Sample records for gallium nitride gan

  1. Electrospun Gallium Nitride Nanofibers

    SciTech Connect (OSTI)

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia [University of Puerto Rico at Humacao, Humacao (Puerto Rico); Campo, Eva [Centre Nacional de Microelectronica, Barcelona (Spain); Santiago, Jorge J. [University of Pennsylvania, Philadelphia (United States)

    2009-04-19T23:59:59.000Z

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH{sub 3} flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  2. Au-free Ohmic Contacts to Gallium Nitride and Graphene 

    E-Print Network [OSTI]

    Ravikirthi, Pradhyumna

    2014-08-10T23:59:59.000Z

    This work deals with Au-free contact metallization schemes for gallium nitride (GaN) and graphene semiconductors. Graphene and gallium nitride are promising materials that can potentially be integrated together in the near future for high frequency...

  3. Au-free Ohmic Contacts to Gallium Nitride and Graphene

    E-Print Network [OSTI]

    Ravikirthi, Pradhyumna

    2014-08-10T23:59:59.000Z

    This work deals with Au-free contact metallization schemes for gallium nitride (GaN) and graphene semiconductors. Graphene and gallium nitride are promising materials that can potentially be integrated together in the near future for high frequency...

  4. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates. Peak internal quantum efficiency (IQE) values of greater than 80% are...

  5. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, Michael (Berkeley, CA); Newman, Nathan (Montara, CA); Fu, Tracy (Berkeley, CA); Ross, Jennifer (Pleasanton, CA); Chan, James (Berkeley, CA)

    1997-01-01T23:59:59.000Z

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  6. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12T23:59:59.000Z

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  7. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, John C. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  8. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, J.C.; Shul, R.J.

    1999-02-02T23:59:59.000Z

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  9. Delta-phase manganese gallium on gallium nitride: a magnetically tunable spintronic system

    E-Print Network [OSTI]

    with Mn:Ga ratio between 1:1 to 1.5:1 is grown on wurtzite gallium nitride and scandium nitride substrates. Results suggest that for growth on wurtzite GaN, Ga-polar surface promotes quicker interface formation epitaxially on top of wide band-gap Ga-polar wurtzite GaN(0001), with controllable magnetism by adjusting

  10. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    SciTech Connect (OSTI)

    Pak, J.; Lin, W.; Wang, K.; Chinchore, A.; Shi, M.; Ingram, D. C.; Smith, A. R.; Sun, K.; Lucy, J. M.; Hauser, A. J.; Yang, F. Y. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, The Ohio State University, 191 Woodruff Avenue, Columbus, Ohio 43210 (United States)

    2010-07-15T23:59:59.000Z

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  11. Gallium nitride microcavities formed by photoenhanced wet oxidation

    SciTech Connect (OSTI)

    Peng, L.-H.; Lu, C.-Y.; Wu, W.-H.; Wang, S.-L. [Department of Electrical Engineering and Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan (China)

    2005-10-17T23:59:59.000Z

    We report the formation of gallium nitride (GaN) microcavities by manipulating a photoenhanced oxidation rate difference between the polar and nonpolar crystallographic planes of GaN. When immersed in a buffered acetic (CH{sub 3}COOH) electrolyte of pH{approx}6.2 at room temperature, it is shown that the photo-oxidation can proceed at a rate that is one order of magnitude slower on the nonpolar plane of {l_brace}1100{r_brace}{sub GaN} than on the polar plane of {l_brace}0001{r_brace}{sub GaN} due to the reduced surface field action. Gallium nitride microcavities bounded by optically smooth {l_brace}1100{r_brace} and {l_brace}1103{r_brace} facets can thus be preferentially formed on the c-plane sapphire substrate after dissolving the oxide layer. The optical properties of these GaN hexagonal cavities reveal characteristic peaks of whispering gallery modes in resonance with the GaN band edge emission spectrum. A typical cavity Q factor of 10{sup 3} is observed in these GaN microcavities due to a reduced optical scattering loss in the wet chemical reaction process.

  12. Effect of Gallium Nitride Template Layer Strain on the Growth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallium Nitride Template Layer Strain on the Growth of InxGa1-xNGaN Multiple Quantum Well Light Emitting Diodes. Effect of Gallium Nitride Template Layer Strain on the Growth of...

  13. Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films

    E-Print Network [OSTI]

    Tao, Jonathan Huai-Tse

    2010-01-01T23:59:59.000Z

    Gallium Nitride Doped With Europium," J. Appl. Phys. , 95Electroluminescence of Europium-doped Gallium Oxide ThinLuminescence Properties of Europium– terbium Double

  14. Hafnium nitride buffer layers for growth of GaN on silicon

    DOE Patents [OSTI]

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16T23:59:59.000Z

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  15. Sandia National Laboratories: gallium nitride

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Systems Dept.) recently published the article "Band offsets of La2O3 on (0001) GaN grown by reactive molecular-beam epitaxy" in Applied Physics Letters outlining research...

