Sample records for gamma radiation exposure

  1. Effects of gamma radiation on Serratia marcescens; a comparison of effects of two different exposure rates

    E-Print Network [OSTI]

    Moore, Christy Annette

    1972-01-01T23:59:59.000Z

    EFFECTS OF GAMMA RADIATION ON SL'RNATIA MARCESCENS A COMPARISON OF EFFECTS OF TWO DIFFERENT EXPOSURE RATES A Thesis by CHRISTY ANNETTE MOORE Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1972 Major Subject: Biophysics (Health Physics) EFFECTS OF GAMF'K RADIATION ON O'Eccrid?2;!, 'i&Lo"", C, . ij, ", A COMFARISON OF EFFECTS OF TNO DIFFERENT EYPO s KE RATES A Thea's CHRISTi ANNETTE MOORE Approved...

  2. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    E-Print Network [OSTI]

    Abbasi, Akbar

    2015-01-01T23:59:59.000Z

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  3. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    E-Print Network [OSTI]

    Akbar Abbasi; Mustfa Hassanzadeh

    2014-10-27T23:59:59.000Z

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  4. Radiation Exposure Monitoring Systems Data Reporting Guide

    Broader source: Energy.gov [DOE]

    Instructions for preparing occupational exposure data for submittal to the Radiation Exposure Monitoring System (REMS) repository.

  5. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  6. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  7. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  8. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  9. Annual DOE Occupational Radiation Exposure | 1974 Report

    Broader source: Energy.gov [DOE]

    The Seventh Annual Report of Radiation Exposures for AEC & AEC Contractor Employees analyzes occupational radiation exposures at the Atomic Energy Commission (AEC) and its contractor employees during 1974.

  10. GammaCam{trademark} radiation imaging system

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    GammaCam{trademark}, a gamma-ray imaging system manufactured by AIL System, Inc., would benefit a site that needs to locate radiation sources. It is capable of producing a two-dimensional image of a radiation field superimposed on a black and white visual image. Because the system can be positioned outside the radiologically controlled area, the radiation exposure to personnel is significantly reduced and extensive shielding is not required. This report covers the following topics: technology description; performance; technology applicability and alternatives; cost; regulatory and policy issues; and lessons learned. The demonstration of GammaCam{trademark} in December 1996 was part of the Large-Scale Demonstration Project (LSDP) whose objective is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Research Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved decontamination and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.

  11. Annual DOE Occupational Radiation Exposure | 1977 Report

    Broader source: Energy.gov [DOE]

    The Tenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1977.

  12. Annual DOE Occupational Radiation Exposure | 1978 Report

    Broader source: Energy.gov [DOE]

    The Eleventh Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1978.

  13. Annual DOE Occupational Radiation Exposure | 1984 Report

    Broader source: Energy.gov [DOE]

    The Seventeenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1984.

  14. Annual DOE Occupational Radiation Exposure | 1976 Report

    Broader source: Energy.gov [DOE]

    The Ninth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1976.

  15. Annual DOE Occupational Radiation Exposure | 1975 Report

    Broader source: Energy.gov [DOE]

    The Eighth Annual Report of Radiation Exposures for ERDA & ERDA Contractor Employees analyzes occupational radiation exposures at the Energy Research and Development Administration (ERDA) and its contractor employees during 1975.

  16. Annual DOE Occupational Radiation Exposure | 1985 Report

    Broader source: Energy.gov [DOE]

    The Eighteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1985.

  17. Annual DOE Occupational Radiation Exposure | 1981 Report

    Broader source: Energy.gov [DOE]

    The Fourteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1981.

  18. Annual DOE Occupational Radiation Exposure | 1986 Report

    Broader source: Energy.gov [DOE]

    The Nineteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1986.

  19. Annual DOE Occupational Radiation Exposure | 1980 Report

    Broader source: Energy.gov [DOE]

    The Thirteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1980.

  20. Annual DOE Occupational Radiation Exposure | 1979 Report

    Broader source: Energy.gov [DOE]

    The Twelfth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1979.

  1. Annual DOE Occupational Radiation Exposure | 1982 Report

    Broader source: Energy.gov [DOE]

    The Fifteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1982.

  2. Annual DOE Occupational Radiation Exposure | 1983 Report

    Broader source: Energy.gov [DOE]

    The Sixteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1983.

  3. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect (OSTI)

    Scott Wilde, Raymond Keegan

    2008-07-01T23:59:59.000Z

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  4. Gamma Radiation Effects on Physical, Optical, and Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation Effects on Physical, Optical, and Structural Properties of Binary As-S glasses. Gamma Radiation Effects on Physical, Optical, and Structural Properties of Binary...

  5. DOE Occupational Radiation Exposure, 2001 report

    SciTech Connect (OSTI)

    none,

    2001-12-31T23:59:59.000Z

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  6. Effects of High Dietary Iron and Gamma Radiation on Oxidative Stress and Bone

    E-Print Network [OSTI]

    Yuen, Evelyn P

    2013-04-19T23:59:59.000Z

    (induced by feeding a high iron diet) and gamma radiation exposure would independently increase markers of oxidative stress and markers of oxidative damage and result in loss of bone mass, with the combined treatment having additive or synergistic effects...

  7. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, R.A.

    1994-12-13T23:59:59.000Z

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  8. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, Raymond A. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  9. Pamphlet, A Basic Overview of Occupational Radiation Exposure...

    Energy Savers [EERE]

    Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis &...

  10. Gravitational Radiation from Gamma-Ray Bursts

    E-Print Network [OSTI]

    Tsvi Piran

    2001-02-19T23:59:59.000Z

    Gamma Ray Bursts (GRBs) are the most relativistic objects known so far, involving, on one hand an ultra-relativistic motion with a Lorentz factor $\\Gamma > 100$ and on the other hand an accreting newborn black hole. The two main routes leading to this scenario: binary neutron star mergers and Collapsar - the collapse of a rotating star to a black hole, are classical sources for gravitational radiation. Additionally one expect a specific a gravitational radiation pulse associated with the acceleration of the relativistic ejecta. I consider here the implication of the observed rates of GRBs to the possibility of detection of a gravitational radiation signal associated with a GRB. Unfortunately I find that, with currently planned detectors it is impossible to detect the direct gravitational radiation associated with the GRB. It is also quite unlikely to detect gravitational radiation associated with Collapsars. However, the detection of gravitational radiation from a neutron star merger associated with a GRB is likely.

  11. acute gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Published by The British Institute Pfeifer, Holger 4 Gravitational Radiation from Gamma-Ray Bursts Astrophysics (arXiv) Summary: Gamma Ray Bursts (GRBs) are the most relativistic...

  12. aux radiations gamma: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation studies. Inoue, Yoshiyuki 2014-01-01 3 Gravitational Radiation from Gamma-Ray Bursts Astrophysics (arXiv) Summary: Gamma Ray Bursts (GRBs) are the most relativistic...

  13. attenuates gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Galactic interstellar radiation field, we calculate the attenuation of the very high energy gamma rays from the Galactic sources. The infra-red radiation background near the...

  14. DOE 2012 Occupational Radiation Exposure October 2013

    SciTech Connect (OSTI)

    none,

    2012-02-02T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED in

  15. acute radiation exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant species. Search method: In nature, most alpha radiation exposure is caused by radon progeny. Exposure is particularly high below ground, and is also elevated on plant...

  16. aircrew radiation exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant species. Search method: In nature, most alpha radiation exposure is caused by radon progeny. Exposure is particularly high below ground, and is also elevated on plant...

  17. LATTICE DYNAMICS NUCLEAR RESONANCE ABSORPTION OF GAMMA-RADIATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    LATTICE DYNAMICS NUCLEAR RESONANCE ABSORPTION OF GAMMA-RADIATION AND COHERENT DECAY MODES Institut effets de correlation de paires. Abstract. -The cross-section for nuclear resonance absorption of gamma-radiation rksonnante des radiations gamma est en gBneral calculee en negligeant I'influence des phenomknes de coherence

  18. Effects of p60 sCo gamma radiation on Sarcina lutea: A comparison of effects at two different exposure rates and a study of the radiosensitizing properties of prodigiosin.

    E-Print Network [OSTI]

    Blair, George Washington

    1973-01-01T23:59:59.000Z

    of pigmented and nonpigmented cells. Radiation Res. 48, 40-52 (1971). 8. R. P. Williams, Biosynthesis of Prodigiosin, a Secondary Metabolite of Serratia marcescens, ~A 1. Microbiol. 25, 396-402 (1973). 9. M. M. Matthews, and N. I. Krinsky, The relatioship... Radiation on Sarcina ]utes: A Comparison of Effects at Two Different Exposure Rates and A Study of the Radiosensitizing Properties of. Prodigiosin (August 1973) George W. Blair, Jr. , B. S, , University of Chattanooga Directed by: Dr. R. D. Neff...

  19. A Basic Overview of the Occupational Radiation Exposure Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    Operating Experience Program, requires collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. DOE System of...

  20. Composition and apparatus for detecting gamma radiation

    DOE Patents [OSTI]

    Hofstetter, K.J.

    1994-08-09T23:59:59.000Z

    A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.

  1. EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION . Jacobexposed to nuclear explosions and medical radiation. Sinceto nuclear explo ions or medical radiation, describes the

  2. DOE 2008 Occupational Radiation Exposure October 2009

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security

    2009-10-01T23:59:59.000Z

    A major priority of the U.S. Department of Energy (DOE) is to ensure the health, safety, and security of DOE employees, contractors, and subcontractors. The Office of Health, Safety and Security (HSS) provides the corporate-level leadership and strategic vision necessary to better coordinate and integrate health, safety, environment, security, enforcement, and independent oversight programs. One function that supports this mission is the DOE Corporate Operating Experience Program that provides collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. This analysis supports corporate decision-making and synthesizes operational information to support continuous environment, safety, and health improvement across the DOE complex.

  3. Occupational Radiation Exposure Analysis of US ITER DCLL TBM

    SciTech Connect (OSTI)

    Merrill, Brad J; Cadwallader, Lee C; Dagher, Mohamad

    2007-08-01T23:59:59.000Z

    This report documents an Occupational Radiation Exposure (ORE) analysis that was performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This analysis was performed with the QADMOD dose code for anticipated maintenance activities for this TBM concept and its ancillary systems. The QADMOD code was used to model the PbLi cooling loop of this TBM concept by specifying gamma ray source terms that simulated radioactive material within the piping, valves, heat exchanger, permeator, pump, drain tank, and cold trap of this cooling system. Estimates of the maintenance tasks that will have to be performed and the time required to perform these tasks where developed based on either expert opinion or on industrial maintenance experience for similar technologies. This report details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  4. ORISE: Worker Health Studies - Radiation Exposure Data Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Argonne Electronic Medical Records System Beryllium Testing and Surveillance Radiation Exposure Information and Reporting System (REIRS) U.S. Department of Energy...

  5. A Basic Overview of Occupational Radiation Exposure Monitoring...

    Office of Environmental Management (EM)

    Analysis & Reporting A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting September 2012 This pamphlet is intended to provide a short summary...

  6. Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil

    SciTech Connect (OSTI)

    Silveira, M. A. G.; Moreira, R. H.; Bellini, B. S. [Centro Universitario da FEI, Sao Bernardo do Campo, Sao Paulo (Brazil); Medina, N. H.; Aguiar, V. A. P. [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-08-04T23:59:59.000Z

    We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sao Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sao Paulo, and soil from Sao Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.

  7. activity gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the conversion of blast wave energy into radiation in active galactic nuclei and gamma-ray bursts Astrophysics (arXiv) Summary: It has been suggested that relativistic blast...

  8. atm radiation exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are more sensitive to both X-ray and heavy ion exposure than to high-LET radiation damage. Mice haplodeficient for the ATM gene and wildtypes were exposed to 325 m that not...

  9. DOE 2010 Occupational Radiation Exposure November 2011

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

    2011-11-11T23:59:59.000Z

    This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

  10. Risk assessment and management of radiofrequency radiation exposure

    SciTech Connect (OSTI)

    Dabala, Dana [Railways Medical Clinic Cluj-Napoca, Occupational Medicine Department, 16-20 Bilascu Gheorghe St., 400015 Cluj-Napoca (Romania)] [Railways Medical Clinic Cluj-Napoca, Occupational Medicine Department, 16-20 Bilascu Gheorghe St., 400015 Cluj-Napoca (Romania); Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath St., 400293 Cluj-Napoca (Romania)] [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath St., 400293 Cluj-Napoca (Romania)

    2013-11-13T23:59:59.000Z

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  11. High pressure argon ionization chamber systems for the measurement of environmental radiation exposure rates

    E-Print Network [OSTI]

    DeCampo, J A; Raft, P D

    1972-01-01T23:59:59.000Z

    High pressure argon ionization chamber systems for the measurement of environmental radiation exposure rates

  12. Radiative Transfer Models for Gamma-Ray Bursts

    E-Print Network [OSTI]

    Vurm, Indrek

    2015-01-01T23:59:59.000Z

    We present global radiative transfer models for heated relativistic jets. The simulations include all relevant radiative processes, starting deep in the opaque zone and following the evolution of radiation to and beyond the photosphere of the jet. The transfer models are compared with three gamma-ray bursts GRB 990123, GRB 090902B, and GRB 130427A, which have well-measured and different spectra. The models provide good fits to the observed spectra in all three cases. The fits give estimates for the jet magnetization parameter $\\varepsilon_{\\rm B}$ and the Lorentz factor $\\Gamma$. In the small sample of three bursts, $\\varepsilon_{\\rm B}$ varies between 0.01 and 0.1, and $\\Gamma$ varies between 340 and 1200.

  13. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.)

    1989-01-01T23:59:59.000Z

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  14. Health Impacts from Acute Radiation Exposure

    SciTech Connect (OSTI)

    Strom, Daniel J.

    2003-09-30T23:59:59.000Z

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  15. On the origin of Gamma Ray Burst radiation

    E-Print Network [OSTI]

    G. Ghisellini

    2001-01-17T23:59:59.000Z

    In the standard internal shock model, the observed X and gamma-ray radiation is assumed to be produced by synchrotron emission. I will show that there are serious problems with this interpretation, calling for other radiation mechanisms, such as quasi-thermal Comptonization and/or Compton drag processes, or both. These new ideas can have important consequences on the more general internal shock scenario, and can be tested by future observations.

  16. Gamma Radiation & X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G FGalactic ScaleGameGamma

  17. Environmental radiation exposure: Regulation, monitoring, and assessment

    SciTech Connect (OSTI)

    Chen, S.Y.; Yu, C.; Hong, K.J.

    1991-01-01T23:59:59.000Z

    Radioactive releases to the environment from nuclear facilities constitute a public health concern. Protecting the public from such releases can be achieved through the establishment and enforcement of regulatory standards. In the United States, numerous standards have been promulgated to regulate release control at nuclear facilities. Most recent standards are more restrictive than those in the past and require that radioactivity levels be as low as reasonably achievable (ALARA). Environmental monitoring programs and radiological dose assessment are means of ensuring compliance with regulations. Environmental monitoring programs provide empirical information on releases, such as the concentrations of released radioactivity in environmental media, while radiological dose assessment provides the analytical means of quantifying dose exposures for demonstrating compliance.

  18. DOE Radiation Exposure Monitoring System (REMS) Data Update

    SciTech Connect (OSTI)

    Rao, Nimi; Hagemeyer, Derek

    2012-05-05T23:59:59.000Z

    This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

  19. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2012-07-07T23:59:59.000Z

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  20. Detection of energetic particles and gamma rays General radiation detection concepts

    E-Print Network [OSTI]

    Peletier, Reynier

    Detection of energetic particles and gamma rays General radiation detection concepts Peter · heavy charged particles · electrons ­ neutral particles · neutrons · neutrinos · General radiation detection concepts ­ pulse mode operation ­ energy spectrum ­ detector efficiency ­ timing · Radiation

  1. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01T23:59:59.000Z

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  2. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E. (Downers Grove, Knoxville, TN); Cox, Samson A. (Downers Grove, IL)

    1981-01-01T23:59:59.000Z

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  3. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    SciTech Connect (OSTI)

    none,

    2013-06-06T23:59:59.000Z

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  4. Gravitational radiation from long gamma-ray bursts

    E-Print Network [OSTI]

    Maurice H. P. M. van Putten

    2001-02-11T23:59:59.000Z

    Long gamma-ray bursts (GRBs) are probably powered by high-angular momentum black hole-torus systems in suspended accretion. The torus will radiate gravitational waves as non-axisymmetric instabilities develop. The luminosity in gravitational-wave emissions is expected to compare favorably with the observed isotropic equivalent luminosity in GRB-afterglow emissions. This predicts that long GRBs are potentially the most powerful LIGO/VIRGO burst-sources in the Universe. Their frequency-dynamics is characterized by a horizontal branch in the $\\dot{f}(f)-$diagram.

  5. Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring Systems 

    E-Print Network [OSTI]

    Ryan, Christopher Michael

    2012-07-16T23:59:59.000Z

    country of origin. To combat the threat of nuclear trafficking, radiation portal monitors (RPMs) are deployed around the world to intercept illicit material while in transit by passively detecting gamma and neutron radiation. Portal monitors in some...

  6. Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring Systems

    E-Print Network [OSTI]

    Ryan, Christopher Michael

    2012-07-16T23:59:59.000Z

    country of origin. To combat the threat of nuclear trafficking, radiation portal monitors (RPMs) are deployed around the world to intercept illicit material while in transit by passively detecting gamma and neutron radiation. Portal monitors in some...

  7. Electronic equilibrium as a function of depth in tissue from Cobalt-60 point source exposures

    E-Print Network [OSTI]

    Myrick, Jo Ann

    1994-01-01T23:59:59.000Z

    . Skin exposure can arise from both the beta and gamma components of radioactive particles and gamma radiation can contribute significantly to skin doses. The gamma component of dose increases dramatically when layers of protective clothing are interposed...

  8. Neutron and gamma radiation shielding material, structure, and process of making structure

    DOE Patents [OSTI]

    Hondorp, Hugh L. (Princeton Junction, NJ)

    1984-01-01T23:59:59.000Z

    The present invention is directed to a novel neutron and gamma radiation elding material consisting of 95 to 97 percent by weight SiO.sub.2 and 5 to 3 percent by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  9. Gravitational Radiation from Gamma-Ray Burst Progenitors

    E-Print Network [OSTI]

    Shiho Kobayashi; Peter Meszaros

    2003-02-11T23:59:59.000Z

    We study gravitational radiation from various proposed gamma-ray burst (GRB) progenitor models, in particular compact mergers and massive stellar collapses. These models have in common a high angular rotation rate, and the final stage involves a rotating black hole and accretion disk system. We consider the in-spiral, merger and ringing phases, and for massive collapses we consider the possible effects of asymmetric collapse and break-up, as well bar-mode instabilities in the disks. We calculate the strain and frequency of the gravitational waves expected from various progenitors, at distances based on occurrence rate estimates. Based on simplifying assumptions, we give estimates of the probability of detection of gravitational waves by the advanced LIGO system from the different GRB scenarios.

  10. ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1

    E-Print Network [OSTI]

    Zhang, Bing

    ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1 of 17 gamma-ray bursts (GRBs) during the afterglow phase and ac- counting for radiative losses, we the implications of these results for the GRB radiation and jet models. Subject headinggs: gamma rays: bursts

  11. Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast

    SciTech Connect (OSTI)

    O'Connor, Michael K.; Li Hua; Rhodes, Deborah J.; Hruska, Carrie B.; Clancy, Conor B.; Vetter, Richard J. [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905 (United States); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Department of Medical Physics, St. James's Hospital, Dublin (Ireland); Radiation Safety, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2010-12-15T23:59:59.000Z

    Purpose: Recent studies have raised concerns about exposure to low-dose ionizing radiation from medical imaging procedures. Little has been published regarding the relative exposure and risks associated with breast imaging techniques such as breast specific gamma imaging (BSGI), molecular breast imaging (MBI), or positron emission mammography (PEM). The purpose of this article was to estimate and compare the risks of radiation-induced cancer from mammography and techniques such as PEM, BSGI, and MBI in a screening environment. Methods: The authors used a common scheme for all estimates of cancer incidence and mortality based on the excess absolute risk model from the BEIR VII report. The lifetime attributable risk model was used to estimate the lifetime risk of radiation-induced breast cancer incidence and mortality. All estimates of cancer incidence and mortality were based on a population of 100 000 females followed from birth to age 80 and adjusted for the fraction that survives to various ages between 0 and 80. Assuming annual screening from ages 40 to 80 and from ages 50 to 80, the cumulative cancer incidence and mortality attributed to digital mammography, screen-film mammography, MBI, BSGI, and PEM was calculated. The corresponding cancer incidence and mortality from natural background radiation was calculated as a useful reference. Assuming a 15%-32% reduction in mortality from screening, the benefit/risk ratio for the different imaging modalities was evaluated. Results: Using conventional doses of 925 MBq Tc-99m sestamibi for MBI and BSGI and 370 MBq F-18 FDG for PEM, the cumulative cancer incidence and mortality were found to be 15-30 times higher than digital mammography. The benefit/risk ratio for annual digital mammography was >50:1 for both the 40-80 and 50-80 screening groups, but dropped to 3:1 for the 40-49 age group. If the primary use of MBI, BSGI, and PEM is in women with dense breast tissue, then the administered doses need to be in the range 75-150 MBq for Tc-99m sestamibi and 35 MBq-70 MBq for F-18 FDG in order to obtain benefit/risk ratios comparable to those of mammography in these age groups. These dose ranges should be achievable with enhancements to current technology while maintaining a reasonable examination time. Conclusions: The results of the dose estimates in this study clearly indicate that if molecular imaging techniques are to be of value in screening for breast cancer, then the administered doses need to be substantially reduced to better match the effective doses of mammography.

  12. Natural radiation exposure in a municipality of the Brazilian Sertao

    SciTech Connect (OSTI)

    Malanca, A. [UFRN, Natal (Brazil)] [UFRN, Natal (Brazil); Gaidolfi, L. [Settore Fisico-Ambientale, Piacenza (Italy)] [Settore Fisico-Ambientale, Piacenza (Italy)

    1996-08-01T23:59:59.000Z

    Sixty-seven thermoluminescent dosemeters (TLDs) were distributed to the inhabitants of a Brazilian municipality located in the semi-arid inland (Sertao) of the state of Rio Grande do Norte. All the TLDs were exposed for 180 d in bedrooms or in living areas of the selected buildings and eventually returned to the authors` laboratory in italy. Radiological measurements gave a range of 32-330 nGy h{sup -1}, an arithmetic mean of 107 {+-} 47 nGy h{sup -1}, and a geometric mean of 99 nGy h{sup -1}. This last value corresponds to an annual indoor effective dose equivalent of 425 {mu}Sv. Concentrations of primordial radionuclides in some samples of building material, soil, and rock collected in the aformentioned territory were analytically determined by gamma spectrometer. The relatively high content of {sup 226}Ra (98.5 {+-} 12 Bq kg{sup -1}), {sup 232}Th (252.5 {+-} 47 Bq kg{sup -1}), and {sup 40}K (1533 {+-} 169 Bq kg{sup -1}) in bedrock is probably responsible for the elevated {lambda}-radiation environment of that municipality. 12 refs., 1 fig., 2 tab.

  13. Studies in feed spoilage: prevention of spoilage in ground corn by gamma radiation

    E-Print Network [OSTI]

    Webb, Billy Dean

    1959-01-01T23:59:59.000Z

    of gam- 6 ma radiation. If gamma rays can be used to preserve foods, it seems pos- sible that they may be used also to prevent losses in grains, feed ingred- ients, and mixed feeds. It is anticipated that the dose high enough to destroy insects... not been studied extensively. Investigations on the use of gamma radiation for the preservation of various feed ingredients need to be carried out to determine: (I) the effect of gamma radiation on the growth of molds im feeds irradiated at different...

  14. Pair Production and Radiation Effects in Clouds Illuminated by Gamma Ray Sources

    E-Print Network [OSTI]

    C. D. Dermer; M. Boettcher; E. P. Liang

    2001-07-12T23:59:59.000Z

    Many classes of gamma-ray sources, such as gamma-ray bursts, blazars, Seyfert galaxies, and galactic black hole sources are surrounded by large amounts of gas and dust. X-rays and gamma-rays that traverse this material will be attenuated by Compton scattering and photoelectric absorption. One signature of an intervening scattering cloud is radiation-hardening by electrons that have been scattered and heated by the incident radiation, as illustrated by a Monte Carlo calculation. Compton scattering provides backscattered photons that will attenuate subsequent gamma rays through \\gamma\\gamma pair-production processes. We calculate the pair efficiency for a cloud illuminated by gamma-ray burst radiation. An analytic calculation of the flux of X-rays and gamma rays Thomson scattered by an intervening cloud is presented. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within ~1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy could reveal gamma-ray sources embedded in dense clouds, or sites of past GRB explosions.

  15. Observation of the radiative decay D*+-> D+gamma

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan; Zhou, L.

    1998-05-01T23:59:59.000Z

    We have observed a signal for the decay D*(+) --> D(+)gamma at a significance of 4 standard deviations. From the measured branching ratio B(D*(+) --> D(+)gamma)/B(D*(+) --> D(+)pi(0)) = 0.055 +/- 0.014 +/- 0.010 we find B(D*(+) --> D(+)gamma) = 0...

  16. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation dominated regime

    E-Print Network [OSTI]

    Li, Jian-Xing; Galow, Benjamin J; Keitel, Christoph H

    2015-01-01T23:59:59.000Z

    The interaction of a relativistic electron bunch with a counter-propagating tightly-focused laser beam is investigated for intensities when the dynamics is strongly affected by its own radiation. The Compton scattering spectra of gamma-radiation are evaluated employing a semiclassical description for the laser-driven electron dynamics and a quantum electrodynamical description for the photon emissions. We show for laser facilities under construction that gamma-ray bursts of few hundred attoseconds and dozens of megaelectronvolt photon energies may be detected in the near-backwards direction of the initial electron motion. Tight focussing of the laser beam and radiation reaction are demonstrated to be jointly responsible for such short gamma-ray bursts which are independent of both duration of electron bunch and laser pulse. Furthermore, the stochastic nature of the gamma-photon emission features signatures in the resulting gamma-ray comb in the case of the application of a multi-cycle laser pulse.

  17. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOE Patents [OSTI]

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30T23:59:59.000Z

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  18. Flash polymerization of silicone oils using gamma radiation for conserving waterlogged wood

    E-Print Network [OSTI]

    Gidden, Richmond Paul

    1996-01-01T23:59:59.000Z

    the SFD-I /SFD-5 mix. These bulked samples were exposed to gamma radiation emitted from a nuclear research reactor and received gamma doses ranging from 30 Gy to 228 Gy with dose rates ranging from 0.6 Gy/min to 5.1 Gy/min. Following irradiation, thin...

  19. Radiation exposure of air-carrier crew members. 2. Final report

    SciTech Connect (OSTI)

    Friedberg, W.; Snyder, L.; Faulkner, D.N.; Darden, E.B.; O Brien, K.

    1992-01-01T23:59:59.000Z

    The cosmic radiation environment at air carrier flight altitudes is described and estimates given of the amounts of galactic cosmic radiation received on a wide variety of routes to and from, and within the contiguous United States. Radiation exposure from radioactive air cargo is also considered. Methods are provided to assess health risks from exposure to galactic radiation. On the flights studied, the highest dose of galactic radiation received annually by a crewmember who worked as many as 1,000 block hours a year would be less than half the annual limit recommended by the International Commission on Radiological Protection for a nonpregnant occupationally exposed adult. The radiation exposure of a pregnant crewmember who worked 70 block hours a month for 5 months would exceed the recommended 2-millisievert pregnancy limit on about one-third of the flights.

  20. accompanying gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: We discuss the possible simultaneously UVoptical emission accompanying Gamma-ray bursts (GRBs). We show that as long as the intrinsic spectrum of GRB can extend to ...

  1. Radiation protection instrumentation - ambient and/or directional dose equivalent (rate) meters and/or monitors for beta, X and gamma radiation part 2: high range beta and photon dose and dose rate portable instruments for emergency radiation protection purposes

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    2007-01-01T23:59:59.000Z

    Radiation protection instrumentation - ambient and/or directional dose equivalent (rate) meters and/or monitors for beta, X and gamma radiation

  2. Relativistic Winds from Compact Gamma-Ray Sources: II. Pair Loading and Radiative Acceleration in Gamma-ray Bursts

    E-Print Network [OSTI]

    Christopher Thompson; Piero Madau

    2000-02-21T23:59:59.000Z

    We consider the effects of rapid pair creation by an intense pulse of gamma-rays propagating ahead of a relativistic shock. Side-scattered photons colliding with the main gamma-ray beam amplify the density of scattering charges. The acceleration rate of the pair-loaded medium is calculated, and its limiting bulk Lorentz factor related to the spectrum and compactness of the photon source. One obtains, as a result, a definite prediction for the relative inertia in baryons and pairs. The deceleration of a relativistic shock in the moving medium, and the resulting synchrotron emissivity, are compared with existing calculations for a static medium. The radiative efficiency is increased dramatically by pair loading. When the initial ambient density exceeds a critical value, the scattering depth traversed by the main gamma-ray pulse rises above unity, and the pulse is broadened. These considerations place significant constraints on burst progenitors: a pre-burst mass loss rate exceeding 10^{-5} M_\\odot per year is difficult to reconcile with individual pulses narrower than 10 s, unless the radiative efficiency is low. An anisotropic gamma-ray flux (on an angular scale \\Gamma^{-1} or larger) drives a large velocity shear that greatly increases the energy in the seed magnetic field forward of the propagating shock.

  3. Extending the response of the sum coincidence spectrometer to multiple gamma radiation cascades

    E-Print Network [OSTI]

    Helton, Victor Dean

    1964-01-01T23:59:59.000Z

    tubes, and cathode followers, respectively. D. D. Sum represents the differ- ential discriminator of the sum energies. Rl and R2 are resistors and RVI is a potentiometer Consider first a gamma-radiation cascade in which two gamma rays are coincident.... Setting the differential discriminator on the sum of the two gamma-ray energies allows the analyzer to be gated only when the full energy of both gamma rays is absorbed in the detectors. The analyzer may be gated by the absorption of the full energies...

  4. Influence of Spinning Electric Fields on Natural Background Gamma-Radiation

    E-Print Network [OSTI]

    Mark Krinker; Felix Kitaichik

    2010-04-28T23:59:59.000Z

    This paper considers influence of spinning electric field on statistics of natural background gamma-radiation. The spinning electric field, shown as a virtual gyroscope, has quantum mechanics characteristics. Interaction of the virtual fermion-like gyroscope with bosons (gamma-quanta) results in lowering intensity of the gamma-radiation and altering Poisson distribution. The statistic of the observed phenomenon depends on the direction of rotation of the virtual gyroscope. The results are discussed in a shade of spin-spin interaction having regard to realizing thermodynamically profitable conditions. Similarity of observed reduction of gamma-radiation in spinning electric fields and that for mechanical rotation stresses a special role of rotation itself, disregarding the matter of its carrier.

  5. Reliability studies on Si PIN photodiodes under Co-60 gamma radiation

    SciTech Connect (OSTI)

    Prabhakara Rao, Y. P. [Integrated Circuits Division, Bharat Electronics Limited, Bangalore, Karnataka-560013 (India) and Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, Karnataka-570006 (India); Praveen, K. C.; Gnana Prakash, A. P. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, Karnataka-570006 (India); Rani, Y. Rejeena [Integrated Circuits Division, Bharat Electronics Limited, Bangalore, Karnataka-560013 (India)

    2013-02-05T23:59:59.000Z

    Silicon PIN photodiodes were fabricated with 250 nm SiO{sub 2} antireflective coating (ARC). The changes in the electrical characteristics, capacitance-voltage characteristics and spectral response after gamma irradiation are systematically studied to estimate the radiation tolerance up to 10 Mrad. The different characteristics studied in this investigation demonstrate that Si PIN photodiodes are suitable for high radiation environment.

  6. Tritium: a model for low level long-term ionizing radiation exposure

    SciTech Connect (OSTI)

    Carsten, A.L.

    1984-01-01T23:59:59.000Z

    The somatic, cytogenetic and genetic effects of single and chronic tritiated water (HTO) ingestion in mice was investigated. This study serves not only as an evaluation of tritium toxicity (TRITOX) but due to its design involving long-term low concentration ingestion of HTO may serve as a model for low level long-term ionizing radiation exposure in general. Long-term studies involved animals maintained on HTO at concentrations of 0.3 ..mu..Ci/ml, 1.0 ..mu..Ci/ml, 3.0 ..mu..Ci/ml or depth dose equivalent chronic external exposures to /sup 137/Cs gamma rays. Maintenance on 3.0 ..mu..Ci/ml resulted in no effect on growth, life-time shortening or bone marrow cellularity, but did result in a reduction of bone marrow stem cells, an increase in DLM's in second generation animals maintained on this regimen and cytogenetic effects as indicated by increased sister chromatid exchanges (SCE's) in bone marrow cells, increased chromosome aberrations in the regenerating liver and an increase in micronuclei in red blood cells. Biochemical and microdosimetry studies showed that animals placed on the HTO regimen reached tritium equilibrium in the body water in approximately 17 to 21 days with a more gradual increase in bound tritium. When animals maintained for 180 days on 3.0 ..mu..Ci/ml HTO were placed on a tap water regimen, the tritium level in tissue dropped from the equilibrium value of 2.02 ..mu..Ci/ml before withdrawal to 0.001 ..mu..Ci/ml at 28 days. 18 references.

  7. Reflectivity of linear and nonlinear gamma radiated apodized chirped Bragg grating under ocean

    SciTech Connect (OSTI)

    Hamdalla, Taymour A. [Faculty of Science, Alexandria University, Alexandria (Egypt); Faculty of Science, Tabuk University, Tabuk (Saudi Arabia)

    2012-09-06T23:59:59.000Z

    In this paper, the effect Co{sup 60} gamma radiation is investigated on the effective refractive index of apodized chirped Bragg grating. Nine apodization profiles are considered. Comparison between the reflectivity of the gamma radiated and non radiated fiber Bragg grating has been carried out. The electric field of signals propagating through the apodized chirped fiber Bragg grating (ACFBG) is first calculated from which, new values for the refractive index are determined. The nonlinear effects appear on the ACFBG reflectivity. The effect of nonlinearity and undersea temperature and pressure on the grating is also studied.

