Sample records for gamma radiation levels

  1. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  2. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  3. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  4. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  5. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect (OSTI)

    Scott Wilde, Raymond Keegan

    2008-07-01T23:59:59.000Z

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  6. Gamma Radiation Effects on Physical, Optical, and Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation Effects on Physical, Optical, and Structural Properties of Binary As-S glasses. Gamma Radiation Effects on Physical, Optical, and Structural Properties of Binary...

  7. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, R.A.

    1994-12-13T23:59:59.000Z

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  8. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, Raymond A. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  9. Gravitational Radiation from Gamma-Ray Bursts

    E-Print Network [OSTI]

    Tsvi Piran

    2001-02-19T23:59:59.000Z

    Gamma Ray Bursts (GRBs) are the most relativistic objects known so far, involving, on one hand an ultra-relativistic motion with a Lorentz factor $\\Gamma > 100$ and on the other hand an accreting newborn black hole. The two main routes leading to this scenario: binary neutron star mergers and Collapsar - the collapse of a rotating star to a black hole, are classical sources for gravitational radiation. Additionally one expect a specific a gravitational radiation pulse associated with the acceleration of the relativistic ejecta. I consider here the implication of the observed rates of GRBs to the possibility of detection of a gravitational radiation signal associated with a GRB. Unfortunately I find that, with currently planned detectors it is impossible to detect the direct gravitational radiation associated with the GRB. It is also quite unlikely to detect gravitational radiation associated with Collapsars. However, the detection of gravitational radiation from a neutron star merger associated with a GRB is likely.

  10. acute gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Published by The British Institute Pfeifer, Holger 4 Gravitational Radiation from Gamma-Ray Bursts Astrophysics (arXiv) Summary: Gamma Ray Bursts (GRBs) are the most relativistic...

  11. Determination and Mitigation of Precipitation Effects on Portal Monitor Gamma Background Levels

    E-Print Network [OSTI]

    Revis, Stephen

    2012-07-16T23:59:59.000Z

    The purpose of this project is to establish a correlation between precipitation and background gamma radiation levels at radiation portal monitors (RPM) deployed at various ports worldwide, and to devise a mechanism by which the effects...

  12. aux radiations gamma: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation studies. Inoue, Yoshiyuki 2014-01-01 3 Gravitational Radiation from Gamma-Ray Bursts Astrophysics (arXiv) Summary: Gamma Ray Bursts (GRBs) are the most relativistic...

  13. attenuates gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Galactic interstellar radiation field, we calculate the attenuation of the very high energy gamma rays from the Galactic sources. The infra-red radiation background near the...

  14. LATTICE DYNAMICS NUCLEAR RESONANCE ABSORPTION OF GAMMA-RADIATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    LATTICE DYNAMICS NUCLEAR RESONANCE ABSORPTION OF GAMMA-RADIATION AND COHERENT DECAY MODES Institut effets de correlation de paires. Abstract. -The cross-section for nuclear resonance absorption of gamma-radiation rksonnante des radiations gamma est en gBneral calculee en negligeant I'influence des phenomknes de coherence

  15. Composition and apparatus for detecting gamma radiation

    DOE Patents [OSTI]

    Hofstetter, K.J.

    1994-08-09T23:59:59.000Z

    A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.

  16. GammaCam{trademark} radiation imaging system

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    GammaCam{trademark}, a gamma-ray imaging system manufactured by AIL System, Inc., would benefit a site that needs to locate radiation sources. It is capable of producing a two-dimensional image of a radiation field superimposed on a black and white visual image. Because the system can be positioned outside the radiologically controlled area, the radiation exposure to personnel is significantly reduced and extensive shielding is not required. This report covers the following topics: technology description; performance; technology applicability and alternatives; cost; regulatory and policy issues; and lessons learned. The demonstration of GammaCam{trademark} in December 1996 was part of the Large-Scale Demonstration Project (LSDP) whose objective is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Research Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved decontamination and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.

  17. Gamma Radiation & X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G FGalactic ScaleGameGamma

  18. activity gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the conversion of blast wave energy into radiation in active galactic nuclei and gamma-ray bursts Astrophysics (arXiv) Summary: It has been suggested that relativistic blast...

  19. Radiative Transfer Models for Gamma-Ray Bursts

    E-Print Network [OSTI]

    Vurm, Indrek

    2015-01-01T23:59:59.000Z

    We present global radiative transfer models for heated relativistic jets. The simulations include all relevant radiative processes, starting deep in the opaque zone and following the evolution of radiation to and beyond the photosphere of the jet. The transfer models are compared with three gamma-ray bursts GRB 990123, GRB 090902B, and GRB 130427A, which have well-measured and different spectra. The models provide good fits to the observed spectra in all three cases. The fits give estimates for the jet magnetization parameter $\\varepsilon_{\\rm B}$ and the Lorentz factor $\\Gamma$. In the small sample of three bursts, $\\varepsilon_{\\rm B}$ varies between 0.01 and 0.1, and $\\Gamma$ varies between 340 and 1200.

  20. On the origin of Gamma Ray Burst radiation

    E-Print Network [OSTI]

    G. Ghisellini

    2001-01-17T23:59:59.000Z

    In the standard internal shock model, the observed X and gamma-ray radiation is assumed to be produced by synchrotron emission. I will show that there are serious problems with this interpretation, calling for other radiation mechanisms, such as quasi-thermal Comptonization and/or Compton drag processes, or both. These new ideas can have important consequences on the more general internal shock scenario, and can be tested by future observations.

  1. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    SciTech Connect (OSTI)

    Winn, W.G.

    1999-07-28T23:59:59.000Z

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  2. Detection of energetic particles and gamma rays General radiation detection concepts

    E-Print Network [OSTI]

    Peletier, Reynier

    Detection of energetic particles and gamma rays General radiation detection concepts Peter · heavy charged particles · electrons ­ neutral particles · neutrons · neutrinos · General radiation detection concepts ­ pulse mode operation ­ energy spectrum ­ detector efficiency ­ timing · Radiation

  3. Health effects of low-level radiation in shipyard workers. Final report: [Draft

    SciTech Connect (OSTI)

    Matanoski, G.M.

    1991-06-01T23:59:59.000Z

    The Nuclear Shipyard Workers Study (NSWS) was designed to determine whether there is an excess risk of leukemia or other cancers associated with exposure to low levels of gamma radiation. The study compares the mortality experience of shipyard workers who qualified to work in radiation areas to the mortality of similar workers who hold the same types of jobs but who are not authorized to work in radiation areas. The population consists of workers from six government and two private shipyards.

  4. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01T23:59:59.000Z

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  5. Gravitational radiation from long gamma-ray bursts

    E-Print Network [OSTI]

    Maurice H. P. M. van Putten

    2001-02-11T23:59:59.000Z

    Long gamma-ray bursts (GRBs) are probably powered by high-angular momentum black hole-torus systems in suspended accretion. The torus will radiate gravitational waves as non-axisymmetric instabilities develop. The luminosity in gravitational-wave emissions is expected to compare favorably with the observed isotropic equivalent luminosity in GRB-afterglow emissions. This predicts that long GRBs are potentially the most powerful LIGO/VIRGO burst-sources in the Universe. Their frequency-dynamics is characterized by a horizontal branch in the $\\dot{f}(f)-$diagram.

  6. Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring Systems 

    E-Print Network [OSTI]

    Ryan, Christopher Michael

    2012-07-16T23:59:59.000Z

    country of origin. To combat the threat of nuclear trafficking, radiation portal monitors (RPMs) are deployed around the world to intercept illicit material while in transit by passively detecting gamma and neutron radiation. Portal monitors in some...

  7. Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring Systems

    E-Print Network [OSTI]

    Ryan, Christopher Michael

    2012-07-16T23:59:59.000Z

    country of origin. To combat the threat of nuclear trafficking, radiation portal monitors (RPMs) are deployed around the world to intercept illicit material while in transit by passively detecting gamma and neutron radiation. Portal monitors in some...

  8. Neutron and gamma radiation shielding material, structure, and process of making structure

    DOE Patents [OSTI]

    Hondorp, Hugh L. (Princeton Junction, NJ)

    1984-01-01T23:59:59.000Z

    The present invention is directed to a novel neutron and gamma radiation elding material consisting of 95 to 97 percent by weight SiO.sub.2 and 5 to 3 percent by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  9. Gravitational Radiation from Gamma-Ray Burst Progenitors

    E-Print Network [OSTI]

    Shiho Kobayashi; Peter Meszaros

    2003-02-11T23:59:59.000Z

    We study gravitational radiation from various proposed gamma-ray burst (GRB) progenitor models, in particular compact mergers and massive stellar collapses. These models have in common a high angular rotation rate, and the final stage involves a rotating black hole and accretion disk system. We consider the in-spiral, merger and ringing phases, and for massive collapses we consider the possible effects of asymmetric collapse and break-up, as well bar-mode instabilities in the disks. We calculate the strain and frequency of the gravitational waves expected from various progenitors, at distances based on occurrence rate estimates. Based on simplifying assumptions, we give estimates of the probability of detection of gravitational waves by the advanced LIGO system from the different GRB scenarios.

  10. ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1

    E-Print Network [OSTI]

    Zhang, Bing

    ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1 of 17 gamma-ray bursts (GRBs) during the afterglow phase and ac- counting for radiative losses, we the implications of these results for the GRB radiation and jet models. Subject headinggs: gamma rays: bursts

  11. Level MSc 2013/14 Medical Radiation Physics

    E-Print Network [OSTI]

    Martin, Ralph R.

    and Clinical Engineering 10 Credits Dr. RP Hugtenburg EGRM09 Radiation Protection 10 Credits Dr. RP HugtenburgLevel MSc 2013/14 Medical Radiation Physics MSc Medical Radiation Physics Coordinator: Dr. RP/Mr. SC Evans EGRM03 Radiation Physics 10 Credits Dr. RP Hugtenburg EGRM10 Radiotherapy Physics 10 Credits

  12. Studies in feed spoilage: prevention of spoilage in ground corn by gamma radiation

    E-Print Network [OSTI]

    Webb, Billy Dean

    1959-01-01T23:59:59.000Z

    of gam- 6 ma radiation. If gamma rays can be used to preserve foods, it seems pos- sible that they may be used also to prevent losses in grains, feed ingred- ients, and mixed feeds. It is anticipated that the dose high enough to destroy insects... not been studied extensively. Investigations on the use of gamma radiation for the preservation of various feed ingredients need to be carried out to determine: (I) the effect of gamma radiation on the growth of molds im feeds irradiated at different...

  13. Pair Production and Radiation Effects in Clouds Illuminated by Gamma Ray Sources

    E-Print Network [OSTI]

    C. D. Dermer; M. Boettcher; E. P. Liang

    2001-07-12T23:59:59.000Z

    Many classes of gamma-ray sources, such as gamma-ray bursts, blazars, Seyfert galaxies, and galactic black hole sources are surrounded by large amounts of gas and dust. X-rays and gamma-rays that traverse this material will be attenuated by Compton scattering and photoelectric absorption. One signature of an intervening scattering cloud is radiation-hardening by electrons that have been scattered and heated by the incident radiation, as illustrated by a Monte Carlo calculation. Compton scattering provides backscattered photons that will attenuate subsequent gamma rays through \\gamma\\gamma pair-production processes. We calculate the pair efficiency for a cloud illuminated by gamma-ray burst radiation. An analytic calculation of the flux of X-rays and gamma rays Thomson scattered by an intervening cloud is presented. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within ~1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy could reveal gamma-ray sources embedded in dense clouds, or sites of past GRB explosions.

  14. Observation of the radiative decay D*+-> D+gamma

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan; Zhou, L.

    1998-05-01T23:59:59.000Z

    We have observed a signal for the decay D*(+) --> D(+)gamma at a significance of 4 standard deviations. From the measured branching ratio B(D*(+) --> D(+)gamma)/B(D*(+) --> D(+)pi(0)) = 0.055 +/- 0.014 +/- 0.010 we find B(D*(+) --> D(+)gamma) = 0...

  15. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation dominated regime

    E-Print Network [OSTI]

    Li, Jian-Xing; Galow, Benjamin J; Keitel, Christoph H

    2015-01-01T23:59:59.000Z

    The interaction of a relativistic electron bunch with a counter-propagating tightly-focused laser beam is investigated for intensities when the dynamics is strongly affected by its own radiation. The Compton scattering spectra of gamma-radiation are evaluated employing a semiclassical description for the laser-driven electron dynamics and a quantum electrodynamical description for the photon emissions. We show for laser facilities under construction that gamma-ray bursts of few hundred attoseconds and dozens of megaelectronvolt photon energies may be detected in the near-backwards direction of the initial electron motion. Tight focussing of the laser beam and radiation reaction are demonstrated to be jointly responsible for such short gamma-ray bursts which are independent of both duration of electron bunch and laser pulse. Furthermore, the stochastic nature of the gamma-photon emission features signatures in the resulting gamma-ray comb in the case of the application of a multi-cycle laser pulse.

  16. Experimental search for the radiative capture reaction d + d {yields} {sup 4}He + {gamma} from the dd{mu} muonic molecule state J = 1

    SciTech Connect (OSTI)

    Baluev, V. V. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Bogdanova, L. N. [State Scientific Center of the Russian Federation 'Institute of Theoretical and Experimental Physics,' (Russian Federation); Bom, V. R. [Delft University of Technology (Netherlands); Demin, D. L., E-mail: demin@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Eijk, C. W. E. van [Delft University of Technology (Netherlands); Filchenkov, V. V.; Grafov, N. N. [Joint Institute for Nuclear Research (Russian Federation); Grishechkin, S. K. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Gritsaj, K. I.; Konin, A. D. [Joint Institute for Nuclear Research (Russian Federation); Mikhailyukov, K. L. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Rudenko, A. I. [Joint Institute for Nuclear Research (Russian Federation); Vinogradov, Yu. I. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Volnykh, V. P. [Joint Institute for Nuclear Research (Russian Federation); Yukhimchuk, A. A. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Yukhimchuk, S. A. [Joint Institute for Nuclear Research (Russian Federation)

    2011-07-15T23:59:59.000Z

    A search for the muon-catalyzed fusion reaction d + d {yields} {sup 4}He + {gamma} in the dd{mu} muonic molecule was performed using the experimental installation TRITON with BGO detectors for {gamma}-quanta. A high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR Phasotron to detect {gamma}-quanta with the energy 23.8 MeV. An experimental estimation for the yield of radiative deuteron capture from the dd{mu} state J = 1 was obtained at the level of {eta}{sub {gamma}} {<=} 8 Multiplication-Sign 10{sup -7} per fusion.

  17. Virtuality Distributions in application to gamma gamma* to pi^0 Transition Form Factor at Handbag Level

    SciTech Connect (OSTI)

    Radyushkin, Anatoly V. [ODU, JLAB

    2014-07-01T23:59:59.000Z

    We outline basics of a new approach to transverse momentum dependence in hard processes. As an illustration, we consider hard exclusive transition process gamma*gamma -> to pi^0 at the handbag level. Our starting point is coordinate representation for matrix elements of operators (in the simplest case, bilocal O(0,z)) describing a hadron with momentum p. Treated as functions of (pz) and z^2, they are parametrized through a virtuality distribution amplitude (VDA) Phi (x, sigma), with x being Fourier-conjugate to (pz) and sigma Laplace-conjugate to z^2. For intervals with z^+=0, we introduce transverse momentum distribution amplitude (TMDA) Psi (x, k_\\perp), and write it in terms of VDA Phi (x, \\sigma). The results of covariant calculations, written in terms of Phi (x sigma) are converted into expressions involving Psi (x, k_\\perp. Starting with scalar toy models, we extend the analysis onto the case of spin-1/2 quarks and QCD. We propose simple models for soft VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data on the pion transition form factor. We also discuss how one can generate high-k_\\perp tails from primordial soft distributions.

  18. A ground level gamma-ray burst observed in association with rocket-triggered lightning

    E-Print Network [OSTI]

    Florida, University of

    A ground level gamma-ray burst observed in association with rocket-triggered lightning J. R. Dwyer 2004; published 13 March 2004. [1] We report the observation of an intense gamma-ray burst observed lightning channel with gamma-ray energies extending up to more than 10 MeV. The burst consisted of 227

  19. Effects of High Dietary Iron and Gamma Radiation on Oxidative Stress and Bone

    E-Print Network [OSTI]

    Yuen, Evelyn P

    2013-04-19T23:59:59.000Z

    (induced by feeding a high iron diet) and gamma radiation exposure would independently increase markers of oxidative stress and markers of oxidative damage and result in loss of bone mass, with the combined treatment having additive or synergistic effects...

  20. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOE Patents [OSTI]

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30T23:59:59.000Z

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  1. Flash polymerization of silicone oils using gamma radiation for conserving waterlogged wood

    E-Print Network [OSTI]

    Gidden, Richmond Paul

    1996-01-01T23:59:59.000Z

    the SFD-I /SFD-5 mix. These bulked samples were exposed to gamma radiation emitted from a nuclear research reactor and received gamma doses ranging from 30 Gy to 228 Gy with dose rates ranging from 0.6 Gy/min to 5.1 Gy/min. Following irradiation, thin...

  2. accompanying gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: We discuss the possible simultaneously UVoptical emission accompanying Gamma-ray bursts (GRBs). We show that as long as the intrinsic spectrum of GRB can extend to ...

  3. Constraining |V(td)|/|V(ts)| Using Radiative Penguin B -> V(K*/rho/omega)gamma Decays

    SciTech Connect (OSTI)

    Tan, Ping; /Wisconsin U., Madison

    2006-03-08T23:59:59.000Z

    Exclusive radiative penguin B decays, B {yields} (K*{sup 0}/K*{sup +}) and B {yields} ({rho}/{omega}){gamma}, are flavor-changing neutral-current (FCNC) processes. Studies of these decays are of special interest in testing Standard Model (SM) predictions and searching for other beyond-the-SM FCNC interactions. Using 89 x 10{sup 6} B{bar B} pairs from BABAR, we measure the branching fraction ({Beta}), CP-asymmetry ({Alpha}), and isospin asymmetry ({Delta}{sub 0-}) of B {yields} (K*{sup 0}/K*{sup +}){gamma} as follows: {Beta}(B{sup 0} {yields} K*{sup 0}{gamma}) = 3.92 {+-} 0.20(stat.) {+-} 0.24(syst.); {Beta}(B{sup +} {yields} K*{sup +}{gamma}) = 3.87 {+-} 0.28(stat.) {+-} 0.26(syst.); {Alpha}(B {yields} K*{gamma}) = -0.013 {+-} 0.36(stat.) {+-} 0.10(syst.); {Delta}{sub 0-}(B {yields} K*{gamma}) = 0.050 {+-} 0.045(stat.) {+-} 0.028(syst.) {+-} 0.024(R{sup +/0}). The 90% confidence intervals for the CP-asymmetry and the isospin-asymmetry in the B {yields} K*{gamma} decay are given as: -0.074 < {Alpha}(B {yields} K*{gamma}) < 0.049, -0.046 < {Delta}{sub 0-} (B {yields} K*{gamma}) < 0.146. We also search for B {yields} ({rho}/{omega}){gamma} decays using 211 x 10{sup 6} B{bar B} pairs from BABAR. No evidence for these decays is found. We set the upper limits at 90% confidence level for these decays: {Beta}(B{sup 0} {yields} {rho}{sup 0}{gamma}) < 0.4 x 10{sup -6}; {Beta}(B{sup +}{yields} {rho}{sup =}{gamma}) < 1.8 x 10{sup -6}; {Beta}(B{sup 0} {yields} {omega}{gamma}) < 1.0 x 10{sup -6}; {bar {Beta}}(B {yields} ({rho}/{omega}){gamma}) < 1.2 x 10{sup -6}. These results are in good agreement with the SM predictions. The branching fractions of these decays are then used to constrain the ratio |V{sub td}|/|V{sub ts}|.

  4. Radiation protection instrumentation - ambient and/or directional dose equivalent (rate) meters and/or monitors for beta, X and gamma radiation part 2: high range beta and photon dose and dose rate portable instruments for emergency radiation protection purposes

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    2007-01-01T23:59:59.000Z

    Radiation protection instrumentation - ambient and/or directional dose equivalent (rate) meters and/or monitors for beta, X and gamma radiation

  5. Relativistic Winds from Compact Gamma-Ray Sources: II. Pair Loading and Radiative Acceleration in Gamma-ray Bursts

    E-Print Network [OSTI]

    Christopher Thompson; Piero Madau

    2000-02-21T23:59:59.000Z

    We consider the effects of rapid pair creation by an intense pulse of gamma-rays propagating ahead of a relativistic shock. Side-scattered photons colliding with the main gamma-ray beam amplify the density of scattering charges. The acceleration rate of the pair-loaded medium is calculated, and its limiting bulk Lorentz factor related to the spectrum and compactness of the photon source. One obtains, as a result, a definite prediction for the relative inertia in baryons and pairs. The deceleration of a relativistic shock in the moving medium, and the resulting synchrotron emissivity, are compared with existing calculations for a static medium. The radiative efficiency is increased dramatically by pair loading. When the initial ambient density exceeds a critical value, the scattering depth traversed by the main gamma-ray pulse rises above unity, and the pulse is broadened. These considerations place significant constraints on burst progenitors: a pre-burst mass loss rate exceeding 10^{-5} M_\\odot per year is difficult to reconcile with individual pulses narrower than 10 s, unless the radiative efficiency is low. An anisotropic gamma-ray flux (on an angular scale \\Gamma^{-1} or larger) drives a large velocity shear that greatly increases the energy in the seed magnetic field forward of the propagating shock.

  6. Extending the response of the sum coincidence spectrometer to multiple gamma radiation cascades

    E-Print Network [OSTI]

    Helton, Victor Dean

    1964-01-01T23:59:59.000Z

    tubes, and cathode followers, respectively. D. D. Sum represents the differ- ential discriminator of the sum energies. Rl and R2 are resistors and RVI is a potentiometer Consider first a gamma-radiation cascade in which two gamma rays are coincident.... Setting the differential discriminator on the sum of the two gamma-ray energies allows the analyzer to be gated only when the full energy of both gamma rays is absorbed in the detectors. The analyzer may be gated by the absorption of the full energies...

  7. Influence of Spinning Electric Fields on Natural Background Gamma-Radiation

    E-Print Network [OSTI]

    Mark Krinker; Felix Kitaichik

    2010-04-28T23:59:59.000Z

    This paper considers influence of spinning electric field on statistics of natural background gamma-radiation. The spinning electric field, shown as a virtual gyroscope, has quantum mechanics characteristics. Interaction of the virtual fermion-like gyroscope with bosons (gamma-quanta) results in lowering intensity of the gamma-radiation and altering Poisson distribution. The statistic of the observed phenomenon depends on the direction of rotation of the virtual gyroscope. The results are discussed in a shade of spin-spin interaction having regard to realizing thermodynamically profitable conditions. Similarity of observed reduction of gamma-radiation in spinning electric fields and that for mechanical rotation stresses a special role of rotation itself, disregarding the matter of its carrier.

  8. Reliability studies on Si PIN photodiodes under Co-60 gamma radiation

    SciTech Connect (OSTI)

    Prabhakara Rao, Y. P. [Integrated Circuits Division, Bharat Electronics Limited, Bangalore, Karnataka-560013 (India) and Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, Karnataka-570006 (India); Praveen, K. C.; Gnana Prakash, A. P. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, Karnataka-570006 (India); Rani, Y. Rejeena [Integrated Circuits Division, Bharat Electronics Limited, Bangalore, Karnataka-560013 (India)

    2013-02-05T23:59:59.000Z

    Silicon PIN photodiodes were fabricated with 250 nm SiO{sub 2} antireflective coating (ARC). The changes in the electrical characteristics, capacitance-voltage characteristics and spectral response after gamma irradiation are systematically studied to estimate the radiation tolerance up to 10 Mrad. The different characteristics studied in this investigation demonstrate that Si PIN photodiodes are suitable for high radiation environment.

  9. GAMMA RADIATION INTERACTS WITH MELANIN TO ALTER ITS OXIDATION-REDUCTION POTENTIAL AND RESULTS IN ELECTRIC CURRENT PRODUCTION

    SciTech Connect (OSTI)

    Turick, C.; Ekechukwu, A.; Milliken, C.

    2011-05-17T23:59:59.000Z

    The presence of melanin pigments in organisms is implicated in radioprotection and in some cases, enhanced growth in the presence of high levels of ionizing radiation. An understanding of this phenomenon will be useful in the design of radioprotective materials. However, the protective mechanism of microbial melanin in ionizing radiation fields has not yet been elucidated. Here we demonstrate through the electrochemical techniques of chronoamperometry, chronopotentiometry and cyclic voltammetry that microbial melanin is continuously oxidized in the presence of gamma radiation. Our findings establish that ionizing radiation interacts with melanin to alter its oxidation-reduction potential. Sustained oxidation resulted in electric current production and was most pronounced in the presence of a reductant, which extended the redox cycling capacity of melanin. This work is the first to establish that gamma radiation alters the oxidation-reduction behavior of melanin, resulting in electric current production. The significance of the work is that it provides the first step in understanding the initial interactions between melanin and ionizing radiation taking place and offers some insight for production of biomimetic radioprotective materials.

  10. Reflectivity of linear and nonlinear gamma radiated apodized chirped Bragg grating under ocean

    SciTech Connect (OSTI)

    Hamdalla, Taymour A. [Faculty of Science, Alexandria University, Alexandria (Egypt); Faculty of Science, Tabuk University, Tabuk (Saudi Arabia)

    2012-09-06T23:59:59.000Z

    In this paper, the effect Co{sup 60} gamma radiation is investigated on the effective refractive index of apodized chirped Bragg grating. Nine apodization profiles are considered. Comparison between the reflectivity of the gamma radiated and non radiated fiber Bragg grating has been carried out. The electric field of signals propagating through the apodized chirped fiber Bragg grating (ACFBG) is first calculated from which, new values for the refractive index are determined. The nonlinear effects appear on the ACFBG reflectivity. The effect of nonlinearity and undersea temperature and pressure on the grating is also studied.

  11. Indoor and Outdoor in Situ High-Resolution Gamma Radiation Measurements in Urban Areas of Cyprus

    E-Print Network [OSTI]

    E. Svoukis; H. Tsertos

    2006-10-02T23:59:59.000Z

    In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were performed in preselected, common locations of the main urban areas of Cyprus. Specific activities and gamma absorbed dose rates in air due to the naturally occurring radionuclides of Th-232 and U-238 series, and K-40 are determined and discussed. Effective dose rate to the Cyprus population due to terrestrial gamma radiation is derived directly from this work. The results obtained outdoors match very well with those derived previously by high-resolution gamma spectrometry of soil samples, which were collected from the main island bedrock surface. This implies that the construction and building materials in urban areas do not affect the external gamma dose rate; thus they are mostly of local origin. Finally, the indoor/outdoor gamma dose ratio was found to be 1.4 +- 0.5.

  12. Indoor and Outdoor in Situ High-Resolution Gamma Radiation Measurements in Urban Areas of Cyprus

    E-Print Network [OSTI]

    Svoukis, E

    2006-01-01T23:59:59.000Z

    In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were performed in preselected, common locations of the main urban areas of Cyprus. Specific activities and gamma absorbed dose rates in air due to the naturally occurring radionuclides of Th-232 and U-238 series, and K-40 are determined and discussed. Effective dose rate to the Cyprus population due to terrestrial gamma radiation is derived directly from this work. The results obtained outdoors match very well with those derived previously by high-resolution gamma spectrometry of soil samples, which were collected from the main island bedrock surface. This implies that the construction and building materials in urban areas do not affect the external gamma dose rate; thus they are mostly of local origin. Finally, the indoor/outdoor gamma dose ratio was found to be 1.4 +- 0.5.

  13. Low Level Gamma Spectroscopy Measurements of Radium and Cesium in Lucerne (Medicago Sativa)

    SciTech Connect (OSTI)

    Fokapic, S.; Bikit, I.; Mrda, D.; Veskovic, M.; Slivka, J. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21 000 Novi Sad (Serbia); Mihaljev, Z. [Scientific Veterinary Institute, Rumenacki put 20, 21 000 Novi Sad (Serbia); Cupic, Z. [Research Institute for Reproduction, A.I. and Embryo Transfer Temerin, 21235 Temerin, Industrijska zona bb. (Serbia)

    2007-04-23T23:59:59.000Z

    Nineteen years after Chernobyl nuclear accident, activity concentration of 137Cs still could be detected in food and soil samples in Central and Eastern Europe. In this paper radiation levels of radium and cesium in Lucerne will be presented. It is a perennial plant with a deep root system and it is widely grown throughout the world as forage for cattle. The samples of Lucerne were taken from twelve different locations in Vojvodina in the summer period July-September 2004. The samples were specially dried on the air and after that ground, powdered and mineralized by method of dry burning on the temperature of 450 deg. C. Gamma spectrometry measurements of the ash were performed by means of actively shielded germanium detector with maximal background reduction. For cesium 137Cs 10 mBq/kg order of magnitude detection limits were achieved.

  14. What is the radiative process of the prompt phase of Gamma Ray Bursts?

    SciTech Connect (OSTI)

    Ghisellini, G. [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46 I-23807 Merate (Italy)

    2010-07-15T23:59:59.000Z

    Despite the dramatic improvement of our knowledge of the phenomenology of Gamma Ray Bursts, we still do not know several fundamental aspects of their physics. One of the puzzles concerns the nature of the radiative process originating the prompt phase radiation. Although the synchrotron process qualifies itself as a natural candidate, it faces severe problems, and many efforts have been done looking for alternatives. These, however, suffer from other problems, and there is no general consensus yet on a specific radiation mechanism.

  15. Coherent Radiation in Gamma-Ray Bursts and Relativistic Collisionless Shocks

    E-Print Network [OSTI]

    Kunihito Ioka

    2005-10-27T23:59:59.000Z

    We suggest that coherent radiation may occur in relativistic collisionless shocks via two-stream Weibel instabilities. The coherence amplifies the radiation power by many orders [$\\sim 10^{12}$ in Gamma-Ray Bursts (GRBs)] and particles cool very fast before being randomized. We imply (1) GRBs accompany strong infrared emission, (2) protons efficiently transfer energy to electrons and (3) prompt GRBs might be the upscattered coherent radiation.

  16. area gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cyprus Nuclear Experiment (arXiv) Summary: In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were...

  17. Amplification of Gamma Radiation from X-Ray Excited Nuclear States

    E-Print Network [OSTI]

    Silviu Olariu

    1999-07-18T23:59:59.000Z

    In this paper we discuss the possibility of the excitation of nuclear electromagnetic transitions by the absorption of X-ray quanta produced in appropriate inner-shell atomic transitions, and the relevance of this process for the amplification of the gamma radiation from the excited nuclear states. It is concluded that the X-ray pumping technique might provide a useful approach for the development of a gamma ray laser.

  18. Radiation levels on empty cylinders containing heel material

    SciTech Connect (OSTI)

    Shockley, C.W. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31T23:59:59.000Z

    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  19. Estimating GroundEstimating Ground--Level Solar RadiationLevel Solar Radiation and Evapotranspiration In Puerto Ricoand Evapotranspiration In Puerto Rico

    E-Print Network [OSTI]

    Gilbes, Fernando

    Estimating GroundEstimating Ground--Level Solar RadiationLevel Solar Radiation radiation, therefore, solar radiation measurements throughout the island are essential. #12;Currently, including solar radiation ·In PR, solar radiation is only available at selected locations. · The majority

  20. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOE Patents [OSTI]

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12T23:59:59.000Z

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  1. On the connection between gamma and radio radiation spectra in pulsars

    E-Print Network [OSTI]

    V. M. Kontorovich; A. B. Flanchik

    2007-12-29T23:59:59.000Z

    The model of pulsar radio emission is discussed in which a coherent radio emis-sion is excited in a vacuum gap above polar cap of neutron star. Pulsar X and gamma radiation are considered as the result of low-frequency radio emission inverse Comp-ton scattering on ultra relativistic electrons accelerated in the gap. The influence of the pulsar magnetic field on Compton scattering is taken into account. The relation of radio and gamma radiation spectra has been found in the framework of the model.

  2. Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil

    SciTech Connect (OSTI)

    Silveira, M. A. G.; Moreira, R. H.; Bellini, B. S. [Centro Universitario da FEI, Sao Bernardo do Campo, Sao Paulo (Brazil); Medina, N. H.; Aguiar, V. A. P. [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-08-04T23:59:59.000Z

    We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sao Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sao Paulo, and soil from Sao Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.

  3. Effects of low levels of radiation on humans

    SciTech Connect (OSTI)

    Auxier, J.A.

    1981-01-01T23:59:59.000Z

    The state of knowledge on effects of low-level ionizing radiations on humans is reviewed. Several problems relating to dose thresholds or lack of thresholds for several types of cancer and high LET radiations and the effects of fractionation and dose protection are discussed. (ACR)

  4. Radiation levels in the SSC interaction regions

    SciTech Connect (OSTI)

    Groom, D.E. [ed.

    1988-06-10T23:59:59.000Z

    The radiation environment in a typical SSC detector has been evaluated using the best available particle production models coupled with Monte Carlo simulations of hadronic and electromagnetic cascades. The problems studied include direct charged particle dose, dose inside a calorimeter from the cascades produced by incident photons and hadrons, the flux of neutrons and photons backscattered from the calorimeter into a central cavity, and neutron flux in the calorimeter. The luminosity lifetime at the SSC is dominated by collision losses in the interaction regions, where the luminosity is equivalent to losing an entire full-energy proton beam into the apparatus every six days. The result of an average p-p collision can be described quite simply. The mean charged multiplicity is about 110, and the particles are distributed nearly uniformly in pseudorapidity ({eta}) over all the angles of interest. The transverse momentum distribution is independent of angle, and for our purposes may be written as p{perpendicular}exp(-p{perpendicular}/{beta}). The mean value of p{perpendicular} may be as high as 0.6 GeV/c. Most of the radiation is produced by the very abundant low-p{perpendicular} particles. The dose or neutron fluence produced by individual particles in this energy region are simulated over a wide variety of conditions, and several measurements serve to confirm the simulation results. In general, the response (a dose, fluence, the number of backscattered neutrons, etc.) for an incident particle of momentum p can be parameterized in the form Np{sup {alpha}}, where 0.5 < {alpha}< 1.0. The authors believe most of their results to be accurate to within a factor of two or three, sufficiently precise to serve as the basis for detailed designs.

  5. Radiation detection system for portable gamma-ray spectroscopy

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

    2006-06-20T23:59:59.000Z

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  6. Network-level fallout radiation effects assessment. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    National Security calls for the ability to maintain communication capabilities in times of national disaster, which could include a nuclear attack. Nuclear detonation has two basic by-products for which telecommunication equipments are susceptible to damage. These are electromagnetic pulse (EMP) and fallout radiation. The purposes of the EMP Mitigation Program are to analyze and to lessen the effects of EMP and fallout radiation on national telecommunications resources. Fallout radiation occurs after the initial intense high-frequency EMP, and is the subject of this analysis. Fallout radiation is the residual radiation that remains in the atmosphere after a nuclear blast, and which can be carried by weather conditions to locations far from the detonation point. This analysis focuses on the effects of fallout radiation on the telecommunications network of the American Telephone and Telegraph Co. (AT and T). This assessment of AT and T-network's communications-capabilities uses a network-level approach to assess fallout-radiation effects on the network's performance. The approach used was developed for assessing network-level EMP effects on Public Switched Network communication capabilities. Details are given on how EMP assessments utilize this method. Equipment-level fallout-radiation survivability data is also required.

  7. Microbiological, chemical, and sensory quality changes in Pico de gallo as affected by gamma radiation 

    E-Print Network [OSTI]

    Miller, Gerald Howard

    1994-01-01T23:59:59.000Z

    This study was undertaken to gain a greater understanding of the effects of gamma radiation and storage at 2'C on the microbiological, sensorial and chemical quality of pico de gallo. Samples of pico de gallo were exposed to cobalt'o at a dose of I...

  8. Microbiological, chemical, and sensory quality changes in Pico de gallo as affected by gamma radiation

    E-Print Network [OSTI]

    Miller, Gerald Howard

    1994-01-01T23:59:59.000Z

    This study was undertaken to gain a greater understanding of the effects of gamma radiation and storage at 2'C on the microbiological, sensorial and chemical quality of pico de gallo. Samples of pico de gallo were exposed to cobalt'o at a dose of I...

  9. THE PHOTOSPHERIC RADIATION MODEL FOR THE PROMPT EMISSION OF GAMMA-RAY BURSTS: INTERPRETING FOUR OBSERVED CORRELATIONS

    SciTech Connect (OSTI)

    Fan Yizhong; Wei Daming; Zhang Fuwen [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Zhang Binbin, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn, E-mail: fwzhang@pmo.ac.cn, E-mail: bbzhang@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-08-10T23:59:59.000Z

    We show that the empirical E{sub p}-L, {Gamma}-L, E{sub p}-{Gamma}, and {eta}-bar{sub {gamma}}-E{sub p} correlations (where L is the time-averaged luminosity of the prompt emission, E{sub p} is the spectral peak energy, {Gamma} is the bulk Lorentz factor, and {eta}-bar{sub {gamma}} is the emission efficiency of gamma-ray bursts, GRBs) are well consistent with the relations between the analogous parameters predicted in the photospheric radiation model of the prompt emission of GRBs. The time-resolved thermal radiation of GRB 090902B does follow the E{sub p}-L and {Gamma}-L correlations. A reliable interpretation of the four correlations in alternative models is still lacking. These may point toward a photospheric origin of prompt emission of some GRBs.

  10. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27T23:59:59.000Z

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  11. Beta decay radiation signature from neutron-rich gamma-ray bursts?

    E-Print Network [OSTI]

    Soebur Razzaque; Peter Meszaros

    2006-06-09T23:59:59.000Z

    Core collapse of massive stars and binary neutron stars or black hole-neutron star binary mergers are likely progenitors of long and short duration gamma-ray bursts respectively. Neutronized material in the former and neutron star material in the latter are ejected by the central engine implying a neutron-rich jet outflow. A free neutron, however, beta decays to a proton, an electron (beta) and an anti-neutrino in about fifteen minutes in its rest frame. Sudden creation of a relativistic electron is accompanied by radiation with unique temporal and spectral signature. We calculate here this radiation signature collectively emitted by all beta decay electrons from neutron-rich outflow. Detection of this signature may thus provide strong evidence for not only neutron but also for proton content in the relativistic gamma-ray burst jets.

  12. PHOTOSPHERIC EMISSION AS THE DOMINANT RADIATION MECHANISM IN LONG-DURATION GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 3321 Sterling Hall, 475 N. Charter Street, Madison WI 53706-1582 (United States); Margutti, Raffaella [Harvard-Smithsonian Center for Astrophysics, ITC, 60 Garden Street, Cambridge, MA 02138 (United States); Begelman, Mitchell C. [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309-0440 (United States)

    2013-03-10T23:59:59.000Z

    We present the results of a set of numerical simulations of long-duration gamma-ray burst jets associated with massive, compact stellar progenitors. The simulations extend to large radii and allow us to locate the region in which the peak frequency of the advected radiation is set before the radiation is released at the photosphere. Light curves and spectra are calculated for different viewing angles as well as different progenitor structures and jet properties. We find that the radiation released at the photosphere of matter-dominated jets is able to reproduce the observed Amati and energy-Lorentz factor correlations. Our simulations also predict a correlation between the burst energy and the radiative efficiency of the prompt phase, consistent with observations.

  13. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOE Patents [OSTI]

    Condreva, K.J.

    1997-01-14T23:59:59.000Z

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attenuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power. 4 figs.

  14. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOE Patents [OSTI]

    Condreva, Kenneth J. (1420 Fifth St., Livermore, Alameda County, CA 94550)

    1997-01-01T23:59:59.000Z

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attentuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power.

  15. Effects of gamma radiation on Serratia marcescens; a comparison of effects of two different exposure rates

    E-Print Network [OSTI]

    Moore, Christy Annette

    1972-01-01T23:59:59.000Z

    EFFECTS OF GAMMA RADIATION ON SL'RNATIA MARCESCENS A COMPARISON OF EFFECTS OF TWO DIFFERENT EXPOSURE RATES A Thesis by CHRISTY ANNETTE MOORE Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1972 Major Subject: Biophysics (Health Physics) EFFECTS OF GAMF'K RADIATION ON O'Eccrid?2;!, 'i&Lo"", C, . ij, ", A COMFARISON OF EFFECTS OF TNO DIFFERENT EYPO s KE RATES A Thea's CHRISTi ANNETTE MOORE Approved...

  16. Jitter radiation in gamma-ray bursts and their afterglows: emission and self-absorption

    E-Print Network [OSTI]

    Jared Workman; Brian Morsony; Davide Lazzati; Mikhail Medvedev

    2008-01-23T23:59:59.000Z

    Relativistic electrons moving into a highly tangled magnetic field emit jitter radiation. We present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We show that jitter emission can reproduce most of the observed features with some important differences with respect to standard synchrotron, especially in the frequency range between the self-absorption and the peak frequency. We discuss the similarities and differences between jitter and synchrotron and discuss experiments that can disentangle the two mechanisms.

  17. Gamma ray bursts may be blueshifted bundles of the relic radiation

    E-Print Network [OSTI]

    Andrzej Krasi?ski

    2015-02-02T23:59:59.000Z

    A hypothesis is proposed that the gamma-ray bursts (GRBs) may arise by blueshifting the emission radiation of hydrogen and helium generated during the last scattering epoch. The blueshift mechanism is provided by such a Lema\\^{\\i}tre -- Tolman (L--T) model, in which the bang-time function $t_B(r)$ is not everywhere constant. Blueshift arises on \\textit{radial} rays that are emitted over regions where $\\dril{t_B} r \

  18. Gamma ray bursts may be blueshifted bundles of the relic radiation

    E-Print Network [OSTI]

    Krasi?ski, Andrzej

    2015-01-01T23:59:59.000Z

    A hypothesis is proposed that the gamma-ray bursts (GRBs) may arise by blueshifting the emission radiation of hydrogen and helium generated during the last scattering epoch. The blueshift mechanism is provided by such a Lema\\^{\\i}tre -- Tolman (L--T) model, in which the bang-time function $t_B(r)$ is not everywhere constant. Blueshift arises on \\textit{radial} rays that are emitted over regions where $\\dril{t_B} r \

  19. Methyl viologen radical reactions with several oxidizing agents. [Gamma Radiation

    SciTech Connect (OSTI)

    Levey, G.; Ebbesen, T.W.