  16. Ammothermal Growth of Gan Substrates For Leds: High-Pressure Ammonothermal Process for Bulk Gallium Nitride Crystal Growth for Energy Efficient Commercially Competitive Lighting

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: The new GaN crystal growth method is adapted from that used to grow quartz crystals, which are very inexpensive and represent the second-largest market for single crystals for electronic applications (after silicon). More extreme conditions are required to grow GaN crystals and therefore a new type of chemical growth chamber was invented that is suitable for large-scale manufacturing. A new process was developed that grows GaN crystals at a rate that is more than double that of current processes. The new technology will enable GaN substrates with best-in-world quality at lowest-in-world prices, which in turn will enable new generations of white LEDs, lasers for full-color displays, and high-performance power electronics.

  17. Atomic layer structure of manganese atoms on wurtzite gallium nitride Abhijit Chinchore, Kangkang Wang, Wenzhi Lin, Jeongihm Pak, and Arthur R. Smitha

    E-Print Network [OSTI]

    Atomic layer structure of manganese atoms on wurtzite gallium nitride ,,0001¯... Abhijit Chinchore on wurtzite GaN 0001¯ . The surface is monitored using reflection high energy electron diffraction, which to grow with an abrupt interface and well- defined epitaxial orientation on top of wurtzite w -GaN. Re

  18. In vitro bio-functionality of gallium nitride sensors for radiation biophysics

    SciTech Connect (OSTI)

    Hofstetter, Markus [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)] [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Howgate, John [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany)] [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Schmid, Martin [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)] [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Schoell, Sebastian; Sachsenhauser, Matthias [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany)] [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Adiguezel, Denis [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)] [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Stutzmann, Martin; Sharp, Ian D. [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany)] [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Thalhammer, Stefan, E-mail: stefan.thalhammer@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)] [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)

    2012-07-27T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on the cellular environment confirms that this material is well suited for future biosensing applications without the need for additional chemical surface modification.

  19. Smooth cubic commensurate oxides on gallium nitride

    SciTech Connect (OSTI)

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul, E-mail: jpmaria@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Biegalski, Michael D.; Christen, Hans M. [Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-02-14T23:59:59.000Z

    Smooth, commensurate alloys of ?111?-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  20. Amorphization Processes in Au Ion Irradiated GaN at 150 - 300...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes in Au Ion Irradiated GaN at 150 - 300 K. Amorphization Processes in Au Ion Irradiated GaN at 150 - 300 K. Abstract: Epitaxial single-crystal gallium nitride (GaN) films...

  1. Distinctive Signature of Indium Gallium Nitride Quantum Dot Lasing in Microdisks Cavities

    E-Print Network [OSTI]

    Woolf, Alexander; Aharanovich, Igor; Zhu, Tongtong; Niu, Nan; Wang, Danqing; Oliver, Rachel A; Hu, Evelyn L

    2014-01-01T23:59:59.000Z

    Low threshold lasers realized within compact, high quality optical cavities enable a variety of nanophotonics applications. Gallium nitride (GaN) materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light matter interactions and realize practical devices such as efficient light emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we utilize the distinctive, high quality (Q~5500) modes of the cavities, and the change in the highest ...

  2. IIl-nitride nanowires and heterostructures : growth and optical properties on nanoscale

    E-Print Network [OSTI]

    Zhou, Xiang, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Gallium nitride (GaN) and indium gallium nitride (InGaN) nanowires promise potential for further improving the electricity-to-light energy conversion efficiencies in light emitting diodes due to strain relaxation, reduced ...

  3. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets

    SciTech Connect (OSTI)

    Gerlach, J. W.; Ivanov, T.; Neumann, L.; Hoeche, Th.; Hirsch, D.; Rauschenbach, B. [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), D-04318 Leipzig (Germany)

    2012-06-01T23:59:59.000Z

    Epitaxial GaN film formation on bare 6H-SiC(0001) substrates via the process of transformation of Ga droplets into a thin GaN film by applying hyperthermal nitrogen ions is investigated. Pre-deposited Ga atoms in well defined amounts form large droplets on the substrate surface which are subsequently nitridated at a substrate temperature of 630 Degree-Sign C by a low-energy nitrogen ion beam from a constricted glow-discharge ion source. The Ga deposition and ion-beam nitridation process steps are monitored in situ by reflection high-energy electron diffraction. Ex situ characterization by x-ray diffraction and reflectivity techniques, Rutherford backscattering spectrometry, and electron microscopy shows that the thickness of the resulting GaN films depends on the various amounts of pre-deposited gallium. The films are epitaxial to the substrate, exhibit a mosaic like, smooth surface topography and consist of coalesced large domains of low defect density. Possible transport mechanisms of reactive nitrogen species during hyperthermal nitridation are discussed and the formation of GaN films by an ion-beam assisted process is explained.