  8. Indoor and Outdoor in Situ High-Resolution Gamma Radiation Measurements in Urban Areas of Cyprus

    E-Print Network [OSTI]

    E. Svoukis; H. Tsertos

    2006-10-02T23:59:59.000Z

    In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were performed in preselected, common locations of the main urban areas of Cyprus. Specific activities and gamma absorbed dose rates in air due to the naturally occurring radionuclides of Th-232 and U-238 series, and K-40 are determined and discussed. Effective dose rate to the Cyprus population due to terrestrial gamma radiation is derived directly from this work. The results obtained outdoors match very well with those derived previously by high-resolution gamma spectrometry of soil samples, which were collected from the main island bedrock surface. This implies that the construction and building materials in urban areas do not affect the external gamma dose rate; thus they are mostly of local origin. Finally, the indoor/outdoor gamma dose ratio was found to be 1.4 +- 0.5.

  9. Indoor and Outdoor in Situ High-Resolution Gamma Radiation Measurements in Urban Areas of Cyprus

    E-Print Network [OSTI]

    Svoukis, E

    2006-01-01T23:59:59.000Z

    In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were performed in preselected, common locations of the main urban areas of Cyprus. Specific activities and gamma absorbed dose rates in air due to the naturally occurring radionuclides of Th-232 and U-238 series, and K-40 are determined and discussed. Effective dose rate to the Cyprus population due to terrestrial gamma radiation is derived directly from this work. The results obtained outdoors match very well with those derived previously by high-resolution gamma spectrometry of soil samples, which were collected from the main island bedrock surface. This implies that the construction and building materials in urban areas do not affect the external gamma dose rate; thus they are mostly of local origin. Finally, the indoor/outdoor gamma dose ratio was found to be 1.4 +- 0.5.

  10. Monte Carlo Simulation of Indoor External Exposure due to Gamma-emitting Radionuclides in Building Materials

    E-Print Network [OSTI]

    Jun Deng; Lei Cao; Xu Su

    2014-01-14T23:59:59.000Z

    The use of building materials containing naturally occurring radionuclides,such as K-40, U-238 and Th-232 and their progeny, could lead to external exposures of the residents of such buildings. In this paper, a set of models are set up to calculate the specific effective dose rates(the effective dose rate per Bq/kg of K-40, U-238 series, and Th-232 series) imposed to residents by building materials with MCNPX code. Effect of chemical composition, position concerned in the room and thickness as well as density of material is analyzed. In order to facilitate more precise assessment of indoor external dose due to gamma emitting radionuclides in building materials, three regressive expressions are proposed and validated by measured data to calculate specific effective rate for K-40, U-238 series and Th-232 series, respectively.

  11. What is the radiative process of the prompt phase of Gamma Ray Bursts?

    SciTech Connect (OSTI)

    Ghisellini, G. [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46 I-23807 Merate (Italy)

    2010-07-15T23:59:59.000Z

    Despite the dramatic improvement of our knowledge of the phenomenology of Gamma Ray Bursts, we still do not know several fundamental aspects of their physics. One of the puzzles concerns the nature of the radiative process originating the prompt phase radiation. Although the synchrotron process qualifies itself as a natural candidate, it faces severe problems, and many efforts have been done looking for alternatives. These, however, suffer from other problems, and there is no general consensus yet on a specific radiation mechanism.

  12. Coherent Radiation in Gamma-Ray Bursts and Relativistic Collisionless Shocks

    E-Print Network [OSTI]

    Kunihito Ioka

    2005-10-27T23:59:59.000Z

    We suggest that coherent radiation may occur in relativistic collisionless shocks via two-stream Weibel instabilities. The coherence amplifies the radiation power by many orders [$\\sim 10^{12}$ in Gamma-Ray Bursts (GRBs)] and particles cool very fast before being randomized. We imply (1) GRBs accompany strong infrared emission, (2) protons efficiently transfer energy to electrons and (3) prompt GRBs might be the upscattered coherent radiation.

  13. area gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cyprus Nuclear Experiment (arXiv) Summary: In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were...

  14. accidental radiation exposures: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particles or black holes. Jiri Bicak 2002-01-03 147 Debris and Radiation-Induced Damage Effects on EUV Nanolithography Source Collector Mirror Optics Performance Plasma...

  15. Electronic dose conversion technique using a NaI(Tl) detector for assessment of exposure dose rate from environmental radiation

    SciTech Connect (OSTI)

    Cho, G.; Kim, H.K. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)] [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Woo, H.; Oh, G. [Korea Electric Power Research Inst., Taejon (Korea, Republic of)] [Korea Electric Power Research Inst., Taejon (Korea, Republic of); Ha, D.K. [Samchang Enterprise Co., Anyang (Korea, Republic of)] [Samchang Enterprise Co., Anyang (Korea, Republic of)

    1998-06-01T23:59:59.000Z

    An electronic dose conversion technique to assess the exposure dose rate due to environmental radiation especially from terrestrial sources was developed. For a 2 x 2 inch cylindrical NaI(Tl) scintillation detector, pulse-height spectra were obtained for gamma-rays of energy up to 3 MeV by Monte Carlo simulation. Based on the simulation results and the experimentally fitted energy resolution, dose conversion factors were calculated by a numerical decomposition method. These calculated dose conversion factors were, then, electronically implemented to a developed dose conversion unit (DCU) which is a microprocessor-controlled single channel analyzer (SCA) with variable discrimination levels. The simulated spectra were confirmed by measurement of several monoenergetic gamma spectra with a multichannel analyzer (MCA). The converted exposure dose rates from the implemented dose conversion algorithm in the DCU were also evaluated for a field test in the vicinity of the nuclear power plant at Kori as well as for several standard sources, and the results were in good agreement with separate measurement by a high pressure ionization chamber (HPIC) within a 6.4% deviation.

  16. Amplification of Gamma Radiation from X-Ray Excited Nuclear States

    E-Print Network [OSTI]

    Silviu Olariu

    1999-07-18T23:59:59.000Z

    In this paper we discuss the possibility of the excitation of nuclear electromagnetic transitions by the absorption of X-ray quanta produced in appropriate inner-shell atomic transitions, and the relevance of this process for the amplification of the gamma radiation from the excited nuclear states. It is concluded that the X-ray pumping technique might provide a useful approach for the development of a gamma ray laser.

  17. Radiation and Uranium Resources Exposure Control (South Dakota)

    Broader source: Energy.gov [DOE]

    The public policy of South Dakota is to encourage the constructive uses of radiation, the proper development of uranium resources, and the control of any associated harmful effects. The disposal of...

  18. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOE Patents [OSTI]

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12T23:59:59.000Z

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  19. Indoor exposure to radiation in the case of an outdoorrelease

    SciTech Connect (OSTI)

    Price, Phillip N.; Jayaraman, Buvana

    2006-06-01T23:59:59.000Z

    This report quantifies the effectiveness of ''sheltering in place'' in a commercial building in the event of an outdoor radiological release. The indoor exposure to airborne particles is calculated by solving the mass balance equation that accounts for the loss of particles due to deposition, filtration and exhaust. Quantitative estimates of shelter-inplace effectiveness are provided for typical commercial buildings.

  20. On the connection between gamma and radio radiation spectra in pulsars

    E-Print Network [OSTI]

    V. M. Kontorovich; A. B. Flanchik

    2007-12-29T23:59:59.000Z

    The model of pulsar radio emission is discussed in which a coherent radio emis-sion is excited in a vacuum gap above polar cap of neutron star. Pulsar X and gamma radiation are considered as the result of low-frequency radio emission inverse Comp-ton scattering on ultra relativistic electrons accelerated in the gap. The influence of the pulsar magnetic field on Compton scattering is taken into account. The relation of radio and gamma radiation spectra has been found in the framework of the model.

  1. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOE Patents [OSTI]

    Hermes, Robert E. (White Rock, NM)

    2002-01-01T23:59:59.000Z

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  2. Radiation detection system for portable gamma-ray spectroscopy

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

    2006-06-20T23:59:59.000Z

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  3. Occupational radiation exposure history of Idaho Field Office Operations at the INEL

    SciTech Connect (OSTI)

    Horan, J.R.; Braun, J.B.

    1993-10-01T23:59:59.000Z

    An extensive review has been made of the occupational radiation exposure records of workers at the Idaho National Engineering Laboratory (INEL) over the period of 1951 through 1990. The focus has been on workers employed by contractors and employees of the Idaho Field Operations Office (ID) of the United States Department of Energy (USDOE) and does not include the Naval Reactors Facility (NRF), the Argonne National Laboratory (ANL), or other operations field offices at the INEL. The radiation protection guides have decreased from 15 rem/year to 5 rem/year in 1990 for whole body penetrating radiation exposure. During these 40 years of nuclear operations (in excess of 200,000 man-years of work), a total of twelve individuals involved in four accidents exceeded the annual guidelines for exposure; nine of these exposures were received during life saving efforts on January 3, 1961 following the SL-1 reactor accident which killed three military personnel. These exposures ranged from 8 to 27 rem. Only one individual has exceeded the annual whole body penetrating radiation protection guidelines in the last 29 years.

  4. Microbiological, chemical, and sensory quality changes in Pico de gallo as affected by gamma radiation 

    E-Print Network [OSTI]

    Miller, Gerald Howard

    1994-01-01T23:59:59.000Z

    This study was undertaken to gain a greater understanding of the effects of gamma radiation and storage at 2'C on the microbiological, sensorial and chemical quality of pico de gallo. Samples of pico de gallo were exposed to cobalt'o at a dose of I...

  5. Microbiological, chemical, and sensory quality changes in Pico de gallo as affected by gamma radiation

    E-Print Network [OSTI]

    Miller, Gerald Howard

    1994-01-01T23:59:59.000Z

    This study was undertaken to gain a greater understanding of the effects of gamma radiation and storage at 2'C on the microbiological, sensorial and chemical quality of pico de gallo. Samples of pico de gallo were exposed to cobalt'o at a dose of I...

  6. Request For Report Of Radiation Exposure History Form | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7 2 x>1 ReportsEnergy

  7. Radiation Processing -an overview

    E-Print Network [OSTI]

    of radiation · Facilities ­ Gamma ­ electrons ­ X-ray ­ Safety · Sterilisation of medical devices · Food irradiation · Material modification #12;3 Content ­ Part 2 · Environmental applications · Other applications Radiation · Energy in the form of waves or moving subatomic particles Irradiation · Exposure to radiation

  8. THE PHOTOSPHERIC RADIATION MODEL FOR THE PROMPT EMISSION OF GAMMA-RAY BURSTS: INTERPRETING FOUR OBSERVED CORRELATIONS

    SciTech Connect (OSTI)

    Fan Yizhong; Wei Daming; Zhang Fuwen [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Zhang Binbin, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn, E-mail: fwzhang@pmo.ac.cn, E-mail: bbzhang@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-08-10T23:59:59.000Z

    We show that the empirical E{sub p}-L, {Gamma}-L, E{sub p}-{Gamma}, and {eta}-bar{sub {gamma}}-E{sub p} correlations (where L is the time-averaged luminosity of the prompt emission, E{sub p} is the spectral peak energy, {Gamma} is the bulk Lorentz factor, and {eta}-bar{sub {gamma}} is the emission efficiency of gamma-ray bursts, GRBs) are well consistent with the relations between the analogous parameters predicted in the photospheric radiation model of the prompt emission of GRBs. The time-resolved thermal radiation of GRB 090902B does follow the E{sub p}-L and {Gamma}-L correlations. A reliable interpretation of the four correlations in alternative models is still lacking. These may point toward a photospheric origin of prompt emission of some GRBs.

  9. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2009-12-01T23:59:59.000Z

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2008 annual reports submitted by five of the seven categories1 of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Because there are no geologic repositories for high-level waste currently licensed and no low-level waste disposal facilities in operation, only five categories will be considered in this report.

  10. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27T23:59:59.000Z

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  11. Assessment of the Technologies for Molecular Biodosimetry for Human Low-Dose Radiation Exposure Symposium

    SciTech Connect (OSTI)

    Matthew A. Coleman Ph.D.; Narayani Ramakrishnan, Ph.D.; Sally A. Amundson; James D. Tucker, Ph.D.; Stephen D. Dertinger, Ph.D.; Natalia I. Ossetrova, Ph.D.; Tao Chen

    2009-11-16T23:59:59.000Z

    Exposure to ionizing radiation produces few immediate outwardly-visible clinical signs, yet, depending on dose, can severely damage vital physiological functions within days to weeks and produce long-lasting health consequences among survivors. In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate the worried but unharmed from those individuals who must receive medical attention. Physical, clinical and biological dosimetry are usually combined for the best dose assessment. However, because of the practical limits of physical and clinical dosimetry, many attempts have been made to develop a dosimetry system based on changes in biological parameters, including techniques for hematology, biochemistry, immunology, cytogenetics, etc. Lymphocyte counts and chromosome aberrations analyses are among the methods that have been routinely used for estimating radiation dose. However, these assays require several days to a week to be completed and therefore cannot be used to obtain a fast estimate of the dose during the first few days after exposure when the information would be most critical for identifying victims of radiation accidents who could benefit the most by medical intervention. The steadily increasing sophistication in our understanding of the early biochemical responses of irradiated cells and tissues provides the opportunity for developing mechanism-based biosignatures of exposure. Compelling breakthroughs have been made in the technologies for genome-scale analysis of cellular transcriptional and proteomic profiles. There have also been major strides in the mechanistic understanding of the early events in DNA damage and radiation damage products, as well as in the cellular pathways that lead to radiation injury. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation protein machines are modified and activated, and large-scale changes occur in the gene expression profile involving a broad variety of cell-process pathways after a wide range of both low (<10 cGy) and high dose (>10 cGy) exposures. Evaluation of these potential gene and protein biomarkers for early and late diagnostic information will be critical for determining the efficacy of the signatures to both low and high dose IR exposures. Also needed are approaches that enable rapid handling and processing for mass-casualty and population triage scenarios. Development of in vivo model system will be crucial for validating both the biological and the instrumentation for biodosimetry. Such studies will also help further understanding of the molecular mechanisms of the biological effects of radiation and the differences of responses due to individual genetic variation.

  12. Beta decay radiation signature from neutron-rich gamma-ray bursts?

    E-Print Network [OSTI]

    Soebur Razzaque; Peter Meszaros

    2006-06-09T23:59:59.000Z

    Core collapse of massive stars and binary neutron stars or black hole-neutron star binary mergers are likely progenitors of long and short duration gamma-ray bursts respectively. Neutronized material in the former and neutron star material in the latter are ejected by the central engine implying a neutron-rich jet outflow. A free neutron, however, beta decays to a proton, an electron (beta) and an anti-neutrino in about fifteen minutes in its rest frame. Sudden creation of a relativistic electron is accompanied by radiation with unique temporal and spectral signature. We calculate here this radiation signature collectively emitted by all beta decay electrons from neutron-rich outflow. Detection of this signature may thus provide strong evidence for not only neutron but also for proton content in the relativistic gamma-ray burst jets.

  13. PHOTOSPHERIC EMISSION AS THE DOMINANT RADIATION MECHANISM IN LONG-DURATION GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 3321 Sterling Hall, 475 N. Charter Street, Madison WI 53706-1582 (United States); Margutti, Raffaella [Harvard-Smithsonian Center for Astrophysics, ITC, 60 Garden Street, Cambridge, MA 02138 (United States); Begelman, Mitchell C. [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309-0440 (United States)

    2013-03-10T23:59:59.000Z

    We present the results of a set of numerical simulations of long-duration gamma-ray burst jets associated with massive, compact stellar progenitors. The simulations extend to large radii and allow us to locate the region in which the peak frequency of the advected radiation is set before the radiation is released at the photosphere. Light curves and spectra are calculated for different viewing angles as well as different progenitor structures and jet properties. We find that the radiation released at the photosphere of matter-dominated jets is able to reproduce the observed Amati and energy-Lorentz factor correlations. Our simulations also predict a correlation between the burst energy and the radiative efficiency of the prompt phase, consistent with observations.

  14. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOE Patents [OSTI]

    Condreva, K.J.

    1997-01-14T23:59:59.000Z

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attenuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power. 4 figs.

  15. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOE Patents [OSTI]

    Condreva, Kenneth J. (1420 Fifth St., Livermore, Alameda County, CA 94550)

    1997-01-01T23:59:59.000Z

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attentuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power.

  16. Jitter radiation in gamma-ray bursts and their afterglows: emission and self-absorption

    E-Print Network [OSTI]

    Jared Workman; Brian Morsony; Davide Lazzati; Mikhail Medvedev

    2008-01-23T23:59:59.000Z

    Relativistic electrons moving into a highly tangled magnetic field emit jitter radiation. We present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We show that jitter emission can reproduce most of the observed features with some important differences with respect to standard synchrotron, especially in the frequency range between the self-absorption and the peak frequency. We discuss the similarities and differences between jitter and synchrotron and discuss experiments that can disentangle the two mechanisms.

  17. Gamma ray bursts may be blueshifted bundles of the relic radiation

    E-Print Network [OSTI]

    Andrzej Krasi?ski

    2015-02-02T23:59:59.000Z

    A hypothesis is proposed that the gamma-ray bursts (GRBs) may arise by blueshifting the emission radiation of hydrogen and helium generated during the last scattering epoch. The blueshift mechanism is provided by such a Lema\\^{\\i}tre -- Tolman (L--T) model, in which the bang-time function $t_B(r)$ is not everywhere constant. Blueshift arises on \\textit{radial} rays that are emitted over regions where $\\dril{t_B} r \

  18. Gamma ray bursts may be blueshifted bundles of the relic radiation

    E-Print Network [OSTI]

    Krasi?ski, Andrzej

    2015-01-01T23:59:59.000Z

    A hypothesis is proposed that the gamma-ray bursts (GRBs) may arise by blueshifting the emission radiation of hydrogen and helium generated during the last scattering epoch. The blueshift mechanism is provided by such a Lema\\^{\\i}tre -- Tolman (L--T) model, in which the bang-time function $t_B(r)$ is not everywhere constant. Blueshift arises on \\textit{radial} rays that are emitted over regions where $\\dril{t_B} r \

  19. Methyl viologen radical reactions with several oxidizing agents. [Gamma Radiation

    SciTech Connect (OSTI)

    Levey, G.; Ebbesen, T.W.

    1983-01-01T23:59:59.000Z

    The rates of oxidation of the methyl viologen radical by peroxodisulfate and hydrogen peroxide has been investigated. The methyl viologen free radical was produced by pulse radiolysis. The reaction of the peroxodisulfate radical with the methyl viologen radical was first order in both species, and the reaction rate constant is reported. A el-radiation study revealed a chain decomposition of the peroxodisulfate radical involving the methyl viologen radical when methanol, ethanol, or 2-propanol was present. Loss of the methyl viologen radical was then no longer observed to be a simple first-order reaction. The reaction of hydrogen peroxide with the methyl viologen radical was very slow in the presence of 1 M methanol. A much faster reaction in the absence of methanol was interpreted to be a reaction of the methyl viologen radical with the peroxy radicals. Hydrogen peroxide, in contrast to the chain decomposition of peroxodisulfate radicals, does not participate in a chain reaction involving the methyl viologen radical and methanol. Rate constants for the reaction of methyl viologen radical with dichromate radical, iodate radical, and ferricyanide radical are reported.

  20. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A. [Pratt and Whitney Rocketdyne, 6633 Canoga Avenue, Canoga Park, CA 91309 (United States); Normand, Eugene [Boeing Radiation Effects Laboratory, P.O. Box 3707, M/S 2T-50, Seattle, WA 98124-22079 (United States)

    2006-01-20T23:59:59.000Z

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  1. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    SciTech Connect (OSTI)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sommer, Eva; Lopez, Ramon; Wirkner, Ute [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Trinh, Thuy [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sisombath, Sonevisay [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Ho, Anthony D.; Saffrich, Rainer [Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg (Germany); Huber, Peter E. [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany)

    2013-12-01T23:59:59.000Z

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.

  2. On-site radiation exposure in severe reactor accidents: Scoping study

    SciTech Connect (OSTI)

    Warman, E.A.; Karahalios, P.; Celnick, J.; McInall, S.; Frank, S. (Stone and Webster Engineering Corp., Boston, MA (USA))

    1990-09-01T23:59:59.000Z

    The results of a scoping study of onsite radiation exposures which could take place in each of three types of postulated reactor accidents are presented. The accident types are (1) a fuel handling accident at a Mark III BWR; an interfacing system LOCA or V sequence at a PWR; and and Anticipated Transient Without Scram (ATWS) at a Mark I BWR. Both external and internal dose pathways are considered. The results of the study indicate the prohibitively high radiation doses could be received in some plant areas if personnel were to remain there. However, times of the order of a few minutes to a few hours, depending on the type of accident, would be available before life-threatening doses would be accumulated assuming that the provided full face respiratory protection equipment were used promptly. Special attention was given radiation doses possibly received by control room personnel for several control room air in-leakage assumptions. For occupancy during severe accidents it would be advisable for control room personnel to use self-contained apparatus (SCBA) to limit exposure via inhalation. The results of this study will be useful to individuals responsible for accident management procedures. It is indicated that it will be important for each plant to develop estimates of the time of onset of prohibitively high radiation levels in various important plant areas. It is concluded that respiratory protection is a major factor owing to the large inhalation doses which might otherwise be encountered. 20 refs., 8 figs., 6 tabs.

  3. Features of the action of low-energy gamma radiation on the hydrogen permeability of certain materials

    SciTech Connect (OSTI)

    Tazhibaeva, I.L.; Bekman, I.N.; Rudenko, N.V.; Shestakov, V.P.

    1985-07-01T23:59:59.000Z

    This paper determines the diffusion coefficients, the constants of permeability, and solubility of hydrogen in palladium, nickel, and Armco iron under the action of low-energy gamma radiation. It was established that without radiation all of the kinetic diffusion curves of hydrogen in palladium and nickel straighten well in a functional scale. In armco iron, some deviations are observed.

  4. Determination of the Dark Matter profile from the EGRET excess of diffuse Galactic gamma radiation

    E-Print Network [OSTI]

    Markus Weber

    2007-10-26T23:59:59.000Z

    The excess above 1 GeV in the energy spectrum of the diffuse Galactic gamma radiation, measured with the EGRET experiment, can be interpreted as the annihilation of Dark Matter (DM) particles. The DM is distributed in a halo around the Milky Way. Considering the directionality of the gamma ray flux it is possible to determine the halo profile. The DM within the halo has a smooth and a clumpy component.These components can have different profiles as suggested by N-body simulations and the data is indeed compatible with a NFW profile for the diffuse component and a cored profile for the clumpy component.These DM clumps can be partly destroyed by tidal forces from interactions with stars and the gravitational potential of the Galactic disc.This effect mainly decreases the annihilation signal from the Galactic centre (GC). In this paper constraints on the different profiles and the survival probability of the clumps are discussed.

  5. Review of exposure limits and experimental data for corneal and lenticular damage from short pulsed UV and IR laser radiation

    E-Print Network [OSTI]

    duration. The thermal UV damage data are compared with levels inferred from CO2 radiation thresholds exposure limits appear to be unnecessarily high. The lack of data for nanosecond exposures for wavelengths. The wavelength dependence of photochemical interac- tions and of the optical absorption properties

  6. A PRELIMINARY ASSESSMENT OF THE OCCUPATIONAL RADIATION EXPOSURE FROM MAINTAINING THE US ITER DCLL TBM

    SciTech Connect (OSTI)

    B. J. Merrill; L. C. Cadwallader; M. Dagher

    2008-09-01T23:59:59.000Z

    This paper details an Occupational Radiation Exposure (ORE) analysis performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This ORE analysis was performed with the QADMOD dose code for maintenance activities anticipated for the US DCLL TBM concept and its ancillary systems. Identification of the maintenance tasks that will have to be performed and estimates of the time required to perform these tasks were developed based on either expert opinion or on industrial maintenance experience for similar technologies. This paper details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  7. Constraints on Blazar Jet Conditions During Gamma-Ray Flaring from Radiative Transfer Modeling

    E-Print Network [OSTI]

    Aller, Margo F; Aller, Hugh D; Hovatta, Talvikki

    2013-01-01T23:59:59.000Z

    As part of a program to investigate jet flow conditions during GeV gamma-ray flares detected by Fermi, we are using UMRAO multi-frequency, centimeter-band total flux density and linear polarization monitoring observations to constrain radiative transfer models incorporating propagating shocks orientated at an arbitrary angle to the flow direction. We describe the characteristics of the model, illustrate how the data are used to constrain the models, and present results for three program sources with diverse characteristics: PKS 0420-01, OJ 287, and 1156+295. The modeling of the observed spectral behavior yields information on the sense, strength and orientation of the shocks producing the radio-band flaring; on the energy distribution of the radiating particles; and on the observer's viewing angle with respect to the jet independent of VLBI data. We present evidence that, while a random component dominates the jet magnetic field, a distinguishing feature of those radio events with an associated gamma-ray flar...

  8. Radiation Exposures Associated with Shipments of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect (OSTI)

    MASSEY,CHARLES D.; MESSICK,C.E.; MUSTIN,T.

    1999-11-01T23:59:59.000Z

    Experience has shown that the analyses of marine transport of spent fuel in the Environmental Impact Statement (EIS) were conservative. It is anticipated that for most shipments. The external dose rate for the loaded transportation cask will be more in line with recent shipments. At the radiation levels associated with these shipments, we would not expect any personnel to exceed radiation exposure limits for the public. Package dose rates usually well below the regulatory limits and personnel work practices following ALARA principles are keeping human exposures to minimal levels. However, the potential for Mure shipments with external dose rates closer to the exclusive-use regulatory limit suggests that DOE should continue to provide a means to assure that individual crew members do not receive doses in excess of the public dose limits. As a minimum, the program will monitor cask dose rates and continue to implement administrative procedures that will maintain records of the dose rates associated with each shipment, the vessel used, and the crew list for the vessel. DOE will continue to include a clause in the contract for shipment of the foreign research reactor spent nuclear fuel requiring that the Mitigation Action Plan be followed.

  9. Accelerated alpha-decay of 232U isotope achieved by exposure of its aqueous solution with gold nanoparticles to laser radiation

    E-Print Network [OSTI]

    A. V. Simakin; G. A. Shafeev

    2011-12-29T23:59:59.000Z

    Experimental results are presented on laser-induced accelerated alpha-decay of Uranium-232 nuclei under laser exposure of Au nanoparticles in aqueous solutions of its salt. It is demonstrated that the decrease of alpha-activity strongly depends on the peak intensity of the laser radiation in the liquid and is highest at several terawatt per square centimeter. The decrease of alpha-activity of the exposed solutions is accompanied by the deviation of gamma-activities of daughter nuclides of Uranium-232 from their equilibrium values. Possible mechanisms of the laser influence on the alpha-activity are discussed on the basis of the amplification of the electric field of laser wave on metallic nanoparticles.

  10. Relativistic Winds from Compact Gamma-ray Sources: I. Radiative Acceleration in the Klein-Nishina Regime

    E-Print Network [OSTI]

    Piero Madau; Christopher Thompson

    1999-11-30T23:59:59.000Z

    We consider the radiative acceleration to relativistic bulk velocities of a cold, optically thin plasma which is exposed to an external source of gamma-rays. The flow is driven by radiative momentum input to the gas, the accelerating force being due to Compton scattering in the relativistic Klein-Nishina limit. The bulk Lorentz factor of the plasma, Gamma, derived as a function of distance from the radiating source, is compared with the corresponding result in the Thomson limit. Depending on the geometry and spectrum of the radiation field, we find that particles are accelerated to the asymptotic Lorentz factor at infinity much more rapidly in the relativistic regime; and the radiation drag is reduced as blueshifted, aberrated photons experience a decreased relativistic cross section and scatter preferentially in the forward direction. The random energy imparted to the plasma by gamma-rays can be converted into bulk motion if the hot particles execute many Larmor orbits before cooling. This `Compton afterburn' may be a supplementary source of momentum if energetic leptons are injected by pair creation, but can be neglected in the case of pure Klein-Nishina scattering. Compton drag by side-scattered radiation is shown to be more important in limiting the bulk Lorentz factor than the finite inertia of the accelerating medium. The processes discussed here may be relevant to a variety of astrophysical situations where luminous compact sources of hard X- and gamma-ray photons are observed, including active galactic nuclei, galactic black hole candidates, and gamma-ray bursts.

  11. Very High Energy Gamma Rays from Supernova Remnants and Constraints on the Galactic Interstellar Radiation Field

    SciTech Connect (OSTI)

    Porter, T.A.; Moskalenko, I.V.; Strong, A.W.

    2007-04-30T23:59:59.000Z

    The large-scale Galactic interstellar radiation field (ISRF) is the result of stellar emission and dust re-processing of starlight. Where the energy density of the ISRF is high (e.g., the Galactic Centre), the dominant {gamma}-ray emission in individual supernova remnants (SNRs), such as G0.9+0.1, may come from inverse Compton (IC) scattering of the ISRF. Several models of the ISRF exist. The most recent one, which has been calculated by us, predicts a significantly higher ISRF than the well used model of Mathis, Mezger, and Panagia [1]. However, comparison with data is limited to local observations. Based on our current estimate of the ISRF we predict the gamma-ray emission in the SNRs G0.9+0.1 and RXJ1713, and pair-production absorption features above 20 TeV in the spectra of G0.9+0.1, J1713-381, and J1634-472. We discuss how GLAST, along with current and future very high energy instruments, may be able to provide upper bounds on the large-scale ISRF.

  12. Gamma bursts

    SciTech Connect (OSTI)

    Colgate, S.A.; Petschek, A.G.

    1982-12-09T23:59:59.000Z

    The origin of cosmic gamma bursts is discussed. Radiation thermalization in magnetic fields, spectral mechanisms, and charge separation and photon heating are discussed. (GHT)

  13. Comparative assessment of standards development for radiation and other hazardous exposures

    SciTech Connect (OSTI)

    Cohen, J.J. [Jerry J. Cohen, Walnut Creek, CA (United States); Kathren, R.L. [Washington State Univ.-Tri Cities, Richland, WA (United States); Smith, C.F. [Booz-Allen & Hamilton, Germantown, MD (United States)

    1996-12-31T23:59:59.000Z

    A fundamental question in development of standards for allowable exposure is, {open_quotes}What levels of safety are the standards intended to achieve?{close_quotes} This question has clearly not received the attention it deserves. A comparative assessment of standards for radiation and other physical and chemical hazards indicates that differing concerns may have motivated their developmental process. In most cases, the organization formulating the standards stated their objective in general terms such as, {open_quotes}to ensure safety,{close_quotes} {open_quotes}to protect worker`s health,{close_quotes} {open_quotes}to cause no undue stress,{close_quotes} {open_quotes}to avoid adverse health effects,{close_quotes} or to {open_quotes}maintain exposure levels as low as reasonably achievable.{close_quotes} It was generally recognized that absolute safety was unachievable, and therefore, some {open_quotes}reasonable{close_quotes} level of safety would need to be determined. The problem is made even more complex with the understanding that there can be a wide range in individual sensitivity to various harmful agents.

  14. Constraining |V(td)|/|V(ts)| Using Radiative Penguin B -> V(K*/rho/omega)gamma Decays

    SciTech Connect (OSTI)

    Tan, Ping; /Wisconsin U., Madison

    2006-03-08T23:59:59.000Z

    Exclusive radiative penguin B decays, B {yields} (K*{sup 0}/K*{sup +}) and B {yields} ({rho}/{omega}){gamma}, are flavor-changing neutral-current (FCNC) processes. Studies of these decays are of special interest in testing Standard Model (SM) predictions and searching for other beyond-the-SM FCNC interactions. Using 89 x 10{sup 6} B{bar B} pairs from BABAR, we measure the branching fraction ({Beta}), CP-asymmetry ({Alpha}), and isospin asymmetry ({Delta}{sub 0-}) of B {yields} (K*{sup 0}/K*{sup +}){gamma} as follows: {Beta}(B{sup 0} {yields} K*{sup 0}{gamma}) = 3.92 {+-} 0.20(stat.) {+-} 0.24(syst.); {Beta}(B{sup +} {yields} K*{sup +}{gamma}) = 3.87 {+-} 0.28(stat.) {+-} 0.26(syst.); {Alpha}(B {yields} K*{gamma}) = -0.013 {+-} 0.36(stat.) {+-} 0.10(syst.); {Delta}{sub 0-}(B {yields} K*{gamma}) = 0.050 {+-} 0.045(stat.) {+-} 0.028(syst.) {+-} 0.024(R{sup +/0}). The 90% confidence intervals for the CP-asymmetry and the isospin-asymmetry in the B {yields} K*{gamma} decay are given as: -0.074 < {Alpha}(B {yields} K*{gamma}) < 0.049, -0.046 < {Delta}{sub 0-} (B {yields} K*{gamma}) < 0.146. We also search for B {yields} ({rho}/{omega}){gamma} decays using 211 x 10{sup 6} B{bar B} pairs from BABAR. No evidence for these decays is found. We set the upper limits at 90% confidence level for these decays: {Beta}(B{sup 0} {yields} {rho}{sup 0}{gamma}) < 0.4 x 10{sup -6}; {Beta}(B{sup +}{yields} {rho}{sup =}{gamma}) < 1.8 x 10{sup -6}; {Beta}(B{sup 0} {yields} {omega}{gamma}) < 1.0 x 10{sup -6}; {bar {Beta}}(B {yields} ({rho}/{omega}){gamma}) < 1.2 x 10{sup -6}. These results are in good agreement with the SM predictions. The branching fractions of these decays are then used to constrain the ratio |V{sub td}|/|V{sub ts}|.

  15. Analysis of Gamma Radiation from a Radon Source: Indications of a Solar Influence

    E-Print Network [OSTI]

    Peter A. Sturrock; Gideon Steinitz; Ephraim Fischbach; Daniel Javorsek, II; Jere H. Jenkins

    2012-05-01T23:59:59.000Z

    This article presents an analysis of about 29,000 measurements of gamma radiation associated with the decay of radon in a sealed container at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between 28 January 2007 and 10 May 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of periodicities, including two at approximately 11.2 year$^{-1}$ and 12.5 year$^{-1}$. We have previously found these oscillations in nuclear-decay data acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB), and we have suggested that these oscillations are attributable to some form of solar radiation that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. This may be a systematic effect but, if it is not, this property should help narrow the theoretical options for the mechanism responsible for decay-rate variability.

  16. Detection of embedded radiation sources using temporal variation of gamma spectral data.

    SciTech Connect (OSTI)

    Shokair, Isaac R.