    1983-01-01T23:59:59.000Z

    The rates of oxidation of the methyl viologen radical by peroxodisulfate and hydrogen peroxide has been investigated. The methyl viologen free radical was produced by pulse radiolysis. The reaction of the peroxodisulfate radical with the methyl viologen radical was first order in both species, and the reaction rate constant is reported. A el-radiation study revealed a chain decomposition of the peroxodisulfate radical involving the methyl viologen radical when methanol, ethanol, or 2-propanol was present. Loss of the methyl viologen radical was then no longer observed to be a simple first-order reaction. The reaction of hydrogen peroxide with the methyl viologen radical was very slow in the presence of 1 M methanol. A much faster reaction in the absence of methanol was interpreted to be a reaction of the methyl viologen radical with the peroxy radicals. Hydrogen peroxide, in contrast to the chain decomposition of peroxodisulfate radicals, does not participate in a chain reaction involving the methyl viologen radical and methanol. Rate constants for the reaction of methyl viologen radical with dichromate radical, iodate radical, and ferricyanide radical are reported.

  20. Equipment level fallout radiation-effects approach. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-02-10T23:59:59.000Z

    National Security Decision Directive (NSDD) 97 and Executive Order (EO) 12472 call for the ability to maintain National Security Emergency Preparedness (NSEP) communication capabilities in times of national disaster, which includes a nuclear attack. The Office of the Manager, National Communications System (OMNCS) sponsors the Electromagnetic Pulse (EMP) Mitigation Program to evaluate and, where possible, mitigate the effects of the nuclear attack. Fallout radiation has been identified as an environment that may effect the performance of the regional and national telecommunication system. This report presents the investigations in the network-level fallout radiation methodology used to determine the effects of this environment. Alternative techniques are presented to improve the methodology.

  1. Features of the action of low-energy gamma radiation on the hydrogen permeability of certain materials

    SciTech Connect (OSTI)

    Tazhibaeva, I.L.; Bekman, I.N.; Rudenko, N.V.; Shestakov, V.P.

    1985-07-01T23:59:59.000Z

    This paper determines the diffusion coefficients, the constants of permeability, and solubility of hydrogen in palladium, nickel, and Armco iron under the action of low-energy gamma radiation. It was established that without radiation all of the kinetic diffusion curves of hydrogen in palladium and nickel straighten well in a functional scale. In armco iron, some deviations are observed.

  2. Determination of the Dark Matter profile from the EGRET excess of diffuse Galactic gamma radiation

    E-Print Network [OSTI]

    Markus Weber

    2007-10-26T23:59:59.000Z

    The excess above 1 GeV in the energy spectrum of the diffuse Galactic gamma radiation, measured with the EGRET experiment, can be interpreted as the annihilation of Dark Matter (DM) particles. The DM is distributed in a halo around the Milky Way. Considering the directionality of the gamma ray flux it is possible to determine the halo profile. The DM within the halo has a smooth and a clumpy component.These components can have different profiles as suggested by N-body simulations and the data is indeed compatible with a NFW profile for the diffuse component and a cored profile for the clumpy component.These DM clumps can be partly destroyed by tidal forces from interactions with stars and the gravitational potential of the Galactic disc.This effect mainly decreases the annihilation signal from the Galactic centre (GC). In this paper constraints on the different profiles and the survival probability of the clumps are discussed.

  3. Constraints on Blazar Jet Conditions During Gamma-Ray Flaring from Radiative Transfer Modeling

    E-Print Network [OSTI]

    Aller, Margo F; Aller, Hugh D; Hovatta, Talvikki

    2013-01-01T23:59:59.000Z

    As part of a program to investigate jet flow conditions during GeV gamma-ray flares detected by Fermi, we are using UMRAO multi-frequency, centimeter-band total flux density and linear polarization monitoring observations to constrain radiative transfer models incorporating propagating shocks orientated at an arbitrary angle to the flow direction. We describe the characteristics of the model, illustrate how the data are used to constrain the models, and present results for three program sources with diverse characteristics: PKS 0420-01, OJ 287, and 1156+295. The modeling of the observed spectral behavior yields information on the sense, strength and orientation of the shocks producing the radio-band flaring; on the energy distribution of the radiating particles; and on the observer's viewing angle with respect to the jet independent of VLBI data. We present evidence that, while a random component dominates the jet magnetic field, a distinguishing feature of those radio events with an associated gamma-ray flar...

  4. Gamma watermarking

    DOE Patents [OSTI]

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25T23:59:59.000Z

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  5. State background-radiation levels: results of measurements taken during 1975-1979

    SciTech Connect (OSTI)

    Myrick, T.E.; Berven, B.A.; Haywood, F.F.

    1981-11-01T23:59:59.000Z

    Background radiation levels across the United States have been measured by the Off-Site Pollutant Measurements Group of the Health and Safety Research Division at Oak Ridge National Laboratory (ORNL). These measurements have been conducted as part of the ORNL program of radiological surveillance at inactive uranium mills and sites formerly utilized during Manhattan Engineer District and early Atomic Energy Commission projects. The measurements included determination of /sup 226/Ra, /sup 232/Th, and /sup 238/U concentrations in surface soil samples and measurement of external gamma-ray exposure rates at 1 m above the ground surface at the location of soil sampling. This information is being utilized for comparative purposes to determine the extent of contamination present at the survey sites and surrounding off-site areas. The sampling program to date has provided background information at 356 locations in 33 states. External gamma-ray exposure rates were found to range from less than 1 to 34 ..mu..R/h, with an US average of 8.5 ..mu..R/h. The nationwide average concentrations of /sup 226/Ra, /sup 232/Th, and /sup 238/U in surface soil were determined to be 1.1, 0.98, and 1.0 pCi/g, respectively.

  6. Relativistic Winds from Compact Gamma-ray Sources: I. Radiative Acceleration in the Klein-Nishina Regime

    E-Print Network [OSTI]

    Piero Madau; Christopher Thompson

    1999-11-30T23:59:59.000Z

    We consider the radiative acceleration to relativistic bulk velocities of a cold, optically thin plasma which is exposed to an external source of gamma-rays. The flow is driven by radiative momentum input to the gas, the accelerating force being due to Compton scattering in the relativistic Klein-Nishina limit. The bulk Lorentz factor of the plasma, Gamma, derived as a function of distance from the radiating source, is compared with the corresponding result in the Thomson limit. Depending on the geometry and spectrum of the radiation field, we find that particles are accelerated to the asymptotic Lorentz factor at infinity much more rapidly in the relativistic regime; and the radiation drag is reduced as blueshifted, aberrated photons experience a decreased relativistic cross section and scatter preferentially in the forward direction. The random energy imparted to the plasma by gamma-rays can be converted into bulk motion if the hot particles execute many Larmor orbits before cooling. This `Compton afterburn' may be a supplementary source of momentum if energetic leptons are injected by pair creation, but can be neglected in the case of pure Klein-Nishina scattering. Compton drag by side-scattered radiation is shown to be more important in limiting the bulk Lorentz factor than the finite inertia of the accelerating medium. The processes discussed here may be relevant to a variety of astrophysical situations where luminous compact sources of hard X- and gamma-ray photons are observed, including active galactic nuclei, galactic black hole candidates, and gamma-ray bursts.

  7. Very High Energy Gamma Rays from Supernova Remnants and Constraints on the Galactic Interstellar Radiation Field

    SciTech Connect (OSTI)

    Porter, T.A.; Moskalenko, I.V.; Strong, A.W.

    2007-04-30T23:59:59.000Z

    The large-scale Galactic interstellar radiation field (ISRF) is the result of stellar emission and dust re-processing of starlight. Where the energy density of the ISRF is high (e.g., the Galactic Centre), the dominant {gamma}-ray emission in individual supernova remnants (SNRs), such as G0.9+0.1, may come from inverse Compton (IC) scattering of the ISRF. Several models of the ISRF exist. The most recent one, which has been calculated by us, predicts a significantly higher ISRF than the well used model of Mathis, Mezger, and Panagia [1]. However, comparison with data is limited to local observations. Based on our current estimate of the ISRF we predict the gamma-ray emission in the SNRs G0.9+0.1 and RXJ1713, and pair-production absorption features above 20 TeV in the spectra of G0.9+0.1, J1713-381, and J1634-472. We discuss how GLAST, along with current and future very high energy instruments, may be able to provide upper bounds on the large-scale ISRF.

  8. Gamma bursts

    SciTech Connect (OSTI)

    Colgate, S.A.; Petschek, A.G.

    1982-12-09T23:59:59.000Z

    The origin of cosmic gamma bursts is discussed. Radiation thermalization in magnetic fields, spectral mechanisms, and charge separation and photon heating are discussed. (GHT)

  9. Analysis of Gamma Radiation from a Radon Source: Indications of a Solar Influence

    E-Print Network [OSTI]

    Peter A. Sturrock; Gideon Steinitz; Ephraim Fischbach; Daniel Javorsek, II; Jere H. Jenkins

    2012-05-01T23:59:59.000Z

    This article presents an analysis of about 29,000 measurements of gamma radiation associated with the decay of radon in a sealed container at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between 28 January 2007 and 10 May 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of periodicities, including two at approximately 11.2 year$^{-1}$ and 12.5 year$^{-1}$. We have previously found these oscillations in nuclear-decay data acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB), and we have suggested that these oscillations are attributable to some form of solar radiation that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. This may be a systematic effect but, if it is not, this property should help narrow the theoretical options for the mechanism responsible for decay-rate variability.

  10. Detection of embedded radiation sources using temporal variation of gamma spectral data.

    SciTech Connect (OSTI)

    Shokair, Isaac R.

    2011-09-01T23:59:59.000Z

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the isotopes present in a measurement. For low energy resolution detectors, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the isotopes present in the measurement. When many isotopes are present it is difficult to make the correct identification and this process often requires many trial solutions by highly skilled spectroscopists. This report investigates the potential of a new analysis method which uses spatial/temporal information from multiple low energy resolution measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other isotopes present. This method is referred to as targeted principal component analysis (TPCA). For radiation portal monitor applications, multiple measurements of gamma spectra are taken at equally spaced time increments as a vehicle passes through the portal and the TPCA method is directly applicable to this type of measurement. In this report we describe the method and investigate its application to the problem of detection of a radioactive localized source that is embedded in a distributed source in the presence of an ambient background. Examples using simulated spectral measurements indicate that this method works very well and has the potential for automated analysis for RPM applications. This method is also expected to work well for isotopic detection in the presence of spectrally and spatially varying backgrounds as a result of vehicle-induced background suppression. Further work is needed to include effects of shielding, to understand detection limits, setting of thresholds, and to estimate false positive probability.

  11. Radiation fields of disk, BLR and torus in quasars and blazars: implications for gamma-ray absorption

    E-Print Network [OSTI]

    A. -C. Donea; R. J. Protheroe

    2002-02-04T23:59:59.000Z

    The radiation fields external to the jets and originating from within a few parsecs from the black hole, are discussed in this paper. They are the direct radiation from an accretion disk in symbiosis with jets, the radiation field from the broad line region (BLR) surrounding the accretion disk, and the infrared radiation from a dusty torus. The jet/disk symbiosis modifies the energetics in the central parsec of AGN such that for a given accretion rate, a powerful jet would occur at the expense of the disk luminosity, and consequently the disk would less efficiently ionize the BRL clouds or heat the dust in the torus, thereby affecting potentially important target photon fields for interactions of gamma-rays, accelerated electrons and protons along the jet. Motivated by unification schemes of active galactic nuclei, we briefly review the evidence for the existence of broad line regions and small-scale dust tori in BL Lacs and Fanaroff-Riley Class I (FR-I) radio galaxies. We propose that an existing jet-accretion disk symbiosis can be extrapolated to provide a large scale-symbiosis between other important dusty constituents of the blazar/FR-I family. In the present paper, we discuss in the context of this symbiosis interactions of GeV and TeV gamma-rays produced in the jet with the various radiation fields external to the jet in quasars and blazars, taking account the anisotropy of the radiation.

  12. ESTIMATING GROUND-LEVEL SOLAR RADIATION AND EVAPOTRANSPIRATION IN PUERTO RICO

    E-Print Network [OSTI]

    Gilbes, Fernando

    1 ESTIMATING GROUND-LEVEL SOLAR RADIATION AND EVAPOTRANSPIRATION IN PUERTO RICO USING SATELLITE between the methods. A comparison between estimated and observed solar radiation is also presented for the period April 1 through June 21, 2009, which indicates a need for calibration of the solar radiation

  13. ON-BELT ANALYSIS OF MINERALS USING NATURALLY OCCURRING GAMMA RADIATION

    E-Print Network [OSTI]

    Huynh, Du

    of coal. Gamma ray spectra are collected every 900 seconds from a BGO detector with 1024 channels linearly collected with a BGO (Bis- muth Germanate) gamma ray detector, which collects emis- sions from Potassium (K is used to estimate linear drift in the detector. Index Terms-- Gamma ray detector, Poisson process

  14. Energy resolution in semiconductor gamma radiation detectors using heterojunctions and methods of use and preparation thereof

    DOE Patents [OSTI]

    Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.

    2012-09-04T23:59:59.000Z

    In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.

  15. Abstract--We have recently completed a large-area, coded-aperture, gamma-ray imager for use in searching for radiation

    E-Print Network [OSTI]

    Horn, Berthold K.P.

    sufficient radiation can reach a large gamma-ray detec- tor from a small source to make detection possibleAbstract-- We have recently completed a large-area, coded- aperture, gamma-ray imager for use. Results of first measurements obtained with the system are presented. I. INTRODUCTION emote detection

  16. Tritium: a model for low level long-term ionizing radiation exposure

    SciTech Connect (OSTI)

    Carsten, A.L.

    1984-01-01T23:59:59.000Z

    The somatic, cytogenetic and genetic effects of single and chronic tritiated water (HTO) ingestion in mice was investigated. This study serves not only as an evaluation of tritium toxicity (TRITOX) but due to its design involving long-term low concentration ingestion of HTO may serve as a model for low level long-term ionizing radiation exposure in general. Long-term studies involved animals maintained on HTO at concentrations of 0.3 ..mu..Ci/ml, 1.0 ..mu..Ci/ml, 3.0 ..mu..Ci/ml or depth dose equivalent chronic external exposures to /sup 137/Cs gamma rays. Maintenance on 3.0 ..mu..Ci/ml resulted in no effect on growth, life-time shortening or bone marrow cellularity, but did result in a reduction of bone marrow stem cells, an increase in DLM's in second generation animals maintained on this regimen and cytogenetic effects as indicated by increased sister chromatid exchanges (SCE's) in bone marrow cells, increased chromosome aberrations in the regenerating liver and an increase in micronuclei in red blood cells. Biochemical and microdosimetry studies showed that animals placed on the HTO regimen reached tritium equilibrium in the body water in approximately 17 to 21 days with a more gradual increase in bound tritium. When animals maintained for 180 days on 3.0 ..mu..Ci/ml HTO were placed on a tap water regimen, the tritium level in tissue dropped from the equilibrium value of 2.02 ..mu..Ci/ml before withdrawal to 0.001 ..mu..Ci/ml at 28 days. 18 references.

  17. Gamma-Ray Signatures for State-Of-Health Analysis and Monitoring of Widely-Arrayed Radiation Portal Monitor Systems

    SciTech Connect (OSTI)

    Woodring, Mitchell L.; Ely, James H.; Angel, Linda K.; Wright, Ingrid H.; Eslinger, Melany A.; Pospical, A. Jill; Ellis, John E.

    2008-05-15T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) has deployed a large array of radiation portal monitors for the Department of Homeland Security U.S. Customs and Border Protection. These portal monitors scan incoming vehicles crossing the U.S. border and shipping containers leaving international ports for radioactive material via gamma-ray and neutron detection. Data produced and captured by these systems are recorded for every vehicle related to radiation signature, sensor/system status, and local background, as well as a host of other variables. Within the Radiation Portal Monitor Project at PNNL, state-of-health observation and analysis for the whole RPM system using these data to determine functionality and performance is being developed. (PIET-43741-TM-492)

  18. The Observation of the Weak Radiative Hyperon Decay XI0 ---> Lambda0 pi0 gamma at KTeV/E799, Fermilab

    SciTech Connect (OSTI)

    Ping, Huican

    2005-01-01T23:59:59.000Z

    The large sample of {Xi}{sup 0} hyperons available at KTeV 799 provides an opportunity to search for the Weak Radiative Hyperon Decay {Xi}{sup 0} {yields} {Lambda}{sup 0}{pi}{sup 0}{gamma}. They present a branching fraction measurement of {Xi}{sup 0} {yields} {Lambda}{sup 0}{pi}{sup 0}{gamma} based on the E799-II experiment data-taking in 1999 at KTeV, Fermilab. They used the principal decay of {Xi}{sup 0} {yields} {Lambda}{sup 0}{pi}{sup 0} where {Lambda} decays to a proton and a {pi}{sup -} as the flux normalization mode. This is the first observation of this interesting decay mode. 4 candidate events are found in the data. The branching ratio at 90% confidence level has been measured to be (1.67{sub -0.80}{sup +1.45}(stat.) {+-} 0.50(syst.)) x 10{sup -5} or (1.67{sub -0.69}{sup +1.16}(stat.) {+-} 0.50(syst.)) x 10{sup -5} at 68.27% confidence level.

  19. Solid low-level radioactive waste radiation stability studies 

    E-Print Network [OSTI]

    Williams, Arnold Andre?

    1989-01-01T23:59:59.000Z

    importance to good site selection. The combination of a properly operated site having good geologic and hydrologic characteristics were considered the only barriers necessary to isolate low-level radioactive waste from the environment (Pollard 1986... of the waste. The only means of ultimate disposal is to allow time for the radioactivity to decay (Cember 1983), while providing adequate pmtection against dispersal to the environment. Low-level wastes may be defined as those which would have to be diluted...

  20. Solid low-level radioactive waste radiation stability studies

    E-Print Network [OSTI]

    Williams, Arnold Andre?

    1989-01-01T23:59:59.000Z

    importance to good site selection. The combination of a properly operated site having good geologic and hydrologic characteristics were considered the only barriers necessary to isolate low-level radioactive waste from the environment (Pollard 1986... of the waste. The only means of ultimate disposal is to allow time for the radioactivity to decay (Cember 1983), while providing adequate pmtection against dispersal to the environment. Low-level wastes may be defined as those which would have to be diluted...

  1. Ambient Levels of Ultraviolet-B Radiation Cause Mortality in Juvenile Western Toads, Bufo boreas

    E-Print Network [OSTI]

    Blaustein, Andrew R.

    Ambient Levels of Ultraviolet-B Radiation Cause Mortality in Juvenile Western Toads, Bufo boreas industrial gases contribute to the depletion of the earth's protective ozone layer, resulting in increased amounts of cell damaging ultraviolet-B (UV-B) radiation reaching the surface of the earth. Recent

  2. Projection of needs for gamma radiation sources and other radioisotopes and assessment of alternatives for providing radiation sources

    SciTech Connect (OSTI)

    Ross, W.A.; Jensen, G.A.; Clark, L.L.; Eakin, D.E.; Jarrett, J.H.; Katayama, Y.B.; McKee, R.W.; Morgan, L.G.; Nealey, S.M.; Platt, A.M.; Tingey, G.L.

    1989-06-01T23:59:59.000Z

    Pacific Northwest Laboratory reviewed the projected uses and demands for a variety of nuclear byproducts. Because the major large-scale near-term demand is for gamma irradiation sources, this report concentrates on the needs for gamma sources and evaluates the options for providing the needed material. Projections of possible growth in the irradiation treatment industry indicate that there will be a need for 180 to 320 MCi of /sup 60/Co (including /sup 137/Cs equivalent) in service in the year 2000. The largest current and projected use of gamma irradiation is for the sterilization of medical devices and disposable medical supplies. Currently, 40% of US disposable medical products are treated by irradiation, and within 10 years it is expected that 90% will be treated in this manner. Irradiation treatment of food for destruction of pathogens or parasites, disinfestation, or extension of allowable storage periods is estimated to require an active inventory of 75 MCi of /sup 60/Co-equivalent gamma source in about a decade. 90 refs., 7 figs., 25 tabs.

  3. Network-level fallout radiation-effects assessment. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-05-12T23:59:59.000Z

    The EMP Mitigation Program analyzes, and where feasible, lessens the degradation effects of EMP on national telecommunication resources. The program focuses on the resources of the public switched network (PSN) because the PSN comprises the largest, most diverse set of telecommunication assets in the United States and is the focus of National Security Emergency Preparedness (NSEP) telecommunication enhancement activities. Additionally, the majority of various organizations rely on the PSN to conduct their NSEP telecommunications responsibilities. Telecommunication equipment is most susceptible to high altitude EMP (HEMP) which occurs when a nuclear weapon is detonated at an altitude greater that 50 km above the earth's surface. In addition to studying the effects of EMP, the program has expanded to address the effects of fallout radiation and serve traffic congestion on the PSN.

  4. Near-Core and In-Core Neutron Radiation Monitors for Real Time Neutron Flux Monitoring and Reactor Power Level Measurements

    SciTech Connect (OSTI)

    Douglas S. McGregor; Marvin L. Adams; Igor Carron; Paul Nelson

    2006-06-12T23:59:59.000Z

    MPFDs are a new class of detectors that utilize properties from existing radiation detector designs. A majority of these characteristics come from fission chamber designs. These include radiation hardness, gamma-ray background insensitivity, and large signal output.

  5. Absorption of Nuclear Gamma-rays on the Starlight Radiation in FR I Sources: the Case of Centaurus A

    E-Print Network [OSTI]

    L. Stawarz; F. Aharonian; S. Wagner; M. Ostrowski

    2006-07-17T23:59:59.000Z

    Several BL Lac objects are confirmed sources of variable and strongly Doppler-boosted TeV emission produced in the nuclear portions of their relativistic jets. It is more than probable, that also many of the FR I radio galaxies, believed to be the parent population of BL Lacs, are TeV sources, for which Doppler-hidden nuclear gamma-ray radiation may be only too weak to be directly observed. Here we show, however, that about one percent of the total time-averaged TeV radiation produced by the active nuclei of low-power FR I radio sources is inevitably absorbed and re-processed by photon-photon annihilation on the starlight photon field, and the following emission of the created and quickly isotropized electron-positron pairs. In the case of the radio galaxy Centaurus A, we found that the discussed mechanism can give a distinctive observable feature in the form of an isotropic gamma-ray halo. It results from the electron-positron pairs injected to the interstellar medium of the inner parts of the elliptical host by the absorption process, and upscattering starlight radiation via the inverse-Compton process mainly to the GeV-TeV photon energy range. Such a galactic gamma-ray halo is expected to possess a characteristic spectrum peaking at ~0.1 TeV photon energies, and the photon flux strong enough to be detected by modern Cherenkov Telescopes and, in the future, by GLAST. These findings should apply as well to the other nearby FR I sources.

  6. Vacuum - induced stationary entanglement in radiatively coupled three - level atoms

    E-Print Network [OSTI]

    L. Derkacz; L. Jakobczyk

    2008-05-05T23:59:59.000Z

    We consider a pair of three - level atoms interacting with a common vacuum and analyze the process of entanglement production due to spontaneous emission. We show that in the case of closely separated atoms, collective damping can generate robust entanglement of the asymptotic states.

  7. On the conversion of blast wave energy into radiation in active galactic nuclei and gamma-ray bursts

    E-Print Network [OSTI]

    Martin Pohl; Reinhard Schlickeiser

    1999-11-24T23:59:59.000Z

    It has been suggested that relativistic blast waves may power the jets of AGN and gamma-ray bursts (GRB). We address the important issue how the kinetic energy of collimated blast waves is converted into radiation. It is shown that swept-up ambient matter is quickly isotropised in the blast wave frame by a relativistic two-stream instability, which provides relativistic particles in the jet without invoking any acceleration process. The fate of the blast wave and the spectral evolution of the emission of the energetic particles is therefore solely determined by the initial conditions. We compare our model with existing multiwavelength data of AGN and find remarkable agreement.

  8. Effect of gamma radiation on groundwater chemistry and glass leaching as related to the NNWSI repository site

    SciTech Connect (OSTI)

    Abrajano, T.; Bates, J.; Ebert, W.; Gerding, T.

    1986-05-01T23:59:59.000Z

    To address the effect of ionizing radiation on groundwater chemistry and waste form durability, NNWSI is performing an extensive set of experiments as a function of dose rate (2 x 10{sup 5}, 1 x 10{sup 4}, 1 x 10{sup 3}, and 0 rad/h). The results of the tests done at 2 x 10{sup 5} rad/h have been reported, while the 1 x 10{sup 3} and 0 rad/h tests are in progress. This paper presents an overview of the results of the tests done at 1 x 10{sup 4} rad/h and discusses the relevance of these tests to repository conditions. An interpretation of the results relating to the manner by which the glass waste form corrodes is presented elsewhere. A complete discussion of the effect of gamma radiation on groundwater chemistry and waste form durability will be presented when the series of experiments are complete.

  9. P ORNiiTM-7004 Results of Ground Level Radiation

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +NewAugust 4,P -.,. ~ * *

  10. Semiconductor High-Level Dosimeters Used in the SLAC Mixed Gamma and Neutron Fields

    SciTech Connect (OSTI)

    Mao, Stan

    2003-09-03T23:59:59.000Z

    As part of an exploration of Semiconductor High-Level Dosimetry (SHLD) in the accelerator radiation fields, the response of SHLD system, composed of dual MOSFETs, wide-base PIN diode, and a microprocessor-controlled reader, was calibrated in photon (Co-60) and neutron (Bare-reactor) fields. The response curves for the MOSFET and the PIN diode were determined. The neutron sensitivity of the PIN diode is about a factor of 2200 times higher than its photon sensitivity. Therefore, the PIN diode can be used to measure the neutron dose and virtually ignore the photon dose contribution. The MOSFET can be used to estimate the photon dose after subtracting the ionizing effect of the neutrons. The SHLD was used in the SLAC mixed field to measure the photon and neutron doses around a copper beam dump. The photon measurements near the copper dump agreed reasonably with the FLUKA Monte Carlo calculations. The neutron measurements agreed with FLUKA calculations to within a factor of two.

  11. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    DOE Patents [OSTI]

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08T23:59:59.000Z

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  12. Theory of "Jitter" Radiation from Small-Scale Random Magnetic Fields and Prompt Emission from Gamma-Ray Burst Shocks

    E-Print Network [OSTI]

    Mikhail V. Medvedev

    2000-05-02T23:59:59.000Z

    Abridged.-- We demonstrate that the radiation emitted by ultrarelativistic electrons in highly nonuniform, small-scale magnetic fields is different from synchrotron radiation if the electron's transverse deflections in these fields are much smaller than the beaming angle. A quantitative analytical theory of this radiation, which we refer to as jitter radiation, is developed. It is shown that the emergent spectrum is determined by statistical properties of the magnetic field. As an example,we then use the model of a magnetic field in internal shocks of GRBs. The spectral power distribution of radiation produced by the power-law electrons is well described by a sharply broken power-law with indices 1 and -(p-1)/2 and the jitter break frequency is independent of the field strength but depends on the electron density in the ejecta. Since large-scale fields may also be present in the ejecta, we construct a two-component, jitter+synchrotron spectral model of the prompt $\\gamma$-ray emission. Quite surprisingly, this model seems to be readily capable of explaining several properties of time-resolved spectra of some GRBs, such as (i) the violation of the constraint on the low-energy spectral index called the synchrotron ``line of death'', (ii) the sharp spectral break at the peak frequency, inconsistent with the broad synchrotron bump, (iii) the evidence for two spectral sub-components, and (iv) possible existence of emission features called ``GRB lines''. We believe these facts strongly support both the existence of small-scale magnetic fields and the proposed radiation mechanism from GRB shocks. As an example, we use the composite model to analyze GRB 910503 which has two spectral peaks.

  13. An Analysis of a Spreader Bar Crane Mounted Gamma-Ray Radiation Detection System 

    E-Print Network [OSTI]

    Grypp, Matthew D

    2013-04-08T23:59:59.000Z

    photoelectric effect PMT photomultiplier tube PNNL Pacific Northwest National Laboratory viii PoT Port of Tacoma PVT poly-vinyl toluene R resolution RT real time RPM radiation portal monitor s second SBC spreader.... LITERATURE REVIEW ......................................................................................... 9 3.1 Radiation Portal Monitors ............................................................................ 9 3.2 General Areas...

  14. FY08 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)

    SciTech Connect (OSTI)

    Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Ryan, Joseph V.; Sundaram, S. K.; McCloy, John S.; Rockett, Angus

    2009-02-01T23:59:59.000Z

    This is the annual report for an old project funded by NA22. The purpose of the project was to develop amorphous semiconductors for use as radiation detectors. The annual report contains information about the progress made in synthesizing, characterizing, and radiation response testing of these new materials.

  15. OBSERVATIONAL SIGNATURES OF SUB-PHOTOSPHERIC RADIATION-MEDIATED SHOCKS IN THE PROMPT PHASE OF GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Levinson, Amir, E-mail: Levinson@wise.tau.ac.il [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309-0440 (United States)

    2012-09-10T23:59:59.000Z

    A shock that forms below the photosphere of a gamma-ray burst (GRB) outflow is mediated by Compton scattering of radiation advected into the shock by the upstream fluid. The characteristic scale of such a shock, a few Thomson depths, is larger than any kinetic scale involved by several orders of magnitude. Hence, unlike collisionless shocks, radiation-mediated shocks cannot accelerate particles to nonthermal energies. The spectrum emitted by a shock that emerges from the photosphere of a GRB jet reflects the temperature profile downstream of the shock, with a possible contribution at the highest energies from the shock transition layer itself. We study the properties of radiation-mediated shocks that form during the prompt phase of GRBs and compute the time-integrated spectrum emitted by the shocked fluid following shock breakout. We show that the time-integrated emission from a single shock exhibits a prominent thermal peak, with the location of the peak depending on the shock velocity profile. We also point out that multiple shock emission can produce a spectrum that mimics a Band spectrum.

  16. Strategy to detect the gravitational radiation counterpart of gamma-ray bursts

    E-Print Network [OSTI]

    S. Bonazzola; E. Gourgoulhon

    1998-01-20T23:59:59.000Z

    Both observational and theoretical rates of binary neutron star coalescence give low prospects for detection of a single event by the initial LIGO/VIRGO interferometers. However, by utilizing at the best all the a priori information on the expected signal, a positive detection can be achieved. This relies on the hypothesis that $\\gamma$-ray bursts are the electromagnetic signature of neutron star coalescences. The information about the direction of the source can then be used to add in phase the signals from different detectors in order (i) to increase the signal-to-noise ratio and (ii) to make the noise more Gaussian. Besides, the information about the time of arrival can be used to drastically decrease the observation time and thereby the false alarm rate. Moreover the fluence of the $\\gamma$-ray emission gives some information about the amplitude of the gravitational signal. One can then add the signals from $\\sim 10^4$ observation boxes ($\\sim$ number of $\\gamma$-ray bursts during 10 years) to yield a positive detection. Such a detection, based on the Maximum a Posteriori Probability Criterium, is a minimal one, in the sense that no information on the position and time of the events, nor on any parameter of the model, is collected. The advantage is that this detection requires an improvement of the detector sensitivity by a factor of only $\\sim 1.5$ with respect to the initial LIGO/VIRGO interferometers, and that, if positive, it will confirm the $\\gamma$-ray burst model.

  17. Effects of High Dietary Iron and Gamma Radiation on Oxidative Stress and Bone 

    E-Print Network [OSTI]

    Yuen, Evelyn P

    2013-04-19T23:59:59.000Z

    Astronauts in space flight missions are exposed to increased iron (Fe) stores and galactic cosmic radiation, both of which independently induce oxidative stress. Oxidative stress can result in protein, lipid, and DNA oxidation. Recent evidence has...

  18. Modeling of the $\\gamma$-ray pulsed spectra of Geminga, Crab, and Vela with synchro-curvature radiation

    E-Print Network [OSTI]

    Viganò, Daniele

    2015-01-01T23:59:59.000Z

    $\\gamma$-ray spectra of pulsars have been mostly studied in a phenomenological way, by fitting them to a cut-off power-law function. Here, we analyze a model where pulsed emission comes from synchro-curvature processes in a gap. We calculate the variation of kinetic energy of magnetospheric particles along the gap and the associated radiated spectra, considering an effective particle distribution. We fit the phase-averaged and phase-resolved {\\em Fermi}-LAT spectra of the three brightest $\\gamma$-ray pulsars: Geminga, Crab, and Vela, and constrain the three free parameters we leave free in the model. Our best-fit models well reproduce the observed data, apart from residuals above a few GeV in some cases, range for which the inverse Compton scattering likely becomes the dominant mechanism. In any case, the flat slope at low-energy ($\\lesssim$ GeV) seen by {\\it Fermi}-LAT both in the phase-averaged and phase-resolved spectra of most pulsars, including the ones we studied, requires that most of the detected radi...

  19. Handheld CZT radiation detector

    DOE Patents [OSTI]

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24T23:59:59.000Z

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  20. Combination of /sup 60/Co. gamma. -radiation, misonidazole, and maltose tetrapalmitate in the treatment of Dunning prostatic tumor in the rat

    SciTech Connect (OSTI)

    Pageau, R.; Nigam, V.N.; Fisher, G.J.; Brailovsky, C.A.; Fathi, M.A.; Corcos, J.; Tahan, T.W.; Elhilali, M.M.

    1985-08-01T23:59:59.000Z

    Maltose tetrapalmitate (MTP), a synthetic nontoxic immunoadjuvant, the radiosensitizer misonidazole (MISO), and /sup 60/Co ..gamma..-radiation, alone or in combination, were used in the management of Dunning prostatic tumor in the rat. Nine groups of 10 rats each were used to assess the efficacy of various therapeutic modalities. Tumor growth rates and animal survival times were determined for each group. Radiation was more effective when combined with MTP, but the adjuvant must be present when radiation is given for synergism to occur. MISO was as effective as MTP when used with radiation, but combining them cancels out their individual effects. In a clinical situation it would be advantageous to use separately the synergisms existing between MISO and radiation on the one hand and MTP and radiation on the other hand.

  1. GROUND LEVEL INVESTIGATION OF ANOMALOUS RADIATION LEVELS IN NIAGARA FALLS, NEW YORK

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? . -. .- *' * ..+GROUND

  2. Gamma-radiation as a Signature of Ultra Peripheral Ion Collisions at LHC energies

    E-Print Network [OSTI]

    Yu. V. Kharlov; V. L. Korotkikh

    2004-01-13T23:59:59.000Z

    We study the peripheral ion collisions at LHC energies in which a nucleus is excited to the discrete state and then emits $\\gamma$-rays. Large nuclear Lorenz factor allows to observe the high energy photons up to a few ten GeV and in the region of angles of a few hundred micro-radians around the beam direction. These photons can be used for tagging the events with particle production in the central rapidity region in the ultra-peripheral collisions. For that it is necessary to have an electromagnetic detector in front of the zero degree calorimeter in the LHC experiments.

  3. Approximation of Sums of Experimental Radiative Strength Functions of Dipole Gamma-Transitions in the Region $E_?\\approx B_n$ for the Atomic Masses $40 \\leq a \\leq 200$

    E-Print Network [OSTI]

    A. M. Sukhovoj; W. I. Furman; V. A. Khitrov

    2008-09-25T23:59:59.000Z

    The sums k(E1)+k(M1) of radiative strength functions of dipole primary gamma-transitions were approximated with high precision in the energy region of $0.5 < E_1 < B_n-0.5$ MeV for nuclei: 40K, 60Co, 71,74Ge, 80Br, 114Cd, 118Sn, 124,125Te, 128I, 137,138,139Ba, 140La, 150Sm, 156,158Gd, 160Tb, 163,164,165Dy, 166Ho, 168Er, 170Tm, 174Yb, 176,177Lu, 181Hf, 182Ta, 183,184,185,187W, 188,190,191,193Os, 192Ir, 196Pt, 198Au, 200Hg by sum of two independent functions. It has been shown that this parameter of gamma-decay are determined by the structure of the decaying and excited levels, at least, up to the neutron binding energy.

  4. LOW TEMPERATURE PHYSICS The effect of neutron and gamma radiation on

    E-Print Network [OSTI]

    McDonald, Kirk

    PHYSICS Outlook · Radiation environment in a fission reactor ­ Neutron and - spectrum · Damage production, iterlaminar shear strength, fatigue behavior ­ Gas evolution · Conclusions #12;LOW TEMPERATURE PHYSICS Fission to displace one atom: (epithermal and fast neutrons) Bp EE > ~4 eV C-H ~few eV in metals ~5-40 eV in ionic

  5. Effect of gamma radiation on selected functional and physical properties of liquid egg white

    E-Print Network [OSTI]

    Ball, Hershell Ray

    1966-01-01T23:59:59.000Z

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 14 4 The relative protein composition of egg white (Warner, 1954 ) . . . . . . . . . . . . . . . ~ . . . . . . . . . . . ~ 22 5 Analysis of variance for beating time . . ~. . . . . . . . 30 6 Multiple regression analysis of beating time... . . . . . . . . . . . . . . . . . . . . , . . 42 5 Illustration of textural difference &. . . . . . . . . . . 46 6 Typical electrophoretic patterns obtained . . . . . . 76 C HL PTER I GENERA L CONSIDERATIONS Introduction The use of ionizing radiation in the processing of foods has been...

  6. Effect of gamma radiation on selected functional and physical properties of liquid egg white 

    E-Print Network [OSTI]

    Ball, Hershell Ray

    1966-01-01T23:59:59.000Z

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 14 4 The relative protein composition of egg white (Warner, 1954 ) . . . . . . . . . . . . . . . ~ . . . . . . . . . . . ~ 22 5 Analysis of variance for beating time . . ~. . . . . . . . 30 6 Multiple regression analysis of beating time... . . . . . . . . . . . . . . . . . . . . , . . 42 5 Illustration of textural difference &. . . . . . . . . . . 46 6 Typical electrophoretic patterns obtained . . . . . . 76 C HL PTER I GENERA L CONSIDERATIONS Introduction The use of ionizing radiation in the processing of foods has been...

  7. Jitter radiation as a possible mechanism for Gamma-Ray Burst afterglows. Spectra and lightcurves

    E-Print Network [OSTI]

    Mikhail V. Medvedev; Davide Lazzati; Brian C. Morsony; Jared C. Workman

    2007-03-09T23:59:59.000Z

    The standard model of GRB afterglows assumes that the radiation observed as a delayed emission is of synchrotron origin, which requires the shock magnetic field to be relatively homogeneous on small scales. An alternative mechanism -- jitter radiation, which traditionally has been applied to the prompt emission -- substitutes synchrotron when the magnetic field is tangled on a microscopic scale. Such fields are produced at relativistic shocks by the Weibel instability. Here we explore the possibility that small-scale fields populate afterglow shocks. We derive the spectrum of jitter radiation under the afterglow conditions. We also derive the afterglow lightcurves for the ISM and Wind profiles of the ambient density. Jitter self-absorption is calculated here for the first time. We find that jitter radiation can produce afterglows similar to synchrotron-generated ones, but with some important differences. We compare the predictions of the two emission mechanisms. By fitting observational data to the synchrotron and jitter afterglow lightcurves, it can be possible to discriminate between the small-scale vs large-scale magnetic field models in afterglow shocks.

  8. Radiative heating of the ISCCP upper level cloud regimes and its impact on the large-scale tropical circulation

    E-Print Network [OSTI]

    Radiative heating of the ISCCP upper level cloud regimes and its impact on the large-scale tropical 2012; accepted 14 December 2012; published 31 January 2013. [1] Radiative heating profiles. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating

  9. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    E-Print Network [OSTI]

    Abbasi, Akbar

    2015-01-01T23:59:59.000Z

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  10. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    E-Print Network [OSTI]

    Akbar Abbasi; Mustfa Hassanzadeh

    2014-10-27T23:59:59.000Z

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  11. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    SciTech Connect (OSTI)

    Aggarwal, Sunny, E-mail: sunny.du87@gmail.com; Singh, J.; Jha, A.K.S.; Mohan, Man

    2014-07-15T23:59:59.000Z

    Fine-structure energies of the 67 levels belonging to the 1s{sup 2}, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  12. THE BEIR-III REPORT AND THE HEALTH EFFECTS OF LOW-LEVEL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    of such risks from radiation in nuclear energy, as is doneof ionizing radiation: Implications for nuclear energy andlevel radiation and linked to public acceptance of nuclear

  13. Time correlation of cosmic-ray-induced neutrons and gamma rays at sea level

    E-Print Network [OSTI]

    Harilal, S. S.

    . Hassanein Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University of protons (about 87 percent) [1]. After impacting the upper atmosphere, high-energy protons interact in the Earth's atmosphere, at sea level, and underground [3]. Many of the studies have been focused on nuclear

  14. Hubble diagrams of soft and hard radiation sources in the graviton background: to an apparent contradiction between supernova 1a and gamma-ray burst observations

    E-Print Network [OSTI]

    Michael A. Ivanov

    2007-01-10T23:59:59.000Z

    In the sea of super-strong interacting gravitons, non-forehead collisions with gravitons deflect photons, and this deflection may differ for soft and hard radiations. As a result, the Hubble diagram would not be a universal function and it will have a different view for such sources as supernovae in visible light and gamma-ray bursts. Observations of these two kinds are compared here with the limit cases of the Hubble diagram.

  15. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    SciTech Connect (OSTI)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01T23:59:59.000Z

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  16. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E. (Downers Grove, Knoxville, TN); Cox, Samson A. (Downers Grove, IL)

    1981-01-01T23:59:59.000Z

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  17. Neutron Detector Gamma Insensitivity Criteria

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Stephens, Daniel L.

    2009-10-21T23:59:59.000Z

    The shortage of 3He has triggered the search for an effective alternative neutron detection technology for radiation portal monitor applications. Any new detection technology must satisfy two basic criteria: 1) it must meet the neutron detection efficiency requirement, and 2) it must be insensitive to gamma ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this document to define this latter criterion.

  18. Higgs boson decay to mu mubar gamma

    E-Print Network [OSTI]

    Ali Abbasabadi; Wayne W. Repko

    2000-04-17T23:59:59.000Z

    The Higgs boson decay, H -> mu mubar gamma, is studied in the Standard Model at the tree and one-loop levels. It is shown that for Higgs boson masses above 110 GeV, the contribution to the radiative width from the one-loop level exceeds the contribution from the tree level, and for Higgs boson masses above 140 GeV, it even exceeds the contribution from the tree level decay H -> mu mubar. We also show that the contributions to the radiative decay width from the interference terms between the tree and one-loop diagrams are negligible.

