (20 keV - 10 MeV) device based on a coded aperture imaging system. We describe here basic concepts of coded masks, the imaging system of the IBIS telescope, and the standard data analysis procedures to reconstruct sky images. This analysis includes, for both the low-energy detector layer (ISGRI) and the high energy layer (PICSIT), iterative procedures which decode recorded shadowgrams, search for and locate sources, clean for secondary lobes, and then rotate and compose sky images. These procedures will be implemented in the Quick Look and Standard Analysis of the INTEGRAL Science Data Center (ISDC) as IBIS Instrument Specific Software.

Goldwurm, A; Gros, A; Stephen, J; Foschini, L; Gianotti, F; Natalucci, L; De Cesare, G; Santo, M D

2000-01-01T23:59:59.000Z

279

Solar gamma rays powered by secluded dark matter  

SciTech Connect (OSTI)

Secluded dark matter models, in which weakly interacting massive particles annihilate first into metastable mediators, can present novel indirect detection signatures in the form of gamma rays and fluxes of charged particles arriving from directions correlated with the centers of large astrophysical bodies within the Solar System, such as the Sun and larger planets. This naturally occurs if the mean free path of the mediator is in excess of the solar (or planetary) radius. We show that existing constraints from water Cerenkov detectors already provide a novel probe of the parameter space of these models, complementary to other sources, with significant scope for future improvement from high angular resolution gamma-ray telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator decays are also capable of contributing a significant solar system component to the spectrum of energetic electrons and positrons, a possibility which can be tested with the directional and timing information of PAMELA and Fermi.

Batell, Brian; Shang Yanwen [Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9 (Canada); Pospelov, Maxim [Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 1A1 (Canada); Ritz, Adam [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 1A1 (Canada)

2010-04-01T23:59:59.000Z

280

Gamma-Ray Astronomy with ARGO-YBJ  

E-Print Network [OSTI]

ARGO-YBJ is a full coverage air shower array located at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm^2) recording data with a duty cycle $\\geq$85% and an energy threshold of a few hundred GeV. In this paper the latest results in Gamma-Ray Astronomy are summarized.

G. Di Sciascio; for the ARGO-YBJ Collaboration

2011-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Search for neutrinos from Gamma-Ray Bursts with ANTARES  

E-Print Network [OSTI]

A method to search for neutrino induced showers from gamma-ray bursts in the ANTARES detector is presented. ANTARES consists of a three-dimensional array of photosensitive devices that measure Cherenkov light induced by charged particles produced by high energy neutrinos interacting in the detector vicinity. The shower channel is complementary to the more commonly used upgoing muon channel. The corresponding detection volume is smaller, but has the advantage of being sensitive to neutrinos of any flavour.

Eleonora Presani

2011-04-20T23:59:59.000Z

282

Dark gamma-ray bursts: possible role of multiphoton processes  

E-Print Network [OSTI]

The absence of optical afterglow at some gamma-ray bursts (so called dark bursts) requires analyses of physical features of this phenomenon. It is shown that such singularity can be connected with multiphoton processes of frequencies summation in the Rayleigh- Jeans part of spectra, their pumping into higher frequencies. It can be registered most probably on young objects with still thin plasma coating, without further thermalization, i.e. soon after a prompt beginning of the explosive activity.

Mark E. Perel'man

2009-07-27T23:59:59.000Z

283

Neutron Capture Gamma-Ray Libraries for Nuclear Applications  

SciTech Connect (OSTI)

The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

Sleaford, B W; Firestone, R B; Summers, N; Escher, J; Hurst, A; Krticka, M; Basunia, S; Molnar, G; Belgya, T; Revay, Z; Choi, H D

2010-11-04T23:59:59.000Z

284

Neutrino conversions in cosmological gamma-ray burst fireballs  

E-Print Network [OSTI]

We study neutrino conversions in a recently envisaged source of high-energy neutrinos (E \\geq 10^6 GeV), that is, in the vicinity of cosmological Gamma-Ray Burst fireballs (GRB). We consider the effects of flavor and spin-flavor conversions and point out that in both situations, a some what higher than estimated high energy tau neutrino flux from GRBs is expected in new km^2 surface area under water/ice neutrino telescopes.

H. Athar

2000-04-20T23:59:59.000Z

285

High energy particles from gamma-ray bursts  

E-Print Network [OSTI]

A review is presented of the fireball model of gamma-ray bursts (GRBs), and of the production in GRB fireballs of high energy protons and neutrinos. Constraints imposed on the model by recent afterglow observations, which support the association of GRB and ultra-high energy cosmic-ray (UHECR) sources, are discussed. Predictions of the GRB model for UHECR production, which can be tested with planned large area UHECR detectors and with planned high energy neutrino telescopes, are reviewed.

Eli Waxman

2001-03-13T23:59:59.000Z

286

Short Gamma-Ray Bursts from Binary Neutron Star Mergers  

E-Print Network [OSTI]

We present the results from new relativistic hydrodynamic simulations of binary neutron star mergers using realistic non-zero temperature equations of state. We vary several unknown parameters in the system such as the neutron star (NS) masses, their spins and the nuclear equation of state. The results are then investigated with special focus on the post-merger torus-remnant system. Observational implications on the Gamma-ray burst (GRB) energetics are discussed and compared with recent observations.

Roland Oechslin; Thomas Janka

2006-04-27T23:59:59.000Z

287

The Supernovae Associated with Gamma-Ray Bursts  

E-Print Network [OSTI]

Supernovae (SNe) were long suspected as possible progenitors of gamma-ray bursts (GRBs). The arguments relied on circumstantial evidence. Several recent GRBs, notably GRB 030329, have provided direct, spectroscopic evidence that SNe and GRBs are related. The SNe associated with GRBs are all of Type Ic, implying a compact progenitor, which has implications for GRB models. Other peculiar Type Ic SNe may help to expand understanding of the mechanisms involved.

Thomas Matheson

2004-10-27T23:59:59.000Z

288

Gamma-ray lines from SN2014J  

E-Print Network [OSTI]

On 21 January 2014, SN2014J was discovered in M82 and found to be the closest type Ia supernova (SN Ia) in the last four decades. INTEGRAL observed SN2014J from the end of January until late June for a total exposure time of about 7 Ms. SNe Ia light curves are understood to be powered by the radioactive decay of iron peak elements of which $^{56}$Ni is dominantly synthesized during the thermonuclear disruption of a CO white dwarf (WD). The measurement of $\\gamma$-ray lines from the decay chain $^{56}$Ni$\\rightarrow$$^{56}$Co$\\rightarrow$$^{56}$Fe provides unique information about the explosion in supernovae. Canonical models assume $^{56}$Ni buried deeply in the supernova cloud, absorbing most of the early $\\gamma$-rays, and only the consecutive decay of $^{56}$Co should become directly observable through the overlaying material several weeks after the explosion when the supernova envelope dilutes as it expands. Surprisingly, with the spectrometer on INTEGRAL, SPI, we detected $^{56}$Ni $\\gamma$-ray lines at ...

Siegert, Thomas

2015-01-01T23:59:59.000Z

289

Are we observing Lorentz violation in gamma ray bursts?  

E-Print Network [OSTI]

From recent observations of gamma-ray bursts (GRBs), it appears that spectral time lags between higher-energy gamma rays photons and lower-energy photons vary with energy difference and time (distance) traveled. These lags appear to be smaller for the most luminous (close) bursts but larger for the fainter (farther away) bursts. From this observation, it has been suggested that it might be possible to determine the distance (L) these bursts have traveled from these time lags alone, without performing any red-shift measurements. These observed spreads (dispersion) of high-energy electromagnetic pulses of different energies with time contradict the special theory of relativity (STR). However, extended theories (ET) of the STR have been developed that contain a dispersive term, predicting the above observations. An example of such an ET is presented, allowing us to derive a relationship between time lags of gamma rays of different energies and distance L traveled from their origin. In addition, this theory predicts the origin of X-ray flashes.

Theodore G. Pavlopoulos

2005-08-12T23:59:59.000Z

290

TWO POPULATIONS OF GAMMA-RAY BURST RADIO AFTERGLOWS  

SciTech Connect (OSTI)

The detection rate of gamma-ray burst (GRB) afterglows is ?30% at radio wavelengths, much lower than in the X-ray (?95%) or optical (?70%) bands. The cause of this low radio detection rate has previously been attributed to limited observing sensitivity. We use visibility stacking to test this idea, and conclude that the low detection rate is instead due to two intrinsically different populations of GRBs: radio-bright and radio-faint. We calculate that no more than 70% of GRB afterglows are truly radio-bright, leaving a significant population of GRBs that lack a radio afterglow. These radio-bright GRBs have higher gamma-ray fluence, isotropic energies, X-ray fluxes, and optical fluxes than the radio-faint GRBs, thus confirming the existence of two physically distinct populations. We suggest that the gamma-ray efficiency of the prompt emission is responsible for the difference between the two populations. We also discuss the implications for future radio and optical surveys.

Hancock, P. J.; Gaensler, B. M.; Murphy, T., E-mail: Paul.Hancock@Sydney.edu.au [Also at Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), The University of Sydney, Sydney, NSW 2006, Australia. (Australia)

2013-10-20T23:59:59.000Z

291

THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG  

SciTech Connect (OSTI)

In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (?> 20 MeV) ?-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ?20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L. [Universitŕ di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d'Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bechtol, K.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhat, P. N. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Bissaldi, E. [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Bonnell, J.; Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bouvier, A., E-mail: nicola.omodei@stanford.edu, E-mail: giacomov@slac.stanford.edu [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); and others

2013-11-01T23:59:59.000Z

292

Integrated neutron/gamma-ray portal monitors for nuclear safeguards  

SciTech Connect (OSTI)

Radiation monitoring is one nuclear-safeguards measure used to protect against the theft of special nuclear materials (SNM) by pedestrians departing from SNM access areas. The integrated neutron/gamma-ray portal monitor is an ideal radiation monitor for the task when the SNM is plutonium. It achieves high sensitivity for detecting both bare and shielded plutonium by combining two types of radiation detector. One type is a neutron-chamber detector, comprising a large, hollow, neutron moderator that contains a single thermal-neutron proportional counter. The entrance wall of each chamber is thin to admit slow neutrons from plutonium contained in a moderating shield, while the other walls are thick to moderate fast neutrons from bare or lead-shielded plutonium so that they can be detected. The other type of detector is a plastic scintillator that is primarily for detecting gamma rays from small amounts of unshielded plutonium. The two types of detector are easily integrated by making scintillators part of the thick back wall of each neutron chamber or by inserting them into each chamber void. We compared the influence of the two methods of integration on detecting neutrons and gamma rays, and we examined the effectiveness of other design factors and the methods for signal detection as well.

Fehlau, P.E.

1993-09-01T23:59:59.000Z

293

The anatomy of $\\gamma$-ray pulsar light curves  

E-Print Network [OSTI]

We previously obtained constraints on the viewing geometries of 6 Fermi LAT pulsars using a multiwavelength approach (Seyffert et al., 2011). To obtain these constraints we compared the observed radio and $\\gamma$-ray light curves (LCs) for those 6 pulsars by eye to LCs predicted by geometric models detailing the location and extent of emission regions in a pulsar magnetosphere. As a precursor to obtaining these constraints, a parameter study was conducted to reinforce our qualitative understanding of how the underlying model parameters effect the LCs produced by the geometric models. Extracting useful trends from the $\\gamma$-ray model LCs proved difficult though due to the increased complexity of the geometric models for the $\\gamma$-ray emission relative to those for the radio emission. In this paper we explore a second approach to investigating the interplay between the model parameters and the LC atlas. This approach does not attempt to understand how the set of model parameters influences the LC shapes ...

Seyffert, A S; Johnson, T J; Harding, A K

2015-01-01T23:59:59.000Z

294

Gamma ray lines: what will they tell us about SUSY?  

E-Print Network [OSTI]

Neutralino dark matter can be indirectly detected by observing the gamma ray lines from the annihilation processes XX-->gg and XX-->gZ. In this paper we study the implications that the observation of these two lines could have for the determination of the supersymmetric parameter space. Within the minimal supergravity framework, we find that, independently of the dark matter distribution in the Galaxy, such observations by themselves would allow to differentiate between the coannihilation region, the funnel region, and the focus point region. As a result, several restrictions on the msugra parameters can be derived. Within a more general MSSM scenario, we show that the observation of gamma-ray lines might be used to discriminate between a bino-, a wino-, and a higgsino-like neutralino, with important consequences for cosmology and for models of supersymmetry breaking. The detection of the gamma ray lines, therefore, will not only provide an unmistakable signature of dark matter, it will also open a new road toward the determination of supersymmetric parameters.

Carlos E. Yaguna

2009-09-23T23:59:59.000Z

295

Gamma-ray identification of nuclear weapon materials  

SciTech Connect (OSTI)

There has been an accelerating national interest in countering nuclear smuggling. This has caused a corresponding expansion of interest in the use of gamma-ray spectrometers for checkpoint monitoring, nuclear search, and within networks of nuclear and collateral sensors. All of these are fieldable instruments--ranging from large, fixed portal monitors to hand-held and remote monitoring equipment. For operational reasons, detectors with widely varying energy resolution and detection efficiency will be employed. In many instances, such instruments must be sensitive to weak signals, always capable of recognizing the gamma-ray signatures from nuclear weapons materials (NWM), often largely insensitive to spectral alteration by radiation transport through intervening materials, capable of real-time implementation, and able to discriminate against signals from commonly encountered legitimate gamma-ray sources, such as radiopharmaceuticals. Several decades of experience in classified programs have shown that all of these properties are not easily achieved and successful approaches were of limited scope--such as the detection of plutonium only. This project was originally planned as a two-year LDRD-ER. Since funding for 1997 was not sustained, this is a report of the first year's progress.

Gosnell, T. B., LLNL; Hall, J. M.; Jam, C. L.; Knapp, D. A.; Koenig, Z. M.; Luke, S. J.; Pohl, B. A.; Schach von Wittenau, A.; Wolford, J. K.

1997-02-03T23:59:59.000Z

296

Analysis Of Comptel Gamma-Ray Burst Locations And Spectra  

E-Print Network [OSTI]

. In its first three years of operation, the COMPTEL instrument on the Compton Gamma-Ray Observatory has measured the locations (mean accuracy ¸1 ffi ) and spectra (0.75--30 MeV) of 18 gamma-ray bursts and continues to observe new events at a rate of ¸1/month. With good angular resolution and sensitivity at MeV energies, the growing COMPTEL burst catalog is an important new piece of evidence in the on-going GRB mystery. The COMPTEL burst locations are consistent with an isotropic distribution of sources, yet the spatial coincidence of two of the bursts indicates the possibility of repetition. The COMPTEL burst spectra are in most cases consistent with a single power law model with spectral index in the range 2--3. However, two bursts show evidence of a spectral break in the MeV range. Measurement of rapid variability at MeV energies in the stronger bursts provides evidence that either the sources are nearby (within the Galaxy) or the gamma-ray emission is relativistically beamed. W...

Kippen Ryan; J. Ryan; A. Connors; M. Mcconnell; C. Winkler; L. O. Hanlon; J. Greiner; M. Varendorff; W. Collmar; W. Hermsen; L. Kuiper

297

ON THE RECENTLY DISCOVERED CORRELATIONS BETWEEN GAMMA-RAY AND X-RAY PROPERTIES OF GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

Recently, many correlations between the prompt {gamma}-ray emission properties and the X-ray afterglow properties of gamma-ray bursts (GRBs) have been inferred from a comprehensive analysis of the X-ray light curves of more than 650 GRBs measured with the Swift X-Ray Telescope (Swift/XRT) during the years 2004-2010. We show that these correlations are predicted by the cannonball (CB) model of GRBs. They result from the dependence of GRB observables on the bulk motion Lorentz factor and viewing angle of the jet of highly relativistic plasmoids (CBs) that produces the observed radiations by interaction with the medium through which it propagates. Moreover, despite their different physical origins, long GRBs (LGRBs) and short-hard bursts (SHBs) in the CB model share similar kinematic correlations, which can be combined into triple correlations satisfied by both LGRBs and SHBs.

Dado, Shlomo; Dar, Arnon [Physics Department, Technion, Haifa 32000 (Israel)

2013-09-20T23:59:59.000Z

298

Ultra-high energy cosmic rays, cascade gamma-rays, and high-energy neutrinos from gamma-ray bursts  

E-Print Network [OSTI]

Gamma-ray bursts (GRBs) are sources of energetic, highly variable fluxes of gamma rays, which demonstrates that they are powerful particle accelerators. Besides relativistic electrons, GRBs should also accelerate high-energy hadrons, some of which could escape cooling to produce ultra-high energy cosmic rays (UHECRs). Acceleration of high-energy hadrons in GRB blast waves will be established if high-energy neutrinos produced through photopion interactions in the blast wave are detected from GRBs. Limitations on the energy in nonthermal hadrons and the number of expected neutrinos are imposed by the fluxes from pair-photon cascades initiated in the same processes that produce neutrinos. Only the most powerful bursts at fluence levels >~ 3e-4 erg/cm^2 offer a realistic prospect for detection of >> TeV neutrinos. Detection of high-energy neutrinos is likely if GRB blast waves have large baryon loads and Doppler factors <~ 200. Cascade gamma rays will accompany neutrino production and might already have been detected as anomalous emission components in the spectra of some GRBs. Prospects for detection of GRBs in the Milky Way are also considered.

Charles D. Dermer; Armen Atoyan

2006-06-26T23:59:59.000Z

299

Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NASA Tools for Remote-Sensing in Ecology Research NASA Tools for Remote-Sensing in Ecology Research NASA Tools for Remote-Sensing in Ecology Research Ecological Society of America Annual Meeting WK 2 Pittsburgh, PA - July 31, 2010 Abstract Land remote sensing data can be effectively used by ecologists to understand ecosystem dynamics and to expand site measurements to larger scales. These data can be used to improve our understanding of processes occurring on land and in the lower atmosphere, and play a vital role tin the development of global interactive Earth system models used to predict global change. However, most remote sensing products require special knowledge and software packages to extract information useful for ecologists. This workshop will focus on NASA's MODIS (Moderate Resolution Imaging Spectroradiometer) which views the Earth's surface every 2 to 8

300

CONTRIBUTION OF GAMMA-RAY-LOUD RADIO GALAXIES' CORE EMISSIONS TO THE COSMIC MeV AND GeV GAMMA-RAY BACKGROUND RADIATION  

SciTech Connect (OSTI)

The Fermi gamma-ray satellite has recently detected gamma-ray emissions from radio galaxy cores. From these samples, we first examine the correlation between the luminosities at 5 GHz, L{sub 5GHz}, and at 0.1-10 GeV, L{sub {gamma}}, of gamma-ray-loud radio galaxies. We find that the correlation is significant with L{sub {gamma}}{proportional_to}L{sup 1.16}{sub 5GHz} based on a partial correlation analysis. Using this correlation and the radio luminosity function (RLF) of radio galaxies, we explore the contribution of gamma-ray-loud radio galaxies to the unresolved extragalactic gamma-ray background (EGRB). The gamma-ray luminosity function is obtained by normalizing the RLF to reproduce the source-count distribution of the Fermi gamma-ray-loud radio galaxies. We find that gamma-ray-loud radio galaxies can explain {approx}25% of the unresolved Fermi EGRB flux above 100 MeV and will also make a significant contribution to the EGRB in the 1-30 MeV energy band. Since blazars explain 22% of the EGRB above 100 MeV, radio-loud active galactic nucleus populations explain {approx}47% of the unresolved EGRB. We further make an interpretation on the origin of the EGRB. The observed EGRB spectrum at 0.2-100 GeV does not show an absorption signature by the extragalactic background light. Thus, the dominant population of the origin of EGRB at very high energy (>30 GeV) might be either nearby gamma-ray-emitting sources or sources with very hard gamma-ray spectra.

Inoue, Yoshiyuki, E-mail: yinoue@kusastro.kyoto-u.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

2011-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Delayed MeV-GeV Gamma-Ray Photons in Gamma-Ray Bursts: An Effect of Electromagnetic Cascades of Very High Energy Gamma Rays in the Infrared/Microwave Background  

Science Journals Connector (OSTI)

We show that the electromagnetic cascade of very high energy gamma-rays from gamma-ray bursts in the IR/microwave background will produce delayed MeV-GeV photons. Monte Carlo simulations have been performed to study this process. The distance of GB 940217 is estimated to be not less than 120 Mpc using our model, which supports a cosmological origin for this source. We also show that the time delays of gamma-ray photons are inversely proportional to their energy. Our model does not require the presence of intergalactic magnetic fields.