    2011-09-01T23:59:59.000Z

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the isotopes present in a measurement. For low energy resolution detectors, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the isotopes present in the measurement. When many isotopes are present it is difficult to make the correct identification and this process often requires many trial solutions by highly skilled spectroscopists. This report investigates the potential of a new analysis method which uses spatial/temporal information from multiple low energy resolution measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other isotopes present. This method is referred to as targeted principal component analysis (TPCA). For radiation portal monitor applications, multiple measurements of gamma spectra are taken at equally spaced time increments as a vehicle passes through the portal and the TPCA method is directly applicable to this type of measurement. In this report we describe the method and investigate its application to the problem of detection of a radioactive localized source that is embedded in a distributed source in the presence of an ambient background. Examples using simulated spectral measurements indicate that this method works very well and has the potential for automated analysis for RPM applications. This method is also expected to work well for isotopic detection in the presence of spectrally and spatially varying backgrounds as a result of vehicle-induced background suppression. Further work is needed to include effects of shielding, to understand detection limits, setting of thresholds, and to estimate false positive probability.

  17. Radiation fields of disk, BLR and torus in quasars and blazars: implications for gamma-ray absorption

    E-Print Network [OSTI]

    A. -C. Donea; R. J. Protheroe

    2002-02-04T23:59:59.000Z

    The radiation fields external to the jets and originating from within a few parsecs from the black hole, are discussed in this paper. They are the direct radiation from an accretion disk in symbiosis with jets, the radiation field from the broad line region (BLR) surrounding the accretion disk, and the infrared radiation from a dusty torus. The jet/disk symbiosis modifies the energetics in the central parsec of AGN such that for a given accretion rate, a powerful jet would occur at the expense of the disk luminosity, and consequently the disk would less efficiently ionize the BRL clouds or heat the dust in the torus, thereby affecting potentially important target photon fields for interactions of gamma-rays, accelerated electrons and protons along the jet. Motivated by unification schemes of active galactic nuclei, we briefly review the evidence for the existence of broad line regions and small-scale dust tori in BL Lacs and Fanaroff-Riley Class I (FR-I) radio galaxies. We propose that an existing jet-accretion disk symbiosis can be extrapolated to provide a large scale-symbiosis between other important dusty constituents of the blazar/FR-I family. In the present paper, we discuss in the context of this symbiosis interactions of GeV and TeV gamma-rays produced in the jet with the various radiation fields external to the jet in quasars and blazars, taking account the anisotropy of the radiation.

  18. GAMMA RADIATION INTERACTS WITH MELANIN TO ALTER ITS OXIDATION-REDUCTION POTENTIAL AND RESULTS IN ELECTRIC CURRENT PRODUCTION

    SciTech Connect (OSTI)

    Turick, C.; Ekechukwu, A.; Milliken, C.

    2011-05-17T23:59:59.000Z

    The presence of melanin pigments in organisms is implicated in radioprotection and in some cases, enhanced growth in the presence of high levels of ionizing radiation. An understanding of this phenomenon will be useful in the design of radioprotective materials. However, the protective mechanism of microbial melanin in ionizing radiation fields has not yet been elucidated. Here we demonstrate through the electrochemical techniques of chronoamperometry, chronopotentiometry and cyclic voltammetry that microbial melanin is continuously oxidized in the presence of gamma radiation. Our findings establish that ionizing radiation interacts with melanin to alter its oxidation-reduction potential. Sustained oxidation resulted in electric current production and was most pronounced in the presence of a reductant, which extended the redox cycling capacity of melanin. This work is the first to establish that gamma radiation alters the oxidation-reduction behavior of melanin, resulting in electric current production. The significance of the work is that it provides the first step in understanding the initial interactions between melanin and ionizing radiation taking place and offers some insight for production of biomimetic radioprotective materials.

  19. ON-BELT ANALYSIS OF MINERALS USING NATURALLY OCCURRING GAMMA RADIATION

    E-Print Network [OSTI]

    Huynh, Du

    of coal. Gamma ray spectra are collected every 900 seconds from a BGO detector with 1024 channels linearly collected with a BGO (Bis- muth Germanate) gamma ray detector, which collects emis- sions from Potassium (K is used to estimate linear drift in the detector. Index Terms-- Gamma ray detector, Poisson process

  20. Energy resolution in semiconductor gamma radiation detectors using heterojunctions and methods of use and preparation thereof

    DOE Patents [OSTI]

    Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.

    2012-09-04T23:59:59.000Z

    In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.

  1. An evaluation of theories concerning the health effects of low-dose radiation exposures

    E-Print Network [OSTI]

    Wei, Elizabeth J. (Elizabeth Jay)

    2012-01-01T23:59:59.000Z

    The danger of high, acute doses of radiation is well documented, but the effects of low-dose radiation below 100 mSv is still heavily debated. Four theories concerning the effects of lowdose radiation are presented here: ...

  2. P.A. Nelson S.M. Kajiura G.S. Losey Exposure to solar radiation may increase ocular UV-filtering

    E-Print Network [OSTI]

    Kajiura, Stephen

    P.A. Nelson Ã? S.M. Kajiura Ã? G.S. Losey Exposure to solar radiation may increase ocular UV levels of solar radiation than they had previously experienced in the source habitat in the turbid waters spectrum, but sharks exposed to greater solar radiation showed increased UV blocking in their corneal

  3. Abstract--We have recently completed a large-area, coded-aperture, gamma-ray imager for use in searching for radiation

    E-Print Network [OSTI]

    Horn, Berthold K.P.

    sufficient radiation can reach a large gamma-ray detec- tor from a small source to make detection possibleAbstract-- We have recently completed a large-area, coded- aperture, gamma-ray imager for use. Results of first measurements obtained with the system are presented. I. INTRODUCTION emote detection

  4. Gamma-Ray Signatures for State-Of-Health Analysis and Monitoring of Widely-Arrayed Radiation Portal Monitor Systems

    SciTech Connect (OSTI)

    Woodring, Mitchell L.; Ely, James H.; Angel, Linda K.; Wright, Ingrid H.; Eslinger, Melany A.; Pospical, A. Jill; Ellis, John E.

    2008-05-15T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) has deployed a large array of radiation portal monitors for the Department of Homeland Security U.S. Customs and Border Protection. These portal monitors scan incoming vehicles crossing the U.S. border and shipping containers leaving international ports for radioactive material via gamma-ray and neutron detection. Data produced and captured by these systems are recorded for every vehicle related to radiation signature, sensor/system status, and local background, as well as a host of other variables. Within the Radiation Portal Monitor Project at PNNL, state-of-health observation and analysis for the whole RPM system using these data to determine functionality and performance is being developed. (PIET-43741-TM-492)

  5. Experimental search for the radiative capture reaction d + d {yields} {sup 4}He + {gamma} from the dd{mu} muonic molecule state J = 1

    SciTech Connect (OSTI)

    Baluev, V. V. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Bogdanova, L. N. [State Scientific Center of the Russian Federation 'Institute of Theoretical and Experimental Physics,' (Russian Federation); Bom, V. R. [Delft University of Technology (Netherlands); Demin, D. L., E-mail: demin@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Eijk, C. W. E. van [Delft University of Technology (Netherlands); Filchenkov, V. V.; Grafov, N. N. [Joint Institute for Nuclear Research (Russian Federation); Grishechkin, S. K. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Gritsaj, K. I.; Konin, A. D. [Joint Institute for Nuclear Research (Russian Federation); Mikhailyukov, K. L. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Rudenko, A. I. [Joint Institute for Nuclear Research (Russian Federation); Vinogradov, Yu. I. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Volnykh, V. P. [Joint Institute for Nuclear Research (Russian Federation); Yukhimchuk, A. A. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Yukhimchuk, S. A. [Joint Institute for Nuclear Research (Russian Federation)

    2011-07-15T23:59:59.000Z

    A search for the muon-catalyzed fusion reaction d + d {yields} {sup 4}He + {gamma} in the dd{mu} muonic molecule was performed using the experimental installation TRITON with BGO detectors for {gamma}-quanta. A high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR Phasotron to detect {gamma}-quanta with the energy 23.8 MeV. An experimental estimation for the yield of radiative deuteron capture from the dd{mu} state J = 1 was obtained at the level of {eta}{sub {gamma}} {<=} 8 Multiplication-Sign 10{sup -7} per fusion.

  6. Measurement and Analysis of Radio-frequency Radiation Exposure Level from Different Mobile Base Transceiver Stations in Ajaokuta and Environs, Nigeria

    E-Print Network [OSTI]

    Ushie, P O; Bolaji, Ayinmode; Osahun, O D

    2013-01-01T23:59:59.000Z

    We present the result of a preliminary assessment of radio-frequency radiation exposure from selected mobile base stations in Ajaokuta environs. The Power density of RF radiation within a radial distance of 125m was measured. Although values fluctuated due to the influence of other factors, including wave interference from other electromagnetic sources around reference base stations, we show from analysis that radiation exposure level is below the standard limit (4.5W/sqm for 900MHz and 9W/sqm for 18000MHz) set by the International Commission on Non-ionizing Radiation Protection (ICNIRP) and other regulatory agencies.

  7. DOE Radiation Exposure Monitoring System (REMS) Data Update Presented at the 32nd Annual International Dosimetry and Records Symposium, June 3-6, Scottsdale, AZ

    SciTech Connect (OSTI)

    none,

    2013-01-01T23:59:59.000Z

    This slide-show presents the 2012 draft data for DOE occupational radiation exposure, compares those data with last year and the last five years, and clarifies reporting data.

  8. Projection of needs for gamma radiation sources and other radioisotopes and assessment of alternatives for providing radiation sources

    SciTech Connect (OSTI)

    Ross, W.A.; Jensen, G.A.; Clark, L.L.; Eakin, D.E.; Jarrett, J.H.; Katayama, Y.B.; McKee, R.W.; Morgan, L.G.; Nealey, S.M.; Platt, A.M.; Tingey, G.L.

    1989-06-01T23:59:59.000Z

    Pacific Northwest Laboratory reviewed the projected uses and demands for a variety of nuclear byproducts. Because the major large-scale near-term demand is for gamma irradiation sources, this report concentrates on the needs for gamma sources and evaluates the options for providing the needed material. Projections of possible growth in the irradiation treatment industry indicate that there will be a need for 180 to 320 MCi of /sup 60/Co (including /sup 137/Cs equivalent) in service in the year 2000. The largest current and projected use of gamma irradiation is for the sterilization of medical devices and disposable medical supplies. Currently, 40% of US disposable medical products are treated by irradiation, and within 10 years it is expected that 90% will be treated in this manner. Irradiation treatment of food for destruction of pathogens or parasites, disinfestation, or extension of allowable storage periods is estimated to require an active inventory of 75 MCi of /sup 60/Co-equivalent gamma source in about a decade. 90 refs., 7 figs., 25 tabs.

  9. Absorption of Nuclear Gamma-rays on the Starlight Radiation in FR I Sources: the Case of Centaurus A

    E-Print Network [OSTI]

    L. Stawarz; F. Aharonian; S. Wagner; M. Ostrowski

    2006-07-17T23:59:59.000Z

    Several BL Lac objects are confirmed sources of variable and strongly Doppler-boosted TeV emission produced in the nuclear portions of their relativistic jets. It is more than probable, that also many of the FR I radio galaxies, believed to be the parent population of BL Lacs, are TeV sources, for which Doppler-hidden nuclear gamma-ray radiation may be only too weak to be directly observed. Here we show, however, that about one percent of the total time-averaged TeV radiation produced by the active nuclei of low-power FR I radio sources is inevitably absorbed and re-processed by photon-photon annihilation on the starlight photon field, and the following emission of the created and quickly isotropized electron-positron pairs. In the case of the radio galaxy Centaurus A, we found that the discussed mechanism can give a distinctive observable feature in the form of an isotropic gamma-ray halo. It results from the electron-positron pairs injected to the interstellar medium of the inner parts of the elliptical host by the absorption process, and upscattering starlight radiation via the inverse-Compton process mainly to the GeV-TeV photon energy range. Such a galactic gamma-ray halo is expected to possess a characteristic spectrum peaking at ~0.1 TeV photon energies, and the photon flux strong enough to be detected by modern Cherenkov Telescopes and, in the future, by GLAST. These findings should apply as well to the other nearby FR I sources.

  10. On the conversion of blast wave energy into radiation in active galactic nuclei and gamma-ray bursts

    E-Print Network [OSTI]

    Martin Pohl; Reinhard Schlickeiser

    1999-11-24T23:59:59.000Z

    It has been suggested that relativistic blast waves may power the jets of AGN and gamma-ray bursts (GRB). We address the important issue how the kinetic energy of collimated blast waves is converted into radiation. It is shown that swept-up ambient matter is quickly isotropised in the blast wave frame by a relativistic two-stream instability, which provides relativistic particles in the jet without invoking any acceleration process. The fate of the blast wave and the spectral evolution of the emission of the energetic particles is therefore solely determined by the initial conditions. We compare our model with existing multiwavelength data of AGN and find remarkable agreement.

  11. Effect of gamma radiation on groundwater chemistry and glass leaching as related to the NNWSI repository site

    SciTech Connect (OSTI)

    Abrajano, T.; Bates, J.; Ebert, W.; Gerding, T.

    1986-05-01T23:59:59.000Z

    To address the effect of ionizing radiation on groundwater chemistry and waste form durability, NNWSI is performing an extensive set of experiments as a function of dose rate (2 x 10{sup 5}, 1 x 10{sup 4}, 1 x 10{sup 3}, and 0 rad/h). The results of the tests done at 2 x 10{sup 5} rad/h have been reported, while the 1 x 10{sup 3} and 0 rad/h tests are in progress. This paper presents an overview of the results of the tests done at 1 x 10{sup 4} rad/h and discusses the relevance of these tests to repository conditions. An interpretation of the results relating to the manner by which the glass waste form corrodes is presented elsewhere. A complete discussion of the effect of gamma radiation on groundwater chemistry and waste form durability will be presented when the series of experiments are complete.

  12. Health physics manual of good practices for reducing radiation exposure to levels that are as low as reasonably achievable (ALARA)

    SciTech Connect (OSTI)

    Herrington, W.N.; Higby, D.P.; Kathren,., R.L.; Merwin, S.E.; Stoetzel, G.A.

    1988-06-01T23:59:59.000Z

    A primary objective of the US Department of Energy (DOE) health physics and radiation protection program has been to limit radiation exposures to those levels that are as low as reasonably achievable (ALARA). As a result, the ALARA concept developed into a program and a set of operational principles to ensure that the objective was consistently met. Implementation of these principles required that a guide be produced. The original ALARA guide was issued by DOE in 1980 to promote improved understanding of ALARA concepts within the DOE community and to assist those responsible for operational ALARA activities in attaining their goals. Since 1980, additional guidance has been published by national and international organizations to provide further definition and clarification to ALARA concepts. As basic ALARA experience increased, the value and role of the original guide prompted the DOE Office of Nuclear Safety (ONS) to support a current revision. The revised manual of good practices includes six sections: 1.0 Introduction, 2.0 Administration, 3.0 Optimization, 4.0 Setting and Evaluating ALARA Goals, 5.0 Radiological Design, and 6.0 Conduct of Operations. The manual is directed primarily to contractor and DOE staff who are responsible for conduct and overview of radiation protection and ALARA programs at DOE facilities. The intent is to provide sufficient guidance such that the manual, if followed, will ensure that radiation exposures are maintained as low as reasonably achievable and will establish the basis for a formally structured and auditable program. 118 refs., 16 figs., 3 tabs.

  13. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    DOE Patents [OSTI]

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08T23:59:59.000Z

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  14. Theory of "Jitter" Radiation from Small-Scale Random Magnetic Fields and Prompt Emission from Gamma-Ray Burst Shocks

    E-Print Network [OSTI]

    Mikhail V. Medvedev

    2000-05-02T23:59:59.000Z

    Abridged.-- We demonstrate that the radiation emitted by ultrarelativistic electrons in highly nonuniform, small-scale magnetic fields is different from synchrotron radiation if the electron's transverse deflections in these fields are much smaller than the beaming angle. A quantitative analytical theory of this radiation, which we refer to as jitter radiation, is developed. It is shown that the emergent spectrum is determined by statistical properties of the magnetic field. As an example,we then use the model of a magnetic field in internal shocks of GRBs. The spectral power distribution of radiation produced by the power-law electrons is well described by a sharply broken power-law with indices 1 and -(p-1)/2 and the jitter break frequency is independent of the field strength but depends on the electron density in the ejecta. Since large-scale fields may also be present in the ejecta, we construct a two-component, jitter+synchrotron spectral model of the prompt $\\gamma$-ray emission. Quite surprisingly, this model seems to be readily capable of explaining several properties of time-resolved spectra of some GRBs, such as (i) the violation of the constraint on the low-energy spectral index called the synchrotron ``line of death'', (ii) the sharp spectral break at the peak frequency, inconsistent with the broad synchrotron bump, (iii) the evidence for two spectral sub-components, and (iv) possible existence of emission features called ``GRB lines''. We believe these facts strongly support both the existence of small-scale magnetic fields and the proposed radiation mechanism from GRB shocks. As an example, we use the composite model to analyze GRB 910503 which has two spectral peaks.

  15. Lead exposure among small-scale battery recyclers, automobile radiator mechanics, and their children in Manila, the Philippines

    SciTech Connect (OSTI)

    Suplido, M.L.; Ong, C.N.

    2000-03-01T23:59:59.000Z

    Blood lead (PbB) and hemoglobin levels (Hb) were determined in 40 battery repair/recycling shop workers, 16 radiator repair shop workers, and 20 children living in the immediate vicinity of these shops. Unexposed residents with similar socio-economic status were also investigated. Mean PbB level was significantly higher for battery workers when compared to radiator workers and unexposed adults. Among battery workers, 94% had PbB levels above the WHO permissible exposure limit of 40 {micro}g/dL for males and 30 {micro}g/dL for females. There was no demarcation between workplace and living quarters; therefore, workers' families were similarly exposed to hazards. Children living in the immediate vicinity of battery shops also had significantly higher mean PbB levels compared to radiator shop children and unexposed children. For workers with PbB > 40 {micro}g/dL, 90% were anemic. Linear regression showed a correlation between Hb level and log{sub 10}PbB. There was no significant relationship between anemia and blood lead in children. The authors conclude that radiator repair activities appeared to increase the body burden of lead, although not up to a level significantly different from unexposed counterparts. Battery recycling/repair activities, however, significantly increased blood lead levels in workers and their children.

  16. Assessment of Radio-Frequency Radiation Exposure Level from Selected Mobile Base Stations (MBS) in Lokoja, Kogi State, Nigeria

    E-Print Network [OSTI]

    Victor, U J Nwankwo; Dada, S S; Onugba, A A; Ushie, P

    2012-01-01T23:59:59.000Z

    The acquisition and use of mobile phone is tremendously increasing especially in developing countries, but not without a concern. The greater concern among the public is principally over the proximity of mobile base stations (MBS) to residential areas rather than the use of handsets. In this paper, we present an assessment of Radio-Frequency (RF) radiation exposure level measurements and analysis of radiation power density (in \\mu W/sq m) from mobile base stations relative to radial distance (in metre). The minimum average power density from individual base station in the town was about 47\\mu W/sq m while the average maximum was about 1.5mW/sq m. Our result showed that average power density of a base station decreases with increase in distance (from base station) and that radiation intensity varies from one base station to another even at the same distance away. Our result (obtained signature of power density variation) was also compared with the 'expected' signature. It was found that radiation from external...

  17. Estimation of Internal Radiation Dose from both Immediate Releases and Continued Exposures to Contaminated Materials

    SciTech Connect (OSTI)

    Napier, Bruce A.

    2012-03-26T23:59:59.000Z

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, is discussed based upon a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from the damaged reactors and also to the management of wastes that may be generated in both regional cleanup and NPP decommissioning.

  18. An Analysis of a Spreader Bar Crane Mounted Gamma-Ray Radiation Detection System 

    E-Print Network [OSTI]

    Grypp, Matthew D

    2013-04-08T23:59:59.000Z

    photoelectric effect PMT photomultiplier tube PNNL Pacific Northwest National Laboratory viii PoT Port of Tacoma PVT poly-vinyl toluene R resolution RT real time RPM radiation portal monitor s second SBC spreader.... LITERATURE REVIEW ......................................................................................... 9 3.1 Radiation Portal Monitors ............................................................................ 9 3.2 General Areas...

  19. FY08 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)

    SciTech Connect (OSTI)

    Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Ryan, Joseph V.; Sundaram, S. K.; McCloy, John S.; Rockett, Angus

    2009-02-01T23:59:59.000Z

    This is the annual report for an old project funded by NA22. The purpose of the project was to develop amorphous semiconductors for use as radiation detectors. The annual report contains information about the progress made in synthesizing, characterizing, and radiation response testing of these new materials.

  20. Miniaturized radiation chirper

    DOE Patents [OSTI]

    Umbarger, C. John (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  1. OBSERVATIONAL SIGNATURES OF SUB-PHOTOSPHERIC RADIATION-MEDIATED SHOCKS IN THE PROMPT PHASE OF GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Levinson, Amir, E-mail: Levinson@wise.tau.ac.il [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309-0440 (United States)

    2012-09-10T23:59:59.000Z

    A shock that forms below the photosphere of a gamma-ray burst (GRB) outflow is mediated by Compton scattering of radiation advected into the shock by the upstream fluid. The characteristic scale of such a shock, a few Thomson depths, is larger than any kinetic scale involved by several orders of magnitude. Hence, unlike collisionless shocks, radiation-mediated shocks cannot accelerate particles to nonthermal energies. The spectrum emitted by a shock that emerges from the photosphere of a GRB jet reflects the temperature profile downstream of the shock, with a possible contribution at the highest energies from the shock transition layer itself. We study the properties of radiation-mediated shocks that form during the prompt phase of GRBs and compute the time-integrated spectrum emitted by the shocked fluid following shock breakout. We show that the time-integrated emission from a single shock exhibits a prominent thermal peak, with the location of the peak depending on the shock velocity profile. We also point out that multiple shock emission can produce a spectrum that mimics a Band spectrum.

  2. Strategy to detect the gravitational radiation counterpart of gamma-ray bursts

    E-Print Network [OSTI]

    S. Bonazzola; E. Gourgoulhon

    1998-01-20T23:59:59.000Z

    Both observational and theoretical rates of binary neutron star coalescence give low prospects for detection of a single event by the initial LIGO/VIRGO interferometers. However, by utilizing at the best all the a priori information on the expected signal, a positive detection can be achieved. This relies on the hypothesis that $\\gamma$-ray bursts are the electromagnetic signature of neutron star coalescences. The information about the direction of the source can then be used to add in phase the signals from different detectors in order (i) to increase the signal-to-noise ratio and (ii) to make the noise more Gaussian. Besides, the information about the time of arrival can be used to drastically decrease the observation time and thereby the false alarm rate. Moreover the fluence of the $\\gamma$-ray emission gives some information about the amplitude of the gravitational signal. One can then add the signals from $\\sim 10^4$ observation boxes ($\\sim$ number of $\\gamma$-ray bursts during 10 years) to yield a positive detection. Such a detection, based on the Maximum a Posteriori Probability Criterium, is a minimal one, in the sense that no information on the position and time of the events, nor on any parameter of the model, is collected. The advantage is that this detection requires an improvement of the detector sensitivity by a factor of only $\\sim 1.5$ with respect to the initial LIGO/VIRGO interferometers, and that, if positive, it will confirm the $\\gamma$-ray burst model.

  3. Effects of High Dietary Iron and Gamma Radiation on Oxidative Stress and Bone 

    E-Print Network [OSTI]

    Yuen, Evelyn P

    2013-04-19T23:59:59.000Z

    Astronauts in space flight missions are exposed to increased iron (Fe) stores and galactic cosmic radiation, both of which independently induce oxidative stress. Oxidative stress can result in protein, lipid, and DNA oxidation. Recent evidence has...

  4. Quality assurance for gamma knives

    SciTech Connect (OSTI)

    Jones, E.D.; Banks, W.W.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01T23:59:59.000Z

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys, interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.

  5. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    SciTech Connect (OSTI)

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18T23:59:59.000Z

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.

  6. Stable Intrachromosomal Biomarkers of Past Exposure to Densely Ionizing Radiation in Several Chromosomes of Exposed Individuals

    E-Print Network [OSTI]

    Brenner, David Jonathan

    , researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive is collaborating with JSTOR to digitize, preserve and extend access to Radiation Research. http://www.jstor.org #12. Brennera aCenterfor Radiological Research, Columbia University, 630 West 168th Street, New York,New York

  7. Modeling of the $\\gamma$-ray pulsed spectra of Geminga, Crab, and Vela with synchro-curvature radiation

    E-Print Network [OSTI]

    Viganò, Daniele

    2015-01-01T23:59:59.000Z

    $\\gamma$-ray spectra of pulsars have been mostly studied in a phenomenological way, by fitting them to a cut-off power-law function. Here, we analyze a model where pulsed emission comes from synchro-curvature processes in a gap. We calculate the variation of kinetic energy of magnetospheric particles along the gap and the associated radiated spectra, considering an effective particle distribution. We fit the phase-averaged and phase-resolved {\\em Fermi}-LAT spectra of the three brightest $\\gamma$-ray pulsars: Geminga, Crab, and Vela, and constrain the three free parameters we leave free in the model. Our best-fit models well reproduce the observed data, apart from residuals above a few GeV in some cases, range for which the inverse Compton scattering likely becomes the dominant mechanism. In any case, the flat slope at low-energy ($\\lesssim$ GeV) seen by {\\it Fermi}-LAT both in the phase-averaged and phase-resolved spectra of most pulsars, including the ones we studied, requires that most of the detected radi...

  8. Combination of /sup 60/Co. gamma. -radiation, misonidazole, and maltose tetrapalmitate in the treatment of Dunning prostatic tumor in the rat

    SciTech Connect (OSTI)

    Pageau, R.; Nigam, V.N.; Fisher, G.J.; Brailovsky, C.A.; Fathi, M.A.; Corcos, J.; Tahan, T.W.; Elhilali, M.M.

    1985-08-01T23:59:59.000Z

    Maltose tetrapalmitate (MTP), a synthetic nontoxic immunoadjuvant, the radiosensitizer misonidazole (MISO), and /sup 60/Co ..gamma..-radiation, alone or in combination, were used in the management of Dunning prostatic tumor in the rat. Nine groups of 10 rats each were used to assess the efficacy of various therapeutic modalities. Tumor growth rates and animal survival times were determined for each group. Radiation was more effective when combined with MTP, but the adjuvant must be present when radiation is given for synergism to occur. MISO was as effective as MTP when used with radiation, but combining them cancels out their individual effects. In a clinical situation it would be advantageous to use separately the synergisms existing between MISO and radiation on the one hand and MTP and radiation on the other hand.

  9. Gamma-radiation as a Signature of Ultra Peripheral Ion Collisions at LHC energies

    E-Print Network [OSTI]

    Yu. V. Kharlov; V. L. Korotkikh

    2004-01-13T23:59:59.000Z

    We study the peripheral ion collisions at LHC energies in which a nucleus is excited to the discrete state and then emits $\\gamma$-rays. Large nuclear Lorenz factor allows to observe the high energy photons up to a few ten GeV and in the region of angles of a few hundred micro-radians around the beam direction. These photons can be used for tagging the events with particle production in the central rapidity region in the ultra-peripheral collisions. For that it is necessary to have an electromagnetic detector in front of the zero degree calorimeter in the LHC experiments.

  10. LOW TEMPERATURE PHYSICS The effect of neutron and gamma radiation on

    E-Print Network [OSTI]

    McDonald, Kirk

    PHYSICS Outlook · Radiation environment in a fission reactor ­ Neutron and - spectrum · Damage production, iterlaminar shear strength, fatigue behavior ­ Gas evolution · Conclusions #12;LOW TEMPERATURE PHYSICS Fission to displace one atom: (epithermal and fast neutrons) Bp EE > ~4 eV C-H ~few eV in metals ~5-40 eV in ionic

  11. Effect of gamma radiation on selected functional and physical properties of liquid egg white

    E-Print Network [OSTI]

    Ball, Hershell Ray

    1966-01-01T23:59:59.000Z

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 14 4 The relative protein composition of egg white (Warner, 1954 ) . . . . . . . . . . . . . . . ~ . . . . . . . . . . . ~ 22 5 Analysis of variance for beating time . . ~. . . . . . . . 30 6 Multiple regression analysis of beating time... . . . . . . . . . . . . . . . . . . . . , . . 42 5 Illustration of textural difference &. . . . . . . . . . . 46 6 Typical electrophoretic patterns obtained . . . . . . 76 C HL PTER I GENERA L CONSIDERATIONS Introduction The use of ionizing radiation in the processing of foods has been...

  12. Effect of gamma radiation on selected functional and physical properties of liquid egg white 

    E-Print Network [OSTI]

    Ball, Hershell Ray

    1966-01-01T23:59:59.000Z

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 14 4 The relative protein composition of egg white (Warner, 1954 ) . . . . . . . . . . . . . . . ~ . . . . . . . . . . . ~ 22 5 Analysis of variance for beating time . . ~. . . . . . . . 30 6 Multiple regression analysis of beating time... . . . . . . . . . . . . . . . . . . . . , . . 42 5 Illustration of textural difference &. . . . . . . . . . . 46 6 Typical electrophoretic patterns obtained . . . . . . 76 C HL PTER I GENERA L CONSIDERATIONS Introduction The use of ionizing radiation in the processing of foods has been...

  13. Jitter radiation as a possible mechanism for Gamma-Ray Burst afterglows. Spectra and lightcurves

    E-Print Network [OSTI]

    Mikhail V. Medvedev; Davide Lazzati; Brian C. Morsony; Jared C. Workman

    2007-03-09T23:59:59.000Z

    The standard model of GRB afterglows assumes that the radiation observed as a delayed emission is of synchrotron origin, which requires the shock magnetic field to be relatively homogeneous on small scales. An alternative mechanism -- jitter radiation, which traditionally has been applied to the prompt emission -- substitutes synchrotron when the magnetic field is tangled on a microscopic scale. Such fields are produced at relativistic shocks by the Weibel instability. Here we explore the possibility that small-scale fields populate afterglow shocks. We derive the spectrum of jitter radiation under the afterglow conditions. We also derive the afterglow lightcurves for the ISM and Wind profiles of the ambient density. Jitter self-absorption is calculated here for the first time. We find that jitter radiation can produce afterglows similar to synchrotron-generated ones, but with some important differences. We compare the predictions of the two emission mechanisms. By fitting observational data to the synchrotron and jitter afterglow lightcurves, it can be possible to discriminate between the small-scale vs large-scale magnetic field models in afterglow shocks.

  14. assessing inhalation exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Total- Body Radiation Exposure Dosimetry CiteSeer Summary: The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public...

  15. Method and apparatus for reducing radiation exposure through the use of infrared data transmission

    DOE Patents [OSTI]

    Austin, Frank S. (Schaghticoke, NY); Hance, Albert B. (Schenectady, NY)

    1989-01-01T23:59:59.000Z

    A method and apparatus is described for transmitting information, for exae, dosimetry data from a hazardous environment such as a radioactive area to a remote relatively safe location. A radiation detector senses the radiation and generates an electrical signal which is fed as a binary coded decimal signal to an infrared transmitter having a microprocessor. The microprocessor formats the detected information into digits of data and modulates a 40 kHz oscillator, the output of which is fed to and intensity modulates one or more infrared emitting diodes. The infrared signal from the diodes is transmitted to a portable hand-held infrared receiver remote from the hazardous environment. The receiver includes an infrared sensitive diode which decodes the data and generates an electrical signal which is coupled to a microcomputer. The microcomputer synchronizes itself to the transmitter, reads the digits of data as they are received, sums the digits and compares the sum with a checksum signal generated and transmitted from the transmitter. If a match of the checksum signals exists, the received data is displayed, otherwise it is described and the receiver conditions itself for the next transmission of data.

  16. Radiation Exposure to Patient and Staff in Hepatic Chemoembolization: Risk Estimation of Cancer and Deterministic Effects

    SciTech Connect (OSTI)

    Hidajat, Nico, E-mail: nico.hidajat@gmx.de; Wust, Peter; Felix, Roland; Schroeder, Ralf Juergen [Charite Campus Virchow-Klinikum, Humboldt-University of Berlin, Department of Radiology (Germany)

    2006-10-15T23:59:59.000Z

    The purpose of the study was to determine the risks of radiation-induced cancer and deterministic effects for the patient and staff in transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC). Sixty-five patients with HCC underwent the first cycle of TACE. Thermoluminescence dosemeters and conversion factors were used to measure surface doses and to calculate organ doses and effective dose. For the patient, the risk of fatal cancer and severe genetic defect was in the magnitude of 10{sup -4} and 10{sup -5}, respectively. Five patients showed surface doses over the first lumbar vertebra exceeding 2000 mSv and 45 patients showed doses over the spine or the liver region above 500 mSv. The risk of fatal cancer and severe genetic defect for the radiologist and assistant was in the magnitude of 10{sup -7} to 10{sup -8}. They could exceed the threshold for lens opacity in the case of more than 490 and 1613 TACE yearly for a period of many years, respectively. Radiation dose could lead to local transient erythema and/or local depression of hematopoiesis in many patients after TACE. For the radiologist and assistant, risk of fatal cancer and genetic defect and lens opacity might arise when they perform interventions such as TACE intensively.

  17. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01T23:59:59.000Z

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore »using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  18. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01T23:59:59.000Z

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

  19. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1994. Twenty-seventh annual report

    SciTech Connect (OSTI)

    Thomas, M.L.; Hagemeyer, D. [Science Applications International Corporation, Oak Ridge, TN (United States)

    1996-01-01T23:59:59.000Z

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). Annual reports for 1994 were received from a total of 303 NRC licensees, of which 109 were operators of nuclear power reactors in commercial operation. Compilations of the reports submitted by the 303 licensees indicated that 152,028 individuals were monitored, 79,780 of whom received a measurable dose. The collective dose incurred by these individuals was 24,740 person-cSv (person-rem){sup 2} which represents a 15% decrease from the 1993 value. The number of workers receiving a measurable dose also decreased, resulting in the average measurable dose of 0.31 cSv (rem) for 1994. The average measurable dose is defined to be the total collective dose (TEDE) divided by the number of workers receiving a measurable dose. These figures have been adjusted to account for transient reactor workers. In 1994, the annual collective dose per reactor for light water reactor licensees (LWRs) was 198 person-cSv (person-rem). This represents a 18% decrease from the 1993 value of 242 person-cSv (person-rem). The annual collective dose per reactor for boiling water reactors (BWRs) was 327 person-cSv (person-rem) and, for pressurized water reactors (PWRs), it was 131 person-cSv (person-rem). Analyses of transient worker data indicate that 18,178 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1994, the average measurable dose calculated from reported data was 0.28 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.31 cSv (rem).