  4. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique

    SciTech Connect (OSTI)

    Alshehri, Bandar; Dogheche, Elhadj, E-mail: elhadj.dogheche@univ-valenciennes.fr [Institute Electronics, Microelectronics and Nanotechnology (IEMN CNRS), University of Valenciennes, Villeneuve d'Ascq (France); Lee, Seung-Min; Kang, Jin-Ho; Ryu, Sang-Wan, E-mail: sangwan@chonnam.ac.kr [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Gong, Su-Hyun; Cho, Yong-Hoon [Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2014-08-04T23:59:59.000Z

    In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n{sub 0}) and extraordinary (n{sub e}) refractive indices of etched structures. We report here the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975??m have shown that the ordinary index n{sub 0} is 2.293 for a bulk layer and n{sub 0} is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30?nm and inter-distance of 100?nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices.

  5. Electronic properties of gallium nitride nanowires

    E-Print Network [OSTI]

    Yoon, Joonah

    2008-01-01T23:59:59.000Z

    This thesis presents a systematic study of the electrical transport in GaN nanowires. Particularly, the effect of the surrounding dielectric on the conductivity of GaN nanowires is experimentally shown for the first time. ...

  6. Low-temperature growth of gallium nitride films by inductively coupled-plasma-enhanced reactive magnetron sputtering

    SciTech Connect (OSTI)

    Ni, Chih-Jui; Chau-Nan Hong, Franklin, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2014-05-15T23:59:59.000Z

    Gallium nitride (GaN) films were grown on sapphire substrate by reactive magnetron sputtering. Inductively coupled-plasma (ICP) source was installed between the substrate holder and the sputtering target to increase the plasma density and the degree of ionization of nitrogen gas. Liquid Ga and Ar/N{sub 2} were used as the sputtering target and sputtering gases, respectively. X-ray diffraction measurements confirmed that the authors could grow high quality GaN crystallites at 500?°C. However, the crystalline GaN (0002) peak remained even by lowering the growth temperature down to 300?°C. The N:Ga ratio of the film grown at 500?°C was almost 1:1, and the nitrogen composition became higher toward the 1:1 N:Ga ratio with increasing the growth temperature. The high degree of ionization induced by ICP source was essential to the growth of high crystalline quality GaN films.

  7. GaN nanowires show more 3D piezoelectricity than bulk GaN

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Logo GaN nanowires show more 3D piezoelectricity than bulk GaN admin / January 11, 2012 individual gallium nitride (GaN) nanowires showing strong piezoelectric effect in 3D. This is in spite of the fact that each nanowire only measures 100nm in diameter. While GaN is ubiquitous in optoelectronic

  8. Development of gallium nitride power transistors

    E-Print Network [OSTI]

    Piedra, Daniel, M. Eng. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    GaN-based high-voltage transistors have outstanding properties for the development of ultra-high efficiency and compact power electronics. This thesis describes a new process technology for the fabrication of GaN power ...

  9. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

  10. Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces

    SciTech Connect (OSTI)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-11-01T23:59:59.000Z

    Scandium nitride (ScN) is a group IIIB transition metal nitride semiconductor with numerous potential applications in electronic and optoelectronic devices due to close lattice matching with gallium nitride (GaN). However, prior investigations of ScN have focused primarily on heteroepitaxial growth on substrates with a high lattice mismatch of 7%–20%. In this study, the authors have investigated ammonia (NH{sub 3}) gas source molecular beam epitaxy (NH{sub 3}-GSMBE) of ScN on more closely lattice matched silicon carbide (SiC) and GaN surfaces (<3% mismatch). Based on a thermodynamic analysis of the ScN phase stability window, NH{sub 3}-GSMBE conditions of 10{sup ?5}–10{sup ?4} Torr NH{sub 3} and 800–1050?°C where selected for initial investigation. In-situ x-ray photoelectron spectroscopy (XPS) and ex-situ Rutherford backscattering measurements showed all ScN films grown using these conditions were stoichiometric. For ScN growth on 3C-SiC (111)-(?3?×??3)R30° carbon rich surfaces, the observed attenuation of the XPS Si 2p and C 1s substrate core levels with increasing ScN thickness indicated growth initiated in a layer-by-layer fashion. This was consistent with scanning electron microscopy (SEM) images of 100–200?nm thick films that revealed featureless surfaces. In contrast, ScN films grown on 3C-SiC (111)-(3?×?3) and 3C-SiC (100)-(3?×?2) silicon rich surfaces were found to exhibit extremely rough surfaces in SEM. ScN films grown on both 3C-SiC (111)-(?3?×??3)R30° and 2H-GaN (0001)-(1?×?1) epilayer surfaces exhibited hexagonal (1?×?1) low energy electron diffraction patterns indicative of (111) oriented ScN. X-ray diffraction ?-2? rocking curve scans for these same films showed a large full width half maximum of 0.29° (1047?arc sec) consistent with transmission electron microscopy images that revealed the films to be poly-crystalline with columnar grains oriented at ?15° to the [0001] direction of the 6H-SiC (0001) substrate. In-situ reflection electron energy loss spectroscopy measurements determined the band-gap for the NH{sub 3}-GSMBE ScN films to be 1.5?±?0.3 eV, and thermal probe measurements indicated all ScN films to be n-type. The four point probe sheet resistance of the ScN films was observed to increase with decreasing growth temperature and decreased with unintentional oxygen incorporation. Hg probe capacitance–voltage measurements indicated N{sub D}-N{sub A} decreased with decreasing growth temperature from 10{sup 19} to 10{sup 20}/cm{sup 3} for the lowest resistivity films to ?5?×?10{sup 16}/cm{sup 3} for the highest resistivity films. In-situ ultraviolet photoelectron spectroscopy measurements additionally showed the valence band maximum moving from 1.4 to 0.8 eV below the Fermi level with decreasing growth temperature consistent with the increased resistivity and reduction in carrier concentration. These results suggest that additional reductions in ScN carrier concentrations can be achieved via continued optimization of ScN growth conditions and selection of substrate orientation and surface termination.