  19. Report to the DOE nuclear data committee. [EV RANGE 10-100; CROSS SECTIONS; PHOTONEUTRONS; NEUTRONS; GAMMA RADIATION; COUPLED CHANNEL THEORY; DIFFERENTIAL CROSS SECTIONS; MEV RANGE 01-10; ; CAPTURE; GAMMA SPECTRA; THERMAL NEUTRONS; COMPUTER CALCULATIONS; DECAY; FISSION PRODUCTS; FISSION YIELD; SHELL MODELS; NUCLEAR DATA COLLECTIONS

    SciTech Connect (OSTI)

    Struble, G.L.; Haight, R.C.

    1981-03-01T23:59:59.000Z

    Topics covered include: studies of (n, charged particle) reactions with 14 to 15 MeV neutrons; photoneutron cross sections for /sup 15/N; neutron radiative capture; Lane-model analysis of (p,p) and (n,n) scattering on the even tin isotopes; neutron scattering cross sections for /sup 181/Ta, /sup 197/Au, /sup 209/Bi, /sup 232/Th, and /sup 238/U inferred from proton scattering and charge exchange cross sections; neutron-induced fission cross sections of /sup 245/Cm and /sup 242/Am; fission neutron multiplicities for /sup 245/Cm and /sup 242/Am; the transport of 14 MeV neutrons through heavy materials 150 < A < 208; /sup 249/Cm energy levels from measurement of thermal neutron capture gamma rays; /sup 231/Th energy levels from neutron capture gamma ray and conversion electron spectroscopy; new measurements of conversion electron binding energies in berkelium and californium; nuclear level densities; relative importance of statistical vs. valence neutron capture in the mass-90 region; determination of properties of short-lived fission products; fission yield of /sup 87/Br and /sup 137/I from 15 nuclei ranging from /sup 232/Th to /sup 249/Cf; evaluation of charged particle data for the ECPL library; evaluation of secondary charged-particle energy and angular distributions for ENDL; and evaluated nuclear structure libraries derived from the table of isotopes. (GHT)

  20. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    E-Print Network [OSTI]

    Alarcon, R; Benson, S V; Bertozzi, W; Boyce, J R; Cowan, R; Douglas, D; Evtushenko, P; Fisher, P; Ihloff, E; Kalantarians, N; Kelleher, A; Kossler, W J; Legg, R; Long, E; Milner, R G; Neil, G R; Ou, L; Schmookler, B; Tennant, C; Tschalaer, C; Williams, G P; Zhang, S

    2013-01-01T23:59:59.000Z

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is ...

  1. Energy levels, radiative rates and electron impact excitation rates for transitions in C III

    E-Print Network [OSTI]

    Aggarwal, K M

    2015-01-01T23:59:59.000Z

    We report energy levels, radiative rates (A-values) and lifetimes for the astrophysically-important Be-like ion C III. For the calculations, 166 levels belonging to the $n \\le$ 5 configurations are considered and the {\\sc grasp} (General-purpose Relativistic Atomic Structure Package) is adopted. Einstein A-coefficients are provided for all E1, E2, M1 and M2 transitions, while lifetimes are compared with available measurements as well as theoretical results, and no large discrepancies noted. Our energy levels are assessed to be accurate to better than 1\\% for a majority of levels, and A-values to better than 20\\% for most transitions. Collision strengths are also calculated, for which the Dirac Atomic R-matrix Code ({\\sc darc}) is used. A wide energy range, up to 21 Ryd, is considered and resonances resolved in a fine energy mesh in the thresholds region. The collision strengths are subsequently averaged over a Maxwellian velocity distribution to determine effective collision strengths up to a temperature of 8...

  2. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    SciTech Connect (OSTI)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N. [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom)] [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom); Creed, Richard; Pancake, Daniel [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)] [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

    2013-07-01T23:59:59.000Z

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 ? steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple radionuclides may be selected by the operator and will be identified if present. In scanning operation the unit scans a designated region and superimposes over a video image the distribution of measured radioactivity. For the total scanned area or object RadSearch determines the total activity of operator selected radionuclides present and the gamma dose-rate measured at the detector head. Results of hold-up measurements made in a nuclear facility are presented, as are test measurements of point sources distributed arbitrarily on surfaces. These latter results are compared with the results of benchmarked MCNP Monte Carlo calculations. The use of the device for hold-up and decommissioning measurements is validated. (authors)

  3. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31T23:59:59.000Z

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

  4. Miniaturized radiation chirper

    DOE Patents [OSTI]

    Umbarger, C. John (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  5. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect (OSTI)

    Ziock, H.J.; Milner, C.; Sommer, W.F. (Los Alamos National Lab., NM (USA)); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. (California Univ., Santa Cruz, CA (USA). Inst. for Particle Physics); Ellison, J.A. (California Univ., Riverside, CA (USA)); Ferguson, P. (Missouri Univ., Rolla, MO (USA)); Giubellino

    1990-01-01T23:59:59.000Z

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  6. Measurement of the W Gamma --> mu nu gamma Cross-Section, Limits on Anomalous Trilinear Vector Boson Couplings, and the Radiation Amplitude Zero in p anti-p Collisions at s**(1/2) = 1.96 TeV

    SciTech Connect (OSTI)

    Askew, Andrew Warren

    2004-11-01T23:59:59.000Z

    This thesis details the measurement of the p{bar p} {yields} W{gamma} + X {yields} {mu}{nu}{gamma} + X cross section at {radical}s = 1.96 TeV using the D0 detector at Fermilab, in 134.5 pb{sup -1} of integrated luminosity. From the photon E{sub T} spectrum limits on anomalous couplings of the photon to the W are obtained. At 95% confidence level, limits of -1.05 < {Delta}{kappa} < 1.04 for {lambda} = 0 and -0.28 < {lambda} < 0.27 for {Delta}{kappa} = 0 are obtained on the anomalous coupling parameters. The charge signed rapidity difference from the data is displayed, and its significance discussed.

  7. RADIATION MECHANISM AND JET COMPOSITION OF GAMMA-RAY BURSTS AND GeV-TeV-SELECTED RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Zhang Jin; Lu Ye; Zhang Shuangnan [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liang Enwei; Sun Xiaona [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Zhang Bing, E-mail: lew@gxu.edu.cn [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2013-09-01T23:59:59.000Z

    Gamma-ray bursts (GRBs) and GeV-TeV-selected radio-loud active galactic nuclei (AGNs) are compared based on our systematic modeling of the observed spectral energy distributions of a sample of AGNs with a single-zone leptonic model. We show that the correlation between the jet power (P{sub jet}) and the prompt gamma-ray luminosity (L{sub jet}) of GRBs is consistent, within the uncertainties, with the correlation between jet power and the synchrotron peak luminosity (L{sub s,jet}) of flat spectrum radio quasars (FSRQs). Their radiation efficiencies ({epsilon}) are also comparable (>10% for most sources), which increase with the bolometric jet luminosity (L{sub bol,jet}) for FSRQs and with the L{sub jet} for GRBs with similar power-law indices. BL Lac objects (BL Lacs) do not follow the P{sub jet}-L{sub s,jet} relation of FSRQs. They have lower {epsilon} and L{sub bol,jet} values than FSRQs, and a tentative L{sub bol,jet}-{epsilon} relation is also found, with a power-law index different from that of the FSRQs. The magnetization parameters ({sigma}) of FSRQs are on average larger than that of BL Lacs. They are anti-correlated with {epsilon} for the FSRQs, but positively correlated with {epsilon} for the BL Lacs. GeV narrow-line Seyfert 1 galaxies potentially share similar properties with FSRQs. Based on the analogy between GRBs and FSRQs, we suggest that the prompt gamma-ray emission of GRBs is likely produced by the synchrotron process in a magnetized jet with high radiation efficiency, similar to FSRQs. The jets of BL Lacs, on the other hand, are less efficient and are likely more matter-dominated.

  8. Gamma decay of unbound states following neutron capture

    SciTech Connect (OSTI)

    Raman, S.

    1982-01-01T23:59:59.000Z

    Neutron capture ..gamma..-ray spectroscopy is a powerful technique to study the ..gamma..-decay of unbound levels just above the neutron separation energy. It is generally believed that the (n,..gamma..) reaction proceeds by way of a compound nucleus reaction of great complexity; and, therefore, the capture ..gamma..-ray spectrum should be describable in terms of statistical laws. However, measurements have shown that effects are present due to single-particle motions and due to giant resonances. The study of (n,..gamma..) spectra averaged over as many resonances as possible provides one of the best experimental means of directly obtaining reliable values for radiative transition probabilities from highly excited nuclear states. In very select cases, unbound levels which are populated in allowed ..beta.. decay can also be observed as neutron resonances. These ideas are illustrated with examples of recent data.

  9. Semiquantitative Analysis Using Thallium-201 SPECT for Differential Diagnosis Between Tumor Recurrence and Radiation Necrosis After Gamma Knife Surgery for Malignant Brain Tumors

    SciTech Connect (OSTI)

    Matsunaga, Shigeo, E-mail: shigeo-m@mui.biglobe.ne.jp [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan)] [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan); Shuto, Takashi; Takase, Hajime; Ohtake, Makoto; Tomura, Nagatsuki; Tanaka, Takahiro; Sonoda, Masaki [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan)] [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan)

    2013-01-01T23:59:59.000Z

    Purpose: Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography ({sup 201}Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. Methods and Materials: The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of {sup 201}Tl SPECT data used the early ratio (ER) and the delayed ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. Results: A total of 107 tumors were analyzed with {sup 201}Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P<.0001), but not in ER (P=.372), between the tumor recurrence and radiation necrosis groups, and no significant differences between metastatic brain tumors and high-grade gliomas in all indices (P=.926 for ER, P=.263 for DR, and P=.826 for RI). Receiver operating characteristics analysis indicated that RI was the most informative index with the optimum threshold of 0.775, which provided 82.8% sensitivity, 83.7% specificity, and 82.8% accuracy. Conclusions: Semiquantitative analysis of {sup 201}Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the most valuable index for this purpose.

  10. Radiation from Small-Scale Magnetic Field Turbulence: Implications for Gamma-Ray Bursts and Laboratory Astrophysical Plasmas

    E-Print Network [OSTI]

    Reynolds, Sarah J

    2012-05-31T23:59:59.000Z

    Relativistic charged particles moving within regions of small-scale magnetic field turbulence radiate as they undergo transverse accelerations reflective of the magnetic field variation along the particle's path. For a ...

  11. Deep level defects in proton radiated GaAs grown on metamorphic SiGe/Si substrates

    SciTech Connect (OSTI)

    Gonzalez, M.; Andre, C. L.; Walters, R. J.; Messenger, S. R.; Warner, J. H.; Lorentzen, J. R.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); U.S. Naval Research Laboratory, Code 6818, Washington, DC 20375 (United States); Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2006-08-01T23:59:59.000Z

    The effect of 2 MeV proton radiation on the introduction of deep levels in GaAs grown on compositionally graded SiGe/Si substrates was investigated using deep level transient spectroscopy (DLTS). Systematic comparisons were made with identical layers grown on both GaAs and Ge substrates to directly assess the influence of threading dislocations on radiation-related deep levels for both n-type and p-type GaAs. DLTS revealed that for p{sup +}n structures, proton irradiation generates electron traps at E{sub c}-0.14 eV, E{sub c}-0.25 eV, E{sub c}-0.54 eV, and E{sub c}-0.72 eV in the n-GaAs base, and, for n{sup +}p structures, radiation-induced hole traps appear at E{sub v}+0.18 eV, E{sub v}+0.23 eV, E{sub v}+0.27 eV, and E{sub v}+0.77 eV in the p-type GaAs base, irrespective of substrate choice for both polarities. The primary influence of substituting SiGe/Si substrates for conventional GaAs and Ge substrates is on the introduction rates of the individual traps as a function of proton radiation fluence. Substantially reduced concentrations are found for each radiation-induced hole trap observed in p-type GaAs, as well as for the E{sub c}-0.54 eV trap in n-GaAs for samples on SiGe/Si, as a function of proton fluence. Calculated trap introduction rates reveal reductions by as much as {approx}40% for certain hole traps in p-GaAs grown on SiGe/Si. This increased radiation tolerance for GaAs grown on SiGe/Si is attributed to interactions between the low density ({approx}10{sup 6} cm{sup -2}) of residual dislocations within the metamorphic GaAs/SiGe/Si structure and the radiation-induced point defects. Nevertheless, the fact that the impact of dislocations on radiation tolerance is far more dramatic for n{sup +}p GaAs structures compared to p{sup +}n structures, may have implications on future III-V/Si space solar cell design optimization, since end-of-life versus beginning-of-life differences are critical factors for power profiling in high radiation environments.

  12. Report on policy and activities concerning public awareness of health effects of low-level radiation

    SciTech Connect (OSTI)

    NONE

    1986-11-01T23:59:59.000Z

    In the summer of 1986, the Executive Committee authorized a study limited to determining policy and practices relevant to dissemination of information to the public on radiation health effects in three federal agencies. This report summarizes findings on two broad questions related to the communication issue: What, if any, are the policies under which federal agencies operate in disseminating information on health effects of radiation and what are the current programs and activities designed to provide the public information on health effects of radiation.

  13. The Extreme Gamma-Ray Blazar S5 0716+714: Jet Conditions from Radio-Band Variability and Radiative Transfer Modeling

    E-Print Network [OSTI]

    Aller, M F; Aller, H D; Jorstad, S G; Marscher, A P; Bala, V; Hovatta, T

    2015-01-01T23:59:59.000Z

    As part of a program to identify the physical conditions in the jets of gamma-ray-flaring blazars detected by Fermi, including the role of shocks in the production of high-energy flaring, we obtained 4 years of 3-frequency, centimeter-band total flux density and linear polarization monitoring observations of the radio-bright blazar S5 0716+714 with the University of Michigan 26-m paraboloid. Light curves constructed from these data exhibit a series of rapid, high-amplitude, centimeter-band total flux density outbursts, and changes in the linear polarization consistent with the passage of shocks during the gamma-ray flaring. The observed spectral evolution of the radio-band flares, in combination with radiative transfer simulations incorporating propagating shocks, was used to constrain the shock and jet flow conditions in the parsec-scale regions of the jet. Eight forward-moving, transverse shocks with unusually-strong shock compression factors, a very fast Lorentz factor of the shocks of 77, a bulk Lorentz f...

  14. Energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 21?Z?28

    SciTech Connect (OSTI)

    Aggarwal, Kanti M., E-mail: K.Aggarwal@qub.ac.uk; Keenan, Francis P.

    2012-11-15T23:59:59.000Z

    We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 21?Z?28. The General-Purpose Relativistic Atomic Structure Package is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac Atomic R-matrix Code is used. Oscillator strengths, radiative rates, and line strengths are listed for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are given over a wide temperature range up to 10{sup 7.8} K. Additionally, lifetimes are listed for all calculated levels of these ions. Finally, extensive comparisons are made with results available in the literature, as well as with our analogous calculations for all parameters with the Flexible Atomic Code, in order to assess the accuracy of the results.

  15. Energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 12?Z?20

    SciTech Connect (OSTI)

    Aggarwal, Kanti M., E-mail: K.Aggarwal@qub.ac.uk; Keenan, Francis P.

    2013-03-15T23:59:59.000Z

    We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 12?Z?20. The GRASP (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code is used. Oscillator strengths, radiative rates, and line strengths are reported for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are reported over a wide temperature range up to 10{sup 7.4} K. Additionally, lifetimes are also listed for all calculated levels of the ions. Finally, extensive comparisons are made with results available in the literature, as well as with our parallel calculations for all parameters with the Flexible Atomic Code, in order to assess the accuracy of the reported results.

  16. Exclusive \\gamma*\\gamma processes

    E-Print Network [OSTI]

    Chernyak, V L

    2009-01-01T23:59:59.000Z

    A short review of experimental and theoretical results on the large angle cross sections \\gamma\\gamma\\to {two mesons} and the form factors \\gamma*\\gamma\\to P={pi, \\eta, \\eta'} is given.

  17. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    SciTech Connect (OSTI)

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18T23:59:59.000Z

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.

  18. Gamma ray bursts ROBERT S MACKAY

    E-Print Network [OSTI]

    Rourke, Colin

    Gamma ray bursts ROBERT S MACKAY COLIN ROURKE We propose that a gamma ray burst is a kinematic Gamma ray bursts are intense flashes of electromagnetic radiation of cosmic origin lasting from ten accepted mechanism. We propose that a gamma ray burst is simply a kinematic effect, namely the effect

  19. System level latchup mitigation for single event and transient radiation effects on electronics

    DOE Patents [OSTI]

    Kimbrough, J.R.; Colella, N.J.

    1997-09-30T23:59:59.000Z

    A ``blink`` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements. 18 figs.

  20. System level latchup mitigation for single event and transient radiation effects on electronics

    DOE Patents [OSTI]

    Kimbrough, Joseph Robert (Pleasanton, CA); Colella, Nicholas John (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A "blink" technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.

  1. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    SciTech Connect (OSTI)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01T23:59:59.000Z

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

  2. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30T23:59:59.000Z

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³?Cs at 0.13, 2.4, 21, and 222 mGy d?¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore »affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d?¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  3. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stark, Karolina [Stockholm Univ. (Sweden); Univ. of Georgia, Aiken, SC (United States); Scott, David E. [Univ. of Georgia, Aiken, SC (United States); Tsyusko, Olga [Univ. of Georgia, Aiken, SC (United States); Univ. of Kentucky, Lexington, KY (United States); Coughlin, Daniel P. [Univ. of Georgia, Aiken, SC (United States); Hinton, Thomas G. [Univ. of Georgia, Aiken, SC (United States); Inst. of Radiation Protection and Nuclear Safety, Cadarache (France); Amendola, Roberto [ENEA, (Italy)

    2015-04-30T23:59:59.000Z

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³?Cs at 0.13, 2.4, 21, and 222 mGy d?¹, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d?¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  4. Assessment of Radio-Frequency Radiation Exposure Level from Selected Mobile Base Stations (MBS) in Lokoja, Kogi State, Nigeria

    E-Print Network [OSTI]

    Victor, U J Nwankwo; Dada, S S; Onugba, A A; Ushie, P

    2012-01-01T23:59:59.000Z

    The acquisition and use of mobile phone is tremendously increasing especially in developing countries, but not without a concern. The greater concern among the public is principally over the proximity of mobile base stations (MBS) to residential areas rather than the use of handsets. In this paper, we present an assessment of Radio-Frequency (RF) radiation exposure level measurements and analysis of radiation power density (in \\mu W/sq m) from mobile base stations relative to radial distance (in metre). The minimum average power density from individual base station in the town was about 47\\mu W/sq m while the average maximum was about 1.5mW/sq m. Our result showed that average power density of a base station decreases with increase in distance (from base station) and that radiation intensity varies from one base station to another even at the same distance away. Our result (obtained signature of power density variation) was also compared with the 'expected' signature. It was found that radiation from external...

  5. Simultaneous beta and gamma spectroscopy

    DOE Patents [OSTI]

    Farsoni, Abdollah T. (Corvallis, OR); Hamby, David M. (Corvallis, OR)

    2010-03-23T23:59:59.000Z

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  6. Astrophysical S factor for the radiative-capture reaction p{sup 6}Li {yields} {sup 7}Be{gamma}

    SciTech Connect (OSTI)

    Dubovichenko, S. B., E-mail: sergey@dubovichenko.ru [National Space Agency of the Republic of Kazakhstan, Fessenkov Astrophysical Institute, National Center of Space Research and Technology (Kazakhstan); Burtebaev, N., E-mail: burteb@inp.kz; Zazulin, D. M.; Kerimkulov, Zh. K. [National Nuclear Center of Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Amar, A. S. A. [Al-Farabi Kazakh National University (Kazakhstan)

    2011-07-15T23:59:59.000Z

    A new measurement of differential cross sections for elastic p{sup 6}Li scattering in the energy range 0.35-1.2 MeV was performed. A partial-wave analysis of the data obtained in this way was carried out, and potentials simulating the p{sup 6}Li interaction were constructed. Various experiments devoted to studying elastic p{sup 6}Li scattering over the broad energy range of 0.5-50 MeV were analyzed on the basis of the optical model. By using the potentials obtained from the partial-wave analysis, the possibility of describing the astrophysical S factor for radiative proton capture on {sup 6}Li at low energies was considered within the potential cluster model involving forbidden states.

  7. Health physics manual of good practices for reducing radiation exposure to levels that are as low as reasonably achievable (ALARA)

    SciTech Connect (OSTI)

    Herrington, W.N.; Higby, D.P.; Kathren,., R.L.; Merwin, S.E.; Stoetzel, G.A.

    1988-06-01T23:59:59.000Z

    A primary objective of the US Department of Energy (DOE) health physics and radiation protection program has been to limit radiation exposures to those levels that are as low as reasonably achievable (ALARA). As a result, the ALARA concept developed into a program and a set of operational principles to ensure that the objective was consistently met. Implementation of these principles required that a guide be produced. The original ALARA guide was issued by DOE in 1980 to promote improved understanding of ALARA concepts within the DOE community and to assist those responsible for operational ALARA activities in attaining their goals. Since 1980, additional guidance has been published by national and international organizations to provide further definition and clarification to ALARA concepts. As basic ALARA experience increased, the value and role of the original guide prompted the DOE Office of Nuclear Safety (ONS) to support a current revision. The revised manual of good practices includes six sections: 1.0 Introduction, 2.0 Administration, 3.0 Optimization, 4.0 Setting and Evaluating ALARA Goals, 5.0 Radiological Design, and 6.0 Conduct of Operations. The manual is directed primarily to contractor and DOE staff who are responsible for conduct and overview of radiation protection and ALARA programs at DOE facilities. The intent is to provide sufficient guidance such that the manual, if followed, will ensure that radiation exposures are maintained as low as reasonably achievable and will establish the basis for a formally structured and auditable program. 118 refs., 16 figs., 3 tabs.

  8. Measurement and Analysis of Radio-frequency Radiation Exposure Level from Different Mobile Base Transceiver Stations in Ajaokuta and Environs, Nigeria

    E-Print Network [OSTI]

    Ushie, P O; Bolaji, Ayinmode; Osahun, O D

    2013-01-01T23:59:59.000Z

    We present the result of a preliminary assessment of radio-frequency radiation exposure from selected mobile base stations in Ajaokuta environs. The Power density of RF radiation within a radial distance of 125m was measured. Although values fluctuated due to the influence of other factors, including wave interference from other electromagnetic sources around reference base stations, we show from analysis that radiation exposure level is below the standard limit (4.5W/sqm for 900MHz and 9W/sqm for 18000MHz) set by the International Commission on Non-ionizing Radiation Protection (ICNIRP) and other regulatory agencies.

  9. Underwater radiated noise levels of a research icebreaker in the central Arctic Ocean

    E-Print Network [OSTI]

    New Hampshire, University of

    , and search and rescue. The thinning Arctic ice pack and advances in ship design are allowing for longer of ice-breaking operations. Propulsion modes included transit in variable ice cover, breaking heavy iceHz when breaking ice. The highest noise levels resulted while the ship was engaged in backing

  10. Nuclear radiation-warning detector that measures impedance

    DOE Patents [OSTI]

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04T23:59:59.000Z

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  11. RADIATION SENSITIVITY & PROCESSING OF DNA DAMAGE FOLLOWING LOW DOSES OF GAMMA-RAY ALPHA PARTICLES & HZE IRRADIATION OF NORMAL DSB REPAIR DEFICIENT CELLS

    SciTech Connect (OSTI)

    O'Neil, Peter

    2009-05-15T23:59:59.000Z

    Non-homologous end joining (NHEJ) predominates in the repair of DNA double strand breaks (DSB) over homologous recombination (HR). NHEJ occurs throughout the cell cycle whereas HR occurs in late S/G2 due to the requirement of a sister chromatid (Rothkamm et al, Mol Cell Biol 23 5706-15 [2003]). To date evidence obtained with DSB repair deficient cells using pulsed-field gel electrophoresis has revealed the major pathway throughout all phases of the cell cycle for processing high dose induced DSBs is NHEJ (Wang et al, Oncogene 20 2212-24 (2001); Pluth et al, Cancer Res. 61 2649-55 [2001]). These findings however were obtained at high doses when on average >> 20-30 DSBs are formed per cell. The contribution of the repair pathways (NHEJ and HR) induced in response to DNA damage during the various phases of the cell cycle may depend upon the dose (the level of initial DSBs) especially since low levels of DSBs are induced at low dose. To date, low dose studies using NHEJ and HR deficient mutants have not been carried out to address this important question with radiations of different quality. The work presented here leads us to suggest that HR plays a relatively minor role in the repair of radiation-induced prompt DSBs. SSBs lead to the induction of DSBs which are associated specifically with S-phase cells consistent with the idea that they are formed at stalled replication forks in which HR plays a major role in repair. That DNA-PKcs is in some way involved in the repair of the precursors to replication-induced DSB remains an open question. Persistent non-DSB oxidative damage also leads to an increase in RAD51 positive DSBs. Both simple and complex non-DSB DNA damage may therefore contribute to indirect DSBs induced by ionising radiation at replication forks.

  12. The Radiation Shielding Competition Sponsored by

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    of radiation. These can be in the form of particles (alpha, beta, etc.) or in the form of photons (gamma rays. Because gamma rays are so penetrating, it's possible to detect them through other matter (walls, floors. In this competition, we consider gamma radiation from a laboratory source. Gamma rays are high energy photons speeding

  13. Phase Diagrams of Systems of 2 and 3 levels in the presence of a Radiation Field

    E-Print Network [OSTI]

    Eduardo Nahmad-Achar; Sergio Cordero; Octavio Castaños; Ramón López-Peña

    2015-02-03T23:59:59.000Z

    We study the structure of the phase diagram for systems consisting of 2- and 3- level particles dipolarly interacting with a 1-mode electromagnetic field, inside a cavity, paying particular attention to the case of a finite number of particles, and showing that the divergences that appear in other treatments are a consequence of the mathematical approximations employed and can be avoided by studying the system in an exact manner quantum-mechanically or via a catastrophe formalism with variational trial states that satisfy the symmetries of the appropriate Hamiltonians. These variational states give an excellent approximation not only to the exact quantum phase space, but also to the energy spectrum and the expectation values of the atomic and field operators. Furthermore, they allow for analytic expressions in many of the cases studied. We find the loci of the transitions in phase space from one phase to the other, and the order of the quantum phase transitions are determined explicitly for each of the configurations, with and without detuning. We also derive the critical exponents for the various systems, and the phase structure at the triple point present in the {\\Xi}-configuration of 3-level systems is studied.

  14. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect (OSTI)

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01T23:59:59.000Z

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  15. A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    SciTech Connect (OSTI)

    Nefkens, B. M.; Prakhov, S.; Aguar-Bartolom??, P.; Annand, J. R.; Arends, H. J.; Bantawa, K.; Beck, R.; Bekrenev, V.; Bergh??user, H.; Braghieri, A.; Briscoe, W. J.; Brudvik, J.; Cherepnya, S.; Codling, R. F.; Collicott, C.; Costanza, S.; Danilkin, I. V.; Denig, A.; Demissie, B.; Dieterle, M.; Downie, E. J.; Drexler, P.; Fil'kov, L. V.; Fix, A.; Garni, S.; Glazier, D. I.; Gregor, R.; Hamilton, D.; Heid, E.; Hornidge, D.; Howdle, D.; Jahn, O.; Jude, T. C.; Kashevarov, V. L.; K??ser, A.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Kotulla, M.; Koulbardis, A.; Kruglov, S.; Krusche, B.; Lisin, V.; Livingston, K.; MacGregor, I. J.; Maghrbi, Y.; Mancel, J.; Manley, D. M.; McNicoll, E. F.; Mekterovic, D.; Metag, V.; Mushkarenkov, A.; Nikolaev, A.; Novotny, R.; Oberle, M.; Ortega, H.; Ostrick, M.; Ott, P.; Otte, P. B.; Oussena, B.; Pedroni, P.; Polonski, A.; Robinson, J.; Rosner, G.; Rostomyan, T.; Schumann, S.; Sikora, M. H.; Starostin, A.; Strakovsky, I. I.; Strub, T.; Suarez, I. M.; Supek, I.; Tarbert, C. M.; Thiel, M.; Thomas, A.; Unverzagt, M.; Watts, D. P.; Werthmueller, D; Witthauer, L.

    2014-08-01T23:59:59.000Z

    A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> eta p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.

  16. Three-year increase of Gamma-Glutamyl Transferase level and development of type 2 diabetes, in middle-aged men and women: the D.E.S.I.R. cohort.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1/13 Three-year increase of Gamma-Glutamyl Transferase level and development of type 2 diabetes and development of Type 2 Diabetes P. André, B. Balkau, C. Born, M. A. Charles, E. Eschwège and the D) is the main predictor for the development of type 2 diabetes, but there is no data on GGT change and type 2

  17. Impact of Ultrahigh Baseline PSA Levels on Biochemical and Clinical Outcomes in Two Radiation Therapy Oncology Group Prostate Clinical Trials

    SciTech Connect (OSTI)

    Rodrigues, George, E-mail: george.rodrigues@lhsc.on.c [Department of Oncology, University of Western Ontario, London, Ontario (Canada); Bae, Kyounghwa [Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Roach, Mack [Department of Radiation Oncology, University of California San Francisco, San Francisco, California (United States); Lawton, Colleen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Donnelly, Bryan [Department of Surgical Oncology, University of Calgary, Calgary, Alberta (Canada); Grignon, David [Department of Pathology, Indiana Pathology Institute, Indianapolis, Indiana (United States); Hanks, Gerald [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Porter, Arthur [Department of Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Lepor, Herbert [Department of Urology, NY University Langone Medical Center, New York, New York (United States); Sandler, Howard [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California (United States)

    2011-06-01T23:59:59.000Z

    Purpose: To assess ultrahigh (UH; prostate-specific antigen [PSA]levels {>=}50 ng/ml) patient outcomes by comparison to other high-risk patient outcomes and to identify outcome predictors. Methods and Materials: Prostate cancer patients (PCP) from two Phase III Radiation Therapy Oncology Group clinical trials (studies 9202 and 9413) were divided into two groups: high-risk patients with and without UH baseline PSA levels. Predictive variables included age, Gleason score, clinical T stage, Karnofsky performance score, and treatment arm. Outcomes included overall survival (OS), distant metastasis (DM), and biochemical failure (BF). Unadjusted and adjusted hazard ratios (HRs) were calculated using either the Cox or Fine and Gray's regression model with associated 95% confidence intervals (CI) and p values. Results: There were 401 patients in the UH PSA group and 1,792 patients in the non-UH PSA PCP group of a total of 2,193 high-risk PCP. PCP with UH PSA were found to have inferior OS (HR, 1.19; 95% CI, 1.02-1.39, p = 0.02), DM (HR, 1.51; 95% CI, 1.19-1.92; p = 0.0006), and BF (HR, 1.50; 95% CI, 1.29-1.73; p < 0.0001) compared to other high-risk PCP. In the UH cohort, PSA level was found to be a significant factor for the risk of DM (HR, 1.01; 95% CI, 1.001-1.02) but not OS and BF. Gleason grades of 8 to 10 were found to consistently predict for poor OS, DM, and BF outcomes (with HR estimates ranging from 1.41-2.36) in both the high-risk cohort and the UH cohort multivariable analyses. Conclusions: UH PSA levels at diagnosis are related to detrimental changes in OS, DM, and BF. All three outcomes can be modeled by various combinations of all predictive variables tested.

  18. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I. (Dublin, CA)

    2010-02-02T23:59:59.000Z

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  19. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    SciTech Connect (OSTI)

    S. Mukhopadhyay

    2003-06-01T23:59:59.000Z

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  20. Cros S., Wald L., 2003. Survey of the main databases providing solar radiation data at ground level. In Proceedings of the 23rd EARSeL Annual Symposium "Remote Sensing in Transition", 2-4 June 2003, Ghent,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cros S., Wald L., 2003. Survey of the main databases providing solar radiation data at ground level providing solar radiation data at the ground level S. Cros & L. Wald Remote Sensing and Modeling Group, Ecole des Mines de Paris, France Keywords: solar radiation, database, information system, climatology

  1. Statistical correlation between hourly and daily values of solar radiation on horizontal surface at sea level in the Italian climate

    E-Print Network [OSTI]

    Boyer, Edmond

    219- Statistical correlation between hourly and daily values of solar radiation on horizontal- nalières du rayonnement solaire. Abstract. 2014 The knowledge of hourly data of solar radiation is required data measured in Italian stations and propose a method to estimate hourly solar radiation

  2. Radiative Decays of the B Meson

    SciTech Connect (OSTI)

    Tanaka, Hirohisa A

    2003-09-23T23:59:59.000Z

    The radiative decays of the B meson to the final states K *(892){gamma} and {rho}(770){gamma} proceed through virtual effective flavor-changing neutral current processes which are sensitive to contributions from high mass scales from within the Standard Model of particle interactions and from possible new physics. In the context of the Standard Model, these transitions are of interest in probing the weak interaction behavior of the top quark. In particular, the ratio of branching fractions for the two processes can be used to extract the ratio of Cabibbo-Kobayashi-Maskawa matrix elements |V{sub td}/V{sub ts}|. Potential new physics contributions in these virtual transitions may induce new sources of direct CP violation and enhancement or suppression of the rate of these processes. The B {yields} K*{gamma} is a manifestation of the b {yields} s{gamma} radiative transition. This process has been previously observed by the CLEO collaboration and its branching fraction measured. While the theoretical prediction for the inclusive rate of b {yields} s{gamma} transitions is more robust than that of the exclusive B {yields} K*{gamma}, the prospects for precise measurements of {Beta}[B {yields} K*{gamma}] and direct CP violation in this channel has attracted considerable attention. The analysis described here represents an improved measurement of the B {yields} K*{gamma} branching factions and a more sensitive search for direct CP violation. In 22.7 x 10{sup 6} B{bar B} events collected by the BABAR detector in 1999-2000, we measure: {Beta}[B{sup 0} {yields} K*{sup 0}{gamma}] = 4.23 {+-} 0.40(stat.) {+-} 0.22(syst.) x 10{sup -5} and {Beta}[B{sup +} {yields} K*{sup +}{gamma}] = 3.83 {+-} 0.62(stat.) {+-} 0.22(syst.) x 10{sup -5}. We find no evidence for direct CP violation in the decays and constrain -0.170 < A{sub CP} < 0.082 at 90% Confidence Level. The B {yields} {rho}{gamma} proceeds through the analogous b {yields} d{gamma} radiative transition. As such, its rate is suppressed by a factor of |V{sub td}/V{sub ts}|{sup 2} {approx} {Omicron}(50) relative to B {yields} K*{gamma} and remains unobserved. Current limits on the branching fractions of B {yields} {rho}{gamma} are still an order of magnitude above the theoretical predictions. While the uncertainty in the theoretical predictions for the branching fraction of this mode are large, it may be possible to reduce these uncertainties by considering the ratio of the branching fractions for B {yields} {rho}{gamma} and B {yields} K*{gamma} which would lead to a measurement of |V{sub td}/V{sub ts}|. The analysis presented here represents a search with nearly an order of magnitude more data and new analysis techniques. In a sample of 61 .7 x 10{sup 6} B{bar B} events, we find no significant evidence for the decay B {yields} {rho}{gamma} is and establish the following 90% Confidence Level upper limits on the branching fraction: {Beta}[B{sup 0} {yields} {rho}{sup 0}{gamma}] < 1.5 x 10{sup -6} and {Beta}[B{sup +} {yields} {rho}{sup +}{gamma}] < 2.8 x 10{sup -6}.

  3. Evaluation of Ki-67 Staining Levels as an Independent Biomarker of Biochemical Recurrence After Salvage Radiation Therapy for Prostate Cancer

    SciTech Connect (OSTI)

    Parker, Alexander S., E-mail: parker.alexander@mayo.ed [College of Medicine, Mayo Clinic Florida, Jacksonville, FL (United States); Heckman, Michael G.; Wu, Kevin J.; Crook, Julia E.; Hilton, Tracy W. [College of Medicine, Mayo Clinic Florida, Jacksonville, FL (United States); Pisansky, Thomas M. [Mayo Clinic Rochester, Rochester, MN (United States); Bernard, Johnny R. [College of Medicine, Mayo Clinic Florida, Jacksonville, FL (United States); Schild, Steven E. [Mayo Clinic Arizona, Scottsdale, AZ (United States); Khor, Li Yan; Hammond, Elizabeth H. [University of Utah School of Medicine, Salt Lake City, UT (United States); Pollack, Alan [Fox Chase Cancer Center, Philadelphia, PA (United States); Buskirk, Steven J. [College of Medicine, Mayo Clinic Florida, Jacksonville, FL (United States)

    2009-12-01T23:59:59.000Z

    Purpose: We recently published a scoring algorithm to predict biochemical recurrence (BCR) after salvage radiation therapy (SRT) for prostate cancer. Currently, this algorithm is based on clinicopathologic features and does not incorporate information from tumor-based biomarkers. Herein, we evaluate the ability of Ki-67 staining in primary prostate cancer to independently aid in the prediction of BCR among men undergoing SRT. Methods and Materials: We identified 147 patients who were treated with SRT between July 1987 and July 2003 at Mayo Clinic (Rochester, MN; Jacksonville, FL; Scottsdale, AZ). Staining levels of Ki-67 in primary tumor samples were detected by use of a monoclonal antibody and quantified by use of a computer-assisted method. We used Cox proportional hazards models to examine the association of Ki-67 staining and BCR in single-variable models and after multivariable adjustment. Results: The risk of BCR for men with tumors in the highest tertile of Ki-67 staining is approximately two times that for men with tumors in the lower two tertiles (relative risk, 2.02; 95% confidence interval, 1.23-3.32; p = 0.005) after adjustment for the features in our original scoring algorithm. Further adjustment for additional covariates did not attenuate this association. Evidence from concordance index values supports that Ki-67 staining adds to the predictive ability of our existing scoring algorithm. Conclusions: Our data suggest that higher levels of Ki-67 staining are associated with increased risk of BCR after SRT, independent of existing clinicopathologic covariates. Future studies involving larger numbers of patients are required to validate these results and also explore possible means of combining this biomarker with existing prognostic tools.

  4. The neutron-gamma Feynman variance to mean approach: gamma detection and total neutron-gamma detection (theory and practice)

    E-Print Network [OSTI]

    Dina Chernikova; Kåre Axell; Senada Avdic; Imre Pázsit; Anders Nordlund

    2015-01-23T23:59:59.000Z

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have a particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with inclusion of general reactions and passage intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source enclosed in a steel container. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma, are evaluated experimentally for a weak 252Cf neutron-gamma source in a steel container, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-Y formulas.

  5. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy

    E-Print Network [OSTI]

    Shin, Wook-Geun; Shin, Jae-Ik; Jeong, Jong Hwi; Lee, Se Byeong

    2015-01-01T23:59:59.000Z

    For the in vivo range verification in proton therapy, it has been tried to measure the spatial distribution of the prompt gammas generated by the proton-induced interactions with the close relationship with the proton dose distribution. However, the high energy of the prompt gammas and background gammas are still problematic in measuring the distribution. In this study, we suggested a new method determining the in vivo range by utilizing the time structure of the prompt gammas formed with the rotation of a range modulation wheel (RMW) in the passive scattering proton therapy. To validate the Monte Carlo code simulating the proton beam nozzle, axial percent depth doses (PDDs) were compared with the measured PDDs with the varying beam range of 4.73-24.01 cm. And the relationship between the proton dose rate and the time structure of the prompt gammas was assessed and compared in the water phantom. The results of the PDD showed accurate agreement within the relative errors of 1.1% in the distal range and 2.9% in...

  6. The frequency of tropopause-level thick and thin cirrus clouds as observed by CALIPSO and the relationship to relative humidity and outgoing longwave radiation

    E-Print Network [OSTI]

    Cardona, Allison Leanne

    2008-10-10T23:59:59.000Z

    THE FREQUENCY OF TROPOPAUSE-LEVEL THICK AND THIN CIRRUS CLOUDS AS OBSERVED BY CALIPSO AND THE RELATIONSHIP TO RELATIVE HUMIDITY AND OUTGOING LONGWAVE RADIATION A Thesis by ALLISON L. CARDONA Submitted to the Office of Graduate... Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2008 Major Subject: Atmospheric Sciences THE FREQUENCY OF TROPOPAUSE-LEVEL THICK AND THIN CIRRUS CLOUDS AS OBSERVED...

  7. Radiation Processing -an overview

    E-Print Network [OSTI]

    of radiation · Facilities ­ Gamma ­ electrons ­ X-ray ­ Safety · Sterilisation of medical devices · Food irradiation · Material modification #12;3 Content ­ Part 2 · Environmental applications · Other applications Radiation · Energy in the form of waves or moving subatomic particles Irradiation · Exposure to radiation

  8. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  9. Environmental radiation data report 73, January-March 1993. Quarterly report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    Environmental Radiation Data (ERD) contains data from the Environmental Radiation Ambients Monitoring System (ERAMS). The ERAMS is comprised of nationwide sampling stations that provide air, surface and drinking water and milk samples from which environmental radiation levels are derived. Sampling locations are selected to provide optimal population coverage while functioning to monitor fallout from nuclear devices and other forms of radioactive contamination of the environment. The radiation analyses performed on these samples include gross alpha and gross beta levels, gamma analyses for fission products, and specific analyses for uranium, plutonium, strontium, iodine, radium, krypton, and tritium.

  10. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  11. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  12. Lefvre M., Cros S., Albuisson M., Wald L., 2003. Developing a database using Meteosat data for the de-livery of solar radiation assessments at ground level. In Proceedings of the 23rd EARSeL Annual Symposium

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for the de- livery of solar radiation assessments at ground level. In Proceedings of the 23rd EARSeL Annual, Meteosat, solar radiation, climatology, database, information system ABSTRACT: An information system, called HelioClim, is offered for answering the needs for long-term time-series of solar radiation data

  13. X-RAYRICH GAMMA-RAY BURSTS, PHOTOSPHERES, AND VARIABILITY P. Meszaros,1,2

    E-Print Network [OSTI]

    Zhang, Bing

    X-RAY­RICH GAMMA-RAY BURSTS, PHOTOSPHERES, AND VARIABILITY P. Me´sza´ros,1,2 E. Ramirez-Ruiz,3 M. J of the observational gamma-ray variability-luminosity relation. Subject headings: gamma rays: bursts -- radiation mechanisms: nonthermal 1. INTRODUCTION Gamma-ray burst (GRB) light curves at gamma-ray ener- gies are often

  14. Cellular and molecular research to reduce uncertainties in estimates of health effects from low-level radiation

    SciTech Connect (OSTI)

    Elkind, M.M.; Bedford, J.; Benjamin, S.A.; Waldren, C.A. (Colorado State Univ., Fort Collins, CO (USA)); Gotchy, R.L. (Science Applications International Corp., McLean, VA (USA))

    1990-10-01T23:59:59.000Z

    A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, the study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs.