  20. Hubble diagrams of soft and hard radiation sources in the graviton background: to an apparent contradiction between supernova 1a and gamma-ray burst observations

    E-Print Network [OSTI]

    Michael A. Ivanov

    2007-01-10T23:59:59.000Z

    In the sea of super-strong interacting gravitons, non-forehead collisions with gravitons deflect photons, and this deflection may differ for soft and hard radiations. As a result, the Hubble diagram would not be a universal function and it will have a different view for such sources as supernovae in visible light and gamma-ray bursts. Observations of these two kinds are compared here with the limit cases of the Hubble diagram.

  1. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect (OSTI)

    Hoffman, E

    2008-05-30T23:59:59.000Z

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  2. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    SciTech Connect (OSTI)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06T23:59:59.000Z

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  3. Gamma ray spectroscopic analysis of building materials used in Tiruvannamalai, Tamilnadu, India

    SciTech Connect (OSTI)

    Ravisankar, R.; Vanasundari, K.; Suganya, M.; Chandrasekaran, A.; Raghu, Y.; Sivakumar, S.; Vijayagopal, P.; Meenakshisundaram, V. [Post Graduate and Research Department of Physics, Government Arts College, Tiruvannamalai-606603 (India); Department of Physics, Global Institute of Engineering and Technology, Vellore-632509, Tamilnadu (India); Department of Physics, Aarupadai Veedu Institute of Technology, Paiyanoor-603 104.Tamilnadu (India); Department of Physics, Arunai Engineering College, Tiruvannamalai-606603, Tamilnadu (India); Radiological Safety Division. Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2012-06-05T23:59:59.000Z

    Building materials cause direct radiation exposure because of their radium, thorium and potassium content. In this paper, samples of commonly used building materials in Tiruvannamalai, city, have been collected randomly over the city. The samples were tested for their radioactivity contents by using gamma spectroscopic measurements. All samples under investigation are within the recommended safety limit when used as building construction.

  4. Gamma watermarking

    DOE Patents [OSTI]

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25T23:59:59.000Z

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  5. Types of Radiation Exposure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional StarkFuel Cells »

  6. Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device

    SciTech Connect (OSTI)

    Shukla, Satyajit; Agrawal, Rajnikant; Cho, Hyoung J.; Seal, Sudipta; Ludwig, Lawrence; Parish, Clyde [Advanced Materials Processing and Analysis Center (AMPAC) and Mechanical Materials Aerospace Engineering (MMAE) Department, Engineering 381, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 (United States); National Aeronautics and Space Administration (NASA), John F. Kennedy Space Center, Kennedy Space Center (KSC), Florida 32899 (United States)

    2005-03-01T23:59:59.000Z

    The effect of ultraviolet (UV) radiation exposure on the room-temperature hydrogen (H{sub 2}) sensitivity of nanocrystalline indium oxide (In{sub 2}O{sub 3})-doped tin oxide (SnO{sub 2}) thin-film gas sensor is investigated in this article. The present sensor is incorporated into microelectromechanical systems device using sol-gel dip-coating technique. The present sensor exhibits a very high sensitivity, as high as 65 000-110 000, at room temperature, for 900 ppm of H{sub 2} under the dynamic test condition without UV exposure. The H{sub 2} sensitivity is, however, observed to reduce to 200 under UV radiation, which is contrary to the literature data, where an enhanced room-temperature gas sensitivity has been reported under UV radiation. The observed phenomenon is attributed to the reduced surface coverage by the chemisorbed oxygen ions under UV radiation, which is in consonance with the prediction of the constitutive equation, proposed recently by the authors, for the gas sensitivity of nanocrystalline semiconductor oxide thin-film sensors.

  7. Animal mortality resulting from uniform exposures to photon radiations: Calculated LD/sub 50/s and a compilation of experimental data

    SciTech Connect (OSTI)

    Jones, T.D.; Morris, M.D.; Wells, S.M.; Young, R.W.

    1986-12-01T23:59:59.000Z

    Studies conducted during the 1950s and 1960s of radiation-induced mortality to diverse animal species under various exposure protocols were compiled into a mortality data base. Some 24 variables were extracted and recomputed from each of the published studies, which were collected from a variety of available sources, primarily journal articles. Two features of this compilation effort are (1) an attempt to give an estimate of the uniform dose received by the bone marrow in each treatment so that interspecies differences due to body size were minimized and (2) a recomputation of the LD/sub 50/ where sufficient experimental data are available. Exposure rates varied in magnitude from about 10/sup -2/ to 10/sup 3/ R/min. This report describes the data base, the sources of data, and the data-handling techniques; presents a bibliography of studies compiled; and tabulates data from each study. 103 refs., 44 tabs.

  8. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect (OSTI)

    Ziock, H.J.; Milner, C.; Sommer, W.F. (Los Alamos National Lab., NM (USA)); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. (California Univ., Santa Cruz, CA (USA). Inst. for Particle Physics); Ellison, J.A. (California Univ., Riverside, CA (USA)); Ferguson, P. (Missouri Univ., Rolla, MO (USA)); Giubellino

    1990-01-01T23:59:59.000Z

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  9. Health effects of low-level radiation in shipyard workers. Final report: [Draft

    SciTech Connect (OSTI)

    Matanoski, G.M.

    1991-06-01T23:59:59.000Z

    The Nuclear Shipyard Workers Study (NSWS) was designed to determine whether there is an excess risk of leukemia or other cancers associated with exposure to low levels of gamma radiation. The study compares the mortality experience of shipyard workers who qualified to work in radiation areas to the mortality of similar workers who hold the same types of jobs but who are not authorized to work in radiation areas. The population consists of workers from six government and two private shipyards.

  10. Nuclear radiation-warning detector that measures impedance

    DOE Patents [OSTI]

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04T23:59:59.000Z

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  11. RADIATION MECHANISM AND JET COMPOSITION OF GAMMA-RAY BURSTS AND GeV-TeV-SELECTED RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Zhang Jin; Lu Ye; Zhang Shuangnan [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liang Enwei; Sun Xiaona [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Zhang Bing, E-mail: lew@gxu.edu.cn [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2013-09-01T23:59:59.000Z

    Gamma-ray bursts (GRBs) and GeV-TeV-selected radio-loud active galactic nuclei (AGNs) are compared based on our systematic modeling of the observed spectral energy distributions of a sample of AGNs with a single-zone leptonic model. We show that the correlation between the jet power (P{sub jet}) and the prompt gamma-ray luminosity (L{sub jet}) of GRBs is consistent, within the uncertainties, with the correlation between jet power and the synchrotron peak luminosity (L{sub s,jet}) of flat spectrum radio quasars (FSRQs). Their radiation efficiencies ({epsilon}) are also comparable (>10% for most sources), which increase with the bolometric jet luminosity (L{sub bol,jet}) for FSRQs and with the L{sub jet} for GRBs with similar power-law indices. BL Lac objects (BL Lacs) do not follow the P{sub jet}-L{sub s,jet} relation of FSRQs. They have lower {epsilon} and L{sub bol,jet} values than FSRQs, and a tentative L{sub bol,jet}-{epsilon} relation is also found, with a power-law index different from that of the FSRQs. The magnetization parameters ({sigma}) of FSRQs are on average larger than that of BL Lacs. They are anti-correlated with {epsilon} for the FSRQs, but positively correlated with {epsilon} for the BL Lacs. GeV narrow-line Seyfert 1 galaxies potentially share similar properties with FSRQs. Based on the analogy between GRBs and FSRQs, we suggest that the prompt gamma-ray emission of GRBs is likely produced by the synchrotron process in a magnetized jet with high radiation efficiency, similar to FSRQs. The jets of BL Lacs, on the other hand, are less efficient and are likely more matter-dominated.

  12. Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2–Neutron Radiation ORAUT-OTIB-0045

    SciTech Connect (OSTI)

    Kerr GD, Frome EL, Watkins JP, Tankersley WG

    2009-12-14T23:59:59.000Z

    A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

  13. Radiation Protection Guidance Hospital Staff

    E-Print Network [OSTI]

    Kay, Mark A.

    Page 1 Radiation Protection Guidance For Hospital Staff Prepared for Stanford ..................................................................................................................... 17 The Basic Principles of Radiation Protection........................................................... 17 Protection against Radiation Exposure

  14. Semiquantitative Analysis Using Thallium-201 SPECT for Differential Diagnosis Between Tumor Recurrence and Radiation Necrosis After Gamma Knife Surgery for Malignant Brain Tumors

    SciTech Connect (OSTI)

    Matsunaga, Shigeo, E-mail: shigeo-m@mui.biglobe.ne.jp [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan)] [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan); Shuto, Takashi; Takase, Hajime; Ohtake, Makoto; Tomura, Nagatsuki; Tanaka, Takahiro; Sonoda, Masaki [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan)] [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan)

    2013-01-01T23:59:59.000Z

    Purpose: Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography ({sup 201}Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. Methods and Materials: The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of {sup 201}Tl SPECT data used the early ratio (ER) and the delayed ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. Results: A total of 107 tumors were analyzed with {sup 201}Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P<.0001), but not in ER (P=.372), between the tumor recurrence and radiation necrosis groups, and no significant differences between metastatic brain tumors and high-grade gliomas in all indices (P=.926 for ER, P=.263 for DR, and P=.826 for RI). Receiver operating characteristics analysis indicated that RI was the most informative index with the optimum threshold of 0.775, which provided 82.8% sensitivity, 83.7% specificity, and 82.8% accuracy. Conclusions: Semiquantitative analysis of {sup 201}Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the most valuable index for this purpose.

  15. Radiation from Small-Scale Magnetic Field Turbulence: Implications for Gamma-Ray Bursts and Laboratory Astrophysical Plasmas

    E-Print Network [OSTI]

    Reynolds, Sarah J

    2012-05-31T23:59:59.000Z

    Relativistic charged particles moving within regions of small-scale magnetic field turbulence radiate as they undergo transverse accelerations reflective of the magnetic field variation along the particle's path. For a ...

  16. The Observation of the Weak Radiative Hyperon Decay XI0 ---> Lambda0 pi0 gamma at KTeV/E799, Fermilab

    SciTech Connect (OSTI)

    Ping, Huican

    2005-01-01T23:59:59.000Z

    The large sample of {Xi}{sup 0} hyperons available at KTeV 799 provides an opportunity to search for the Weak Radiative Hyperon Decay {Xi}{sup 0} {yields} {Lambda}{sup 0}{pi}{sup 0}{gamma}. They present a branching fraction measurement of {Xi}{sup 0} {yields} {Lambda}{sup 0}{pi}{sup 0}{gamma} based on the E799-II experiment data-taking in 1999 at KTeV, Fermilab. They used the principal decay of {Xi}{sup 0} {yields} {Lambda}{sup 0}{pi}{sup 0} where {Lambda} decays to a proton and a {pi}{sup -} as the flux normalization mode. This is the first observation of this interesting decay mode. 4 candidate events are found in the data. The branching ratio at 90% confidence level has been measured to be (1.67{sub -0.80}{sup +1.45}(stat.) {+-} 0.50(syst.)) x 10{sup -5} or (1.67{sub -0.69}{sup +1.16}(stat.) {+-} 0.50(syst.)) x 10{sup -5} at 68.27% confidence level.

  17. The Extreme Gamma-Ray Blazar S5 0716+714: Jet Conditions from Radio-Band Variability and Radiative Transfer Modeling

    E-Print Network [OSTI]

    Aller, M F; Aller, H D; Jorstad, S G; Marscher, A P; Bala, V; Hovatta, T

    2015-01-01T23:59:59.000Z

    As part of a program to identify the physical conditions in the jets of gamma-ray-flaring blazars detected by Fermi, including the role of shocks in the production of high-energy flaring, we obtained 4 years of 3-frequency, centimeter-band total flux density and linear polarization monitoring observations of the radio-bright blazar S5 0716+714 with the University of Michigan 26-m paraboloid. Light curves constructed from these data exhibit a series of rapid, high-amplitude, centimeter-band total flux density outbursts, and changes in the linear polarization consistent with the passage of shocks during the gamma-ray flaring. The observed spectral evolution of the radio-band flares, in combination with radiative transfer simulations incorporating propagating shocks, was used to constrain the shock and jet flow conditions in the parsec-scale regions of the jet. Eight forward-moving, transverse shocks with unusually-strong shock compression factors, a very fast Lorentz factor of the shocks of 77, a bulk Lorentz f...

  18. Exclusive \\gamma*\\gamma processes

    E-Print Network [OSTI]

    Chernyak, V L

    2009-01-01T23:59:59.000Z

    A short review of experimental and theoretical results on the large angle cross sections \\gamma\\gamma\\to {two mesons} and the form factors \\gamma*\\gamma\\to P={pi, \\eta, \\eta'} is given.

  19. Gamma ray bursts ROBERT S MACKAY

    E-Print Network [OSTI]

    Rourke, Colin

    Gamma ray bursts ROBERT S MACKAY COLIN ROURKE We propose that a gamma ray burst is a kinematic Gamma ray bursts are intense flashes of electromagnetic radiation of cosmic origin lasting from ten accepted mechanism. We propose that a gamma ray burst is simply a kinematic effect, namely the effect

  20. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    SciTech Connect (OSTI)

    Clark, E.

    2013-09-13T23:59:59.000Z

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10 ?C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

  1. Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone : an international comparison of approaches.

    SciTech Connect (OSTI)

    Beresford, N. A.; Barnett, C. L.; Brown, J. E.; Cheng, J.-J.; Copplestone, D.; Gaschak, S.; Hosseini, A.; Howard, B. J.; Kamboj, S.; Nedveckaite, T.; Olyslaegers, G.; Smith, J. T.; Vives i Batlle, J.; Vives-Lynch, S.; Yu, C.; Environmental Science Division; Centre for Ecology and Hydrology; Norwegian Radiation Protection Authority; England and Wales Environment Agency; International Radioecology Lab.; Inst. of Physics, Radiation Protection,; Belgian Nuclear Research Centre; Univ. of Portsmouth; Westlakes Research Inst.

    2010-06-09T23:59:59.000Z

    There is now general acknowledgement that there is a requirement to demonstrate that species other than humans are protected from anthropogenic releases of radioactivity. A number of approaches have been developed for estimating the exposure of wildlife and some of these are being used to conduct regulatory assessments. There is a requirement to compare the outputs of such approaches against available data sets to ensure that they are robust and fit for purpose. In this paper we describe the application of seven approaches for predicting the whole-body ({sup 90}Sr, {sup 137}Cs, {sup 241}Am and Pu isotope) activity concentrations and absorbed dose rates for a range of terrestrial species within the Chernobyl exclusion zone. Predictions are compared against available measurement data, including estimates of external dose rate recorded by thermoluminescent dosimeters attached to rodent species. Potential reasons for differences between predictions between the various approaches and the available data are explored.

  2. Radiation Impact of Very Low Level Radioactive Steel Reused in Building Industry with Emphasis on External Exposure Pathway - 12569

    SciTech Connect (OSTI)

    Panik, Michal; Hrncir, Tomas; Necas, Vladimir [Slovak University of Technology in Bratislava, Bratislava (Slovakia)

    2012-07-01T23:59:59.000Z

    Considerable quantities of various materials are accumulated during the decommissioning process of nuclear installations. Some of arising materials are activated or contaminated. However, many of them continue to have an economic value and exist in a form that can be recycled or reused for special purposes. Furthermore much of the material generated during decommissioning process will contain only small amounts of radionuclides. For these materials there exist environmental and economic incentives to maximize the use of the concept of clearance from further regulatory control. This impact analysis is devoted to mentioned incentives. The aim is to conditionally clear maximum amount of the scrap steel and consequently recycle and reuse it in form of reinforcing components in tunnel and bridge building scenarios. Recent calculations relevant for external exposure pathway indicate that concept of conditional clearance represent a feasible option for the management of radioactive materials. Even in chosen specific industrial applications it is possible to justify new, approximately one order of magnitude higher, clearance levels. However analysis of other possible exposure pathways relevant for particular scenario of reuse of conditionally cleared materials has to be performed in order to confirm indications from partially obtained results. Basically, the concept of conditional clearance can bring two basic benefits. Firstly it is saving of considerable funds, which would be otherwise used for treatment, conditioning and disposal of materials at appropriate radioactive waste repository. Moreover materials with intrinsic value (particularly metals) can be recycled and reused in industrial applications instead of investing resources on mining and production process in order to obtain new, 'fresh' materials. (authors)

  3. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    SciTech Connect (OSTI)

    D. E. Lewis D. A. Hagemeyer Y. U. McCormick

    2012-07-07T23:59:59.000Z

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor (LWR) licensees was 83 person-rem. This represents a 14% decrease from the value reported for 2009 (96 person-rem). The decrease in collective dose for commercial nuclear power reactors was due to an 11% decrease in total outage hours in 2010. During outages, activities involving increased radiation exposure such as refueling and maintenance are performed while the reactor is not in operation. The average annual collective dose per reactor for boiling water reactors (BWRs) was 137 personrem for 35 BWRs, and 55 person-rem for 69 pressurized water reactors (PWRs). Analyses of transient individual data indicate that 29,333 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient individuals by multiple licensees. The adjustment to account for transient individuals has been specifically noted in footnotes in the figures and tables for commercial nuclear power reactors. In 2010, the average measurable dose per individual for all licensees calculated from reported data was 0.13 rem. Although the average measurable dose per individual from data submitted by licensees was 0.13 rem, a corrected dose distribution resulted in an average measurable dose per individual of 0.17 rem.

  4. Simultaneous beta and gamma spectroscopy

    DOE Patents [OSTI]

    Farsoni, Abdollah T. (Corvallis, OR); Hamby, David M. (Corvallis, OR)

    2010-03-23T23:59:59.000Z

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  5. Astrophysical S factor for the radiative-capture reaction p{sup 6}Li {yields} {sup 7}Be{gamma}

    SciTech Connect (OSTI)

    Dubovichenko, S. B., E-mail: sergey@dubovichenko.ru [National Space Agency of the Republic of Kazakhstan, Fessenkov Astrophysical Institute, National Center of Space Research and Technology (Kazakhstan); Burtebaev, N., E-mail: burteb@inp.kz; Zazulin, D. M.; Kerimkulov, Zh. K. [National Nuclear Center of Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Amar, A. S. A. [Al-Farabi Kazakh National University (Kazakhstan)

    2011-07-15T23:59:59.000Z

    A new measurement of differential cross sections for elastic p{sup 6}Li scattering in the energy range 0.35-1.2 MeV was performed. A partial-wave analysis of the data obtained in this way was carried out, and potentials simulating the p{sup 6}Li interaction were constructed. Various experiments devoted to studying elastic p{sup 6}Li scattering over the broad energy range of 0.5-50 MeV were analyzed on the basis of the optical model. By using the potentials obtained from the partial-wave analysis, the possibility of describing the astrophysical S factor for radiative proton capture on {sup 6}Li at low energies was considered within the potential cluster model involving forbidden states.

  6. DOE Radiation Records Contacts List

    Broader source: Energy.gov [DOE]

    DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

  7. Potential radiological exposure rates resulting from hypothetical dome failure at Tank W-10

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The main plant area at Oak Ridge National Laboratory (ORNL) contains 12 buried Gunite tanks that were used for the storage and transfer of liquid radioactive waste. Although the tanks are no longer in use, they are known to contain some residual contaminated sludges and liquids. In the event of an accidental tank dome failure, however unlikely, the liquids, sludges, and radioactive contaminants within the tank walls themselves could create radiation fields and result in above-background exposures to workers nearby. This Technical Memorandum documents a series of calculations to estimate potential radiological exposure rates and total exposures to workers in the event of a hypothetical collapse of a Gunite tank dome. Calculations were performed specifically for tank W-10 because it contains the largest radioactivity inventory (approximately half of the total activity) of all the Gunite tanks. These calculations focus only on external, direct gamma exposures for prescribed, hypothetical exposure scenarios and do not address other possible tank failure modes or routes of exposure. The calculations were performed with established, point-kernel gamma ray modeling codes.

  8. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    SciTech Connect (OSTI)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N. [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom)] [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom); Creed, Richard; Pancake, Daniel [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)] [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

    2013-07-01T23:59:59.000Z

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 ? steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple radionuclides may be selected by the operator and will be identified if present. In scanning operation the unit scans a designated region and superimposes over a video image the distribution of measured radioactivity. For the total scanned area or object RadSearch determines the total activity of operator selected radionuclides present and the gamma dose-rate measured at the detector head. Results of hold-up measurements made in a nuclear facility are presented, as are test measurements of point sources distributed arbitrarily on surfaces. These latter results are compared with the results of benchmarked MCNP Monte Carlo calculations. The use of the device for hold-up and decommissioning measurements is validated. (authors)

  9. The Radiation Shielding Competition Sponsored by

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    of radiation. These can be in the form of particles (alpha, beta, etc.) or in the form of photons (gamma rays. Because gamma rays are so penetrating, it's possible to detect them through other matter (walls, floors. In this competition, we consider gamma radiation from a laboratory source. Gamma rays are high energy photons speeding

  10. A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    SciTech Connect (OSTI)

    Nefkens, B. M.; Prakhov, S.; Aguar-Bartolom??, P.; Annand, J. R.; Arends, H. J.; Bantawa, K.; Beck, R.; Bekrenev, V.; Bergh??user, H.; Braghieri, A.; Briscoe, W. J.; Brudvik, J.; Cherepnya, S.; Codling, R. F.; Collicott, C.; Costanza, S.; Danilkin, I. V.; Denig, A.; Demissie, B.; Dieterle, M.; Downie, E. J.; Drexler, P.; Fil'kov, L. V.; Fix, A.; Garni, S.; Glazier, D. I.; Gregor, R.; Hamilton, D.; Heid, E.; Hornidge, D.; Howdle, D.; Jahn, O.; Jude, T. C.; Kashevarov, V. L.; K??ser, A.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Kotulla, M.; Koulbardis, A.; Kruglov, S.; Krusche, B.; Lisin, V.; Livingston, K.; MacGregor, I. J.; Maghrbi, Y.; Mancel, J.; Manley, D. M.; McNicoll, E. F.; Mekterovic, D.; Metag, V.; Mushkarenkov, A.; Nikolaev, A.; Novotny, R.; Oberle, M.; Ortega, H.; Ostrick, M.; Ott, P.; Otte, P. B.; Oussena, B.; Pedroni, P.; Polonski, A.; Robinson, J.; Rosner, G.; Rostomyan, T.; Schumann, S.; Sikora, M. H.; Starostin, A.; Strakovsky, I. I.; Strub, T.; Suarez, I. M.; Supek, I.; Tarbert, C. M.; Thiel, M.; Thomas, A.; Unverzagt, M.; Watts, D. P.; Werthmueller, D; Witthauer, L.

    2014-08-01T23:59:59.000Z

    A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> eta p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.

  11. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I. (Dublin, CA)

    2010-02-02T23:59:59.000Z

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  12. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    SciTech Connect (OSTI)

    S. Mukhopadhyay

    2003-06-01T23:59:59.000Z

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  13. Approximation of Sums of Experimental Radiative Strength Functions of Dipole Gamma-Transitions in the Region $E_?\\approx B_n$ for the Atomic Masses $40 \\leq a \\leq 200$

    E-Print Network [OSTI]

    A. M. Sukhovoj; W. I. Furman; V. A. Khitrov

    2008-09-25T23:59:59.000Z

    The sums k(E1)+k(M1) of radiative strength functions of dipole primary gamma-transitions were approximated with high precision in the energy region of $0.5 < E_1 < B_n-0.5$ MeV for nuclei: 40K, 60Co, 71,74Ge, 80Br, 114Cd, 118Sn, 124,125Te, 128I, 137,138,139Ba, 140La, 150Sm, 156,158Gd, 160Tb, 163,164,165Dy, 166Ho, 168Er, 170Tm, 174Yb, 176,177Lu, 181Hf, 182Ta, 183,184,185,187W, 188,190,191,193Os, 192Ir, 196Pt, 198Au, 200Hg by sum of two independent functions. It has been shown that this parameter of gamma-decay are determined by the structure of the decaying and excited levels, at least, up to the neutron binding energy.

  14. DOE 2011 Occupational Radiation Exposure report, _Prepared for the U.S. Department of Energy, Office of Health, Safety and Security. December 2012

    SciTech Connect (OSTI)

    Derek Hagemeyer, Yolanda McCormick

    2012-12-12T23:59:59.000Z

    This report discusses radiation protection and dose reporting requirements, presents the 2011 occupational radiation dose data along with trends over the past 5 years, and provides instructions to submit successful as low as reasonably achievable (ALARA) projects.

  15. Chapter 16: Log-linear regression for Poisson counts Exposure to ionizing radiation is recognized as a cancer risk. In the United States, EPA

    E-Print Network [OSTI]

    Bardsley, John

    as a cancer risk. In the United States, EPA sets guidelines specifying upper limits on the amount of exposure groups than low exposure. The objective of regression analysis is to estimate the rate of cancer deaths cases or deaths attributable to cancer) using a number of explanatory variables believed to be related

  16. WI Radiation Protection

    Broader source: Energy.gov [DOE]

    This statute seeks to regulate radioactive materials, to encourage the constructive uses of radiation, and to prohibit and prevent exposure to radiation in amounts which are or may be detrimental...

  17. The neutron-gamma Feynman variance to mean approach: gamma detection and total neutron-gamma detection (theory and practice)

    E-Print Network [OSTI]

    Dina Chernikova; Kåre Axell; Senada Avdic; Imre Pázsit; Anders Nordlund

    2015-01-23T23:59:59.000Z

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have a particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with inclusion of general reactions and passage intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source enclosed in a steel container. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma, are evaluated experimentally for a weak 252Cf neutron-gamma source in a steel container, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-Y formulas.

  18. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy

    E-Print Network [OSTI]

    Shin, Wook-Geun; Shin, Jae-Ik; Jeong, Jong Hwi; Lee, Se Byeong

    2015-01-01T23:59:59.000Z

    For the in vivo range verification in proton therapy, it has been tried to measure the spatial distribution of the prompt gammas generated by the proton-induced interactions with the close relationship with the proton dose distribution. However, the high energy of the prompt gammas and background gammas are still problematic in measuring the distribution. In this study, we suggested a new method determining the in vivo range by utilizing the time structure of the prompt gammas formed with the rotation of a range modulation wheel (RMW) in the passive scattering proton therapy. To validate the Monte Carlo code simulating the proton beam nozzle, axial percent depth doses (PDDs) were compared with the measured PDDs with the varying beam range of 4.73-24.01 cm. And the relationship between the proton dose rate and the time structure of the prompt gammas was assessed and compared in the water phantom. The results of the PDD showed accurate agreement within the relative errors of 1.1% in the distal range and 2.9% in...

  19. Measurement of the W Gamma --> mu nu gamma Cross-Section, Limits on Anomalous Trilinear Vector Boson Couplings, and the Radiation Amplitude Zero in p anti-p Collisions at s**(1/2) = 1.96 TeV

    SciTech Connect (OSTI)

    Askew, Andrew Warren

    2004-11-01T23:59:59.000Z

    This thesis details the measurement of the p{bar p} {yields} W{gamma} + X {yields} {mu}{nu}{gamma} + X cross section at {radical}s = 1.96 TeV using the D0 detector at Fermilab, in 134.5 pb{sup -1} of integrated luminosity. From the photon E{sub T} spectrum limits on anomalous couplings of the photon to the W are obtained. At 95% confidence level, limits of -1.05 < {Delta}{kappa} < 1.04 for {lambda} = 0 and -0.28 < {lambda} < 0.27 for {Delta}{kappa} = 0 are obtained on the anomalous coupling parameters. The charge signed rapidity difference from the data is displayed, and its significance discussed.

  20. ORISE: REAC/TS Radiation Treatment Medications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Medications The Radiation Emergency Assistance CenterTraining Site (REACTS) is a valuable resource in the use of drug therapies to treat radiation exposure. REACTS...

  1. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  2. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  3. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  4. X-RAYRICH GAMMA-RAY BURSTS, PHOTOSPHERES, AND VARIABILITY P. Meszaros,1,2

    E-Print Network [OSTI]

    Zhang, Bing

    X-RAY­RICH GAMMA-RAY BURSTS, PHOTOSPHERES, AND VARIABILITY P. Me´sza´ros,1,2 E. Ramirez-Ruiz,3 M. J of the observational gamma-ray variability-luminosity relation. Subject headings: gamma rays: bursts -- radiation mechanisms: nonthermal 1. INTRODUCTION Gamma-ray burst (GRB) light curves at gamma-ray ener- gies are often

  5. CRYOPUMP BEHAVIOR IN THE PRESENCE OF BEAM OR NUCLEAR RADIATION

    E-Print Network [OSTI]

    Law, P.K.

    2011-01-01T23:59:59.000Z

    Reactor Experiment In order to ascertain the effect of fast neutrons and gamma radiation on the absorbed deuterium gas

  6. Common Origin of 3.55 keV X-Ray Line and Galactic Center Gamma Ray Excess in a Radiative Neutrino Mass Model

    E-Print Network [OSTI]

    Borah, Debasish; Adhikari, Rathin

    2015-01-01T23:59:59.000Z

    We attempt to simultaneously explain the recently observed 3.55 keV X-ray line in the analysis of XMM-Newton telescope data and the galactic center gamma ray excess observed by the Fermi gamma ray space telescope within an abelian gauge extension of standard model. We consider a two component dark matter scenario with a mass difference 3.55 keV such that the heavier one can decay into the lighter one and a photon with energy 3.55 keV. The lighter dark matter candidate is protected from decaying into the standard model particles by a remnant $Z_2$ symmetry into which the abelian gauge symmetry gets spontaneously broken. If the mass of the dark matter particle is chosen to be within $31-40$ GeV, then this model can also explain the galactic center gamma ray excess if the dark matter annihilation into $b\\bar{b}$ pairs has a cross section of $\\langle \\sigma v \\rangle \\simeq (1.4-2.0) \\times 10^{-26} \\; \\text{cm}^3/\\text{s}$. We constrain the model from the requirement of producing correct dark matter relic densit...

  7. Fundamentals of health physics for the radiation-protection officer

    SciTech Connect (OSTI)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01T23:59:59.000Z

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  8. A Reanalysis of Curvature in the Dose Response for Cancer and Modifications by Age at Exposure Following Radiation Therapy for Benign Disease

    SciTech Connect (OSTI)

    Little, Mark P., E-mail: mark.little@nih.gov [Radiation Epidemiology Branch, National Cancer Institute, Rockville, Maryland (United States); Stovall, Marilyn; Smith, Susan A. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kleinerman, Ruth A. [Radiation Epidemiology Branch, National Cancer Institute, Rockville, Maryland (United States)] [Radiation Epidemiology Branch, National Cancer Institute, Rockville, Maryland (United States)

    2013-02-01T23:59:59.000Z

    Purpose: To assess the shape of the dose response for various cancer endpoints and modifiers by age and time. Methods and Materials: Reanalysis of the US peptic ulcer data testing for heterogeneity of radiogenic risk by cancer endpoint (stomach, pancreas, lung, leukemia, all other). Results: There are statistically significant (P<.05) excess risks for all cancer and for lung cancer and borderline statistically significant risks for stomach cancer (P=.07), and leukemia (P=.06), with excess relative risks Gy{sup -1} of 0.024 (95% confidence interval [CI] 0.011, 0.039), 0.559 (95% CI 0.221, 1.021), 0.042 (95% CI -0.002, 0.119), and 1.087 (95% CI -0.018, 4.925), respectively. There is statistically significant (P=.007) excess risk of pancreatic cancer when adjusted for dose-response curvature. General downward curvature is apparent in the dose response, statistically significant (P<.05) for all cancers, pancreatic cancer, and all other cancers (ie, other than stomach, pancreas, lung, leukemia). There are indications of reduction in relative risk with increasing age at exposure (for all cancers, pancreatic cancer), but no evidence for quadratic variations in relative risk with age at exposure. If a linear-exponential dose response is used, there is no significant heterogeneity in the dose response among the 5 endpoints considered or in the speed of variation of relative risk with age at exposure. The risks are generally consistent with those observed in the Japanese atomic bomb survivors and in groups of nuclear workers. Conclusions: There are excess risks for various malignancies in this data set. Generally there is a marked downward curvature in the dose response and significant reduction in relative risk with increasing age at exposure. The consistency of risks with those observed in the Japanese atomic bomb survivors and in groups of nuclear workers implies that there may be little sparing effect of fractionation of dose or low-dose-rate exposure.

  9. Constraining the Physical Conditions in the Jets of Gamma-Ray Flaring Blazars using Centimeter-Band Polarimetry and Radiative Transfer Simulations. I. Data and Models for 0420-014, OJ 287, and 1156+295

    E-Print Network [OSTI]

    Aller, M F; Aller, H D; Latimer, G E; Hovatta, T

    2014-01-01T23:59:59.000Z

    To investigate parsec-scale jet flow conditions during GeV gamma-ray flares detected by the Fermi Large Angle Telescope, we obtained centimeter-band total flux density and linear polarization monitoring observations from 2009.5 through 2012.5 with the 26-meter Michigan radio telescope for a sample of core-dominated blazars. We use these data to constrain radiative transfer simulations incorporating propagating shocks oriented at an arbitrary angle to the flow direction in order to set limits on the jet flow and shock parameters during flares temporally associated with gamma-ray flares in 0420-014, OJ 287, and 1156+295; these AGN exhibited the expected signature of shocks in the linear polarization data. Both the number of shocks comprising an individual radio outburst (3-4) and the range of the compression ratios of the individual shocks (0.5-0.8) are similar in all three sources; the shocks are found to be forward-moving with respect to the flow. While simulations incorporating transverse shocks provide good...

  10. High Exposure Facility Technical Description

    SciTech Connect (OSTI)

    Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

    2008-02-12T23:59:59.000Z

    The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

  11. Standard Practice for Determining NeutronExposures for Nuclear Reactor Vessel Support Structures

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01T23:59:59.000Z

    1.1 This practice covers procedures for monitoring the neutron radiation exposures experienced by ferritic materials in nuclear reactor vessel support structures located in the vicinity of the active core. This practice includes guidelines for: 1.1.1 Selecting appropriate dosimetric sensor sets and their proper installation in reactor cavities. 1.1.2 Making appropriate neutronics calculations to predict neutron radiation exposures. 1.2 This practice is applicable to all pressurized water reactors whose vessel supports will experience a lifetime neutron fluence (E > 1 MeV) that exceeds 1 × 1017 neutrons/cm2 or 3.0 × 10?4 dpa. (See Terminology E 170.) 1.3 Exposure of vessel support structures by gamma radiation is not included in the scope of this practice, but see the brief discussion of this issue in 3.2. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and h...