L. X. Cheng; K.

1996-01-01T23:59:59.000Z

302

EVIDENCE OF CONTRIBUTION OF INTERVENING CLOUDS TO GAMMA-RAY BURST'S X-RAY COLUMN DENSITY  

SciTech Connect (OSTI)

The origin of excess of X-ray column density with respect to optical extinction in gamma-ray bursts (GRBs) is still a puzzle. A proposed explanation of the excess is the photoelectric absorption due to the intervening clouds along a GRB's line of sight. Here, we test this scenario by using the intervening Mg II absorption as a tracer of the neutral hydrogen column density of the intervening clouds. We identify a connection between the large X-ray column density (and large column density ratio of log (N{sub H,X}/N{sub H{sub I}})?0.5) and large neutral hydrogen column density probed by the Mg II doublet ratio (DR). In addition, GRBs with large X-ray column density (and large ratio of log (N{sub H,X}/N{sub H{sub I}})>0) tend to have multiple saturated intervening absorbers with DR < 1.2. These results therefore indicate an additional contribution from the intervening system to the observed X-ray column density in some GRBs, although the contribution from the host galaxy alone cannot be excluded based on this study.

Wang, J., E-mail: wj@bao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2013-10-20T23:59:59.000Z

303

Gamma-Ray Bursts and Dark Matter - a joint origin?  

E-Print Network [OSTI]

A scenario is presented where large quark-gluon plasma (QGP) objects escaping the quark-hadron transition in the early Universe account for the baryonic dark matter as well as act as the sources for gamma-ray bursts. Two basic assumptions are made. Firstly, we assume that a QGP consisting of u,d and s quarks is the absolute ground state of QCD and secondly, that the quark-hadron transition in the early Universe was of first order. Both particle physics and astrophysics constraints are discussed, mainly from an observational point of view.

Daniel Enstrom

1998-10-13T23:59:59.000Z

304

Gravitational radiation from long gamma-ray bursts  

E-Print Network [OSTI]

Long gamma-ray bursts (GRBs) are probably powered by high-angular momentum black hole-torus systems in suspended accretion. The torus will radiate gravitational waves as non-axisymmetric instabilities develop. The luminosity in gravitational-wave emissions is expected to compare favorably with the observed isotropic equivalent luminosity in GRB-afterglow emissions. This predicts that long GRBs are potentially the most powerful LIGO/VIRGO burst-sources in the Universe. Their frequency-dynamics is characterized by a horizontal branch in the $\\dot{f}(f)-$diagram.

Maurice H. P. M. van Putten

2001-02-11T23:59:59.000Z

305

High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs  

E-Print Network [OSTI]

Observations suggest that $\\gamma$-ray bursts (GRBs) are produced by the dissipation of the kinetic energy of a relativistic fireball. We show that a large fraction, $\\ge 10%$, of the fireball energy is expected to be converted by photo-meson production to a burst of $\\sim10^{14} eV$ neutrinos. A km^2 neutrino detector would observe at least several tens of events per year correlated with GRBs, and test for neutrino properties (e.g. flavor oscillations, for which upward moving $\\tau$'s would be a unique signature, and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.

Eli Waxman; John Bahcall

1997-01-30T23:59:59.000Z

306

GeV Emission from Collisional Magnetized Gamma Ray Bursts  

E-Print Network [OSTI]

Magnetic fields may play a dominant role in gamma-ray bursts, and recent observations by the Fermi satellite indicate that GeV radiation, when detected, arrives delayed by seconds from the onset of the MeV component. Motivated by this, we discuss a magnetically dominated jet model where both magnetic dissipation and nuclear collisions are important. We show that, for parameters typical of the observed bursts, such a model involving a realistic jet structure can reproduce the general features of the MeV and a separate GeV radiation component, including the time delay between the two. The model also predicts a multi-GeV neutrino component.

P. Mészáros; M. J. Rees

2011-04-26T23:59:59.000Z

307

INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

Between the launch of the Global Geospace Science Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the Interplanetary Network (IPN) consisted of up to 11 spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, {approx}18 yr{sup -1}, exceeds that of many individual experiments.

Pal'shin, V. D.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Oleynik, P. P.; Ulanov, M. V. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Hurley, K. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Cline, T.; Trombka, J.; McClanahan, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Boynton, W.; Fellows, C.; Harshman, K., E-mail: val@mail.ioffe.ru [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); and others

2013-08-15T23:59:59.000Z

308

Can Sequentially Linked Gamma-Ray Bursts Nullify Randomness?  

E-Print Network [OSTI]

In order to nullify the property of randomness perceived in the dispersion of gamma-ray bursts (GRB's) we introduce two new procedures. 1. Create a segmented group of sequentially linked GRB's and quantify the resultant angles. 2. Create segmented groups of sequentially linked GRB's in order to identify the location of GRB's that are positioned at equidistance, by using the selected GRB as the origin for a paired point circle, where the circumference of said circle intercepts the location of other GRB's in the same group.

Charles Fleischer

2012-05-02T23:59:59.000Z

309

Gamma ray burst distances and the timescape cosmology  

E-Print Network [OSTI]

Gamma ray bursts can potentially be used as distance indicators, providing the possibility of extending the Hubble diagram to redshifts ~7. Here we follow the analysis of Schaefer (2007), with the aim of distinguishing the timescape cosmological model from the \\LambdaCDM model by means of the additional leverage provided by GRBs in the range 2 < z < 7. We find that the timescape model fits the GRB sample slightly better than the \\LambdaCDM model, but that the systematic uncertainties are still too little understood to distinguish the models.

Peter R. Smale

2011-08-22T23:59:59.000Z

310

Are Durations of Weak Gamma-Ray Bursts Reliable?  

E-Print Network [OSTI]

Simulations in the GUSBAD Catalog of gamma-ray bursts suggest that the apparent duration of a burst decreases as its amplitude is decreased. We see no evidence for this effect in the BATSE catalog. We show that for a burst at the detection limit, the typical signal-to-noise ratio at the edges of the T90 duration is around 1.5, suggesting that T90 must be quite uncertain. The situation for T50 is less unfavorable. Simulations using the exact procedure to derive the durations in the BATSE catalog would be useful in quantifying the effect.

Maarten Schmidt

2005-08-16T23:59:59.000Z

311

Gamma-Ray Bursts and Quantum Cosmic Censorship  

E-Print Network [OSTI]

Gamma-ray bursts are believed to result from the coalescence of binary neutron stars. However, the standard proposals for conversion of the gravitational energy to thermal energy have difficulties. We show that if the merger of the two neutron stars results in a naked singularity, instead of a black hole, the ensuing quantum particle creation can provide the requisite thermal energy in a straightforward way. The back-reaction of the created particles can avoid the formation of the naked singularity predicted by the classical theory. Hence cosmic censorship holds in the quantum theory, even if it were to be violated in classical general relativity.

T. P. Singh

1998-05-17T23:59:59.000Z

312

Gamma-Ray Bursts in the Swift Era  

E-Print Network [OSTI]

Since the successful launch of NASA's dedicated gamma-ray burst (GRB) mission, Swift, the study of cosmological GRBs has entered a new era. Here I review the rapid observational and theoretical progress in this dynamical research field during the first two-year of the Swift mission, focusing on how observational breakthroughs have revolutionized our understanding of the physical origins of GRBs. Besides summarizing how Swift helps to solve some pre-Swift mysteries, I also list some outstanding problems raised by the Swift observations. An outlook of GRB science in the future, especially in the GLAST era, is briefly discussed.

Bing Zhang

2007-01-18T23:59:59.000Z

313

Prompt {gamma}-ray spectroscopy of isotopically identified fission fragments  

SciTech Connect (OSTI)

Measurements of prompt Doppler-corrected deexcitation {gamma} rays from uniquely identified fragments formed in fusion-fission reactions of the type {sup 12}C({sup 238}U,{sup 134}Xe)Ru are reported. The fragments were identified in both A and Z using the variable-mode, high-acceptance magnetic spectrometer VAMOS. States built on the characteristic neutron configurations forming high-spin isomers (7{sup -} and 10{sup +}) in {sup 134}Xe are presented and compared with the predictions of shell-model calculations using a new effective interaction in the region of Z{>=}50 and N{<=}82.

Shrivastava, A.; Caamano, M.; Rejmund, M.; Navin, A.; Rejmund, F.; Lemasson, A.; Schmitt, C.; Derkx, X.; Fernandez-Dominguez, B.; Golabek, C.; Roger, T. [GANIL, CEA/DSM--CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Schmidt, K.-H. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France) and GSI-Helmholtzzentrum fuer Schwerionenforschung mbH, Planckstrasse 1, D-64220 Darmstadt (Germany); Gaudefroy, L.; Taieb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Sieja, K. [GSI-Helmholtzzentrum fuer Schwerionenforschung mbH, Planckstrasse 1, D-64220 Darmstadt (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Audouin, L.; Bacri, C. O. [Institut de Physique Nucleaire, IN2P3-CNRS, Universite Paris Sud, F-91406 Orsay (France); Barreau, G.; Jurado, B. [Centre d'Etudes Nucleaires de Bordeaux Gradignan--UMR 5797, CNRS/IN2P3-Universite Bordeaux 1, F-33175 Gradignan Cedex (France); Benlliure, J. [Universidade de Santiago de Compostela, E-15782 Santiago de Compostela (Spain)] (and others)

2009-11-15T23:59:59.000Z

314

Gamma-ray bursts and terrestrial planetary atmospheres  

E-Print Network [OSTI]

We describe results of modeling the effects of gamma-ray bursts (GRBs) within a few kiloparsecs of an Earth-like planet. A primary effect is generation of nitrogen oxide compounds which deplete ozone. Ozone depletion leads to an increase in solar UVB radiation at the surface, enhancing DNA damage, particularly in marine microorganisms such as phytoplankton. In addition, we expect increased atmospheric opacity due to buildup of nitrogen dioxide produced by the burst and enhanced precipitation of nitric acid. We review here previous work on this subject and discuss recent developments.

Thomas, B C; Thomas, Brian C.; Melott, Adrian L.

2006-01-01T23:59:59.000Z

315

$\\gamma$-Ray Bursts and Dark Matter a joint origin?  

E-Print Network [OSTI]

A scenario is presented where large quark-gluon plasma (QGP) objects escaping the quark-hadron transition in the early Universe account for the baryonic dark matter as well as act as the sources for gamma-ray bursts. Two basic assumptions are made. Firstly, we assume that a QGP consisting of u,d and s quarks is the absolute ground state of QCD and secondly, that the quark-hadron transition in the early Universe was of first order. Both particle physics and astrophysics constraints are discussed, mainly from an observational point of view.

Enström, D; Hansson, J; Nicolaidis, A; Ekelin, S

1998-01-01T23:59:59.000Z

316

Gamma-ray free-electron lasers: Quantum fluid model  

E-Print Network [OSTI]

A quantum fluid model is used to describe the interacion of a nondegenerate cold relativistic electron beam with an intense optical wiggler taking into account the beam space-charge potential and photon recoil effect. A nonlinear set of coupled equations are obtained and solved numerically. The numerical results shows that in the limit of plasma wave-breaking an ultra-high power radiation pulse are emitted at the$\\gamma$-ray wavelength range which can reach an output intensity near the Schwinger limit depending of the values of the FEL parameters such as detuning and input signal initial phase at the entrance of the interaction region.

Silva, H M

2014-01-01T23:59:59.000Z

317

A mixed gamma-ray standard for calibrating germanium well detectors  

SciTech Connect (OSTI)

A new coincidence-free, mixed gamma-ray standard is proposed for the absolute energy-efficiency calibration of HPGe gamma-ray well detectors. The mixed gamma-ray standard that has been used in the nuclear industry for the past 20 years contains at least three radionuclides that emit coincident gamma rays which, depending on the detector being used, may sum. In the very high efficiency geometry encountered with well detectors, these coincident gamma rays will sum and produce erroneous absolute efficiency calibrations. The mixture proposed here, when combined with {sup 40}K will produce a continuous efficiency curve from 22.1 keV to 1460.8 keV. A method is also suggested for the accurate quantification of radionuclides that emit coincident gamma rays when counted in a well detector.

Sanderson, C.G.; Decker, K.M. [Environmental Measurements Laboratory, New York, NY (United States)

1993-12-31T23:59:59.000Z

318

Thermal Stability Enhancement of Polyethylene Separators by Gamma-ray Irradiation for Lithium Ion Batteries  

Science Journals Connector (OSTI)

The thermal stability of polyethylene (PE) separators irradiated by 50, 100, and 150 kGy dose gamma-rays is investigated when they are exposed to high-temperature environments. The gamma-ray irradiated separators have much lower Gurley numbers and higher ionic conductivity than a non-irradiated separator after storage at 100 and 120 °C. These results indicate that the thermal stability of PE separators can be drastically improved by gamma-ray irradiation. Even after storage at 120 °C for 1 h, the gamma-ray irradiated separator is maintaining its own structure. A cell assembled with a gamma-ray irradiated separator exhibits better rate-capability and cyclic performance than a pristine PE separator. The positive effects of gamma-ray irradiation are examined in detail with the purpose of improving battery performance.

Ki Jae Kim; Min-Sik Park; Hansu Kim; Young-Jun Kim

2012-01-01T23:59:59.000Z

319

Swift Pointing and the Association Between Gamma-Ray Bursts and Gravitational-Wave Bursts  

E-Print Network [OSTI]

The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested, the black hole progenitor (e.g., coalescing binary or collapsing stellar core) identified, and the origin of the gamma rays (within the expanding relativistic fireball or at the point of impact on the interstellar medium) located. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. To do any of these requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray burst observations depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based ``figure of merit'' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts.

Lee Samuel Finn; Badri Krishnan; Patrick J. Sutton

2003-04-11T23:59:59.000Z

320

Winds from Massive Stars and the Afterglows of \\(\\gamma\\) -Ray Bursts  

Science Journals Connector (OSTI)

The observed distribution of optical afterglows with respect to their host galaxies may suggest that some gamma-ray bursts (GRBs) are associated with star forming...

Enrico Ramirez-Ruiz; Lynnette M. Dray; Piero Madau…

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Novel Ways to Probe the Universe with Gamma-Ray Bursts and Quasars  

Science Journals Connector (OSTI)

I consider novel ways by which Gamma-Ray Bursts (GRBs) and quasars can be used... $\\alpha$ radiation which probes the neutral in...

Abraham Loeb

2002-01-01T23:59:59.000Z

322

Search for Correlations Between Batse Gamma-Ray Bursts and Supernovae  

Science Journals Connector (OSTI)

We report on our statistical research of space-time correlated supernovae and CGRO-BATSE gamma-ray bursts (GRBs). There exists a significantly higher...

Ji?í Polcar; Martin Topinka; Graziella Pizzichini…

2005-01-01T23:59:59.000Z

323

Catalog of cosmic gamma-ray bursts from the KONUS experiment data  

Science Journals Connector (OSTI)

The fourth and concluding part of the Catalog contains information on 20 gamma-ray bursts detected in the KONUS experiment on the...

E. P. Mazets; S. V. Golenetskii; V. N. Ilyinskii…

1981-11-01T23:59:59.000Z

324

E-Print Network 3.0 - absorption gamma-ray spectroscopy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: absorption gamma-ray spectroscopy Page: << < 1 2 3 4 5 > >> 1 1090 IEEE TRANSACTIONS ON NUCLEAR SCIENCE,...

325

E-Print Network 3.0 - airborne gamma-ray surveying Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: airborne gamma-ray surveying Page: << < 1 2 3 4 5 > >> 1 Geophysical Research Abstracts Vol. 12,...

326

E-Print Network 3.0 - airborne gamma-ray spectrometry Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: airborne gamma-ray spectrometry Page: << < 1 2 3 4 5 > >> 1 Geophysical Research Abstracts Vol. 12,...

327

E-Print Network 3.0 - absorption gamma-ray spectrometer Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: absorption gamma-ray spectrometer Page: << < 1 2 3 4 5 > >> 1 The detection of nitrogen using nuclear...

328

E-Print Network 3.0 - airborne gamma-ray measurements Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: airborne gamma-ray measurements Page: << < 1 2 3 4 5 > >> 1 Geophysical Research Abstracts Vol. 12,...

329

Improving the detectability of gravitational wave counterparts of short hard gamma ray bursts .  

E-Print Network [OSTI]

??With multiple observatories and missions being planned for detecting orphaned afterglows associated with gamma-ray bursts (GRBs) we emphasize the importance of developing data analysis strategies… (more)

[No author

2013-01-01T23:59:59.000Z

330

COMPONENTS OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND  

SciTech Connect (OSTI)

We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic {gamma}-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse {gamma}-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved flat spectrum radio quasars, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-Large Area Telescope EGB measurements.

Stecker, Floyd W. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Venters, Tonia M., E-mail: floyd.w.stecker@nasa.gov [Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2011-07-20T23:59:59.000Z

331

Accessing the population of high redshift Gamma Ray Bursts  

E-Print Network [OSTI]

Gamma Ray Bursts (GRBs) are a powerful probe of the high redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and gamma-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (Ep-Liso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2-5 keV energy band reaching a sensitivity, corresponding to a fluence o...

Ghirlanda, G; Ghisellini, G; Mereghetti, S; Tagliaferri, G; Campana, S; Osborne, J P; O'Brien, P; Tanvir, N; Willingale, R; Amati, L; Basa, S; Bernardini, M G; Burlon, D; Covino, S; D'Avanzo, P; Frontera, F; Gotz, D; Melandri, A; Nava, L; Piro, L; Vergani, S D

2015-01-01T23:59:59.000Z

332

The SKA view of Gamma-ray Bursts  

E-Print Network [OSTI]

Gamma-ray bursts (GRBs) are some of the most extreme events in the Universe. As well as providing a natural laboratory for investigating fundamental physical processes, they might trace the cosmic star formation rate up to extreme redshifts and probe the composition of the intergalactic medium over most of the Universe's history. Radio observations of GRBs play a key part in determining their physical properties, but currently they are largely limited to follow-up observations of $\\gamma$-ray-detected objects. The SKA will significantly increase our ability to study GRB afterglows, following up several hundred objects in the high frequency bands already in the "early science" implementation of the telescope. SKA1-MID Bands 4 (4 GHz) and 5 (9.2 GHz) will be particularly suited to the detection of these transient phenomena. The SKA will trace the peak of the emission, sampling the thick-to-thin transition of the evolving spectrum, and follow-up the afterglow down to the time the ejecta slow down to non-relativi...

Burlon, Davide; van der Horst, Alexander; Murphy, Tara; Wijers, Ralph; Gaensler, Bryan; Ghisellini, Gabriele; Prandoni, Isabella

2015-01-01T23:59:59.000Z

333

Probing Massive Stars Around Gamma-Ray Burst Progenitors  

E-Print Network [OSTI]

Long Gamma-Ray Bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPFs are considered: the progenitor is (I) in a massive binary system, (II) surrounded by a Wolf-Rayet-star wind, and (III) in a dense star cluster. Typical luminosities of 10^47 - 10^50 erg/s in the 10 - 100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass loss rate (II), stellar number density (III), etc. We calculate the lightcurve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt gamma-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenit...

Lu, Wenbin; Smoot, George F

2015-01-01T23:59:59.000Z

334

Fundamentals of gamma-ray measurements and radiometric analyses  

SciTech Connect (OSTI)

There are four primary modes of radioactive decay. All can be measured using various types of detectors and are the basis of many analytical techniques and much of what we know about the nucleus and its structure. Alpha particle emission occurs mostly in heavy nuclei of atomic number, Z, greater than 82 like Po, Ra, Th, and U, etc. Beta particles are simply electrons. They are emitted from the nucleus with a distribution of energies ranging from 0--3 MeV. Gamma-rays are photons with energies ranging from a few keV to 10 MeV or more. They usually follow alpha or beta decay, and depending on their energy, can have considerable range in matter. Neutrons are emitted in fission processes and also from a few of the highly excited fission product nuclei. Fission neutrons typically have energies of 1--2 MeV. Like gamma-rays, they have long ranges. The energies involved in nuclear decay processes are much higher than anything encountered in, say, chemical reactions. They are at the very top of the electromagnetic spectrum -- about a million times more energetic than visible light. As a result, these particles always produce ionization, either directly or indirectly, as they pass through matter. It is this ionization which is the basis of all radiation detectors.

Hochel, R.C.

1990-12-31T23:59:59.000Z

335

Gamma-rays from Type Ia supernova SN2014J  

E-Print Network [OSTI]

The whole set of INTEGRAL observations of type Ia supernova SN2014J, covering the period 16-162 days after the explosion has being analyzed. For spectral fitting the data are split into early and late periods covering days 16-35 and 50-162, respectively, optimized for Ni-56 and Co-56 lines. As expected for the early period much of the gamma-ray signal is confined to energies below $\\sim$200 keV, while for the late period it is most strong above 400 keV. In particular, in the late period Co-56 lines at 847 and 1248 keV are detected at 4.7 and 4.3 sigma respectively. The lightcurves in several representative energy bands are calculated for the entire period. The resulting spectra and lightcurves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical 1D models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass WD. Late optical spectra (day 136 after the explosion) show rather symmetric ...