  15. Radiation Transport Simulation Studies Using MCNP for a Cow Phantom to Determine an Optimal Detector Configuration for a New Livestock Portal 

    E-Print Network [OSTI]

    Joe Justina, -

    2012-10-19T23:59:59.000Z

    scalable gamma radiation portal monitor (RPM) which can be used to assess the level of contamination on large animals like cattle. This work employed a Monte Carlo N-Particle (MCNP) radiation transport code for the purpose. A virtual system of cow...

  16. CRYOPUMP BEHAVIOR IN THE PRESENCE OF BEAM OR NUCLEAR RADIATION

    E-Print Network [OSTI]

    Law, P.K.

    2011-01-01T23:59:59.000Z

    Reactor Experiment In order to ascertain the effect of fast neutrons and gamma radiation on the absorbed deuterium gas

  17. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    E-Print Network [OSTI]

    Aggarwal, Kanti M

    2013-01-01T23:59:59.000Z

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The {\\sc grasp} (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac Atomic R-matrix Code ({\\sc darc}) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10$^{8}$ K. Comparisons are made with similar data obtained using the Flexible Atomic Code ({\\sc fac}) to highlight the importance of resonances, included in calcul...

  18. Common Origin of 3.55 keV X-Ray Line and Galactic Center Gamma Ray Excess in a Radiative Neutrino Mass Model

    E-Print Network [OSTI]

    Borah, Debasish; Adhikari, Rathin

    2015-01-01T23:59:59.000Z

    We attempt to simultaneously explain the recently observed 3.55 keV X-ray line in the analysis of XMM-Newton telescope data and the galactic center gamma ray excess observed by the Fermi gamma ray space telescope within an abelian gauge extension of standard model. We consider a two component dark matter scenario with a mass difference 3.55 keV such that the heavier one can decay into the lighter one and a photon with energy 3.55 keV. The lighter dark matter candidate is protected from decaying into the standard model particles by a remnant $Z_2$ symmetry into which the abelian gauge symmetry gets spontaneously broken. If the mass of the dark matter particle is chosen to be within $31-40$ GeV, then this model can also explain the galactic center gamma ray excess if the dark matter annihilation into $b\\bar{b}$ pairs has a cross section of $\\langle \\sigma v \\rangle \\simeq (1.4-2.0) \\times 10^{-26} \\; \\text{cm}^3/\\text{s}$. We constrain the model from the requirement of producing correct dark matter relic densit...

  19. Constraining the Physical Conditions in the Jets of Gamma-Ray Flaring Blazars using Centimeter-Band Polarimetry and Radiative Transfer Simulations. I. Data and Models for 0420-014, OJ 287, and 1156+295

    E-Print Network [OSTI]

    Aller, M F; Aller, H D; Latimer, G E; Hovatta, T

    2014-01-01T23:59:59.000Z

    To investigate parsec-scale jet flow conditions during GeV gamma-ray flares detected by the Fermi Large Angle Telescope, we obtained centimeter-band total flux density and linear polarization monitoring observations from 2009.5 through 2012.5 with the 26-meter Michigan radio telescope for a sample of core-dominated blazars. We use these data to constrain radiative transfer simulations incorporating propagating shocks oriented at an arbitrary angle to the flow direction in order to set limits on the jet flow and shock parameters during flares temporally associated with gamma-ray flares in 0420-014, OJ 287, and 1156+295; these AGN exhibited the expected signature of shocks in the linear polarization data. Both the number of shocks comprising an individual radio outburst (3-4) and the range of the compression ratios of the individual shocks (0.5-0.8) are similar in all three sources; the shocks are found to be forward-moving with respect to the flow. While simulations incorporating transverse shocks provide good...

  20. Radiation monitoring during criticality at a gaseous diffusion plant

    SciTech Connect (OSTI)

    Goebel, G.R.; Hines, T.W.; Carver, A.M.

    1994-12-31T23:59:59.000Z

    The Paducah gaseous diffusion plant (PGDP) has two systems of radiation detection units that monitor radiation associated with a nuclear criticality accident (NCA). The primary system, the criticality accident alarm system (CAAS), is composed of several detection units that alarm when gamma-radiation levels exceed 10 mR/h. The CAAS provides the means to initiate emergency-evacuation procedures in the event of an NCA. This system is augmented with a second system of radiation detectors, which is referred to as the argon gamma graph (AGG) system. The AGG system is utilized specifically for the remote monitoring of radiation during an NCA and is a primary tool used by emergency response personnel. The remote radiation readings supplied by the AGG system provide the means to quickly locate and characterize an NCA. The centralized remote monitoring of radiation during an NCA permits important data to be collected efficiently without subjecting personnel to unknown and unquantified radiation fields. Calculations of the expected radiation readings on the AGG system were performed for a postulated NCA at four different locations at PGDP.

  1. Energy levels and radiative rates for transitions in B-like to F-like Kr ions (Kr XXXII-XXVIII)

    SciTech Connect (OSTI)

    Aggarwal, K.M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, Northern Ireland (United Kingdom)], E-mail: K.Aggarwal@qub.ac.uk; Keenan, F.P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, Northern Ireland (United Kingdom); Lawson, K.D. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2008-05-15T23:59:59.000Z

    Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n {<=} 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.

  2. Application of the gamma evaluation method in Gamma Knife film dosimetry

    SciTech Connect (OSTI)

    Park, Jeong-Hoon; Han, Jung Ho; Kim, Chae-Yong; Oh, Chang Wan; Lee, Do-Heui; Suh, Tae-Suk; Gyu Kim, Dong; Chung, Hyun-Tai [Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam 463-707, Korea and Department of Biomedical Engineering, College of Medicine, Catholic University of Korea Seoul 137-701 (Korea, Republic of); Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam 463-707, Korea and Department of Neurosurgery, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Neurosurgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 138-736 (Korea, Republic of); Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Department of Neurosurgery, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2011-10-15T23:59:59.000Z

    Purpose: Gamma Knife (GK) radiosurgery is a minimally invasive surgical technique for the treatment of intracranial lesions. To minimize neurological deficits, submillimeter accuracy is required during treatment delivery. In this paper, the delivery accuracy of GK radiosurgery was assessed with the gamma evaluation method using planning dose distribution and film measurement data. Methods: Single 4, 8, and 16 mm and composite shot plans were developed for evaluation using the GK Perfexion (PFX) treatment planning system (TPS). The planning dose distributions were exported as digital image communications in medicine - radiation therapy (DICOM RT) files using a new function of GK TPS. A maximum dose of 8 Gy was prescribed for four test plans. Irradiation was performed onto a spherical solid water phantom using Gafchromic EBT2 films in the axial and coronal planes. The exposed films were converted to absolute dose based on a 4th-order polynomial calibration curve determined using ten calibration films. The film measurement results and planning dose distributions were registered for further analysis in the same Leksell coordinate using in-house software. The gamma evaluation method was applied to two dose distributions with varying spatial tolerance (0.3-2.0 mm) and dosimetric tolerance (0.3-2.0%), to verify the accuracy of GK radiosurgery. The result of gamma evaluation was assessed using pass rate, dose gamma index histogram (DGH), and dose pass rate histogram (DPH). Results: The 20, 50, and 80% isodose lines found in film measurements were in close agreement with the planning isodose lines, for all dose levels. The comparison of diagonal line profiles across the axial plane yielded similar results. The gamma evaluation method resulted in high pass rates of >95% within the 50% isodose line for 0.5 mm/0.5% tolerance criteria, in both the axial and coronal planes. They satisfied 1.0 mm/1.0% criteria within the 20% isodose line. Our DGH and DPH also showed that low isodose lines exhibited inferior gamma indexes and pass rates compared with higher isodose lines. Conclusions: The gamma evaluation method was applicable to GK radiosurgery. For all test plans, planning dose distribution and film measurement met the tolerance criteria of 0.5 mm/0.5% within the 50% isodose line which are used for marginal dose prescription.

  3. The Compton Effect--Compton Scattering and Gamma Ray Spectroscopy

    E-Print Network [OSTI]

    Dai, Pengcheng

    The Compton Effect-- Compton Scattering and Gamma Ray Spectroscopy by Dr. James E. Parks Department and procedures for measuring gamma-ray energy distributions, (7) to learn about photomultipliers the interactions of high energy, electromagnetic photon radiation with materials in general. Gamma rays are high

  4. Astrophysical S factor for the radiative capture (12)N(p,gamma)(13)O determined from the (14)N((12)N,(13)O)(13)C proton transfer reaction

    E-Print Network [OSTI]

    Banu, A.; Al-Abdullah, T.; Fu, C.; Gagliardi, Carl A.; McCleskey, M.; Mukhamedzhanov, A. M.; Tabacaru, G.; Trache, L.; Tribble, Robert E.; Zhai, Y.; Carstoiu, F.; Burjan, V.; Kroha, V.

    2009-01-01T23:59:59.000Z

    The cross section of the radiative proton capture reaction on the drip line nucleus (12)N was investigated using the asymptotic normalization coefficient (ANC) method. We have used the (14)N((12)N,(13)O)(13)C proton transfer reaction at 12 Me...

  5. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    SciTech Connect (OSTI)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong; Kim, Eun Jin; Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Paik, Sang Gi [Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of)] [Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of); Cho, Eun Wie, E-mail: ewcho@kribb.re.kr [Daejeon-KRIBB-FHCRC Cooperation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-09-10T23:59:59.000Z

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confers resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.

  6. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W. (Livermore, CA); Coombs, III, Arthur W. (Patterson, CA); Yee, Jick H. (Livermore, CA)

    2007-12-18T23:59:59.000Z

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  7. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2005-05-03T23:59:59.000Z

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  8. Radiation site cleanup regulations: Technical support document for the development of radionuclide cleanup levels for soil. Review draft

    SciTech Connect (OSTI)

    Wolbarst, A.B.; Mauro, J.; Anigstein, R.; Back, D.; Bartlett, J.W.

    1994-09-24T23:59:59.000Z

    This report presents EPA`s approach to assessing some of the beneficial and adverse radiation health effects associated with various possible values for an annual dose limit. In particular, it discusses the method developed to determine how the choice of cleanup criterion affects (1) the time-integrated numbers of non-fatal and fatal radiogenic cancers averted among future populations, (2) the occurrence of radiogenic cancers among remediation workers and the public caused by the cleanup process itself, and (3) the volume of contaminated soil that may require remediation.

  9. Environmental radiation data report 80, October-December 1994. Final report

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    Environmental Radiation Data (ERD) contains data from the Environmental Radiation Ambient Monitoring System (ERAMS). Sampling locations are selected to provide optimal population coverage while functioning to monitor fallout from nuclear devices and other forms of radioactive contamination of the environment. The radiation analyses performed on these samples include gross alpha and gross beta levels, gamma analyses for fission products, and specific analyses for uranium, plutonium, stronthium, iodine, radium, and tritium. This monitoring effort also provides ancillary information on natural background levels and on routine and accidental releases into the environment from stationary sources.

  10. Environmental radiation data report 79, July-September 1994. Final report

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    Environmental Radiation Data (ERD) contains data from the Environmental Radiation Ambient Monitoring System (ERAMS). Sampling locations are selected to provide optimal population coverage while functioning to monitor fallout from nuclear devices and other forms of radioactive contamination of the environment. The radiation analyses performed on these samples include gross alpha and gross beta levels, gamma analyses for fission products, and specific analyses for uranium, plutonium, stronthium, iodine, radium, and tritium. This monitoring effort also provides ancillary information on natural background levels and on routine and accidental releases into the environment from stationary sources.

  11. Environmental radiation data report 81, January-March 1995. Final report

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    Environmental Radiation Data (ERD) contains data from the Environmental Radiation Ambient Monitoring System (ERAMS). Sampling locations are selected to provide optimal population coverage while functioning to monitor fallout from nuclear devices and other forms of radioactive contamination of the environment. The radiation analyses performed on these samples include gross alpha and gross beta levels, gamma analyses for fission products, and specific analyses for uranium, plutonium, stronthium, iodine, radium, and tritium. This monitoring effort also provides ancillary information on natural background levels and on routine and accidental releases into the environment from stationary sources.

  12. Environmental radiation data report 82, April-June 1995. Final report

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    Environmental Radiation Data (ERD) contains data from the Environmental Radiation Ambient Monitoring System (ERAMS). Sampling locations are selected to provide optimal population coverage while functioning to monitor fallout from nuclear devices and other forms of radioactive contamination of the environment. The radiation analyses performed on these samples include gross alpha and gross beta levels, gamma analyses for fission products, and specific analyses for uranium, plutonium, stronthium, iodine, radium, and tritium. This monitoring effort also provides ancillary information on natural background levels and on routine and accidental releases into the environment from stationary sources.

  13. Quality assurance for gamma knives

    SciTech Connect (OSTI)

    Jones, E.D.; Banks, W.W.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01T23:59:59.000Z

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys, interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.

  14. Energy levels, oscillator strengths, and radiative rates for Si-like Zn XVII, Ga XVIII, Ge XIX, and As XX

    SciTech Connect (OSTI)

    Abou El-Maaref, A., E-mail: aahmh@hotmail.com [Physics Department, Faculty of Science, Al-Azhar University, Assuit (Egypt); Allam, S.H.; El-Sherbini, Th.M. [Laboratory of Lasers and New Materials, Physics Department, Faculty of Science, Cairo University, Giza (Egypt)] [Laboratory of Lasers and New Materials, Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2014-01-15T23:59:59.000Z

    The energy levels, oscillator strengths, line strengths, and transition probabilities for transitions among the terms belonging to the 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p and 3s{sup 2}3p4d configurations of silicon-like ions (Zn XVII, Ga XVIII, Ge XIX, and As XX) have been calculated using the configuration-interaction code CIV3. The calculations have been carried out in the intermediate coupling scheme using the Breit–Pauli Hamiltonian. The present calculations have been compared with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels have also been calculated. -- Highlights: •We have calculated the fine-structure energy levels of Si-like Zn, Ga, Ge and As. •The calculations are performed using the configuration interaction method (CIV3). •We have calculated the oscillator strengths, line strengths and transition rates. •The wavelengths of the transitions are listed in this article. •We also have made comparisons between our data and other calculations.

  15. Astrophysical S-factor for the radiative-capture reaction p{sup 13}C {yields} {sup 14}N{gamma}

    SciTech Connect (OSTI)

    Dubovichenko, S. B., E-mail: sergey@dubovichenko.ru [V.G. Fessenkov Astrophysical Institute (Kazakhstan)

    2012-02-15T23:59:59.000Z

    The possibility of describing experimental data on the astrophysical S factor for radiative proton capture on a {sup 13}C nucleus at energies in the range 0.03-0.8 MeV is considered within the potential cluster model involving forbidden states. It is shown that the energy dependence of this astrophysical S factor can be reasonably explained on the basis of the E1 transition to the {sup 3}P{sub 1}-wave bound state of the {sup 14}N nucleus in the p{sup 13}C channel from the {sup 3}S{sub 1} wave of p{sup 13}C scattering in the resonance energy region around 0.55 MeV in the laboratory frame.

  16. Determination of the properties of nuclear energy levels of La¹³? and Pr¹?¹ by the resonance fluorescence of neutron capture gamma rays

    E-Print Network [OSTI]

    Wilson, William Bradley

    1969-01-01T23:59:59.000Z

    DE ERMINATION OF THE PROPERTIES OF NUCLEAR ENEPGY LEVELS OF La~ AND Pr-"' BY THE RESCNANCE FLUORESCENCE CF Ni". UTRON CAPTURE BAI'IMA RAYS A Thesis William Bradley Wilson Submitted to the Graduate College of Texas ASM University in partial... fulfil'men o. the reouirement for ti. e degr e of Master of Science January, 1969 MaJ'or Sub) ect Nuclea Eng. '. u:eering DE' EPM1INATION OF THE PROPERTIES OF NUCLEAR ENERGY LEVELS OF La ~ AND Pr'" BY THE RFSONANCE FLUORESCENCE OF NEUTRON CAP URE...

  17. GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D

    Broader source: Energy.gov [DOE]

    The GammaCam system is an effective tool for remotely identifying high gamma radiation in radioactive environments.  Its versatility allows the user to perform preliminary characterization of an...

  18. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    2000-12-26T23:59:59.000Z

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  19. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  20. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, W.J.; Lessing, P.A.

    1998-07-28T23:59:59.000Z

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  1. Gamma-Ray Bursts, Ultra High Energy Cosmic Rays, and Cosmic Gamma-Ray Background

    E-Print Network [OSTI]

    Tomonori Totani

    1999-04-13T23:59:59.000Z

    We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in TeV range by synchrotron radiation of ultra-high-energy protons (\\sim 10^{20} eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.

  2. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-08-02T23:59:59.000Z

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  3. Gamma Ray Burst and Soft Gamma Repeaters. Spinning, Precessing Gamma Jets

    E-Print Network [OSTI]

    Daniele Fargion

    1999-06-28T23:59:59.000Z

    Gamma Ray Bursts as recent GRB990123 and GRB990510 are observed to occur in cosmic volumes with a corresponding output reaching, for isotropic explosions, energies as large as two solar masses annihilation. These energies are underestimated because of the neglected role of comparable ejected neutrinos bursts. These extreme power cannot be explained with any standard spherically symmetric Fireball model. A too heavy black hole or Star would be unable to coexist with the shortest millisecond time structure of Gamma ray Burst. Beaming of the gamma radiation may overcome the energy puzzle. However any mild explosive beam $(\\Omega > 10^{-2})$ should not solve the jet containment at those disruptive energies. Only extreme beaming $(\\Omega < 10^{-8})$, by a slow decaying, but long-lived precessing jet, it may coexist with characteristic Supernova energies, apparent GRBs output, statistics as well as their connection with older and nearer SGRs relics.

  4. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect (OSTI)

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H. [Sandia National Laboratories, Livermore, CA 94550 (United States)

    2013-04-19T23:59:59.000Z

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  5. Proposal for a Nuclear Gamma-Ray Laser of Optical Range

    SciTech Connect (OSTI)

    Tkalya, E. V. [Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)

    2011-04-22T23:59:59.000Z

    A possibility of the amplification of the 7.6 eV {gamma} radiation by the stimulated {gamma} emission of the ensemble of the {sup 229m}Th isomeric nuclei in a host dielectric crystal is proved theoretically. This amplification is a result of (1) the excitation of a large number of {sup 229m}Th isomers by laser radiation, (2) the creation of the inverse population of nuclear levels in a cooled sample owing to the interaction of thorium nuclei with the crystal electric field or with an external magnetic field, (3) the emission or absorption of the optical photons by thorium nuclei in the crystal without recoil, and (4) the nuclear spin relaxation through the conduction electrons of the metallic covering.

  6. Proposal for a Nuclear Gamma-Ray Laser of Optical Range

    E-Print Network [OSTI]

    E. V. Tkalya

    2011-04-23T23:59:59.000Z

    A possibility of amplification of the 7.6 eV $\\gamma$-radiation by the stimulated $\\gamma$-emission of the ensemble of the $^{229m}$Th isomeric nuclei in a host dielectric crystal is proved theoretically. This amplification is a result of: 1) the excitation of a large number of the $^{229m}$Th isomers by laser radiation; 2) the creation of the inverse population of nuclear levels in a cooled sample owing to the interaction of thorium nuclei with the crystal electric field or with an external magnetic field; 3) the emissions/absorption of the optical photons by thorium nuclei in the crystal without recoil; 4) the nuclear spin relaxation through the conduction electrons of the metallic covering.

  7. Dynamical instability of collapsing radiating fluid

    SciTech Connect (OSTI)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Azam, M., E-mail: azammath@gmail.com [University of the Punjab, Department of Mathematics (Pakistan)

    2013-06-15T23:59:59.000Z

    We take the collapsing radiative fluid to investigate the dynamical instability with cylindrical symmetry. We match the interior and exterior cylindrical geometries. Dynamical instability is explored at radiative and non-radiative perturbations. We conclude that the dynamical instability of the collapsing cylinder depends on the critical value {gamma} < 1 for both radiative and nonradiative perturbations.

  8. Energy levels, oscillator strengths, radiative decay rates, and fine-structure collision strengths for the Zn-like ions Nb XII and Mo XIII

    SciTech Connect (OSTI)

    Liang, Liang, E-mail: liangll501@163.com; Liu, Xu-yang; Zhou, Chao

    2014-07-15T23:59:59.000Z

    Energy levels, line strengths, oscillator strengths, radiative decay rates, and fine-structure collision strengths are presented for the Zn-like ions Nb XII and Mo XIII. The atomic data are calculated with the AUTOSTRUCTURE code, where relativistic corrections are introduced according to the Breit–Pauli distorted wave approach. We present the calculations of atomic data for 110 fine-structure levels generated from fifteen configurations (1s{sup 2}2s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10})4s{sup 2}, 4s4p, 4p{sup 2}, 4s4d, 4s4f, 4s5s, 4p4d, 4s5p, 4s5d, 4p4f, 4p5s, 4d{sup 2}, 4d4f, 4f{sup 2}, and 3d{sup 9}4s{sup 2}4p. Fine-structure collision strengths for transitions from the ground and the first four excited levels are presented at six electron energies (20, 50, 80, 110, 150, and 180 Ryd). Our atomic structure data are compared with the available experimental and theoretical results.

  9. Gamma Ray Bursts

    E-Print Network [OSTI]

    Stahl, Bennett

    2014-01-01T23:59:59.000Z

    Olson. “Observations of gamma-ray bursts of cosmic origin. ”E. Lingenfelter. “Gamma-ray bursts. ” Annual Review of652-654. Waxman, Eli. “Gamma-ray-burst afterglow: supporting

  10. Radiation Impact of Very Low Level Radioactive Steel Reused in Building Industry with Emphasis on External Exposure Pathway - 12569

    SciTech Connect (OSTI)

    Panik, Michal; Hrncir, Tomas; Necas, Vladimir [Slovak University of Technology in Bratislava, Bratislava (Slovakia)

    2012-07-01T23:59:59.000Z

    Considerable quantities of various materials are accumulated during the decommissioning process of nuclear installations. Some of arising materials are activated or contaminated. However, many of them continue to have an economic value and exist in a form that can be recycled or reused for special purposes. Furthermore much of the material generated during decommissioning process will contain only small amounts of radionuclides. For these materials there exist environmental and economic incentives to maximize the use of the concept of clearance from further regulatory control. This impact analysis is devoted to mentioned incentives. The aim is to conditionally clear maximum amount of the scrap steel and consequently recycle and reuse it in form of reinforcing components in tunnel and bridge building scenarios. Recent calculations relevant for external exposure pathway indicate that concept of conditional clearance represent a feasible option for the management of radioactive materials. Even in chosen specific industrial applications it is possible to justify new, approximately one order of magnitude higher, clearance levels. However analysis of other possible exposure pathways relevant for particular scenario of reuse of conditionally cleared materials has to be performed in order to confirm indications from partially obtained results. Basically, the concept of conditional clearance can bring two basic benefits. Firstly it is saving of considerable funds, which would be otherwise used for treatment, conditioning and disposal of materials at appropriate radioactive waste repository. Moreover materials with intrinsic value (particularly metals) can be recycled and reused in industrial applications instead of investing resources on mining and production process in order to obtain new, 'fresh' materials. (authors)

  11. Search for $\\alpha$ decay of $^{151}$Eu to the first excited level of $^{147}$Pm using underground $\\gamma$-ray spectrometry

    E-Print Network [OSTI]

    Danevich, F A; Hult, M; Marissens, G; Tretyak, V I; Yuksel, A; 10.1140/epja/i2012-12157-7

    2013-01-01T23:59:59.000Z

    The alpha decay of $^{151}$Eu to the first excited level of $^{147}$Pm ($J^\\pi = 5/2^+$, $E_{exc}=91.1$ keV) was searched for at the HADES underground laboratory ($\\approx 500$ m w.e.). A sample of high purity europium oxide with mass of 303 g and a natural isotopic composition has been measured over 2232.8 h with a high energy resolution ultra-low background n-type semi-planar HPGe detector (40 cm$^3$) with sub-micron deadlayer. The new improved half-life limit has been set as $T_{1/2} \\geq 3.7\\times 10^{18}$ yr at 68% C.L. Possibilities to improve the sensitivity of the experiment, which is already near the theoretical predictions, are discussed. New half-life limit for $\\alpha$ decay of $^{153}$Eu is also set as $T_{1/2} \\geq 5.5\\times 10^{17}$ yr.

  12. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation

  13. Current Trends in Gamma Ray Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-08-18T23:59:59.000Z

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

  14. About radiative kaon decay \\k+ \\to ?+\\pi0?

    E-Print Network [OSTI]

    V. P. Efrosinin

    2006-06-20T23:59:59.000Z

    With usage of the Low theorem the general expression for amplitude of radiative kaon decay \\k+ \\to \\pi+\\pi0\\gamma is determined.

  15. apm background radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extragalactic Background Radiation Astrophysics (arXiv) Summary: Attenuation of high--energy gamma rays by pair--production with UV, optical and IR background photons provides a...

  16. Time encoded radiation imaging

    DOE Patents [OSTI]

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21T23:59:59.000Z

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  17. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27T23:59:59.000Z

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  18. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Mincher, Bruce J. (Shelley, ID); Arbon, Rodney E. (Blackfoot, ID)

    1998-01-01T23:59:59.000Z

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilogray. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste.

  19. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOE Patents [OSTI]

    Meikrantz, D.H.; Mincher, B.J.; Arbon, R.E.

    1998-08-25T23:59:59.000Z

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilograms. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste. 5 figs.

  20. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  1. A Study of B->ccbar gamma K in the BaBar Experiment

    SciTech Connect (OSTI)

    Fulsom, Brian Gregory; /British Columbia U.

    2010-08-25T23:59:59.000Z

    The BABAR Collaboration is a high energy physics experiment located at the Stanford Linear Accelerator Center. The primary goal of the experiment is to study charge and parity violation in the B-meson sector, however the copious production of B mesons decaying to other final states allows for a wide-ranging physics program. In particular, one can access the charmonium system via colour-suppressed b {yields} c decays of the type B {yields} c{bar c}K. This thesis presents a study of B {yields} c{bar c}{gamma}K decays where c{bar c} includes J/{psi} and {psi}(2S), and K includes K{sup {+-}}, K{sub S}{sup 0} and K*(892). The particular emphasis is on a search for the radiative decays X(3872) {yields} J/{psi}{gamma} and X(3872) {yields} {psi}(2S){gamma}. The X(3872) state is a recently-discovered resonance of undetermined quark composition, speculatively a conventional charmonium state or exotic four-quark di-meson molecule. This research is also sensitive to the well-known radiative charmonium decays B {yields} {chi}{sub c1,2}K, which are used as verification for the analysis technique. This dissertation sets the best B {yields} {chi}{sub c1}K branching fraction measurements to date, and sees the first evidence for factorization-suppressed B{sup 0} {yields} {chi}{sub c2}K*{sup 0} decay at a level of 3.6{sigma}. It also provides evidence for X(3872) {yields} J/{psi}{gamma} and X(3872) {yields} {psi}(2S){gamma} with 3.6{sigma} and 3.3{sigma} significance, respectively. The product of branching fractions {Beta}(B{sup {+-}} {yields} X(3872)K{sup {+-}}) {center_dot} {Beta}(X(3872) {yields} J/{psi}{gamma}) = (2.8 {+-} 0.8(stat.) {+-} 0.2(syst.)) x 10{sup -6} and {Beta}(B{sup {+-}} {yields} X(3872)K{sup {+-}}) {yields} {Beta}(X(3872) {yields} {psi}(2S){gamma}) = (9.5 {+-} 2.7(stat.) {+-} 0.9(syst.)) x 10{sup -6} are measured. These results improve upon previous X(3872) {yields} J/{psi}{gamma} measurements, and represent the first evidence for X(3872) {yields} {psi}(2S){gamma}.

  2. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  3. Afterglows as Diagnostics of Gamma Ray Burst Beaming

    E-Print Network [OSTI]

    James E. Rhoads

    1997-12-03T23:59:59.000Z

    If gamma ray bursts are highly collimated, radiating into only a small fraction of the sky, the energy requirements of each event may be reduced by several (up to 4 - 6) orders of magnitude, and the event rate increased correspondingly. The large Lorentz factors (Gamma > 100) inferred from GRB spectra imply relativistic beaming of the gamma rays into an angle 1/Gamma. We are at present ignorant of whether there are ejecta outside this narrow cone. Afterglows allow empirical tests of whether GRBs are well-collimated jets or spherical fireballs. The bulk Lorentz factor decreases and radiation is beamed into an ever increasing solid angle as the burst remnant expands. It follows that if gamma ray bursts are highly collimated, many more optical and radio transients should be observed without associated gamma rays than with them. In addition, a burst whose ejecta are beamed into angle zeta undergoes a qualitative change in evolution when Gamma < 1/zeta: Before this, Gamma ~ r^{-3/2}, while afterwards, Gamma decays exponentially with r. This change results in a potentially observable break in the afterglow light curve. Successful application of either test would eliminate the largest remaining uncertainty in the energy requirements and space density of gamma ray bursters.

  4. Ultrahigh Energy Cosmic Rays and Prompt TeV Gamma Rays from Gamma Ray Bursts

    E-Print Network [OSTI]

    Pijushpani Bhattacharjee; Nayantara Gupta

    2003-05-12T23:59:59.000Z

    Gamma Ray Bursts (GRBs) have been proposed as one {\\it possible} class of sources of the Ultrahigh Energy Cosmic Ray (UHECR) events observed up to energies $\\gsim10^{20}\\ev$. The synchrotron radiation of the highest energy protons accelerated within the GRB source should produce gamma rays up to TeV energies. Here we briefly discuss the implications on the energetics of the GRB from the point of view of the detectability of the prompt TeV gamma rays of proton-synchrotron origin in GRBs in the up-coming ICECUBE muon detector in the south pole.

  5. Did a gamma-ray burst initiate the late Ordovician mass extinction?

    E-Print Network [OSTI]

    Jackman, Charles H.

    Did a gamma-ray burst initiate the late Ordovician mass extinction? A.L. Melott1 , B.S. Lieberman2 Abstract: Gamma-ray bursts (GRBs) produce a flux of radiation detectable across the observable Universe words: Population and evolution, mass extinction, gamma-ray burst, Ordovician, ultraviolet ozone

  6. Oak Ridge D and D Plan 3515 Project - Technology Review (2007) and GammaCam Technology Demonstration for Characterizing Building 3515 at Oak Ridge (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Hart, A.; Brown, Ch.; Jordan, D. [MSE Technology Applications, Inc., Montana (United States); Phillips, E. [U.S. Department of Energy, Oak Ridge Operations Office, Oak Ridge, Tennessee (United States)

    2008-07-01T23:59:59.000Z

    This paper presents the results from the Characterization, Decontamination and Decommissioning (CD and D) Study performed by MSE Technology Application, Inc. (MSE) to assist the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) in the preparation of a Project Execution Plan and Remediation Plan for Building 3515 at ORNL. Primary objectives of this study were to identify innovative CD and D technologies and methodologies and recommend alternatives applicable to the CD and D of Building 3515. Building 3515 is a small heavily shielded concrete and cement block structure centrally located in the Bethel Valley portion of the ORNL. The building's interior is extensively contaminated with Cesium 137 (Cs-137), the primary contaminant of concern. A previous attempt to characterize the building was limited to general interior area radiation exposure level measurements and a few surface smears gathered by inserting monitoring equipment into the building on long poles. Consequently, the spatial distribution of the gamma radiation source inside the building was not determined. A subsequent plan for D and D of the building presented a high risk of worker radiation dose in excess of as low as reasonably achievable (ALARA) because the source of the interior gamma radiation field is not completely understood and conventional practices required workers to be in close proximity of the building. As part of an initial literature search, MSE reviewed new generation gamma source characterization technologies and identified the GammaCam{sup TM} portable gamma ray imaging system as an innovative technology applicable to locating the dominant gamma ray sources within the building. The GammaCam{sup TM} gamma-ray imaging system is a commercially available technology marketed by the EDO Corporation. This system consists of a sensor head with a co-aligned camera and a portable computer. The system is designed to provide two-dimensional spatial mappings of gamma ray emitting nuclides in real time. The gamma radiation sensor and camera can be set up within or outside of the radiation field while the system operator and PC can be located 30 to 60 m (100 to 200 ft) from the sensor head. The system has been used successfully at numerous DOE and commercial nuclear facilities to precisely locate gamma radiation sources. However, literature attesting to the ability of this technology to detect radiation sources within heavily shielded structures was not available. Consequently, MSE was not certain if this technology would be capable of locating gamma ray sources within the heavily shielded Building 3515. To overcome this uncertainty, MSE sent two individuals to the EDO Corporation for training. At completion of the training, MSE leased the GammaCam{sup TM} portable system and brought it to ORNL to evaluate the capability of the system. An overview from this evaluation is summarized in this paper. (authors)

  7. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24T23:59:59.000Z

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

  8. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    SciTech Connect (OSTI)

    William H. Miller; Manuel Diaz de Leon

    2003-04-15T23:59:59.000Z

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed.

  9. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, C.J.; Ziock, K.P.

    1992-06-02T23:59:59.000Z

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  10. Neutrino, Neutron, and Cosmic Ray Production in the External Shock Model of Gamma Ray Bursts

    E-Print Network [OSTI]

    Charles D. Dermer

    2002-04-16T23:59:59.000Z

    The hypothesis that ultra-high energy (>~ 10^19 eV) cosmic rays (UHECRs) are accelerated by gamma-ray burst (GRB) blast waves is assumed to be correct. Implications of this assumption are then derived for the external shock model of gamma-ray bursts. The evolving synchrotron radiation spectrum in GRB blast waves provides target photons for the photomeson production of neutrinos and neutrons. Decay characteristics and radiative efficiencies of the neutral particles that escape from the blast wave are calculated. The diffuse high-energy GRB neutrino background and the distribution of high-energy GRB neutrino events are calculated for specific parameter sets, and a scaling relation for the photomeson production efficiency in surroundings with different densities is derived. GRBs provide an intense flux of high-energy neutrons, with neutron-production efficiencies exceeding ~ 1% of the total energy release. The radiative characteristics of the neutron beta-decay electrons from the GRB "neutron bomb" are solved in a special case. Galaxies with GRB activity should be surrounded by radiation halos of ~ 100 kpc extent from the outflowing neutrons, consisting of a nonthermal optical/X-ray synchrotron component and a high-energy gamma-ray component from Compton-scattered microwave background radiation. The luminosity of sources of GRBs and relativistic outflows in L* galaxies such as the Milky Way is at the level of ~10^40+-1 ergs/s. This is sufficient to account for UHECR generation by GRBs. We briefly speculate on the possibility that hadronic cosmic rays originate from the subset of supernovae that collapse to form relativistic outflows and GRBs. (abridged)

  11. Effect of radiation on silicon and borosilicate glass

    E-Print Network [OSTI]

    Allred, Clark L. (Clark Lane), 1972-

    2003-01-01T23:59:59.000Z

    A study was made that is logically divided into two parts, both involving radiation damage effects. The first is a study of the effects of neutron and gamma radiation on the dimensions of two borosilicate glasses, Pyrex® ...

  12. New Constraints on Radiative Decay of Long-Lived Particles in Big Bang Nucleosynthesis with New $^4$He Photodisintegration Data

    E-Print Network [OSTI]

    Motohiko Kusakabe; Toshitaka Kajino; Takashi Yoshida; Tatsushi Shima; Yasuki Nagai; Toshiteru Kii

    2009-06-11T23:59:59.000Z

    A recent measurement of $^4$He photodisintegration reactions, $^4$He($\\gamma$,$p$)$^3$H and $^4$He($\\gamma$,$n$)$^3$He with laser-Compton photons shows smaller cross sections than those estimated by other previous experiments at $E_\\gamma \\lesssim 30$ MeV. We study big-bang nucleosynthesis with the radiative particle decay using the new photodisintegration cross sections of $^4$He as well as previous data. The sensitivity of the yields of all light elements D, T, $^3$He, $^4$He, $^6$Li, $^7$Li and $^7$Be to the cross sections is investigated. The change of the cross sections has an influence on the non-thermal yields of D, $^3$He and $^4$He. On the other hand, the non-thermal $^6$Li production is not sensitive to the change of the cross sections at this low energy, since the non-thermal secondary synthesis of $^6$Li needs energetic photons of $E_\\gamma \\gtrsim 50$ MeV. The non-thermal nucleosynthesis triggered by the radiative particle decay is one of candidates of the production mechanism of $^6$Li observed in metal-poor halo stars (MPHSs). In the parameter region of the radiative particle lifetime and the emitted photon energy which satisfies the $^6$Li production above the abundance level observed in MPHSs, the change of the photodisintegration cross sections at $E_\\gamma \\lesssim 30$ MeV as measured in the recent experiment leads to $\\sim 10$% reduction of resulting $^3$He abundance, whereas the $^6$Li abundance does not change for this change of the cross sections of $^4$He($\\gamma$,$p$)$^3$H and $^4$He($\\gamma$,$n$)$^3$He. The $^6$Li abundance, however, could show a sizable change and therefore the future precise measurement of the cross sections at high energy $E_\\gamma \\gtrsim$ 50 MeV is highly required.

  13. Gamma Radiation Dose Rate in Air due to Terrestrial Radionuclides in Southern Brazil: Synthesis by Geological Units and Lithotypes Covered by the Serra do Mar Sul Aero-Geophysical Project

    SciTech Connect (OSTI)

    Bastos, Rodrigo O.; Appoloni, Carlos R. [Applied Nuclear Physics Laboratory-Department of Physics-CCE State University of Londrina Campus Universitario-Rodovia Celso Garcia Cid s/n, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Pinese, Jose P. P. [Department of Geosciences-CCE State University of Londrina Campus Universitario-Rodovia Celso Garcia Cid s/n, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil)

    2008-08-07T23:59:59.000Z

    The absorbed dose rates in air due to terrestrial radionuclides were estimated from aerial gamma spectrometric data for an area of 48,600 km{sup 2} in Southern Brazil. The source data was the Serra do Mar Sul Aero-Geophysical Project back-calibrated in a cooperative work among the Geological Survey of Brazil, the Geological Survey of Canada, and Paterson, Grant and Watson Ltd. The concentrations of eU (ppm), eTh (ppm) and K (%) were converted to dose rates in air (nGy{center_dot}h{sup -1}) by accounting for the contribution of each element's concentration. Regional variation was interpreted according to lithotypes and a synthesis was performed according to the basic geological units present in the area. Higher values of total dose were estimated for felsic igneous and metamorphic rocks, with average values varying up to 119{+-}24 nGy{center_dot}h{sup -1}, obtained by Anitapolis syenite body. Sedimentary, metasedimentary and metamafic rocks presented the lower dose levels, and some beach deposits reached the lowest average total dose, 18.5{+-}8.2 nGy{center_dot}h{sup -1}. Thorium gives the main average contribution in all geological units, the highest value being reached by the nebulitic gneisses of Atuba Complex, 71{+-}23 nGy{center_dot}h{sup -1}. Potassium presents the lowest average contribution to dose rate in 53 of the 72 units analyzed, the highest contribution being obtained by intrusive alkaline bodies (28{+-}12 nGy{center_dot}h{sup -1}). The general pattern of geographic dose distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.

  14. Atomic Radiation (Illinois)

    Broader source: Energy.gov [DOE]

    This article states permissible levels of radiation in unrestricted areas, environmental standards for uranium fuel cycle and information about notification of incidents.

  15. Potential radiation damage: Storage tanks for liquid radioactive waste

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1992-08-21T23:59:59.000Z

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides.

  16. A Search for the Rare Decay $B\\rightarrow\\gamma\\gamma$

    SciTech Connect (OSTI)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-06-02T23:59:59.000Z

    We report the result of a search for the rare decay B{sup 0} {yields} {gamma}{gamma} in 426 fb{sup -1} of data, corresponding to 226 million B{sup 0}{bar B}{sup 0} pairs, collected on the {Upsilon}(4S) resonance at the PEP-II asymmetric-energy e{sup +}e{sup -} collider using the BABAR detector. We use a maximum likelihood fit to extract the signal yield and observe 21{sub -12}{sup +13} signal events with a statistical signficance of 1.9 {sigma}. This corresponds to a branching fraction {Beta}(B{sup 0} {yields} {gamma}{gamma}) = (1.7 {+-} 1.1(stat.) {+-} 0.2(syst.)) x 10{sup -7}. Based on this result, we set a 90% confidence level upper limit of {Beta}(B{sup 0} {yields} {gamma}{gamma}) < 3.2 x 10{sup -7}.

  17. Gamma Hadron Separation Gaurang B. Yodh for the Milagro Collaboration 1

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    techniques to achieve gamma-hadron separation and thereby improve the sensitivity of Milagro to gamma ray to observation level. The lateral distribu- tions of the shower particle densities for gamma ray initiated; University of California Irvine, Irvine, CA, 92697-4575 Abstract. All ground based high energy gamma ray

  18. The photonuclear neutron and gamma-ray backgrounds in the fast ignition experiment

    SciTech Connect (OSTI)

    Arikawa, Y.; Nagai, T.; Hosoda, H.; Abe, Y.; Kojima, S.; Fujioka, S.; Sarukura, N.; Nakai, M.; Shiraga, H.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka Suita (Japan); Ozaki, T. [National Institution Fusion Science, 322-6 Oroshi-cho, Toki-city, Gifu (Japan)

    2012-10-15T23:59:59.000Z

    In the fast-ignition scheme, very hard x-rays (hereinafter referred to as {gamma}-rays) are generated by Bremsstrahlung radiation from fast electrons. Significant backgrounds were observed around the deuterium-deuterium fusion neutron signals in the experiment in 2010. In this paper the backgrounds were studied in detail, based on Monte Carlo simulations, and they were confirmed to be {gamma}-rays from the target, scattered {gamma}-rays from the experimental bay walls ({gamma}{sup Prime }-rays), and neutrons generated by ({gamma}, n) reactions in either the target vacuum chamber or the diagnostic instruments ({gamma}-n neutrons).