  11. Process for growing epitaxial gallium nitride and composite wafers

    DOE Patents [OSTI]

    Weber, Eicke R.; Subramanya, Sudhir G.; Kim, Yihwan; Kruger, Joachim

    2003-05-13T23:59:59.000Z

    A novel growth procedure to grow epitaxial Group III metal nitride thin films on lattice-mismatched substrates is proposed. Demonstrated are the quality improvement of epitaxial GaN layers using a pure metallic Ga buffer layer on c-plane sapphire substrate. X-ray rocking curve results indicate that the layers had excellent structural properties. The electron Hall mobility increases to an outstandingly high value of .mu.>400 cm.sup.2 /Vs for an electron background concentration of 4.times.10.sup.17 cm.sup.-3.

  12. CO-IMPLANTATION AND DRY-ETCH DAMAGE RECOVERY BY PLASMA NITRIDATION IN GaN

    E-Print Network [OSTI]

    Pearton, Stephen J.

    CO-IMPLANTATION AND DRY-ETCH DAMAGE RECOVERY BY PLASMA NITRIDATION IN GaN BY DONALD G. KENT III ............................................................................ x CHAPTERS 1 INTRODUCTION ................................................................. 1 1.1 GaN Applications ........................................................ 1 1.2 GaN Material Issues

  13. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect (OSTI)

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01T23:59:59.000Z

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry-leading uptime enabled in part by a novel in-situ cleaning process developed in this program.

  14. GaN Radiation Detectors for Particle Physics and

    E-Print Network [OSTI]

    Glasgow, University of

    GaN Radiation Detectors for Particle Physics and Synchrotron Applications James Paul Grant and monitoring applications. Gallium nitride (GaN) was investigated as a radiation hard particle detector diameter on three epitaxial GaN wafers grown on a sapphire sub- strate. Two of the wafers were obtained

  15. Real-time x-ray studies of gallium nitride nanodot formation by droplet heteroepitaxy

    SciTech Connect (OSTI)

    Wang Yiyi; Oezcan, Ahmet S.; Sanborn, Christopher; Ludwig, Karl F.; Bhattacharyya, Anirban; Chandrasekaran, Ramya; Moustakas, Theodore D.; Zhou Lin; Smith, David J. [Physics Department, Boston University, Boston, Massachusetts 02215 (United States); Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 (United States); Department of Physics, Arizona State University, Tempe, Arizona 85287, USA and School of Materials, Arizona State University, Tempe, Arizona 85287 (United States)

    2007-10-01T23:59:59.000Z

    Self-organized gallium nitride nanodots have been fabricated using droplet heteroepitaxy on c-plane sapphire by plasma-assisted molecular beam epitaxy at different substrate temperatures and Ga fluxes. Nanoscale Ga droplets were initially formed on the sapphire substrate at high temperatures by Ga deposition from an effusion cell in an ultrahigh vacuum growth chamber. Subsequently, the droplets were converted into GaN nanodots using a nitrogen plasma source. The process was monitored and controlled using real-time grazing-incidence small-angle x-ray scattering. The samples were examined postgrowth by in situ grazing incidence x-ray diffraction and reflection high-energy electron diffraction, which confirmed the epitaxial relationship between the GaN nanodots and the sapphire surface. X-ray diffraction indicated that the wurtzite phase was dominant at higher substrate temperature (710 deg. C), but a mixture of wurtzite and zinc blende phases was present at a substrate temperature of 620 deg. C. Ex situ atomic force microscopy and transmission electron microscopy analyses showed that the dot size distribution was bimodal. A thin GaN continuous layer of {approx} three monolayers thick was observed by transmission electron microscopy on the sample grown at a substrate temperature of 620 deg. C, but no such layer was observed for the substrate temperature of 710 deg. C. This suggests that there is little mobility of Ga atoms in contact with the sapphire substrate at the lower temperature so that they cannot easily diffuse to nearby droplets and instead form a thin layer covering the surface.