  12. alpha radiation influencia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant species. Search method: In nature, most alpha radiation exposure is caused by radon progeny. Exposure is particularly high below ground, and is also elevated on plant...

  13. alpha radiation detection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant species. Search method: In nature, most alpha radiation exposure is caused by radon progeny. Exposure is particularly high below ground, and is also elevated on plant...

  14. alpha radiation measuring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant species. Search method: In nature, most alpha radiation exposure is caused by radon progeny. Exposure is particularly high below ground, and is also elevated on plant...

  15. Report to the DOE nuclear data committee. [EV RANGE 10-100; CROSS SECTIONS; PHOTONEUTRONS; NEUTRONS; GAMMA RADIATION; COUPLED CHANNEL THEORY; DIFFERENTIAL CROSS SECTIONS; MEV RANGE 01-10; ; CAPTURE; GAMMA SPECTRA; THERMAL NEUTRONS; COMPUTER CALCULATIONS; DECAY; FISSION PRODUCTS; FISSION YIELD; SHELL MODELS; NUCLEAR DATA COLLECTIONS

    SciTech Connect (OSTI)

    Struble, G.L.; Haight, R.C.

    1981-03-01T23:59:59.000Z

    Topics covered include: studies of (n, charged particle) reactions with 14 to 15 MeV neutrons; photoneutron cross sections for /sup 15/N; neutron radiative capture; Lane-model analysis of (p,p) and (n,n) scattering on the even tin isotopes; neutron scattering cross sections for /sup 181/Ta, /sup 197/Au, /sup 209/Bi, /sup 232/Th, and /sup 238/U inferred from proton scattering and charge exchange cross sections; neutron-induced fission cross sections of /sup 245/Cm and /sup 242/Am; fission neutron multiplicities for /sup 245/Cm and /sup 242/Am; the transport of 14 MeV neutrons through heavy materials 150 < A < 208; /sup 249/Cm energy levels from measurement of thermal neutron capture gamma rays; /sup 231/Th energy levels from neutron capture gamma ray and conversion electron spectroscopy; new measurements of conversion electron binding energies in berkelium and californium; nuclear level densities; relative importance of statistical vs. valence neutron capture in the mass-90 region; determination of properties of short-lived fission products; fission yield of /sup 87/Br and /sup 137/I from 15 nuclei ranging from /sup 232/Th to /sup 249/Cf; evaluation of charged particle data for the ECPL library; evaluation of secondary charged-particle energy and angular distributions for ENDL; and evaluated nuclear structure libraries derived from the table of isotopes. (GHT)

  16. The Compton Effect--Compton Scattering and Gamma Ray Spectroscopy

    E-Print Network [OSTI]

    Dai, Pengcheng

    The Compton Effect-- Compton Scattering and Gamma Ray Spectroscopy by Dr. James E. Parks Department and procedures for measuring gamma-ray energy distributions, (7) to learn about photomultipliers the interactions of high energy, electromagnetic photon radiation with materials in general. Gamma rays are high

  17. Astrophysical S factor for the radiative capture (12)N(p,gamma)(13)O determined from the (14)N((12)N,(13)O)(13)C proton transfer reaction

    E-Print Network [OSTI]

    Banu, A.; Al-Abdullah, T.; Fu, C.; Gagliardi, Carl A.; McCleskey, M.; Mukhamedzhanov, A. M.; Tabacaru, G.; Trache, L.; Tribble, Robert E.; Zhai, Y.; Carstoiu, F.; Burjan, V.; Kroha, V.

    2009-01-01T23:59:59.000Z

    The cross section of the radiative proton capture reaction on the drip line nucleus (12)N was investigated using the asymptotic normalization coefficient (ANC) method. We have used the (14)N((12)N,(13)O)(13)C proton transfer reaction at 12 Me...

  18. Handheld CZT radiation detector

    DOE Patents [OSTI]

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24T23:59:59.000Z

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  19. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    SciTech Connect (OSTI)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong; Kim, Eun Jin; Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Paik, Sang Gi [Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of)] [Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of); Cho, Eun Wie, E-mail: ewcho@kribb.re.kr [Daejeon-KRIBB-FHCRC Cooperation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-09-10T23:59:59.000Z

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confers resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.

  20. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W. (Livermore, CA); Coombs, III, Arthur W. (Patterson, CA); Yee, Jick H. (Livermore, CA)

    2007-12-18T23:59:59.000Z

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  1. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2005-05-03T23:59:59.000Z

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  2. THE CONTRIBUTION OF MODERN MEDICAL IMAGING TECHNOLOGY TO RADIATION HEALTH EFFECTS IN EXPOSED POPULATIONS

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    than for radiation and nuclear energy. Furthermore, unlessof ionizing radiation: Implications for nuclear energy andby radiation as a result of exposure from nuclear power

  3. University of Texas at Dallas Radiation Safety Manual

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Principles of Radiation Protection E. Exposure Limits for Radiation Workers F. Types of Radiation Exposure G. Biological Effects of Radiation H. Personnel Monitoring I. Bioassays J. ProtectiveUniversity of Texas at Dallas Radiation Safety Manual Table of Contents Introduction Emergency

  4. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-05-01T23:59:59.000Z

    Twelve anamolous areas attributable to gamma radiation in the uranium spectral window, and twenty-three in the thorium channel, have been recognized and delineated on the Weed quadrangle. The majority of the uranium anomalies are located in the southwestern part of the map sheet. Most of these are correlated with the pre-Cretaceous metamorphic rock system and the Mesozoic granitic rocks intrusive into it. Of the twenty-three anomalous areas of increased gamma radiation in the thorium spectral window, most are located in the northeast and the east center in a north-south trending belt. However, this apparent alignment is probably fortuitous as the individual anomalies are correlated with several different rock formations. Three are correlated with upper Cretaceous marine sediments, six with Ordovician marine sediments, two with Mesozoic granitic intrusives, and two with Silurian marine sediments. In the northwestern part of the quadrangle, four thorium radiation anomalies are delineated over exposures of upper Jurassic marine rocks. Anomaly 6, in the southwest, warrants attention as it suggests strong radiation in the uranium channel with little or no thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are also strong, supporting the likelihood of uranium enrichment. The feature is located on line 540, fiducials 7700 to 7720. Anomaly 7, on line 540, fiducials 8390 to 8420, shows similar characteristics although a minor thorium excursion is present. Anomaly 10, on line 3010 fiducials 9820 to 9840, is also characterized by a strong uranium radiation spike, with minor thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are well defined and relatively intense.

  5. RADIATION SENSITIVITY & PROCESSING OF DNA DAMAGE FOLLOWING LOW DOSES OF GAMMA-RAY ALPHA PARTICLES & HZE IRRADIATION OF NORMAL DSB REPAIR DEFICIENT CELLS

    SciTech Connect (OSTI)

    O'Neil, Peter

    2009-05-15T23:59:59.000Z

    Non-homologous end joining (NHEJ) predominates in the repair of DNA double strand breaks (DSB) over homologous recombination (HR). NHEJ occurs throughout the cell cycle whereas HR occurs in late S/G2 due to the requirement of a sister chromatid (Rothkamm et al, Mol Cell Biol 23 5706-15 [2003]). To date evidence obtained with DSB repair deficient cells using pulsed-field gel electrophoresis has revealed the major pathway throughout all phases of the cell cycle for processing high dose induced DSBs is NHEJ (Wang et al, Oncogene 20 2212-24 (2001); Pluth et al, Cancer Res. 61 2649-55 [2001]). These findings however were obtained at high doses when on average >> 20-30 DSBs are formed per cell. The contribution of the repair pathways (NHEJ and HR) induced in response to DNA damage during the various phases of the cell cycle may depend upon the dose (the level of initial DSBs) especially since low levels of DSBs are induced at low dose. To date, low dose studies using NHEJ and HR deficient mutants have not been carried out to address this important question with radiations of different quality. The work presented here leads us to suggest that HR plays a relatively minor role in the repair of radiation-induced prompt DSBs. SSBs lead to the induction of DSBs which are associated specifically with S-phase cells consistent with the idea that they are formed at stalled replication forks in which HR plays a major role in repair. That DNA-PKcs is in some way involved in the repair of the precursors to replication-induced DSB remains an open question. Persistent non-DSB oxidative damage also leads to an increase in RAD51 positive DSBs. Both simple and complex non-DSB DNA damage may therefore contribute to indirect DSBs induced by ionising radiation at replication forks.

  6. Gamma-ray imaging system. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The RadScan 600 gamma-ray imaging system is designed to survey large surface areas for radiological contamination with accuracy and efficiency. The resulting survey data are clear, concise, and precise in describing how much contamination is present at exact locations. Data can be permanently stored electronically and on video tape, making storage and retrieval economical and efficient. This technology can perform accurate measurements in high radiation contamination areas while minimizing worker exposure. The RadScan 600 system is a safe and effective alternative to hand-held radiation detection devices. Performance data of the demonstrated survey area of the RadScan 600 system versus the baseline, which is the hand-held radiation detection devices (RO-2 and RO-7) for a given survey, production rate is 72% of the baseline. It should be noted that the innovative technology provides 100% coverage at a unit cost of $8.64/m{sup 2} versus a static measurement of a unit cost of $1.61/m{sup 2} for the baseline.

  7. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    SciTech Connect (OSTI)

    Azzam, Edouard I

    2013-01-16T23:59:59.000Z

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimate human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.

  8. Optical Measurement Technologies for High Temperature, Radiation Exposure, and Corrosive Environments—Significant Activities and Findings: In-vessel Optical Measurements for Advanced SMRs

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Suter, Jonathan D.

    2012-09-01T23:59:59.000Z

    Development of advanced Small Modular Reactors (aSMRs) is key to providing the United States with a sustainable, economically viable, and carbon-neutral energy source. The aSMR designs have attractive economic factors that should compensate for the economies of scale that have driven development of large commercial nuclear power plants to date. For example, aSMRs can be manufactured at reduced capital costs in a factory and potentially shorter lead times and then be shipped to a site to provide power away from large grid systems. The integral, self-contained nature of aSMR designs is fundamentally different than conventional reactor designs. Future aSMR deployment will require new instrumentation and control (I&C) architectures to accommodate the integral design and withstand the extreme in-vessel environmental conditions. Operators will depend on sophisticated sensing and machine vision technologies that provide efficient human-machine interface for in-vessel telepresence, telerobotic control, and remote process operations. The future viability of aSMRs is dependent on understanding and overcoming the significant technical challenges involving in-vessel reactor sensing and monitoring under extreme temperatures, pressures, corrosive environments, and radiation fluxes

  9. Astrophysical S-factor for the radiative-capture reaction p{sup 13}C {yields} {sup 14}N{gamma}

    SciTech Connect (OSTI)

    Dubovichenko, S. B., E-mail: sergey@dubovichenko.ru [V.G. Fessenkov Astrophysical Institute (Kazakhstan)

    2012-02-15T23:59:59.000Z

    The possibility of describing experimental data on the astrophysical S factor for radiative proton capture on a {sup 13}C nucleus at energies in the range 0.03-0.8 MeV is considered within the potential cluster model involving forbidden states. It is shown that the energy dependence of this astrophysical S factor can be reasonably explained on the basis of the E1 transition to the {sup 3}P{sub 1}-wave bound state of the {sup 14}N nucleus in the p{sup 13}C channel from the {sup 3}S{sub 1} wave of p{sup 13}C scattering in the resonance energy region around 0.55 MeV in the laboratory frame.

  10. Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium-Contaminated Sites

    SciTech Connect (OSTI)

    Scott, Bobby R.; Tokarskaya, Zoya B.; Zhuntova, Galina V.; Osovets, Sergey V.; Syrchikov, Victor A., Belyaeva, Zinaida D.

    2007-12-14T23:59:59.000Z

    This report summarizes 4 years of research achievements in this Office of Science (BER), U.S. Department of Energy (DOE) project. The research described was conducted by scientists and supporting staff at Lovelace Respiratory Research Institute (LRRI)/Lovelace Biomedical and Environmental Research Institute (LBERI) and the Southern Urals Biophysics Institute (SUBI). All project objectives and goals were achieved. A major focus was on obtaining improved cancer risk estimates for exposure via inhalation to plutonium (Pu) isotopes in the workplace (DOE radiation workers) and environment (public exposures to Pu-contaminated soil). A major finding was that low doses and dose rates of gamma rays can significantly suppress cancer induction by alpha radiation from inhaled Pu isotopes. The suppression relates to stimulation of the body's natural defenses, including immunity against cancer cells and selective apoptosis which removes precancerous and other aberrant cells.

  11. Oak Ridge D and D Plan 3515 Project - Technology Review (2007) and GammaCam Technology Demonstration for Characterizing Building 3515 at Oak Ridge (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Hart, A.; Brown, Ch.; Jordan, D. [MSE Technology Applications, Inc., Montana (United States); Phillips, E. [U.S. Department of Energy, Oak Ridge Operations Office, Oak Ridge, Tennessee (United States)

    2008-07-01T23:59:59.000Z

    This paper presents the results from the Characterization, Decontamination and Decommissioning (CD and D) Study performed by MSE Technology Application, Inc. (MSE) to assist the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) in the preparation of a Project Execution Plan and Remediation Plan for Building 3515 at ORNL. Primary objectives of this study were to identify innovative CD and D technologies and methodologies and recommend alternatives applicable to the CD and D of Building 3515. Building 3515 is a small heavily shielded concrete and cement block structure centrally located in the Bethel Valley portion of the ORNL. The building's interior is extensively contaminated with Cesium 137 (Cs-137), the primary contaminant of concern. A previous attempt to characterize the building was limited to general interior area radiation exposure level measurements and a few surface smears gathered by inserting monitoring equipment into the building on long poles. Consequently, the spatial distribution of the gamma radiation source inside the building was not determined. A subsequent plan for D and D of the building presented a high risk of worker radiation dose in excess of as low as reasonably achievable (ALARA) because the source of the interior gamma radiation field is not completely understood and conventional practices required workers to be in close proximity of the building. As part of an initial literature search, MSE reviewed new generation gamma source characterization technologies and identified the GammaCam{sup TM} portable gamma ray imaging system as an innovative technology applicable to locating the dominant gamma ray sources within the building. The GammaCam{sup TM} gamma-ray imaging system is a commercially available technology marketed by the EDO Corporation. This system consists of a sensor head with a co-aligned camera and a portable computer. The system is designed to provide two-dimensional spatial mappings of gamma ray emitting nuclides in real time. The gamma radiation sensor and camera can be set up within or outside of the radiation field while the system operator and PC can be located 30 to 60 m (100 to 200 ft) from the sensor head. The system has been used successfully at numerous DOE and commercial nuclear facilities to precisely locate gamma radiation sources. However, literature attesting to the ability of this technology to detect radiation sources within heavily shielded structures was not available. Consequently, MSE was not certain if this technology would be capable of locating gamma ray sources within the heavily shielded Building 3515. To overcome this uncertainty, MSE sent two individuals to the EDO Corporation for training. At completion of the training, MSE leased the GammaCam{sup TM} portable system and brought it to ORNL to evaluate the capability of the system. An overview from this evaluation is summarized in this paper. (authors)

  12. GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D

    Broader source: Energy.gov [DOE]

    The GammaCam system is an effective tool for remotely identifying high gamma radiation in radioactive environments.  Its versatility allows the user to perform preliminary characterization of an...

  13. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    2000-12-26T23:59:59.000Z

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  14. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  15. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, W.J.; Lessing, P.A.

    1998-07-28T23:59:59.000Z

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  16. RAPID TeV GAMMA-RAY FLARING OF BL LACERTAE

    SciTech Connect (OSTI)

    Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States)] [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States)] [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States)] [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland)] [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States)] [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W.; Feng, Q.; Finley, J. P. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)] [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J.; Fortson, L. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)] [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States)] [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany)] [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Finnegan, G., E-mail: qfeng@purdue.edu, E-mail: cui@purdue.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Collaboration: VERITAS Collaboration; and others

    2013-01-10T23:59:59.000Z

    We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 {+-} 0.6) Multiplication-Sign 10{sup -6} photons m{sup -2} s{sup -1}, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 {+-} 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 {+-} 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.

  17. Non-destructive method for determining neutron exposure

    DOE Patents [OSTI]

    Gold, R.; McElroy, W.N.

    1983-11-01T23:59:59.000Z

    A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

  18. Gamma-Ray Bursts, Ultra High Energy Cosmic Rays, and Cosmic Gamma-Ray Background

    E-Print Network [OSTI]

    Tomonori Totani

    1999-04-13T23:59:59.000Z

    We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in TeV range by synchrotron radiation of ultra-high-energy protons (\\sim 10^{20} eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.

  19. EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS

    SciTech Connect (OSTI)

    Kane, M.; Clark, E.; Lascola, R.

    2009-12-16T23:59:59.000Z

    Effects of beta (tritium) and gamma irradiation on the surface electrical conductivity of two types of conducting polymer films are documented to determine their potential use as a sensing and surveillance device for the tritium facility. It was shown that surface conductivity was significantly reduced by irradiation with both gamma and tritium gas. In order to compare the results from the two radiation sources, an approximate dose equivalence was calculated. The materials were also sensitive to small radiation doses (<10{sup 5} rad), showing that there is a measurable response to relatively small total doses of tritium gas. Spectroscopy was also used to confirm the mechanism by which this sensing device would operate in order to calibrate this sensor for potential use. It was determined that one material (polyaniline) was very sensitive to oxidation while the other material (PEDOT-PSS) was not. However, polyaniline provided the best response as a sensing material, and it is suggested that an oxygen-impermeable, radiation-transparent coating be applied to this material for future device prototype fabrication. A great deal of interest has developed in recent years in the area of conducting polymers due to the high levels of conductivity that can be achieved, some comparable to that of metals [Gerard 2002]. Additionally, the desirable physical and chemical properties of a polymer are retained and can be exploited for various applications, including light emitting diodes (LED), anti-static packaging, electronic coatings, and sensors. The electron transfer mechanism is generally accepted as one of electron 'hopping' through delocalized electrons in the conjugated backbone, although other mechanisms have been proposed based on the type of polymer and dopant [Inzelt 2000, Gerard 2002]. The conducting polymer polyaniline (PANi) is of particular interest because there are extensive studies on the modulation of the conductivity by changing either the oxidation state of the main backbone chain, or by protonation of the imine groups [de Acevedo, 1999]. There are several types of radiation sensors commercially available, including ionization chambers, geiger counters, proportional counters, scintillators and solid state detectors. Each type has advantages, although many of these sensors require expensive electronics for signal amplification, are large and bulky, have limited battery life or require expensive materials for fabrication. A radiation sensor constructed of a polymeric material could be flexible, light, and the geometry designed to suit the application. Very simple and inexpensive electronics would be necessary to measure the change in conductivity with exposure to radiation and provide an alarm system when a set change of conductivity occurs in the sensor that corresponds to a predetermined radiation dose having been absorbed by the polymer. The advantages of using a polymeric sensor of this type rather than those currently in use are the flexibility of sensor geometry and relatively low cost. It is anticipated that these sensors can be made small enough for glovebox applications or have the ability to monitor the air tritium levels in places where a traditional monitor cannot be placed. There have been a few studies on the changes in conductivity of polyaniline specifically for radiation detection [de Acevedo, 1999; Lima Pacheco, 2003], but there have been no reports on the effects of tritium (beta radiation) on conducting polymers, such as polyaniline or polythiophene. The direct implementation of conducting polymers as radiation sensor materials has not yet been commercialized due to differing responses with total dose, dose rate, etc. Some have reported a large increase in the surface conductivity with radiation dose while others report a marked decrease in conductive properties; these differing observations may reflect the competing mechanisms of chain scission and cross-linking. However, it is clear that the radiation dose effects on conducting polymers must be fully understood before these materials can be used

  20. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-08-02T23:59:59.000Z

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  1. Gamma Ray Burst and Soft Gamma Repeaters. Spinning, Precessing Gamma Jets

    E-Print Network [OSTI]

    Daniele Fargion

    1999-06-28T23:59:59.000Z

    Gamma Ray Bursts as recent GRB990123 and GRB990510 are observed to occur in cosmic volumes with a corresponding output reaching, for isotropic explosions, energies as large as two solar masses annihilation. These energies are underestimated because of the neglected role of comparable ejected neutrinos bursts. These extreme power cannot be explained with any standard spherically symmetric Fireball model. A too heavy black hole or Star would be unable to coexist with the shortest millisecond time structure of Gamma ray Burst. Beaming of the gamma radiation may overcome the energy puzzle. However any mild explosive beam $(\\Omega > 10^{-2})$ should not solve the jet containment at those disruptive energies. Only extreme beaming $(\\Omega < 10^{-8})$, by a slow decaying, but long-lived precessing jet, it may coexist with characteristic Supernova energies, apparent GRBs output, statistics as well as their connection with older and nearer SGRs relics.

  2. Dynamical instability of collapsing radiating fluid

    SciTech Connect (OSTI)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Azam, M., E-mail: azammath@gmail.com [University of the Punjab, Department of Mathematics (Pakistan)

    2013-06-15T23:59:59.000Z

    We take the collapsing radiative fluid to investigate the dynamical instability with cylindrical symmetry. We match the interior and exterior cylindrical geometries. Dynamical instability is explored at radiative and non-radiative perturbations. We conclude that the dynamical instability of the collapsing cylinder depends on the critical value {gamma} < 1 for both radiative and nonradiative perturbations.

  3. Neutron Detector Gamma Insensitivity Criteria

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Stephens, Daniel L.

    2009-10-21T23:59:59.000Z

    The shortage of 3He has triggered the search for an effective alternative neutron detection technology for radiation portal monitor applications. Any new detection technology must satisfy two basic criteria: 1) it must meet the neutron detection efficiency requirement, and 2) it must be insensitive to gamma ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this document to define this latter criterion.

  4. EFFECTS OF RADIATION ON ESTABLISHED FORENSIC EVIDENCE CONTAINMENT METHODS

    SciTech Connect (OSTI)

    Ferguson, C.; Duff, M.; Clark, E.; Chapman, G.

    2010-11-29T23:59:59.000Z

    The Federal Bureau of Investigation (FBI) Laboratory is currently exploring needs and protocols for the storage of evidentiary items contaminated with radioactive material. While a large body of knowledge on the behavior of storage polymers in radiation fields exists, this knowledge has not been applied to the field of forensics and maintaining evidentiary integrity. The focus of this research was to evaluate the behavior of several traditional evidentiary containment polymers when exposed to significant alpha, beta, gamma, neutron and mixed radiation sources. Doses were designed to simulate exposures possible during storage of materials. Several products were found to be poorly suited for use in this specific application based on standardized mechanical testing results. Remaining products were determined to warrant further investigation for the storage of radiologically contaminated evidence.

  5. Gamma Ray Bursts

    E-Print Network [OSTI]

    Stahl, Bennett

    2014-01-01T23:59:59.000Z

    Olson. “Observations of gamma-ray bursts of cosmic origin. ”E. Lingenfelter. “Gamma-ray bursts. ” Annual Review of652-654. Waxman, Eli. “Gamma-ray-burst afterglow: supporting

  6. Radiation Machines and Radioactive Materials (Iowa)

    Broader source: Energy.gov [DOE]

    These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

  7. Potential radiation damage: Storage tanks for liquid radioactive waste

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1992-08-21T23:59:59.000Z

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides.

  8. RADIATION SAFETY OFFICE Campus Radiation Safety Manual UNIVERSITY OF NEW ORLEANS Previous Revision: May 1999

    E-Print Network [OSTI]

    Li, X. Rong

    SAFETY OFFICER AND RADIATION PROTECTION STAFF The Radiation Safety Officer has the responsibilityRADIATION SAFETY OFFICE Campus Radiation Safety Manual UNIVERSITY OF NEW ORLEANS Previous Revision radiation safety program will be conducted in such a manner that exposure to faculty, staff, students

  9. Transient radiation effects in D.O.I. optical materials: Schott filter glass

    SciTech Connect (OSTI)

    Simmons-Potter, K.

    1998-07-01T23:59:59.000Z

    Department of Energy and Defense Programs systems are becoming increasingly reliant on the use of optical technologies that must perform under a range of ionizing radiation environments. In particular, the radiation response of materials under consideration for applications in direct optical initiation (D.O.I.) schemes must be well characterized. In this report, transient radiation effects observed in Schott filter glass S-7010 are characterized. Under gamma exposure with 2 MeV photons in a 20--30 nsec pulse, the authors observe strong initial induced fluorescence in the red region of the spectrum followed by significant induced absorption over the same spectral region. Peak induced absorption coefficients of 0.113 cm{sup {minus}1} and 0.088 cm{sup {minus}1} were calculated at 800 nm and 660 nm respectively.

  10. Exposure chamber

    DOE Patents [OSTI]

    Moss, Owen R. (Kennewick, WA)

    1980-01-01T23:59:59.000Z

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  11. alpha-radiation construction calibration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant species. Search method: In nature, most alpha radiation exposure is caused by radon progeny. Exposure is particularly high below ground, and is also elevated on plant...

  12. antibody-guided alpha radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant species. Search method: In nature, most alpha radiation exposure is caused by radon progeny. Exposure is particularly high below ground, and is also elevated on plant...

  13. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    SciTech Connect (OSTI)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01T23:59:59.000Z

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  14. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01T23:59:59.000Z

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  15. Determination and Mitigation of Precipitation Effects on Portal Monitor Gamma Background Levels

    E-Print Network [OSTI]

    Revis, Stephen

    2012-07-16T23:59:59.000Z

    The purpose of this project is to establish a correlation between precipitation and background gamma radiation levels at radiation portal monitors (RPM) deployed at various ports worldwide, and to devise a mechanism by which the effects...

  16. Current Trends in Gamma Ray Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-08-18T23:59:59.000Z

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

  17. US/French Joint Research Program regarding the behavior of polymer base materials subjected to beta radiation. Volume 1. Phase-1 normalization results

    SciTech Connect (OSTI)

    Wyant, F.J.; Buckalew, W.H.; Chenion, J.; Carlin, F.; Gaussens, G.; Le Tutour, P.; Le Meur, M.

    1986-06-01T23:59:59.000Z

    As part of the ongoing multi-year joint NRC/CEA international cooperative test program to investigate the dose-damage equivalence of gamma and beta radiation on polymer base materials, dosimetry and ethylene-propylene rubber (EPR) specimens were exchanged, irradiated, and evaluated for property changes at research facilities in the US (Sandia National Laboratories) and France (Compagnie ORIS Industrie). The purpose of this Phase-1 test series was to normalize and cross-correlate the results obtained by one research center to the other, in terms of exposure (1.0 MeV accelerated electrons and /sup 60/Co gammas) and postirradiation testing (ultimate elongation and tensile strength, hardness, and density) techniques. The dosimetry and material specimen results indicate good agreement between the two countries regarding the exposure conditions and postirradiation evaluation techniques employed.

  18. DOE Occupational Radiation Exposure Annual Report 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    comments are important to us to make this report meet your needs. Frank E. Tooper Deputy Assistant Secretary (Acting) Office of Corporate Performance Assessment iv DOE...

  19. DOE 2013 Occupational Radiation Exposure Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGY ScienceDNSComments by HoweT

  20. Radiation Exposure Monitoring Systems Data Submittal Notification |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo.Frequency |Department of Energy

  1. Occupational Radiation Exposure | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T O B E REnergy

  2. 2013 DOE Occupational Radiation Exposure Report Appendices

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2Department of EnergyofThe 2013Labor

  3. DOE Occupational Radiation Exposure, 1998 Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator | Department of5-26,BY 2017

  4. ORISE: DOE's Radiation Exposure Monitoring System (REMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisis and Risk Communication Crisis

  5. 2007 Annual DOE Occupational Radiation Exposure Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OFDecember| Department ofResearch: This

  6. 2007 DOE Occupational Radiation Exposure Report Appendices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OFDecember| Department ofResearch:

  7. Radiation Exposure Monitoring Systems Data Submittal Notification |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small Team OversightDepartmentof EnergyDepartment of Energy

  8. RADIATION EFFECTS ON EPOXY/CARBON FIBER COMPOSITE

    SciTech Connect (OSTI)

    Hoffman, E; Eric Skidmore, E

    2008-12-12T23:59:59.000Z

    The Department of Energy Savannah River Site vitrifies nuclear waste incident to defense programs through its Defense Waste Processing Facility (DWPF). The piping in the DWPF seal pot jumper configuration must withstand the stresses during an unlikely but potential deflagration event, and maintain its safety function for a 20-year service life. Carbon fiber-reinforced epoxy composites (CFR) were proposed for protection and reinforcement of piping during such an event. The proposed CFR materials have been ASME-approved (Section XI, Code Case N-589-1) for post-construction maintenance and is DOT-compliant per 49CFR 192 and 195. The proposed carbon fiber/epoxy composite reinforcement system was originally developed for pipeline rehabilitation and post-construction maintenance in petrochemical, refineries, DOT applications and other industries. The effects of ionizing radiation on polymers and organic materials have been studied for many years. The majority of available data are based on traditional exposures to gamma irradiation at high dose rates ({approx}10,000 Gy/hr) allowing high total dose within reasonable test periods and general comparison of different materials exposed at such conditions. However, studies in recent years have shown that degradation of many polymers are sensitive to dose rate, with more severe degradation often observed at similar or even lower total doses when exposed to lower dose rates. This behavior has been primarily attributed to diffusion-limited oxidation which is minimized during very high dose rate exposures. Most test standards for accelerated aging and nuclear qualification of components acknowledge these limitations. The results of testing to determine the radiation resistance and microstructural effects of gamma irradiation exposure on a bisphenol-A based epoxy matrix composite reinforced with carbon fibers are presented. This work provides a foundation for a more extensive evaluation of dose rate effects on advanced epoxy reinforced composites.

  9. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect (OSTI)

    Scott, Bobby, R., Ph.D.

    2003-06-27T23:59:59.000Z

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low-LET radiation). Such phantom risks also may arise from risk assessments conducted for com

  10. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    SciTech Connect (OSTI)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01T23:59:59.000Z

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  11. About radiative kaon decay \\k+ \\to ?+\\pi0?

    E-Print Network [OSTI]

    V. P. Efrosinin

    2006-06-20T23:59:59.000Z

    With usage of the Low theorem the general expression for amplitude of radiative kaon decay \\k+ \\to \\pi+\\pi0\\gamma is determined.

  12. apm background radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extragalactic Background Radiation Astrophysics (arXiv) Summary: Attenuation of high--energy gamma rays by pair--production with UV, optical and IR background photons provides a...

  13. Time encoded radiation imaging

    DOE Patents [OSTI]

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21T23:59:59.000Z

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  14. NMIS With Gamma Spectrometry for Attributes of Pu and HEU, Explosives and Chemical Agents

    SciTech Connect (OSTI)

    Mihalczo, J. T.; Mattingly, J. K.; Mullens, J. A.; Neal, J. S.

    2002-05-10T23:59:59.000Z

    The concept for the system described herein is an active/passive Nuclear Materials Identification System{sup 2} (NMIS) that incorporates gamma ray spectrometry{sup 3}. This incorporation of gamma ray spectrometry would add existing capability into this system. This Multiple Attribute System can determine a wide variety of attributes for Pu and highly enriched uranium (HEU) of which a selected subset could be chosen. This system can be built using commercial off the shelf (COTS) components. NMIS systems are at All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and Russian Federal Nuclear Center Institute of Technical Physics, (VNIITF) and measurements with Pu have been performed at VNIIEF and analyzed successfully for mass and thickness of Pu. NMIS systems are being used successfully for HEU at the Y-12 National Security Complex. The use of active gamma ray spectrometry for high explosive HE and chemical agent detection is a well known activation analysis technique, and it is incorporated here. This report describes the system, explains the attribute determination methods for fissile materials, discusses technical issues to be resolved, discusses additional development needs, presents a schedule for building from COTS components, and assembly with existing components, and discusses implementation issues such as lack of need for facility modification and low radiation exposure.

  15. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27T23:59:59.000Z

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  16. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  17. Dose profiles through the dermis for on and off-skin hot particle exposures

    E-Print Network [OSTI]

    Shaw, Kimberly Rochelle

    1993-01-01T23:59:59.000Z

    compared to gamma-rays. Gamma-rays are monoenergetic photons with energies ranging from a few keV to several MeV. Unlike beta particles, gamma-rays are indirectly ionizing radiation. Because a gamma-ray is uncharged, it undergoes no direct ionization... detailed data on dose profiles This thesis follows the format of Radiation Protection Dosimetry. through the dermis from fuel fragments or from mixed beta-gamma activation products. The effects of beta-emitting hot particles suspended above skin without...

  18. Afterglows as Diagnostics of Gamma Ray Burst Beaming

    E-Print Network [OSTI]

    James E. Rhoads

    1997-12-03T23:59:59.000Z

    If gamma ray bursts are highly collimated, radiating into only a small fraction of the sky, the energy requirements of each event may be reduced by several (up to 4 - 6) orders of magnitude, and the event rate increased correspondingly. The large Lorentz factors (Gamma > 100) inferred from GRB spectra imply relativistic beaming of the gamma rays into an angle 1/Gamma. We are at present ignorant of whether there are ejecta outside this narrow cone. Afterglows allow empirical tests of whether GRBs are well-collimated jets or spherical fireballs. The bulk Lorentz factor decreases and radiation is beamed into an ever increasing solid angle as the burst remnant expands. It follows that if gamma ray bursts are highly collimated, many more optical and radio transients should be observed without associated gamma rays than with them. In addition, a burst whose ejecta are beamed into angle zeta undergoes a qualitative change in evolution when Gamma < 1/zeta: Before this, Gamma ~ r^{-3/2}, while afterwards, Gamma decays exponentially with r. This change results in a potentially observable break in the afterglow light curve. Successful application of either test would eliminate the largest remaining uncertainty in the energy requirements and space density of gamma ray bursters.

  19. Ultrahigh Energy Cosmic Rays and Prompt TeV Gamma Rays from Gamma Ray Bursts

    E-Print Network [OSTI]

    Pijushpani Bhattacharjee; Nayantara Gupta

    2003-05-12T23:59:59.000Z

    Gamma Ray Bursts (GRBs) have been proposed as one {\\it possible} class of sources of the Ultrahigh Energy Cosmic Ray (UHECR) events observed up to energies $\\gsim10^{20}\\ev$. The synchrotron radiation of the highest energy protons accelerated within the GRB source should produce gamma rays up to TeV energies. Here we briefly discuss the implications on the energetics of the GRB from the point of view of the detectability of the prompt TeV gamma rays of proton-synchrotron origin in GRBs in the up-coming ICECUBE muon detector in the south pole.