  19. Attenuation of Radiation by Dr. James E. Parks

    E-Print Network [OSTI]

    Dai, Pengcheng

    charged particles interact with materials, (3) to study the 3 primary ways that gamma rays interact attenuation coefficients for beta particles and gamma rays. Theory There are two primary types of radiation that originate from the nucleus of the atom, and these are charged particles and gamma rays. Charged particles

  20. Electron-Positron Radiative Annihilation : Timelike Virtual Compton Scattering

    E-Print Network [OSTI]

    Asmita Mukherjee

    2010-10-01T23:59:59.000Z

    We report on a recent work proposing measurements of the deeply virtual Compton amplitude (DVCS) $\\gamma^* \\to h \\bar h \\gamma$ in the timelike kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process $e^+ e^- \\to h \\bar h \\gamma$.

  1. Gamma ray detector shield

    DOE Patents [OSTI]

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26T23:59:59.000Z

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  2. Gamma-ray burst interaction with dense interstellar medium

    E-Print Network [OSTI]

    Maxim Barkov; Gennady Bisnovatyi-Kogan

    2004-10-07T23:59:59.000Z

    Interaction of cosmological gamma ray burst radiation with the dense interstellar medium of host galaxy is considered. Gas dynamical motion of interstellar medium driven by gamma ray burst is investigated in 2D approximation for different initial density distributions of host galaxy matter and different total energy of gamma ray burst. The maximum velocity of motion of interstellar medium is $1.8\\cdot10^4$ km/s. Light curves of gamma ray burst afterglow are calculated for set of non homogeneous density, distribution gamma ray burst total energy, and different viewing angles. Spectra of gamma ray burst afterglow are modeled taking into account conversion of hard photons (soft X-ray, hard UV) to soft UV and optics photons.

  3. Energetics of Gamma Ray Bursts

    E-Print Network [OSTI]

    Raul Jimenez; David Band; Tsvi Piran

    2001-03-16T23:59:59.000Z

    We determine the distribution of total energy emitted by gamma-ray bursts for bursts with fluences and distance information. Our core sample consists of eight bursts with BATSE spectra and spectroscopic redshifts. We extend this sample by adding four bursts with BATSE spectra and host galaxy R magnitudes. From these R magnitudes we calculate a redshift probability distribution; this method requires a model of the host galaxy population. From a sample of ten bursts with both spectroscopic redshifts and host galaxy R magnitudes (some do not have BATSE spectra) we find that the burst rate is proportional to the galaxy luminosity at the epoch of the burst. Assuming that the total energy emitted has a log-normal distribution, we find that the average emitted energy (assumed to be radiated isotropically) is $gamma iso} > = 1.3^{+1.2}_{-1.0} \\times 10^{53}$ ergs (for H$_0$ = 65 km s$^{-1}$ Mpc$^{-1}$, $\\Omega_m=0.3$ and $\\Omega_\\Lambda=0.7$); the distribution has a logarithmic width of $\\sigma_\\gamma=1.7^{+0.7}_{-0.3}$. The corresponding distribution of X-ray afterglow energy (for seven bursts) has $ = 4.0^{+1.6}_{-1.8} \\times 10^{51}$ergs and $\\sigma_X = 1.3^{+0.4}_{-0.3}$. For completeness, we also provide spectral fits for all bursts with BATSE spectra for which there were afterglow searches.

  4. Radiative Penguin Decays at the B Factories

    SciTech Connect (OSTI)

    Cuhadar-Donszelmann, T.; /British Columbia U.

    2007-03-05T23:59:59.000Z

    Recent results from the B-Factories on radiative decays such as b {yields} s(d){gamma}, b {yields} s{ell}{ell} and leptonic decay B{sup 0} {yields} {tau}{sup +}{tau}{sup -} are reviewed.

  5. Gamma-Ray Bursts: Jets and Energetics

    E-Print Network [OSTI]

    D. A. Frail

    2003-11-12T23:59:59.000Z

    The relativistic outflows from gamma-ray bursts are now thought to be narrowly collimated into jets. After correcting for this jet geometry there is a remarkable constancy of both the energy radiated by the burst and the kinetic energy carried by the outflow. Gamma-ray bursts are still the most luminous explosions in the Universe, but they release energies that are comparable to supernovae. The diversity of cosmic explosions appears to be governed by the fraction of energy that is coupled to ultra-relativistic ejecta.

  6. Cosmic Rays, Gamma-Rays, & Neutrinos in the Starburst Nuclei of Arp 220

    E-Print Network [OSTI]

    Yoast-Hull, Tova M; Zweibel, Ellen G

    2015-01-01T23:59:59.000Z

    The cores of Arp 220, the closest ultra-luminous infrared starburst galaxy, provide an opportunity to study interactions of cosmic rays under extreme conditions. In this paper, we model the populations of cosmic rays produced by supernovae in the central molecular zones of both starburst nuclei. We find that ~65 - 100% of cosmic rays are absorbed in these regions due to their huge molecular gas contents, and thus, the nuclei of Arp 220 nearly complete proton calorimeters. As the cosmic ray protons collide with the interstellar medium, they produce secondary electrons that are also contained within the system and radiate synchrotron emission. Using results from chi-squared tests between the model and the observed radio spectral energy distribution, we predict the emergent gamma-ray and high-energy neutrino spectra and find the magnetic field to be at milligauss levels. Because of the extremely intense far-infrared radiation fields, the gamma-ray spectrum steepens significantly at TeV energies due to gamma-gamm...

  7. Search for charmonium and charmoniumlike states in {Upsilon}(2S) radiative decays

    SciTech Connect (OSTI)

    Wang, X. L.; Yuan, C. Z.; Wang, P. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Shen, C. P.; Hayasaka, K.; Iijima, T.; Miyazaki, Y.; Ohshima, T.; Senyo, K.; Seon, O. [Nagoya University, Nagoya (Japan); Adachi, I.; Haba, J.; Itoh, R.; Iwasaki, Y.; Katayama, N.; Kichimi, H.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2011-10-01T23:59:59.000Z

    Using a sample of 158x10{sup 6} {Upsilon}(2S) events collected with the Belle detector, charmonium and charmoniumlike states with even charge parity are searched for in {Upsilon}(2S) radiative decays. No significant {chi}{sub cJ} or {eta}{sub c} signal is observed, and the following upper limits at 90% confidence level (C. L.) are obtained: B({Upsilon}(2S){yields}{gamma}{chi}{sub c0})<1.0x10{sup -4}, B({Upsilon}(2S){yields}{gamma}{chi}{sub c1})<3.6x10{sup -6}, B({Upsilon}(2S){yields}{gamma}{chi}{sub c2})<1.5x10{sup -5}, and B({Upsilon}(2S){yields}{gamma}{eta}{sub c})<2.7x10{sup -5}. No significant signal of any charmoniumlike state is observed, and we obtain the limits B({Upsilon}(2S){yields}{gamma}X(3872))xB(X(3872){yields}{pi}{sup +}{pi}{sup -}J/{psi})<0.8x10{sup -6}, B({Upsilon}(2S){yields}{gamma}X(3872))x B(X(3872){yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}J/{psi})<2.4x10{sup -6}, B({Upsilon}(2S){yields}{gamma}X(3915))xB(X(3915){yields}{omega}J/{psi})<2.8x10{sup -6}, B({Upsilon}(2S){yields}{gamma}Y(4140))xB(Y(4140){yields}{phi}J/{psi}))<1.2x10{sup -6}, and B({Upsilon}(2S){yields}{gamma}X(4350))xB(X(4350){yields}{phi}J/{psi}))<1.3x10{sup -6} at 90% C. L.

  8. An investigation of the use of semiconductors as detectors of nuclear radiation

    E-Print Network [OSTI]

    Ivy, Edward Weber

    1960-01-01T23:59:59.000Z

    Counter Both semiconductors and G-M tubes using this multiplication effect produce pulses which are independent of the type or energy of the incident radiation. Therefore, the pulses produced by this process can not be used to measure particle energy... of Energy Figure 9 Energy Level Across Junction A particle of energy due to some type of radiation such as photons, alpha, beta, and gamma rays penetrating in the vicinity of the junction can collide with an electron in the valence band with sufficient...

  9. Radiation effects on reactor pressure vessel supports

    SciTech Connect (OSTI)

    Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

    1996-05-01T23:59:59.000Z

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

  10. TESLA-FEL 2007-02 Radiation dosimetry in FLASH Tunnel using

    E-Print Network [OSTI]

    the experimental methods and the results of neutron and gamma dosimetry/spectrometry performed with various types to characterise the radiation field in the FLASH environment. We have evaluated the neutron and gamma energy

  11. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1992-01-01T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  12. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  13. Gamma Ray Bursts Sudden, intense flashes of gamma rays

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    Gamma Ray Bursts #12;The Case Sudden, intense flashes of gamma rays come from nowhere and disappear with out a trace. Incredibly powerful: A single gamma ray burst is hundreds of times brighter a supernova #12;Who Vela (1960's) Looking for arms testing, found gamma ray bursts Compton Gamma Ray Observatory

  14. Standards for Protection Against Radiation (Michigan)

    Broader source: Energy.gov [DOE]

    This rule establishes standards for protection against radiation hazards. In addition to complying with requirements set forth, every reasonable effort should be made to maintain radiation levels...

  15. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    SciTech Connect (OSTI)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01T23:59:59.000Z

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  16. Effects of p60 sCo gamma radiation on Sarcina lutea: A comparison of effects at two different exposure rates and a study of the radiosensitizing properties of prodigiosin.

    E-Print Network [OSTI]

    Blair, George Washington

    1973-01-01T23:59:59.000Z

    of pigmented and nonpigmented cells. Radiation Res. 48, 40-52 (1971). 8. R. P. Williams, Biosynthesis of Prodigiosin, a Secondary Metabolite of Serratia marcescens, ~A 1. Microbiol. 25, 396-402 (1973). 9. M. M. Matthews, and N. I. Krinsky, The relatioship... Radiation on Sarcina ]utes: A Comparison of Effects at Two Different Exposure Rates and A Study of the Radiosensitizing Properties of. Prodigiosin (August 1973) George W. Blair, Jr. , B. S, , University of Chattanooga Directed by: Dr. R. D. Neff...

  17. E-Print Network 3.0 - annihilation radiation telescope Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collection: Physics 3 MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Summary: Gamma ray bursts Cosmology Diffuse extragalactic radiation fields via cutoff in AGN spectra and...

  18. Optical gamma thermometer

    DOE Patents [OSTI]

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06T23:59:59.000Z

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  19. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  20. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2010-06-15T23:59:59.000Z

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  1. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2007-01-09T23:59:59.000Z

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  2. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and {gamma}-rays

    SciTech Connect (OSTI)

    Kimura, Shinzo [Laboratory of Environmental Biology, Department of Preventive Medicine, Hokkaido University School of Medicine, Sapporo 060-8638 (Japan); Ishidou, Emi [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Kurita, Sakiko [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Suzuki, Yoshiteru [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Shibato, Junko [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Rakwal, Randeep [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)]. E-mail: rakwal-68@aist.go.jp; Iwahashi, Hitoshi [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)

    2006-07-21T23:59:59.000Z

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma ({gamma})-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and {gamma}-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and {gamma}-rays). Similarly, for X- and {gamma}-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and {gamma}-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-a-vis their energy levels.

  3. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    SciTech Connect (OSTI)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01T23:59:59.000Z

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  4. Spatial Evidence for Transition Radiation in a Solar Radio Burst

    E-Print Network [OSTI]

    Gelu M. Nita; Dale E. Gary; Gregory D. Fleishman

    2005-07-10T23:59:59.000Z

    Microturbulence, i.e. enhanced fluctuations of plasma density, electric and magnetic fields, is of great interest in astrophysical plasmas, but occurs on spatial scales far too small to resolve by remote sensing, e.g., at ~ 1-100 cm in the solar corona. This paper reports spatially resolved observations that offer strong support for the presence in solar flares of a suspected radio emission mechanism, resonant transition radiation, which is tightly coupled to the level of microturbulence and provides direct diagnostics of the existence and level of fluctuations on decimeter spatial scales. Although the level of the microturbulence derived from the radio data is not particularly high, /n^2 ~ 10^{-5}$, it is large enough to affect the charged particle diffusion and give rise to effective stochastic acceleration. This finding has exceptionally broad astrophysical implications since modern sophisticated numerical models predict generation of much stronger turbulence in relativistic objects, e.g., in gamma-ray burst sources.

  5. A fast algorithm for gamma evaluation in 3D

    SciTech Connect (OSTI)

    Wendling, Markus; Zijp, Lambert J.; McDermott, Leah N.; Smit, Ewoud J.; Sonke, Jan-Jakob; Mijnheer, Ben J.; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2007-05-15T23:59:59.000Z

    The {gamma}-evaluation method is a tool by which dose distributions can be compared in a quantitative manner combining dose-difference and distance-to-agreement criteria. Since its introduction, the {gamma} evaluation has been used in many studies and is on the verge of becoming the preferred dose distribution comparison method, particularly for intensity-modulated radiation therapy (IMRT) verification. One major disadvantage, however, is its long computation time, which especially applies to the comparison of three-dimensional (3D) dose distributions. We present a fast algorithm for a full 3D {gamma} evaluation at high resolution. Both the reference and evaluated dose distributions are first resampled on the same grid. For each point of the reference dose distribution, the algorithm searches for the best point of agreement according to the {gamma} method in the evaluated dose distribution, which can be done at a subvoxel resolution. Speed, computer memory efficiency, and high spatial resolution are achieved by searching around each reference point with increasing distance in a sphere, which has a radius of a chosen maximum search distance and is interpolated 'on-the-fly' at a chosen sample step size. The smaller the sample step size and the larger the differences between the dose distributions, the longer the {gamma} evaluation takes. With decreasing sample step size, statistical measures of the 3D {gamma} distribution converge. Two clinical examples were investigated using 3% of the prescribed dose as dose-difference and 0.3 cm as distance-to-agreement criteria. For 0.2 cm grid spacing, the change in {gamma} indices was negligible below a sample step size of 0.02 cm. Comparing the full 3D {gamma} evaluation and slice-by-slice 2D {gamma} evaluations ('2.5D') for these clinical examples, the {gamma} indices improved by searching in full 3D space, with the average {gamma} index decreasing by at least 8%.

  6. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08T23:59:59.000Z

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  7. Did a gamma-ray burst initiate the late Ordovician mass extinction?

    E-Print Network [OSTI]

    Melott, Adrian L.; Lieberman, Bruce S.; Laird, C. M.; Martin, Larry D.; Medvedev, Mikhail V.; Thomas, B. C.; Cannizzo, J. K.; Gehrels, N.; Jackman, C. H.

    2004-01-01T23:59:59.000Z

    Gamma-ray bursts (GRBs) produce a flux of radiation detectable across the observable Universe. A GRB within our own galaxy could do considerable damage to the Earth's biosphere; rate estimates suggest that a dangerously near GRB should occur...

  8. Soft gamma repeaters Kevin Hurley *

    E-Print Network [OSTI]

    California at Berkeley, University of

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331 1. Introduction The soft gamma repeaters (SGRs) are sporadic sources of bursts of X- and gamma-rays), and a rather soft spectrum compared to those of cosmic gamma-ray bursts; a rough description of the spectrumReview Soft gamma repeaters Kevin Hurley * University of California, Berkeley, Space Sciences

  9. NEUTRON AND GAMMA RAY DETECTION FOR BORDER SECURITY APPLICATIONS

    SciTech Connect (OSTI)

    Kouzes, Richard T.

    2010-05-21T23:59:59.000Z

    Countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments in the U.S. and in a number of other countries by governments and international organizations. Most deployed radiation portal monitor systems are based on plastic scintillator for gamma-ray detection and 3He tubes for neutron detection. The approach to this homeland security application, and lessons learned, are discussed.

  10. Compton Electrons and Electromagnetic Pulse in Supernovae and Gamma-Ray Bursts

    E-Print Network [OSTI]

    J. I. Katz

    1999-08-19T23:59:59.000Z

    When gamma-rays emerge from a central source they may undergo Compton scattering in surrounding matter. The resulting Compton-scattered electrons radiate. Coherent radiation by such Compton electrons follows nuclear explosions above the Earth's atmosphere. Particle acceleration in instabilities produced by Compton electron currents may explain the radio emission by SN1998bw. Bounds on coherent radiation are suggested for supernovae and gamma-ray bursts; these bounds are very high, but it is unknown if coherent radiation occurs in these objects.

  11. Gamma-Ray Bursts

    E-Print Network [OSTI]

    P. Meszaros

    2006-05-30T23:59:59.000Z

    Gamma-ray bursts are the most luminous explosions in the Universe, and their origin and mechanism are the focus of intense research and debate. More than three decades after their discovery, and after pioneering breakthroughs from space and ground experiments, their study is entering a new phase with the recently launched Swift satellite. The interplay between these observations and theoretical models of the prompt gamma ray burst and its afterglow is reviewed.

  12. Angular Signatures of Dark Matter in the Diffuse Gamma Ray Spectrum

    SciTech Connect (OSTI)

    Hooper, Dan; Serpico, Pasquale D.; /Fermilab

    2007-02-01T23:59:59.000Z

    Dark matter annihilating in our Galaxy's halo and elsewhere in the universe is expected to generate a diffuse flux of gamma rays, potentially observable with next generation satellite-based experiments, such as GLAST. In this article, we study the signatures of dark matter in the angular distribution of this radiation. Pertaining to the extragalactic contribution, we discuss the effect of the motion of the solar system with respect to the cosmological rest frame, and anisotropies due to the structure of our local universe. For the gamma ray flux from dark matter in our own Galactic halo, we discuss the effects of the offset position of the solar system, the Compton-Getting effect, the asphericity of the Milky Way halo, and the signatures of nearby substructure. We explore the prospects for the detection of these features by the GLAST satellite and find that, if {approx} 10% or more of the diffuse gamma ray background observed by EGRET is the result of dark matter annihilations, then GLAST should be sensitive to anisotropies down to the 0.1% level. Such precision would be sufficient to detect many, if not all, of the signatures discussed in this paper.

  13. Hard x-ray or gamma ray laser by a dense electron beam

    SciTech Connect (OSTI)

    Son, S. [18 Caleb Lane, Princeton, New Jersey 08540 (United States); Joon Moon, Sung [8 Benjamin Rush Ln., Princeton, New Jersey 08540 (United States)

    2012-06-15T23:59:59.000Z

    A dense electron beam propagating through a laser undulator can radiate a coherent x-ray or gamma ray. This lasing scheme is studied with the Landau damping theory. The analysis suggests that, with currently available physical parameters, coherent gamma rays of up to 50 keV can be generated. The electron quantum diffraction suppresses the free electron laser action, which limits the maximum radiation.

  14. Gamma-Ray Pulsars: Models and Predictions

    E-Print Network [OSTI]

    Alice K. Harding

    2000-12-12T23:59:59.000Z

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  15. Define baseline levels of segments per beam for intensity-modulated radiation therapy delivery for brain, head and neck, thoracic, abdominal, and prostate applications

    SciTech Connect (OSTI)

    Sutton, Jordan, E-mail: jsutton@mdanderson.org [University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Kabiru, David; Neu, Michael; Turner, Lehendrick; Balter, Peter; Palmer, Matthew [University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-04-01T23:59:59.000Z

    The purpose of this study was to evaluate the number of segments per beam for intensity-modulated radiation therapy (IMRT) treatments and its effects on the plan quality, treatment delivery time, machine quality assurance, and machine maintenance. We have retrospectively analyzed 24 patients treated with IMRT. Five were selected within each of the following regions: head and neck, thoracic, abdomen, and prostate. Four patients were optimized within the brain region. The clinically treated plans were re-optimized using Philips Pinnacle3 v. 8 with the direct machine parameter optimization algorithm. The number of segments per beam from the treated plan was systematically reduced by 80%, 60%, 40%, and 30%, and the following statistics have been analyzed for plan quality: target min, mean, and max doses; critical structure doses; and integral dose. We have attempted to define the smallest number of segments per beam for IMRT treatment plans. Results indicate that IMRT plans can be delivered with acceptable quality with approximately 3-6 segments per beam for the anatomical regions analyzed. A reduction in the number of segments decreases treatment delivery time, reduces machine wear and tear, and minimizes the amount of time the patient is on the treatment table, which in turn reduces the chances of intrafractional uncertainties.

  16. A supersymmetric model of gamma ray bursts

    E-Print Network [OSTI]

    L. Clavelli; G. Karatheodoris

    2005-08-08T23:59:59.000Z

    We propose a model for gamma ray bursts in which a star subject to a high level of fermion degeneracy undergoes a phase transition to a supersymmetric state. The burst is initiated by the transition of fermion pairs to sfermion pairs which, uninhibited by the Pauli exclusion principle, can drop to the ground state of minimum momentum through photon emission. The jet structure is attributed to the Bose statistics of sfermions whereby subsequent sfermion pairs are preferentially emitted into the same state (sfermion amplification by stimulated emission). Bremsstrahlung gamma rays tend to preserve the directional information of the sfermion momenta and are themselves enhanced by stimulated emission.

  17. Neutron-driven gamma-ray laser

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  18. Gamma irradiation in a saturated tuff environment

    SciTech Connect (OSTI)

    Bates, J.K.; Oversby, V.M.

    1984-12-31T23:59:59.000Z

    The influence of gamma irradiation on the reaction of actinide doped SRL 165 and PNL 76-68 glasses in a saturated tuff environment has been studied in a series of tests lasting up to 56 days. The reaction, and subsequent actinide release, of both glasses depends on the dynamic interaction between radiolysis effects which cause the solution pH to become more acidic and glass reaction which drives the pH more basic. The use of large gamma irradiation dose rates to accelerate reactions that would occur in an actual repository radiation field may affect this dynamic balance by unduly influencing the mechanism of the glass-water reaction. Comparisons are made between the present results and data obtained by reacting the same or similar glasses using MCC-1 and NNWSI rock cup procedures. 11 references, 3 figures.

  19. Nano {gamma}'/{gamma}'' composite precipitates in Alloy 718

    SciTech Connect (OSTI)

    Phillips, P. J. [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); McAllister, D.; Gao, Y.; Lv, D.; Williams, R. E. A.; Wang, Y.; Mills, M. J. [Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Peterson, B. [Honeywell Aerospace, Phoenix, Arizona 85034 (United States)

    2012-05-21T23:59:59.000Z

    Nanoscale composite precipitates of Alloy 718 have been investigated with both high-resolution scanning transmission electron microscopy and phase field modeling. Chemical analysis via energy-dispersive x-ray spectroscopy allowed for the differentiation of {gamma}' and {gamma}'' particles, which is not otherwise possible through traditional Z-contrast methods. Phase field modeling was applied to determine the stress distribution and elastic interaction around and between the particles, respectively, and it was determined that a composite particle (of both {gamma}' and {gamma}'') has an elastic energy that is significantly lower than, for example, single {gamma}' and {gamma}'' precipitates which are non-interacting.

  20. Neutron and gamma irradiation damage to organic materials.

    SciTech Connect (OSTI)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01T23:59:59.000Z

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  1. Possibility to Determine the Astrophysical S-Factor for the Be-7(p,gamma)b-8 Radiative-Capture from Analysis of the Be-7(he-3,d)b-8 Reaction

    E-Print Network [OSTI]

    Mukhamedzhanov, AM; Tribble, Robert E.; imofeyuk, N. K.

    1995-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 51, NUMBER 6 JUNE 1995 Possibility to determine the astrophysical S factor for the Be(p, p)sB radiative capture from analysis of the Be(sHe, d)sB reaction A. M. Mukhamedzhanov and R. E. Tribble Cyclotron Institute, Texas...) of the internal bound-state wave functions of B and Be, IsB'rB, (r) = ($?~~PsB), where r is the relative coordinate between the proton and the center of mass of Be, is approximated by S,&,B &P?, ?(r) . Here S887B is the spectroscopic factor of the configura...

  2. SAPPHiRE: a Small Gamma-Gamma Higgs Factory

    E-Print Network [OSTI]

    S. A. Bogacz; J. Ellis; L. Lusito; D. Schulte; T. Takahashi; M. Velasco; M. Zanetti; F. Zimmermann

    2012-08-14T23:59:59.000Z

    A new particle with mass ~ 125 GeV that resembles the Higgs boson has recently been discovered by ATLAS and CMS. We propose a low-energy gamma-gamma collider as a cost- and time-efficient option for a Higgs factory capable of studying this particle in detail. In the past, this option has been suggested as a possible application of the CLIC two-beam accelerator technology (the CLIC Higgs Experiment, CLICHE) or as an option for the ILC. Here we propose a design based on a pair of \\sim 10 GeV recirculating Linacs (Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons, SAPPHiRE) similar in design to those proposed for the LHeC. We present parameters for the e- beams and sketch a laser backscattering system capable of producing a gamma-gamma peak luminosity of 0.36 \\times 10^34/cm2/s with E_CM (gamma-gamma) \\sim 125 GeV. A gamma-gamma collider with such a luminosity could be used to measure accurately the mass, bbar, WW\\ast, and gamma-gamma decays of the Higgs boson. We also comment on possible synergies with other projects such as LHeC, the ILC or CLIC, and on other physics prospects in gamma-gamma and e-gamma collisions.

  3. Gamma ray bursts in their historic context

    E-Print Network [OSTI]

    Trimble, V

    2004-01-01T23:59:59.000Z

    Gamma Ray Bursts In Their Historic Context Virginia TrimbleMD 20742 USA Abstract. Gamma ray bursts remained essentiallyalso applies to the gamma ray bursts. First, an observation

  4. An investigation of the electronic wave functions in solids by the Compton scattering of gamma rays

    E-Print Network [OSTI]

    Nha, Sang Kyun

    1968-01-01T23:59:59.000Z

    APPARATUS The instrument, which was successfully used to study the behavior of the broadening of the Compton-scattered radiation, produces monochromatic gamma rays continuously variable in energy by selective Compton scattering of gamma photons emitted... was calculated. The system was adjusted to span the energy of- interest, then a count was taken 137 by using the Cs source. The channel corresponding to the peak 137 of Cs radiation was recorded, thon the pulser setting correspond)+8 to 662 1'eV (gamma ray...

  5. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOE Patents [OSTI]

    Cole, Jerald D. (Idaho Falls, ID); Drigert, Mark W. (Idaho Falls, ID); Reber, Edward L. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID)

    2001-01-01T23:59:59.000Z

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  6. Proposed Lymph Node Staging System Using the International Consensus Guidelines for Lymph Node Levels Is Predictive for Nasopharyngeal Carcinoma Patients From Endemic Areas Treated With Intensity Modulated Radiation Therapy

    SciTech Connect (OSTI)

    Li, Wen-Fei; Sun, Ying; Mao, Yan-Ping; Chen, Lei; Chen, Yuan-Yuan; Chen, Mo [Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou (China)] [Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou (China); Liu, Li-Zhi [Imaging Diagnosis and Interventional Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou (China)] [Imaging Diagnosis and Interventional Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou (China); Lin, Ai-Hua [Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou (China)] [Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Li [Imaging Diagnosis and Interventional Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou (China)] [Imaging Diagnosis and Interventional Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou (China); Ma, Jun, E-mail: majun2@mail.sysu.edu.cn [Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou (China)] [Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou (China)

    2013-06-01T23:59:59.000Z

    Purpose: To propose a lymph node (N) staging system for nasopharyngeal carcinoma (NPC) based on the International Consensus Guidelines for lymph node (LN) levels and MRI-determined nodal variables. Methods and Materials: The MRI scans and medical records of 749 NPC patients receiving intensity modulated radiation therapy with or without chemotherapy were retrospectively reviewed. The prognostic significance of nodal level, laterality, maximal axial diameter, extracapsular spread, necrosis, and Union for International Cancer Control/American Joint Committee on Cancer (UICC/AJCC) size criteria were analyzed. Results: Nodal level and laterality were the only independent prognostic factors for distant failure and disease failure in multivariate analysis. Compared with unilateral levels Ib, II, III, and/or Va involvement (hazard ratio [HR] 1), retropharyngeal lymph node involvement alone had a similar prognostic value (HR 0.71; 95% confidence interval [CI] 0.43-1.17; P=.17), whereas bilateral levels Ib, II, III, and/or Va involvement (HR 1.65; 95% CI 1.06-2.58; P=.03) and levels IV, Vb, and/or supraclavicular fossa involvement (HR 3.47; 95% CI 1.92-6.29; P<.01) both significantly increased the HR for distant failure. Thus we propose that the N category criteria could be revised as follows: N0, no regional LN metastasis; N1, retropharyngeal lymph node involvement, and/or unilateral levels Ib, II, III, and/or Va involvement; N2, bilateral levels Ib, II, III, and/or Va involvement; N3, levels IV, Vb, and/or supraclavicular fossa involvement. Compared with the 7th edition of the UICC/AJCC criteria, the proposed N staging system provides a more satisfactory distinction between the HRs for regional failure, distant failure, and disease failure in each N category. Conclusions: The proposed N staging system defined by the International Consensus Guidelines and laterality is predictive and practical. However, because of no measurements of the maximal nodal diameter on MRI slices, the prognostic significance of LN size needs further evaluation.

  7. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1999-06-01T23:59:59.000Z

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  8. Radiation damage by neutrons to plastic scintillators

    SciTech Connect (OSTI)

    Buss, G.; Dannemann, A.; Holm, U.; Wick, K. [Univ. Hamburg (Germany). Inst. fuer Experimentalphysik] [Univ. Hamburg (Germany). Inst. fuer Experimentalphysik

    1995-08-01T23:59:59.000Z

    Polystyrene based scintillator SCSN38, wavelength shifter Y7 with polymethylmethacrylate matrix and pure PM-MA light guide GS218 have been irradiated in the mixed radiation field of a pool reactor. About 77% of the dose released in SCSN38 was caused by the {gamma}-field, 23% by fast neutrons. The total dose ranged from 2 to 105 kGy. The dose measurements were made using alanine dosimeters. Transmission and fluorescence of the samples have been measured before and several times after irradiation. The radiation damage results shown o differences to irradiations in pure {gamma}-fields with corresponding released doses.

  9. Results of mobile gamma scanning activities in St. Louis, Missouri

    SciTech Connect (OSTI)

    Rodriguez, R E; Witt, D A; Cottrell, W D; Carrier, R F

    1991-06-01T23:59:59.000Z

    From 1942 through approximately 1966, the Mallinckrodt Chemical Works operated four plants in St. Louis, Missouri, for the Manhattan Engineer District and the Atomic Energy Commission. A variety of production processes using uranium- and radium-bearing ore materials were performed at the plants. It is the policy of the DOE to verify that radiological conditions at such sites or facilities comply with current DOE guidelines. Guidelines for release and use of such sites have become more stringent as research has provided more information since previous cleanups. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established as part of that effort to confirm the closeout status of facilities under contract to agencies preceding DOE during early nuclear energy development. Under the FUSRAP program, the Mallinckrodt properties have been previously investigated to determine the extent of on-site radiological contamination. At the request of DOE, Oak Ridge National Laboratory (ORNL) conducted a survey in May 1990, of public roadways and suspected haul routes between the Mallinckrodt plant and storage sites in St. Louis to ensure that no residual radioactive materials were conveyed off-site. A mobile gamma scanning van with an on-board computer system was used to identify possible anomalies. Suspect areas are those displaying measurements deviating from gamma exposure rates identified as typical for radiologically unenhanced areas in the vicinity of the areas of interest. The instrumentation highlighted three anomaly locations each of which measured less than 1m{sup 2} in size. None of the slightly elevated radiation levels originated from material associated with former AEC-related processing operations in the area. The anomalies resulted from elevated concentrations of radionuclides present in phosphate fertilizers, increased thorium in road-base gravel, and emanations from the radioactive storage site near the Latty Avenue airport. 9 refs., 3 figs.

  10. Hybrid model of GeV-TeV gamma ray emission from Galactic Center

    E-Print Network [OSTI]

    Yi-Qing Guo; Qiang Yuan; Cheng Liu; Ai-Feng Li

    2014-09-14T23:59:59.000Z

    The observations of high energy $\\gamma$-ray emission from the Galactic center (GC) by HESS, and recently by Fermi, suggest the cosmic ray acceleration in the GC and possibly around the supermassive black hole. In this work we propose a lepton-hadron hybrid model to explain simultaneously the GeV-TeV $\\gamma$-ray emission. Both electrons and hadronic cosmic rays were accelerated during the past activity of the GC. Then these particles would diffuse outwards and interact with the interstellar gas and background radiation field. The collisions between hadronic cosmic rays with gas is responsible to the TeV $\\gamma$-ray emission detected by HESS. With fast cooling in the strong radiation field, the electrons would cool down and radiate GeV photons through inverse Compton scattering off the soft background photons. This scenario provides a natural explanation of the observed GeV-TeV spectral shape of $\\gamma$-rays.

  11. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    SciTech Connect (OSTI)

    David A. Parks; Bernhard R. Tittmann

    2014-07-01T23:59:59.000Z

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

  12. Polarization mesurements of gamma ray bursts and axion like particles

    E-Print Network [OSTI]

    Andre Rubbia; Alexander Sakharov

    2008-09-03T23:59:59.000Z

    A polarized gamma ray emission spread over a sufficiently wide energy band from a strongly magnetized astrophysical object like gamma ray bursts (GRBs) offers an opportunity to test the hypothesis of axion like particles (ALPs). Based on evidences of polarized gamma ray emission detected in several gamma ray bursts we estimated the level of ALPs induced dichroism, which could take place in the magnetized fireball environment of a GRB. This allows to estimate the sensitivity of polarization measurements of GRBs to the ALP-photon coupling. This sensitivity $\\gag\\le 2.2\\cdot 10^{-11} {\\rm GeV^{-1}}$ calculated for the ALP mass $m_a=10^{-3}~{\\rm eV}$ and MeV energy spread of gamma ray emission is competitive with the sensitivity of CAST and becomes even stronger for lower ALPs masses.

  13. Determination of thermal neutron capture gamma yields.

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  14. Determination of thermal neutron capture gamma yields

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  15. Gamma Ray Bursts

    E-Print Network [OSTI]

    Peter Mészáros

    2012-04-12T23:59:59.000Z

    Gamma-ray bursts have been detected at photon energies up to tens of GeV. We review some recent developments in the X-ray to GeV photon phenomenology in the light of Swift and Fermi observations, and some of the theoretical models developed to explain them, with a view towards implications for C.T.A.

  16. A Plasma Instability Theory of Gamma-Ray Burst Emission

    E-Print Network [OSTI]

    J. J. Brainerd

    1999-04-02T23:59:59.000Z

    A plasma instability theory is presented for the prompt radiation from gamma-ray bursts. In the theory, a highly relativistic shell interacts with the interstellar medium through the filamentation and the two-stream instabilities to convert bulk kinetic energy into electron thermal energy and magnetic field energy. The processes are not efficient enough to satisfy the Rankine-Hugoniot conditions, so a shock cannot form through this mechanism. Instead, the interstellar medium passes through the shell, with the electrons radiating during this passage. Gamma-rays are produced by synchrotron self-Compton emission. Prompt optical emission is also produced through this mechanism, while prompt radio emission is produced through synchrotron emission. The model timescales are consistent with the shortest burst timescales. To emit gamma-rays, the shell's bulk Lorentz factor must be greater than approximately 1000. For the radiative processes to be efficient, the interstellar medium density must satisfy a lower limit that is a function of the bulk Lorentz factor. Because the limits operate as selection effects, bursts that violate them constitute new classes. In particular, a class of optical and ultraviolet bursts with no gamma-ray emission should exist. The lower limit on the density of the interstellar medium is consistent with the requirements of the Compton attenuation theory, providing an explanation for why all burst spectra appear to be attenuated. Several tests of the theory are discussed, as are the next theoretical investigations that should be conducted.

  17. Analysis of tropical radiative heating profiles: A comparison...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diurnal variability in the radiative heating profiles; and a significantly lower level of zero net radiative heating. Citation: McFarlane SA, JH Mather, and TP...

  18. Defense-in-Depth, How Department of Energy Implements Radiation...

    Energy Savers [EERE]

    Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Defense-in-Depth, How Department of Energy Implements Radiation Protection in...

  19. A Search for Gamma-Ray Bursts and Pulsars, and the Application of Kalman Filters to Gamma-Ray Reconstruction

    E-Print Network [OSTI]

    B. B. Jones

    2002-02-04T23:59:59.000Z

    Part I describes the analysis of periodic and transient signals in EGRET data. A method to search for the transient flux from gamma-ray bursts independent of triggers from other gamma-ray instruments is developed. Several known gamma-ray bursts were independently detected, and there is evidence for a previously unknown gamma-ray burst candidate. Statistical methods using maximum likelihood and Bayesian inference are developed and implemented to extract periodic signals from gamma-ray sources in the presence of significant astrophysical background radiation. The analysis was performed on six pulsars and three pulsar candidates. The three brightest pulsars, Crab, Vela, and Geminga, were readily identified, and would have been detected independently in the EGRET data without knowledge of the pulse period. No significant pulsation was detected in the three pulsar candidates. Eighteen X-ray binaries were examined. None showed any evidence of periodicity. In addition, methods for calculating the detection threshold of periodic flux modulation were developed. The future hopes of gamma-ray astronomy lie in the development of the Gamma-ray Large Area Space Telescope, or GLAST. Part II describes the development and results of the particle track reconstruction software for a GLAST science prototype instrument beam test. The Kalman filtering method of track reconstruction is introduced and implemented. Monte Carlo simulations, very similar to those used for the full GLAST instrument, were performed to predict the instrumental response of the prototype. The prototype was tested in a gamma-ray beam at SLAC. The reconstruction software was used to determine the incident gamma-ray direction. It was found that the simulations did an excellent job of representing the actual instrument response.

  20. Cascade population of levels and probable phase transition in vicinity of the excitation energy ~0.5Bn of heavy nucleus

    E-Print Network [OSTI]

    V. A. Bondarenko; J. Honzatko; V. A. Khitrov; Li Chol; Yu. E. Loginov; S. Eh. Malyutenkova; A. M. Sukhovoj; I. Tomandl

    2004-06-28T23:59:59.000Z

    From the comparison of absolute intensities of the two-step gamma-cascades and known intensities of their primary and secondary transitions, the cascade and total population of about ~100 levels of 181Hf and 184,185,187W excited in thermal neutron capture was determined. These experimental results and intensities of two-step cascades to the low-lying levels of mentioned nuclei were reproduced in calculation using level densities with clearly expressed step-like structure. Radiative strength functions of the primary transitions following gamma-decay of these compound nuclei to the levels in the region of pointed structure are considerably enhanced. Moreover, population of levels below 3 MeV can be reproduced only with accounting for local and rather considerable increase in radiative strength functions of the secondary transitions to the levels in vicinities of break points in energy dependence of level density and significant decrease of that to lower-lying states. Simultaneous change in both level density and strength functions in the same excitation region of a nucleus corresponds to the definition of the second-order phase transition.

  1. Radiative Processes Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The

  2. Constraints on GRB TeV Emission from the GeV Extragalactic Diffuse Gamma-Ray Flux

    E-Print Network [OSTI]

    Casanova, S; Zhang, B; Zhang, Bing

    2006-01-01T23:59:59.000Z

    TeV gamma rays emitted by GRBs are converted into electron-positron pairs via interactions with the extragalactic infrared radiation fields. In turn the pairs produced, whose trajectories are randomized by magnetic fields, will inverse Compton scatter off the cosmic microwave background photons. The beamed TeV gamma ray flux from GRBs is thus transformed into a GeV isotropic gamma ray flux, which contributes to the total extragalactic gamma-ray background emission. Assuming a model for the extragalactic radiation fields, for the GRB redshift distribution and for the GRB luminosity function, we use the measured GeV extragalactic gamma-ray flux to set upper limits on the GRB emission in TeV gamma rays that is predicted in several models.

  3. Are gamma-ray bursts cosmological?

    E-Print Network [OSTI]

    Horvath, I

    2015-01-01T23:59:59.000Z

    Gamma-ray burst sources are distributed with a high level of isotropy, which is compatible with either a cosmological origin or an extended Galactic halo origin. The brightness distribution is another indicator used to characterize the spatial distribution in distance. In this paper the author discusses detailed fits of the BATSE gamma-ray burst peak-flux distributions with Friedmann models taking into account possible density evolution and standard candle luminosity functions. A chi-square analysis is used to estimate the goodness of the fits and the author derives the significance level of limits on the density evolution and luminosity function parameters. Cosmological models provide a good fit over a range of parameter space which is physically reasonable

  4. Instructions for calibrating gamma detectors using the Canberra-Nuclear Data Genie Gamma Spectroscopy System

    SciTech Connect (OSTI)

    Brunk, J.L.

    1995-09-01T23:59:59.000Z

    A straight forward protocol provides a way to guide the calibration of a gamma detector for a particular geometry and material. Several programs have used the Low Level Gamma Counting Facility of the Health and Ecological Assessment Division of the Lawrence Livermore National Laboratory to count a variety of large environmental samples contained in several unique geometries. The equipment and calibration requirements needed to analyze these types of samples are explained. This document describes the calibration protocol that has been developed and describes how it is used to calibrate the detectors.

  5. SWEPP Gamma-Ray Spectrometer System software design description

    SciTech Connect (OSTI)

    Femec, D.A.; Killian, E.W.

    1994-08-01T23:59:59.000Z

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system.

  6. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  7. Raman and AFM study of gamma irradiated plastic bottle sheets

    SciTech Connect (OSTI)

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S. [Department of Physics, Sant Longowal Institute of Engineering and Technology Longowal, Punjab-148106 (India); Sonkawade, R. G. [School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow-226025 (India)

    2013-02-05T23:59:59.000Z

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  8. Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System

    E-Print Network [OSTI]

    Fitzmaurice, Matthew Blake 1988-

    2012-11-06T23:59:59.000Z

    , weather, and time of day. 6 Gamma rays are electromagnetic radiation emitted by excited nuclei in order for them to reach the ground state after decaying. Once emitted, these particles mainly interact with matter in three ways: photoelectric effect... and measured density were then used to define the MCNP material card for concrete. Pulse height tallies were used to determine the total gamma ray count rate in each of the four gamma detectors in the RPM. 5 CHAPTER II BACKGROUND II.A. Radiation...