Churazov, E; Isern, J; Bikmaev, I; Bravo, E; Chugai, N; Grebenev, S; Jean, P; Knödlseder, J; Lebrun, F; Kuulkers, E

2015-01-01T23:59:59.000Z

336

Gamma ray-induced embrittlement of pressure vessel alloys  

SciTech Connect (OSTI)

High-energy gamma rays emitted from the core of a nuclear reactor produce displacement damage in the reactor pressure vessel (RPV). The contribution of gamma damage to RPV embrittlement has in the past been largely ignored. However, in certain reactor designs the gamma flux at the RPV is sufficiently large that its contribution to displacement damage can be substantial. For example, gamma rays have been implicated in the accelerated RPV embrittlement observed in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. In the present study, mechanical property changes induced by 10-MeV electron irradiation of a model Fe alloy and an RPV alloy of interest to the HFIR were examined. Mini-tensile specimens were irradiated with high-energy electrons to reproduce damage characteristic of the Compton recoil-electrons induced by gamma bombardment. Substantial increases in yield and ultimate stress were observed in the alloys after irradiation to doses up to 5.3x10{sup {minus}3} dpa at temperatures ({approximately}50{degrees}C) characteristic of the HFIR pressure vessel. These measured increases were similar to those previously obtained following neutron irradiation, despite the highly disparate nature of the damage generated during electron and neutron irradiation.

Alexander, D.E.; Rehn, L.E. [Argonne National Lab., IL (United States); Farrell, K.; Stoller, R.E. [Oak Ridge National Lab., TN (United States)

1994-11-01T23:59:59.000Z

337

Magnetic Pair Creation Transparency in Gamma-Ray Pulsars  

E-Print Network [OSTI]

Magnetic pair creation $\\gamma \\to e^+e^-$ has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1--10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy, and updates earlier altitude bound determinations of that have been deployed in various Fermi pulsar papers. For low altitude emission locales, gen...

Story, Sarah A

2014-01-01T23:59:59.000Z

338

Photonuclear Activation by 20.5-Mev Gamma Rays  

Science Journals Connector (OSTI)

The photonuclear activation cross section of elements whose (?, n) cross sections lead to a suitable positron activity has been measured using monochromatic gamma rays from the T3(p, ?)He4 reaction. The gamma rays were monitored by a 3-in. diam by 4-in. long sodium iodide crystal and calibrated with a 4˝×6 in. crystal whose response curve to the ? rays was determined. The absorption coefficient of these photons in NaI was determined by a good geometry transmission experiment. The positron activity was determined by a coincidence detector, consisting of two 5-in. diam by 2-in. long NaI crystals set on the annihilation radiation photopeaks. This detector was calibrated against a F18 positron source standardized in a 2? flow counter.The C12(?, n)C11 and F19(?, n)F18 reactions were investigated over the range from 20.1 to 21.2 Mev. Structure, although reported by other experimenters, was not observed. The (?, n) activation cross section was measured at 20.5 Mev for O16, Cr50, Fe54, Cu63, Zn64, Mo92, Sb121, and Pr141, giving cross section of 0.60±0.12, 29.1±6.0, 30.0±4.8, 52.5±2.5, 35.7±1.8, 35.4±2.5, 33.4±2.7, 51.7±5.5, respectively.

W. E. Del Bianco and W. E. Stephens

1962-04-15T23:59:59.000Z

339

New Limits On Gamma-Ray Emission From Galaxy Clusters  

E-Print Network [OSTI]

Galaxy clusters are predicted to produce gamma-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 79 richest nearby clusters (zSurvey (2MASS) cluster catalog. We obtain the lowest limit on the photon flux to date, 1.1e-11 ph/s/cm^2 (95% confidence) per cluster in the 0.8--100~GeV band, which corresponds to a luminosity limit of 1.7e44 ph/s. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and gamma-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure. Furthermore, either accretion shocks must have lower Mach numbers than usually assumed (2--4) or significantly less than 50% of the baryon mass has been processed through such shocks, and thus, the majo...

Griffin, Rhiannon D; Kochanek, Christopher S

2014-01-01T23:59:59.000Z

340

Definition: Gamma Log | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Gamma Log Jump to: navigation, search Dictionary.png Gamma Log Gamma logging is a method of measuring naturally occurring gamma radiation to characterize the rock or sediment in a borehole or drill hole. It is a wireline logging method used in mining, mineral exploration, water-well drilling, for formation evaluation in oil and gas well drilling and for other related purposes. Different types of rock emit different amounts and different spectra of natural gamma radiation.[1] View on Wikipedia Wikipedia Definition Gamma ray logging is a method of measuring naturally occurring gamma radiation to characterize the rock or sediment in a borehole or drill hole. It is a wireline logging method used in mining, mineral exploration,

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Analysis of historical gross gamma logging data from BY tank farm  

SciTech Connect (OSTI)

Gross gamma ray logs, recorded from January 1975 through mid-year 1994 as part of the Single-Shell Tank Farm Dry Well Surveillance Program, have been reanalyzed for the BY tank farm to locate the presence of mobile radionuclides in the subsurface. This report presents the BY tank farm gross gamma ray data in such a way as to assist others in their study of vadose zone mechanisms.

MYERS, D.A.

1999-10-13T23:59:59.000Z

342

Analysis of historical gross gamma logging data from BX tank farm  

SciTech Connect (OSTI)

Gross gamma ray logs, recorded from January 1975 through mid-year 1994 as part of the Single-Shell Tank Farm Dry Well Surveillance Program, have been reanalyzed for the BX tank farm to locate the presence of mobile radionuclides in the subsurface. This report presents the BX tank farm gross gamma ray data in such a way as to assist others in their study of vadose zone mechanism.

MYERS, D.A.

1999-10-12T23:59:59.000Z

343

THE EFFECT OF RADON TRANSPORT IN GROUNDWATER UPON GAMMA-RAY BOREHOLE LOGS  

E-Print Network [OSTI]

Estimation of the Lung Tissue Dose from Inhalation of Radon and Daughters," Health Physics 10, 1137 Federal Radiation

Nelson, P.H.

2010-01-01T23:59:59.000Z

344

The GAMMA-400 gamma-ray telescope characteristics. Angular resolution and electrons/protons separation  

E-Print Network [OSTI]

The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be implemented by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Searching for signatures of dark matter, surveying the celestial sphere in order to study gamma-ray point and extended sources, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, studying gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measuring spectra of high-energy electrons and positrons, protons and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution of ~1% and angular resolution better than 0.02 deg. The methods developed to reconstru...

Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Boyarchuk, K A; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

2014-01-01T23:59:59.000Z

345

Gamma-ray burst rate: high-redshift excess and its possible origins  

Science Journals Connector (OSTI)

......Gamma-ray burst rate: high-redshift...E-mail: virgilif@physics.unlv.edu (FJV...USA 2 Department of Physics and Astronomy, University...gamma-ray burst (GRB) rates and their relationship...an increase in GRB rate as (1 +z)delta...models are able to pass the L and z constraints......

Francisco J. Virgili; Bing Zhang; Kentaro Nagamine; Jun-Hwan Choi

2011-11-11T23:59:59.000Z

346

Short gamma-ray bursts from binary neutron star mergers in globular clusters  

E-Print Network [OSTI]

ARTICLES Short gamma-ray bursts from binary neutron star mergers in globular clusters JONATHAN@cfa.harvard.edu Published online: 29 January 2006; doi:10.1038/nphys214 Observations by the Swift gamma-ray-burst (GRB, the so-called `long' GRBs (>2-200 s) were located by coded aperture imaging of their hard X-ray emission

Loss, Daniel

347

Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced  

E-Print Network [OSTI]

LETTERS Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz energy scale. According to existing models, gamma-ray bursts (GRBs) are accompanied by very high from the same direction as a GRB, months after the burst, would be statistically significant and imply

Loss, Daniel

348

Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo  

DOE Patents [OSTI]

A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

Slaughter, Dennis R. (Oakland, CA); Pohl, Bertram A. (Berkeley, CA); Dougan, Arden D. (San Ramon, CA); Bernstein, Adam (Palo Alto, CA); Prussin, Stanley G. (Kensington, CA); Norman, Eric B. (Oakland, CA)

2008-04-15T23:59:59.000Z

349

Gamma ray flashes by plasma effects in the middle atmosphere P. K. Kaw,a)  

E-Print Network [OSTI]

Gamma ray flashes by plasma effects in the middle atmosphere P. K. Kaw,a) G. M. Milikh, A. S Institute of Physics. DOI: 10.1063/1.1407821 I. INTRODUCTION The observation of atmospheric gamma ray by atmospheric neutrals. Similarly, the gen- eration and sustenance of runaway electrons in the lower ionosphere4

Rubloff, Gary W.

350

Geolocation of terrestrial gamma-ray flash source lightning M. B. Cohen,1  

E-Print Network [OSTI]

Geolocation of terrestrial gamma-ray flash source lightning M. B. Cohen,1 U. S. Inan,1,2 R. K. Said-ray flash source lightning, Geophys. Res. Lett., 37, L02801, doi:10.1029/ 2009GL041753. 1. Introduction [2; published 22 January 2010. [1] Terrestrial gamma-ray flashes (TGFs) are impulsive ($1 ms) but intense

Bergen, Universitetet i

351

Simultaneous observations of optical lightning and terrestrial gamma ray flash from space  

E-Print Network [OSTI]

1 Simultaneous observations of optical lightning and terrestrial gamma ray flash from space N detection from space of a terrestrial3 gamma-ray flash (TGF) and the optical signal from lightning, TGF and optical emissions in an IC lightning flash has been identified.11 #12;3 1. Introduction12

Ă?stgaard, Nikolai

352

IMPROVEMENTS IN THE MANUFACTURE OF CdTe GAMMA RAY DETECTORS  

E-Print Network [OSTI]

141 IMPROVEMENTS IN THE MANUFACTURE OF CdTe GAMMA RAY DETECTORS S. BRELANT The Aerospace been made in the quality of chlorine-doped CdTe crystals manufactured by the traveling heater method applications of CdTe gamma ray detectors has been the continuous measurement of ablating materials

Paris-Sud XI, Université de

353

HETE, the High Energy Transient Explorer : unlocking the mysteries of gamma ray bursts  

E-Print Network [OSTI]

The High Energy Transient Explorer (HETE), was built primarily at MIT and launched in October 2000 with the goal of studying Gamma Ray Bursts (GRBs) at X-ray and gamma-ray energies. A suite of instruments aboard HETE provide ...

Monnelly, Glen Pickslay, 1973-

2002-01-01T23:59:59.000Z

354

Proceedings of ICRC 2001: 1 c Copernicus Gesellschaft 2001 Status of the Milagro Gamma Ray Observatory  

E-Print Network [OSTI]

Introduction The observation of high-energy gamma ray sources has helped us to gain a better understandingProceedings of ICRC 2001: 1 c Copernicus Gesellschaft 2001 ICRC 2001 Status of the Milagro Gamma ability to reject background and more accurately reconstruct the gamma-ray direction and energy

California at Santa Cruz, University of

355

Compact Gamma-ray Source Technology Development Study  

SciTech Connect (OSTI)

This study focuses on the applicability of current accelerator and laser technologies to the construction of compact, narrow bandwidth, gamma-ray sources for DHS missions in illicit materials detection. It also identifies research and development areas in which advancement will directly benefit these light sources. In particular, we review the physics of Compton scattering based light sources and emphasize the source properties most important to Nuclear Resonance Fluorescence (NRF) applications of interest. The influences of laser and electron beam properties on the light source are examined in order to evaluate the utility of different technologies for this application. Applicable bulk and fiber-based laser systems and laser recirculation technologies are discussed and Radio Frequency (RF) Linear Accelerator (linac) technologies are examined to determine the optimal frequency and pulse formats achievable.

Anderson, S G; Gibson, D J; Rusnak, B

2009-09-25T23:59:59.000Z

356

Testing varying neutrino mass with short gamma ray bursts  

Science Journals Connector (OSTI)

In this paper we study the possibility of probing for the absolute neutrino mass and its variation with short gamma ray burst (GRB). We have calculated the flight time difference between a massive neutrino and a photon in two different approaches to the mass varying neutrinos. Firstly we parametrize the neutrino mass as a function of the redshift in a model independent way, then we consider two specific models where the neutrino mass varies during the evolution of the quintessence fields. Our calculations show in general the value of the time delay is changed substantially relative to a constant neutrino mass and is also expected to be larger than the duration time of the short GRB.

Hong Li; Zigao Dai; Xinmin Zhang

2005-06-07T23:59:59.000Z

357

Polarized Gravitational Waves from Gamma-Ray Bursts  

E-Print Network [OSTI]

Significant gravitational wave emission is expected from gamma-ray bursts arising from compact stellar mergers, and possibly also from bursts associated with fast-rotating massive stellar core collapses. These models have in common a high angular rotation rate, and observations provide evidence for jet collimation of the photon emission, with properties depending on the polar angle, which may also be of relevance for X-ray flashes. Here we consider the gravitational wave emission and its polarization as a function of angle which is expected from such sources. We discuss possible correlations between the burst photon luminosity, or the delay between gravitational wave bursts and X-ray flashes, and the polarization degree of the gravitational waves.

Shiho Kobayashi; Peter Meszaros

2003-01-24T23:59:59.000Z

358

Study of Lorentz violation in INTEGRAL Gamma-Ray Bursts  

E-Print Network [OSTI]

We search for possible time lags caused by quantum gravitational (QG) effects using gamma-ray bursts (GRBs) detected by INTEGRAL. The advantage of this satellite is that we have at our disposal the energy and arrival time of every detected single photon, which enhances the precision of the time resolution. We present a new method for seeking time lags in unbinned data using a maximum likelihood method and support our conclusions with Monte Carlo simulations. The analysis of the data yields a mass scale well below the Planck mass whose value may however increase if better statistics of GRBs were available. Furthermore, we disagree with previous studies in which a non-monotonic function of the redshift was used to perform a linear fit.

Raphael Lamon; Nicolas Produit; Frank Steiner

2007-09-27T23:59:59.000Z

359

GRAVITATIONAL WAVES OF JET PRECESSION IN GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

The physical nature of gamma-ray bursts (GRBs) is believed to involve an ultra-relativistic jet. The observed complex structure of light curves motivates the idea of jet precession. In this work, we study the gravitational waves of jet precession based on neutrino-dominated accretion disks around black holes, which may account for the central engine of GRBs. In our model, the jet and the inner part of the disk may precess along with the black hole, which is driven by the outer part of the disk. Gravitational waves are therefore expected to be significant from this black-hole-inner-disk precession system. By comparing our numerical results with the sensitivity of some detectors, we find that it is possible for DECIGO and BBO to detect such gravitational waves, particularly for GRBs in the Local Group.

Sun Mouyuan; Liu Tong; Gu Weimin; Lu Jufu, E-mail: tongliu@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

2012-06-10T23:59:59.000Z

360

General Relativistic Binary Merger Simulations and Short Gamma Ray Bursts  

E-Print Network [OSTI]

The recent localization of some short-hard gamma ray bursts (GRBs) in galaxies with low star formation rates has lent support to the suggestion that these events result from compact object binary mergers. We discuss how new simulations in general relativity are helping to identify the central engine of short-hard GRBs. Motivated by our latest relativistic black hole-neutron star merger calculations, we discuss a scenario in which these events may trigger short-hard GRBs, and compare this model to competing relativistic models involving binary neutron star mergers and the delayed collapse of hypermassive neutron stars. Distinguishing features of these models may help guide future GRB and gravitational wave observations to identify the nature of the sources.

Joshua A. Faber; Thomas W. Baumgarte; Stuart L. Shapiro; Keisuke Taniguchi

2006-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gamma ray bursts and extreme energy cosmic rays  

Science Journals Connector (OSTI)

Extreme Energy Cosmic Ray particles (EECR) with E>10 20 ?eV arriving on Earth with very low flux (?1 particle/Km2-1000yr) require for their investigation very large detecting areas exceeding values of 1000 km2?sr. Projects with these dimensions are now being proposed: Ground Arrays (“Auger” with 2×3500? km 2 ?sr ) or exploiting the Earth Atmosphere as seen from space (“AIR WATCH” and OWL ” with effective area reaching 1 million km2?sr). In this last case by using as a target the 10 13 tons of air viewed also the high energy neutrino flux can be investigated conveniently. Gamma Rays Bursts are suggested as a possible source for EECR and the associated High Energy neutrino flux.

Livio Scarsi

1998-01-01T23:59:59.000Z

362

First gamma-ray bursts imprinting population III progenitor structure  

Science Journals Connector (OSTI)

One of the most important goals in modern cosmology is to understand how the first stars formed at the end of the dark ages. The first stars so-called Population III (Pop III) are predicted to have been predominantly very massive. Provided such very massive stars would produce a collapsar and relativistic jets the burst of high-energy photons like gamma-ray bursts (GRBs) could be observable. In this study we investigate the possibility of shock propagation through a massive envelope calculated using the density structure of Pop III star in analytic way. In addition we perform the numerical simulations of relativistic jet propagation in the Pop III.1 and Pop III.2 stars.

2012-01-01T23:59:59.000Z

363

Status of Identification of VHE Gamma-Ray Sources  

SciTech Connect (OSTI)

With the recent advances made by Cherenkov telescopes such as H.E.S.S. the field of very high-energy (VHE) {gamma}-ray astronomy has recently entered a new era in which for the first time populations of Galactic sources such as e.g. Pulsar wind nebulae (PWNe) or Supernova remnants (SNRs) can be studied. However, while some of the new sources can be associated by positional coincidence as well as by consistent multi-wavelength data to a known counterpart at other wavelengths, most of the sources remain not finally identified. In the following, the population of Galactic H.E.S.S. sources will be used to demonstrate the status of the identifications, to classify them into categories according to this status and to point out outstanding problems.

Funk, Stefan; /SLAC

2006-09-28T23:59:59.000Z

364

Finding (or not) New Gamma-ray Pulsars with GLAST  

E-Print Network [OSTI]

Young energetic pulsars will likely be the largest class of Galactic sources observed by GLAST, with many hundreds detected. Many will be unknown as radio pulsars, making pulsation detection dependent on radio and/or x-ray observations or on blind periodicity searches of the gamma-rays. Estimates for the number of pulsars GLAST will detect in blind searches have ranged from tens to many hundreds. I argue that the number will be near the low end of this range, partly due to observations being made in a scanning as opposed to a pointing mode. This paper briefly reviews how blind pulsar searches will be conducted using GLAST, what limits these searches, and how the computations and statistics scale with various parameters.

Scott M. Ransom

2007-04-09T23:59:59.000Z

365

Cosmological Parameters From Supernovae Associated With Gamma-ray Bursts  

E-Print Network [OSTI]

We report estimates of the cosmological parameters $\\Omega_m$ and $\\Omega_{\\Lambda}$ obtained using supernovae (SNe) associated with gamma-ray bursts (GRBs) at redshifts up to 0.606. Eight high-fidelity GRB-SNe with well-sampled light curves across the peak are used. We correct their peak magnitudes for a luminosity-decline rate relation to turn them into accurate standard candles with dispersion $\\sigma = 0.18$ mag. We also estimate the peculiar velocity of the host galaxy of SN 1998bw, using constrained cosmological simulations. In a flat universe, the resulting Hubble diagram leads to best-fit cosmological parameters of $(\\Omega_m, \\Omega_{\\Lambda}) = (0.52^{+0.34}_{-0.31},0.48^{+0.31}_{-0.34})$. This exploratory study suggests that GRB-SNe can potentially be used as standardizable candles to high redshifts to measure distances in the universe and constrain cosmological parameters.

Li, Xue; Wojtak, Rados?aw

2014-01-01T23:59:59.000Z

366

The Physics of Gamma-Ray Bursts and Relativistic Jets  

E-Print Network [OSTI]

We provide a comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered. We describe the observational properties of photons from the radio to multi-GeV bands, both in the prompt emission and the afterglow phases. Mechanisms for the generation of these photons in GRBs are discussed and confronted with observations to shed light on the physical properties of these explosions, their progenitor stars and the surrounding medium. After presenting observational evidence that a powerful, collimated, jet moving at close to the speed of light is produced in these explosions, we describe our current understanding regarding the generation, acceleration, and dissipation of the jet and compare these properties with jets associated with AGNs and pulsars. We discuss mounting observational evidence that long duration GRBs are produced when massive stars die, and that at least some short d...

Kumar, Pawan

2014-01-01T23:59:59.000Z

367

Magnetic Fields in Gamma-Ray Bursts: A Short Review  

E-Print Network [OSTI]

Magnetic fields play a crucial role in the physics of Gamma-Ray Bursts (GRBs). Strong observational evidence indicates that the observed afterglow and most likely the prompt emission arise from synchrotron emission. It is possible that Poynting flux plays an important or even dominant role in the relativistic outflow from the inner engine, but like in other astronomical relativistic jets this suggestion is controversial. Finally, it is likely that magnetic fields larger than $10^{15}$ G occur within GRBs' inner engines and contribute to the acceleration and collimation of the relativistic jets. I review here the GRB fireball model and discuss the role that magnetic fields play in its various components. I suggest that the early afterglow, that reflects the initial interaction of the relativistic jet with its surrounding matter is the best available tool to explore the nature of relativistic outflow in astronomical relativistic jets.