  20. Did a gamma-ray burst initiate the late Ordovician mass extinction?

    E-Print Network [OSTI]

    Jackman, Charles H.

    Did a gamma-ray burst initiate the late Ordovician mass extinction? A.L. Melott1 , B.S. Lieberman2 Abstract: Gamma-ray bursts (GRBs) produce a flux of radiation detectable across the observable Universe words: Population and evolution, mass extinction, gamma-ray burst, Ordovician, ultraviolet ozone

  1. New Easy-to-Use Medical Field Guide for Radiation Emergencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation dose Delayed effects of radiation exposure, and Psychological considerations "Health care providers are expected to treat patients injured in a multitude of possible...

  2. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, C.J.; Ziock, K.P.

    1992-06-02T23:59:59.000Z

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  3. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  4. Effect of radiation on silicon and borosilicate glass

    E-Print Network [OSTI]

    Allred, Clark L. (Clark Lane), 1972-

    2003-01-01T23:59:59.000Z

    A study was made that is logically divided into two parts, both involving radiation damage effects. The first is a study of the effects of neutron and gamma radiation on the dimensions of two borosilicate glasses, Pyrex® ...

  5. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    SciTech Connect (OSTI)

    David A. Parks; Bernhard R. Tittmann

    2014-07-01T23:59:59.000Z

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

  6. The photonuclear neutron and gamma-ray backgrounds in the fast ignition experiment

    SciTech Connect (OSTI)

    Arikawa, Y.; Nagai, T.; Hosoda, H.; Abe, Y.; Kojima, S.; Fujioka, S.; Sarukura, N.; Nakai, M.; Shiraga, H.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka Suita (Japan); Ozaki, T. [National Institution Fusion Science, 322-6 Oroshi-cho, Toki-city, Gifu (Japan)

    2012-10-15T23:59:59.000Z

    In the fast-ignition scheme, very hard x-rays (hereinafter referred to as {gamma}-rays) are generated by Bremsstrahlung radiation from fast electrons. Significant backgrounds were observed around the deuterium-deuterium fusion neutron signals in the experiment in 2010. In this paper the backgrounds were studied in detail, based on Monte Carlo simulations, and they were confirmed to be {gamma}-rays from the target, scattered {gamma}-rays from the experimental bay walls ({gamma}{sup Prime }-rays), and neutrons generated by ({gamma}, n) reactions in either the target vacuum chamber or the diagnostic instruments ({gamma}-n neutrons).

  7. Attenuation of Radiation by Dr. James E. Parks

    E-Print Network [OSTI]

    Dai, Pengcheng

    charged particles interact with materials, (3) to study the 3 primary ways that gamma rays interact attenuation coefficients for beta particles and gamma rays. Theory There are two primary types of radiation that originate from the nucleus of the atom, and these are charged particles and gamma rays. Charged particles

  8. Electron-Positron Radiative Annihilation : Timelike Virtual Compton Scattering

    E-Print Network [OSTI]

    Asmita Mukherjee

    2010-10-01T23:59:59.000Z

    We report on a recent work proposing measurements of the deeply virtual Compton amplitude (DVCS) $\\gamma^* \\to h \\bar h \\gamma$ in the timelike kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process $e^+ e^- \\to h \\bar h \\gamma$.

  9. Gamma ray detector shield

    DOE Patents [OSTI]

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26T23:59:59.000Z

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  10. Evolution of the radiation processing industry

    SciTech Connect (OSTI)

    Cleland, Marshall R. [IBA Industrial, Inc., 151 Heartland Boulevard, Edgewood, NY 11717 (United States)

    2013-04-19T23:59:59.000Z

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  11. SAR Assessment and Analysis of Cumulative Body Exposure to Multi Transmitters from a Mobile Phone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    against possible negative health effects of radiofrequency electromagnetic radiation. Basic restriction evaluated ones from each transmitter separately. Index Terms -- SAR, Multiple exposure, Radiofrequency I Commission on Non Ionizing Radiation Protection (ICNIRP) [1] and the Institute of Electronics and Electrical

  12. Gamma-ray burst interaction with dense interstellar medium

    E-Print Network [OSTI]

    Maxim Barkov; Gennady Bisnovatyi-Kogan

    2004-10-07T23:59:59.000Z

    Interaction of cosmological gamma ray burst radiation with the dense interstellar medium of host galaxy is considered. Gas dynamical motion of interstellar medium driven by gamma ray burst is investigated in 2D approximation for different initial density distributions of host galaxy matter and different total energy of gamma ray burst. The maximum velocity of motion of interstellar medium is $1.8\\cdot10^4$ km/s. Light curves of gamma ray burst afterglow are calculated for set of non homogeneous density, distribution gamma ray burst total energy, and different viewing angles. Spectra of gamma ray burst afterglow are modeled taking into account conversion of hard photons (soft X-ray, hard UV) to soft UV and optics photons.

  13. Energetics of Gamma Ray Bursts

    E-Print Network [OSTI]

    Raul Jimenez; David Band; Tsvi Piran

    2001-03-16T23:59:59.000Z

    We determine the distribution of total energy emitted by gamma-ray bursts for bursts with fluences and distance information. Our core sample consists of eight bursts with BATSE spectra and spectroscopic redshifts. We extend this sample by adding four bursts with BATSE spectra and host galaxy R magnitudes. From these R magnitudes we calculate a redshift probability distribution; this method requires a model of the host galaxy population. From a sample of ten bursts with both spectroscopic redshifts and host galaxy R magnitudes (some do not have BATSE spectra) we find that the burst rate is proportional to the galaxy luminosity at the epoch of the burst. Assuming that the total energy emitted has a log-normal distribution, we find that the average emitted energy (assumed to be radiated isotropically) is $gamma iso} > = 1.3^{+1.2}_{-1.0} \\times 10^{53}$ ergs (for H$_0$ = 65 km s$^{-1}$ Mpc$^{-1}$, $\\Omega_m=0.3$ and $\\Omega_\\Lambda=0.7$); the distribution has a logarithmic width of $\\sigma_\\gamma=1.7^{+0.7}_{-0.3}$. The corresponding distribution of X-ray afterglow energy (for seven bursts) has $ = 4.0^{+1.6}_{-1.8} \\times 10^{51}$ergs and $\\sigma_X = 1.3^{+0.4}_{-0.3}$. For completeness, we also provide spectral fits for all bursts with BATSE spectra for which there were afterglow searches.

  14. Radiative Penguin Decays at the B Factories

    SciTech Connect (OSTI)

    Cuhadar-Donszelmann, T.; /British Columbia U.

    2007-03-05T23:59:59.000Z

    Recent results from the B-Factories on radiative decays such as b {yields} s(d){gamma}, b {yields} s{ell}{ell} and leptonic decay B{sup 0} {yields} {tau}{sup +}{tau}{sup -} are reviewed.

  15. Gamma-Ray Bursts: Jets and Energetics

    E-Print Network [OSTI]

    D. A. Frail

    2003-11-12T23:59:59.000Z

    The relativistic outflows from gamma-ray bursts are now thought to be narrowly collimated into jets. After correcting for this jet geometry there is a remarkable constancy of both the energy radiated by the burst and the kinetic energy carried by the outflow. Gamma-ray bursts are still the most luminous explosions in the Universe, but they release energies that are comparable to supernovae. The diversity of cosmic explosions appears to be governed by the fraction of energy that is coupled to ultra-relativistic ejecta.

  16. In-vacuum exposure shutter

    DOE Patents [OSTI]

    Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.

    2004-06-01T23:59:59.000Z

    An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.

  17. Results of mobile gamma scanning activities in St. Louis, Missouri

    SciTech Connect (OSTI)

    Rodriguez, R E; Witt, D A; Cottrell, W D; Carrier, R F

    1991-06-01T23:59:59.000Z

    From 1942 through approximately 1966, the Mallinckrodt Chemical Works operated four plants in St. Louis, Missouri, for the Manhattan Engineer District and the Atomic Energy Commission. A variety of production processes using uranium- and radium-bearing ore materials were performed at the plants. It is the policy of the DOE to verify that radiological conditions at such sites or facilities comply with current DOE guidelines. Guidelines for release and use of such sites have become more stringent as research has provided more information since previous cleanups. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established as part of that effort to confirm the closeout status of facilities under contract to agencies preceding DOE during early nuclear energy development. Under the FUSRAP program, the Mallinckrodt properties have been previously investigated to determine the extent of on-site radiological contamination. At the request of DOE, Oak Ridge National Laboratory (ORNL) conducted a survey in May 1990, of public roadways and suspected haul routes between the Mallinckrodt plant and storage sites in St. Louis to ensure that no residual radioactive materials were conveyed off-site. A mobile gamma scanning van with an on-board computer system was used to identify possible anomalies. Suspect areas are those displaying measurements deviating from gamma exposure rates identified as typical for radiologically unenhanced areas in the vicinity of the areas of interest. The instrumentation highlighted three anomaly locations each of which measured less than 1m{sup 2} in size. None of the slightly elevated radiation levels originated from material associated with former AEC-related processing operations in the area. The anomalies resulted from elevated concentrations of radionuclides present in phosphate fertilizers, increased thorium in road-base gravel, and emanations from the radioactive storage site near the Latty Avenue airport. 9 refs., 3 figs.

  18. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01T23:59:59.000Z

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  19. Review of medical findings in a Marshallese population twenty-six years after accidental exposure to radioactive fallout

    SciTech Connect (OSTI)

    Conard, R.A.; Paglia, D.E.; Larsen, P.R.

    1980-01-01T23:59:59.000Z

    In March 1954, radioactive debris from a thermonuclear weapon test at Bikini Atoll deviated from predicted trajectories and contaminated several atolls in the northern Marshall Islands. As a result, 239 native inhabitants of these islands along with 28 American servicemen and 23 Japanese fishermen received variably severe exposures to diverse ionizing radiations. Fallout material consisted largely of mixed fission products with small amounts of neutron-induced radionuclides and minimal amounts of fissionable elements, producing a complex spectrum of electromagnetic and particulate radiation. Individuals were exposed to deeply penetrating, whole-body gamma irradiation, to internal radiation emitters assimilated either by inhalation or by ingestion of contaminated water and food, and to direct radiation from material accumulating on body surfaces. That accident initiated a cascade of events, medical, social and political, which continue in varying forms to this day. Most of these have been discussed in the open medical literature and in periodic reports issued by the medical team headquartered at Brookhaven National Laboratory. This report attempts to summarize some of the principal findings of medical significnce that have been observed during the subsequent 26 years with particular emphasis on the last six years.

  20. TESLA-FEL 2007-02 Radiation dosimetry in FLASH Tunnel using

    E-Print Network [OSTI]

    the experimental methods and the results of neutron and gamma dosimetry/spectrometry performed with various types to characterise the radiation field in the FLASH environment. We have evaluated the neutron and gamma energy

  1. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1992-01-01T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  2. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  3. acute radiation syndrones: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apoptosis MIT - DSpace Summary: Acute exposure to ionizing radiation can cause lethal damage to the gastrointestinal (GI) tract, a condition called the GI syndrome. Whether the...

  4. arrbod acute radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apoptosis MIT - DSpace Summary: Acute exposure to ionizing radiation can cause lethal damage to the gastrointestinal (GI) tract, a condition called the GI syndrome. Whether the...

  5. Gamma Ray Bursts Sudden, intense flashes of gamma rays

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    Gamma Ray Bursts #12;The Case Sudden, intense flashes of gamma rays come from nowhere and disappear with out a trace. Incredibly powerful: A single gamma ray burst is hundreds of times brighter a supernova #12;Who Vela (1960's) Looking for arms testing, found gamma ray bursts Compton Gamma Ray Observatory

  6. Non-destructive method for determining neutron exposure and constituent concentrations of a body

    DOE Patents [OSTI]

    Gold, R.; McElroy, W.N.

    1984-02-22T23:59:59.000Z

    A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentrations at regions of interest within the object.

  7. Development and testing of radiation and electromagnetic pulse-hardened silicon carbide-based electronics. Quarterly report, 1 Dec 90-28 Feb 91

    SciTech Connect (OSTI)

    Edmond, J.A.; Palmour, J.W.

    1991-04-30T23:59:59.000Z

    There were three primary objectives for this reporting period. The first was to electrically characterize junction diodes as a function of temperature. This included both current-voltage (I-V) and capacitance-voltage (C-V) measurements. The second was to fabricate low (about 125 V) and medium (about 450 V) voltage p-n junction rectifiers for neutron and gamma exposure tests. The third objective was to fabricate JFET devices with reduced gate and drain leakage currents than those discussed in the previous report and to package these devices in preparation for radiation testing.

  8. Higgs boson decay to mu mubar gamma

    E-Print Network [OSTI]

    Ali Abbasabadi; Wayne W. Repko

    2000-04-17T23:59:59.000Z

    The Higgs boson decay, H -> mu mubar gamma, is studied in the Standard Model at the tree and one-loop levels. It is shown that for Higgs boson masses above 110 GeV, the contribution to the radiative width from the one-loop level exceeds the contribution from the tree level, and for Higgs boson masses above 140 GeV, it even exceeds the contribution from the tree level decay H -> mu mubar. We also show that the contributions to the radiative decay width from the interference terms between the tree and one-loop diagrams are negligible.

  9. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    SciTech Connect (OSTI)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01T23:59:59.000Z

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  10. Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs

    E-Print Network [OSTI]

    Irene Tamborra; Shin'ichiro Ando

    2015-04-01T23:59:59.000Z

    Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that the GRBs could contribute up to a few percents to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin. The high-luminosity component gives the dominant contribution to the diffuse neutrino emission, while the fluxes from both the low-luminosity and the short-duration GRBs are significantly smaller. Our findings confirm the most-recent IceCube results on the GRB searches and suggest that larger exposure is mandatory to detect high-energy neutrinos from GRBs in the near future.

  11. The ionizing radiation environment in space and its effects

    SciTech Connect (OSTI)

    Adams, Jim; Falconer, David; Fry, Dan [Center for Space Plasma and Aeronomic Research (CSPAR), UA Huntsville (United States); Space Radiation Analysis Group, NASA Johnson Space Center (United States)

    2012-11-20T23:59:59.000Z

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  12. Gamma decay of unbound states following neutron capture

    SciTech Connect (OSTI)

    Raman, S.

    1982-01-01T23:59:59.000Z

    Neutron capture ..gamma..-ray spectroscopy is a powerful technique to study the ..gamma..-decay of unbound levels just above the neutron separation energy. It is generally believed that the (n,..gamma..) reaction proceeds by way of a compound nucleus reaction of great complexity; and, therefore, the capture ..gamma..-ray spectrum should be describable in terms of statistical laws. However, measurements have shown that effects are present due to single-particle motions and due to giant resonances. The study of (n,..gamma..) spectra averaged over as many resonances as possible provides one of the best experimental means of directly obtaining reliable values for radiative transition probabilities from highly excited nuclear states. In very select cases, unbound levels which are populated in allowed ..beta.. decay can also be observed as neutron resonances. These ideas are illustrated with examples of recent data.

  13. E-Print Network 3.0 - annihilation radiation telescope Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collection: Physics 3 MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Summary: Gamma ray bursts Cosmology Diffuse extragalactic radiation fields via cutoff in AGN spectra and...

  14. Optical gamma thermometer

    DOE Patents [OSTI]

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06T23:59:59.000Z

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  15. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16T23:59:59.000Z

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  16. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  17. State background-radiation levels: results of measurements taken during 1975-1979

    SciTech Connect (OSTI)

    Myrick, T.E.; Berven, B.A.; Haywood, F.F.

    1981-11-01T23:59:59.000Z

    Background radiation levels across the United States have been measured by the Off-Site Pollutant Measurements Group of the Health and Safety Research Division at Oak Ridge National Laboratory (ORNL). These measurements have been conducted as part of the ORNL program of radiological surveillance at inactive uranium mills and sites formerly utilized during Manhattan Engineer District and early Atomic Energy Commission projects. The measurements included determination of /sup 226/Ra, /sup 232/Th, and /sup 238/U concentrations in surface soil samples and measurement of external gamma-ray exposure rates at 1 m above the ground surface at the location of soil sampling. This information is being utilized for comparative purposes to determine the extent of contamination present at the survey sites and surrounding off-site areas. The sampling program to date has provided background information at 356 locations in 33 states. External gamma-ray exposure rates were found to range from less than 1 to 34 ..mu..R/h, with an US average of 8.5 ..mu..R/h. The nationwide average concentrations of /sup 226/Ra, /sup 232/Th, and /sup 238/U in surface soil were determined to be 1.1, 0.98, and 1.0 pCi/g, respectively.

  18. A fast algorithm for gamma evaluation in 3D

    SciTech Connect (OSTI)

    Wendling, Markus; Zijp, Lambert J.; McDermott, Leah N.; Smit, Ewoud J.; Sonke, Jan-Jakob; Mijnheer, Ben J.; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2007-05-15T23:59:59.000Z

    The {gamma}-evaluation method is a tool by which dose distributions can be compared in a quantitative manner combining dose-difference and distance-to-agreement criteria. Since its introduction, the {gamma} evaluation has been used in many studies and is on the verge of becoming the preferred dose distribution comparison method, particularly for intensity-modulated radiation therapy (IMRT) verification. One major disadvantage, however, is its long computation time, which especially applies to the comparison of three-dimensional (3D) dose distributions. We present a fast algorithm for a full 3D {gamma} evaluation at high resolution. Both the reference and evaluated dose distributions are first resampled on the same grid. For each point of the reference dose distribution, the algorithm searches for the best point of agreement according to the {gamma} method in the evaluated dose distribution, which can be done at a subvoxel resolution. Speed, computer memory efficiency, and high spatial resolution are achieved by searching around each reference point with increasing distance in a sphere, which has a radius of a chosen maximum search distance and is interpolated 'on-the-fly' at a chosen sample step size. The smaller the sample step size and the larger the differences between the dose distributions, the longer the {gamma} evaluation takes. With decreasing sample step size, statistical measures of the 3D {gamma} distribution converge. Two clinical examples were investigated using 3% of the prescribed dose as dose-difference and 0.3 cm as distance-to-agreement criteria. For 0.2 cm grid spacing, the change in {gamma} indices was negligible below a sample step size of 0.02 cm. Comparing the full 3D {gamma} evaluation and slice-by-slice 2D {gamma} evaluations ('2.5D') for these clinical examples, the {gamma} indices improved by searching in full 3D space, with the average {gamma} index decreasing by at least 8%.

  19. Did a gamma-ray burst initiate the late Ordovician mass extinction?

    E-Print Network [OSTI]

    Melott, Adrian L.; Lieberman, Bruce S.; Laird, C. M.; Martin, Larry D.; Medvedev, Mikhail V.; Thomas, B. C.; Cannizzo, J. K.; Gehrels, N.; Jackman, C. H.

    2004-01-01T23:59:59.000Z

    Gamma-ray bursts (GRBs) produce a flux of radiation detectable across the observable Universe. A GRB within our own galaxy could do considerable damage to the Earth's biosphere; rate estimates suggest that a dangerously near GRB should occur...

  20. Soft gamma repeaters Kevin Hurley *

    E-Print Network [OSTI]

    California at Berkeley, University of

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331 1. Introduction The soft gamma repeaters (SGRs) are sporadic sources of bursts of X- and gamma-rays), and a rather soft spectrum compared to those of cosmic gamma-ray bursts; a rough description of the spectrumReview Soft gamma repeaters Kevin Hurley * University of California, Berkeley, Space Sciences

  1. Radiation-induced Genomic Instability and Radiation Sensitivity

    SciTech Connect (OSTI)

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19T23:59:59.000Z

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  2. NEUTRON AND GAMMA RAY DETECTION FOR BORDER SECURITY APPLICATIONS

    SciTech Connect (OSTI)

    Kouzes, Richard T.

    2010-05-21T23:59:59.000Z

    Countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments in the U.S. and in a number of other countries by governments and international organizations. Most deployed radiation portal monitor systems are based on plastic scintillator for gamma-ray detection and 3He tubes for neutron detection. The approach to this homeland security application, and lessons learned, are discussed.

  3. Compton Electrons and Electromagnetic Pulse in Supernovae and Gamma-Ray Bursts

    E-Print Network [OSTI]

    J. I. Katz

    1999-08-19T23:59:59.000Z

    When gamma-rays emerge from a central source they may undergo Compton scattering in surrounding matter. The resulting Compton-scattered electrons radiate. Coherent radiation by such Compton electrons follows nuclear explosions above the Earth's atmosphere. Particle acceleration in instabilities produced by Compton electron currents may explain the radio emission by SN1998bw. Bounds on coherent radiation are suggested for supernovae and gamma-ray bursts; these bounds are very high, but it is unknown if coherent radiation occurs in these objects.

  4. Gamma-Ray Bursts

    E-Print Network [OSTI]

    P. Meszaros

    2006-05-30T23:59:59.000Z

    Gamma-ray bursts are the most luminous explosions in the Universe, and their origin and mechanism are the focus of intense research and debate. More than three decades after their discovery, and after pioneering breakthroughs from space and ground experiments, their study is entering a new phase with the recently launched Swift satellite. The interplay between these observations and theoretical models of the prompt gamma ray burst and its afterglow is reviewed.

  5. Hard x-ray or gamma ray laser by a dense electron beam

    SciTech Connect (OSTI)

    Son, S. [18 Caleb Lane, Princeton, New Jersey 08540 (United States); Joon Moon, Sung [8 Benjamin Rush Ln., Princeton, New Jersey 08540 (United States)

    2012-06-15T23:59:59.000Z

    A dense electron beam propagating through a laser undulator can radiate a coherent x-ray or gamma ray. This lasing scheme is studied with the Landau damping theory. The analysis suggests that, with currently available physical parameters, coherent gamma rays of up to 50 keV can be generated. The electron quantum diffraction suppresses the free electron laser action, which limits the maximum radiation.

  6. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.; Zaider, M.

    1993-05-01T23:59:59.000Z

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  7. Gamma-Ray Pulsars: Models and Predictions

    E-Print Network [OSTI]

    Alice K. Harding

    2000-12-12T23:59:59.000Z

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  8. Effects of temperature and radiation on the nuclear waste glass product consistency leach test

    SciTech Connect (OSTI)

    Crawford, C.L.; Bibler, N.E.

    1993-01-01T23:59:59.000Z

    Previous leach studies carried out with monolithic glass samples have shown that glass dissolution rates increase with increasing temperature and may or may not increase on exposure to external gamma radiolysis. In this study we have investigated the effects of temperature (70--1200[degrees]C) and radiation on the dissolution of simulated radioactive waste glasses using the Product Consistency Test (PCT). The PCT is a seven day, crushed glass leach test in deionized water that is carried out at 9OO[degrees]C. To date our results indicate no significant effect of external Co--60 gamma radiation when testing various simulated waste glasses at 90[degrees]C in a wellinsulated compartment within a Gammacell 220 irradiation unit. The temperature dependence for glass dissolution clearly exhibits Arrheniustype behavior for two of the three glasses tested. For the third glass the dissolution decreases at the higher temperatures, probably due to saturation effects. Actual radioactive waste glasses will be investigated later as part of this study.

  9. Effects of temperature and radiation on the nuclear waste glass product consistency leach test

    SciTech Connect (OSTI)

    Crawford, C.L.; Bibler, N.E.

    1993-04-01T23:59:59.000Z

    Previous leach studies carried out with monolithic glass samples have shown that glass dissolution rates increase with increasing temperature and may or may not increase on exposure to external gamma radiolysis. In this study we have investigated the effects of temperature (70--1200{degrees}C) and radiation on the dissolution of simulated radioactive waste glasses using the Product Consistency Test (PCT). The PCT is a seven day, crushed glass leach test in deionized water that is carried out at 9OO{degrees}C. To date our results indicate no significant effect of external Co--60 gamma radiation when testing various simulated waste glasses at 90{degrees}C in a wellinsulated compartment within a Gammacell 220 irradiation unit. The temperature dependence for glass dissolution clearly exhibits Arrheniustype behavior for two of the three glasses tested. For the third glass the dissolution decreases at the higher temperatures, probably due to saturation effects. Actual radioactive waste glasses will be investigated later as part of this study.

  10. Large-Scale Anisotropy of EGRET Gamma Ray Sources

    E-Print Network [OSTI]

    Luis Anchordoqui; Thomas McCauley; Thomas Paul; Olaf Reimer; Diego F. Torres

    2005-06-24T23:59:59.000Z

    In the course of its operation, the EGRET experiment detected high-energy gamma ray sources at energies above 100 MeV over the whole sky. In this communication, we search for large-scale anisotropy patterns among the catalogued EGRET sources using an expansion in spherical harmonics, accounting for EGRET's highly non-uniform exposure. We find significant excess in the quadrupole and octopole moments. This is consistent with the hypothesis that, in addition to the galactic plane, a second mid-latitude (5^{\\circ} < |b| < 30^{\\circ}) population, perhaps associated with the Gould belt, contributes to the gamma ray flux above 100 MeV.

  11. Neutron-driven gamma-ray laser

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  12. Gamma irradiation in a saturated tuff environment

    SciTech Connect (OSTI)

    Bates, J.K.; Oversby, V.M.

    1984-12-31T23:59:59.000Z

    The influence of gamma irradiation on the reaction of actinide doped SRL 165 and PNL 76-68 glasses in a saturated tuff environment has been studied in a series of tests lasting up to 56 days. The reaction, and subsequent actinide release, of both glasses depends on the dynamic interaction between radiolysis effects which cause the solution pH to become more acidic and glass reaction which drives the pH more basic. The use of large gamma irradiation dose rates to accelerate reactions that would occur in an actual repository radiation field may affect this dynamic balance by unduly influencing the mechanism of the glass-water reaction. Comparisons are made between the present results and data obtained by reacting the same or similar glasses using MCC-1 and NNWSI rock cup procedures. 11 references, 3 figures.

  13. Nano {gamma}'/{gamma}'' composite precipitates in Alloy 718

    SciTech Connect (OSTI)

    Phillips, P. J. [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); McAllister, D.; Gao, Y.; Lv, D.; Williams, R. E. A.; Wang, Y.; Mills, M. J. [Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Peterson, B. [Honeywell Aerospace, Phoenix, Arizona 85034 (United States)

    2012-05-21T23:59:59.000Z

    Nanoscale composite precipitates of Alloy 718 have been investigated with both high-resolution scanning transmission electron microscopy and phase field modeling. Chemical analysis via energy-dispersive x-ray spectroscopy allowed for the differentiation of {gamma}' and {gamma}'' particles, which is not otherwise possible through traditional Z-contrast methods. Phase field modeling was applied to determine the stress distribution and elastic interaction around and between the particles, respectively, and it was determined that a composite particle (of both {gamma}' and {gamma}'') has an elastic energy that is significantly lower than, for example, single {gamma}' and {gamma}'' precipitates which are non-interacting.

  14. Neutron and gamma irradiation damage to organic materials.

    SciTech Connect (OSTI)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01T23:59:59.000Z

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  15. Natural radiation environment III. [Lead Abstract

    SciTech Connect (OSTI)

    Gesell, T.F.; Lowder, W.M. (eds.)

    1980-01-01T23:59:59.000Z

    Separate abstracts were prepared for the 52 research papers presented at this symposium in April 1978. The major topics in this volume deal with penetrating radiation measurements, radiation surveys and population exposure, radioactivity in the indoor environment, and technologically enhanced natural radioactivity. (KRM)

  16. Possibility to Determine the Astrophysical S-Factor for the Be-7(p,gamma)b-8 Radiative-Capture from Analysis of the Be-7(he-3,d)b-8 Reaction

    E-Print Network [OSTI]

    Mukhamedzhanov, AM; Tribble, Robert E.; imofeyuk, N. K.

    1995-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 51, NUMBER 6 JUNE 1995 Possibility to determine the astrophysical S factor for the Be(p, p)sB radiative capture from analysis of the Be(sHe, d)sB reaction A. M. Mukhamedzhanov and R. E. Tribble Cyclotron Institute, Texas...) of the internal bound-state wave functions of B and Be, IsB'rB, (r) = ($?~~PsB), where r is the relative coordinate between the proton and the center of mass of Be, is approximated by S,&,B &P?, ?(r) . Here S887B is the spectroscopic factor of the configura...

  17. SAPPHiRE: a Small Gamma-Gamma Higgs Factory

    E-Print Network [OSTI]

    S. A. Bogacz; J. Ellis; L. Lusito; D. Schulte; T. Takahashi; M. Velasco; M. Zanetti; F. Zimmermann

    2012-08-14T23:59:59.000Z

    A new particle with mass ~ 125 GeV that resembles the Higgs boson has recently been discovered by ATLAS and CMS. We propose a low-energy gamma-gamma collider as a cost- and time-efficient option for a Higgs factory capable of studying this particle in detail. In the past, this option has been suggested as a possible application of the CLIC two-beam accelerator technology (the CLIC Higgs Experiment, CLICHE) or as an option for the ILC. Here we propose a design based on a pair of \\sim 10 GeV recirculating Linacs (Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons, SAPPHiRE) similar in design to those proposed for the LHeC. We present parameters for the e- beams and sketch a laser backscattering system capable of producing a gamma-gamma peak luminosity of 0.36 \\times 10^34/cm2/s with E_CM (gamma-gamma) \\sim 125 GeV. A gamma-gamma collider with such a luminosity could be used to measure accurately the mass, bbar, WW\\ast, and gamma-gamma decays of the Higgs boson. We also comment on possible synergies with other projects such as LHeC, the ILC or CLIC, and on other physics prospects in gamma-gamma and e-gamma collisions.

  18. Gamma ray bursts in their historic context

    E-Print Network [OSTI]

    Trimble, V

    2004-01-01T23:59:59.000Z

    Gamma Ray Bursts In Their Historic Context Virginia TrimbleMD 20742 USA Abstract. Gamma ray bursts remained essentiallyalso applies to the gamma ray bursts. First, an observation

  19. An investigation of the electronic wave functions in solids by the Compton scattering of gamma rays

    E-Print Network [OSTI]

    Nha, Sang Kyun

    1968-01-01T23:59:59.000Z

    APPARATUS The instrument, which was successfully used to study the behavior of the broadening of the Compton-scattered radiation, produces monochromatic gamma rays continuously variable in energy by selective Compton scattering of gamma photons emitted... was calculated. The system was adjusted to span the energy of- interest, then a count was taken 137 by using the Cs source. The channel corresponding to the peak 137 of Cs radiation was recorded, thon the pulser setting correspond)+8 to 662 1'eV (gamma ray...

  20. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOE Patents [OSTI]

    Cole, Jerald D. (Idaho Falls, ID); Drigert, Mark W. (Idaho Falls, ID); Reber, Edward L. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID)

    2001-01-01T23:59:59.000Z

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  1. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    SciTech Connect (OSTI)

    Balmain, Allan [University of California, San Francisco; Song, Ihn Young [University of California, San Francisco

    2013-05-15T23:59:59.000Z

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularly when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Â?Â?Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.

  2. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    SciTech Connect (OSTI)

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.

    2009-03-03T23:59:59.000Z

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.

  3. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect (OSTI)

    Janeen Denise Robertson

    1999-02-01T23:59:59.000Z

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  4. Radiation damage by neutrons to plastic scintillators

    SciTech Connect (OSTI)

    Buss, G.; Dannemann, A.; Holm, U.; Wick, K. [Univ. Hamburg (Germany). Inst. fuer Experimentalphysik] [Univ. Hamburg (Germany). Inst. fuer Experimentalphysik

    1995-08-01T23:59:59.000Z

    Polystyrene based scintillator SCSN38, wavelength shifter Y7 with polymethylmethacrylate matrix and pure PM-MA light guide GS218 have been irradiated in the mixed radiation field of a pool reactor. About 77% of the dose released in SCSN38 was caused by the {gamma}-field, 23% by fast neutrons. The total dose ranged from 2 to 105 kGy. The dose measurements were made using alanine dosimeters. Transmission and fluorescence of the samples have been measured before and several times after irradiation. The radiation damage results shown o differences to irradiations in pure {gamma}-fields with corresponding released doses.

  5. New Applications of Gamma Spectroscopy: Characterization Tools for D&D Process Development, Inventory Reduction Planning & Shipping, Safety Analysis & Facility Management During the Heavy Element Facility Risk Reduction Program

    SciTech Connect (OSTI)

    Mitchell, M; Anderson, B; Gray, L; Vellinger, R; West, M; Gaylord, R; Larson, J; Jones, G; Shingleton, J; Harris, L; Harward, N

    2006-01-23T23:59:59.000Z

    Novel applications of gamma ray spectroscopy for D&D process development, inventory reduction, safety analysis and facility management are discussed in this paper. These applications of gamma spectroscopy were developed and implemented during the Risk Reduction Program (RPP) to successfully downgrade the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL) from a Category II Nuclear Facility to a Radiological Facility. Non-destructive assay in general, gamma spectroscopy in particular, were found to be important tools in project management, work planning, and work control (''Expect the unexpected and confirm the expected''), minimizing worker dose, and resulted in significant safety improvements and operational efficiencies. Inventory reduction activities utilized gamma spectroscopy to identify and confirm isotopics of legacy inventory, ingrowth of daughter products and the presence of process impurities; quantify inventory; prioritize work activities for project management; and to supply information to satisfy shipper/receiver documentation requirements. D&D activities utilize in-situ gamma spectroscopy to identify and confirm isotopics of legacy contamination; quantify contamination levels and monitor the progress of decontamination efforts; and determine the point of diminishing returns in decontaminating enclosures and glove boxes containing high specific activity isotopes such as {sup 244}Cm and {sup 238}Pu. In-situ gamma spectroscopy provided quantitative comparisons of several decontamination techniques (e.g. TLC-free Stripcoat{trademark}, Radiac{trademark} wash, acid wash, scrubbing) and was used as a part of an iterative process to determine the appropriate level of decontamination and optimal cost to benefit ratio. Facility management followed a formal, rigorous process utilizing an independent, state certified, peer-reviewed gamma spectroscopy program, in conjunction with other characterization techniques, process knowledge, and historical records, to provide information for work planning, work prioritization, work control, and safety analyses (e.g. development of hold points, stop work points); and resulted in B251 successfully achieving Radiological status on schedule. Gamma spectroscopy helped to define operational approaches to achieve radiation exposure ALARA, e.g. hold points, appropriate engineering controls, PPE, workstations, and time/distance/shielding in the development of ALARA plans. These applications of gamma spectroscopy can be used to improve similar activities at other facilities.