  9. Delayed Gamma-Ray Spectroscopy for Spent Nuclear Fuel Assay

    SciTech Connect (OSTI)

    Campbell, Luke W.; Hunt, Alan W.; Ludewigt, Bernhard A.; Mozin, Vladimir V.

    2012-04-01T23:59:59.000Z

    High-energy, beta-delayed gamma-ray spectroscopy is investigated as a non-destructive assay technique for the determination of plutonium mass in spent nuclear fuel. This approach exploits the unique isotope-specific signatures contained in the delayed gamma-ray emission spectra detected following active interrogation with an external neutron source. A high fidelity modeling approach is described that couples radiation transport, analytical decay/depletion, and a newly developed gamma-ray emission source reconstruction code. Initially simulated and analyzed was a “one-pass” delayed gamma-ray assay that focused on the long-lived signatures. Also presented are the results of an independent study that investigated “pulsed mode” measurements, to capture the more isotope-specific, short-lived signatures. Initial modeling results outlined in this paper suggest that delayed gamma-ray assay of spent nuclear fuel assemblies can be accomplished with a neutron generator of sufficient strength and currently available gamma-ray detectors.

  10. Testing the millisecond pulsar scenario of the Galactic center gamma-ray excess with very high energy gamma-rays

    E-Print Network [OSTI]

    Qiang Yuan; Kunihito Ioka

    2015-02-09T23:59:59.000Z

    The recent analyses of the Fermi Large Area Telescope data show an extended GeV $\\gamma$-ray excess on top of the expected diffuse background in the Galactic center region, which can be explained with annihilating dark matter or a population of millisecond pulsars (MSPs). We propose to observe the very high energy $\\gamma$-rays for distinguishing the MSP scenario from the dark matter scenario. The GeV $\\gamma$-ray MSPs should release most energy to the relativistic $e^{\\pm}$ wind, which will diffuse in the Galaxy and radiate TeV $\\gamma$-rays through inverse Compton scattering and bremsstrahlung processes. By calculating the spectrum and spatial distribution, we show that such emission is detectable with the next generation very high energy $\\gamma$-ray observatory, the Cherenkov Telescope Array (CTA), under reasonable model parameters. It is essential to search for the multi-wavelength counterparts to the GeV $\\gamma$-ray excess for solving this mystery in the high energy universe.

  11. Integrated nuclear radiation detector and monitor

    SciTech Connect (OSTI)

    Biehl, B.L.; Lieberman, S.I.

    1982-06-22T23:59:59.000Z

    A battery powered device which can continuously monitor and detect nuclear radiation utilizing fully integrated circuitry and which is provided with an alarm which alerts persons when the radiation level exceeds a predetermined threshold.

  12. Radiation Center and TRIGA Reactor Annual Report

    E-Print Network [OSTI]

    Specification 6.7(e). B. Battelle Energy Alliance, LLC; Subcontract Award No. 00074510. C. Oregon Department of Energy, OOE Rule No. 345-030-010. Submitted by: Steve R. Reese, Director Radiation Center Oregon State Concentration of the Total Net Beta Radioactivity 44 V 13 Beta-Gamma Concentration and Range of LLD Values 45 V

  13. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect (OSTI)

    Hoffman, E

    2008-05-30T23:59:59.000Z

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  14. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

  15. Fermi GBM Observations of Terrestrial Gamma-ray Flashes

    SciTech Connect (OSTI)

    Briggs, Michael S. [CSPAR, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States)

    2011-09-21T23:59:59.000Z

    Terrestrial Gamma-ray Flashes are short pulses of energetic radiation associated with thunderstorms and lightning. While the Gamma-ray Burst Monitor (GBM) on Fermi was designed to observe gamma-ray bursts, its large BGO detectors are excellent for observing TGFs. Using GBM, TGF pulses are seen to either be symmetrical or have faster rise time than fall times. Some TGFs are resolved into double, partially overlapping pulses. Using ground-based radio observations of lightning from the World Wide Lightning Location Network (WWLLN), TGFs and their associated lightning are found to be simultaneous to {approx_equal}40 {mu} s. The lightning locations are typically within 300 km of the sub-spacecraft point.

  16. Pulsed Photofission Delayed Gamma Ray Detection for Nuclear Material Identification

    SciTech Connect (OSTI)

    John Kavouras; Xianfei Wen; Daren R. Norman; Dante R. Nakazawa; Haori Yang

    2012-11-01T23:59:59.000Z

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. High-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. After photofission reactions, delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the fission signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. Isotopic composition measurement methods based on delayed gamma ray spectroscopy will be the primary focus of this work.

  17. How to Tell a Jet from a Balloon: A Proposed Test for Beaming in Gamma Ray Bursts

    E-Print Network [OSTI]

    James E. Rhoads

    1997-09-15T23:59:59.000Z

    If gamma ray bursts are highly collimated, the energy requirements of each event may be reduced by several (~ 4-6) orders of magnitude, and the event rate increased correspondingly. Extreme conditions in gamma ray bursters lead to highly relativistic motions (bulk Lorentz factors Gamma > 100). This results in strong forward beaming of the emitted radiation in the observer's rest frame. Thus, all information on gamma ray bursts comes from those ejecta emitted in a narrow cone (opening angle 1/Gamma) pointing towards the observer. We are at present ignorant of whether there are ejecta outside that cone or not. The recent detection of longer wavelength transients following gamma ray bursts allows an empirical test of whether gamma ray bursts are collimated jets or spherical fireballs. The bulk Lorentz factor of the burst ejecta will decrease with time after the event, as the ejecta sweep up the surrounding medium. Thus, radiation from the ejecta is beamed into an ever increasing solid angle as the burst remnant evolves. It follows that if gamma ray bursts are highly collimated, many more optical and radio transients should be observed without associated gamma rays than with them. Published supernova searches may contain enough data to test the most extreme models of gamma ray beaming. We close with a brief discussion of other possible consequences of beaming, including its effect on the evolution of burst remnants.

  18. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  19. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12T23:59:59.000Z

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  20. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    SciTech Connect (OSTI)

    Clark, E.

    2013-09-13T23:59:59.000Z

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10 ?C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

  1. Radiator Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: TheCompetition » Radiator Labs

  2. Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

    SciTech Connect (OSTI)

    Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; /SLAC; Tajima, Hiroyasu; /Nagoya U., Solar-Terrestrial Environ. Lab.; Tanaka, Takaaki; /KIPAC, Menlo Park; ,

    2010-10-27T23:59:59.000Z

    It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

  3. Gravitational collapse as the source of gamma-ray bursts

    E-Print Network [OSTI]

    V. V. Sokolov

    2008-05-21T23:59:59.000Z

    If the threshold for $e^{-}e^{+}$ pair production depends on an angle between photon momenta, and if the $\\gamma$-rays are collimated right in gamma-ray burst (GRB) source then another solution of the compactness problem is possible. The list of basic assumptions of the scenario describing the GRB with energy release $< 10^{49}$ erg is adduced: the matter is about an alternative to the ultrarelativistic fireball if all long-duration GRBs are physically connected with core-collapse supernovae (SNe). The questions about radiation pressure and how the jet arises on account of even a small radiation field asymmetry in a compact GRB source of size $\\lesssim 10^8$ cm, and observational consequences of the compact model of GRBs are considered.

  4. Measurements of {psi}(2S) decays into {gamma}KK{pi} and {gamma}{eta}{pi}{sup +}{pi}{sup -}

    SciTech Connect (OSTI)

    Ablikim, M.; Bai, J. Z.; Bian, J. G.; Cai, X.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chu, Y. P.; Cui, X. Z.; Deng, Z. Y.; Du, S. X.; Fang, J.; Fu, C. D.; Gao, C. S.; Gu, S. D.; Guo, Y. N.; Guo, Y. Q.; He, K. L. [Institute of High Energy Physics, Beijing 100049 (China)] (and others)

    2006-10-01T23:59:59.000Z

    Radiative decays of the {psi}(2S) into {gamma}KK{pi} and {gamma}{eta}{pi}{sup +}{pi}{sup -} final states are studied using 14x10{sup 6} {psi}(2S) events collected with the BESII detector. Branching fractions or upper limits on the branching fractions of {psi}(2S) and {chi}{sub cJ} decays are reported. No significant signal for {eta}(1405)/{eta}(1475) is observed in the KK{pi} or {eta}{pi}{sup +}{pi}{sup -} mass spectra, and upper limits on the branching fractions of {psi}(2S){yields}{gamma}{eta}(1405)/{eta}(1475), {eta}(1405)/{eta}(1475){yields}KK{pi}, and {eta}{pi}{sup +}{pi}{sup -} are determined.

  5. Mon. Not. R. Astron. Soc. 401, 14651474 (2010) doi:10.1111/j.1365-2966.2009.15760.x Towards the properties of long gamma-ray burst progenitors

    E-Print Network [OSTI]

    Xu, Ren-Xin

    2010-01-01T23:59:59.000Z

    the properties of long gamma-ray burst progenitors with Swift data Xiao-Hong Cui,1 En-Wei Liang,2 Hou-Jun Lv,2 investigate the properties of both the prompt and X-ray afterglows of gamma-ray bursts (GRBs) in the burst . Key words: radiation mechanisms: non-thermal ­ gamma-rays: bursts. 1 INTRODUCTION One

  6. Measurement of the photon polarization using ${B_s^0\\to \\phi\\gamma}$ at LHCb.

    E-Print Network [OSTI]

    Hoballah, Mostafa; Deschamps, Olivier

    This thesis is dedicated to the study of the photon polarization in ${B_s^0\\to \\phi\\gamma}$ decays at LHCb. At the quark level, such decays proceed via a $b \\to s \\gamma$ penguin transition and are sensitive to possible virtual contributions from New Physics. The measurement of the photon polarization stands also as a test of the $V-A$ structure of the Standard Model coupling in the processes mediated by loop penguin diagrams. The measurement of the photon polarization can be done through a study of the time-dependent decay rate of the $B$ meson. A delicate treatment has been done to understand the proper time distribution and the selection acceptance affecting it. To control the proper time acceptance, data driven control methods have been developed. Several possible strategies to measure the photon polarization are introduced and preliminary blinded results are presented. A study of some of the systematic effects is discussed. In the context of studying radiative decays, the author has developed a new photo...

  7. THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS

    SciTech Connect (OSTI)

    Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Chernyshov, D. O. [Moscow Institute of Physics and Technology, Institutskii lane, 141700 Moscow Region, Dolgoprudnii (Russian Federation); Dogiel, V. A. [I. E. Tamm Theoretical Physics Division of P. N. Lebedev Institute, Leninskii pr, 53, 119991 Moscow (Russian Federation); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China)

    2010-11-10T23:59:59.000Z

    Fermi has detected gamma-ray emission from eight globular clusters (GCs). It is commonly believed that the energy sources of these gamma rays are millisecond pulsars (MSPs) inside GCs. Also it has been standard to explain the spectra of most Fermi Large Area Telescope pulsars including MSPs resulting from the curvature radiation (CR) of relativistic electrons/positrons inside the pulsar magnetosphere. Therefore, gamma rays from GCs are expected to be the collection of CR from all MSPs inside the clusters. However, the angular resolution is not high enough to pinpoint the nature of the emission. In this paper, we calculate the gamma rays produced by the inverse Compton (IC) scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the GCs and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons, and the galactic star lights. We show that the gamma-ray spectrum from 47 Tucanae can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons, or the galactic star lights, whereas the gamma-ray spectra from the other seven GCs are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore, the IC scattering may also contribute to the observed gamma-ray emission from GCs detected by Fermi in addition to the standard CR process. Furthermore, we find that the emission region of high-energy photons from GCs produced by the IC scattering is substantially larger than the cores of GCs with a radius >10 pc. The diffuse radio and X-rays emitted from GCs can also be produced by the synchrotron radiation and IC scattering, respectively. We suggest that future observations including radio, X-rays, and gamma rays with energy higher than 10 GeV and better angular resolution can provide better constraints for the models.

  8. X- and Gamma-Ray Flashes from Type Ia Supernovae?

    E-Print Network [OSTI]

    Hoflich, Peter

    2009-01-01T23:59:59.000Z

    We investigate two potential mechanisms that will produce X-ray and gamma-ray flashes from Type Ia supernovae (SN-Ia). The mechanisms are the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf and the interaction of the rapidly expanding envelope with an accretion disk. Based on the delayed-detonation scenario and detailed radiation-hydro calculation which include nuclear networks, we find that both mechanisms produce ~1 second flashes of high energy radiation with peak luminosities of 10^48 to 10^50 erg/sec with fast rises and exponential declines. The X- and gamma-ray visibility of a SN-Ia will depend strongly on self absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation towards the observer. Such X-ray and gamma-ray flashes could be detected as triggered events by Gamma-Ray Burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, ...

  9. GeV Emission from Collisional Magnetized Gamma Ray Bursts

    E-Print Network [OSTI]

    P. Mészáros; M. J. Rees

    2011-04-26T23:59:59.000Z

    Magnetic fields may play a dominant role in gamma-ray bursts, and recent observations by the Fermi satellite indicate that GeV radiation, when detected, arrives delayed by seconds from the onset of the MeV component. Motivated by this, we discuss a magnetically dominated jet model where both magnetic dissipation and nuclear collisions are important. We show that, for parameters typical of the observed bursts, such a model involving a realistic jet structure can reproduce the general features of the MeV and a separate GeV radiation component, including the time delay between the two. The model also predicts a multi-GeV neutrino component.

  10. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT

    SciTech Connect (OSTI)

    Casella, V

    2005-12-15T23:59:59.000Z

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified interface for controlling the monitor hardware and communicating with the host Distributed Control System (DCS). In order to provide user friendly software for the process personnel, the software was broken down into just a few software modules. These software modules are the Application Window, Detector Selection, Detector Configuration Settings, Background Counting, and Routine Data Acquisition. Instructions for using the software have been included in a user's manual that is appended to this report. The work presented in this report meets all of the requirements set forth in the project task plan to design and implement gamma ray monitors for the MCU. Additional setup and testing of the system will be required when it implemented in the process.

  11. VERY HIGH ENERGY GAMMA RAY Tadashi KIFUNE

    E-Print Network [OSTI]

    Enomoto, Ryoji

    particles as progenitor. The particle interaction includes also absorption of gamma rays through the process to detect TeV gamma rays. The current status of gamma ray astronomy in its growing stage is demonstrated of observation 2. Ground-based detection of VHE gamma rays from SN 1006 and Markaraina 501 The review of gamma

  12. Radiation measurements of uranium ingots from the electrometallurgical treatment of spent fuel.

    SciTech Connect (OSTI)

    Westphal, B. R.; Liaw, J. R.; Krsul, J. R.; Maddison, D. W.; Jensen, B. A.

    2003-03-24T23:59:59.000Z

    Radiation measurements and gamma spectroscopy analyses were made on numerous uranium ingots produced during the treatment of Experimental Breeder Reactor-II (EBR-II) spent nuclear fuel. The objective of these measurements was to provide background data for shielding concerns and potential process optimization. The uranium ingots resulted from the processing of both driver and blanket fuel by the electrometallurgical treatment process. The observed variation in the measurements was traced to the levels of certain fission product residues that remained in the uranium ingots produced during spent fuel treatment. A minor process change to hold the material at an elevated temperature for a specified length of time was found to significantly reduce concentrations of high-activity fission products and, thus the radiation field.

  13. Charmonium decays to {gamma}{pi}{sup 0}, {gamma}{eta}, and {gamma}{eta}{sup '}

    SciTech Connect (OSTI)

    Pedlar, T. K.; Xavier, J. [Luther College, Decorah, Iowa 52101 (United States); Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Klein, T.; Poling, R.; Zweber, P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States); Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.; Tomaradze, A. [Northwestern University, Evanston, Illinois 60208 (United States); Libby, J.; Martin, L.; Powell, A.; Thomas, C.; Wilkinson, G. [University of Oxford, Oxford OX1 3RH (United Kingdom); Mendez, H. [University of Puerto Rico, Mayaguez, Puerto Rico 00681 (Puerto Rico); Ge, J. Y. [Purdue University, West Lafayette, Indiana 47907 (United States)] (and others)

    2009-06-01T23:59:59.000Z

    Using data acquired with the CLEO-c detector at the CESR e{sup +}e{sup -} collider, we measure branching fractions for J/{psi}, {psi}(2S), and {psi}(3770) decays to {gamma}{pi}{sup 0}, {gamma}{eta}, and {gamma}{eta}{sup '}. Defining R{sub n}{identical_to}B[{psi}(nS){yields}{gamma}{eta}]/B[{psi}(nS){yields}{gamma}{eta}{sup '}], we obtain R{sub 1}=(21.1{+-}0.9)% and, unexpectedly, an order of magnitude smaller limit, R{sub 2}<1.8% at 90% C.L. We also use J/{psi}{yields}{gamma}{eta}{sup '} events to determine branching fractions of improved precision for the five most copious {eta}{sup '} decay modes.

  14. RIS-M-2483 A PILOT INVESTIGATION OP NATORAL RADIATION IN DANISH HOUSES

    E-Print Network [OSTI]

    EQUIVALENTS; DOSB RATES; DOSBMBTBRS; BTCHING; EXPERIMEN- TAL DATA; GAMMA RADIATION; HOUSES; NATURALRISø-M-2483 A PILOT INVESTIGATION OP NATORAL RADIATION IN DANISH HOUSES A. Sørensen, L. Bøtter radiation in Denmark. A passive cup dosemeter was designed containing CR39 track detectors and TLD

  15. Cooling of Accelerated Nucleons and Neutrino Emission in Gamma-Ray Bursts

    E-Print Network [OSTI]

    Katsuaki Asano

    2005-03-11T23:59:59.000Z

    Using Monte Carlo simulations, we demonstrate photopion production from Fermi-accelerated protons and the resulting neutrino production in gamma-ray bursts. Unless internal shocks occur at quite large distance from the center, ultra high-energy protons are depleted by photopion production and synchrotron radiation. Internal shocks at fiducial distance cause neutrino bursts, which accompany gamma-ray bursts originating from electromagnetic cascades.

  16. Blueshift Without Blueshift: Red Hole Gamma-Ray Burst Models Explain the Peak energy Distribution

    E-Print Network [OSTI]

    James S. Graber

    1999-12-15T23:59:59.000Z

    Gamma-ray bursts are still a puzzle. In particular, the central engine, the total energy and the very narrow distribution of peak energies challenge model builders. We consider here an extreme model of gamma-ray bursts based on highly red- and blue-shifted positron annihilation radiation. The burst emerges from inside the red hole created by the complete gravitational collapse of the GRB progenitor.

  17. QED radiative corrections to virtual Compton scattering

    E-Print Network [OSTI]

    M. Vanderhaeghen; J. M. Friedrich; D. Lhuillier; D. Marchand; L. Van Hoorebeke; J. Van de Wiele

    2000-01-12T23:59:59.000Z

    The QED radiative corrections to virtual Compton scattering (reaction $e p \\to e p \\gamma$) are calculated to first order in $\\alpha_{em} \\equiv e^2 / 4 \\pi$. A detailed study is presented for the one-loop virtual corrections and for the first order soft-photon emission contributions. Furthermore, a full numerical calculation is given for the radiative tail, corresponding with photon emission processes, where the photon energy is not very small compared with the lepton momenta. We compare our results with existing works on elastic electron-proton scattering, and show for the $e p \\to e p \\gamma$ reaction how the observables are modified due to these first order QED radiative corrections. We show results for both unpolarized and polarized observables of the virtual Compton scattering in the low energy region (where one is sensitive to the generalized polarizabilities of the nucleon), as well as for the deeply virtual Compton scattering.

  18. Polarimetric performance of a Laue lens gamma-ray CdZnTe focal plane prototype

    SciTech Connect (OSTI)

    Curado da Silva, R. M. [Departmento de Fisica, Universidade de Coimbra, P-3000 Coimbra (Portugal); Center for Space Radiations, Univesite Catholique de Louvain (Belgium); Caroli, E.; Stephen, J. B.; Schiavone, F.; Donati, A.; Ventura, G. [Istituto di Astrofisica Spaziale e Fisica Cosmica-Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Pisa, A.; Auricchio, N.; Frontera, F. [Dipartimento di Fisica, Universita di Ferrara, Ferrara (Italy); Del Sordo, S. [Istituto di Astrofisica Spaziale e Fisica Cosmica-Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Honkimaeki, V. [European Synchrotron Radiation Facility, Grenoble (France); Trindade, A. M. F. [Departmento de Fisica, Universidade de Coimbra, P-3000 Coimbra (Portugal)

    2008-10-15T23:59:59.000Z

    A gamma-ray telescope mission concept [gamma ray imager (GRI)] based on Laue focusing techniques has been proposed in reply to the European Space Agency call for mission ideas within the framework of the next decade planning (Cosmic Vision 2015-2025). In order to optimize the design of a focal plane for this satellite mission, a CdZnTe detector prototype has been tested at the European Synchrotron Radiation Facility under an {approx}100% polarized gamma-ray beam. The spectroscopic, imaging, and timing performances were studied and in particular its potential as a polarimeter was evaluated. Polarization has been recognized as being a very important observational parameter in high energy astrophysics (>100 keV) and therefore this capability has been specifically included as part of the GRI mission proposal. The prototype detector tested was a 5 mm thick CdZnTe array with an 11x11 active pixel matrix (pixel area of 2.5x2.5 mm{sup 2}). The detector was irradiated by a monochromatic linearly polarized beam with a spot diameter of about 0.5 mm over the energy range between 150 and 750 keV. Polarimetric Q factors of 0.35 and double event relative detection efficiency of 20% were obtained. Further measurements were performed with a copper Laue monochromator crystal placed between the beam and the detector prototype. In this configuration we have demonstrated that a polarized beam does not change its polarization level and direction after undergoing a small angle (<1 deg.) Laue diffraction inside a crystal.

  19. Reversal of Hugoniot locus for strong shocks due to radiation

    SciTech Connect (OSTI)

    Li Jiwei; Li Jinghong; Meng Guangwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2011-04-15T23:59:59.000Z

    Shock Hugoniot can be used to express the response of a material to shocks, and the compression ratio of the shock can be determined by the Hugoiot locus. When the shock is strong, it will become radiating, and the radiation will affect the Hugoniot. The role of radiation on the Hugoniot condition is studied in the paper. For the radiative flux-dominated shocks, the radiative flux if large enough may render the structure of the shock Hugoniot locus totally different with the case for the pure hydrodynamic shock: the two branches with one in quadrant I and the other in quadrant III are reversed into two in quadrants IV and II, respectively, correspondingly the compression ratio may be larger than the limiting value ({gamma}+1)/({gamma}-1) for ideal gases with index {gamma}. For the radiative shock in which the radiative heat wave propagates supersonically, a threshold value for the net radiative flux to the preshock is also defined which determines whether the Hugoniot locus is reversed and the compression ratio exceeds the limiting value. Numerical results also verify the reversal of the Hugoniot locus of the shocks if the net radiative flux to the preshock exceeds the threshold value.

  20. Prompt TeV Emission from Cosmic Rays Accelerated by Gamma Ray Bursts Interacting with Surrounding Stellar Wind

    E-Print Network [OSTI]

    Soebur Razzaque; Olga Mena; Charles D. Dermer

    2008-11-24T23:59:59.000Z

    Protons accelerated in the internal shocks of a long duration gamma ray burst can escape the fireball as cosmic rays by converting to neutrons. Hadronic interactions of these neutrons inside a stellar wind bubble created by the progenitor star will produce TeV gamma rays via neutral meson decay and synchrotron radiation by charged pion-decay electrons in the wind magnetic field. Such gamma rays should be observable from nearby gamma ray bursts by currently running and upcoming ground-based detectors.

  1. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

    2007-10-23T23:59:59.000Z

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  2. Innovative Gamma Ray Spectrometer Detection Systems for Conducting Scanning Surveys on Challenging Terrain - 13583

    SciTech Connect (OSTI)

    Palladino, Carl; Mason, Bryan; Engle, Matt; LeVangie, James [The Palladino Company, Inc., 720 Fillmore St., San Francisco, CA 94117 (United States)] [The Palladino Company, Inc., 720 Fillmore St., San Francisco, CA 94117 (United States); Dempsey, Gregg [United States Environmental Protection Agency, P.O. Box 98517, Las Vegas, NV 89193-8517 (United States)] [United States Environmental Protection Agency, P.O. Box 98517, Las Vegas, NV 89193-8517 (United States); Klemovich, Ron [HydroGeoLogic, Inc., 6340 Glenwood, Suite 200, Building No. 7, Overland Park, KS 66202 (United States)] [HydroGeoLogic, Inc., 6340 Glenwood, Suite 200, Building No. 7, Overland Park, KS 66202 (United States)

    2013-07-01T23:59:59.000Z

    The Santa Susana Field Laboratory located near Simi Valley, California was investigated to determine the nature and extent of gamma radiation anomalies. The primary objective was to conduct gamma scanning surveys over 100 percent of the approximately 1,906,000 square meters (471 acre) project site with the most sensitive detection system possible. The site had challenging topography that was not conducive to traditional gamma scanning detection systems. Terrain slope varied from horizontal to 48 degrees and the ground surface ranged from flat, grassy meadows to steep, rocky hillsides. In addition, the site was home to many protected endangered plant and animal species, and archaeologically significant sites that required minimal to no disturbance of the ground surface. Therefore, four innovative and unique gamma ray spectrometer detection systems were designed and constructed to successfully conduct gamma scanning surveys of approximately 1,076,000 square meters (266 acres) of the site. (authors)

  3. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect (OSTI)

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29T23:59:59.000Z

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  4. Sensitivity of the FERMI Detectors to Gamma-Ray Bursts from Evaporating Primordial Black Holes (PBHs)

    E-Print Network [OSTI]

    T. N. Ukwatta; Jane H. MacGibbon; W. C. Parke; K. S. Dhuga; S. Rhodes; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

    2010-03-23T23:59:59.000Z

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. The Fermi Gamma-ray Space Telescope observatory offers increased sensitivity to the gamma-ray bursts produced by PBHs with an initial mass of $\\sim 5\\times 10^{14}$ g expiring today. PBHs are candidate progenitors of unidentified Gamma-Ray Bursts (GRBs) that lack X-ray afterglow. We propose spectral lag, which is the temporal delay between the high and low energy pulses, as an efficient method to identify PBH evaporation events with the Fermi Large Area Telescope (LAT).

  5. New Applications of Gamma Spectroscopy: Characterization Tools for D&D Process Development, Inventory Reduction Planning & Shipping, Safety Analysis & Facility Management During the Heavy Element Facility Risk Reduction Program

    SciTech Connect (OSTI)

    Mitchell, M; Anderson, B; Gray, L; Vellinger, R; West, M; Gaylord, R; Larson, J; Jones, G; Shingleton, J; Harris, L; Harward, N

    2006-01-23T23:59:59.000Z

    Novel applications of gamma ray spectroscopy for D&D process development, inventory reduction, safety analysis and facility management are discussed in this paper. These applications of gamma spectroscopy were developed and implemented during the Risk Reduction Program (RPP) to successfully downgrade the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL) from a Category II Nuclear Facility to a Radiological Facility. Non-destructive assay in general, gamma spectroscopy in particular, were found to be important tools in project management, work planning, and work control (''Expect the unexpected and confirm the expected''), minimizing worker dose, and resulted in significant safety improvements and operational efficiencies. Inventory reduction activities utilized gamma spectroscopy to identify and confirm isotopics of legacy inventory, ingrowth of daughter products and the presence of process impurities; quantify inventory; prioritize work activities for project management; and to supply information to satisfy shipper/receiver documentation requirements. D&D activities utilize in-situ gamma spectroscopy to identify and confirm isotopics of legacy contamination; quantify contamination levels and monitor the progress of decontamination efforts; and determine the point of diminishing returns in decontaminating enclosures and glove boxes containing high specific activity isotopes such as {sup 244}Cm and {sup 238}Pu. In-situ gamma spectroscopy provided quantitative comparisons of several decontamination techniques (e.g. TLC-free Stripcoat{trademark}, Radiac{trademark} wash, acid wash, scrubbing) and was used as a part of an iterative process to determine the appropriate level of decontamination and optimal cost to benefit ratio. Facility management followed a formal, rigorous process utilizing an independent, state certified, peer-reviewed gamma spectroscopy program, in conjunction with other characterization techniques, process knowledge, and historical records, to provide information for work planning, work prioritization, work control, and safety analyses (e.g. development of hold points, stop work points); and resulted in B251 successfully achieving Radiological status on schedule. Gamma spectroscopy helped to define operational approaches to achieve radiation exposure ALARA, e.g. hold points, appropriate engineering controls, PPE, workstations, and time/distance/shielding in the development of ALARA plans. These applications of gamma spectroscopy can be used to improve similar activities at other facilities.

  6. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, P.B.; Looney, L.D.

    1993-11-30T23:59:59.000Z

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  7. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, Peter B. (Los Alamos, NM); Looney, Larry D. (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  8. Discovery of TeV Gamma-Ray Emission from the Cygnus Region

    SciTech Connect (OSTI)

    Abdo, A.A.; Allen, B.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Coyne, D.G.; Delay, R.S.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; Gonzalez,; Goodman, J.A.; Hays, E.; Hoffman, C.M.; Kolterman, B.E.; Kelley, L.A.; Lansdell, C.P.; Linnemann, J.T.; McEnery, J.E.

    2006-11-28T23:59:59.000Z

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.

  9. Discovery of TeV Gamma-Ray Emission from the Cygnus Region of the Galaxy

    E-Print Network [OSTI]

    A. A. Abdo; B. Allen; D. Berley; E. Blaufuss; S. Casanova; C. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; R. W. Ellsworth; L. Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. E. Kolterman; L. A. Kelley; C. P. Lansdell; J. T. Linnemann; J. E. McEnery; A. I. Mincer; I. V. Moskalenko; P. Nemethy; D. Noyes; J. M. Ryan; F. W. Samuelson; P. M. Saz Parkinson; M. Schneider; A. Shoup; G. Sinnis; A. J. Smith; A. W. Strong; G. W. Sullivan; V. Vasileiou; G. P. Walker; D. A. Williams; X. W. Xu; G. B. Yodh

    2006-11-21T23:59:59.000Z

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.

  10. Interference effects in the $H(\\rightarrow \\gamma\\gamma) + 2$ jets channel at the LHC

    E-Print Network [OSTI]

    Coradeschi, F; Dixon, L J; Fidanza, N; Hoeche, S; Ita, H; Li, Y; Mazzitelli, J

    2015-01-01T23:59:59.000Z

    We compute the interference between the resonant process $pp\\to H(\\rightarrow \\gamma\\gamma)+2 \\text{ jets}$ and the corresponding continuum background at leading order in QCD. For the Higgs signal, we include gluon fusion (GF) and vector boson fusion (VBF) production channels, while for the background we consider all tree-level contributions, including pure EW effects (${\\cal O}(\\alpha_{QED}^4)$) and QCD contributions (${\\cal O}(\\alpha_{QED}^2 \\alpha_{s}^2)$), plus the loop-induced gluon-initiated process. After convolution with the experimental mass resolution, the main effect of the interference is to shift the position of the mass peak, as in the inclusive GF case studied previously. The apparent mass shift is small in magnitude but strongly dependent on the Higgs width, potentially allowing for a measurement of, or bound on, the width itself. In the $H(\\rightarrow \\gamma\\gamma)+2 \\text{ jets}$ channel, the VBF and GF contributions generate shifts of opposite signs which largely cancel, depending on the se...

  11. Definition of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal Decision Support forDeep InsightsLANS Gamma

  12. A Comparison of Simple Algorithms for Gamma-ray Spectrometers in Radioactive Source Search Applications

    SciTech Connect (OSTI)

    Jarman, Kenneth D.; Runkle, Robert C.; Anderson, Kevin K.; Pfund, David M.

    2008-03-01T23:59:59.000Z

    Large variation in time-dependent ambient gamma-ray radiation challenges the search for radiation sources. A common strategy to reduce the effects of background variation is to raise detection thresholds, but at the price of reduced detection sensitivity. We present simple algorithms that both reduce background variation and maintain trip-wire detection sensitivity with gamma-ray spectrometry. The best-performing algorithms focus on the spectral shape over several energy bins using Spectral Comparison Ratios and dynamically predict background with the Kalman Filter.

  13. Gamma neutron assay method and apparatus

    DOE Patents [OSTI]

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03T23:59:59.000Z

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  14. Gamma neutron assay method and apparatus

    DOE Patents [OSTI]

    Cole, Jerald D. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID); Greenwood, Reginald C. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  15. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2008-12-23T23:59:59.000Z

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  16. Radiation.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiationRadiation Safety Work

  17. Testing and Evaluation Protocol for Mobile and Transportable Radiation Monitors Used for Homeland

    E-Print Network [OSTI]

    Radiation Detection Instruments 3. Compliance Level Information Instrument under test might meet all

  18. Testing and Evaluation Protocol for Alarming Personal Radiation Detectors for Homeland Security

    E-Print Network [OSTI]

    Requirements [R4] NIST Handbook 150-23, NVLAP Radiation Detection Instruments 3. Compliance Level Information

  19. Radiative acceleration and transient, radiation-induced electric fields

    E-Print Network [OSTI]

    L. Zampieri; R. Turolla; L. Foschini; A. Treves

    2003-04-14T23:59:59.000Z

    The radiative acceleration of particles and the electrostatic potential fields that arise in low density plasmas hit by radiation produced by a transient, compact source are investigated. We calculate the dynamical evolution and asymptotic energy of the charged particles accelerated by the photons and the radiation-induced electric double layer in the full relativistic, Klein-Nishina regime. For fluxes in excess of $10^{27}$ ${\\rm erg} {\\rm cm}^{-2} {\\rm s}^{-1}$, the radiative force on a diluted plasma ($n\\la 10^{11}$ cm$^{-3}$) is so strong that electrons are accelerated rapidly to relativistic speeds while ions lag behind owing to their larger inertia. The ions are later effectively accelerated by the strong radiation-induced double layer electric field up to Lorentz factors $\\approx 100$, attainable in the case of negligible Compton drag. The asymptotic energies achieved by both ions and electrons are larger by a factor 2--4 with respect to what one could naively expect assuming that the electron-ion assembly is a rigidly coupled system. The regime we investigate may be relevant within the framework of giant flares from soft gamma-repeaters.

  20. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  1. Radiative corrections to real and virtual muon Compton scattering revisited

    E-Print Network [OSTI]

    N. Kaiser

    2010-03-04T23:59:59.000Z

    We calculate in closed analytical form the one-photon loop radiative corrections to muon Compton scattering $\\mu^- \\gamma \\to \\mu^- \\gamma $. Ultraviolet and infrared divergencies are both treated in dimensional regularization. Infrared finiteness of the (virtual) radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off $\\lambda$. We find that the anomalous magnetic moment $\\alpha/2\\pi$ provides only a very small portion of the full radiative corrections. Furthermore, we extend our calculation of radiative corrections to the muon-nucleus bremsstrahlung process (or virtual muon Compton scattering $\\mu^-\\gamma_0^* \\to \\mu^- \\gamma $). These results are particularly relevant for analyzing the COMPASS experiment at CERN in which muon-nucleus bremsstrahlung serves to calibrate the Primakoff scattering of high-energy pions off a heavy nucleus with the aim of measuring the pion electric and magnetic polarizabilities. We find agreement with an earlier calculation of these radiative corrections based on a different method.

  2. GammaPod-A new device dedicated for stereotactic radiotherapy of breast cancer

    SciTech Connect (OSTI)

    Yu, Cedric X. [University of Maryland School of Medicine, Baltimore, Maryland, 21201 and Xcision Medical Systems, LLC, Columbia, Maryland 21045 (United States); Shao Xinyu; Deng Jianchun; Duan Zhengcheng [Huazhong University of Science and Technology, Wuhan, Hebei (China); Zhang Jin; Zheng, Mike; Yu, Ying S. [Xcision Medical Systems, LLC, Columbia, Maryland, 21045 (United States); Regine, William [University of Maryland School of Medicine, Baltimore, Maryland, 21201 (United States)

    2013-05-15T23:59:59.000Z

    Purpose: This paper introduces a new external beam radiotherapy device named GammaPod that is dedicated for stereotactic radiotherapy of breast cancer. Methods: The design goal of the GammaPod as a dedicated system for treating breast cancer is the ability to deliver ablative doses with sharp gradients under stereotactic image guidance. Stereotactic localization of the breast is achieved by a vacuum-assisted breast immobilization cup with built-in stereotactic frame. Highly focused radiation is achieved at the isocenter due to the cross-firing from 36 radiation arcs generated by rotating 36 individual Cobalt-60 beams. The dedicated treatment planning system optimizes an optimal path of the focal spot using an optimization algorithm borrowed from computational geometry such that the target can be covered by 90%-95% of the prescription dose and the doses to surrounding tissues are minimized. The treatment plan is intended to be delivered with continuous motion of the treatment couch. In this paper the authors described in detail the gamma radiation unit, stereotactic localization of the breast, and the treatment planning system of the GammaPod system. Results: A prototype GammaPod system was installed at University of Maryland Medical Center and has gone through a thorough functional, geometric, and dosimetric testing. The mechanical and functional performances of the system all meet the functional specifications. Conclusions: An image-guided breast stereotactic radiotherapy device, named GammaPod, has been developed to deliver highly focused and localized doses to a target in the breast under stereotactic image guidance. It is envisioned that the GammaPod technology has the potential to significantly shorten radiation treatments and even eliminate surgery by ablating the tumor and sterilizing the tumor bed simultaneously.

  3. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra'anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01T23:59:59.000Z

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  4. actively-induced prompt radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Prompt dipole radiation in fusion reactions CERN Preprints Summary: The prompt gamma ray emission was investigated in the 16A MeV energy region by means of the 36,40Ar+96,92Zr...

  5. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect (OSTI)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; Ajello, M.; /SLAC; Anderson, B.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Bechtol, K.; /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /SLAC; Bregeon, J.; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Padua U. /Naval Research Lab, Wash., D.C. /Udine U. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Pisa /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari U. /INFN, Bari /INFN, Pisa /INFN, Bari /NASA, Goddard /Maryland U.; /more authors..

    2012-04-11T23:59:59.000Z

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  6. Kinetics and spectroscopy of KrF (B) and Kr sub 2 F (4 sup 2. Gamma. )

    SciTech Connect (OSTI)

    McCown, A.W.; Greene, D.P.

    1989-01-01T23:59:59.000Z

    The absorption spectra corresponding to transitions from the 4{sup 2}{Gamma} level to upper excited states of several rare gas-halide trimers (Kr{sub 2}F, Ar{sub 2}F and Xe{sub 2}Cl) have been measured at wavelengths ranging from 200 nm to as large as 800 nm. Absolute absorption cross sections for Kr{sub 2}F have been determined. Experiments are discussed that will measure the radiative lifetime of the KrF (B) state which is formed utilizing a sub-picosecond source. KrF B {leftrightarrow} C mixing, quenching rates and the B{yields}X stimulated emission cross section will be measured. 21 refs., 6 figs., 1 tab.

  7. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    SciTech Connect (OSTI)

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  8. The HAWC Gamma-Ray Observatory: Design, Calibration, and Operation

    E-Print Network [OSTI]

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01T23:59:59.000Z

    The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is under construction 4100 meters above sea level at Sierra Negra, Mexico. We describe the design and cabling of the detector, the characterization of the photomultipliers, and the timing calibration system. We also outline a next-generation detector based on the water Cherenkov technique.

  9. VERY HIGH ENERGY GAMMA RAY Tadashi KIFUNE

    E-Print Network [OSTI]

    Enomoto, Ryoji

    elementary particles as progenitor. The particle interaction includes also absorption of gamma rays through the present time. Detection of the relics of the earlier Universe, such as gamma rays from anti­based tech­ nique to detect TeV gamma rays. The current status of gamma ray astronomy in its growing stage

  10. Gamma-Ray Burst Lines

    E-Print Network [OSTI]

    Michael S. Briggs

    1999-10-20T23:59:59.000Z

    The evidence for spectral features in gamma-ray bursts is summarized. As a guide for evaluating the evidence, the properties of gamma-ray detectors and the methods of analyzing gamma-ray spectra are reviewed. In the 1980's, observations indicated that absorption features below 100 keV were present in a large fraction of bright gamma-ray bursts. There were also reports of emission features around 400 keV. During the 1990's the situation has become much less clear. A small fraction of bursts observed with BATSE have statistically significant low-energy features, but the reality of the features is suspect because in several cases the data of the BATSE detectors appear to be inconsistent. Furthermore, most of the possible features appear in emission rather than the expected absorption. Analysis of data from other instruments has either not been finalized or has not detected lines.

  11. 30TH INTERNATIONAL COSMIC RAY CONFERENCE Measuring TeV Gamma-Ray Diffuse Emission from the Galactic Plane with Milagro

    E-Print Network [OSTI]

    Moskalenko, Igor V.

    mechanisms such as the annihilation of dark matter particles [5]. At TeV energies, Milagro has previously@lanl.gov Abstract: Diffuse gamma radiation produced in the interaction of cosmic-ray particles with matter and long observation time the Milagro Gamma-Ray Observatory ­ a water Cherenkov detector in New Mexico, USA

  12. End-to-end calculation of the radiation characteristics of VVER-1000 spent fuel assemblies

    SciTech Connect (OSTI)

    Linge, I. I.; Mitenkova, E. F., E-mail: mit@ibrae.ac.ru; Novikov, N. V. [Russian Academy of Sciences, Nuclear Safety Institute (Russian Federation)

    2012-12-15T23:59:59.000Z

    The results of end-to-end calculation of the radiation characteristics of VVER-1000 spent nuclear fuel are presented. Details of formation of neutron and gamma-radiation sources are analyzed. Distributed sources of different types of radiation are considered. A comparative analysis of calculated radiation characteristics is performed with the use of nuclear data from different ENDF/B and EAF files and ANSI/ANS and ICRP standards.

  13. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    SciTech Connect (OSTI)

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

    2012-10-10T23:59:59.000Z

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  14. Magnetic Structures in Gamma-Ray Burst Jets Probed by Gamma-Ray Polarization

    E-Print Network [OSTI]

    Daisuke Yonetoku; Toshio Murakami; Shuichi Gunji; Tatehiro Mihara; Kenji Toma; Yoshiyuki Morihara; Takuya Takahashi; Yudai Wakashima; Hajime Yonemochi; Tomonori Sakashita; Noriyuki Toukairin; Hirofumi Fujimoto; Yoshiki Kodama

    2012-08-27T23:59:59.000Z

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the Gamma-ray burst polarimeter (GAP) aboard IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of $\\Pi = 70 \\pm 22$% with statistical significance of $3.7 \\sigma$ for GRB 110301A, and $\\Pi = 84^{+16}_{-28}$% with $3.3 \\sigma$ confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. (2011). Synchrotron emission model can be consistent with all the data of the three GRBs, while photospheric quasi-thermal emission model is not favorable. We suggest that magnetic field structures in the emission region are globally-ordered fields advected from the central engine.