  16. Real-Time X-ray Studies of Gallium Nitride Nanodot Formation by Droplet Heteroepitaxy

    SciTech Connect (OSTI)

    Wang,Y.; Ozcan, A.; Sanborn, C.; Ludwig, K.; Bhattacharyya, A.; Chandrasekaran, R.; Moustakas, T.; Zhou, L.; Smith, D.

    2007-01-01T23:59:59.000Z

    Self-organized gallium nitride nanodots have been fabricated using droplet heteroepitaxy on c-plane sapphire by plasma-assisted molecular beam epitaxy at different substrate temperatures and Ga fluxes. Nanoscale Ga droplets were initially formed on the sapphire substrate at high temperatures by Ga deposition from an effusion cell in an ultrahigh vacuum growth chamber. Subsequently, the droplets were converted into GaN nanodots using a nitrogen plasma source. The process was monitored and controlled using real-time grazing-incidence small-angle x-ray scattering. The samples were examined postgrowth by in situ grazing incidence x-ray diffraction and reflection high-energy electron diffraction, which confirmed the epitaxial relationship between the GaN nanodots and the sapphire surface. X-ray diffraction indicated that the wurtzite phase was dominant at higher substrate temperature (710? C), but a mixture of wurtzite and zinc blende phases was present at a substrate temperature of 620? C. Ex situ atomic force microscopy and transmission electron microscopy analyses showed that the dot size distribution was bimodal. A thin GaN continuous layer of ? three monolayers thick was observed by transmission electron microscopy on the sample grown at a substrate temperature of 620? C, but no such layer was observed for the substrate temperature of 710? C. This suggests that there is little mobility of Ga atoms in contact with the sapphire substrate at the lower temperature so that they cannot easily diffuse to nearby droplets and instead form a thin layer covering the surface.

  17. Luminescence dynamics and waveguide applications of europium doped gallium nitride powder

    E-Print Network [OSTI]

    Lipson, Michal

    Luminescence dynamics and waveguide applications of europium doped gallium nitride powder Carl B, bismuth shot, and europium ingot in an ammonia ambient to initially obtain chunks of the desired material

  18. Interaction of hydrogen with gallium vacancies in wurtzite GaN

    SciTech Connect (OSTI)

    Wright, A. F.

    2001-08-01T23:59:59.000Z

    First-principles techniques are used to investigate the interaction of hydrogen with gallium vacancies in wurtzite GaN. The calculations reveal that hydrogen can either compensate a vacancy by donating an electron to a vacancy acceptor level, or passivate the vacancy by forming a hydrogen-vacancy complex. A gallium vacancy can bind up to four hydrogen atoms, and hydrogen removal energies are computed as a function of the number of hydrogen atoms. Removal energies are found to depend strongly on Fermi level and complexes containing more than two hydrogen atoms are predicted to be unstable in n-type GaN. Hydrogen vibration frequencies are computed and compared with previously reported infrared absorption measurements for hydrogen-implanted GaN.

  19. Surface reconstructions of cubic gallium nitride ,,001... grown by radio frequency nitrogen plasma molecular beam epitaxy

    E-Print Network [OSTI]

    observed on c-GaN 001 , depending on the growth condi- tions and the substrate. For growth of c-GaN on Ga-rich-grown GaN 001 on MgO 001 substrate. We have deduced that these variant reconstructions are com- posed of Ga; published online 27 October 2006 Cubic GaN has been grown under gallium Ga -rich growth conditions using

  20. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    SciTech Connect (OSTI)

    Kerr, A. J. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States); Chagarov, E.; Kaufman-Osborn, T.; Kummel, A. C., E-mail: akummel@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States); Gu, S.; Wu, J.; Asbeck, P. M. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Madisetti, S.; Oktyabrsky, S. [Department of Nanoscale Science and Engineering, University at Albany–State University of New York, Albany, New York 12222 (United States)

    2014-09-14T23:59:59.000Z

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)

  1. Strongly localized excitons in gallium nitride C. Wetzel,a)

    E-Print Network [OSTI]

    Wetzel, Christian M.

    report on strong excitonic luminescence in wurtzite GaN at 3.309 and 3.365 eV T 6 K . These lines lie and characterization of excitonic luminescence transitions in wurtzite GaN about 150 meV below the fundamental elec transitions at 3.309 and 3.365 eV. Wurtzite GaN epilayers were grown by a high tempera- ture vapor phase

  2. ELECTRON MICROPROBE AND PHOTOLUMINESCENCE ANALYSIS OF EUROPIUM-DOPED GALLIUM NITRIDE LIGHT EMITTERS

    E-Print Network [OSTI]

    Strathclyde, University of

    ELECTRON MICROPROBE AND PHOTOLUMINESCENCE ANALYSIS OF EUROPIUM-DOPED GALLIUM NITRIDE LIGHT EMITTERSN-on-sapphire epilayers implanted with Europium ions, producing characteristic red emission lines between 540 and 680 nm with energies largely independent of the host material. For example, doping with europium, erbium and thulium

  3. arsenide gallium nitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lundberga,*, J. Lua , A Abstract The diffusion of indium and gallium in polycrystalline thin film Cu(In,Ga)Se2 layers has been with a larger number of vacancies, that facilitates...