Tsvi Piran

2005-03-02T23:59:59.000Z

368

Gamma-ray bursts and terrestrial planetary atmospheres  

E-Print Network [OSTI]

We describe results of modeling the effects on Earth-like planets of long-duration gamma-ray bursts (GRBs) within a few kiloparsecs. A primary effect is generation of nitrogen oxide compounds which deplete ozone. Ozone depletion leads to an increase in solar UVB radiation at the surface, enhancing DNA damage, particularly in marine microorganisms such as phytoplankton. In addition, we expect increased atmospheric opacity due to buildup of nitrogen dioxide produced by the burst and enhanced precipitation of nitric acid. We review here previous work on this subject and discuss recent developments, including further discussion of our estimates of the rates of impacting GRBs and the possible role of short-duration bursts.

Brian C. Thomas; Adrian L. Melott

2006-05-04T23:59:59.000Z

369

Pile-up recovery in gamma-ray detection  

SciTech Connect (OSTI)

Count rates in gamma-ray detectors are fundamentally limited at the high end by the physics of the detection process but should not be limited further by the design of read-out. Using intense stimuli, such as the ELI, it is desirable to extract the full wealth of information flow that sensors can deliver. We discuss the photon-statistical limitations of scintillation systems and charge-collection issues of solid-state detectors. With high-speed digitizing in particular, two promising approach architectures are those of posterior list mode corrections and of time-domain adaptive filters, introducing a 'rich list mode with uncertainties' and thus a somewhat different look at experimental spectra. Real-time performance is also considered.

Vencelj, Matjaz; Likar, Andrej; Loeher, Bastian; Miklavec, Mojca; Novak, Roman; Pietralla, Norbert; Savran, Deniz [Jozef Stefan Instute, Jamova 39, SI-1000 Ljubljana (Slovenia); Jozef Stefan Instute, Jamova 39, SI-1000 Ljubljana, Slovenia and FMF, Univ. of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); ExtreMe Matter Institute EMMI, GSI, Planckstr. 1, D-64291 Darmstadt, Germany and Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Jozef Stefan Instute, Jamova 39, SI-1000 Ljubljana (Slovenia); IKP, TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstr. 1, D-64291 Darmstadt (Germany) and Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany)

2012-07-09T23:59:59.000Z

370

Gamma-Ray Bursts - a Primer For Relativists  

E-Print Network [OSTI]

Gamma-Ray Bursts (GRBs) - short bursts of 100-1MeV photons arriving from random directions in the sky are probably the most relativistic objects discovered so far. Still, somehow they did not attract the attention of the relativistic community. In this short review I discuss briefly GRB observations and show that they lead us to the fireball model - GRBs involve macroscopic relativistic motion with Lorentz factors of a few hundred or more. I show that GRB sources involve, most likely, new born black holes, and their progenitors are Supernovae or neutron star mergers. I show that both GRB progenitors and the process of GRB itself produce gravitational radiation and I consider the possibility of detecting this emission. Finally I show that GRBs could serve as cosmological indicators that could teach us about the high redshift ($z \\approx 5-15$) dark ages of the universe.

Tsvi Piran

2002-05-12T23:59:59.000Z

371

Gamma-ray burst engines may have no memory  

E-Print Network [OSTI]

A sizeable fraction of gamma-ray burst (GRB) time profiles consist of a temporal sequence of pulses. The nature of this stochastic process carries information on how GRB inner engines work. The so-called interpulse time defines the interval between adjacent pulses, excluding the long quiescence periods during which the signal drops to the background level. It was found by many authors in the past that interpulse times are lognormally distributed, at variance with the exponential case that is expected for a memoryless process. We investigated whether the simple hypothesis of a temporally uncorrelated sequence of pulses is really to be rejected, as a lognormal distribution necessarily implies. We selected and analysed a number of multi--peaked CGRO/BATSE GRBs and simulated similar time profiles, with the crucial difference that we assumed exponentially distributed interpulse times, as is expected for a memoryless stationary Poisson process. We then identified peaks in both data sets using a novel peak search al...

Baldeschi, A

2014-01-01T23:59:59.000Z

372

Neutralino dark matter and the Fermi gamma-ray lines  

SciTech Connect (OSTI)

Motivated by recent claims of lines in the Fermi gamma-ray spectrum, we critically examine means of enhancing neutralino annihilation into neutral gauge bosons. The signal can be boosted while remaining consistent with continuum photon constraints if a new singlet-like pseudoscalar is present. We consider singlet extensions of the MSSM, focusing on the NMSSM, where a 'well-tempered' neutralino can explain the lines while remaining consistent with current constraints. We adopt a complementary numerical and analytic approach throughout in order to gain intuition for the underlying physics. The scenario requires a rich spectrum of light neutralinos and charginos leading to characteristic phenomenological signatures at the LHC whose properties we explore. Future direct detection prospects are excellent, with sizeable spin-dependent and spin-independent cross-sections.

Chalons, Guillaume [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Universität Karlsruhe Engesserstraße 7, 76128 Karlsruhe (Germany); Dolan, Matthew J.; McCabe, Christopher, E-mail: guillaume.chalons@kit.edu, E-mail: m.j.dolan@durham.ac.uk, E-mail: christopher.mccabe@durham.ac.uk [Institute for Particle Physics Phenomenology, Durham University, South Road, Durham, DH1 3LE (United Kingdom)

2013-02-01T23:59:59.000Z

373

Propagation of Neutrinos through Magnetized Gamma-Ray Burst Fireball  

E-Print Network [OSTI]

The neutrino self-energy is calculated in a weakly magnetized plasma consists of electrons, protons, neutrons and their anti-particles and using this we have calculated the neutrino effective potential up to order $M^{-4}_W$. In the absence of magnetic field it reduces to the known result. We have also calculated explicitly the effective potentials for different backgrounds which may be helpful in different environments. By considering the mixing of three active neutrinos in the medium with the magnetic field we have derived the survival and conversion probabilities of neutrinos from one flavor to another and also the resonance condition is derived. As an application of the above, we considered the dense and relativistic plasma of the Gamma-Ray Bursts fireball through which neutrinos of 5-30 MeV can propagate and depending on the fireball parameters they may oscillate resonantly or non-resonantly from one flavor to another. These MeV neutrinos are produced due to stellar collapse or merger events which trigger the Gamma-Ray Burst. The fireball itself also produces MeV neutrinos due to electron positron annihilation, inverse beta decay and nucleonic bremsstrahlung. Using the three neutrino mixing and considering the best fit values of the neutrino parameters, we found that electron neutrinos are hard to oscillate to another flavors. On the other hand, the muon neutrinos and the tau neutrinos oscillate with equal probability to one another, which depends on the neutrino energy, temperature and size of the fireball. Comparison of oscillation probabilities with and without magnetic field shows that, they depend on the neutrino energy and also on the size of the fireball. By using the resonance condition, we have also estimated the resonance length of the propagating neutrinos as well as the baryon content of the fireball.

Sarira Sahu; Nissim Fraija; Yong-Yeon Keum

2009-11-10T23:59:59.000Z

374

Direction-Sensitive Hand-Held Gamma-Ray Spectrometer  

SciTech Connect (OSTI)

A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.

Mukhopadhyay, S.

2012-10-04T23:59:59.000Z

375

GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky |  

Broader source: Energy.gov (indexed) [DOE]

GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky August 26, 2008 - 3:20pm Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) and NASA announced today that the Gamma-Ray Large Area Space Telescope (GLAST) has revealed its first all-sky map in gamma rays. The onboard Large Area Telescope's (LAT) all-sky image-which shows the glowing gas of the Milky Way, blinking pulsars and a flaring galaxy billions of light-years away-was created using only 95 hours of "first light" observations, compared with past missions which took years to produce a similar image. Scientists expect the telescope will discover many new pulsars in our own galaxy, reveal powerful

376

REVISITING THE LIGHT CURVES OF GAMMA-RAY BURSTS IN THE RELATIVISTIC TURBULENCE MODEL  

SciTech Connect (OSTI)

Rapid temporal variability has been widely observed in the light curves of gamma-ray bursts (GRBs). One possible mechanism for such variability is related to the relativistic eddies in the jet. In this paper, we include the contribution of the inter-eddy medium together with the eddies to the gamma-ray emission. We show that the gamma-ray emission can either lead or lag behind the observed synchrotron emission, where the latter originates in the inter-eddy medium and provides most of the seed photons for producing gamma-ray emission through inverse Compton scattering. As a consequence, we argue that the lead/lag found in non-stationary short-lived light curves may not reveal the intrinsic lead/lag of different emission components. In addition, our results may explain the lead of gamma-ray emission with respect to optical emission observed in GRB 080319B.

Lin, Da-Bin; Gu, Wei-Min; Hou, Shu-Jin; Liu, Tong; Sun, Mou-Yuan; Lu, Ju-Fu, E-mail: dabinlin@xmu.edu.cn, E-mail: lujf@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

2013-10-10T23:59:59.000Z

377

Short Gamma Ray Bursts as possible electromagnetic counterpart of coalescing binary systems  

E-Print Network [OSTI]

Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole/Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.

S. Capozziello; M. De Laurentis; I. De Martino; M. Formisano

2010-04-27T23:59:59.000Z

378

Laser-driven hole boring and gamma-ray emission in high-density plasmas  

E-Print Network [OSTI]

Ion acceleration in laser-produced dense plasmas is a key topic of many recent investigations thanks to its potential applications. Besides, at forthcoming laser intensities ($I \\gtrsim 10^{23} \\text{W}\\,\\text{cm}^{-2}$) interaction of laser pulses with plasmas can be accompanied by copious gamma-ray emission. Here we demonstrate the mutual influence of gamma-ray emission and ion acceleration during relativistic hole boring in high-density plasmas with ultra-intense laser pulses. If gamma-ray emission is abundant, laser pulse reflection and hole-boring velocity are lower and gamma-ray radiation pattern is narrower than in the case of low emission. Conservation of energy and momentum allows one to elucidate the effects of gamma-ray emission which are more pronounced at higher hole-boring velocities.

Nerush, Evgeny

2014-01-01T23:59:59.000Z

379

Precision linac and laser technologies for nuclear photonics gamma-ray sources  

SciTech Connect (OSTI)

Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

2012-05-15T23:59:59.000Z

380

Swift-UVOT captures the earliest ultraviolet spectrum of a Gamma Ray Burst  

E-Print Network [OSTI]

We present the earliest ever ultraviolet spectrum of a gamma-ray burst (GRB) as observed with the Swift-UVOT. The spectrum of GRB 081203A was observed for 50 seconds with the UV grism starting 251 seconds after the Swift-BAT trigger when the GRB was of u ~13.4 mag and still rising to its peak optical brightness. The UV grism spectrum shows a damped Ly-alpha line, Ly-beta, and the Lyman continuum break at a redshift z = 2.05 +/- 0.01. A model fit to the Lyman absorption implies log N(HI) = 22.0 +/- 0.2 cm-2, which is typical for GRB host galaxies with damped Ly-alpha absorbers. This observation of GRB 081203A demonstrates that for GRBs brighter than v ~14 mag and with 0.5 < z < 3.5 the UVOT will be able to provide redshifts, and probe for damped Ly-alpha absorbers within 4-6 minutes from the time of the Swift-BAT trigger.

Kuin, N P M; Page, M J; Schady, P; Still, M; Breeveld, A A; De Pasquale, M; Brown, P J; Carter, M; James, C; Curran, P A; Cucciara, A; Gronwall, C; Holland, S T; Hoversten, E; Hunsberger, S; Kennedy, T; Koch, S; Lamoureux, H; Marshall, F E; Oates, S R; Parsons, A; Palmer, D; Roming, P; Smith, P J

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Formation of hard very high energy gamma-ray spectra of blazars due to internal photon–photon absorption  

Science Journals Connector (OSTI)

......Proc. 745, High Energy Gamma-Ray Astronomy. Melville, New York, p. 359. Kifune...Ferrara A., 2006, New Astron., 11, 420...Proc. 745, High Energy Gamma-Ray Astronomy. Am. Inst. Phys., New York, p. 23. Protheroe......

Felix A. Aharonian; D. Khangulyan; L. Costamante

2008-07-01T23:59:59.000Z

382

Metallicity Measurements of Gamma-Ray Burst and Supernova Explosion Sites: Lessons from HII regions in M31  

E-Print Network [OSTI]

We examine how the small-scale ($gamma-ray bursts (GRBs). Assuming the same luminosity, metallicity, and spatial distributions of \\HII\\ regions (hereafter HIIR) as observed in M31, we compute the apparent metallicities that we would obtain when the spectrum of a target region is blended with those of surrounding HIIR within the length scale of typical spatial resolution. When the spatial resolution of spectroscopy is $\\lesssim$ 1 kpc, which is typical for the existing studies of SN sites, we find that the apparent metallicities reflect the metallicities of target regions, but with significant systematic uncertainties in some cases. When the spatial resolution is $\\gtrsim$ a few kpc, regardless of the target regions (which has a wide range of 12+log(O/H) = 8.1--9.3 for the M31 HIIR), we always obtain a...

Niino, Yuu; Zhang, Bing

2014-01-01T23:59:59.000Z

383

In situ gamma-ray spectrometric analysis of radionuclide distributions at a commercial shallow land burial site. [Maxey Flats, Kentucky  

SciTech Connect (OSTI)

Gamma-ray spectrometric analysis conducted at the Maxey Flats, Kentucky (USA) shallow land burial site confirmed that the waste radionuclides have been retained largely within the restricted area of the burial site. Concentrations of /sup 137/Cs and /sup 60/Co were comparable with those originating from global fallout and lower than concentrations measured in several other areas having similar rainfall. In-situ spectrometric analyses, corroborated by soil sample and vegetation analyses, indicate that the site has influenced /sup 60/Co levels slightly in the west drainage channel, but /sup 137/Cs did not originate from the site. Concentrations of /sup 60/Co, /sup 90/Sr and /sup 137/Cs determined in subsurface soils by well logging techniques confirmed that subsurface migration of waste-derived radionuclides to points outside the restricted area has not been a significant source of contamination of the environs adjacent to the site. 8 references, 8 figures.

Kirby, L.J.; Campbell, R.M.

1984-10-01T23:59:59.000Z

384

The gamma-ray burst monitor for Lobster-ISS L. Amati a,*, F. Frontera a,b  

E-Print Network [OSTI]

The gamma-ray burst monitor for Lobster-ISS L. Amati a,*, F. Frontera a,b , N. Auricchio a , E telescope is flanked by a Gamma Ray Burst Monitor, with the minimum requirement of recognizing true GRBs. Published by Elsevier Ltd. All rights reserved. Keywords: Gamma-rays: bursts; X-rays: transients

Bogliolo, Alessandro

385

JET BREAKS IN SHORT GAMMA-RAY BURSTS. I. THE UNCOLLIMATED AFTERGLOW OF GRB 050724 Dirk Grupe,1  

E-Print Network [OSTI]

JET BREAKS IN SHORT GAMMA-RAY BURSTS. I. THE UNCOLLIMATED AFTERGLOW OF GRB 050724 Dirk Grupe,1 the results of the Chandra observations of the Swift-discovered short gamma-ray burst GRB 050724. Chandra corrected energy of GRB 050724 is at least 4 ; 1049 ergs. Subject headinggs: gamma rays: bursts -- X-rays

Zhang, Bing

386

Title of Dissertation: A Search for Short Duration Very High Energy Emission from Gamma-Ray Bursts  

E-Print Network [OSTI]

of GRBs. #12;A Search for Short Duration Very High Energy Emission from Gamma-Ray Bursts by David NoyesABSTRACT Title of Dissertation: A Search for Short Duration Very High Energy Emission from Gamma-Ray by gamma rays with primary energies of approximately 100 GeV and higher. The wide field of view ( 2 sr

California at Santa Cruz, University of

387

Magnetic Fields in Gamma-Ray Bursts: A Short Racah Institute for Physics, The Hebrew University, Jerusalem, 91904 Israel  

E-Print Network [OSTI]

Magnetic Fields in Gamma-Ray Bursts: A Short Overview Tsvi Piran Racah Institute for Physics Abstract. Magnetic fields play a crucial role in the physics of Gamma-Ray Bursts (GRBs). Strong thirty years, after the discovery of Gamma-Ray bursts (GRBs) we have now a reasonable GRB model

Jensen, Grant J.

388

ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1  

E-Print Network [OSTI]

ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1 of 17 gamma-ray bursts (GRBs) during the afterglow phase and ac- counting for radiative losses, we the implications of these results for the GRB radiation and jet models. Subject headinggs: gamma rays: bursts

Zhang, Bing

389

Dissecting the Gamma-Ray Background in Search of Dark Matter  

E-Print Network [OSTI]

Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.

Ilias Cholis; Dan Hooper; Samuel D. McDermott

2013-12-02T23:59:59.000Z

390

Sensitivity of the FERMI Detectors to Gamma-Ray Bursts from Evaporating Primordial Black Holes (PBHs)  

E-Print Network [OSTI]

Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. The Fermi Gamma-ray Space Telescope observatory offers increased sensitivity to the gamma-ray bursts produced by PBHs with an initial mass of $\\sim 5\\times 10^{14}$ g expiring today. PBHs are candidate progenitors of unidentified Gamma-Ray Bursts (GRBs) that lack X-ray afterglow. We propose spectral lag, which is the temporal delay between the high and low energy pulses, as an efficient method to identify PBH evaporation events with the Fermi Large Area Telescope (LAT).

T. N. Ukwatta; Jane H. MacGibbon; W. C. Parke; K. S. Dhuga; S. Rhodes; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

2010-03-23T23:59:59.000Z

391

First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope  

SciTech Connect (OSTI)

A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

NONE

2013-03-01T23:59:59.000Z

392

The Search for Dark Matter with the Fermi Gamma Ray Space Telescope  

SciTech Connect (OSTI)

The Fermi Gamma-Ray Space Telescope has been scanning the gamma ray sky since it was launched by NASA in June 2008 and has a mission lifetime goal of 10 years. Largely due to our particle physics heritage, one of the main physics topics being studied by the Fermi LAT Collaboration is the search for dark matter via indirect detection. My talk will review the progress of these studies, something on how the LAT detector enables them, and expectations for the future. I will discuss both gamma-ray and (electron + positron) searches for dark matter, and some resulting theoretical implications.

Bloom, Elliott (SLAC) [SLAC

2011-03-30T23:59:59.000Z

393

High energy cosmic-rays from gamma-ray burst sources: A stronger case  

E-Print Network [OSTI]

The suggested association between the sources of gamma-ray bursts (GRB's) and the sources of ultra-high energy cosmic rays (UHECR's) is based on two arguments: (i) The average energy generation rate of UHECR's is similar to the gamma-ray generation rate of GRB's, and (ii) The constraints that UHECR sources must satisfy to allow proton acceleration to >10^{20} eV are similar to those inferred for GRB sources from gamma-ray observations. We show that recent GRB and UHECR observations strengthen both arguments, and hence strengthen the suggested association.

E. Waxman

2002-10-30T23:59:59.000Z

394

Emission of Radio Waves in Gamma Ray Bursts and Axionic Boson Stars  

E-Print Network [OSTI]

We point out that the bursts of photons with the energy of the axion mass may appear coincidentally with gamma ray bursts if the gamma ray bursts are caused by collisions between neutron stars and axionic boson stars. In this mechanism, jets are formed in the collisions with large Lorentz factors $\\geq 10^2$. We explain qualitatively time-dependent complex structures of gamma ray bursts as well as the large energy problem. Therefore, with detection of the monochromatic photons we can test the model and determine the axion mass.

Aiichi Iwazaki

1999-08-26T23:59:59.000Z

395

TeV Scale Quantum Gravity and Mirror Supernovae as Sources of Gamma Ray Bursts  

E-Print Network [OSTI]

Mirror matter models have been suggested recently as an explanation of neutrino puzzles and microlensing anomalies. We show that mirror supernovae can be a copious source of energetic gamma rays if one assumes that the quantum gravity scale is in the TeV range. We show that under certain assumptions plausible in the mirror models, the gamma energies could be degraded to the 10 MeV range (and perhaps even further) so as to provide an explanation of observed gamma ray bursts. This mechanism for the origin of the gamma ray bursts has the advantage that it neatly avoids the ``baryon load problem''.