  6. Hybrid model of GeV-TeV gamma ray emission from Galactic Center

    E-Print Network [OSTI]

    Yi-Qing Guo; Qiang Yuan; Cheng Liu; Ai-Feng Li

    2014-09-14T23:59:59.000Z

    The observations of high energy $\\gamma$-ray emission from the Galactic center (GC) by HESS, and recently by Fermi, suggest the cosmic ray acceleration in the GC and possibly around the supermassive black hole. In this work we propose a lepton-hadron hybrid model to explain simultaneously the GeV-TeV $\\gamma$-ray emission. Both electrons and hadronic cosmic rays were accelerated during the past activity of the GC. Then these particles would diffuse outwards and interact with the interstellar gas and background radiation field. The collisions between hadronic cosmic rays with gas is responsible to the TeV $\\gamma$-ray emission detected by HESS. With fast cooling in the strong radiation field, the electrons would cool down and radiate GeV photons through inverse Compton scattering off the soft background photons. This scenario provides a natural explanation of the observed GeV-TeV spectral shape of $\\gamma$-rays.

  7. Gamma Radiation Dose Rate in Air due to Terrestrial Radionuclides in Southern Brazil: Synthesis by Geological Units and Lithotypes Covered by the Serra do Mar Sul Aero-Geophysical Project

    SciTech Connect (OSTI)

    Bastos, Rodrigo O.; Appoloni, Carlos R. [Applied Nuclear Physics Laboratory-Department of Physics-CCE State University of Londrina Campus Universitario-Rodovia Celso Garcia Cid s/n, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Pinese, Jose P. P. [Department of Geosciences-CCE State University of Londrina Campus Universitario-Rodovia Celso Garcia Cid s/n, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil)

    2008-08-07T23:59:59.000Z

    The absorbed dose rates in air due to terrestrial radionuclides were estimated from aerial gamma spectrometric data for an area of 48,600 km{sup 2} in Southern Brazil. The source data was the Serra do Mar Sul Aero-Geophysical Project back-calibrated in a cooperative work among the Geological Survey of Brazil, the Geological Survey of Canada, and Paterson, Grant and Watson Ltd. The concentrations of eU (ppm), eTh (ppm) and K (%) were converted to dose rates in air (nGy{center_dot}h{sup -1}) by accounting for the contribution of each element's concentration. Regional variation was interpreted according to lithotypes and a synthesis was performed according to the basic geological units present in the area. Higher values of total dose were estimated for felsic igneous and metamorphic rocks, with average values varying up to 119{+-}24 nGy{center_dot}h{sup -1}, obtained by Anitapolis syenite body. Sedimentary, metasedimentary and metamafic rocks presented the lower dose levels, and some beach deposits reached the lowest average total dose, 18.5{+-}8.2 nGy{center_dot}h{sup -1}. Thorium gives the main average contribution in all geological units, the highest value being reached by the nebulitic gneisses of Atuba Complex, 71{+-}23 nGy{center_dot}h{sup -1}. Potassium presents the lowest average contribution to dose rate in 53 of the 72 units analyzed, the highest contribution being obtained by intrusive alkaline bodies (28{+-}12 nGy{center_dot}h{sup -1}). The general pattern of geographic dose distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.

  8. Determination of thermal neutron capture gamma yields.

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  9. Determination of thermal neutron capture gamma yields

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  10. Gamma Ray Bursts

    E-Print Network [OSTI]

    Peter Mészáros

    2012-04-12T23:59:59.000Z

    Gamma-ray bursts have been detected at photon energies up to tens of GeV. We review some recent developments in the X-ray to GeV photon phenomenology in the light of Swift and Fermi observations, and some of the theoretical models developed to explain them, with a view towards implications for C.T.A.

  11. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12T23:59:59.000Z

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  12. acute x-ray exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are more sensitive to both X-ray and heavy ion exposure than to high-LET radiation damage. Mice haplodeficient for the ATM gene and wildtypes were exposed to 325 m that not...

  13. Simulated Irradiation of Samples in HFIR for use as Possible Test Materials in the MPEX (Material Plasma Exposure Experiment) Facility

    SciTech Connect (OSTI)

    Ellis, Ronald James [ORNL; Rapp, Juergen [ORNL

    2014-01-01T23:59:59.000Z

    The importance of Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) facility will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. The project presented in this paper involved performing assessments of the induced radioactivity and resulting radiation fields of a variety of potential fusion reactor materials. The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR; generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. These state-of-the-art simulation methods were used in addressing the challenge of the MPEX project to minimize the radioactive inventory in the preparation of the samples for inclusion in the MPEX facility.

  14. A Plasma Instability Theory of Gamma-Ray Burst Emission

    E-Print Network [OSTI]

    J. J. Brainerd

    1999-04-02T23:59:59.000Z

    A plasma instability theory is presented for the prompt radiation from gamma-ray bursts. In the theory, a highly relativistic shell interacts with the interstellar medium through the filamentation and the two-stream instabilities to convert bulk kinetic energy into electron thermal energy and magnetic field energy. The processes are not efficient enough to satisfy the Rankine-Hugoniot conditions, so a shock cannot form through this mechanism. Instead, the interstellar medium passes through the shell, with the electrons radiating during this passage. Gamma-rays are produced by synchrotron self-Compton emission. Prompt optical emission is also produced through this mechanism, while prompt radio emission is produced through synchrotron emission. The model timescales are consistent with the shortest burst timescales. To emit gamma-rays, the shell's bulk Lorentz factor must be greater than approximately 1000. For the radiative processes to be efficient, the interstellar medium density must satisfy a lower limit that is a function of the bulk Lorentz factor. Because the limits operate as selection effects, bursts that violate them constitute new classes. In particular, a class of optical and ultraviolet bursts with no gamma-ray emission should exist. The lower limit on the density of the interstellar medium is consistent with the requirements of the Compton attenuation theory, providing an explanation for why all burst spectra appear to be attenuated. Several tests of the theory are discussed, as are the next theoretical investigations that should be conducted.

  15. Causal Analysis of the Unanticipated Extremity Exposure at HFEF

    SciTech Connect (OSTI)

    David E. James; Charles R. Posegate; Thomas P. Zahn; Alan G. Wagner

    2011-11-01T23:59:59.000Z

    This report covers the unintended extremity exposure to an operator while handling a metallurgical mount sample of irradiated fuel following an off-scale high beta radiation reading of the sample. The decision was made to continue working after the meter indicated high off-scale by the HPT Supervisor, which resulted in the operator at the next operation being exposed.

  16. A Search for Gamma-Ray Bursts and Pulsars, and the Application of Kalman Filters to Gamma-Ray Reconstruction

    E-Print Network [OSTI]

    B. B. Jones

    2002-02-04T23:59:59.000Z

    Part I describes the analysis of periodic and transient signals in EGRET data. A method to search for the transient flux from gamma-ray bursts independent of triggers from other gamma-ray instruments is developed. Several known gamma-ray bursts were independently detected, and there is evidence for a previously unknown gamma-ray burst candidate. Statistical methods using maximum likelihood and Bayesian inference are developed and implemented to extract periodic signals from gamma-ray sources in the presence of significant astrophysical background radiation. The analysis was performed on six pulsars and three pulsar candidates. The three brightest pulsars, Crab, Vela, and Geminga, were readily identified, and would have been detected independently in the EGRET data without knowledge of the pulse period. No significant pulsation was detected in the three pulsar candidates. Eighteen X-ray binaries were examined. None showed any evidence of periodicity. In addition, methods for calculating the detection threshold of periodic flux modulation were developed. The future hopes of gamma-ray astronomy lie in the development of the Gamma-ray Large Area Space Telescope, or GLAST. Part II describes the development and results of the particle track reconstruction software for a GLAST science prototype instrument beam test. The Kalman filtering method of track reconstruction is introduced and implemented. Monte Carlo simulations, very similar to those used for the full GLAST instrument, were performed to predict the instrumental response of the prototype. The prototype was tested in a gamma-ray beam at SLAC. The reconstruction software was used to determine the incident gamma-ray direction. It was found that the simulations did an excellent job of representing the actual instrument response.

  17. Constraints on GRB TeV Emission from the GeV Extragalactic Diffuse Gamma-Ray Flux

    E-Print Network [OSTI]

    Casanova, S; Zhang, B; Zhang, Bing

    2006-01-01T23:59:59.000Z

    TeV gamma rays emitted by GRBs are converted into electron-positron pairs via interactions with the extragalactic infrared radiation fields. In turn the pairs produced, whose trajectories are randomized by magnetic fields, will inverse Compton scatter off the cosmic microwave background photons. The beamed TeV gamma ray flux from GRBs is thus transformed into a GeV isotropic gamma ray flux, which contributes to the total extragalactic gamma-ray background emission. Assuming a model for the extragalactic radiation fields, for the GRB redshift distribution and for the GRB luminosity function, we use the measured GeV extragalactic gamma-ray flux to set upper limits on the GRB emission in TeV gamma rays that is predicted in several models.

  18. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 109 S. Observatory, SPH II, Rm. M6314, Ann Arbor, MI 48109 (United States); Sanchez, Brisa N., E-mail: brisa@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Jolliet, Olivier, E-mail: ojolliet@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Zhang, Zhenzhen, E-mail: zhzh@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Parker, Edith A., E-mail: Edith-Parker@uiowa.edu [University of Michigan School of Public Health, Health Behavior and Health Education Department, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Timothy Dvonch, J., E-mail: dvonch@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 1415 Washington Heights, 6642 SPH Tower, Ann Arbor, MI 48109 (United States); O'Neill, Marie S., E-mail: marieo@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6631 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2012-01-15T23:59:59.000Z

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  19. SWEPP Gamma-Ray Spectrometer System software design description

    SciTech Connect (OSTI)

    Femec, D.A.; Killian, E.W.

    1994-08-01T23:59:59.000Z

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system.

  20. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  1. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect (OSTI)

    Weil, Michael; Ullrich, Robert

    2013-09-25T23:59:59.000Z

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  2. Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System

    E-Print Network [OSTI]

    Fitzmaurice, Matthew Blake 1988-

    2012-11-06T23:59:59.000Z

    , weather, and time of day. 6 Gamma rays are electromagnetic radiation emitted by excited nuclei in order for them to reach the ground state after decaying. Once emitted, these particles mainly interact with matter in three ways: photoelectric effect... and measured density were then used to define the MCNP material card for concrete. Pulse height tallies were used to determine the total gamma ray count rate in each of the four gamma detectors in the RPM. 5 CHAPTER II BACKGROUND II.A. Radiation...

  3. UNDERSTANDING THE GENETIC CONSEQUENCES OF ENVIRONMENTAL TOXICANT EXPOSURE: CHERNOBYL AS A MODEL SYSTEM

    E-Print Network [OSTI]

    Baker, Robert J.

    UNDERSTANDING THE GENETIC CONSEQUENCES OF ENVIRONMENTAL TOXICANT EXPOSURE: CHERNOBYL AS A MODEL to Chernobyl radiation. Our results suggest that genetic diversity in radioactive regions of Ukraine to elucidate the effects of toxicant exposure. Keywords--Chernobyl Bank vole Population genetics Comparative

  4. Radiative Decays of the B Meson

    SciTech Connect (OSTI)

    Tanaka, Hirohisa A

    2003-09-23T23:59:59.000Z

    The radiative decays of the B meson to the final states K *(892){gamma} and {rho}(770){gamma} proceed through virtual effective flavor-changing neutral current processes which are sensitive to contributions from high mass scales from within the Standard Model of particle interactions and from possible new physics. In the context of the Standard Model, these transitions are of interest in probing the weak interaction behavior of the top quark. In particular, the ratio of branching fractions for the two processes can be used to extract the ratio of Cabibbo-Kobayashi-Maskawa matrix elements |V{sub td}/V{sub ts}|. Potential new physics contributions in these virtual transitions may induce new sources of direct CP violation and enhancement or suppression of the rate of these processes. The B {yields} K*{gamma} is a manifestation of the b {yields} s{gamma} radiative transition. This process has been previously observed by the CLEO collaboration and its branching fraction measured. While the theoretical prediction for the inclusive rate of b {yields} s{gamma} transitions is more robust than that of the exclusive B {yields} K*{gamma}, the prospects for precise measurements of {Beta}[B {yields} K*{gamma}] and direct CP violation in this channel has attracted considerable attention. The analysis described here represents an improved measurement of the B {yields} K*{gamma} branching factions and a more sensitive search for direct CP violation. In 22.7 x 10{sup 6} B{bar B} events collected by the BABAR detector in 1999-2000, we measure: {Beta}[B{sup 0} {yields} K*{sup 0}{gamma}] = 4.23 {+-} 0.40(stat.) {+-} 0.22(syst.) x 10{sup -5} and {Beta}[B{sup +} {yields} K*{sup +}{gamma}] = 3.83 {+-} 0.62(stat.) {+-} 0.22(syst.) x 10{sup -5}. We find no evidence for direct CP violation in the decays and constrain -0.170 < A{sub CP} < 0.082 at 90% Confidence Level. The B {yields} {rho}{gamma} proceeds through the analogous b {yields} d{gamma} radiative transition. As such, its rate is suppressed by a factor of |V{sub td}/V{sub ts}|{sup 2} {approx} {Omicron}(50) relative to B {yields} K*{gamma} and remains unobserved. Current limits on the branching fractions of B {yields} {rho}{gamma} are still an order of magnitude above the theoretical predictions. While the uncertainty in the theoretical predictions for the branching fraction of this mode are large, it may be possible to reduce these uncertainties by considering the ratio of the branching fractions for B {yields} {rho}{gamma} and B {yields} K*{gamma} which would lead to a measurement of |V{sub td}/V{sub ts}|. The analysis presented here represents a search with nearly an order of magnitude more data and new analysis techniques. In a sample of 61 .7 x 10{sup 6} B{bar B} events, we find no significant evidence for the decay B {yields} {rho}{gamma} is and establish the following 90% Confidence Level upper limits on the branching fraction: {Beta}[B{sup 0} {yields} {rho}{sup 0}{gamma}] < 1.5 x 10{sup -6} and {Beta}[B{sup +} {yields} {rho}{sup +}{gamma}] < 2.8 x 10{sup -6}.

  5. Delayed Gamma-Ray Spectroscopy for Spent Nuclear Fuel Assay

    SciTech Connect (OSTI)

    Campbell, Luke W.; Hunt, Alan W.; Ludewigt, Bernhard A.; Mozin, Vladimir V.

    2012-04-01T23:59:59.000Z

    High-energy, beta-delayed gamma-ray spectroscopy is investigated as a non-destructive assay technique for the determination of plutonium mass in spent nuclear fuel. This approach exploits the unique isotope-specific signatures contained in the delayed gamma-ray emission spectra detected following active interrogation with an external neutron source. A high fidelity modeling approach is described that couples radiation transport, analytical decay/depletion, and a newly developed gamma-ray emission source reconstruction code. Initially simulated and analyzed was a “one-pass” delayed gamma-ray assay that focused on the long-lived signatures. Also presented are the results of an independent study that investigated “pulsed mode” measurements, to capture the more isotope-specific, short-lived signatures. Initial modeling results outlined in this paper suggest that delayed gamma-ray assay of spent nuclear fuel assemblies can be accomplished with a neutron generator of sufficient strength and currently available gamma-ray detectors.

  6. Application of the gamma evaluation method in Gamma Knife film dosimetry

    SciTech Connect (OSTI)

    Park, Jeong-Hoon; Han, Jung Ho; Kim, Chae-Yong; Oh, Chang Wan; Lee, Do-Heui; Suh, Tae-Suk; Gyu Kim, Dong; Chung, Hyun-Tai [Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam 463-707, Korea and Department of Biomedical Engineering, College of Medicine, Catholic University of Korea Seoul 137-701 (Korea, Republic of); Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam 463-707, Korea and Department of Neurosurgery, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Neurosurgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 138-736 (Korea, Republic of); Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Department of Neurosurgery, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2011-10-15T23:59:59.000Z

    Purpose: Gamma Knife (GK) radiosurgery is a minimally invasive surgical technique for the treatment of intracranial lesions. To minimize neurological deficits, submillimeter accuracy is required during treatment delivery. In this paper, the delivery accuracy of GK radiosurgery was assessed with the gamma evaluation method using planning dose distribution and film measurement data. Methods: Single 4, 8, and 16 mm and composite shot plans were developed for evaluation using the GK Perfexion (PFX) treatment planning system (TPS). The planning dose distributions were exported as digital image communications in medicine - radiation therapy (DICOM RT) files using a new function of GK TPS. A maximum dose of 8 Gy was prescribed for four test plans. Irradiation was performed onto a spherical solid water phantom using Gafchromic EBT2 films in the axial and coronal planes. The exposed films were converted to absolute dose based on a 4th-order polynomial calibration curve determined using ten calibration films. The film measurement results and planning dose distributions were registered for further analysis in the same Leksell coordinate using in-house software. The gamma evaluation method was applied to two dose distributions with varying spatial tolerance (0.3-2.0 mm) and dosimetric tolerance (0.3-2.0%), to verify the accuracy of GK radiosurgery. The result of gamma evaluation was assessed using pass rate, dose gamma index histogram (DGH), and dose pass rate histogram (DPH). Results: The 20, 50, and 80% isodose lines found in film measurements were in close agreement with the planning isodose lines, for all dose levels. The comparison of diagonal line profiles across the axial plane yielded similar results. The gamma evaluation method resulted in high pass rates of >95% within the 50% isodose line for 0.5 mm/0.5% tolerance criteria, in both the axial and coronal planes. They satisfied 1.0 mm/1.0% criteria within the 20% isodose line. Our DGH and DPH also showed that low isodose lines exhibited inferior gamma indexes and pass rates compared with higher isodose lines. Conclusions: The gamma evaluation method was applicable to GK radiosurgery. For all test plans, planning dose distribution and film measurement met the tolerance criteria of 0.5 mm/0.5% within the 50% isodose line which are used for marginal dose prescription.

  7. AECL corporate power point presentation template

    Office of Environmental Management (EM)

    kGy of Gamma (wet) gamma exposure S. Lalonde, et al. Charoacterization of Commercial Proton Exchange Membrane (PEM) Materials After Exposure to Beta and Gamma Radiation ,10 th...

  8. Electrothermal controlled-exposure technology

    E-Print Network [OSTI]

    Maloney, John Mapes

    2006-01-01T23:59:59.000Z

    A technology is presented for exposing the contents of microfabricated cavities in a substrate. These contents are hermetically sealed until exposure is triggered by an electronic signal. The exposure mechanism uses ...

  9. National Ambient Radiation Database

    SciTech Connect (OSTI)

    Dziuban, J.; Sears, R.

    2003-02-25T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) recently developed a searchable database and website for the Environmental Radiation Ambient Monitoring System (ERAMS) data. This site contains nationwide radiation monitoring data for air particulates, precipitation, drinking water, surface water and pasteurized milk. This site provides location-specific as well as national information on environmental radioactivity across several media. It provides high quality data for assessing public exposure and environmental impacts resulting from nuclear emergencies and provides baseline data during routine conditions. The database and website are accessible at www.epa.gov/enviro/. This site contains (1) a query for the general public which is easy to use--limits the amount of information provided, but includes the ability to graph the data with risk benchmarks and (2) a query for a more technical user which allows access to all of the data in the database, (3) background information on ER AMS.

  10. Testing the millisecond pulsar scenario of the Galactic center gamma-ray excess with very high energy gamma-rays

    E-Print Network [OSTI]

    Qiang Yuan; Kunihito Ioka

    2015-02-09T23:59:59.000Z

    The recent analyses of the Fermi Large Area Telescope data show an extended GeV $\\gamma$-ray excess on top of the expected diffuse background in the Galactic center region, which can be explained with annihilating dark matter or a population of millisecond pulsars (MSPs). We propose to observe the very high energy $\\gamma$-rays for distinguishing the MSP scenario from the dark matter scenario. The GeV $\\gamma$-ray MSPs should release most energy to the relativistic $e^{\\pm}$ wind, which will diffuse in the Galaxy and radiate TeV $\\gamma$-rays through inverse Compton scattering and bremsstrahlung processes. By calculating the spectrum and spatial distribution, we show that such emission is detectable with the next generation very high energy $\\gamma$-ray observatory, the Cherenkov Telescope Array (CTA), under reasonable model parameters. It is essential to search for the multi-wavelength counterparts to the GeV $\\gamma$-ray excess for solving this mystery in the high energy universe.

  11. Radiation Center and TRIGA Reactor Annual Report

    E-Print Network [OSTI]

    Specification 6.7(e). B. Battelle Energy Alliance, LLC; Subcontract Award No. 00074510. C. Oregon Department of Energy, OOE Rule No. 345-030-010. Submitted by: Steve R. Reese, Director Radiation Center Oregon State Concentration of the Total Net Beta Radioactivity 44 V 13 Beta-Gamma Concentration and Range of LLD Values 45 V

  12. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

  13. Fermi GBM Observations of Terrestrial Gamma-ray Flashes

    SciTech Connect (OSTI)

    Briggs, Michael S. [CSPAR, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States)

    2011-09-21T23:59:59.000Z

    Terrestrial Gamma-ray Flashes are short pulses of energetic radiation associated with thunderstorms and lightning. While the Gamma-ray Burst Monitor (GBM) on Fermi was designed to observe gamma-ray bursts, its large BGO detectors are excellent for observing TGFs. Using GBM, TGF pulses are seen to either be symmetrical or have faster rise time than fall times. Some TGFs are resolved into double, partially overlapping pulses. Using ground-based radio observations of lightning from the World Wide Lightning Location Network (WWLLN), TGFs and their associated lightning are found to be simultaneous to {approx_equal}40 {mu} s. The lightning locations are typically within 300 km of the sub-spacecraft point.

  14. Pulsed Photofission Delayed Gamma Ray Detection for Nuclear Material Identification

    SciTech Connect (OSTI)

    John Kavouras; Xianfei Wen; Daren R. Norman; Dante R. Nakazawa; Haori Yang

    2012-11-01T23:59:59.000Z

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. High-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. After photofission reactions, delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the fission signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. Isotopic composition measurement methods based on delayed gamma ray spectroscopy will be the primary focus of this work.

  15. Long-term Evaluation of Radiation-Induced Optic Neuropathy After Single-Fraction Stereotactic Radiosurgery

    SciTech Connect (OSTI)

    Leavitt, Jacqueline A., E-mail: leavitt.jacqueline@mayo.edu [Department of Ophthalmology, Mayo Clinic and Foundation, Rochester, Minnesota (United States); Stafford, Scott L. [Department of Radiation Oncology, Mayo Clinic and Foundation, Rochester, Minnesota (United States); Link, Michael J. [Department of Neurosurgery, Mayo Clinic and Foundation, Rochester, Minnesota (United States); Pollock, Bruce E. [Department of Radiation Oncology, Mayo Clinic and Foundation, Rochester, Minnesota (United States); Department of Neurosurgery, Mayo Clinic and Foundation, Rochester, Minnesota (United States)

    2013-11-01T23:59:59.000Z

    Purpose: To determine the long-term risk of radiation-induced optic neuropathy (RION) in patients having single-fraction stereotactic radiosurgery (SRS) for benign skull base tumors. Methods and Materials: Retrospective review of 222 patients having Gamma Knife radiosurgery for benign tumors adjacent to the anterior visual pathway (AVP) between 1991 and 1999. Excluded were patients with prior or concurrent external beam radiation therapy or SRS. One hundred twenty-nine patients (58%) had undergone previous surgery. Tumor types included confirmed World Health Organization grade 1 or presumed cavernous sinus meningioma (n=143), pituitary adenoma (n=72), and craniopharyngioma (n=7). The maximum dose to the AVP was ?8.0 Gy (n=126), 8.1-10.0 Gy (n=39), 10.1-12.0 Gy (n=47), and >12 Gy (n=10). Results: The mean clinical and imaging follow-up periods were 83 and 123 months, respectively. One patient (0.5%) who received a maximum radiation dose of 12.8 Gy to the AVP developed unilateral blindness 18 months after SRS. The chance of RION according to the maximum radiation dose received by the AVP was 0 (95% confidence interval [CI] 0-3.6%), 0 (95% CI 0-10.7%), 0 (95% CI 0-9.0%), and 10% (95% CI 0-43.0%) for patients receiving ?8 Gy, 8.1-10.0 Gy, 10.1-12.0 Gy, and >12 Gy, respectively. The overall risk of RION in patients receiving >8 Gy to the AVP was 1.0% (95% CI 0-6.2%). Conclusions: The risk of RION after single-fraction SRS in patients with benign skull base tumors who have no prior radiation exposure is very low if the maximum dose to the AVP is ?12 Gy. Physicians performing single-fraction SRS should remain cautious when treating lesions adjacent to the AVP, especially when the maximum dose exceeds 10 Gy.

  16. How to Tell a Jet from a Balloon: A Proposed Test for Beaming in Gamma Ray Bursts

    E-Print Network [OSTI]

    James E. Rhoads

    1997-09-15T23:59:59.000Z

    If gamma ray bursts are highly collimated, the energy requirements of each event may be reduced by several (~ 4-6) orders of magnitude, and the event rate increased correspondingly. Extreme conditions in gamma ray bursters lead to highly relativistic motions (bulk Lorentz factors Gamma > 100). This results in strong forward beaming of the emitted radiation in the observer's rest frame. Thus, all information on gamma ray bursts comes from those ejecta emitted in a narrow cone (opening angle 1/Gamma) pointing towards the observer. We are at present ignorant of whether there are ejecta outside that cone or not. The recent detection of longer wavelength transients following gamma ray bursts allows an empirical test of whether gamma ray bursts are collimated jets or spherical fireballs. The bulk Lorentz factor of the burst ejecta will decrease with time after the event, as the ejecta sweep up the surrounding medium. Thus, radiation from the ejecta is beamed into an ever increasing solid angle as the burst remnant evolves. It follows that if gamma ray bursts are highly collimated, many more optical and radio transients should be observed without associated gamma rays than with them. Published supernova searches may contain enough data to test the most extreme models of gamma ray beaming. We close with a brief discussion of other possible consequences of beaming, including its effect on the evolution of burst remnants.

  17. 1993 Radiation Protection Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  18. Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

    SciTech Connect (OSTI)

    Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; /SLAC; Tajima, Hiroyasu; /Nagoya U., Solar-Terrestrial Environ. Lab.; Tanaka, Takaaki; /KIPAC, Menlo Park; ,

    2010-10-27T23:59:59.000Z

    It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

  19. Gravitational collapse as the source of gamma-ray bursts

    E-Print Network [OSTI]

    V. V. Sokolov

    2008-05-21T23:59:59.000Z

    If the threshold for $e^{-}e^{+}$ pair production depends on an angle between photon momenta, and if the $\\gamma$-rays are collimated right in gamma-ray burst (GRB) source then another solution of the compactness problem is possible. The list of basic assumptions of the scenario describing the GRB with energy release $< 10^{49}$ erg is adduced: the matter is about an alternative to the ultrarelativistic fireball if all long-duration GRBs are physically connected with core-collapse supernovae (SNe). The questions about radiation pressure and how the jet arises on account of even a small radiation field asymmetry in a compact GRB source of size $\\lesssim 10^8$ cm, and observational consequences of the compact model of GRBs are considered.

  20. Measurements of {psi}(2S) decays into {gamma}KK{pi} and {gamma}{eta}{pi}{sup +}{pi}{sup -}

    SciTech Connect (OSTI)

    Ablikim, M.; Bai, J. Z.; Bian, J. G.; Cai, X.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chu, Y. P.; Cui, X. Z.; Deng, Z. Y.; Du, S. X.; Fang, J.; Fu, C. D.; Gao, C. S.; Gu, S. D.; Guo, Y. N.; Guo, Y. Q.; He, K. L. [Institute of High Energy Physics, Beijing 100049 (China)] (and others)

    2006-10-01T23:59:59.000Z

    Radiative decays of the {psi}(2S) into {gamma}KK{pi} and {gamma}{eta}{pi}{sup +}{pi}{sup -} final states are studied using 14x10{sup 6} {psi}(2S) events collected with the BESII detector. Branching fractions or upper limits on the branching fractions of {psi}(2S) and {chi}{sub cJ} decays are reported. No significant signal for {eta}(1405)/{eta}(1475) is observed in the KK{pi} or {eta}{pi}{sup +}{pi}{sup -} mass spectra, and upper limits on the branching fractions of {psi}(2S){yields}{gamma}{eta}(1405)/{eta}(1475), {eta}(1405)/{eta}(1475){yields}KK{pi}, and {eta}{pi}{sup +}{pi}{sup -} are determined.

  1. Mon. Not. R. Astron. Soc. 401, 14651474 (2010) doi:10.1111/j.1365-2966.2009.15760.x Towards the properties of long gamma-ray burst progenitors

    E-Print Network [OSTI]

    Xu, Ren-Xin

    2010-01-01T23:59:59.000Z

    the properties of long gamma-ray burst progenitors with Swift data Xiao-Hong Cui,1 En-Wei Liang,2 Hou-Jun Lv,2 investigate the properties of both the prompt and X-ray afterglows of gamma-ray bursts (GRBs) in the burst . Key words: radiation mechanisms: non-thermal ­ gamma-rays: bursts. 1 INTRODUCTION One

  2. THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS

    SciTech Connect (OSTI)

    Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Chernyshov, D. O. [Moscow Institute of Physics and Technology, Institutskii lane, 141700 Moscow Region, Dolgoprudnii (Russian Federation); Dogiel, V. A. [I. E. Tamm Theoretical Physics Division of P. N. Lebedev Institute, Leninskii pr, 53, 119991 Moscow (Russian Federation); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China)

    2010-11-10T23:59:59.000Z

    Fermi has detected gamma-ray emission from eight globular clusters (GCs). It is commonly believed that the energy sources of these gamma rays are millisecond pulsars (MSPs) inside GCs. Also it has been standard to explain the spectra of most Fermi Large Area Telescope pulsars including MSPs resulting from the curvature radiation (CR) of relativistic electrons/positrons inside the pulsar magnetosphere. Therefore, gamma rays from GCs are expected to be the collection of CR from all MSPs inside the clusters. However, the angular resolution is not high enough to pinpoint the nature of the emission. In this paper, we calculate the gamma rays produced by the inverse Compton (IC) scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the GCs and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons, and the galactic star lights. We show that the gamma-ray spectrum from 47 Tucanae can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons, or the galactic star lights, whereas the gamma-ray spectra from the other seven GCs are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore, the IC scattering may also contribute to the observed gamma-ray emission from GCs detected by Fermi in addition to the standard CR process. Furthermore, we find that the emission region of high-energy photons from GCs produced by the IC scattering is substantially larger than the cores of GCs with a radius >10 pc. The diffuse radio and X-rays emitted from GCs can also be produced by the synchrotron radiation and IC scattering, respectively. We suggest that future observations including radio, X-rays, and gamma rays with energy higher than 10 GeV and better angular resolution can provide better constraints for the models.

  3. X- and Gamma-Ray Flashes from Type Ia Supernovae?

    E-Print Network [OSTI]

    Hoflich, Peter

    2009-01-01T23:59:59.000Z

    We investigate two potential mechanisms that will produce X-ray and gamma-ray flashes from Type Ia supernovae (SN-Ia). The mechanisms are the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf and the interaction of the rapidly expanding envelope with an accretion disk. Based on the delayed-detonation scenario and detailed radiation-hydro calculation which include nuclear networks, we find that both mechanisms produce ~1 second flashes of high energy radiation with peak luminosities of 10^48 to 10^50 erg/sec with fast rises and exponential declines. The X- and gamma-ray visibility of a SN-Ia will depend strongly on self absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation towards the observer. Such X-ray and gamma-ray flashes could be detected as triggered events by Gamma-Ray Burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, ...

  4. GeV Emission from Collisional Magnetized Gamma Ray Bursts

    E-Print Network [OSTI]

    P. Mészáros; M. J. Rees

    2011-04-26T23:59:59.000Z

    Magnetic fields may play a dominant role in gamma-ray bursts, and recent observations by the Fermi satellite indicate that GeV radiation, when detected, arrives delayed by seconds from the onset of the MeV component. Motivated by this, we discuss a magnetically dominated jet model where both magnetic dissipation and nuclear collisions are important. We show that, for parameters typical of the observed bursts, such a model involving a realistic jet structure can reproduce the general features of the MeV and a separate GeV radiation component, including the time delay between the two. The model also predicts a multi-GeV neutrino component.

  5. VERY HIGH ENERGY GAMMA RAY Tadashi KIFUNE

    E-Print Network [OSTI]

    Enomoto, Ryoji

    particles as progenitor. The particle interaction includes also absorption of gamma rays through the process to detect TeV gamma rays. The current status of gamma ray astronomy in its growing stage is demonstrated of observation 2. Ground-based detection of VHE gamma rays from SN 1006 and Markaraina 501 The review of gamma

  6. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE.

    SciTech Connect (OSTI)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-02-27T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data recorded automatically by dataloggers that will be periodically downloaded. Solar panels provide power for the batteries to run both the dataloggers and PICs. Truck drivers have been asked to park their truck within the PIC array for only the time it takes to complete an information log before moving on to one of two Radioactive Waste Management Sites (RWMS) on the NTS. On the log, the truck drivers record their shipment identification number, the time of day, where the waste originated, and information on the route they used to reach the NTS. This data will facilitate comparison of PIC readings with waste manifests and other waste disposal operations data collected at the RWMSs. Gamma radiation measurements collected from the PICs will be analyzed using standard health physics and statistical methods for comparison to DOT standards, but with the added benefit of obtaining an improved understanding of the variability of readings that can occur in the near vicinity of a LLW truck. The data collected will be combined with measurements of street width and other information about transportation routes through towns to develop realistic dose scenarios for citizens in Nevada and Utah towns.