  4. Formation mechanisms of spatially-directed zincblende gallium nitride nanocrystals

    SciTech Connect (OSTI)

    Wood, A. W. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Collino, R. R. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Cardozo, B. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Naab, F. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Wang, Y. Q. [Materials Science and Technology Division, Los Alamos National Lab, Los Alamos, New Mexico 87545 (United States); Goldman, R. S. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2011-12-15T23:59:59.000Z

    We report on the spatially selective formation of GaN nanocrystals embedded in GaAs. Broad-area N{sup +} implantation followed by rapid thermal annealing leads to the formation of nanocrystals at the depth of maximum ion damage. With additional irradiation using a Ga{sup +} focused ion beam, selective lateral positioning of the nanocrystals within the GaAs matrix is observed in isolated regions of increased vacancy concentration. Following rapid thermal annealing, the formation of zincblende GaN is observed in the regions of highest vacancy concentration. The nucleation of zincblende nanocrystals over the wurtzite phase of bulk GaN is consistent with the predictions of a thermodynamic model for the nanoscale size-dependence of GaN nucleation.

  5. Growth and structure of sputtered gallium nitride films

    SciTech Connect (OSTI)

    Yadav, Brajesh S.; Major, S. S.; Srinivasa, R. S. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2007-10-01T23:59:59.000Z

    GaN films have been deposited by radio frequency sputtering of a GaAs target with pure nitrogen. The growth, composition, and structure of the films deposited on quartz substrates have been studied by x-ray diffraction, transmission electron microscopy, and Raman spectroscopy. Films deposited below 300 deg. C are amorphous and As rich. Above 300 deg. C, polycrystalline, hexagonal GaN is formed, along with As rich amorphous phase, which reduces with increasing substrate temperature. At a substrate temperature of 700 deg. C, GaN films, practically free of amorphous phase, and As (<0.5 at. %) are formed. The preferred orientation depends strongly on the substrate temperature and is controlled by surface diffusion of adatoms during growth stage. Below 500 deg. C, the surface diffusion between planes dominates and results in the (1011) preferred orientation. Above 500 deg. C, the surface diffusion between grains takes over and results in (0002) preferred orientation.

  6. Vacancies in GaN bulk and nanowires: effect of self-interaction corrections This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Vacancies in GaN bulk and nanowires: effect of self-interaction corrections This article has been 24 (2012) 255801 (8pp) doi:10.1088/0953-8984/24/25/255801 Vacancies in GaN bulk and nanowires: effect vacancies in gallium nitride (GaN) bulk and nanowires using self-interaction corrected pseudopotentials (SIC

  7. Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films

    E-Print Network [OSTI]

    Tao, Jonathan Huai-Tse

    2010-01-01T23:59:59.000Z

    Growth of Single Crystal GaN Substrate using Hydride VaporZnO Nanowire on a p-GaN Substrate," J. Phys. Chem. C , 114Grown on GaN Nanocrystalline Powder Substrate," J. Cryst.

  8. Gallium Nitride Integrated Gas/Temperature Sensors for

    E-Print Network [OSTI]

    precision and accuracy · Field test for reliability and lifetime · 1) Sensor Needs and Requirements://www.ott.doe.gov/pdfs/sensor_needs.pdf #12;4 Approach GaN based devices and circuits are an attractive option for high temperature electronic) and hydrogen (30-70%) 80% Complete 2- Determine confounding effects due to multiple components 80% Complete 3

  9. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    SciTech Connect (OSTI)

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr; Coltrin, Michael Elliott; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01T23:59:59.000Z

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs) are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined using optical reflectance and the nucleation density was determined using atomic force microscopy (AFM) and Nomarski microscopy. Dislocation density was measured using X-ray diffraction and AFM after coating the surface with silicon nitride to delineate all dislocation types. The program milestone of producing GaN films with dislocation densities of 1 x 10{sup 8} cm{sup -2} was met by silicon nitride treatment of annealed sapphire followed by the multiple deposition of a low density of GaN nuclei followed by high temperature GaN growth. Details of this growth process and the underlying science are presented in this final report along with problems encountered in this research and recommendations for future work.