R. N. Mohapatra; S. Nussinov; V. L. Teplitz

1999-09-22T23:59:59.000Z

396

High Energy Neutrinos from Gamma-Ray Bursts with Precursor Supernovae  

E-Print Network [OSTI]

The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell, and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

Soebur Razzaque; Peter Meszaros; Eli Waxman

2002-12-24T23:59:59.000Z

397

The photonuclear neutron and gamma-ray backgrounds in the fast ignition experiment  

SciTech Connect (OSTI)

In the fast-ignition scheme, very hard x-rays (hereinafter referred to as {gamma}-rays) are generated by Bremsstrahlung radiation from fast electrons. Significant backgrounds were observed around the deuterium-deuterium fusion neutron signals in the experiment in 2010. In this paper the backgrounds were studied in detail, based on Monte Carlo simulations, and they were confirmed to be {gamma}-rays from the target, scattered {gamma}-rays from the experimental bay walls ({gamma}{sup Prime }-rays), and neutrons generated by ({gamma}, n) reactions in either the target vacuum chamber or the diagnostic instruments ({gamma}-n neutrons).

Arikawa, Y.; Nagai, T.; Hosoda, H.; Abe, Y.; Kojima, S.; Fujioka, S.; Sarukura, N.; Nakai, M.; Shiraga, H.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka Suita (Japan); Ozaki, T. [National Institution Fusion Science, 322-6 Oroshi-cho, Toki-city, Gifu (Japan)

2012-10-15T23:59:59.000Z

398

Robust Limits on Lorentz Violation from Gamma-Ray Bursts  

E-Print Network [OSTI]

We constrain the possibility of a non-trivial refractive index in free space corresponding to an energy-dependent velocity of light: c(E) \\simeq c_0 (1 - E/M), where M is a mass scale that might represent effect of quantum-gravitational space-time foam, using the arrival times of sharp features observed in the intensities of radiation with different energies from a large sample of gamma-ray bursters (GRBs) with known redshifts. We use wavelet techniques to identify genuine features, which we confirm in simulations with artificial added noise. Using the weighted averages of the time-lags calculated using correlated features in all the GRB light curves, we find a systematic tendency for more energetic photons to arrive earlier. However, there is a very strong correlation between the parameters characterizing an intrinsic time-lag at the source and a distance-dependent propagation effect. Moreover, the significance of the earlier arrival times is less evident for a subsample of more robust spectral structures. Allowing for intrinsic stochastic time-lags in these features, we establish a statistically robust lower limit: M > 0.9x10^{16} GeV on the scale of violation of Lorentz invariance.

John Ellis; Nick E. Mavromatos; Dimitri V. Nanopoulos; Alexander S. Sakharov; Edward K. G. Sarkisyan

2005-10-06T23:59:59.000Z

399

REDSHIFT CATALOG FOR SWIFT LONG GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

We present a catalog of the redshifts for most long-duration gamma-ray bursts (GRBs) by Swift from 2004 December 20 to 2008 July 23 (258 bursts in total). All available information is collected, including spectroscopic redshifts, photometric redshift limits, and redshifts calculated from various luminosity relations. Error bars for the redshifts derived from the luminosity relations are asymmetric, with tails extended to the high-redshift end, and this effect is evaluated by looking at the 30% of Swift bursts with spectroscopic redshifts. A simulation is performed to eliminate this asymmetric effect, and the resultant redshift distribution is deconvolved. We test and confirm this simulation on the sample of bursts with known spectroscopic redshifts and then apply it to the 70% of Swift bursts that do not have spectroscopic measures. A final intrinsic redshift distribution is then made for almost all Swift bursts, and the efficiency of the spectroscopic detections is evaluated. The efficiency of spectroscopic redshifts varies from near unity at low redshift to 0.5 at z = 1, to near 0.3 at z = 4, and to 0.1 at z = 6. We also find that the fraction of GRBs with z>5 is {approx}10%, and this fraction is compared with simulations from a cosmological model.

Xiao Limin; Schaefer, Bradley E., E-mail: lxiao1@lsu.edu [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States)

2011-04-20T23:59:59.000Z

400

DIFFUSE PeV NEUTRINOS FROM GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

The IceCube Collaboration recently reported the potential detection of two cascade neutrino events in the energy range 1-10 PeV. We study the possibility that these PeV neutrinos are produced by gamma-ray bursts (GRBs), paying special attention to the contribution by untriggered GRBs that elude detection due to their low photon flux. Based on the luminosity function, rate distribution with redshift and spectral properties of GRBs, we generate, using a Monte Carlo simulation, a GRB sample that reproduces the observed fluence distribution of Fermi/GBM GRBs and an accompanying sample of untriggered GRBs simultaneously. The neutrino flux of every individual GRB is calculated in the standard internal shock scenario, so that the accumulative flux of the whole samples can be obtained. We find that the neutrino flux in PeV energies produced by untriggered GRBs is about two times higher than that produced by the triggered ones. Considering the existing IceCube limit on the neutrino flux of triggered GRBs, we find that the total flux of triggered and untriggered GRBs can reach at most a level of {approx}10{sup -9} GeV cm{sup -2} s{sup -1} sr{sup -1}, which is insufficient to account for the reported two PeV neutrinos. Possible contributions to diffuse neutrinos by low-luminosity GRBs and the earliest population of GRBs are also discussed.

Liu, Ruo-Yu; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)] [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MAGNETIZATION DEGREE OF GAMMA-RAY BURST FIREBALLS: NUMERICAL STUDY  

SciTech Connect (OSTI)

The relative strength between forward and reverse shock emission in early gamma-ray burst (GRB) afterglow reflects that of magnetic energy densities in the two shock regions. We numerically show that with the current standard treatment, the fireball magnetization is underestimated by up to two orders of magnitude. This discrepancy is especially large in the sub-relativistic reverse shock regime (i.e., the thin shell and intermediate regime), where most optical flashes were detected. We provide new analytic estimates of the reverse shock emission based on a better shock approximation, which well describe numerical results in the intermediate regime. We show that the reverse shock temperature at the onset of afterglow is constant, ( {Gamma}-bar{sub d}-1){approx}8 Multiplication-Sign 10{sup -2}, when the dimensionless parameter {xi}{sub 0} is more than several. Our approach is applied to case studies of GRB 990123 and 090102, and we find that magnetic fields in the fireballs are even stronger than previously believed. However, these events are still likely to be due to a baryonic jet with {sigma} {approx} 10{sup -3} for GRB 990123 and {approx}3 Multiplication-Sign 10{sup -4} to 3 for GRB 090102.

Harrison, Richard; Kobayashi, Shiho, E-mail: R.M.Harrison@2006.ljmu.ac.uk [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom)

2013-08-01T23:59:59.000Z

402

Studying Gamma-Ray Blazars With the GLAST-LAT  

SciTech Connect (OSTI)

Thanks to its sensitivity (4 10{sup -9} ph (E> 100 MeV) cm{sup -2} s{sup -1} for one year of observation), the GLAST LAT should detect many more (over a thousand) gamma-ray blazars than currently known. This large blazar sample will enable detailed population studies to be carried out. Moreover, the LAT large field-of-view combined with the scanning mode will provide a very uniform exposure over the sky, allowing a constant monitoring of several tens of blazars and flare alerts to be issued. This poster presents the LAT performance relevant to blazar studies, more particularly related to timing and spectral properties. Major specific issues regarding the blazar phenomenon that the LAT data should shed light on thanks to these capabilities will be discussed, as well as the different approaches foreseen to address them. The associated data required in other bands, to be collected in contemporaneous/simultaneous multiwavelength campaigns are mentioned as well.

Lott, B.; /CENBG, Gradignan /Bordeaux U. /SLAC; Carson, J.; Madejski, G.; /SLAC; Ciprini, S.; /INFN, Perugia; Dermer, C.D.; /Naval Research Lab, Wash., D.C.; Giommi, P.; /ASDC, Frascati; Lonjou, V.; /CENBG, Gradignan /Bordeaux U.; Reimer, A.; /Stanford U., HEPL /KIPAC, Menlo Park

2007-11-13T23:59:59.000Z

403

A novel paradigm for short gamma-ray bursts  

E-Print Network [OSTI]

The merger of a binary of neutron stars provides natural explanations for many of the features of short gamma-ray bursts SGRBs, such as the generation of a hot torus orbiting a rapidly rotating black hole, which can then build a magnetic jet and provide the energy reservoir to launch a relativistic outflow. Yet, this scenario has problems explaining the recently discovered long-term and sustained X-ray emission associated with the afterglows of a number of SGRBs. We propose a new model that explains how an X-ray afterglow can be sustained by the product of the merger and how the X-ray emission is produced before the corresponding emission in the gamma-band, although it is observed to follow it. Overall, our paradigm combines in a novel manner a number of well-established features of the emission in SGRBs and results from simulations. Because it involves the propagation of an ultra-relativistic outflow and its interaction with a confining medium, the paradigm also highlights a unifying phenomenology between sh...

Rezzolla, Luciano

2014-01-01T23:59:59.000Z

404

Luminosity function and jet structure of Gamma Ray Bursts  

E-Print Network [OSTI]

The structure of Gamma Ray Burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could instead be structured, namely with energy and velocity that depend on the angular distance from the axis of the jet. We try to get some insight about the still unknown structure of GRBs by studying their luminosity function. We show that low (1e46-1e48 erg/s) and high (i.e. with L > 1e50 erg/s) luminosity GRBs can be described by a unique luminosity function, which is also consistent with current lower limits in the intermediate luminosity range (1e48-1e50} erg/s). We derive analytical expressions for the luminosity function of GRBs in uniform and structured jet models and compare them with the data. Uniform jets can reproduce the entire luminosity function with reasonable values of the free parameters. A structured jet can also fit adequately the current data, provided that the energy within the ...

Pescalli, A; Salafia, O S; Ghisellini, G; Nappo, F; Salvaterra, R

2014-01-01T23:59:59.000Z

405

UBVRI Hubble Diagrams of Gamma-ray Burst Supernovae  

E-Print Network [OSTI]

In this paper we demonstrate, in principle, how gamma-ray burst supernovae (GRB-SNe) can be used to measure the Hubble constant, H_0. Using two statistical data-fitting procedures, a linear-least squares (LLS) method and a Monte-Carlo (MC) method, we first present a statistically significant luminosity--decline relationship of GRB-SNe in filters UBVRI, and then provide constraints on H_0. Using SN 1998bw, and a fiducial distance to its host galaxy of 37 Mpc, we constrain H_0 to the range 61--69 km/s/Mpc. In our analysis, we adopt conservative errors of 20% in the SN magnitudes. The subsequent errors in H_0 derived from the MC method are of order 2--4 km/s/Mpc, and roughly ten times larger using the LLS method. Interestingly, the weakest luminosity--decline relation is seen in the B-band; however the B-band (and V-band) data provide one of the tightest constraints on H_0 of all the filters. Finally, as GRB-SNe arise from massive star progenitors, whose lifetimes are of order several million years, they are lik...

Cano, Zach

2014-01-01T23:59:59.000Z

406

APPLICATION OF JITTER RADIATION: GAMMA-RAY BURST PROMPT POLARIZATION  

SciTech Connect (OSTI)

A high degree of polarization of gamma-ray burst (GRB) prompt emission has been confirmed in recent years. In this paper, we apply jitter radiation to study the polarization feature of GRB prompt emission. In our framework, relativistic electrons are accelerated by turbulent acceleration. Random and small-scale magnetic fields are generated by turbulence. We further determine that the polarization property of GRB prompt emission is governed by the configuration of the random and small-scale magnetic fields. A two-dimensional compressed slab, which contains a stochastic magnetic field, is applied in our model. If the jitter condition is satisfied, the electron deflection angle in the magnetic field is very small and the electron trajectory can be treated as a straight line. A high degree of polarization can be achieved when the angle between the line of sight and the slab plane is small. Moreover, micro-emitters with mini-jet structures are considered to be within a bulk GRB jet. The jet 'off-axis' effect is intensely sensitive to the observed polarization degree. We discuss the depolarization effect on GRB prompt emission and afterglow. We also speculate that the rapid variability of GRB prompt polarization may be correlated with the stochastic variability of the turbulent dynamo or the magnetic reconnection of plasmas.

Mao, Jirong [Astrophysical Big Bang Lab, RIKEN, Saitama 351-0198 (Japan); Wang, Jiancheng, E-mail: jirong.mao@riken.jp [Yunnan Observatory, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

2013-10-10T23:59:59.000Z

407

A novel paradigm for short gamma-ray bursts  

E-Print Network [OSTI]

The merger of a binary of neutron stars provides natural explanations for many of the features of short gamma-ray bursts SGRBs, such as the generation of a hot torus orbiting a rapidly rotating black hole, which can then build a magnetic jet and provide the energy reservoir to launch a relativistic outflow. Yet, this scenario has problems explaining the recently discovered long-term and sustained X-ray emission associated with the afterglows of a number of SGRBs. We propose a new model that explains how an X-ray afterglow can be sustained by the product of the merger and how the X-ray emission is produced before the corresponding emission in the gamma-band, although it is observed to follow it. Overall, our paradigm combines in a novel manner a number of well-established features of the emission in SGRBs and results from simulations. Because it involves the propagation of an ultra-relativistic outflow and its interaction with a confining medium, the paradigm also highlights a unifying phenomenology between short and long GRBs.

Luciano Rezzolla; Pawan Kumar

2014-10-30T23:59:59.000Z

408

The width of gamma-ray burst spectra  

E-Print Network [OSTI]

The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. In this paper we propose a new measure to describe spectra: the width of the $EF_E$ spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of GRBs observed by Fermi/GBM and CGRO/BATSE. The results from the two instruments are fully consistent. We find that the median widths of spectra from long and short GRBs are significantly different (chance probability $<10^{-6}$). The width does not correlate with either duration or hardness, and this is thus a new, independent distinction between the two classes. Comparing the measured spectra with widths of spectra from fundamental emission processes -- synchrotron and blackbody radiation -- the results indicate that a large fraction of GRB spectra are too narrow to be explained by synchrotron radiation from a distribution of electron energies: for example, 78% of long GRBs and 85% of short GRBs are incompatible wi...

Axelsson, Magnus

2014-01-01T23:59:59.000Z

409

Millimetric Properties of Gamma Ray Burst Host Galaxies  

E-Print Network [OSTI]

We present millimetre (mm) and submillimetre (submm) photometry of a sample of host galaxies of Gamma Ray Bursts (GRBs), obtained using the MAMBO2 and SCUBA bolometer arrays respectively. These observations were obtained as part of an ongoing project to investigate the status of GRBs as indicators of star formation. Our targets include two of the most unusual GRB host galaxies, selected as likely candidate submm galaxies: the extremely red (R-K approx 5) host of GRB 030115, and the extremely faint (R>29.5) host of GRB 020124. Neither of these galaxies is detected, but the deep upper limits for GRB 030115 impose constraints on its spectral energy distribution. As a framework for interpreting these data, and for predicting the results of forthcoming submm surveys of Swift-derived host samples, we model the expected flux and redshift distributions based on luminosity functions of both submm galaxies and GRBs, assuming a direct proportionality between the GRB rate density and the global star formation rate density. We derive the effects of possible sources of uncertainty in these assumptions, including an anticorrelation between GRB rate and the global average metallicity.

R. S. Priddey; N. R. Tanvir; A. J. Levan; A. S. Fruchter; C. Kouveliotou; I. A. Smith; R. A. M. J. Wijers

2006-04-21T23:59:59.000Z

410

Gravitational and magnetosonic waves in gamma-ray bursts  

E-Print Network [OSTI]

One of the possible sources of gamma-ray bursts are merging, compact neutronstar binaries. More than 90% of the binding energy of such a binary is released in the form of gravitational waves (GWs) in the last few seconds of the spiral-in phase before the formation of a black hole. In this article we investigate whether a fraction of this GW-energy is transferred to magnetohydrodynamic waves in the magnetized plasma wind around the binary. Using the 3+1 orthonormal tedrad formalism, we study the propagation of a monochromatic, plane fronted, linearly polarized GW perpendicular to the ambient magnetic field in an ultra-relativistic wind, first in the comoving and then in the observer frame. A closed set of general relativistic magnetohydrodynamic equations is derived in the form of conservation laws for electric charge, matter energy, momentum and magnetic energy densities. We linearize these equations under the action of a monochromatic GW, which acts as a driver and find that fast magneto-acoustic waves grow, with amplitudes proportional to the GW amplitude and frequency and the strength of the background magnetic field.

Joachim Moortgat; Jan Kuijpers

2003-02-13T23:59:59.000Z

411

Efficiency and spectrum of internal gamma-ray burst shocks  

E-Print Network [OSTI]

We present an analysis of the Internal Shock Model of GRBs, where gamma-rays are produced by internal shocks within a relativistic wind. We show that observed GRB characteristics impose stringent constraints on wind and source parameters. We find that a significant fraction, of order 20 %, of the wind kinetic energy can be converted to radiation, provided the distribution of Lorentz factors within the wind has a large variance and provided the minimum Lorentz factor is higher than 10^(2.5)L_(52)^(2/9), where L=10^(52)L_(52)erg/s is the wind luminosity. For a high, >10 %, efficiency wind, spectral energy breaks in the 0.1 to 1 MeV range are obtained for sources with dynamical time R/c energies in this range. The lower limit to wind Lorenz factor and the upper limit, around (R/10^7 cm)^(-5/6) MeV to observed break energies are set by Thomson optical depth due to electron positron pairs produced by synchrotron photons. Natural consequences of the model are absence of bursts with peak emission energy significantly exceeding 1 MeV, and existence of low luminosity bursts with low, 1 keV to 10 keV, break energies.

D. Guetta; M. Spada; E. Waxman

2000-11-08T23:59:59.000Z

412

Optical afterglows of gamma-ray bursts: a bimodal distribution?"  

E-Print Network [OSTI]

The luminosities of the optical afterglows of Gamma Ray Bursts, 12 hours (rest frame time) after the trigger, show a surprising clustering, with a minority of events being at a significant smaller luminosity. If real, this dichotomy would be a crucial clue to understand the nature of optically dark afterglows, i.e. bursts that are detected in the X-ray band, but not in the optical. We investigate this issue by studying bursts of the pre-Swift era, both detected and undetected in the optical. The limiting magnitudes of the undetected ones are used to construct the probability that a generic bursts is observed down to a given magnitude limit. Then, by simulating a large number of bursts with pre-assigned characteristics, we can compare the properties of the observed optical luminosity distribution with the simulated one. Our results suggest that the hints of bimodality present in the observed distribution reflects a real bimodality: either the optical luminosity distributions of bursts is intrinsically bimodal, or there exists a population of bursts with a quite significant grey absorption, i.e. wavelength independent extinction. This population of intrinsically weak or grey-absorbed events can be associated to dark bursts.

Nardini Marco; Ghisellini Gabriele; Ghirlanda Giancarlo

2007-10-12T23:59:59.000Z

413

In the OSTI Collections: Gamma-Ray Bursts | OSTI, US Dept of Energy, Office  

Office of Scientific and Technical Information (OSTI)

Gamma-Ray Bursts Gamma-Ray Bursts The Fermi Gamma-ray Space Telescope and its first lessons Seeing indirectly by shining light through light Gamma-ray bursters The Large Synoptic Survey Telescope An emerging picture References Research Organizations Instrument Websites Reports Available through OSTI's SciTech Connect Additional Reference The night sky, as our unaided eyes present it to us, obviously contains the sun, the moon, thousands of stars, a few planets, a milky band of light that stretches from horizon to horizon, the occasional meteor or meteor shower, and sometimes a comet. A few centuries of examination with eyes aided by many kinds of instruments have revealed more and more of the nature of these objects-for example, that the planets are more or less like the Earth, orbiting the sun, with some planets having moons of various

414

An Attempt To Use Aerial Gamma-Ray Spectrometry Results In Petrochemical  

Open Energy Info (EERE)

Attempt To Use Aerial Gamma-Ray Spectrometry Results In Petrochemical Attempt To Use Aerial Gamma-Ray Spectrometry Results In Petrochemical Assessments Of The Volcanic And Plutonic Associations Of Central Anatolia (Turkey) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Attempt To Use Aerial Gamma-Ray Spectrometry Results In Petrochemical Assessments Of The Volcanic And Plutonic Associations Of Central Anatolia (Turkey) Details Activities (0) Areas (0) Regions (0) Abstract: Volcanic and magmatic rocks of Central Anatolia are fairly rich in radioelement concentrations. The aerial gamma-ray spectrometric survey data, gathered for the purpose of radioactive mineral exploration were utilized as an additional tool for the petrochemical classification of the volcanic and magmatics rocks and their environments. The survey data on

415

New gamma-ray observatory begins operations at Sierra Negra volcano in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New gamma-ray observatory begins operations New gamma-ray observatory begins operations New gamma-ray observatory begins operations at Sierra Negra volcano in the state of Puebla, Mexico The High-Altitude Water Cherenkov Gamma Ray Observatory has begun formal operations at its site in Mexico. August 21, 2013 The HAWC Observatory taken in August 2013 from the summit of Sierra Negra. The image has been digitally altered to show HAWC as it will appear when construction is complete in 2014. The 111 Cherenkov detectors currently installed (100 Cherenkov detectors in operation) are colored white and located in the upper right quadrant of the array. The HAWC Observatory taken in August 2013 from the summit of Sierra Negra. The image has been digitally altered to show HAWC as it will appear when construction is complete in 2014. The 111 Cherenkov detectors currently

416

Method for on-line evaluation of materials using prompt gamma ray analysis  

DOE Patents [OSTI]

A method for evaluating a material specimen comprises: Mounting a neutron source and a detector adjacent the material specimen; bombarding the material specimen with neutrons from the neutron source to create prompt gamma rays within the material specimen, some of the prompt gamma rays being emitted from the material specimen, some of the prompt gamma rays resulting in the formation of positrons within the material specimen by pair production; collecting positron annihilation data by detecting with the detector at least one emitted annihilation gamma ray resulting from the annihilation of a positron; storing the positron annihilation data on a data storage system for later retrieval and processing; and continuing to collect and store positron annihilation data, the continued collected and stored positron annihilation data being indicative of an accumulation of lattice damage over time.