  15. Gamma Ray Bursts and CETI

    E-Print Network [OSTI]

    Frank D. Smith Jr

    1993-02-10T23:59:59.000Z

    Gamma ray burst sources are isotropically distributed. They could be located at distances $\\sim 1000$ AU. (Katz \\cite{JK92}) GRB signals have many narrow peaks that are unresolved at the millisecond time resolution of existing observations. \\cite{JK87} CETI could use stars as gravitational lenses for interstellar gamma ray laser beam communication. Much better time resolution of GRB signals could rule out (or confirm?) the speculative hypothesis that GRB = CETI.

  16. Results of mobile gamma scanning activities in Tonawanda, New York

    SciTech Connect (OSTI)

    Cottrell, W.D.; Witt, D.A.; Rodriguez, R.E.; Carrier, R.F.

    1990-12-01T23:59:59.000Z

    During the 1940s, the Linde Air Products Division of Union Carbide operated a plant in Tonawanda, New York, for the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC). Uranium production and some nickel processing were conducted at the site. It is the policy of the US Department of Energy (DOE) to verify that radiological conditions at such sites or facilities comply with current DOE guidelines. Guidelines for release and use of such sites have become more stringent as research has provided more information since previous cleanups. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established as part of that effort to confirm the closeout status of facilities under contract to agencies preceding DOE during early nuclear energy development. Under the FUSRAP program, the Linde site itself has been previously investigated to determine the extent of on-site radiological contamination. As a precaution to insure that no residual radioactive materials were transported off-site, the Department of Energy requested that ORNL survey the area in the vicinity of the Linde Plant, the waste water treatment facility on Tower Road, the Sheridan Park Fire Station (District 4), and the Tonawanda Landfill to assess whether any residual radioactive material could be detected. The survey was conducted the week of April 3, 1990. Results of analysis of soil samples from the Tonawanda Landfill revealed slightly elevated concentrations of {sup 238}U and {sup 226}Ra suggestive of residuals from former Linde Plant operations. Therefore, it is recommended that additional surveying of the landfill property and of Sheridan Creek from south of the Linde property to its confluence with the Niagara River be conducted. The survey should include the measurement of gamma radiation levels and radionuclide analysis of silt samples. 6 refs., 4 figs., 1 tab.

  17. The Universe Viewed in Gamma-Rays 1 Concept of new gamma ray detector

    E-Print Network [OSTI]

    Enomoto, Ryoji

    a sensitivity of a detector at TeV gamma ray range. This method was used for a non-imaging detector as XrayThe Universe Viewed in Gamma-Rays 1 Concept of new gamma ray detector Satoko Osone Institute Abstract We present a concept of a new gamma ray detector in order to observe undetected TeV gamma ray

  18. Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift to GLASTto GLAST Bing ZhangBing ZhangGehrels, et al), et al) #12;Gamma-ray bursts: the mostGamma-ray bursts: the most violent explosions fireball central photosphere internal external shocks engine (shocks) (reverse) (forward) gamma-ray UV

  19. Wavelet Approach for Operational Gamma Spectral Peak Detection - Preliminary Assessment

    SciTech Connect (OSTI)

    ,

    2012-02-01T23:59:59.000Z

    Gamma spectroscopy for radionuclide identifications typically involves locating spectral peaks and matching the spectral peaks with known nuclides in the knowledge base or database. Wavelet analysis, due to its ability for fitting localized features, offers the potential for automatic detection of spectral peaks. Past studies of wavelet technologies for gamma spectra analysis essentially focused on direct fitting of raw gamma spectra. Although most of those studies demonstrated the potentials of peak detection using wavelets, they often failed to produce new benefits to operational adaptations for radiological surveys. This work presents a different approach with the operational objective being to detect only the nuclides that do not exist in the environment (anomalous nuclides). With this operational objective, the raw-count spectrum collected by a detector is first converted to a count-rate spectrum and is then followed by background subtraction prior to wavelet analysis. The experimental results suggest that this preprocess is independent of detector type and background radiation, and is capable of improving the peak detection rates using wavelets. This process broadens the doors for a practical adaptation of wavelet technologies for gamma spectral surveying devices.

  20. Gamma-ray probes of dark matter substructure

    SciTech Connect (OSTI)

    Campbell, Sheldon [Department of Physics and Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210 (United States)

    2014-06-24T23:59:59.000Z

    The substructure content of dark matter halos is interesting because it can be affected by complex galaxy physics and dark matter particle physics. However, observing the small scale structure of dark matter is a challenge. The subhalo abundance (mass function, minimum mass) and morphology (density profile, subhalo shape, subsubstructure) contain information about complex astrophysics (halo formation processes) and new exotic fundamental physics (dark matter interactions). Indirect detection of dark matter annihilation radiation (DMAR) in gamma rays may be the most direct method for observing small scale structure. I outline the ways in which gamma rays may probe halo substructure. If substructure is bountiful, it may be responsible for the eventual discovery of DMAR, for instance in galaxy clusters or the diffuse gamma-ray background. Otherwise, the observation of DMAR in places without much substructure, such as the Galactic center, would lead to strict limits on the properties of small scale structure. Properties of the gamma-ray angular power spectrum will also provide information or constraints on Milky Way halo substructure.

  1. Contribution of GRB Emission to the GeV Extragalactic Diffuse Gamma-Ray Flux

    E-Print Network [OSTI]

    S. Casanova; B. L. Dingus; Bing Zhang

    2006-11-03T23:59:59.000Z

    TeV gamma rays emitted by GRBs are converted into electron-positron pairs via interactions with the extragalactic infrared radiation fields. In turn the pairs produced, whose trajectories are randomized by magnetic fields, will inverse Compton scatter off the cosmic microwave background photons. The beamed TeV gamma ray flux from GRBs is thus transformed into a GeV isotropic gamma ray flux, which contributes to the total extragalactic gamma-ray background emission. Assuming a model for the extragalactic radiation fields, for the GRB redshift distribution and for the GRB luminosity function, we evaluate the contribution of the GRB prompt and scattered emissions to the measured extragalactic gamma-ray flux. To estimate this contribution we optimistically require that the energy flux at TeV energies is about 10 times stronger than the energy flux at MeV energies. The resulting gamma-ray diffuse background is only a small fraction of what is observed, allowing blazars and other sources to give the dominant contribution.

  2. Radiation Protection and Safety Training | Environmental Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation EffectsProtection

  3. A Case Study Correlating Innovative Gamma Ray Scanning Detection Systems Data to Surface Soil Gamma Spectrometry Results - 13580

    SciTech Connect (OSTI)

    Thompson, Shannon; Rodriguez, Rene; Billock, Paul [HydroGeoLogic, Inc., 11107 Sunset Hills Road, Suite 400, Reston, VA 20190 (United States)] [HydroGeoLogic, Inc., 11107 Sunset Hills Road, Suite 400, Reston, VA 20190 (United States); Lit, Peter [Nomad Science Group, 7738 Nautilus Shell Street, Las Vegas, NV 89139 (United States)] [Nomad Science Group, 7738 Nautilus Shell Street, Las Vegas, NV 89139 (United States)

    2013-07-01T23:59:59.000Z

    HydroGeoLogic (HGL), Inc. completed a United States Environmental Protection Agency (USEPA) study to characterize radiological contamination at a site near Canoga Park, California. The characterized area contained 470 acres including the site of a prototype commercial nuclear reactor and other nuclear design, testing, and support operations from the 1950's until 1988 [1]. The site history included radiological releases during operation followed by D and D activities. The characterization was conducted under an accelerated schedule and the results will support the project remediation. The project has a rigorous cleanup to background agenda and does not allow for comparison to risk-based guidelines. To target soil sample locations, multiple lines of evidence were evaluated including a gamma radiation survey, geophysical surveys, historical site assessment, aerial photographs, and former worker interviews. Due to the time since production and decay, the primary gamma emitting radionuclide remaining is cesium-137 (Cs-137). The gamma ray survey covered diverse, rugged terrain using custom designed sodium iodide thallium-activated (NaI(Tl)) scintillation detection systems. The survey goals included attaining 100% ground surface coverage and detecting gamma radiation as sensitively as possible. The effectiveness of innovative gamma ray detection systems was tested by correlating field Cs-137 static count ratios to Cs-137 laboratory gamma spectrometry results. As a case study, the area encompassing the former location of the first nuclear power station in the U. S. was scanned, and second by second global positioning system (GPS)-linked gamma spectral data were evaluated by examining total count rate and nuclide-specific regions of interest. To compensate for Compton scattering from higher energy naturally occurring radionuclides (U-238, Th-232 and their progeny, and K-40), count rate ratios of anthropogenic nuclide-specific regions of interest to the total count rate were calculated. From the scanning data, locations with observed Cs-137 ratios exceeding six standard deviations above the mean ratio were mapped in high resolution [2]. Field teams returned to those locations to collect static count measurements using the same detection systems. Soil surface samples were collected at 30 locations and analyzed for Cs-137. An exponential correlation was identified between Cs-137 concentrations in surface soil and field-scanned Cs-137 ratios. The data indicate field minimum detectable concentration (MDC) of Cs-137 at 0.02 Bq/g (0.5 pCi/g) or lower depending on contaminant distribution in soil. (authors)

  4. Gamma irradiation effects on the biodegradation of lignin

    E-Print Network [OSTI]

    Krysinski, Thomas Leon

    1966-01-01T23:59:59.000Z

    4/ X / 2. 0 3. 0 4. 0 5. 0 6. 0 7. 0 Wavelength in microns 8. 0 9. 0 28 CHAPTER VI RESULTS AND CONCLUSIONS A commercia I CLS was irradiated in a dry state to various total dose levels of Co-60 gamma rays. The effects on the structure... structure of lignin and lignin derivatives, some alteration in the structure of these compounds may be necessary before any of the above treatment processes can yield a higher reduction in the residual lignin content. For many years the effects of gamma...

  5. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  6. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  7. Measurements of B to V(Gamma) Decays

    SciTech Connect (OSTI)

    Yarritu, Aaron K.; /Stanford U., Phys. Dept.; ,

    2010-09-02T23:59:59.000Z

    The standard model has been highly successful at describing current experimental data. However, extensions of the standard model predict particles that have masses at energy scales that are above the electroweak scale. The flavor-changing neutral current processes of the B meson are sensitive to the influences of these new physics contributions. These processes proceed through loop diagrams, thus allowing new physics to enter at the same order as the standard model. New physics may contribute to the enhancement or suppression of rate asymmetries or the decay rates of these processes. The transition B {yields} V{gamma} (V = K*(892), {rho}(770), {omega}(782), {phi}(1020)) represents radiative decays of the B meson that proceed through penguin processes. Hadronic uncertainties limit the theoretical accuracy of the prediction of the branching fractions. However, uncertainties, both theoretical and experimental, are much reduced when considering quantities involving ratios of branching fractions, such as CP or isospin asymmetries. The most dominant exclusive radiative b {yields} s transition is B {yields} K*{gamma}. We present the best measurements of the branching fractions, direct CP, and isospin asymmetries of B {yields} K*{gamma}. The analogous b {yields} d transitions are B {yields} {rho}{gamma} and B {yields} {omega}{gamma}, which are suppressed by a factor of |V{sub td}/V{sub ts}|{sup 2} {approx} 0.04 relative to B {yields} K*{gamma}. A measurement of the branching fractions and isospin asymmetry of B{sup +} {yields} {rho}{sup +}{gamma} and B{sup 0} {yields} {rho}{sup 0}{gamma}, as well as a search for B {yields} {omega}{gamma}, are also given. These measurements are combined to calculate the ratio of CKM matrix elements |V{sub td}/V{sub ts}|, which corresponds to the length of one side of the unitary triangle. Finally, we present a search for the penguin annihilation process B {yields}{phi}{gamma}. We use a sample of 383 million B{bar B} events collected with the BABAR detector at the PEP-II asymmetric-energy B factory for the analysis of B {yields} K*{gamma}. We measure the branching fractions {Beta}(B{sup 0} {yields} K*{sup 0}{gamma}) = (4.47 {+-} 0.10 {+-} 0.16) x 10{sup -5} and {Beta}(B{sup +} {yields} K*{sup +}{gamma}) = (4.22 {+-} 0.14 {+-} 0.16) x 10{sup -5}. We measure the direct CP asymmetry to be -0.033 < {Alpha}{sub CP} (B {yields} K*{gamma}) < 0.028 and the isospin asymmetry to be 0.017 < {Delta}{sub 0-} < 0.116, where the limits are determined at the 90% C.L. and include both the statistical and systematic uncertainties. Using a sample of 347 million B{bar B} events, we measure the branching fractions {Beta}(B{sup +} {yields} {rho}{sup +}{gamma}) = (1.10{sub -0.33}{sup +0.37} {+-} 0.09) x 10{sup -6} and {Beta}(B{sup 0} {yields} {rho}{sup 0}{gamma}) = (0.79{sub -0.20}{sup +0.22} {+-} 0.06) x 10{sup -6}, the isospin asymmetry {Delta} = -0.35 {+-} 0.27, and set a 90% C.L. upper limit {Beta}(B {yields} {omega}{gamma}) < 0.78 x 10{sup -6}. We also measure the isospin-averaged branching fraction {Beta}(B {yields} ({rho}/{omega}){gamma}) = (1.25{sub -0.24}{sup +0.25} {+-} 0.09) x 10{sup -6}, from which we determine |V{sub td}/V{sub ts}|= 0.200{sub -0.020}{sup +0.021} {+-} 0.015, where the first uncertainty is experimental and the second theoretical. Finally, a sample of 124 million B{bar B} events is used to set an upper limit of {Beta}(B {yields} {phi}{gamma}) < 8.5 x 10{sup -7} at the 90% C.L.

  8. Gravitational Radiation

    E-Print Network [OSTI]

    Bernard F Schutz

    2000-03-16T23:59:59.000Z

    Gravity is one of the fundamental forces of Nature, and it is the dominant force in most astronomical systems. In common with all other phenomena, gravity must obey the principles of special relativity. In particular, gravitational forces must not be transmitted or communicated faster than light. This means that when the gravitational field of an object changes, the changes ripple outwards through space and take a finite time to reach other objects. These ripples are called gravitational radiation or gravitational waves. This article gives a brief introduction to the physics of gravitational radiation, including technical material suitable for non-specialist scientists.

  9. The emission of Gamma Ray Bursts as a test-bed for modified gravity

    E-Print Network [OSTI]

    Salvatore Capozziello; Gaetano Lambiase

    2015-04-15T23:59:59.000Z

    The extreme physical conditions of Gamma Ray Bursts can constitute a useful observational laboratory to test theories of gravity where very high curvature regimes are involved. Here we propose a sort of curvature engine capable, in principle, of explaining the huge energy emission of Gamma Ray Bursts. Specifically, we investigate the emission of radiation by charged particles non-minimally coupled to the gravitational background where higher order curvature invariants are present. The coupling gives rise to an additional force inducing a non-geodesics motion of particles. This fact allows a strong emission of radiation by gravitationally accelerated particles. As we will show with some specific model, the energy emission is of the same order of magnitude of that characterizing the Gamma Ray Burst physics. Alternatively, strong curvature regimes can be considered as a natural mechanism for the generation of highly energetic astrophysical events.

  10. The emission of Gamma Ray Bursts as a test-bed for modified gravity

    E-Print Network [OSTI]

    Capozziello, Salvatore

    2015-01-01T23:59:59.000Z

    The extreme physical conditions of Gamma Ray Bursts can constitute a useful observational laboratory to test theories of gravity where very high curvature regimes are involved. Here we propose a sort of curvature engine capable, in principle, of explaining the huge energy emission of Gamma Ray Bursts. Specifically, we investigate the emission of radiation by charged particles non-minimally coupled to the gravitational background where higher order curvature invariants are present. The coupling gives rise to an additional force inducing a non-geodesics motion of particles. This fact allows a strong emission of radiation by gravitationally accelerated particles. As we will show with some specific model, the energy emission is of the same order of magnitude of that characterizing the Gamma Ray Burst physics. Alternatively, strong curvature regimes can be considered as a natural mechanism for the generation of highly energetic astrophysical events.

  11. Directional correlation measurements for gamma transitions in /sup 127/Te

    SciTech Connect (OSTI)

    de Souza, M.O.M.D.; Saxena, R.N.

    1985-02-01T23:59:59.000Z

    The directional correlation of coincident ..gamma.. transitions in /sup 127/Te has been measured following the ..beta../sup -/ decay of /sup 127/Sb (T/sub 1/2/ = 3.9 d) using Ge(Li)-Ge(Li) and Ge(Li)-NaI(T1) gamma spectrometers. Measurements have been carried out for 14 gamma cascades resulting in the determination of multipole mixing ratios delta(E2/M1) for 15 ..gamma.. transitions. The present results permitted a definite spin assignment of (7/2) for the 785 keV level and confirmation of several previous assignments to other levels in /sup 127/Te. The g factor of the 340 keV ((9/2)/sup -/) level has also been measured using the integral perturbed angular correlation method in the hyperfine magnetic field of a Te in Ni matrix. The results of the g factor as well as the mixing ratio for the 252 keV ((9/2)/sup -/..-->..(11/2)/sup -/) transition support the earlier interpretation of this state as an anomalous coupling state.

  12. Astrophysical S factor for C-13(p,gamma)N-14 and asymptotic normalization coefficients

    E-Print Network [OSTI]

    Mukhamedzhanov, AM; Azhari, A.; Burjan, V.; Gagliardi, Carl A.; Kroha, V.; Sattarov, A.; Tang, X.; Trache, L.; Tribble, Robert E.

    2002-01-01T23:59:59.000Z

    We reanalyze the C-13(p,gamma)N-14 radiative capture reaction within the R-matrix approach. The low-energy astrophysical S factor has important contributions from both resonant and onresonant captures. The normalization of the nonresonant component...

  13. Gamma ray spectroscopic analysis of building materials used in Tiruvannamalai, Tamilnadu, India

    SciTech Connect (OSTI)

    Ravisankar, R.; Vanasundari, K.; Suganya, M.; Chandrasekaran, A.; Raghu, Y.; Sivakumar, S.; Vijayagopal, P.; Meenakshisundaram, V. [Post Graduate and Research Department of Physics, Government Arts College, Tiruvannamalai-606603 (India); Department of Physics, Global Institute of Engineering and Technology, Vellore-632509, Tamilnadu (India); Department of Physics, Aarupadai Veedu Institute of Technology, Paiyanoor-603 104.Tamilnadu (India); Department of Physics, Arunai Engineering College, Tiruvannamalai-606603, Tamilnadu (India); Radiological Safety Division. Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2012-06-05T23:59:59.000Z

    Building materials cause direct radiation exposure because of their radium, thorium and potassium content. In this paper, samples of commonly used building materials in Tiruvannamalai, city, have been collected randomly over the city. The samples were tested for their radioactivity contents by using gamma spectroscopic measurements. All samples under investigation are within the recommended safety limit when used as building construction.

  14. Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation

    E-Print Network [OSTI]

    New Mexico, University of

    Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation Nathan J. Withers are reported. Optical degradation is evaluated by tracking the dependence of photoluminescence intensity on irradiation dose. CdSe/ZnS quantum dots show poor radiation hardness, and severely degrade after less than 20

  15. Discovery of TeV Gamma-Ray Emission from the Cygnus Region of the Galaxy

    E-Print Network [OSTI]

    Abdo, A A; Berley, D; Blaufuss, E; Casanova, S; Chen, C; Coyne, D G; Delay, R S; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; González, M M; Goodman, J A; Hays, E; Hoffman, C M; Kolterman, B E; Kelley, L A; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Moskalenko, I V; Némethy, P; Noyes, D; Ryan, J M; Samuelson, F W; Parkinson, P M S; Schneider, M; Shoup, A; Sinnis, G; Smith, A J; Strong, A W; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Xu, X W; Yodh, G B

    2006-01-01T23:59:59.000Z

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray prod...

  16. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2011-05-17T23:59:59.000Z

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  17. And the remaining 22 photons: The development of gamma ray and gamma ray burst astronomy

    E-Print Network [OSTI]

    Trimble, V

    2005-01-01T23:59:59.000Z

    goblins and cosmic gamma ray bursts. Astrophysics and Spacelinear alignments of gamma-ray burst sources. Journal of theE.E. (eds. ), 1992. Gamma Ray Bursts. Cambridge, Cambridge

  18. Propagation of very high energy gamma-rays inside massive binaries LS 5039 and LSI +61 303

    E-Print Network [OSTI]

    W. Bednarek

    2006-01-28T23:59:59.000Z

    It is expected that high energy gamma-rays, if injected relatively close to the massive stars in binary systems LS 5039 and LSI 61 3003, should be strongly absorbed, initiating inverse Compton $e^\\pm$ pair cascades in the anisotropic radiation from stellar surfaces. We investigate influence of the propagation effects on the spectral and angular features of the gamma-ray spectra emerging from these two binary systems by applying the Monte Carlo method. Two different hypothesis are considered: isotropic injection of primary gamma-rays with the power law spectrum and electrons. It is concluded that propagation effects of gamma-rays can be responsible for the spectral features observed from LS 5039. The cascade processes occurring inside these binary systems significantly reduce the gamma-ray opacity obtained in other works by simple calculations of the escape of gamma-rays from the radiation fields of the massive stars. Both systems provide very similar conditions for the TeV gamma-ray production at the periastron passage. Any TeV gamma-ray flux at the apastron passage in LSI +61 303 will be relatively stronger with respect to its GeV flux than in LS 5039. If gamma-rays are produced inside these binaries not far from the massive stars, i.e. within a few stellar radii, then clear anticorrelation between the GeV and TeV emission should be observed, provided that primary gamma-rays at GeV and TeV energies are produced in the same process by the same population of relativistic particles. These gamma-ray propagation features can be tested in the near future by the multi-wavelength campaigns engaging the AGILE and GLAST telescopes and the Cherenkov telescopes (e.g. MAGIC, HESS, VERITAS and CANGAROO).

  19. Gamma-ray bursts, axion emission and string theory dilaton

    E-Print Network [OSTI]

    O. Bertolami

    1999-01-14T23:59:59.000Z

    The emission of axions from supernovae is an interesting possibility to account for the Gamma-Ray Bursts provided their energy can be effectively converted into electromagnetic energy elsewhere. The connection between supernova and gamma-ray bursts has been recently confirmed by the observed correlation between the burst of April 25, 1998 and the supernova SN1998bw. We argue that the axion convertion into photons can be more efficient if one considers the coupling between an intermediate scale axion and the string theory dilaton along with the inclusion of string loops. We also discuss the way dilaton dynamics may allow for a more effective energy exchange with electromagnetic radiation in the expansion process of fireballs.

  20. Overview of the gamma reaction history diagnostic for the national ignition facility (NIF)

    SciTech Connect (OSTI)

    Kim, Yong Ho [Los Alamos National Laboratory; Evans, Scott C [Los Alamos National Laboratory; Herrmann, Hans W [Los Alamos National Laboratory; Mack, Joseph M [Los Alamos National Laboratory; Young, Carl S [Los Alamos National Laboratory; Malone, Robert M [Los Alamos National Laboratory; Cox, Brian C [Los Alamos National Laboratory; Frogget, Brent C [Los Alamos National Laboratory; Kaufman, Morris I [Los Alamos National Laboratory; Tunnell, Thomas W [Los Alamos National Laboratory; Tibbitts, Aric [Los Alamos National Laboratory; Palagi, Martin J [NST/LAS VEGAS; Stoeffl, Wolfgang [LLNL

    2010-01-01T23:59:59.000Z

    The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 900 off-axis parabolic mirrors to rel ay Cherenkov light from a volume of pressurized gas. This non imaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

  1. Fundamental physics in space with the Fermi Gamma-ray Space Telescope

    E-Print Network [OSTI]

    Luca Baldini for the Fermi LAT Collaboration

    2011-01-09T23:59:59.000Z

    Successfully launched in June 2008, the Fermi Gamma-ray Space Telescope, formerly named GLAST, has been observing the high-energy gamma-ray sky with unprecedented sensitivity for more than two years, opening a new window on a wide variety of exotic astrophysical objects. This paper is a short overview of the main science highlights, aimed at non-specialists, with emphasis on those which are more directly connected with the study of fundamental physics---particularly the search for signals of new physics in the diffuse gamma-ray emission and in the cosmic radiation and the study of Gamma-Ray Burst as laboratories for testing possible violations of the Lorentz invariance.

  2. Radiation Protection | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation governing

  3. Effects of ionizing radiation on the response of certain photosensitive seeds to red light

    E-Print Network [OSTI]

    Richardson, Billy

    1964-01-01T23:59:59.000Z

    of gamma radiation and red light on the germination of L~t~ua ~tva New York. Data recorded 48 hours after start of imbibition. 18 Gamma-irradiated ~La t~ ~t New York seeds 48 hours after start of imbibition. One hundred (top) and 300 (bottom) K-rads...~nt g, seeds 48 hours after start of imbibition. Top (left to right): 0, 25, 50, 75 K-rads; bottom: 100, 200, 300, 400 K-rads, administered to dry seed. . 26 Effects of gamma radiation and red light on the germination of Lactuca gativa Grand Rapids...

  4. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  5. Crystal diffraction lens telescope for focusing nuclear gamma rays

    SciTech Connect (OSTI)

    Smither, R.K.; Fernandez, P.B.; Graber, T. [Argonne National Lab., IL (United States). Advanced Photon Source; Ballmoos, P. von; Naya, J.; Albernhe, F.; Vedrenne, G. [Centre d`Etude Spatiale des Rayonnements, Toulouse (France); Faiz, M. [KFUPM, Dhahran (Saudi Arabia). Physics Dept.

    1996-08-01T23:59:59.000Z

    A crystal diffraction lens was constructed at Argonne National Laboratory for use as a telescope to focus nuclear gamma rays. It consisted of 600 single crystals of germanium arranged in 8 concentric rings. The mounted angle of each crystal was adjusted to intercept and diffract the incoming gamma rays with an accuracy of a few arc sec. The performance of the lens was tested in two ways. In one case, the gamma rays were focused on a single medium size germanium detector. In the second case, the gamma rays were focused on the central germanium detector of a 3 x 3 matrix of small germanium detectors. The efficiency, image concentration and image quality, and shape were measured. The tests performed with the 3 x 3 matrix detector system were particularly interesting. The wanted radiation was concentrated in the central detector. The 8 other detectors were used to detect the Compton scattered radiation, and their energy was summed with coincident events in the central detector. This resulted in a detector with the efficiency of a large detector (all 9 elements) and the background of a small detector (only the central element). The use of the 3 x 3 detector matrix makes it possible to tell if the source is off axis and, if so, to tell in which direction. The crystal lens acts very much like a simple convex lens for visible light. Thus if the source is off to the left then the image will focus off to the right illuminating the detector on the right side: telling one in which direction to point the telescope. Possible applications of this type of crystal lens to balloon and satellite experiments will be discussed.

  6. AGATA - Advanced Gamma Tracking Array

    E-Print Network [OSTI]

    S. Akkoyun; A. Algora; B. Alikhani; F. Ameil; G. de Angelis; L. Arnold; A. Astier; A. Ataç; Y. Aubert; C. Aufranc; A. Austin; S. Aydin; F. Azaiez; S. Badoer; D. L. Balabanski; D. Barrientos; G. Baulieu; R. Baumann; D. Bazzacco; F. A. Beck; T. Beck; P. Bednarczyk; M. Bellato; M. A. Bentley; G. Benzoni; R. Berthier; L. Berti; R. Beunard; G. Lo Bianco; B. Birkenbach; P. G. Bizzeti; A. M. Bizzeti-Sona; F. Le Blanc; J. M. Blasco; N. Blasi; D. Bloor; C. Boiano; M. Borsato; D. Bortolato; A. J. Boston; H. C. Boston; P. Bourgault; P. Boutachkov; A. Bouty; A. Bracco; S. Brambilla; I. P. Brawn; A. Brondi; S. Broussard; B. Bruyneel; D. Bucurescu; I. Burrows; A. Bürger; S. Cabaret; B. Cahan; E. Calore; F. Camera; A. Capsoni; F. Carrió; G. Casati; M. Castoldi; B. Cederwall; J. -L. Cercus; V. Chambert; M. El Chambit; R. Chapman; L. Charles; J. Chavas; E. Clément; P. Cocconi; S. Coelli; P. J. Coleman-Smith; A. Colombo; S. Colosimo; C. Commeaux; D. Conventi; R. J. Cooper; A. Corsi; A. Cortesi; L. Costa; F. C. L. Crespi; J. R. Cresswell; D. M. Cullen; D. Curien; A. Czermak; D. Delbourg; R. Depalo; T. Descombes; P. Désesquelles; P. Detistov; C. Diarra; F. Didierjean; M. R. Dimmock; Q. T. Doan; C. Domingo-Pardo; M. Doncel; F. Dorangeville; N. Dosme; Y. Drouen; G. Duchêne; B. Dulny; J. Eberth; P. Edelbruck; J. Egea; T. Engert; M. N. Erduran; S. Ertürk; C. Fanin; S. Fantinel; E. Farnea; T. Faul; M. Filliger; F. Filmer; Ch. Finck; G. de France; A. Gadea; W. Gast; A. Geraci; J. Gerl; R. Gernhäuser; A. Giannatiempo; A. Giaz; L. Gibelin; A. Givechev; N. Goel; V. González; A. Gottardo; X. Grave; J. Gr?bosz; R. Griffiths; A. N. Grint; P. Gros; L. Guevara; M. Gulmini; A. Görgen; H. T. M. Ha; T. Habermann; L. J. Harkness; H. Harroch; K. Hauschild; C. He; A. Hernández-Prieto; B. Hervieu; H. Hess; T. Hüyük; E. Ince; R. Isocrate; G. Jaworski; A. Johnson; J. Jolie; P. Jones; B. Jonson; P. Joshi; D. S. Judson; A. Jungclaus; M. Kaci; N. Karkour; M. Karolak; A. Ka?ka?; M. Kebbiri; R. S. Kempley; A. Khaplanov; S. Klupp; M. Kogimtzis; I. Kojouharov; A. Korichi; W. Korten; Th. Kröll; R. Krücken; N. Kurz; B. Y. Ky; M. Labiche; X. Lafay; L. Lavergne; I. H. Lazarus; S. Leboutelier; F. Lefebvre; E. Legay; L. Legeard; F. Lelli; S. M. Lenzi; S. Leoni; A. Lermitage; D. Lersch; J. Leske; S. C. Letts; S. Lhenoret; R. M. Lieder; D. Linget; J. Ljungvall; A. Lopez-Martens; A. Lotodé; S. Lunardi; A. Maj; J. van der Marel; Y. Mariette; N. Marginean; R. Marginean; G. Maron; A. R. Mather; W. M?czy?ski; V. Mendéz; P. Medina; B. Melon; R. Menegazzo; D. Mengoni; E. Merchan; L. Mihailescu; C. Michelagnoli; J. Mierzejewski; L. Milechina; B. Million; K. Mitev; P. Molini; D. Montanari; S. Moon; F. Morbiducci; R. Moro; P. S. Morrall; O. Möller; A. Nannini; D. R. Napoli; L. Nelson; M. Nespolo; V. L. Ngo; M. Nicoletto; R. Nicolini; Y. Le Noa; P. J. Nolan; M. Norman; J. Nyberg; A. Obertelli; A. Olariu; R. Orlandi; D. C. Oxley; C. Özben; M. Ozille; C. Oziol; E. Pachoud; M. Palacz; J. Palin; J. Pancin; C. Parisel; P. Pariset; G. Pascovici; R. Peghin; L. Pellegri; A. Perego; S. Perrier; M. Petcu; P. Petkov; C. Petrache; E. Pierre; N. Pietralla; S. Pietri; M. Pignanelli; I. Piqueras; Z. Podolyak; P. Le Pouhalec; J. Pouthas; D. Pugnére; V. F. E. Pucknell; A. Pullia; B. Quintana; R. Raine; G. Rainovski; L. Ramina; G. Rampazzo; G. La Rana; M. Rebeschini; F. Recchia; N. Redon; M. Reese; P. Reiter; P. H. Regan; S. Riboldi; M. Richer; M. Rigato; S. Rigby; G. Ripamonti; A. P. Robinson; J. Robin; J. Roccaz; J. -A. Ropert; B. Rossé; C. Rossi Alvarez; D. Rosso; B. Rubio; D. Rudolph; F. Saillant; E. ?ahin; F. Salomon; M. -D. Salsac; J. Salt; G. Salvato; J. Sampson; E. Sanchis; C. Santos; H. Schaffner; M. Schlarb; D. P. Scraggs; D. Seddon; M. ?enyi?it; M. -H. Sigward; G. Simpson; J. Simpson; M. Slee; J. F. Smith; P. Sona; B. Sowicki; P. Spolaore; C. Stahl; T. Stanios; E. Stefanova; O. Stézowski; J. Strachan; G. Suliman; P. -A. Söderström; J. L. Tain; S. Tanguy; S. Tashenov; Ch. Theisen; J. Thornhill; F. Tomasi; N. Toniolo; R. Touzery; B. Travers; A. Triossi; M. Tripon; K. M. M. Tun-Lanoë; M. Turcato; C. Unsworth; C. A. Ur; J. J. Valiente-Dobon; V. Vandone; E. Vardaci; R. Venturelli; F. Veronese; Ch. Veyssiere; E. Viscione; R. Wadsworth; P. M. Walker; N. Warr; C. Weber; D. Weisshaar; D. Wells; O. Wieland; A. Wiens; G. Wittwer; H. J. Wollersheim; F. Zocca; N. V. Zamfir; M. Zi?bli?ski; A. Zucchiatti

    2012-09-17T23:59:59.000Z

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realization of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly-segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterization of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximize its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.

  7. Neutron and Gamma Probe Application to Hanford Tank 241-SY-101

    SciTech Connect (OSTI)

    CANNON, N.S.

    2000-02-01T23:59:59.000Z

    A neutron (moisture-sensitive) and gamma (in-situ radiation) probe technique has been utilized at a number of Hanford radioactive waste tanks for many years. This technology has been adapted for use in tank 241-SY-101's two Multifunction Instrument Trees (MITs) which have a hollow dry-well center opening two inches (51 cm) in diameter. These probes provide scans starting within a few inches of the tank bottom and traversing up through the top of the tank revealing a variety of waste features as a function of tank elevation. These features have been correlated with void fraction data obtained independently from two other devices, the Retained Gas Sampler (RGS) and the Void Fraction Instrument (VFI). The MIT probes offer the advantage of nearly continuous count-rate versus elevation scans and they can be operated significantly more often and at lower cost than temperature probes or the RGS or VFI devices while providing better depth resolution. The waste level in tank 241-SY-101 had been rising at higher rates than expected during 1998 and early 1999 indicating an increasing amount of trapped gas in the waste. The use of the MIT probes has assisted in evaluating changes in crust thickness and level and also in estimating relative changes in gas stored in the crust. This information is important in assuring that the tank remains in a safe configuration and will support safe waste transfer when those operations take place.

  8. ON THE RECENTLY DISCOVERED CORRELATIONS BETWEEN GAMMA-RAY AND X-RAY PROPERTIES OF GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Dado, Shlomo; Dar, Arnon [Physics Department, Technion, Haifa 32000 (Israel)

    2013-09-20T23:59:59.000Z

    Recently, many correlations between the prompt {gamma}-ray emission properties and the X-ray afterglow properties of gamma-ray bursts (GRBs) have been inferred from a comprehensive analysis of the X-ray light curves of more than 650 GRBs measured with the Swift X-Ray Telescope (Swift/XRT) during the years 2004-2010. We show that these correlations are predicted by the cannonball (CB) model of GRBs. They result from the dependence of GRB observables on the bulk motion Lorentz factor and viewing angle of the jet of highly relativistic plasmoids (CBs) that produces the observed radiations by interaction with the medium through which it propagates. Moreover, despite their different physical origins, long GRBs (LGRBs) and short-hard bursts (SHBs) in the CB model share similar kinematic correlations, which can be combined into triple correlations satisfied by both LGRBs and SHBs.

  9. Radiation zeros in weak boson production processes at hadron colliders

    E-Print Network [OSTI]

    F. Mamedov

    2001-07-31T23:59:59.000Z

    The Standard Model amplitudes for processes where one or more gauge bosons are emitted exhibit zeros in the angular distributions. The theoretical and experimental aspects of these radiation amplitude zeros are reviewed and some recent results are discussed. In particular, the zeros of the $WZ\\gamma$ and $WZZ$ production amplitudes are analyzed. It is briefly explained how radiation zeros can be used to test the SM.

  10. On an Improvement of the Planck radiation Energy Distribution

    E-Print Network [OSTI]

    Diego Saa

    2006-07-18T23:59:59.000Z

    The probability distribution function for thermodynamics and econophysics is obtained by solving an equilibrium equation. This approach is different from the common one of optimizing the entropy of the system or obtaining the state of maximum probability, which usually obtains as a result the Boltzmann distribution. The Gamma distribution is proposed as a better equation to describe the blackbody radiation in substitution of Planck's radiation equation. Also, a new form of entropy is proposed, that maintains the correct relation with the Clausius' formula.

  11. Matter Wave Radiation Leading to Matter Teleportation

    E-Print Network [OSTI]

    Yong-Yi Huang

    2015-02-12T23:59:59.000Z

    The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

  12. Gamma source for active interrogation

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2012-10-02T23:59:59.000Z

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  13. Neutrinos from Gamma Ray Bursts

    E-Print Network [OSTI]

    F. Halzen; G. Jaczko

    1996-02-07T23:59:59.000Z

    We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

  14. Gamma source for active interrogation

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Barletta, William A. (Oakland, CA)

    2009-09-29T23:59:59.000Z

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  15. Tritium monitor with improved gamma-ray discrimination

    DOE Patents [OSTI]

    Cox, Samson A. (Downers Grove, IL); Bennett, Edgar F. (Downers Grove, IL); Yule, Thomas J. (West Chicago, IL)

    1985-01-01T23:59:59.000Z

    Apparatus and method for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  16. Gamma-ray free-electron lasers: Quantum fluid model

    E-Print Network [OSTI]

    Silva, H M

    2014-01-01T23:59:59.000Z

    A quantum fluid model is used to describe the interacion of a nondegenerate cold relativistic electron beam with an intense optical wiggler taking into account the beam space-charge potential and photon recoil effect. A nonlinear set of coupled equations are obtained and solved numerically. The numerical results shows that in the limit of plasma wave-breaking an ultra-high power radiation pulse are emitted at the$\\gamma$-ray wavelength range which can reach an output intensity near the Schwinger limit depending of the values of the FEL parameters such as detuning and input signal initial phase at the entrance of the interaction region.

  17. High Efficiency of Gamma-Ray Bursts Revisited

    E-Print Network [OSTI]

    Y. C. Zou; Z. G. Dai

    2007-03-07T23:59:59.000Z

    Using the conservation of energy and momentum during collisions of any two shells, we consider the efficiency of gamma-ray bursts by assuming that the ejecta from the central engine are equally massive and have the same Lorentz factors. We calculate the efficiency and the final Lorentz factor of the merged whole shell for different initial diversities of Lorentz factors and for different microscopic radiative efficiency. As a result, a common high efficiency in the range of 0.1 to 0.9 is considerable, and a very high value near 100% is also reachable if the diversity of the Lorentz factors is large enough.

  18. Tritium monitor with improved gamma-ray discrimination

    DOE Patents [OSTI]

    Cox, S.A.; Bennett, E.F.; Yule, T.J.

    1982-10-21T23:59:59.000Z

    Apparatus and method are presented for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  19. FY2008 Report on GADRAS Radiation Transport Methods.

    SciTech Connect (OSTI)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee; Varley, Eric S.; Hilton, Nathan R. [Sandia National Laboratories, Livermore, CA

    2008-10-01T23:59:59.000Z

    The primary function of the Gamma Detector Response and Analysis Software (GADRAS) is the solution of inverse radiation transport problems, by which the con-figuration of an unknown radiation source is inferred from one or more measured radia-tion signatures. GADRAS was originally developed for the analysis of gamma spec-trometry measurements. During fiscal years 2007 and 2008, GADRAS was augmented to implement the simultaneous analysis of neutron multiplicity measurements. This report describes the radiation transport methods developed to implement this new capability. This work was performed at the direction of the National Nuclear Security Administration's Office of Nonproliferation Research and Development. It was executed as an element of the Proliferation Detection Program's Simulation, Algorithm, and Modeling element. Acronyms BNL Brookhaven National Laboratory CSD Continuous Slowing-Down DU depleted uranium ENSDF Evaluated Nuclear Structure Data Files GADRAS Gamma Detector Response and Analysis Software HEU highly enriched uranium LANL Los Alamos National Laboratory LLNL Lawrence Livermore National Laboratory NA-22 Office of Nonproliferation Research and Development NNDC National Nuclear Data Center NNSA National Nuclear Security Administration ODE ordinary differential equation ONEDANT One-dimensional diffusion accelerated neutral particle transport ORNL Oak Ridge National Laboratory PARTISN Parallel time-dependent SN PDP Proliferation Detection Program RADSAT Radiation Scenario Analysis Toolkit RSICC Radiation Safety Information Computational Center SAM Simulation, Algorithms, and Modeling SNL Sandia National Laboratories SNM special nuclear material ToRI Table of Radioactive Isotopes URI uniform resource identifier XML Extensible Markup Language

  20. Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage

    E-Print Network [OSTI]

    Adrian L. Melott; Brian C. Thomas

    2009-02-02T23:59:59.000Z

    Based on the intensity and rates of various kinds of intense ionizing radiation events such as supernovae and gamma-ray bursts, it is likely that the Earth has been subjected to one or extinction level events during the Phanerozoic. These induce changes in atmospheric chemistry so that the level of Solar ultraviolet-B radiation reaching the surface and near-surface waters may be doubled for up to a decade. This UVB level is known from experiment to be more than enough to kill off many kinds of organisms, particularly phytoplankton. It could easily induce a crash of the photosynthetic-based food chain in the oceans. Regularities in the latitudinal distribution of damage are apparent in simulations of the atmospheric changes. We previously proposed that the late Ordovician extinction is a plausible candidate for a contribution from an ionizing radiation event, based on environmental selectivity in trilobites. To test a null hypothesis based on this proposal, we confront latitudinal differential extinction rates predicted from the simulations with data from a published analysis of latitudinal gradients in the Ordovician extinction. The pattern of UVB damage always shows a strong maximum at some latitude, with substantially lower intensity to the north and south of this maximum. We find that the pattern of damage predicted from our simulations is consistent with the data assuming a burst approximately over the South Pole, and no further north than -75 degrees. We predict that any land mass (such as parts of north China, Laurentia, and New Guinea) which then lay north of the equator should be a refuge from UVB effects, and show a different pattern of extinction in the first strike of the end-Ordovician extinction, if induced by such a radiation event.