  10. Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films

    E-Print Network [OSTI]

    Tao, Jonathan Huai-Tse

    2010-01-01T23:59:59.000Z

    from GaN:Tb 3+ Powders and Thin Films Deposited by MOVPE andHirata, "Eu 3+ Activated GaN Thin Films Grown on Sapphire byTb 3+ in GaN Powders and Thin Films," ECS Trans. , J. Laski,

  11. Growth of c-axis oriented gallium nitride thin films on an amorphous substrate by the liquid-target pulsed laser deposition technique

    E-Print Network [OSTI]

    Kwok, Hoi S.

    nitride GaN thin films with a wurtzite structure were grown on fused silica FS substrates by pulsed laser of the current directions in GaN research is to find other alter- native substrates that not only have good as a substrate for GaN film are its excellent optical transparency, low refractive index, and good mechanical

  12. Neutron irradiation effects on metal-gallium nitride contacts

    SciTech Connect (OSTI)

    Katz, Evan J.; Lin, Chung-Han; Zhang, Zhichun [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Qiu, Jie; Cao, Lei [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Umesh K. [Departments of Electrical and Computer Engineering and Materials Science and Engineering University of California, Santa Barbara, California 93106 (United States); Brillson, Leonard J., E-mail: brillson.1@osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Physics and Center for Materials Research, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-03-28T23:59:59.000Z

    We have measured the effect of fast and thermal neutrons on GaN Schottky barriers and ohmic contacts using current–voltage and transmission line method electrical techniques, optical, atomic force and scanning electron microscopy morphological techniques, and X-ray photoemission spectroscopy chemical techniques. These studies reveal a 10{sup 15}?n/cm{sup 2} neutron threshold for Schottky barrier ideality factor increases, a 10{sup 15}?n/cm{sup 2} fast plus thermal neutron threshold for ohmic contact sheet and contact resistance increases, and 10{sup 16}?n/cm{sup 2} neutron fluence threshold for major device degradation identified with thermally driven diffusion of Ga and N into the metal contacts and surface phase changes. These results demonstrate the need for protecting metal-GaN contacts in device applications subject to neutron radiation.

  13. Neutron irradiation effects on gallium nitride-based Schottky diodes

    SciTech Connect (OSTI)

    Lin, Chung-Han; Katz, Evan J.; Zhang, Zhichun [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States)] [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States); Qiu, Jie; Cao, Lei [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)] [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Umesh K. [Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of California, Santa Barbara, California 93106 (United States)] [Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of California, Santa Barbara, California 93106 (United States); Brillson, Leonard J. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States) [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States); Department of Physics and Center for Materials Research, The Ohio State University, Columbus, Ohio 43210 (United States)

    2013-10-14T23:59:59.000Z

    Depth-resolved cathodoluminescence spectroscopy (DRCLS), time-resolved surface photovoltage spectroscopy, X-ray photoemission spectroscopy (XPS), and current-voltage measurements together show that fast versus thermal neutrons differ strongly in their electronic and morphological effects on metal-GaN Schottky diodes. Fast and thermal neutrons introduce GaN displacement damage and native point defects, while thermal neutrons also drive metallurgical reactions at metal/GaN interfaces. Defect densities exhibit a threshold neutron fluence below which thermal neutrons preferentially heal versus create new native point defects. Scanning XPS and DRCLS reveal strong fluence- and metal-dependent electronic and chemical changes near the free surface and metal interfaces that impact diode properties.

  14. The reaction of carbon tetrachloride with gallium arsenide ,,001... L. Li., S, Gan, B.-K. Han, H. Qi, and R. F. Hicksa)

    E-Print Network [OSTI]

    Li, Lian

    The reaction of carbon tetrachloride with gallium arsenide ,,001... L. Li., S, Gan, B.-K. Han, H, California 90095 Received 26 June 1997; accepted for publication 30 December 1997 Carbon tetrachloride of steps during the vapor-phase epitaxial growth of III­V compound semiconductors.3,4 Carbon tetrachloride

  15. Electrical properties of TiN on gallium nitride grown using different deposition conditions and annealing

    SciTech Connect (OSTI)

    Li, Liuan; Kishi, Akinori; Shiraishi, Takayuki; Jiang, Ying; Wang, Qingpeng; Ao, Jin-Ping, E-mail: jpao@ee.tokushima-u.ac.jp [Institute of Technology and Science, The University of Tokushima, Tokushima 770-8506 (Japan)

    2014-03-15T23:59:59.000Z

    This study evaluates the thermal stability of different refractory metal nitrides used as Schottky electrodes on GaN. The results demonstrate that TiN, MoSiN, and MoN possess good rectification and adhesion strength, with barrier heights of 0.56, 0.54, and 0.36?eV, respectively. After thermal treatment at 850?°C for 1?min, the TiN and MoN electrodes still exhibit rectifying characteristics, while the MoSiN degrades to an ohmic-like contact. For further study, several TiN films are deposited using different N{sub 2}/Ar reactive/inert sputtering gas ratios, thereby varying the nitrogen content present in the sputtering gas. Ohmic-like contact is observed with the pure Ti contact film, and Schottky characteristics are observed with the samples possessing nitrogen in the film. The average Schottky barrier height is about 0.5?eV and remains virtually constant with varying nitrogen deposition content. After examining Raman spectra and x-ray photoelectron spectroscopy results, the increase in the film resistivity after thermal treatment is attributed to oxidation and/or nitridation. Films deposited with a medium (40% and 60%) nitrogen content show the best film quality and thermal stability.