Akers, Douglas W. (Idaho Falls, ID)

2009-12-08T23:59:59.000Z

417

Spectral characterisation of gamma-ray bursts with COMPTEL and BATSE  

Science Journals Connector (OSTI)

Although the earliest observed gamma-ray burst spectra were well described by thermal bremsstrahlung ... of events. In order to accurately characterise burst spectra, both the low energy turnover and...Compton......

L. O. Hanlon; K. Bennett; O. R. Williams; C. Winkler…

1995-09-01T23:59:59.000Z

418

E-Print Network 3.0 - absolute gamma ray Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: absolute gamma ray Page: << < 1 2 3 4 5 > >> 1 Characterizing the Memory Behavior of CompilerParallelized...

419

E-Print Network 3.0 - airborne gamma ray Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: airborne gamma ray Page: << < 1 2 3 4 5 > >> 1 Evaluating the Impact of Advanced Memory Systems on...

420

Studies of intrinsic properties of gamma ray bursts detected by the HETE-II satellite  

E-Print Network [OSTI]

Analysis of HETE-II data is discussed with the aim of understanding the intrinsic properties of gamma-ray bursts (GRBs). A technique is developed that allows the simultaneous estimation of source and background counts ...

Csatorday, Peter, 1973-

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - advanced gamma-ray imaging Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced gamma-ray imaging Page: << < 1 2 3 4 5 > >> 1 BazookaSPECT: A Low-Cost Approach to...

422

How Gravitational-wave Observations Can Shape the Gamma-ray Burst Paradigm  

E-Print Network [OSTI]

By reaching through shrouding blastwaves, efficiently discovering off-axis events, and probing the central engine at work, gravitational wave (GW) observations will soon revolutionize the study of gamma-ray bursts. Already, analyses of GW data targeting gamma-ray bursts have helped constrain the central engines of selected events. Advanced GW detectors with significantly improved sensitivities are under construction. After outlining the GW emission mechanisms from gamma-ray burst progenitors (binary coalescences, stellar core collapses, magnetars, and others) that may be detectable with advanced detectors, we review how GWs will improve our understanding of gamma-ray burst central engines, their astrophysical formation channels, and the prospects and methods for different search strategies. We place special emphasis on multimessenger searches. To achieve the most scientific benefit, GW, electromagnetic, and neutrino observations should be combined to provide greater discriminating power and science reach.

Imre Bartos; Patrick Brady; Szabolcs Marka

2012-12-11T23:59:59.000Z

423

E-Print Network 3.0 - aerial gamma ray Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: aerial gamma ray Page: << < 1 2 3 4 5 > >> 1 Evaluating the Impact of Advanced Memory Systems on...

424

Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis  

SciTech Connect (OSTI)

Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is also appended.

Woosley, Stan

2014-08-29T23:59:59.000Z

425

EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS  

E-Print Network [OSTI]

Recent observations support the hypothesis that a large fraction of "short-hard" gamma-ray bursts (SHBs) are associated with the inspiral and merger of compact binaries. Since gravitational-wave (GW) measurements of ...

Hughes, Scott A

426

E-Print Network 3.0 - atmospheric gamma-ray flashes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: atmospheric gamma-ray flashes Page: << < 1 2 3 4 5 > >> 1 Select Font Size: A A A Sponsored By Summary: ....

427

Studies of intrinsic properties of gamma ray bursts detected by the HETE-II satellite .  

E-Print Network [OSTI]

??Analysis of HETE-II data is discussed with the aim of understanding the intrinsic properties of gamma-ray bursts (GRBs). A technique is developed that allows the… (more)

Csatorday, Peter, 1973-

2007-01-01T23:59:59.000Z

428

Multiscale Statistical Methods and the Angular Distribution of Gamma-Ray Bursts  

Science Journals Connector (OSTI)

The spherical variants of multiscale methods - Voronoi tesselation (VT), minimalspanning tree (MST), and multifractal(MFR) analysis - are used to study the angular distributions of three subgroups of gamma-ray bursts

Roland Vavrek; Lajos G. Balázs; Attila Mészáros…

2001-01-01T23:59:59.000Z

429

No supernovae associated with two long-duration gamma-ray bursts .  

E-Print Network [OSTI]

??It is now accepted that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star(1,2). The standard 'collapsar' model(3) predicts that a… (more)

Fynbo, Johan P. U.

2006-01-01T23:59:59.000Z

430

A Single Continuous Function as a Model for Fast Rise Exponential Decay Gamma-Ray Bursts.  

E-Print Network [OSTI]

??A quantitative analysis was performed on a sample of Fast-Rise Exponential-Decay gamma-ray bursts using a continuous fitting function. The data were obtained from the Large… (more)

Logue, Daniel B

2006-01-01T23:59:59.000Z

431

Hybrid model of GeV-TeV gamma ray emission from Galactic Center  

E-Print Network [OSTI]

The observations of high energy $\\gamma$-ray emission from the Galactic center (GC) by HESS, and recently by Fermi, suggest the cosmic ray acceleration in the GC and possibly around the supermassive black hole. In this work we propose a lepton-hadron hybrid model to explain simultaneously the GeV-TeV $\\gamma$-ray emission. Both electrons and hadronic cosmic rays were accelerated during the past activity of the GC. Then these particles would diffuse outwards and interact with the interstellar gas and background radiation field. The collisions between hadronic cosmic rays with gas is responsible to the TeV $\\gamma$-ray emission detected by HESS. With fast cooling in the strong radiation field, the electrons would cool down and radiate GeV photons through inverse Compton scattering off the soft background photons. This scenario provides a natural explanation of the observed GeV-TeV spectral shape of $\\gamma$-rays.

Yi-Qing Guo; Qiang Yuan; Cheng Liu; Ai-Feng Li

2014-09-14T23:59:59.000Z

432

Models for the circumstellar medium of long gamma-ray burst progenitor candidates.  

E-Print Network [OSTI]

??Long gamma-ray bursts are highly energetic events that are thought to occur when certain massive stars, that end their lives as Wolf-Rayet stars, collapse at… (more)

Marle, A.J. van

2006-01-01T23:59:59.000Z

433

Did a gamma-ray burst initiate the late Ordovician mass extinction?  

E-Print Network [OSTI]

Gamma-ray bursts (GRBs) produce a flux of radiation detectable across the observable Universe. A GRB within our own galaxy could do considerable damage to the Earth's biosphere; rate estimates suggest that a dangerously near GRB should occur...

Melott, Adrian L.; Lieberman, Bruce S.; Laird, C. M.; Martin, Larry D.; Medvedev, Mikhail V.; Thomas, B. C.; Cannizzo, J. K.; Gehrels, N.; Jackman, C. H.

2004-01-01T23:59:59.000Z

434

Determining the jet opening-angle of gamma-ray bursts  

E-Print Network [OSTI]

There is growing scientific agreement that at least some cosmic gamma-ray bursts (GRBs) coincide with the deaths of rapidly rotating massive stars - dubbed "hyper-novae." In 1987, a supernova (SN 1987A) was detected in the ...

McEvoy, Erica Lynn, 1981-

2004-01-01T23:59:59.000Z

435

Automatic image analysis for detecting and quantifying gamma-ray sources in coded-aperture images  

SciTech Connect (OSTI)

The authors report the development of an automatic image analysis system that detects gamma-ray source regions in images obtained from a coded aperture, gamma-ray imager. The number of gamma sources in the image is not known prior to analysis. The system counts the number (K) of gamma sources detected in the image and estimates the lower bound for the probability that the number of sources in the image is K. The system consists of a two-stage pattern classification scheme in which the probabilistic neural network is used in the supervised learning mode. The algorithms were developed and tested using real gamma-ray images from controlled experiments in which the number and location of depleted uranium source disks in the scene are known. The novelty of the work lies in the creative combination of algorithms and the successful application of the algorithms to real images of gamma-ray sources.

Schaich, P.C.; Sengupta, S.K.; Ziock, K.P. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Clark, G.A. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); [Univ. of California, Davis, CA (United States). Center for Image Processing and Integrated Computing

1996-08-01T23:59:59.000Z

436

High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays  

SciTech Connect (OSTI)

Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.

Jovanovic, I; Shverdin, M; Gibson, D; Brown, C

2007-04-17T23:59:59.000Z

437

Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis  

SciTech Connect (OSTI)

Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

Xie Xufei; Zhang Xing; Yuan Xi; Chen Jinxiang; Li Xiangqing; Zhang Guohui; Fan Tieshuan [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing (China); Yuan Guoliang; Yang Jinwei; Yang Qingwei [Southwestern Institute of Physics, Chengdu (China)

2012-09-15T23:59:59.000Z

438

Gamma-Ray Shielding Effectiveness of Some Alloys for Fusion Reactor Design  

Science Journals Connector (OSTI)

The gamma-ray shielding effectiveness of some oxide dispersion-strengthen (ODS) alloys by means of mass attenuation coefficients, mean free path, exposure buildup factors and energy absorption buildup factors hav...

Vishwanath P. Singh; M. E. Medhat; N. M. Badiger

2014-10-01T23:59:59.000Z

439

Logging-while-coring method and apparatus  

DOE Patents [OSTI]

A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

Goldberg, David S. (New York, NY); Myers, Gregory J. (Cornwall, NY)

2007-11-13T23:59:59.000Z

440

HYPERACCRETING BLACK HOLE AS GAMMA-RAY BURST CENTRAL ENGINE. I. BARYON LOADING IN GAMMA-RAY BURST JETS  

SciTech Connect (OSTI)

A hyperaccreting stellar-mass black hole has been long speculated as the best candidate for the central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon-loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by {nu} {nu}-bar -annihilation or by the Blandford-Znajek (BZ) mechanism. We consider baryon loading from a neutrino-driven wind launched from a neutrino-cooling-dominated accretion flow. For a magnetically dominated BZ jet, we consider neutron drifting from the magnetic wall surrounding the jet and subsequent positron capture and proton-neutron inelastic collisions. The minimum baryon loads in both types of jet are calculated. We find that in both cases a more luminous jet tends to be more baryon poor. A neutrino-driven ''fireball'' is typically ''dirtier'' than a magnetically dominated jet, while a magnetically dominated jet can be much cleaner. Both models have the right scaling to interpret the empirical {Gamma}-L{sub iso} relation discovered recently. Since some neutrino-driven jets have too much baryon loading as compared with the data, we suggest that at least a good fraction of GRBs should have a magnetically dominated central engine.

Lei Weihua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 Maryland Parkway, Box 454002, Las Vegas, NV 89154-4002 (United States); Liang Enwei, E-mail: leiwh@hust.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China)

2013-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cooling of Accelerated Nucleons and Neutrino Emission in Gamma-Ray Bursts  

E-Print Network [OSTI]

Using Monte Carlo simulations, we demonstrate photopion production from Fermi-accelerated protons and the resulting neutrino production in gamma-ray bursts. Unless internal shocks occur at quite large distance from the center, ultra high-energy protons are depleted by photopion production and synchrotron radiation. Internal shocks at fiducial distance cause neutrino bursts, which accompany gamma-ray bursts originating from electromagnetic cascades.

Katsuaki Asano

2005-03-11T23:59:59.000Z

442

Proposed experiment to measure {gamma}-rays from the thermal neutron capture of gadolinium  

SciTech Connect (OSTI)

Gadolinium-157 ({sup 157}Gd) has the largest thermal neutron capture cross section among any stable nuclei. The thermal neutron capture yields {gamma}-ray cascade with total energy of about 8 MeV. Because of these characteristics, Gd is applied for the recent neutrino detectors. Here, we propose an experiment to measure the multiplicity and the angular correlation of {gamma}-rays from the Gd neutron capture. With these information, we expect the improved identification of the Gd neutron capture.

Yano, Takatomi; Ou, I.; Izumi, T.; Yamaguchi, R.; Mori, T.; Sakuda, M. [Department of Physics, Okayama University, Okayama, 700-8530 (Japan)

2012-11-12T23:59:59.000Z

443

Testing the gamma-ray burst variability/peak luminosity correlation on a Swift homogeneous sample  

E-Print Network [OSTI]

We test the gamma-ray burst correlation between temporal variability and peak luminosity of the $\\gamma$-ray profile on a homogeneous sample of 36 Swift/BAT GRBs with firm redshift determination. This is the first time that this correlation can be tested on a homogeneous data sample. The correlation is confirmed, as long as the 6 GRBs with low luminosity (tested on low-luminosity GRBs. Our results show that these GRBs are definite outliers.

D. Rizzuto; C. Guidorzi; P. Romano; S. Covino; S. Campana; M. Capalbi; G. Chincarini; G. Cusumano; D. Fugazza; V. Mangano; A. Moretti; M. Perri; G. Tagliaferri

2007-04-19T23:59:59.000Z

444

Observations of the Isotropic Diffuse Gamma-ray Background with the EGRET Telescope  

E-Print Network [OSTI]

An Isotropic Diffuse Gamma-Ray Background (IDGRB) in the spectral range 30-10,000 MeV was first reported in the early 1970's using measurements made by the SAS-2 instrument. Data recorded by the Energetic Gamma Ray Experiment Telescope (EGRET) on board the Compton Gamma Ray Observatory (CGRO) over the last 4 years are analysed in order to extract the best measurement yet made of the IDGRB. Extensive analysis of the EGRET instrumental background is presented in order to demonstrate that an uncontaminated data set can be extracted from the EGRET data. A model of the high latitude galactic diffuse foreground emission is presented and the existence of an IDGRB is confirmed. Spatial and spectral analysis of this background is presented. In addition, point source analysis at high galactic latitudes is performed to reveal the existence of a population of extragalactic sources. The characteristics of this population are examined and models of its flux distribution are reported. The question of whether the IDGRB is composed of unresolved point sources is addressed using fluctuation analysis. Finally, possible future directions for gamma ray astronomy are examined through simulations of a future gamma ray telescope: the Gamma-ray Large Area Space Telescope (GLAST). The GLAST baseline design is described and its scientific performance is evaluated. The ability of this telescope to detect 1,000-10,000 new extragalactic sources is demonstrated and the likely impact on the study of the IDGRB is considered.

T. D. Willis

2002-01-30T23:59:59.000Z

445

Long lived central engines in Gamma Ray Bursts  

E-Print Network [OSTI]

The central engine of Gamma Ray Bursts may live much longer than the duration of the prompt emission. Some evidence of it comes from the presence of strong precursors, post-cursors, and X-ray flares in a sizable fraction of bursts. Additional evidence comes from the fact that often the X-ray and the optical afterglow light curves do not track one another, suggesting that they are two different emission components. The typical "steep-flat-steep" behavior of the X-ray light curve can be explained if the same central engine responsible for the main prompt emission continues to be active for a long time, but with a decreasing power. The early X-ray "afterglow" emission is then the extension of the prompt emission, originating at approximately the same location, and is not due to forward shocks. If the bulk Lorentz factor Gamma is decreasing in time, the break ending the shallow phase can be explained, since at early times Gamma is large, and we see only a fraction of the emitting area. Later, when Gamma decreases, we see an increasing fraction of the emitting surface up to the time when Gamma ~ 1/theta_j. This time ends the shallow phase of the X-ray light curve. The origin of the late prompt emission can be the accretion of the fall-back material, with an accretion rate dot M proportional to t^(-5/3). The combination of this late prompt emission with the flux produced by the standard forward shock can explain the great diversity of the optical and the X-ray light curves.

G. Ghisellini

2008-10-01T23:59:59.000Z

446

COMPACT BINARY PROGENITORS OF SHORT GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy, {epsilon}{sub jet} = 10%, we find that most of the tori have masses smaller than 0.01 M{sub Sun }, favoring 'high-mass' binary NSs mergers, i.e., binaries with total masses {approx}> 1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since 'high-mass' systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of {approx}0.9 or higher.

Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309 (United States); Perna, Rosalba [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Rezzolla, Luciano [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Potsdam D-14476 (Germany); Troja, Eleonora [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States)

2013-01-10T23:59:59.000Z

447

The gamma-ray burst monitor for Lobster-ISS  

Science Journals Connector (OSTI)

Lobster-ISS is an X-ray all-sky monitor experiment selected by ESA two years ago for a Phase A study (now almost completed) for a future flight (2009) aboard the Columbus Exposed Payload Facility of the International Space Station. The main instrument, based on MCP optics with Lobster-eye geometry, has an energy passband from 0.1 to 3.5 keV, an unprecedented daily sensitivity of 2 × 10?12 erg cm?2 s?1, and it is capable to scan, during each orbit, the entire sky with an angular resolution of 4–6?. This X-ray telescope is flanked by a Gamma Ray Burst Monitor, with the minimum requirement of recognizing true \\{GRBs\\} from other transient events. In this paper we describe the GRBM. In addition to the minimum requirement, the instrument proposed is capable to roughly localize \\{GRBs\\} which occur in the Lobster FOV (162 × 22.5°) and to significantly extend the scientific capabilities of the main instrument for the study of \\{GRBs\\} and X-ray transients. The combination of the two instruments will allow an unprecedented spectral coverage (from 0.1 up to 300/700 keV) for a sensitive study of the GRB prompt emission in the passband where \\{GRBs\\} and X-Ray Flashes emit most of their energy. The low-energy spectral band (0.1–10 keV) is of key importance for the study of the GRB environment and the search of transient absorption and emission features from GRBs, both goals being crucial for unveiling the GRB phenomenon. The entire energy band of Lobster-ISS is not covered by either the Swift satellite or other GRB missions foreseen in the next decade.

L. Amati; F. Frontera; N. Auricchio; E. Caroli; A. Basili; A. Bogliolo; G. Di Domenico; T. Franceschini; C. Guidorzi; G. Landini; N. Masetti; E. Montanari; M. Orlandini; E. Palazzi; S. Silvestri; J.B. Stephen; G. Ventura

2006-01-01T23:59:59.000Z

448

Gamma?ray burst repetition and the definition of bursts  

Science Journals Connector (OSTI)

We point out a basic inconsistency in the traditional definition of ‘‘classical’’ gamma?ray burst durations and we suggest an observational definition to correct it. All classical bursts occurring within an arbitrary data accumulation time are traditionally defined as a single ‘‘multipeaked’’ burst even when individual ‘‘peaks’’ are separated by periods of subthreshold emission and would retrigger an unbiased detector. Such peaks would also be identified as separate bursts if either the assumed accumulation time was shorter or the burst time scale was longer. This is a fundamental flaw in the traditional definition that seriously biases the identification of classical bursts and the statistical analysis of their properties. We suggest instead an observationally self?consistent definition for classical bursts simply defining burst duration as the time during which the emission averaged on the triggering time scale is continuously observable above the trigger threshold flux. This observational definition provides a consistent measure of both the number of bursts and their duration that directly reflects the detector trigger threshold and gives an unbiased sample above that threshold. We adopt this definition of burst duration for classical bursts and we find that a large fraction (?1/5 to 1/3) of the classical bursts repeat on rapid (?1 to 102 s) time scales. These repeated bursts clearly show that classical bursts are not standard candles. They also remind us that the observed intensity and spatial distributions are of burst occurrence not of burst sources because we cannot identify individual burst sources in large samples (e.g. KONUS and BATSE) where the uncertainty in position is greater than the random separation.

R. E. Lingenfelter; V. C. Wang; J. C. Higdon

1994-01-01T23:59:59.000Z

449

ARE ABELL CLUSTERS CORRELATED WITH GAMMA-RAY BURSTS? Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450; khurley@sunspot.ssl.berkeley.edu  

E-Print Network [OSTI]

ARE ABELL CLUSTERS CORRELATED WITH GAMMA-RAY BURSTS? K. HURLEY Space Sciences Laboratory statistical evidence that gamma-ray burst (GRB) sources are correlated with Abell clusters, based on analyses -- gamma rays: bursts 1. INTRODUCTION A correlation between the positions of gamma-ray bursts (GRBs

California at Berkeley, University of

450

Andromeda: A mission to determine the gamma-ray burst distance scale F.A. Harrison, W.R. Cook, T.A. Prince, S.M. Schindler  

E-Print Network [OSTI]

Andromeda: A mission to determine the gamma-ray burst distance scale F.A. Harrison, W.R. Cook, T was submitted to the STEDI program, and will also be proposed as a NASA Small Explorer. Keywords: bursts, gamma-rays, small missions 1 SCIENTIFIC OBJECTIVES 1.1 Gamma-ray Bursts Gamma-ray bursts GRBs were discovered

Prince, Thomas A.