  7. Diffracted light from latent images in photoresist for exposure control

    DOE Patents [OSTI]

    Bishop, Kenneth P. (Rio Rancho, NM); Brueck, Steven R. J. (Albuquerque, NM); Gaspar, Susan M. (Albuquerque, NM); Hickman, Kirt C. (Albuquerque, NM); McNeil, John R. (Albuquerque, NM); Naqvi, S. Sohail H. (Albuquerque, NM); Stallard, Brian R. (Albuquerque, NM); Tipton, Gary D. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    In microelectronics manufacturing, an arrangement for monitoring and control of exposure of an undeveloped photosensitive layer on a structure susceptible to variations in optical properties in order to attain the desired critical dimension for the pattern to be developed in the photosensitive layer. This is done by ascertaining the intensities for one or more respective orders of diffracted power for an incident beam of radiation corresponding to the desired critical dimension for the photosensitive layer as a function of exposure time and optical properties of the structure, illuminating the photosensitive layer with a beam of radiation of one or more frequencies to which the photosensitive layer is not exposure-sensitive, and monitoring the intensities of the orders of diffracted radiation due to said illumination including at least the first order of diffracted radiation thereof, such that when said predetermined intensities for the diffracted orders are reached during said illumination of photosensitive layer, it is known that a pattern having at least approximately the desired critical dimension can be developed on the photosensitive layer.

  8. Charmonium decays to {gamma}{pi}{sup 0}, {gamma}{eta}, and {gamma}{eta}{sup '}

    SciTech Connect (OSTI)

    Pedlar, T. K.; Xavier, J. [Luther College, Decorah, Iowa 52101 (United States); Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Klein, T.; Poling, R.; Zweber, P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States); Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.; Tomaradze, A. [Northwestern University, Evanston, Illinois 60208 (United States); Libby, J.; Martin, L.; Powell, A.; Thomas, C.; Wilkinson, G. [University of Oxford, Oxford OX1 3RH (United Kingdom); Mendez, H. [University of Puerto Rico, Mayaguez, Puerto Rico 00681 (Puerto Rico); Ge, J. Y. [Purdue University, West Lafayette, Indiana 47907 (United States)] (and others)

    2009-06-01T23:59:59.000Z

    Using data acquired with the CLEO-c detector at the CESR e{sup +}e{sup -} collider, we measure branching fractions for J/{psi}, {psi}(2S), and {psi}(3770) decays to {gamma}{pi}{sup 0}, {gamma}{eta}, and {gamma}{eta}{sup '}. Defining R{sub n}{identical_to}B[{psi}(nS){yields}{gamma}{eta}]/B[{psi}(nS){yields}{gamma}{eta}{sup '}], we obtain R{sub 1}=(21.1{+-}0.9)% and, unexpectedly, an order of magnitude smaller limit, R{sub 2}<1.8% at 90% C.L. We also use J/{psi}{yields}{gamma}{eta}{sup '} events to determine branching fractions of improved precision for the five most copious {eta}{sup '} decay modes.

  9. RIS-M-2483 A PILOT INVESTIGATION OP NATORAL RADIATION IN DANISH HOUSES

    E-Print Network [OSTI]

    EQUIVALENTS; DOSB RATES; DOSBMBTBRS; BTCHING; EXPERIMEN- TAL DATA; GAMMA RADIATION; HOUSES; NATURALRISø-M-2483 A PILOT INVESTIGATION OP NATORAL RADIATION IN DANISH HOUSES A. Sørensen, L. Bøtter radiation in Denmark. A passive cup dosemeter was designed containing CR39 track detectors and TLD

  10. Acute radiation syndrones and their management

    SciTech Connect (OSTI)

    Cronkite, E.P.

    1988-01-01T23:59:59.000Z

    Radiation syndromes produced by large doses of ionizing radiation are divided into three general groups depending on dose of radiation and time after exposure. The CNS syndrome requires many thousands of rad, appears in minutes to hours, and kills within hours to days. The GIS appears after doses of a few hundred to 2000 rad. It is characterized by nausea, vomiting, diarrhea, and disturbances of water and electrolyte metabolism. It has a high mortality in the first week after exposure. Survivors will then experience the HS as a result of marrow aplasia. Depending on dose, survival is possible with antibiotic and transfusion therapy. The relationship of granulocyte depression to mortality in dogs and human beings is illustrated. The role of depth dose pattern of mortality of radiation exposure is described and used as an indication of why air exposure doses may be misleading. The therapy of radiation injury is described based on antibiotics, transfusion therapy, and use of molecular regulators. The limited role of matched allogenic bone marrow transplants is discussed. 52 refs., 13 figs.

  11. Cooling of Accelerated Nucleons and Neutrino Emission in Gamma-Ray Bursts

    E-Print Network [OSTI]

    Katsuaki Asano

    2005-03-11T23:59:59.000Z

    Using Monte Carlo simulations, we demonstrate photopion production from Fermi-accelerated protons and the resulting neutrino production in gamma-ray bursts. Unless internal shocks occur at quite large distance from the center, ultra high-energy protons are depleted by photopion production and synchrotron radiation. Internal shocks at fiducial distance cause neutrino bursts, which accompany gamma-ray bursts originating from electromagnetic cascades.

  12. Blueshift Without Blueshift: Red Hole Gamma-Ray Burst Models Explain the Peak energy Distribution

    E-Print Network [OSTI]

    James S. Graber

    1999-12-15T23:59:59.000Z

    Gamma-ray bursts are still a puzzle. In particular, the central engine, the total energy and the very narrow distribution of peak energies challenge model builders. We consider here an extreme model of gamma-ray bursts based on highly red- and blue-shifted positron annihilation radiation. The burst emerges from inside the red hole created by the complete gravitational collapse of the GRB progenitor.

  13. QED radiative corrections to virtual Compton scattering

    E-Print Network [OSTI]

    M. Vanderhaeghen; J. M. Friedrich; D. Lhuillier; D. Marchand; L. Van Hoorebeke; J. Van de Wiele

    2000-01-12T23:59:59.000Z

    The QED radiative corrections to virtual Compton scattering (reaction $e p \\to e p \\gamma$) are calculated to first order in $\\alpha_{em} \\equiv e^2 / 4 \\pi$. A detailed study is presented for the one-loop virtual corrections and for the first order soft-photon emission contributions. Furthermore, a full numerical calculation is given for the radiative tail, corresponding with photon emission processes, where the photon energy is not very small compared with the lepton momenta. We compare our results with existing works on elastic electron-proton scattering, and show for the $e p \\to e p \\gamma$ reaction how the observables are modified due to these first order QED radiative corrections. We show results for both unpolarized and polarized observables of the virtual Compton scattering in the low energy region (where one is sensitive to the generalized polarizabilities of the nucleon), as well as for the deeply virtual Compton scattering.

  14. Near-Core and In-Core Neutron Radiation Monitors for Real Time Neutron Flux Monitoring and Reactor Power Level Measurements

    SciTech Connect (OSTI)

    Douglas S. McGregor; Marvin L. Adams; Igor Carron; Paul Nelson

    2006-06-12T23:59:59.000Z

    MPFDs are a new class of detectors that utilize properties from existing radiation detector designs. A majority of these characteristics come from fission chamber designs. These include radiation hardness, gamma-ray background insensitivity, and large signal output.

  15. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, draft report for comment. Volume 2

    SciTech Connect (OSTI)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1994-09-01T23:59:59.000Z

    On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s WNP-2, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, materials, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

  16. Reversal of Hugoniot locus for strong shocks due to radiation

    SciTech Connect (OSTI)

    Li Jiwei; Li Jinghong; Meng Guangwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2011-04-15T23:59:59.000Z

    Shock Hugoniot can be used to express the response of a material to shocks, and the compression ratio of the shock can be determined by the Hugoiot locus. When the shock is strong, it will become radiating, and the radiation will affect the Hugoniot. The role of radiation on the Hugoniot condition is studied in the paper. For the radiative flux-dominated shocks, the radiative flux if large enough may render the structure of the shock Hugoniot locus totally different with the case for the pure hydrodynamic shock: the two branches with one in quadrant I and the other in quadrant III are reversed into two in quadrants IV and II, respectively, correspondingly the compression ratio may be larger than the limiting value ({gamma}+1)/({gamma}-1) for ideal gases with index {gamma}. For the radiative shock in which the radiative heat wave propagates supersonically, a threshold value for the net radiative flux to the preshock is also defined which determines whether the Hugoniot locus is reversed and the compression ratio exceeds the limiting value. Numerical results also verify the reversal of the Hugoniot locus of the shocks if the net radiative flux to the preshock exceeds the threshold value.

  17. Prompt TeV Emission from Cosmic Rays Accelerated by Gamma Ray Bursts Interacting with Surrounding Stellar Wind

    E-Print Network [OSTI]

    Soebur Razzaque; Olga Mena; Charles D. Dermer

    2008-11-24T23:59:59.000Z

    Protons accelerated in the internal shocks of a long duration gamma ray burst can escape the fireball as cosmic rays by converting to neutrons. Hadronic interactions of these neutrons inside a stellar wind bubble created by the progenitor star will produce TeV gamma rays via neutral meson decay and synchrotron radiation by charged pion-decay electrons in the wind magnetic field. Such gamma rays should be observable from nearby gamma ray bursts by currently running and upcoming ground-based detectors.

  18. Basis for radiation protection of the nuclear worker

    SciTech Connect (OSTI)

    Guevara, F.A.

    1982-01-01T23:59:59.000Z

    A description is given of the standards for protection of persons who work in areas that have a potential for radiation exposure. A review is given of the units of radiation exposure and dose equivalent and of the value of the maximum permissible dose limits for occupational exposure. Federal Regulations and Regulatory Guides for radiation protection are discussed. Average occupational equivalent doses experienced in several operations typical of the United States Nuclear Industry are presented and shown to be significantly lower than the maximum permissible. The concept of maintaining radiation doses to As-Low-As-Reasonably-Achievable is discussed and the practice of imposing engineering and administrative controls to provide effective radiation protection for the nuclear worker is described.

  19. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

    2007-10-23T23:59:59.000Z

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  20. Innovative Gamma Ray Spectrometer Detection Systems for Conducting Scanning Surveys on Challenging Terrain - 13583

    SciTech Connect (OSTI)

    Palladino, Carl; Mason, Bryan; Engle, Matt; LeVangie, James [The Palladino Company, Inc., 720 Fillmore St., San Francisco, CA 94117 (United States)] [The Palladino Company, Inc., 720 Fillmore St., San Francisco, CA 94117 (United States); Dempsey, Gregg [United States Environmental Protection Agency, P.O. Box 98517, Las Vegas, NV 89193-8517 (United States)] [United States Environmental Protection Agency, P.O. Box 98517, Las Vegas, NV 89193-8517 (United States); Klemovich, Ron [HydroGeoLogic, Inc., 6340 Glenwood, Suite 200, Building No. 7, Overland Park, KS 66202 (United States)] [HydroGeoLogic, Inc., 6340 Glenwood, Suite 200, Building No. 7, Overland Park, KS 66202 (United States)

    2013-07-01T23:59:59.000Z

    The Santa Susana Field Laboratory located near Simi Valley, California was investigated to determine the nature and extent of gamma radiation anomalies. The primary objective was to conduct gamma scanning surveys over 100 percent of the approximately 1,906,000 square meters (471 acre) project site with the most sensitive detection system possible. The site had challenging topography that was not conducive to traditional gamma scanning detection systems. Terrain slope varied from horizontal to 48 degrees and the ground surface ranged from flat, grassy meadows to steep, rocky hillsides. In addition, the site was home to many protected endangered plant and animal species, and archaeologically significant sites that required minimal to no disturbance of the ground surface. Therefore, four innovative and unique gamma ray spectrometer detection systems were designed and constructed to successfully conduct gamma scanning surveys of approximately 1,076,000 square meters (266 acres) of the site. (authors)

  1. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect (OSTI)

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29T23:59:59.000Z

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  2. Sensitivity of the FERMI Detectors to Gamma-Ray Bursts from Evaporating Primordial Black Holes (PBHs)

    E-Print Network [OSTI]

    T. N. Ukwatta; Jane H. MacGibbon; W. C. Parke; K. S. Dhuga; S. Rhodes; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

    2010-03-23T23:59:59.000Z

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. The Fermi Gamma-ray Space Telescope observatory offers increased sensitivity to the gamma-ray bursts produced by PBHs with an initial mass of $\\sim 5\\times 10^{14}$ g expiring today. PBHs are candidate progenitors of unidentified Gamma-Ray Bursts (GRBs) that lack X-ray afterglow. We propose spectral lag, which is the temporal delay between the high and low energy pulses, as an efficient method to identify PBH evaporation events with the Fermi Large Area Telescope (LAT).

  3. DOE Occupational Radiation Exposure: 2004 Annual Report Exhibit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Classification (SOC) Manual (1980). Labor Category Occupation Code Occupation Name Agriculture 0562 0570 0580 Groundskeepers Forest Workers Misc. Agriculture Construction...

  4. accidents radiation exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of California eScholarship Repository Summary: and C.V. Zegeer. ITS and Pedestrian Safety at SignalizedPedestrian Counting Devices Report March 2007 Dan Burden The mission of...

  5. accident radiation exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of California eScholarship Repository Summary: and C.V. Zegeer. ITS and Pedestrian Safety at SignalizedPedestrian Counting Devices Report March 2007 Dan Burden The mission of...

  6. Radiation Exposure From Medical Imaging Time to Regulate?

    E-Print Network [OSTI]

    Brenner, David Jonathan

    modalities such as positron-emission tomography CT (PET/CT), single- photon emission CT (SPECT/CT), and tomography (CT) scan. In 1980 fewer than 3 million CT scans were per- formed, but the annual number now approaches 80 mil- lion and is increasing by approximately 10% per year.2 Be- cause CT scanning involves

  7. Radiation Exposure Information Reporting System (REIRS) Update, 2012

    SciTech Connect (OSTI)

    none,

    2013-01-01T23:59:59.000Z

    A series of graphs gives data through the year 2012 for annual collective doses, collective dose per reactor, number of individuals with measurable doses both in total and per reactor, number of reactors, electricity generated, measurable doses per individual and per megawatt-year, and collective outage hours. Reactors considered include BWR, PWR, and LWR. Also, the total effective dose equivalent for the period 2010-2012 is tabulated for each nuclear power plant considered, and the change over 2009-2011.

  8. DOE 2013 Occupational Radiation Exposure Report ALARA Activities at DOE

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGY ScienceDNSComments by HoweT

  9. Occupational Radiation Exposures at the Department of Energy | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM Policy AcquisitionWeatherization FundingFunding andof

  10. Operating Experience Level 3, DOE Occupational Radiation Exposures for 2013

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online Classified orOnlineOokieOperated|

  11. Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5 Accretion-of-DutiesPROPERTY3-0127Paducah3 Theof

  12. User Survey User Survey DOE Occupational Radiation Exposure Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFact Sheet|FeedstockUser

  13. Radiation Exposure Monitoring Systems - Other Related Sites | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo.Frequency | DepartmentOE-3:Energy

  14. Radiation Exposure Monitoring Systems Data Reporting Guide | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo.Frequency |

  15. Radiation Exposure Monitoring Systems Program Policy for Submitting of PII

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo.Frequency |Department of

  16. Reporting Occupational Radiation Exposure Data | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department ofEM CommunicationsReporting Occupational

  17. A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis &

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRA Newsletters201416-17,Proposed8.Reporting |

  18. ANNUAL DOE OCCUPATIONAL RADIATION EXPOSURE | 2013 REPORT | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRAA LiquidAL2010-03.pdfAMO PEER REVIEW,Energy

  19. Annual DOE Occupational Radiation Exposure Reports | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americas |AnchorageAnna

  20. ORISE Video: What is the difference between radiation exposure and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 FederalTransformers1 DIRECTORJoe Lake

  1. ORISE: Illness and Injury Surveillance, Radiation Exposure, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisis andExerciseEpidemiologic Reports

  2. ORISE: U.S. Nuclear Regulatory Commission Radiation Exposure Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOENurseResourcesThe Value ofand Reporting System

  3. ORISE: Worker Health Studies - Radiation Exposure Data Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOENurseResourcesThe Value The U.S.Medical Data

  4. Request For Report Of Radiation Exposure History Form | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments |Fossil Energy EquitySpent Nuclear

  5. Request For Report Of Radiation Exposure History Form | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuickEnergy V-BeltsManufacturingRepositorySpent

  6. Department of Energy Occupational Radiation Exposure 1996 Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D * A L A R A * N E U T R O N * AEDE *

  7. Annual DOE Occupational Radiation Exposure | 1987 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndy OareEnergy 7 Report

  8. Annual DOE Occupational Radiation Exposure | 1988 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndy OareEnergy 7

  9. Annual DOE Occupational Radiation Exposure | 1989 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndy OareEnergy

  10. Annual DOE Occupational Radiation Exposure | 1990 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndy OareEnergyEnergy

  11. Annual DOE Occupational Radiation Exposure | 1991 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndy

  12. Annual DOE Occupational Radiation Exposure | 1992 - 1994 Report |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndyDepartment of Energy

  13. Annual DOE Occupational Radiation Exposure | 1995 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndyDepartment of

  14. Annual DOE Occupational Radiation Exposure | 1996 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndyDepartment ofEnergy 6

  15. Annual DOE Occupational Radiation Exposure | 1997 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndyDepartment ofEnergy

  16. Annual DOE Occupational Radiation Exposure | 1998 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndyDepartment

  17. Annual DOE Occupational Radiation Exposure | 1999 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndyDepartmentEnergy 9

  18. Annual DOE Occupational Radiation Exposure | 2000 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth AboutAndyDepartmentEnergy

  19. Annual DOE Occupational Radiation Exposure | 2001 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth

  20. Annual DOE Occupational Radiation Exposure | 2002 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy 2002 Report Annual DOE

  1. Annual DOE Occupational Radiation Exposure | 2003 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy 2002 Report Annual

  2. Annual DOE Occupational Radiation Exposure | 2004 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy 2002 Report

  3. Annual DOE Occupational Radiation Exposure | 2005 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy 2002 ReportEnergy

  4. Annual DOE Occupational Radiation Exposure | 2006 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy 2002

  5. Annual DOE Occupational Radiation Exposure | 2007 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy 2002Energy 7 Report

  6. Annual DOE Occupational Radiation Exposure | 2008 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy 2002Energy 7

  7. Annual DOE Occupational Radiation Exposure | 2009 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy 2002Energy

  8. Annual DOE Occupational Radiation Exposure | 2010 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy 2002EnergyEnergy

  9. Annual DOE Occupational Radiation Exposure | 2011 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergy

  10. Annual DOE Occupational Radiation Exposure | 2012 Report | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir RothEnergyEnergy 2 Report

  11. Annual DOE Occupational Radiation Exposure Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformanceof Energy4Annova LNG, LLC -

  12. Annual DOE Occupational Radiation Exposure | 2007 Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformanceofEnergy 5 Report Annual

  13. RPR 1B. REQUEST FOR RADIATION EXPOSURE HISTORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITYResponses:December562 Revision 0 HANFORD BX-FARM4

  14. Discovery of TeV Gamma-Ray Emission from the Cygnus Region

    SciTech Connect (OSTI)

    Abdo, A.A.; Allen, B.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Coyne, D.G.; Delay, R.S.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; Gonzalez,; Goodman, J.A.; Hays, E.; Hoffman, C.M.; Kolterman, B.E.; Kelley, L.A.; Lansdell, C.P.; Linnemann, J.T.; McEnery, J.E.

    2006-11-28T23:59:59.000Z

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.

  15. Discovery of TeV Gamma-Ray Emission from the Cygnus Region of the Galaxy

    E-Print Network [OSTI]

    A. A. Abdo; B. Allen; D. Berley; E. Blaufuss; S. Casanova; C. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; R. W. Ellsworth; L. Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. E. Kolterman; L. A. Kelley; C. P. Lansdell; J. T. Linnemann; J. E. McEnery; A. I. Mincer; I. V. Moskalenko; P. Nemethy; D. Noyes; J. M. Ryan; F. W. Samuelson; P. M. Saz Parkinson; M. Schneider; A. Shoup; G. Sinnis; A. J. Smith; A. W. Strong; G. W. Sullivan; V. Vasileiou; G. P. Walker; D. A. Williams; X. W. Xu; G. B. Yodh

    2006-11-21T23:59:59.000Z

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.

  16. A Comparison of Simple Algorithms for Gamma-ray Spectrometers in Radioactive Source Search Applications

    SciTech Connect (OSTI)

    Jarman, Kenneth D.; Runkle, Robert C.; Anderson, Kevin K.; Pfund, David M.

    2008-03-01T23:59:59.000Z

    Large variation in time-dependent ambient gamma-ray radiation challenges the search for radiation sources. A common strategy to reduce the effects of background variation is to raise detection thresholds, but at the price of reduced detection sensitivity. We present simple algorithms that both reduce background variation and maintain trip-wire detection sensitivity with gamma-ray spectrometry. The best-performing algorithms focus on the spectral shape over several energy bins using Spectral Comparison Ratios and dynamically predict background with the Kalman Filter.

  17. Gamma neutron assay method and apparatus

    DOE Patents [OSTI]

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03T23:59:59.000Z

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  18. Gamma neutron assay method and apparatus

    DOE Patents [OSTI]

    Cole, Jerald D. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID); Greenwood, Reginald C. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  19. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2008-12-23T23:59:59.000Z

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  20. Radiative acceleration and transient, radiation-induced electric fields

    E-Print Network [OSTI]

    L. Zampieri; R. Turolla; L. Foschini; A. Treves

    2003-04-14T23:59:59.000Z

    The radiative acceleration of particles and the electrostatic potential fields that arise in low density plasmas hit by radiation produced by a transient, compact source are investigated. We calculate the dynamical evolution and asymptotic energy of the charged particles accelerated by the photons and the radiation-induced electric double layer in the full relativistic, Klein-Nishina regime. For fluxes in excess of $10^{27}$ ${\\rm erg} {\\rm cm}^{-2} {\\rm s}^{-1}$, the radiative force on a diluted plasma ($n\\la 10^{11}$ cm$^{-3}$) is so strong that electrons are accelerated rapidly to relativistic speeds while ions lag behind owing to their larger inertia. The ions are later effectively accelerated by the strong radiation-induced double layer electric field up to Lorentz factors $\\approx 100$, attainable in the case of negligible Compton drag. The asymptotic energies achieved by both ions and electrons are larger by a factor 2--4 with respect to what one could naively expect assuming that the electron-ion assembly is a rigidly coupled system. The regime we investigate may be relevant within the framework of giant flares from soft gamma-repeaters.

  1. Lack of Bystander Effects From High LET Radiation For Early Cytogenetic Endpoints.

    SciTech Connect (OSTI)

    Groesser, Torsten; Cooper, Brian; Rydberg, Bjorn

    2008-05-07T23:59:59.000Z

    The aim of this work was to study radiation-induced bystander effects for early cytogenetic end points in various cell lines using the medium transfer technique after exposure to high- and low-LET radiation. Cells were exposed to 20 MeV/ nucleon nitrogen ions, 968 MeV/nucleon iron ions, or 575 MeV/nucleon iron ions followed by transfer of the conditioned medium from the irradiated cells to unirradiated test cells. The effects studied included DNA double-strand break induction, {gamma}-H2AX focus formation, induction of chromatid breaks in prematurely condensed chromosomes, and micronucleus formation using DNA repair-proficient and -deficient hamster and human cell lines (xrs6, V79, SW48, MO59K and MO59J). Cell survival was also measured in SW48 bystander cells using X rays. Although it was occasionally possible to detect an increase in chromatid break levels using nitrogen ions and to see a higher number of {gamma}-H2AX foci using nitrogen and iron ions in xrs6 bystander cells in single experiments, the results were not reproducible. After we pooled all the data, we could not verify a significant bystander effect for any of these end points. Also, we did not detect a significant bystander effect for DSB induction or micronucleus formation in these cell lines or for clonogenic survival in SW48 cells. The data suggest that DNA damage and cytogenetic changes are not induced in bystander cells. In contrast, data in the literature show pronounced bystander effects in a variety of cell lines, including clonogenic survival in SW48 cells and induction of chromatid breaks and micronuclei in hamster cells. To reconcile these conflicting data, it is possible that the epigenetic status of the specific cell line or the precise culture conditions and medium supplements, such as serum, may be critical for inducing bystander effects.

  2. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  3. Radiative corrections to real and virtual muon Compton scattering revisited

    E-Print Network [OSTI]

    N. Kaiser

    2010-03-04T23:59:59.000Z

    We calculate in closed analytical form the one-photon loop radiative corrections to muon Compton scattering $\\mu^- \\gamma \\to \\mu^- \\gamma $. Ultraviolet and infrared divergencies are both treated in dimensional regularization. Infrared finiteness of the (virtual) radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off $\\lambda$. We find that the anomalous magnetic moment $\\alpha/2\\pi$ provides only a very small portion of the full radiative corrections. Furthermore, we extend our calculation of radiative corrections to the muon-nucleus bremsstrahlung process (or virtual muon Compton scattering $\\mu^-\\gamma_0^* \\to \\mu^- \\gamma $). These results are particularly relevant for analyzing the COMPASS experiment at CERN in which muon-nucleus bremsstrahlung serves to calibrate the Primakoff scattering of high-energy pions off a heavy nucleus with the aim of measuring the pion electric and magnetic polarizabilities. We find agreement with an earlier calculation of these radiative corrections based on a different method.

  4. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation

  5. GammaPod-A new device dedicated for stereotactic radiotherapy of breast cancer

    SciTech Connect (OSTI)

    Yu, Cedric X. [University of Maryland School of Medicine, Baltimore, Maryland, 21201 and Xcision Medical Systems, LLC, Columbia, Maryland 21045 (United States); Shao Xinyu; Deng Jianchun; Duan Zhengcheng [Huazhong University of Science and Technology, Wuhan, Hebei (China); Zhang Jin; Zheng, Mike; Yu, Ying S. [Xcision Medical Systems, LLC, Columbia, Maryland, 21045 (United States); Regine, William [University of Maryland School of Medicine, Baltimore, Maryland, 21201 (United States)

    2013-05-15T23:59:59.000Z

    Purpose: This paper introduces a new external beam radiotherapy device named GammaPod that is dedicated for stereotactic radiotherapy of breast cancer. Methods: The design goal of the GammaPod as a dedicated system for treating breast cancer is the ability to deliver ablative doses with sharp gradients under stereotactic image guidance. Stereotactic localization of the breast is achieved by a vacuum-assisted breast immobilization cup with built-in stereotactic frame. Highly focused radiation is achieved at the isocenter due to the cross-firing from 36 radiation arcs generated by rotating 36 individual Cobalt-60 beams. The dedicated treatment planning system optimizes an optimal path of the focal spot using an optimization algorithm borrowed from computational geometry such that the target can be covered by 90%-95% of the prescription dose and the doses to surrounding tissues are minimized. The treatment plan is intended to be delivered with continuous motion of the treatment couch. In this paper the authors described in detail the gamma radiation unit, stereotactic localization of the breast, and the treatment planning system of the GammaPod system. Results: A prototype GammaPod system was installed at University of Maryland Medical Center and has gone through a thorough functional, geometric, and dosimetric testing. The mechanical and functional performances of the system all meet the functional specifications. Conclusions: An image-guided breast stereotactic radiotherapy device, named GammaPod, has been developed to deliver highly focused and localized doses to a target in the breast under stereotactic image guidance. It is envisioned that the GammaPod technology has the potential to significantly shorten radiation treatments and even eliminate surgery by ablating the tumor and sterilizing the tumor bed simultaneously.

  6. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect (OSTI)

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01T23:59:59.000Z

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  7. actively-induced prompt radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Prompt dipole radiation in fusion reactions CERN Preprints Summary: The prompt gamma ray emission was investigated in the 16A MeV energy region by means of the 36,40Ar+96,92Zr...

  8. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect (OSTI)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; Ajello, M.; /SLAC; Anderson, B.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Bechtol, K.; /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /SLAC; Bregeon, J.; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Padua U. /Naval Research Lab, Wash., D.C. /Udine U. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Pisa /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari U. /INFN, Bari /INFN, Pisa /INFN, Bari /NASA, Goddard /Maryland U.; /more authors..

    2012-04-11T23:59:59.000Z

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  9. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    SciTech Connect (OSTI)

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  10. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    SciTech Connect (OSTI)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01T23:59:59.000Z

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  11. VERY HIGH ENERGY GAMMA RAY Tadashi KIFUNE

    E-Print Network [OSTI]

    Enomoto, Ryoji

    elementary particles as progenitor. The particle interaction includes also absorption of gamma rays through the present time. Detection of the relics of the earlier Universe, such as gamma rays from anti­based tech­ nique to detect TeV gamma rays. The current status of gamma ray astronomy in its growing stage

  12. Gamma-Ray Burst Lines

    E-Print Network [OSTI]

    Michael S. Briggs

    1999-10-20T23:59:59.000Z

    The evidence for spectral features in gamma-ray bursts is summarized. As a guide for evaluating the evidence, the properties of gamma-ray detectors and the methods of analyzing gamma-ray spectra are reviewed. In the 1980's, observations indicated that absorption features below 100 keV were present in a large fraction of bright gamma-ray bursts. There were also reports of emission features around 400 keV. During the 1990's the situation has become much less clear. A small fraction of bursts observed with BATSE have statistically significant low-energy features, but the reality of the features is suspect because in several cases the data of the BATSE detectors appear to be inconsistent. Furthermore, most of the possible features appear in emission rather than the expected absorption. Analysis of data from other instruments has either not been finalized or has not detected lines.

  13. 30TH INTERNATIONAL COSMIC RAY CONFERENCE Measuring TeV Gamma-Ray Diffuse Emission from the Galactic Plane with Milagro

    E-Print Network [OSTI]

    Moskalenko, Igor V.

    mechanisms such as the annihilation of dark matter particles [5]. At TeV energies, Milagro has previously@lanl.gov Abstract: Diffuse gamma radiation produced in the interaction of cosmic-ray particles with matter and long observation time the Milagro Gamma-Ray Observatory ­ a water Cherenkov detector in New Mexico, USA

  14. End-to-end calculation of the radiation characteristics of VVER-1000 spent fuel assemblies

    SciTech Connect (OSTI)

    Linge, I. I.; Mitenkova, E. F., E-mail: mit@ibrae.ac.ru; Novikov, N. V. [Russian Academy of Sciences, Nuclear Safety Institute (Russian Federation)

    2012-12-15T23:59:59.000Z

    The results of end-to-end calculation of the radiation characteristics of VVER-1000 spent nuclear fuel are presented. Details of formation of neutron and gamma-radiation sources are analyzed. Distributed sources of different types of radiation are considered. A comparative analysis of calculated radiation characteristics is performed with the use of nuclear data from different ENDF/B and EAF files and ANSI/ANS and ICRP standards.

  15. Gamma Ray Bursts and CETI

    E-Print Network [OSTI]

    Frank D. Smith Jr

    1993-02-10T23:59:59.000Z

    Gamma ray burst sources are isotropically distributed. They could be located at distances $\\sim 1000$ AU. (Katz \\cite{JK92}) GRB signals have many narrow peaks that are unresolved at the millisecond time resolution of existing observations. \\cite{JK87} CETI could use stars as gravitational lenses for interstellar gamma ray laser beam communication. Much better time resolution of GRB signals could rule out (or confirm?) the speculative hypothesis that GRB = CETI.

  16. The Universe Viewed in Gamma-Rays 1 Concept of new gamma ray detector

    E-Print Network [OSTI]

    Enomoto, Ryoji

    a sensitivity of a detector at TeV gamma ray range. This method was used for a non-imaging detector as XrayThe Universe Viewed in Gamma-Rays 1 Concept of new gamma ray detector Satoko Osone Institute Abstract We present a concept of a new gamma ray detector in order to observe undetected TeV gamma ray

  17. Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift to GLASTto GLAST Bing ZhangBing ZhangGehrels, et al), et al) #12;Gamma-ray bursts: the mostGamma-ray bursts: the most violent explosions fireball central photosphere internal external shocks engine (shocks) (reverse) (forward) gamma-ray UV

  18. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1993--November 30, 1994

    SciTech Connect (OSTI)

    Hall, E.J.; Zaider, M.

    1994-05-01T23:59:59.000Z

    Research at the Center for Radiological Research is a blend of physics, chemistry and biology and epitomizes the multidisciplinary approach towards understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. To an increasing extent, the focus of attention is on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights from the past year are briefly described.

  19. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1970-1992: The JANUS Program Survival and Pathology Data

    SciTech Connect (OSTI)

    Grahn, D.; Wright, B.J.; Carnes, B.A.; Williamson, F.S.; Fox, C.

    1995-02-01T23:59:59.000Z

    A research reactor for exclusive use in experimental radiobiology was designed and built at Argonne National Laboratory in the 1960`s. It was located in a special addition to Building 202, which housed the Division of Biological and Medical Research. Its location assured easy access for all users to the animal facilities, and it was also near the existing gamma-irradiation facilities. The water-cooled, heterogeneous 200-kW(th) reactor, named JANUS, became the focal point for a range of radiobiological studies gathered under the rubic of {open_quotes}the JANUS program{close_quotes}. The program ran from about 1969 to 1992 and included research at all levels of biological organization, from subcellular to organism. More than a dozen moderate- to large-scale studies with the B6CF{sub 1} mouse were carried out; these focused on the late effects of whole-body exposure to gamma rays or fission neutrons, in matching exposure regimes. In broad terms, these studies collected data on survival and on the pathology observed at death. A deliberate effort was made to establish the cause of death. This archieve describes these late-effects studies and their general findings. The database includes exposure parameters, time of death, and the gross pathology and histopathology in codified form. A series of appendices describes all pathology procedures and codes, treatment or irradiation codes, and the manner in which the data can be accessed in the ORACLE database management system. A series of tables also presents summaries of the individual experiments in terms of radiation quality, sample sizes at entry, mean survival times by sex, and number of gross pathology and histopathology records.

  20. Wavelet Approach for Operational Gamma Spectral Peak Detection - Preliminary Assessment

    SciTech Connect (OSTI)

    ,

    2012-02-01T23:59:59.000Z

    Gamma spectroscopy for radionuclide identifications typically involves locating spectral peaks and matching the spectral peaks with known nuclides in the knowledge base or database. Wavelet analysis, due to its ability for fitting localized features, offers the potential for automatic detection of spectral peaks. Past studies of wavelet technologies for gamma spectra analysis essentially focused on direct fitting of raw gamma spectra. Although most of those studies demonstrated the potentials of peak detection using wavelets, they often failed to produce new benefits to operational adaptations for radiological surveys. This work presents a different approach with the operational objective being to detect only the nuclides that do not exist in the environment (anomalous nuclides). With this operational objective, the raw-count spectrum collected by a detector is first converted to a count-rate spectrum and is then followed by background subtraction prior to wavelet analysis. The experimental results suggest that this preprocess is independent of detector type and background radiation, and is capable of improving the peak detection rates using wavelets. This process broadens the doors for a practical adaptation of wavelet technologies for gamma spectral surveying devices.