  1. High energy Gamma-Ray Bursts as a result of the collapse and total annihilation of neutralino clumps

    E-Print Network [OSTI]

    R. S. Pasechnik; V. A. Beylin; V. I. Kuksa; G. M. Vereshkov

    2006-02-20T23:59:59.000Z

    Rare astrophysical events - cosmological gamma-ray bursts with energies over GeV - are considered as an origin of information about some SUSY parameters. The model of generation of the powerful gamma-ray bursts is proposed. According to this model the gamma-ray burst represents as a result of the collapse and the total annihilation of the neutralino clump. About 80 % of the clump mass radiates during about 100 second at the final stage of annihilation. The annihilation spectrum and its characteristic energies are calculated in the framework of Split Higgsino model.

  2. GAMMA DETECTOR RESPONSE/SOIL CONCENTRATION CORRELATION STUDY AT THE AAR MANUFACTURING, INC. SITE, LIVONIA, MICHIGAN

    SciTech Connect (OSTI)

    ALTIC, NICK A

    2013-03-22T23:59:59.000Z

    At the NRC?s request, ORAU conducted surveys of the AAR Manufacturing site during the period of September 25 through September 27, 2012. The survey activities included walkover surveys and sampling activities. Once the survey team was onsite, the NRC personnel decided to forgo survey activities in the ?New Addition? and the pickling area. Areas of the planned study boundary were inaccessible due to overgrowth/large pieces of concrete covering the soil surface; therefore, the study boundary was redefined. Gamma walkover scans of the site boundary and ?front yard? identified multiple areas of elevated gamma radiation. As a result, two judgmental samples were collected. Sample results were above thorium background levels The answer to the PSQ relating to the relationship between thorium concentration in soil and NaI instrument response is ?Yes.? NaI instrument response can be used as a predictor of Th-232 concentration in the 0 to 1 m layer. An R2 value of 0.79 was determined for the surface soil relationship, thus satisfying the DQOs. Moreover, the regression was cross-checked by comparing the predicted Th-232 soil core concentration to the average Th-232 concentration (Section 5.3.2). Based on the cross-check, the regression equation provides a reasonable estimate for the Th-232 concentration at the judgmental locations. Consideration must be given when applying this equation to other soil areas of the site. If the contamination was heterogeneously distributed, and not distributed in a discrete layer as it was in the study area, then using the regression equation to predict Th-232 concentration would not be applicable.

  3. Atomistic simulations of radiation damage in amorphous metal alloys

    E-Print Network [OSTI]

    Baumer, Richard E. (Richard Edward)

    2013-01-01T23:59:59.000Z

    While numerous fundamental studies have characterized the atomic-level radiation response mechanisms in irradiated crystalline alloys, comparatively little is known regarding the mechanisms of radiation damage in amorphous ...

  4. Higgs boson decays into {\\gamma}{\\gamma} and Z{\\gamma} in the MSSM and BLSSM

    E-Print Network [OSTI]

    Hammad, A; Moretti, S

    2015-01-01T23:59:59.000Z

    We calculate Higgs decay rates into {\\gamma}{\\gamma} and Z{\\gamma} in the Minimal Supersymmetric Standard Model (MSSM) and (B-L) Supersymmetric Standard Model (BLSSM) by allowing for contributions from light staus and charginos. We show that sizable departures are possible from the SM predictions for the 125 GeV state and that they are testable during run 2 at the Large Hadron Collider. Furthermore, we illustrate how a second light scalar Higgs signal in either or both these decay modes can be accessed at the CERN machine rather promptly within the BLSSM, a possibility instead precluded to the MSSM owing to the much larger mass of its heavy scalar state.

  5. Radiation Bursts from Particles in the Field of Compact, Impenetrable, Astrophysical Objects

    E-Print Network [OSTI]

    G. Papini; G. Scarpetta; V. Bozza; A. Feoli; G. Lambiase

    2002-08-06T23:59:59.000Z

    The radiation emitted by charged, scalar particles in a Schwarzschild field with maximal acceleration corrections is calculated classically and in the tree approximation of quantum field theory. In both instances the particles emit radiation that has characteristics similar to those of gamma-ray bursters.

  6. PUBLISHED VERSION Gamma ray spectrometer for ITER

    E-Print Network [OSTI]

    Ray Scintillation Spectrometer Rev. Sci. Instrum. 24, 1096 (1953); 10.1063/1.1770609 An Automatic Recording Gamma for the spectrometer is presented. Keywords: tokamak, DT plasma, alpha- particles, diagnostics, gamma- spectrometry

  7. A Topological Structure in the Set of Classical Free Radiation Electromagnetic Fields

    E-Print Network [OSTI]

    A. F. Ranada; A. Tiemblo

    2014-07-29T23:59:59.000Z

    The aim of this work is to proceed with the development of a model of topological electromagnetism in empty space, proposed by one of us some time ago and based on the existence of a topological structure associated with the radiation fields in standard Maxwell's theory. This structure consists in pairs of complex scalar fields, say $\\phi$ and $\\theta$, that can be interpreted as maps $\\phi,\\theta: S^3\\mapsto S^2$, the level lines of which are orthogonal to one another, where $S^3$ is the compactified physical 3-space $R^3$, with only one point at infinity, and $S^2$ is the 2-sphere identified with the complete complex plane. These maps were discovered and studied in 1931 by the German mathematician H. Hopf, who showed that the set of all of them can be ordered in homotopy classes, labeled by the so called Hopf index, equal to $\\gamma=\\pm 1,\\,\\pm 2,\\,\\cdots ,\\, \\pm k,...$ but without $\\gamma=0$. In the model presented here and at the level of the scalars $\\phi$ and $\\theta$, the equations of motion are highly nonlinear; however there is a transformation of variables that converts exactly these equations (not by truncation!) into the linear Maxwell's ones for the magnetic and electric fields $\\B$ and $\\E$.

  8. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30T23:59:59.000Z

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  9. A Study of Radiative Bottomonium Transitions using Converted Photons

    SciTech Connect (OSTI)

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; /INFN, Bari /Bari U.; Milanes, D.A.; /INFN, Bari; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /UC, Berkeley; Koch, H.; Schroeder, T.; /Ruhr U., Bochum; Asgeirsson, D.J.; Hearty, C.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-15T23:59:59.000Z

    The authors use (111 {+-} 1) million {Upsilon}(3S) and (89 {+-} 1) million {Upsilon}(2S) events recorded by the BABAR detector at the PEP-II B-factory at SLAC to perform a study of radiative transitions betwen bottomonium states using photons that have been converted to e{sup +}e{sup -} pairs by the detector material. They observe {Upsilon}(3S) {yields} {gamma}{chi}{sub b0,2}(1P) decay, make precise measurements of the branching fractions for {chi}{sub b1,2}(1P, 2P) {yields} {gamma}{Upsilon}(1S) and {chi}{sub b1,2}(2P) {yields} {gamma}{Upsilon}(2S) decays, and search for radiative decay to the {eta}{sub b}(1S) and {eta}{sub b}(2S) states.

  10. Advances in gas avalanche radiation detectors for biomedical applications

    E-Print Network [OSTI]

    , either Wire Chambers [3] or more recent advanced Micro-pattern Detectors [4,5], have been widely employed- getic X-ray or gamma photons, they often age un- der long-term operation at high radiation #ux and su beam, have shown to successfully compete with traditional "lm-screen imagers. These line-scanning

  11. The Diverse Environments of Gamma-Ray Bursts

    E-Print Network [OSTI]

    Perley, Daniel Alan

    2011-01-01T23:59:59.000Z

    Galaxies of Dark Gamma-Ray Bursts: Observational Constraintsof a Very Bright Gamma- Ray Burst in a Galactic Halo 3.11.3 Gamma-Ray Burst Classi?cation . . . . . . 1.4 Gamma-Ray

  12. Light Curves of Swift Gamma Ray Bursts

    E-Print Network [OSTI]

    Paolo Cea

    2006-09-22T23:59:59.000Z

    Recent observations from the Swift gamma-ray burst mission indicate that a fraction of gamma ray bursts are characterized by a canonical behaviour of the X-ray afterglows. We present an effective theory which allows us to account for X-ray light curves of both (short - long) gamma ray bursts and X-ray rich flashes. We propose that gamma ray bursts originate from massive magnetic powered pulsars.

  13. Pulsed Gamma-Ray-Burst Afterglows

    E-Print Network [OSTI]

    J. Middleditch

    2009-01-01T23:59:59.000Z

    provides a candidate for the central engine of the gamma-ray burst (GRB) mechanism, both long and short

  14. Measurement of Branching Fractions and Mass Spectra of B to K pi pi gamma

    SciTech Connect (OSTI)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San

    2005-07-12T23:59:59.000Z

    The authors present a measurement of the partial branching fractions and mass spectra of the exclusive radiative penguin processes B {yields} K{pi}{pi}{gamma} in the range m{sub K{pi}{pi}} < 1.8 GeV/c{sup 2}. They reconstruct four final states: K{sup +}{pi}{sup -}{pi}{sup +}{gamma}, K{sup +}{pi}{sup -}{pi}{sup 0}{gamma}, K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}{gamma}, and K{sub S}{sup 0}{pi}{sup +}{pi}{sup 0}{gamma}, where K{sub S}{sup 0} {yields} {pi}{sup +}{pi}{sup -}. Using 232 million e{sup +}e{sup -} {yields} B{bar B} events recorded by the BABAR experiment at the PEP-II asymmetric-energy storage ring, they measure the branching fractions {Beta}(B{sup +} {yields} K{sup +}{pi}{sup -}{pi}{sup +}{gamma}) = (2.95 {+-} 0.13(stat.) {+-} 0.20(syst)) x 10{sup -5}, {Beta}(B{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0}{gamma}) = (4.07 {+-} 0.22(stat.) {+-} 0.31(syst.)) x 10{sup -5}, {Beta}(B{sup 0} {yields} K{sup 0}{pi}{sup +}{pi}{sup -}{gamma}) = (1.85 {+-} 0.21(stat.) {+-} 0.12(syst.)) x 10{sup -5}, and {Beta}(B{sup +} {yields} K{sup 0}{pi}{sup +}{pi}{sup 0}{gamma}) = (4.56 {+-} 0.42(stat.) {+-} 0.31(syst.)) x 10{sup -5}.

  15. The Universe Viewed in Gamma-Rays 1 Properties of Gamma-ray Bursts Localized by

    E-Print Network [OSTI]

    Enomoto, Ryoji

    The Universe Viewed in Gamma-Rays 1 Properties of Gamma-ray Bursts Localized by the HETE-2 and localize Gamma-ray bursts (GRBs) in wide field of view. HETE-2 have been localized about 20 GRBs per year hours after the burst. 1. The High Energy Transient Explorer 2 Gamma-ray burst (GRB) is the most

  16. Defect Mass in Gravitational Field and Red Shift of Atomic and Nuclear Radiation Spectra

    E-Print Network [OSTI]

    Kh. M. Beshtoev

    2000-04-19T23:59:59.000Z

    It is shown, that radiation spectrum of atoms (or nuclei) in the gravitational field has a red shift since the effective mass of radiating electrons (or nucleons) changes in this field. This red shift is equal to the red shift of radiation spectrum in the gravitational field measured in existence experiments. The same shift must arise when the photon (or $ \\gamma $ quantum) is passing through the gravitational field if it participates in gravitational interactions (photon has no rest mass). The absence of the double effect in the experiments, probably, means that photons (or $ \\gamma $ quanta) are passing through the gravitational field without interactions.

  17. Radiative corrections to polarization observables for elastic $e+A$-scattering. Part I: Virtual Compton Scattering

    E-Print Network [OSTI]

    M. P. Rekalo; E. Tomasi-Gustafsson

    2001-05-02T23:59:59.000Z

    We calculate polarization phenomena for virtual Compton scattering on protons, at relatively large momentum transfer 1 GeV$^2$ $\\le -q^2\\le$ 5 GeV$^2$ on the basis of a model for $\\gamma^*+ p\\to \\gamma+p$ with two main contributions: $\\pi^0$-exchange in $t-$channel and $\\Delta$-excitation in $s$-channel. This model applies from threshold to $\\Delta$ region. The parameters entering in this model, such as coupling constants and electromagnetic form factors are well known. The analyzing powers for $\\gamma^*+\\vec p\\to \\gamma+ p$ and the components of the final proton polarization in $\\gamma^*+ p\\to \\gamma+ \\vec p$ are large in absolute value and show strong sensitivity to $\\pi\\bigotimes\\Delta$ interference. These results can be applied to the calculation of radiative corrections to polarization phenomena in elastic $ep$-scattering.

  18. Capture Gamma-Ray Libraries for Nuclear Applications

    SciTech Connect (OSTI)

    Sleaford, B.W.; Firestone, Richard B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-05-01T23:59:59.000Z

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF has been used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90percent of all the decay energy an is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We use CASINO, a version of DICEBOX that is modified for this purpose. This can be used to simulate the neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modelling of unknown assemblies.

  19. Neutron/gamma coupled library generation and gamma transport calculation with KARMA 1.2

    SciTech Connect (OSTI)

    Hong, S. G. [Dept. of Nuclear Engineering, Kyung Hee Univ., 446-701 Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do (Korea, Republic of); Kim, K. S.; Cho, J. Y.; Lee, K. H. [Korea Atomic Energy Research Inst., 305-353 Duckjin-dong, Yuseong-gu, Daejon (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    KAERI has developed a lattice transport calculation code KARMA and its multi-group cross section library generation system. Recently, the multi-group cross section library generation system has included a gamma cross section generation capability and KARMA also has been improved to include a gamma transport calculation module. This paper addresses the multi-group gamma cross section generation capability for the KARMA 1.2 code and the preliminary test results of the KARMA 1.2 gamma transport calculations. The gamma transport calculation with KARMA 1.2 gives the gamma flux, gamma smeared power, and gamma energy deposition distributions. The results of the KARMA gamma calculations were compared with those of HELIOS and they showed that KARMA 1.2 gives reasonable gamma transport calculation results. (authors)

  20. Laser-driven high-power X- and gamma-ray ultra-short pulse source

    E-Print Network [OSTI]

    Esirkepov, Timur Zh; Zhidkov, Alexei G; Pirozhkov, Alexander S; Kando, Masaki

    2008-01-01T23:59:59.000Z

    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation undergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor.

  1. Beta-delayed gamma spectroscopy of neutron rich 27,28,29Na

    SciTech Connect (OSTI)

    Tripathi, V.; Tabor, S.L.; Hoffman, C.R.; Wiedeking, M.; Volya,A.; Mantica, P.F.; Davies, A.D.; Liddick, S.N.; Mueller, W.F.; Stolz, A.; Tomlin, B.E.

    2006-05-04T23:59:59.000Z

    The low-energy level structure of the exotic Na isotopes {sup 27,28,29}Na has been investigated through {beta}-delayed {gamma} spectroscopy. Detailed level structure of {sup 28,29}Na has been obtained through {beta}{gamma} and {beta}{gamma}{gamma} coincidence measurements. The low-lying levels populated in {sup 27}Na by {beta} decay were found to corroborate well with the in-beam data from the literature. Half-lives of the parent nuclides, {sup 27,28,29}Ne, were measured using {beta} fragment as well as fragment {beta}{gamma} coincidences and compared to previous measurements. The {beta}-delayed one- and two-neutron emission branching probabilities have been obtained from the {gamma} activities of the grand daughter nuclei. A comparison of the level schemes and the {beta}-decay branching ratios is made with shell-model predictions, both with and without intruder configurations, to understand the transition from normal-dominant to intruder-dominant excitations in these neutron-rich nuclei approaching the island of inversion.

  2. {beta}-delayed {gamma} spectroscopy of neutron rich {sup 27,28,29}Na

    SciTech Connect (OSTI)

    Tripathi, Vandana; Tabor, S.L.; Hoffman, C.R.; Wiedeking, M.; Volya, A.; Otsuka, T.; Utsuno, Y. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States); Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Tokyo 113-0033 (Japan) and RIKEN, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Advanced Science Research Centre, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Mantica, P.F.; Liddick, S.N.; Tomlin, B.E. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States); Davies, A.D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Mueller, W.F.; Stolz, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2006-05-15T23:59:59.000Z

    The low-energy level structure of the exotic Na isotopes {sup 27,28,29}Na has been investigated through {beta}-delayed {gamma} spectroscopy. Detailed level structure of {sup 28,29}Na has been obtained through {beta}{gamma} and {beta}{gamma}{gamma} coincidence measurements. The low-lying levels populated in {sup 27}Na by {beta} decay were found to corroborate well with the in-beam data from the literature. Half-lives of the parent nuclides, {sup 27,28,29}Ne, were measured using {beta} fragment as well as fragment {beta}{gamma} coincidences and compared to previous measurements. The {beta}-delayed one- and two-neutron emission branching probabilities have been obtained from the {gamma} activities of the grand daughter nuclei. A comparison of the level schemes and the {beta}-decay branching ratios is made with shell-model predictions, both with and without intruder configurations, to understand the transition from normal-dominant to intruder-dominant excitations in these neutron-rich nuclei approaching the island of inversion.

  3. Very High Energy gamma-ray observations of Mrk 501 using TACTIC imaging gamma-ray telescope during 2005-06

    E-Print Network [OSTI]

    Godambe, S V; Chandra, P; Yadav, K K; Tickoo, A K; Venugopal, K; Bhatt, N; Bhattacharya, S; Chanchalani, K; Dhar, V K; Goyal, H C; Kaul, R K; Kothari, M; Kotwal, S; Koul, M K; Koul, R; Sahaynathan, B S; Sharma, M; Thoudam, S

    2008-01-01T23:59:59.000Z

    In this paper we report on the Markarian 501 results obtained during our TeV $\\gamma$-ray observations from March 11 to May 12, 2005 and February 28 to May 7, 2006 for 112.5 hours with the TACTIC $\\gamma$-ray telescope. During 2005 observations for 45.7 hours, the source was found to be in a low state and we have placed an upper limit of 4.62 $\\times$ 10$^{-12}$ photons cm$^{-2}$ s$^{-1}$ at 3$\\sigma$ level on the integrated TeV $\\gamma$-ray flux above 1 TeV from the source direction. However, during the 2006 observations for 66.8h, detailed data analysis revealed the presence of a TeV $\\gamma$-ray signal from the source with a statistical significance of 7.5$\\sigma$ above $E_{\\gamma}\\geq$ 1 TeV. The time averaged differential energy spectrum of the source in the energy range 1-11 TeV is found to match well with the power law function of the form ($d\\Phi/dE=f_0 E^{-\\Gamma}$) with $f_0=(1.66\\pm0.52)\\times 10^{-11}cm^{-2}s^{-1}TeV^{-1}$ and $\\Gamma=2.80\\pm0.27$.

  4. High-Energy Cosmology: gamma rays and neutrinos from beyond the galaxy

    E-Print Network [OSTI]

    Charles D. Dermer

    2006-11-06T23:59:59.000Z

    Our knowledge of the high-energy universe is undergoing a period of rapid change as new astronomical detectors of high-energy radiation start to operate at their design sensitivities. Now is a boomtime for high-energy astrophysics, with new discoveries from Swift and HESS, results from MAGIC and VERITAS starting to be reported, the upcoming launches of the gamma-ray space telescopes GLAST and AGILE, and anticipated data releases from IceCube and Auger. A formalism for calculating statistical properties of cosmological gamma-ray sources is presented. Application is made to model calculations of the statistical distributions of gamma-ray and neutrino emission from (i) beamed sources, specifically, long-duration GRBs, blazars, and extagalactic microquasars, and (ii) unbeamed sources, including normal galaxies, starburst galaxies and clusters. Expressions for the integrated intensities of faint beamed and unbeamed high-energy radiation sources are also derived. A toy model for the background intensity of radiation from dark-matter annihilation taking place in the early universe is constructed. Estimates for the gamma-ray fluxes of local group galaxies, starburst, and infrared luminous galaxies are briefly reviewed. Because the brightest extragalactic gamma-ray sources are flaring sources, and these are the best targets for sources of PeV -- EeV neutrinos and ultra-high energy cosmic rays, rapidly slewing all-sky telescopes like MAGIC and an all-sky gamma-ray observatory beyond Milagro will be crucial for optimal science return in the multi-messenger age.

  5. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: From Theory to Fermi Observations

    E-Print Network [OSTI]

    Constantinos Kalapotharakos; Alice K. Harding; Demosthenes Kazanas

    2014-07-27T23:59:59.000Z

    We compute the patterns of $\\gamma$-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed $\\gamma$-ray light-curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near Force-Free. Using these solutions, we generate model $\\gamma$-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles, under the influence of both the accelerating electric fields and curvature radiation-reaction. We further constrain our models using the observed dependence of the phase-lags between the radio and $\\gamma$-ray emission on the $\\gamma$-ray peak-separation. We perform a statistical comparison of our model radio-lag vs peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity; specifically, infinite conductivity interior to the light-cylinder and high but finite conductivity on the outside. In these models the $\\gamma$-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio-lags near the observed values and statistically best reproduce the observed light-curve phenomenology. Additionally, these models produce GeV photon cut-off energies.

  6. Radiative Effects of Cloud Inhomogeneity and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The FederalRadiative Effects of

  7. Radiative Heating in Underexplored Bands Campaign (RHUBC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The FederalRadiative Effects of

  8. Radiative Heating in Underexplored Bands Campaign (RHUBC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The FederalRadiative Effects of

  9. Epistemic levels

    E-Print Network [OSTI]

    Greco, Daniel (Daniel Louis)

    2012-01-01T23:59:59.000Z

    In this dissertation I defend some controversial "level-bridging" principles in epistemology. In the first chapter, I defend the KK principle-the principle that if one knows that P, then one knows that one knows that P. I ...

  10. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly [National Research Centre 'Kurchatov Institute', Moscow (Russian Federation)] [National Research Centre 'Kurchatov Institute', Moscow (Russian Federation)

    2013-07-01T23:59:59.000Z

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  11. Adaptable radiation monitoring system and method

    DOE Patents [OSTI]

    Archer, Daniel E. (Livermore, CA); Beauchamp, Brock R. (San Ramon, CA); Mauger, G. Joseph (Livermore, CA); Nelson, Karl E. (Livermore, CA); Mercer, Michael B. (Manteca, CA); Pletcher, David C. (Sacramento, CA); Riot, Vincent J. (Berkeley, CA); Schek, James L. (Tracy, CA); Knapp, David A. (Livermore, CA)

    2006-06-20T23:59:59.000Z

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  12. VERITAS OBSERVATIONS OF GAMMA-RAY BURSTS DETECTED BY SWIFT

    SciTech Connect (OSTI)

    Acciari, V. A.; Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Christiansen, J. L. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 94307 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2011-12-10T23:59:59.000Z

    We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t{sup -1.5} time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.

  13. The Gamma Ray Burst Rate at High Photon Energies

    E-Print Network [OSTI]

    Karl Mannheim; Dieter Hartmann; Burkhardt Funk

    1996-05-17T23:59:59.000Z

    Some gamma-ray burst (GRB) spectra exhibit high energy tails with the highest photon energy detected at 18 GeV. The spectral slope of the high-energy tails is sufficiently flat in nu F_nu to consider the possibility of their detection at still higher energies. We calculate how many bursts can reasonably be expected above a given energy threshold for a cosmological distribution of bursts satisfying the observed apparent brightness distribution. The crucial point is that the gamma-ray absorption by pair production in the intergalactic diffuse radiation field eliminates bursts from beyond the gamma-ray horizon tau ~ 1, thus drastically reducing the number of bursts at high energies. Our results are consistent with the non-detection of bursts by current experiments in the 100 GeV to 100 TeV energy range. For the earth-bound detector array MILAGRO, we predict a maximal GRB rate of ~ 10 events per year. The Whipple Observatory can detect, under favorable conditions, ~1 event per year. The event rate for the HEGRA array is ~ 0.01 per year. Detection of significantly higher rates of bursts would severely challenge cosmological burst scenarios.

  14. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S.; Mihalczo, John T.

    2006-11-28T23:59:59.000Z

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  15. Measurement of J/psi to eta_c gamma at KEDR

    E-Print Network [OSTI]

    Anashin, V V; Baldin, E M; Barladyan, A K; Barnyakov, A Yu; Barnyakov, M Yu; Baru, S E; Bedny, I V; Beloborodova, O L; Blinov, A E; Blinov, V E; Bobrov, A V; Bobrovnikov, V S; Bogomyagkov, A V; Bondar, A E; Buzykaev, A R; Eidelman, S I; Glukhovchenko, Yu M; Gulevich, V V; Gusev, D V; Karnaev, S E; Karpov, G V; Karpov, S V; Kharlamova, T A; Kiselev, V A; Kononov, S A; Kotov, K Yu; Kravchenko, E A; Kulikov, V F; Kurkin, G Ya; Kuper, E A; Levichev, E B; Maksimov, D A; Malyshev, V M; Maslennikov, A L; Medvedko, A S; Meshkov, O I; Milstein, A I; Mishnev, S I; Morozov, I I; Muchnoi, N Yu; Neufeld, V V; Nikitin, S A; Nikolaev, I B; Okunev, I N; Onuchin, A P; Oreshkin, S B; Orlov, I O; Osipov, A A; Peleganchuk, S V; Pivovarov, S G; Piminov, P A; Petrov, V V; Poluektov, A O; Popkov, I N; Pospelov, G E; Prisekin, V G; Ruban, A A; Sandyrev, V K; Savinov, G A; Shamov, A G; Shatilov, D N; Shwartz, B A; Simonov, E A; Sinyatkin, S V; Skovpen, Yu I; Skrinsky, A N; Smaluk, V V; Sukharev, A M; Starostina, E V; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Yu; Tumaikin, G M; Usov, Yu V; Vorobiov, A I; Yushkov, A N; Zhilich, V N; Zhulanov, V V; Zhuravlev, A N

    2010-01-01T23:59:59.000Z

    We present a study of the inclusive photon spectra from 5.9 million J/psi decays collected with the KEDR detector at the VEPP-4M e+e- collider. We measure the branching fraction of radiative decay J/psi to eta_c gamma, eta_c width and mass. Our preliminary results are: M(eta_c) = 2979.4+-1.5+-1.9 MeV, G(eta_c) = 27.8+-5.1+-3.3 MeV, B(J/psi to eta_c gamma) = (2.34+-0.15+-0.40)%.

  16. Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations

    E-Print Network [OSTI]

    T. N. Ukwatta; J. H. MacGibbon; W. C. Parke; K. S. Dhuga; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

    2009-08-14T23:59:59.000Z

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.

  17. SWEPP gamma-ray spectrometer system software test plan and report

    SciTech Connect (OSTI)

    Femec, D.A.

    1994-09-01T23:59:59.000Z

    The SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory to assist in the characterization of the radiological contents of contact-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP). In addition to determining the concentrations of gamma-ray-emitting radionuclides, the software also calculates attenuation-corrected isotopic mass ratios of specific interest, and provides controls for SGRS hardware as required. This document presents the test plan and report for the data acquisition and analysis software associated with the SGRS system.

  18. A silicon photomultiplier readout for time of flight neutron spectroscopy with {gamma}-ray detectors

    SciTech Connect (OSTI)

    Pietropaolo, A.; Gorini, G. [Dipartimento di Fisica ''G. Occhialini'' and CNISM, Universita Degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Festa, G.; Andreani, C.; De Pascale, M. P.; Reali, E. [Dipartimento di Fisica and Centro NAST, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma (Italy); Grazzi, F. [Istituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche, Via Madonna del Piano n.10, I-50019 Sesto Fiorentino, Firenze (Italy); Schooneveld, E. M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2009-09-15T23:59:59.000Z

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of {gamma}-detection based on the new device.

  19. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    SciTech Connect (OSTI)

    Aguiar, Vitor A. P.; Medina, Nilberto H. [Instituto de Fisica, Universidade de Sao Paulo, SP (Brazil); Moreira, Ramon H.; Silveira, Marcilei A. G. [Departamento de Fisica, Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil)

    2010-05-21T23:59:59.000Z

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely {sup 40}K, {sup 232}Th and {sup 238}U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  20. Short-term effects of Gamma Ray Bursts on oceanic photosynthesis

    E-Print Network [OSTI]

    Penate, Liuba; Cardenas, Rolando; Agusti, Susana

    2010-01-01T23:59:59.000Z

    We continue our previous work on the potential short-term influence of a gamma ray bursts on Earth's biosphere, focusing on the only important short-term effect on life: the ultraviolet flash which occurs as a result of the retransmission of the {\\gamma} radiation through the atmosphere. Thus, in this work we calculate the ultraviolet irradiances penetrating the first hundred meters of the water column, for Jerlov's ocean water types I, II and III. Then we estimate the UV flash potential for photosynthesis inhibition, showing that it can be important in a considerable part of the water column with light enough for photosynthesis to be done, the so called photic zone.

  1. Prompt {gamma}-ray spectroscopy of the {sup 104}Mo and {sup 108}Mo fission fragments

    SciTech Connect (OSTI)

    Guessous, A.; Schulz, N.; Bentaleb, M.; Lubkiewicz, E. [Centre de Recherches Nucleaires, Institut National de Physique Nucleaire et de Physique des Particules, Centre National de la Recherche Scientifique, Universite Louis Pasteur, 67037 Strasbourg (France)] [Centre de Recherches Nucleaires, Institut National de Physique Nucleaire et de Physique des Particules, Centre National de la Recherche Scientifique, Universite Louis Pasteur, 67037 Strasbourg (France); Durell, J.L.; Pearson, C.J.; Phillips, W.R.; Shannon, J.A.; Urban, W.; Varley, B.J. [Department of Physics, University of Manchester, M13 9PL (United Kingdom)] [Department of Physics, University of Manchester, M13 9PL (United Kingdom); Ahmad, I.; Lister, C.J.; Morss, L.R.; Nash, K.L.; Williams, C.W. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Khazrouni, S. [Laboratoire de Physique Nucleaire Appliquee, Faculte des Sciences, Kenitra, Maroc (France)] [Laboratoire de Physique Nucleaire Appliquee, Faculte des Sciences, Kenitra, Maroc (France)

    1996-03-01T23:59:59.000Z

    The level structures of the neutron-rich {sup 104}Mo and {sup 108}Mo nuclei have been investigated by observing prompt {gamma} rays emitted in the spontaneous fission of {sup 248}Cm with the EUROGAM spectrometer. Levels with spins up to 12{h_bar} have been observed and {gamma} branching obtained. The data can be satisfactorily described when {sup 104,108}Mo are considered as axially symmetric nuclei: in {sup 104}Mo, rotational bands based on the ground state, the one-phonon and the two-phonon {gamma}-vibrational states and a quasiparticle state have been observed, whereas in {sup 108}Mo the information is limited to the yrast band and the one phonon {gamma} band. {copyright} {ital 1996 The American Physical Society.}

  2. Controlled manipulation of elastomers with radiation: Insights from multiquantum nuclear-magnetic-resonance data and mechanical measurements

    SciTech Connect (OSTI)

    Maiti, A.; Weisgraber, T.; Dinh, L. N.; Gee, R. H.; Wilson, T.; Chinn, S.; Maxwell, R. S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2011-03-15T23:59:59.000Z

    Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation, thermal, and electrical barriers. External factors such as mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a materials science point of view it is highly desirable to understand, affect, and manipulate such property changes in a controlled manner. Unfortunately, that has not yet been possible due to the lack of experimental characterization of such networks under controlled environments. In this work we expose a known rubber material to controlled dosages of {gamma} radiation and utilize a newly developed multiquantum nuclear-magnetic-resonance technique to characterize the MWD as a function of radiation. We show that such data along with mechanical stress-strain measurements are amenable to accurate analysis by simple network models and yield important insights into radiation-induced molecular-level processes.

  3. The Two-Point Correlation Function of Gamma-ray Bursts

    E-Print Network [OSTI]

    Li, Ming-Hua

    2015-01-01T23:59:59.000Z

    In this paper, we examine the spacial distribution of gamma-ray bursts (GRBs) using a sample of 373 objects. We subdivide the GRB data into two redshift intervals over the redshift range $0gamma}$ to the measured $\\xi(r)$ and obtain an amplitude and slope of $r_0= 1235.2 \\pm 342.6~h^{-1}$ Mpc and $\\gamma = 0.80\\pm 0.19 $ ($1\\sigma$ confidence level) over the scales $r=200$ to $10^4~h^{-1}$ Mpc. Our ...

  4. Thermonuclear Reaction Rate of 23Mg(p,gamma)24$Al

    E-Print Network [OSTI]

    H. Herndl; M. Fantini; C. Iliades; P. M. Endt; H. Oberhummer

    1998-06-05T23:59:59.000Z

    Updated stellar rates for the reaction 23Mg(p,gamma)24Al are calculated by using all available experimental information on 24Al excitation energies. Proton and gamma-ray partial widths for astrophysically important resonances are derived from shell model calculations. Correspondences of experimentally observed 24Al levels with shell model states are based on application of the isobaric multiplet mass equation. Our new rates suggest that the 23Mg(p,gamma)24Al reaction influences the nucleosynthesis in the mass A>20 region during thermonuclear runaways on massive white dwarfs.

  5. Radiation Emergency Procedure Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation Effects

  6. Radiation Safety Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation

  7. Design and Construction of a Gamma Reaction History Diagnostic for the National Ignition Facility

    SciTech Connect (OSTI)

    Malone, R M; Evans, S C; Frogget, B C; Herrmann, H W; Kaufman, M I; Kim, Y H; Mack, J M; McGillivray, K D; Palagi, M; Stoeffl, W; Tibbitts, A; Tunnell, T W; Young, C S

    2009-10-22T23:59:59.000Z

    Gas Cherenkov detectors have been used to convert fusion gammas into photons to record gamma reaction history measurements. These gas detectors include a converter, pressurized gas volume, relay collection optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90° off-axis parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion. Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The relay optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO2 or SF6) volume. The parabolic mirrors were electroformed instead of diamond turned to reduce scattering of the UV light. All mirrors are bare aluminum coated for maximum reflectivity. This design incorporates a 4.2-ns time delay that allows the detector to recover from prompt radiation before it records the gamma signal. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds.

  8. Search for neutrinos from Gamma-Ray Bursts using Super-Kamiokande

    E-Print Network [OSTI]

    Dusan Turcan; Shantanu Desai; for the Super-Kamiokande Collaboration

    2002-05-17T23:59:59.000Z

    Using the Super-Kamiokande neutrino observatory, a search was conducted for neutrinos produced in coincidence with gamma-ray bursts observed by the BATSE detector. Super-Kamiokande data in the neutrino energy range of 7 MeV ~ 100 TeV were analyzed. For gamma-ray bursts that occurred between 1996 April and 2000 May, no statistically significant signal in excess of the background levels was detected. Implied upper limits on associated GRB neutrino production are presented.

  9. Electron gas grid semiconductor radiation detectors

    DOE Patents [OSTI]

    Lee, Edwin Y. (Livermore, CA); James, Ralph B. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  10. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22T23:59:59.000Z

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  11. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01T23:59:59.000Z

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  12. Alpha-beta radiation detector

    DOE Patents [OSTI]

    Fleming, Dale M. (Richland, WA); Simmons, Kevin L. (Kennewick, WA); Froelich, Thomas J. (West Richland, WA); Carter, Gregory L. (Richland, WA)

    1998-01-01T23:59:59.000Z

    The invention is based in part on the discovery that a plastic housing that is lightweight is surprisingly efficient inasmuch as background signals from any gamma radiation are significantly reduced by using a plastic housing instead of a metal housing. A further aspect of the present invention is the profile of the housing as a bi-linear approximation to a parabola resulting in full optical response from any location on the scintillation material to the photomultiplier tube. A yet further aspect of the present invention is that the survey probe is resistant to magnetic fields. A yet further aspect of the present invention is the use of a snap-fit retaining bracket that overcomes the need for multiple screws.

  13. Development of radiation hard scintillators

    SciTech Connect (OSTI)

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G. (Fermi National Accelerator Lab., Batavia, IL (United States)); Blackburn, R. (Michigan Univ., Nuclear Reactor Lab., Ann Arbor, MI (United States))

    1992-05-01T23:59:59.000Z

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro.

  14. Alpha-beta radiation detector

    DOE Patents [OSTI]

    Fleming, D.M.; Simmons, K.L.; Froelich, T.J.; Carter, G.L.

    1998-08-18T23:59:59.000Z

    The invention is based in part on the discovery that a plastic housing that is lightweight is surprisingly efficient inasmuch as background signals from any gamma radiation are significantly reduced by using a plastic housing instead of a metal housing. A further aspect of the present invention is the profile of the housing as a bi-linear approximation to a parabola resulting in full optical response from any location on the scintillation material to the photomultiplier tube. A yet further aspect of the present invention is that the survey probe is resistant to magnetic fields. A yet further aspect of the present invention is the use of a snap-fit retaining bracket that overcomes the need for multiple screws. 16 figs.

  15. Gamma Ray Bursts from Minijets

    E-Print Network [OSTI]

    Nir J. Shaviv; Arnon Dar

    1994-07-14T23:59:59.000Z

    Striking similarities exist between high energy gamma ray emission from active galactic nuclei (AGN) and gamma ray bursts (GRBs). They suggest that GRBs are generated by inverse Compton scattering from highly relativistic electrons in transient jets. Such jets may be produced along the axis of an accretion disk formed around stellar black holes (BH) or neutron stars (NS) in BH-NS and NS-NS mergers and in accretion induced collapse of magnetized white dwarfs (WD) or neutron stars in close binary systems. Such events may produce the cosmological GRBs. Transient jets formed by single old magnetized neutron stars in an extended Galactic halo may produce a local population of GRBs. Here we show that jet production of GRBs by inverse Compton scattering can explain quite simply the striking correlations that exist between various temporal features of GRBs, their duration histogram, the power spectrum of their complex multipeak light curves, their power-law high energy spectra and other features of GRBs. Some additional predictions are made including the expected polarization of gamma-rays in the bursts.

  16. Neutrinos from Gamma Ray Bursts

    E-Print Network [OSTI]

    Karl Mannheim

    2000-10-18T23:59:59.000Z

    The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector, (ii) GRB redshifts from HETE-2 follow-up studies, and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

  17. Direct-reaction studies by particle-{gamma} coincidence spectroscopy using Csi-Hpge and Si-Hpge arrays

    SciTech Connect (OSTI)

    Allmond, J. M. [Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge TN 37831 (United States)

    2013-04-19T23:59:59.000Z

    Particle-{gamma} and particle-{gamma}-{gamma} coincidence spectroscopy has several advantages in the study of direct reactions (particularly in inverse kinematics) since it can generally allow determination of: decay paths; high-precision level energies; multipolarities of transitions; and cross sections. Techniques for studying direct reactions by particle-{gamma} coincidence spectroscopy are presented for two cases: (1) heavy-ion reactions with CsI-HPGe, and (2) light-ion reactions with Si-HPGe. Future direct-reaction studies with radioactive ion beams (RIBs) will mostly involve low beam intensities and inverse kinematics (i.e., A{sub beam}>A{sub target}), which eliminates the traditional use of magnetic spectrometers. Particle-{gamma} coincidence spectroscopy currently provides the most viable method to study direct reactions with nuclei of any level density. In the present study, the capabilities and limitations of the technique are explored.

  18. Design and Construction of a Gamma Reaction History Diagnostic for the National Ignition Facility

    SciTech Connect (OSTI)

    R.M. Malone, B.C. Cox, B.C. Frogget, M.I. Kaufman, T.W. Tunnell; H.W. Herrmann, S.C. Evans, J.M. Mack, C.S. Young; W. Stoeffl

    2009-06-05T23:59:59.000Z

    Gas Cherenkov detectors have been used to convert fusion gammas into photons to achieve gamma reaction history (GRH) measurements. These gas detectors include a converter, pressurized gas volume, relay optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90º Off-Axis Parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion.1 Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (our response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The detector optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO2 or SF6) volume. Because light is collected from source locations throughout the gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation locations along the gas cell. This design incorporates a fixed time delay that allows the detector to recover from prompt radiation. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they traverse the gas volume. A Monte Carlo model of the conversion process from gammas to Cherenkov photons is used to generate photon trajectories. The collection efficiencies for different gamma energies are evaluated. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds. This GRH design is compared to a gas Cherenkov detector that utilizes a Cassegrain reflector now used at the OMEGA laser facility. 1. R. M. Malone, H. W. Herrmann, W. Stoeffl, J. M. Mack, C. S. Young, “Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90º off-axis parabolic mirrors,” Rev. Sci. Instrum. 79, 10E532 (2008).

  19. Curvature radiation in pulsar magnetospheric plasma

    E-Print Network [OSTI]

    Janusz Gil; Yuri Lyubarsky; George I. Melikidze

    2003-10-21T23:59:59.000Z

    We consider the curvature radiation of the point-like charge moving relativistically along curved magnetic field lines through a pulsar magnetospheric electron-positron plasma. We demonstrate that the radiation power is largely suppressed as compared with the vacuum case, but still at a considerable level, high enough to explain the observed pulsar luminosities. The emitted radiation is polarized perpendicularly to the plane of the curved magnetic filed lines coincides with $ which can freely escape from the magnetospheric plasma. Our results strongly support the coherent curvature radiation by the spark-associated solitons as a plausible mechanism of pulsar radio emission.

  20. environmental management radiation protection

    E-Print Network [OSTI]

    Entekhabi, Dara

    EHS environmental management biosafety radiation protection industrial hygiene safety Working: Biosafety, Environmental Management, Industrial Hygiene, Radiation Protection and Safety. Each specialized Management Program, Industrial Hygiene, Radiation Protection Program, and the Safety Program. (http