451

Mon. Not. R. Astron. Soc. 374, 14731478 (2007) doi:10.1111/j.1365-2966.2006.11249.x The Swift gamma-ray burst GRB 050422  

E-Print Network [OSTI]

gamma-ray burst GRB 050422 A. P. Beardmore,1 K. L. Page,1 P. T. O'Brien,1 J. P. Osborne,1 S. Kobayashi,2 of GRB 050422, a Swift-discovered gamma-ray burst. The prompt gamma-ray emission had a T90 duration of 59 afterglow model. Key words: gamma-rays: bursts. 1 INTRODUCTION Gamma-ray bursts (GRBs) are highly energetic

Zhang, Bing

452

ILLUMINATING THE DARKEST GAMMA-RAY BURSTS WITH RADIO OBSERVATIONS  

SciTech Connect (OSTI)

We present X-ray, optical, near-infrared (IR), and radio observations of gamma-ray bursts (GRBs) 110709B and 111215A, as well as optical and near-IR observations of their host galaxies. The combination of X-ray detections and deep optical/near-IR limits establish both bursts as ''dark''. Sub-arcsecond positions enabled by radio detections lead to robust host galaxy associations, with optical detections that indicate z {approx}< 4 (110709B) and z Almost-Equal-To 1.8-2.9 (111215A). We therefore conclude that both bursts are dark due to substantial rest-frame extinction. Using the radio and X-ray data for each burst we find that GRB 110709B requires A{sub V}{sup host}{approx}>5.3 mag and GRB 111215A requires A{sub V}{sup host}{approx}>8.5 mag (assuming z = 2). These are among the largest extinction values inferred for dark bursts to date. The two bursts also exhibit large neutral hydrogen column densities of N{sub H,{sub int}} {approx}> 10{sup 22} cm{sup -2} (z = 2) as inferred from their X-ray spectra, in agreement with the trend for dark GRBs. Moreover, the inferred values are in agreement with the Galactic A{sub V} -N{sub H} relation, unlike the bulk of the GRB population. Finally, we find that for both bursts the afterglow emission is best explained by a collimated outflow with a total beaming-corrected energy of E{sub {gamma}} + E{sub K} Almost-Equal-To (7-9) Multiplication-Sign 10{sup 51} erg (z = 2) expanding into a wind medium with a high density, M Almost-Equal-To (6-20) Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1} (n Almost-Equal-To 100-350 cm{sup -3} at Almost-Equal-To 10{sup 17} cm). While the energy release is typical of long GRBs, the inferred density may be indicative of larger mass-loss rates for GRB progenitors in dusty (and hence metal rich) environments. This study establishes the critical role of radio observations in demonstrating the origin and properties of dark GRBs. Observations with the JVLA and ALMA will provide a sample with sub-arcsecond positions and robust host associations that will help to shed light on obscured star formation and the role of metallicity in GRB progenitors.

Zauderer, B. A.; Berger, E.; Margutti, R.; Fong, W.; Laskar, T.; Chornock, R.; Soderberg, A. M. [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Olivares E, F.; Greiner, J. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Perley, D. A.; Horesh, A.; Carpenter, J. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91225 (United States); Updike, A. C. [Department of Chemistry and Physics, Roger Williams University, Bristol, RI 02809 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Menten, K. M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Nakar, E. [Department of Astrophysics, Sackler School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Chandra, P. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Ganeshkhind, Pune 411007 (India); Castro-Tirado, A. J. [Instituto de Astrofisica de Andalucia (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Bremer, M. [Institut de Radioastronomie Millimetrique, 300 rue de la Piscine, F-38406 Saint Martin d'Heres (France); and others

2013-04-20T23:59:59.000Z

453

GRB 090727 AND GAMMA-RAY BURSTS WITH EARLY-TIME OPTICAL EMISSION  

SciTech Connect (OSTI)

We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks ({Delta}t/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission.

Kopac, D.; Gomboc, A.; Japelj, J. [Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Kobayashi, S.; Mundell, C. G.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, CH41 1LD (United Kingdom); Guidorzi, C. [Physics Departments, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Melandri, A., E-mail: drejc.kopac@fmf.uni-lj.si [INAF-Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy)

2013-07-20T23:59:59.000Z

454

Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector  

E-Print Network [OSTI]

Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector ARGO-YBJ Collaboration of high energy gamma-ray bursts can be performed by large area air shower arrays operating at very high is the study of gamma-ray bursts of energies E 10 GeV. This can be achieved using the "single particle

Morselli, Aldo

455

A common stochastic process rules gamma-ray burst prompt emission and X-ray flares  

E-Print Network [OSTI]

Prompt gamma-ray and early X-ray afterglow emission in gamma-ray bursts (GRBs) are characterized by a bursty behavior and are often interspersed with long quiescent times. There is compelling evidence that X-ray flares are linked to prompt gamma-rays. However, the physical mechanism that leads to the complex temporal distribution of gamma-ray pulses and X-ray flares is not understood. Here we show that the waiting time distribution (WTD) of pulses and flares exhibits a power-law tail extending over 4 decades with index ~2 and can be the manifestation of a common time-dependent Poisson process. This result is robust and is obtained on different catalogs. Surprisingly, GRBs with many (>=8) gamma-ray pulses are very unlikely to be accompanied by X-ray flares after the end of the prompt emission (3.1 sigma Gaussian confidence). These results are consistent with a simple interpretation: an hyperaccreting disk breaks up into one or a few groups of fragments, each of which is independently accreted with the same pro...

Guidorzi, C; Frontera, F; Margutti, R; Baldeschi, A; Amati, L

2015-01-01T23:59:59.000Z

456

DETECTION OF THE COSMIC {gamma}-RAY HORIZON FROM MULTIWAVELENGTH OBSERVATIONS OF BLAZARS  

SciTech Connect (OSTI)

The first statistically significant detection of the cosmic {gamma}-ray horizon (CGRH) that is independent of any extragalactic background light (EBL) model is presented. The CGRH is a fundamental quantity in cosmology. It gives an estimate of the opacity of the universe to very high energy (VHE) {gamma}-ray photons due to photon-photon pair production with the EBL. The only estimations of the CGRH to date are predictions from EBL models and lower limits from {gamma}-ray observations of cosmological blazars and {gamma}-ray bursts. Here, we present homogeneous synchrotron/synchrotron self-Compton (SSC) models of the spectral energy distributions of 15 blazars based on (almost) simultaneous observations from radio up to the highest energy {gamma}-rays taken with the Fermi satellite. These synchrotron/SSC models predict the unattenuated VHE fluxes, which are compared with the observations by imaging atmospheric Cherenkov telescopes. This comparison provides an estimate of the optical depth of the EBL, which allows us a derivation of the CGRH through a maximum likelihood analysis that is EBL-model independent. We find that the observed CGRH is compatible with the current knowledge of the EBL.

Dominguez, A.; Siana, B. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Finke, J. D. [U.S. Naval Research Laboratory, Space Science Division, Code 7653, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Prada, F. [Campus of International Excellence UAM-CSIC, Cantoblanco, E-28049 Madrid (Spain); Primack, J. R. [Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Kitaura, F. S. [Leibniz-Institut fuer Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Paneque, D., E-mail: albertod@ucr.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC, Stanford University, Stanford, CA 94305 (United States)

2013-06-10T23:59:59.000Z

457

Signatures of photon and axion-like particle mixing in the gamma-ray burst jet  

E-Print Network [OSTI]

Photons couple to Axion-Like Particles (ALPs) or more generally to any pseudo Nambu-Goldstone boson in the presence of an external electromagnetic field. Mixing between photons and ALPs in the strong magnetic field of a Gamma-Ray Burst (GRB) jet during the prompt emission phase can leave observable imprints on the gamma-ray polarization and spectrum. Mixing in the intergalactic medium is not expected to modify these signatures for ALP mass > 10^(-14) eV and/or for gamma ray emission. We also show that when the magnetic field orientation in the propagation region is perpendicular to the field orientation in the production region, the observed synchrotron spectrum becomes steeper than the theoretical prediction and as detected in a sizable fraction of GRB sample. Detection of the correlated polarization and spectral signatures from these steep-spectrum GRBs by gamma-ray polarimeters can be a very powerful probe to discover ALPs. Measurement of gamma-ray polarization from GRBs in general, with high statistics, can also be useful to search for ALPs.

Olga Mena; Soebur Razzaque; F. Villaescusa-Navarro

2011-02-07T23:59:59.000Z

458

X-Ray Observations of Unidentified H.E.S.S. Gamma-Ray Sources  

SciTech Connect (OSTI)

In a survey of the inner part of the Galaxy, performed with the H.E.S.S. Instrument (High energy stereoscopic system) in 2004 and 2005, a large number of new unidentified very high energy (VHE) {gamma}-ray sources above an energy of 100 GeV was discovered. Often the {gamma}-ray spectra in these sources reach energies of up to {approx} 10 TeV. These are the highest energy particles ever attributed to single astrophysical objects. While a few of these sources can be identified at other wavebands, most of these sources remain unidentified so far. A positive identification of these new g-ray sources with a counterpart object at other wavebands requires (a) a positional coincidence between the two sources,( b) a viable {gamma}-ray emission mechanism and (c) a consistent multiwavelength behavior of the two sources. X-ray observations with satellites such as XMM-Newton, Chandra or Suzaku provide one of the best channels to studying these enigmatic {gamma}-ray sources at other wavebands, since they combine high angular resolution and sensitivity with the ability to access non-thermal electrons through their synchrotron emission. We therefore have started a dedicated program to investigate VHE {gamma}-ray sources with high-sensitivity X-ray instruments.

Funk, S.; /SLAC

2007-10-10T23:59:59.000Z

459

THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS  

SciTech Connect (OSTI)

This catalog summarizes 117 high-confidence ?0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Universitŕ di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Universitŕ di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ''M. Merlin'' dell'Universitŕ e del Politecnico di Bari, I-70126 Bari (Italy); and others

2013-10-01T23:59:59.000Z

460

Discrimination of gamma rays due to inelastic neutron scattering in AGATA  

E-Print Network [OSTI]

Possibilities of discriminating neutrons and gamma rays in the AGATA gamma-ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the Geant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and gamma rays from the center of AGATA. Three different methods were developed and tested in order to find 'fingerprints' of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1-5 MeV and ten gamma rays with energies between 150 and 1450 keV, the peak-to-background ratio at a gamma-ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.

A. Ataç; A. Ka?ka?; S. Akkoyun; M. ?enyi?it; T. Hüyük; S. O. Kara; J. Nyberg

2009-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

BGO Readout with Photodiodes as a Soft gamma-Ray Detector at -30C  

SciTech Connect (OSTI)

BGO is expected to be plausible devices for soft gamma-ray detectors, because of a high detection efficiency for soft gamma-rays. Here we report on the good performance of BGO readout with PIN-photodiode or avalanche photodiode as a soft gamma-ray detector. We confirmed that the signal output of BGO becomes comparable to that of GSO when it is readout with photodiodes due to better matching between emission wavelength of BGO and quantum efficiency of photodiode. The energy resolution of 6.2% and 3.4% for 662 keV and 1836 keV, respectively, gamma-rays at -30 C is obtained with the combination of the 5 x 5 x 5 mm{sup 3} cube BGO and the Hamamatsu avalanche photodiode (APD) S8664-55. In this combination, the lowest detectable energy is found to be {approx}10 keV. These performances are better than that obtained with Photomultiplier tube (PMT), and our results increase many possible applications of BGO readout with photodiodes as soft gamma-ray detectors.

Nakamoto, T.

2005-01-21T23:59:59.000Z

462

Origin of the 871-keV gamma ray and the ``oxide'' attribute  

SciTech Connect (OSTI)

This work concludes the investigation of the oxide attribute of current interest for the characterization of stored plutonium. Originally it was believed that the presence of oxide could be ascertained by measurement of the 871-keV line in a high-resolution gamma-ray spectrum. However, recent work has suggested that the 871-keV gamma ray in plutonium oxide arises from the reaction {sup 14}N({alpha},p){sup 17}O rather than the inelastic scattering reaction {sup 17}O({alpha},{alpha}{prime}){sup 17}O*. This conclusion, though initially surprising, was obtained during efforts to determine the relative importance of americium and plutonium alpha-particle decay for the production of the 871-keV gamma ray. Several questions were raised by previous experiments: What role, if any does {sup 17}O have in the generation of the 871-keV gamma ray? How does sufficient nitrogen come to be present in plutonium oxide? Under what conditions is the 871-keV gamma ray measurable in plutonium oxide? This paper describes the answers to these questions.

AJ Peurrung; RJ Arthur; BD Geelhood; RD Scheele; RJ Elovich; SL Pratt

2000-03-22T23:59:59.000Z

463

POLARIZATION AND VARIATION OF NEAR-INFRARED LIGHT FROM FERMI/LAT {gamma}-RAY SOURCES  

SciTech Connect (OSTI)

We present the results of our follow-up observation program of {gamma}-ray sources detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. Twenty-six blazars and thirty-nine sources unidentified at other wavelengths were targeted at the Infrared Survey Facility 1.4 m telescope equipped with the SIRIUS/SIRPOL imager and polarimeter. H-band magnitudes of the blazars at the epoch of 2010 December-2011 February are presented, which reveal clear flux variation since the Two Micron All Sky Survey observations and can be useful data for variation analyses of these objects in longer periods. We also find that nearly half of the {gamma}-ray blazars are highly (>10%) polarized in near-infrared wavelengths. Combining the polarization and variation properties, most ({approx}90%) of the blazars are clearly distinguished from all other types of objects at high Galactic latitudes. On the other hand, we find only one highly polarized and/or variable object in the fields of unidentified sources. This object is a counterpart of the optical variable source PQV1 J131553.00-073302.0 and the radio source NVSS J131552-073301 and is a promising candidate of new {gamma}-ray blazars. From the measured polarization and variation statistics, we conclude that most of the Fermi/LAT unidentified sources are not likely similar types of objects to the known {gamma}-ray blazars.

Fujiwara, M.; Matsuoka, Y. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Ienaka, N., E-mail: matsuoka@a.phys.nagoya-u.ac.jp [Institute of Astronomy, The University of Tokyo, Osawa 2-21-1, Mitaka, Tokyo 181-0015 (Japan)

2012-10-01T23:59:59.000Z

464

RELATIVISTIC SHOCK BREAKOUTS-A VARIETY OF GAMMA-RAY FLARES: FROM LOW-LUMINOSITY GAMMA-RAY BURSTS TO TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

The light from a shock breakout of stellar explosions, which carries a wealth of information, strongly depends on the shock velocity at the time of the breakout. The emission from Newtonian breakouts, typical in regular core-collapse supernovae (SNe), has been explored extensively. However, a large variety of explosions result in mildly or ultrarelativistic breakouts, where the observed signature is unknown. Here we calculate the luminosity and spectrum produced by relativistic breakouts. In order to do so, we improve the analytic description of relativistic radiation-mediated shocks and follow the system from the breakout itself, through the planar phase and into the spherical phase. We limit our calculation to cases where the post-breakout acceleration of the gas ends during the planar phase (i.e., the final gas Lorentz factor {approx}< 30). We find that spherical relativistic breakouts produce a flash of gamma rays with energy, E{sub bo}, temperature, T{sub bo}, and duration, t{sup obs} b{sub o}, that provide the breakout radius ( Almost-Equal-To 5 R{sub Sun }(t{sup obs}{sub bo}/10 s)(T{sub bo}/50 keV){sup 2}) and the Lorentz factor ( Almost-Equal-To T{sub bo}/50 keV). They also always satisfy a relativistic breakout relation (t{sup obs}{sub bo}/20 s) {approx} (E{sub bo}/10{sup 46} erg){sup 1/2}(T{sub bo}/50 keV){sup -2.68}. The breakout flare is typically followed, on longer timescales, by X-rays that carry a comparable energy. We apply our model to a variety of explosions, including Type Ia and .Ia SNe, accretion-induced collapse, energetic SNe, and gamma-ray bursts (GRBs). We find that all these events produce detectable gamma-ray signals, some of which may have already been seen. Some particular examples are: (1) relativistic shock breakouts provide a natural explanation to the energy, temperature, and timescales of low-luminosity GRBs. Indeed, all observed low-luminosity GRBs satisfy the relativistic breakout relation. (2) Nearby broad-line Type Ib/c (like SN 2002ap) may produce a detectable {gamma}-ray signal. (3) Galactic Type Ia SNe may produce detectable {gamma}-ray flares. We conclude that relativistic shock breakouts provide a generic process for the production of gamma-ray flares.

Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, Re'em [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel)

2012-03-10T23:59:59.000Z

465

Rapid response monitoring of transient radio emission associated with gamma-ray bursts and circinus X-1.  

E-Print Network [OSTI]

??This PhD project was aimed at carrying out comprehensive observational studies of radio sources associated with two types of transients: a) Gamma- Ray Bursts (GRBs)… (more)

Moin, Aquib

2011-01-01T23:59:59.000Z

466

The Collimation Signatures of Gamma-Ray Bursts: Jet Properties and Energetic Inferred from X-ray Afterglow Observations.  

E-Print Network [OSTI]

??Our understanding of gamma-ray bursts (GRBs) and their afterglows has progressed dramatically over the last few years thanks to the Swift mission and progress in… (more)

Racusin, Judith

2009-01-01T23:59:59.000Z

467

Properties of Ly-alpha and Gamma Ray Burst selected starbursts at high redshifts  

E-Print Network [OSTI]

Selection of starbursts through either deep narrow band imaging of redshifted Ly-alpha emitters, or localisation of host galaxies of gamma-ray bursts both give access to starburst galaxies that are significantly fainter than what is currently available from selection techniques based on the continuum (such as Lyman-break selection). We here present results from a survey for Ly-alpha emitters at z=3, conducted at the European Southern Observatory's Very Large Telescope. Furthermore, we briefly describe the properties of host galaxies of gamma-ray bursts at z>2. The majority of both Ly-alpha and gamma-ray burst selected starbursts are fainter than the flux limit of the Lyman-break galaxy sample, suggesting that a significant fraction of the integrated star formation at z~3 is located in galaxies at the faint end of the luminosity function.

J. P. U. Fynbo; B. Krog; K. Nilsson; G. Bjornsson; J. Hjorth; P. Jakobsson; C. Ledoux; P. Moller; B. Thomsen

2004-12-14T23:59:59.000Z

468

Strict Limit on CPT Violation from Polarization of Gamma-Ray Bursts  

E-Print Network [OSTI]

We report the strictest observational verification of CPT invariance in the photon sector, as a result of gamma-ray polarization measurement of distant gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the universe. We detected the gamma-ray polarization of three GRBs with high significance, and the source distances may be constrained by a well-known luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion relation E_{\\pm}^2=p^2 \\pm 2\\xi p^3/M_{Pl}, where \\pm denotes different circular polarization states of the photon, the parameter \\xi is constrained as |\\xi|

Kenji Toma; Shinji Mukohyama; Daisuke Yonetoku; Toshio Murakami; Shuichi Gunji; Tatehiro Mihara; Yoshiyuki Morihara; Tomonori Sakashita; Takuya Takahashi; Yudai Wakashima; Hajime Yonemochi; Noriyuki Toukairin

2012-11-09T23:59:59.000Z

469

Image Artifacts Resulting from Gamma-Ray Tracking Algorithms Used with Compton Imagers  

SciTech Connect (OSTI)

For Compton imaging it is necessary to determine the sequence of gamma-ray interactions in a single detector or array of detectors. This can be done by time-of-flight measurements if the interactions are sufficiently far apart. However, in small detectors the time between interactions can be too small to measure, and other means of gamma-ray sequencing must be used. In this work, several popular sequencing algorithms are reviewed for sequences with two observed events and three or more observed events in the detector. These algorithms can result in poor imaging resolution and introduce artifacts in the backprojection images. The effects of gamma-ray tracking algorithms on Compton imaging are explored in the context of the 4? Compton imager built by the University of Michigan.

Seifert, Carolyn E.; He, Zhong

2005-10-01T23:59:59.000Z

470

Exploring simultaneous single and coincident gamma-ray measurements for U/Pu assay in safeguards  

SciTech Connect (OSTI)

Using a broad range of gamma-ray uranium standards and two plutonium samples of known isotopic content, list mode gamma ray information from two Compton suppressed and one planar HPGe detectors were analyzed according to the time information of the signals. Interferences from Cs-137 were introduced. In this study, we extended singles measurements by exploring the potential of simultaneously using both singles and coincidence data for U/Pu assay. The main goals of this exploratory study are: 1) whether one will be able to use coincidence information in addition to the complicated 100-keV unfolding to obtain extra information of uranium and plutonium isotopic ratios, and 2) with higher energy interference gamma-rays from isotopes such as Cs-137, can the coincidence information help to provide the isotopic information. (authors)

Wang, T. F. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Horne, S. M. [Nuclear and Radiation Engineering Program, Mechanical Engineering Dept., Univ. of Texas at Austin, Austin, TX 78712 (United States); Henderson, R. A.; Roberts, K. E.; Vogt, D. K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

2011-07-01T23:59:59.000Z

471

An MS-DOS-based program for analyzing plutonium gamma-ray spectra  

SciTech Connect (OSTI)

A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

Ruhter, W.D.; Buckley, W.M.

1989-09-07T23:59:59.000Z

472

Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy  

DOE Patents [OSTI]

A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

2007-10-23T23:59:59.000Z

473

Computer vision for detecting and quantifying gamma-ray sources in coded-aperture images  

SciTech Connect (OSTI)

The authors report the development of an automatic image analysis system that detects gamma-ray source regions in images obtained from a coded aperture, gamma-ray imager. The number of gamma sources in the image is not known prior to analysis. The system counts the number (K) of gamma sources detected in the image and estimates the lower bound for the probability that the number of sources in the image is K. The system consists of a two-stage pattern classification scheme in which the Probabilistic Neural Network is used in the supervised learning mode. The algorithms were developed and tested using real gamma-ray images from controlled experiments in which the number and location of depleted uranium source disks in the scene are known.

Schaich, P.C.; Clark, G.A.; Sengupta, S.K.; Ziock, K.P.

1994-11-02T23:59:59.000Z

474

Feasibility study of plutonium isotopic analysis of resin beads by nondestructive gamma-ray spectroscopy  

SciTech Connect (OSTI)

We have initiated a feasibility study on the use of nondestructive low-energy gamma-ray spectroscopy for plutonium isotopic analysis on resin beads. Seven resin bead samples were measured, with each sample containing an average of 9 ..mu..g of plutonium; the isotopic compositions of the samples varied over a wide range. The gamma-ray spectroscopy results, obtained from 4-h counting-time measurements, were compared with mass spectrometry results. The average ratios of gamma-ray spectroscopy to mass spectrometry were 1.014 +- 0.025 for /sup 238/Pu//sup 239/Pu, 0.996 +- 0.018 for /sup 240/Pu//sup 239/Pu, and 0.980 +- 0.038 for /sup 241/Pu//sup 239/Pu. The rapid, automated, and accurate nondestructive isotopic analysis of resin beads may be very useful to process technicians and International Atomic Energy Agency inspectors. 3 refs., 1 fig., 3 tabs.

Li, T.K.

1985-01-01T23:59:59.000Z

475

RAPID TeV GAMMA-RAY FLARING OF BL LACERTAE  

SciTech Connect (OSTI)

We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 {+-} 0.6) Multiplication-Sign 10{sup -6} photons m{sup -2} s{sup -1}, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 {+-} 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 {+-} 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.

Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States)] [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States)] [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States)] [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland)] [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States)] [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W.; Feng, Q.; Finley, J. P. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)] [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J.; Fortson, L. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)] [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States)] [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany)] [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Finnegan, G., E-mail: qfeng@purdue.edu, E-mail: cui@purdue.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Collaboration: VERITAS Collaboration; and others

2013-01-10T23:59:59.000Z

476

Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: From Theory to Fermi Observations  

E-Print Network [OSTI]

We compute the patterns of $\\gamma$-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed $\\gamma$-ray light-curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near Force-Free. Using these solutions, we generate model $\\gamma$-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles, under the influence of both the accelerating electric fields and curvature radiation-reaction. We further constrain our models using the observed dependence of the phase-lags between the radio and $\\gamma$-ray emission on the $\\gamma$-ray peak-separation. We perform a statistical comparison of our model radio-lag vs peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity; specifically, infinite conductivity interior to the light-cylinder and high but finite conductivity on the outside. In these models the $\\gamma$-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio-lags near the observed values and statistically best reproduce the observed light-curve phenomenology. Additionally, these models produce GeV photon cut-off energies.

Constantinos Kalapotharakos; Alice K. Harding; Demosthenes Kazanas

2014-07-27T23:59:59.000Z

477

Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources  

SciTech Connect (OSTI)

Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).

Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

2011-08-31T23:59:59.000Z

478

GRB941017: A Case Study of Neutrino Production in Gamma Ray Bursts  

E-Print Network [OSTI]

GRB941017, a gamma-ray burst of exceptional fluence, has recently been shown to have a high-energy component which is not consistent with the standard fireball phenomenology. If this component is the result of photomeson interactions in the burst fireball, it provides new and compelling support for substantial high-energy neutrino fluxes from this and similar sources. In this letter, we consider what impact this new information has on the neutrino spectra of gamma-ray bursts and discuss how this new evidence impacts the prospects for detection of such events in next generation neutrino telescopes.

Jaime Alvarez-Muńiz; Francis Halzen; Dan Hooper

2003-10-15T23:59:59.000Z

479

A Method to Search for Local Sources of Short Duration Bursts of Superhigh Energy Gamma Rays  

E-Print Network [OSTI]

A method of a search for local sources of superhigh energy gamma rays is described in the paper.It is shown that the method is more effective then the usually used method extracting excess from total intensity if gamma ray burst durations are short.Using the suggested method,the information detected with the Baksan installation ``Carpet'' during 1992-1996 years was analyzed.An excess of event numbers was found at the confidence level of 6.5$\\sigma$ in the direction to Mrk 501.

E. N. Alexeyev; D. D. Djappuev; A. U. Kudjaev; S. Kh. Ozrokov

2001-04-09T23:59:59.000Z

480

Lag-luminosity relation in gamma-ray burst X-ray flares  

SciTech Connect (OSTI)

In strict analogy to prompt pulses, X-ray flares observed by Swift-XRT in long Gamma-Ray Bursts define a lag-luminosity relation: L{sub p,iso}{sup 0.3-10} k{sup eV} {infinity}t{sub lag}{sup -0.95{+-}0.23}. The lag-luminosity is proven to be a fundamental law extending {approx}5 decades in time and {approx}5 in energy. This is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism.

Margutti, R.

2010-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "gamma-ray logging workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts  

E-Print Network [OSTI]

We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.

V. Predoi; for the LIGO Scientific Collaboration; for the Virgo Collaboration; K. Hurley; for IPN

2011-12-07T23:59:59.000Z

482

Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations  

E-Print Network [OSTI]

Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.

T. N. Ukwatta; J. H. MacGibbon; W. C. Parke; K. S. Dhuga; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

2009-08-14T23:59:59.000Z

483

Implications Of A Dark Sector U(1) For Gamma Ray Bursts  

E-Print Network [OSTI]

We discuss the implications for gamma ray burst studies, of a dark unbroken $U(1)_D$ sector that couples predominantly through gravity to the visible sector. The dominant dark matter component remains neutral under $U(1)_D$. The collapsar model is assumed to explain the origin of long gamma ray bursts. The main idea is that by measuring the change in stellar black hole spin during the duration of the GRB, one can make inferences about the existence of a dark matter accretion disk. This could potentially provide evidence for the existence for a $U(1)_D$ sector.

Tom Banks; Willy Fischler; Dustin Lorshbough; Walter Tangarife

2014-04-29T23:59:59.000Z

484

SHORT GAMMA-RAY BURSTS AND DARK MATTER SEEDING IN NEUTRON STARS  

SciTech Connect (OSTI)

We present a mechanism based on internal self-annihilation of dark matter accreted from the galactic halo in the inner regions of neutron stars that may trigger full or partial conversion into a quark star. We explain how this effect may induce a gamma-ray burst (GRB) that could be classified as short, according to the usual definition based on time duration of the prompt gamma-ray emission. This mechanism differs in many aspects from the most discussed scenario associating short GRBs with compact object binary mergers. We list possible observational signatures that should help distinguish between these two possible classes of progenitors.

Perez-Garcia, M. Angeles [Department of Fundamental Physics and IUFFyM, University of Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain); Daigne, F.; Silk, J., E-mail: mperezga@usal.es, E-mail: daigne@iap.fr, E-mail: j.silk1@physics.ox.ac.uk [UPMC-CNRS, UMR7095, Institut d'Astrophysique de Paris, F-75014 Paris (France)

2013-05-10T23:59:59.000Z

485

Gamma-Ray Polarimetry of Two X-Class Solar Flares  

E-Print Network [OSTI]

We have performed the first polarimetry of solar flare emission at gamma-ray energies (0.2-1 MeV). These observations were performed with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) for two large flares: the GOES X4.8-class solar flare of 2002 July 23, and the X17-class flare of 2003 October 28. We have marginal polarization detections in both flares, at levels of 21% +/- 9% and -11% +/- 5% respectively. These measurements significantly constrain the levels and directions of solar flare gamma-ray polarization, and begin to probe the underlying electron distributions.

Steven E. Boggs; W. Coburn; E. Kalemci

2005-10-19T23:59:59.000Z

486

A fast photon counting camera for {gamma}-ray pulsar astronomy  

SciTech Connect (OSTI)

The Electron Multiplying CCD (EMCCD) astronomical camera, under development at the Institute of Astronomy UNAM, will be able to obtain images of faint optical objects with very low instrumental noise and short integration times. The EMCCD is a normal CCD with an additional multiplication register located before the input of the readout amplifier. This will be a very suitable instrument to search for optical pulsations of unidentified gamma-ray sources, specially with GLAST entering the realm of radio quiet gamma-ray loud pulsars.

Orozco, Benito; Carraminana, Alberto [Inst. Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro 1, Tonantzintla, Puebla 72840 (Mexico); Michel, Raul; Zazueta, Salvador [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, A.P. 877, Ensenada, BC 22800 (Mexico); Fordham, John L. A. [Department of Physics and Astronomy, University College London, Gower Street, London (United Kingdom)

2007-07-12T23:59:59.000Z

487

Fiber optic thermal/fast neutron and gamma ray scintillation detector  

DOE Patents [OSTI]

A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

Neal, John S. (Knoxville, TN); Mihalczo, John T (Oak Ridge, TN)

2007-10-30T23:59:59.000Z

488

Hard x-ray or gamma ray laser by a dense electron beam  

E-Print Network [OSTI]

A coherent x-ray or gamma ray can be created from a dense electron beam propagating through an intense laser undulator. It is analyzed by using the Landau damping theory which suits better than the conventional linear analysis for the free electron laser, as the electron beam energy spread is high. The analysis suggests that the currently available physical parameters would enable the generation of the coherent gamma ray of up to 100 keV. The electron quantum diffraction suppresses the FEL action, by which the maximum radiation energy to be generated is limited.

S. Son; S. J. Moon

2012-02-12T23:59:59.000Z

489

Conversion of neutron stars to strange stars as the central engine of gamma-ray bursts  

E-Print Network [OSTI]

We study the conversion of a neutron star to a strange star as a possible energy source for gamma-ray bursts. We use different recent models for the equation of state of neutron star matter and strange quark matter. We show that the total amount of energy liberated in the conversion is in the range of (1-4) 10^{53} ergs (one order of magnitude larger than previous estimates) and is in agreement with the energy required to power gamma-ray burst sources at cosmological distances.

Ignazio Bombaci; Bhaskar Datta

2000-01-27T23:59:59.000Z

490

Isotope-specific detection of low density materials with mono-energetic (gamma)-rays  

SciTech Connect (OSTI)

The first demonstration of isotope-specific detection of a low-Z, low density object, shielded by a high-Z and high density material using mono-energetic gamma-rays is reported. Isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of {sup 7}Li at 0.478 MeV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general and the confidence level obtained is shown to be superior to that yielded by conventional x-ray/{gamma}-ray techniques in these situations.

Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M J; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C J

2009-03-16T23:59:59.000Z

491

Gamma-ray imaging with a rotating hexagonal uniformly redundant array  

SciTech Connect (OSTI)

Laboratory experiments have been performed to demonstrate the capabilities of a ..gamma..-ray imaging system employing a NaI Anger camera and a rotating coded aperture mask. The mask incorporates in its design a new type of hexagonal uniformly redundant array (HURA) which is essentially antisymmetric under 60/sup 0/ rotation. The image formation techniques are described and results are presented that demonstrate the imaging capability of the system for individual and multiple point sources of ..gamma..-ray emission. The results are compared to analytical predictions for the imaging and point source localization capabilities of coded aperture systems using continuous detectors.

Cook, W.R.; Finger, M.; Prince, T.A.; Stone, E.C.

1984-02-01T23:59:59.000Z

492

THE METAL AVERSION OF LONG-DURATION GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

Recently, it has been suggested that the metallicity aversion of Long-duration Gamma Ray Bursts (LGRBs) is not intrinsic to their formation, but rather a consequence of the anti-correlation between star formation and metallicity seen in the general galaxy population. To investigate this proposal, we compare the metallicity of the hosts of LGRBs, broad-lined Type Ic (Ic-bl) supernovae (SNe), and Type II SNe to each other and to the metallicity distribution of star-forming galaxies using the Sloan Digital Sky Survey (SDSS) to represent galaxies in the local universe and the Team Keck Redshift Survey (TKRS) for galaxies at intermediate redshifts. The differing metallicity distributions of LGRB hosts and the star formation in local galaxies forces us to conclude that the low-metallicity preference of LGRBs is not primarily driven by the anti-correlation between star formation and metallicity, but rather must be overwhelmingly due to the astrophysics of the LGRBs themselves. Three quarters of our LGRB sample are found at metallicities below 12+log(O/H) < 8.6, while less than a one-tenth of local star formation is at similarly low metallicities. However, our SN samples are statistically consistent with the metallicity distribution of the general galaxy population. Additionally, we show that the star formation rate distribution of the LGRB and SNe host populations are consistent with the star formation rate distribution of the SDSS galaxy sample. This provides further evidence that the low-metallicity distribution of LGRBs is not caused by the general properties of star-forming galaxies. Using the TKRS population of galaxies, we can exclude the possibility that the LGRB host metallicity aversion is caused by the decrease in galaxy metallicity with redshift, as this effect is clearly much smaller than the observed LGRB host metallicity bias over the redshift span of our sample. The presence of the strong metallicity difference between LGRBs and Type Ic-bl SNe largely eliminates the possibility that the observed LGRB metallicity bias is a byproduct of a difference in the initial mass functions of the galaxy populations. Rather, metallicity below half-solar must be a fundamental component of the evolutionary process that separates LGRBs from the vast majority of Type Ic-bl SNe and from the bulk of local star formation.

Graham, J. F.; Fruchter, A. S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

2013-09-10T23:59:59.000Z

493

A NEW POPULATION OF HIGH-REDSHIFT SHORT-DURATION GAMMA-RAY BURSTS E. Berger,1,2,3  

E-Print Network [OSTI]

A NEW POPULATION OF HIGH-REDSHIFT SHORT-DURATION GAMMA-RAY BURSTS E. Berger,1,2,3 D. B. Fox,4 P. A The redshift distribution of the short-duration gamma-ray bursts (GRBs) is a crucial, but currently fragmentary rays: bursts Online material: color figures 1. INTRODUCTION The redshift distribution of the short

Sheppard, Scott S.

494

Calculated photon KERMA factors based on the LLNL EGDL (Evaluated Gamma-Ray Data Library) data file  

SciTech Connect (OSTI)

Photon (Gamma-Ray) KERMA factors calculated from the LLNL EGDL (Evaluated Gamma-Ray Data Library) file are tabulated for the elements from Z=1 to Z=30 and for 15 composite materials. The KERMA factors are presented for 191 energy groups over the incident photon energy range from 100 eV to 100 MeV. 3 refs.

Howerton, R.J.

1986-10-10T23:59:59.000Z

495

Discovery of \\gamma-ray emission from a strongly lobe-dominated quasar 3C 275.1  

E-Print Network [OSTI]

We systematically analyze the 6-year Fermi/LAT data of the lobe-dominated quasars (LDQs) in the complete LDQ sample from 3CRR survey and report the discovery of high-energy \\gamma-ray emission from 3C 275.1. The \\gamma-ray emission likely associating with 3C 207 is confirmed and significant variability of the lightcurve is identified. We do not find statistically significant \\gamma-ray emission from other LDQs. 3C 275.1 is the known \\gamma-ray quasar with the lowest core dominance parameter (i.e., R=0.11). We also show that both the northern radio hotspot and parsec jet models provide acceptable descriptions to the \\gamma-ray data. Considering the potential \\gamma-ray variability at the timescale of months, the latter is probably more favorable. The number of \\gamma-ray LDQs would increase when the exposure accumulates and hence LDQs could be non-ignorable contributors for the extragalactic \\gamma-ray background.

Liao, Neng-Hui; Li, Shang; Jiang, Wei; Liang, Yun-Feng; Li, Xiang; Zhang, Peng-Fei; Chen, Liang; Bai, Jin-Ming; Fan, Yi-Zhong

2015-01-01T23:59:59.000Z

496

A new approach to searching for dark matter signals in Fermi-LAT gamma rays  

SciTech Connect (OSTI)

Several cosmic ray experiments have measured excesses in electrons and positrons, relative to standard backgrounds, for energies from ? 10 GeV–1 TeV. These excesses could be due to new astrophysical sources, but an explanation in which the electrons and positrons are dark matter annihilation or decay products is also consistent. Fortunately, the Fermi-LAT diffuse gamma ray measurements can further test these models, since the electrons and positrons produce gamma rays in their interactions in the interstellar medium. Although the dark matter gamma ray signal consistent with the local electron and positron measurements should be quite large, as we review, there are substantial uncertainties in the modeling of diffuse backgrounds and, additionally, experimental uncertainties that make it difficult to claim a dark matter discovery. In this paper, we introduce an alternative method for understanding the diffuse gamma ray spectrum in which we take the intensity ratio in each energy bin of two different regions of the sky, thereby canceling common systematic uncertainties. For many spectra, this ratio fits well to a power law with a single break in energy. The two measured exponent indices are a robust discriminant between candidate models, and we demonstrate that dark matter annihilation scenarios can predict index values that require ''extreme'' parameters for background-only explanations.

Chang, Spencer [Physics Department, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); Goodenough, Lisa, E-mail: spchang@ucdavis.edu, E-mail: lcg261@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

2010-08-01T23:59:59.000Z

497

Pulsed Gamma-rays from PSR J2021+3651 with the Fermi Large Area Telescope  

E-Print Network [OSTI]

We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 +/- 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 +/- 0.004 +/- 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 +/- 3 +/- 11) x 10^{-8} /cm2/s. The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE^{-\\Gamma} e^(-E/E_c) where the energy E is expressed in GeV. The photon index is \\Gamma = 1.5 +/- 0.1 +/- 0.1 and the exponential cut-off is E_c = 2.4 +/- 0.3 +/- 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is <10% o...

Abdo, A A

2009-01-01T23:59:59.000Z

498

ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS  

SciTech Connect (OSTI)

In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

2010-05-12T23:59:59.000Z

499

High spatial resolution X-ray and gamma ray imaging system using diffraction crystals  

DOE Patents [OSTI]

A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

Smither, Robert K. (Hinsdale, IL)

2011-05-17T23:59:59.000Z

500

HIGH-ENERGY NEUTRINO AND GAMMA-RAY TRANSIENTS FROM TRANS-RELATIVISTIC SUPERNOVA SHOCK BREAKOUTS  

SciTech Connect (OSTI)

Trans-relativistic shocks that accompany some supernovae (SNe) produce X-ray burst emissions as they break out in the dense circumstellar medium around the progenitors. This phenomenon is sometimes associated with peculiar low-luminosity gamma-ray bursts (LL GRBs). Here, we investigate the high-energy neutrino and gamma-ray counterparts of such a class of SNe. Just beyond the shock breakout radius, particle acceleration in the collisionless shock starts to operate in the presence of breakout photons. We show that protons may be accelerated to sufficiently high energies and produce high-energy neutrinos and gamma rays via the photomeson interaction. These neutrinos and gamma rays may be detectable from {approx}< 10 Mpc away by IceCube/KM3Net as multi-TeV transients almost simultaneously with the X-ray breakout, and even from {approx}< 100 Mpc away with follow-up observations by the Cherenkov Telescope Array using a wide-field sky monitor like Swift as a trigger. A statistical technique using a stacking approach could also be possible for the detection, with the aid of the SN optical/infrared counterparts. Such multi-messenger observations offer the possibility to probe the transition of trans-relativistic shocks from radiation-mediated to collisionless ones, and would also constrain the mechanisms of particle acceleration and emission in LL GRBs.

Kashiyama, Kazumi; Gao, Shan; Meszaros, Peter [Center for Particle and Gravitational Astrophysics, Department of Astronomy and Astrophysics, Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Murase, Kohta; Horiuchi, Shunsaku, E-mail: kzk15@psu.edu [CCAPP and Department of Physics, Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210 (United States)

2013-05-20T23:59:59.000Z