  16. Low-temperature synthesis of gallium nitride thin films using electron cyclotron resonance plasma assisted pulsed laser deposition from a GaAs target

    SciTech Connect (OSTI)

    Sun, J.; Wu, A.M.; Xu, N.; Ying, Z.F.; Shen, X.K.; Dong, Z.B.; Wu, J.D.; Shi, L.Q. [State Key Laboratory for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Institute of Modern Physics, Fudan University, Shanghai 200433 (China)

    2005-11-15T23:59:59.000Z

    Using reactive pulsed laser deposition assisted by electron cyclotron resonance (ECR) plasma, we have synthesized GaN thin films from a polycrystalline GaAs target at low temperatures. This was achieved by ablating the GaAs target in the reactive environment of a nitrogen plasma generated from ECR microwave discharge in pure nitrogen gas and depositing the films with concurrent bombardment by the low-energy nitrogen plasma stream. High-energy ion backscattering spectroscopy analysis shows that the synthesized films are gallium rich. Characterizations by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy confirm the presence of GaN bonds in the films. The recorded absorption spectrum also reveals GaN stretching mode characteristic of the hexagonal GaN phase. The synthesized GaN films are transparent in the visible region and have a band gap of 3.38 eV. Optical emission from the plume during film deposition reveals that the plume created by pulsed laser ablation of the GaAs target consists mainly of monoatomic atoms and ions of gallium and arsenic. Mechanisms responsible for the formation of GaN molecules and the growth of GaN films are also discussed.

  17. Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE

    SciTech Connect (OSTI)

    Kumar, Mahesh; Roul, Basanta [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India) [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Bhat, Thirumaleshwara N.; Rajpalke, Mohana K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)] [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Misra, P.; Kukreja, L.M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)] [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sinha, Neeraj [Office of Principal Scientific Advisor, Government of India, New Delhi 110011 (India)] [Office of Principal Scientific Advisor, Government of India, New Delhi 110011 (India); Kalghatgi, A.T. [Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India)] [Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Krupanidhi, S.B., E-mail: sbk@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2010-11-15T23:59:59.000Z

    High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.

  18. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect (OSTI)

    Kuppulingam, B., E-mail: drbaskar2009@gmail.com; Singh, Shubra, E-mail: drbaskar2009@gmail.com; Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai-600025 (India)

    2014-04-24T23:59:59.000Z

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  19. Radiation-Hardened Gallium Nitride Detector and Arrays for Fusion Diagnostics

    SciTech Connect (OSTI)

    Sun, K. X., and MacNeil, L.

    2011-09-08T23:59:59.000Z

    This poster reports testing to confirm that GaN devices exhibit the extreme radiation hardness needed for use at the NIF, functioning properly after 1x10{sup 12} protons/cm{sup 2} proton irradiation in one year.

  20. X-ray photoelectron spectroscopy of gallium nitride films grown by radical-beam gettering epitaxy

    SciTech Connect (OSTI)

    Rogozin, I. V. [Berdyansk State Pedagogical University (Ukraine)], E-mail: rogozin@bdpu.org; Kotlyarevsky, M. B. [Academy of Management and Information Technology (Ukraine)

    2007-05-15T23:59:59.000Z

    Thin GaN films were grown on GaAs(111) substrates by radical-beam gettering epitaxy. The structural quality of the films was studied by high-resolution x-ray diffraction. The chemical composition of the GaAs surface and GaN film was studied by x-ray photoelectron spectroscopy. It is shown that Ga-N and As-N bonds are formed on the GaAs surface at initial growth stages at low temperatures. The state of the film-substrate interface was studied. It was found that prolonged annealing of GaN films in nitrogen radicals shifts the composition to nitrogen excess.

  1. Electrical properties of atomic layer deposited aluminum oxide on gallium nitride

    SciTech Connect (OSTI)

    Esposto, Michele; Krishnamoorthy, Sriram; Nath, Digbijoy N.; Bajaj, Sanyam; Hung, Ting-Hsiang; Rajan, Siddharth

    2011-09-26T23:59:59.000Z

    We report on our investigation of the electrical properties of metal/Al{sub 2}O{sub 3}/GaN metal-insulator-semiconductor capacitors. We determined the conduction band offset and interface charge density of the alumina/GaN interface by analyzing the capacitance-voltage characteristics of atomic layer deposited Al{sub 2}O{sub 3} films on GaN substrates. The conduction band offset at the Al{sub 2}O{sub 3}/GaN interface was calculated to be 2.13 eV, in agreement with theoretical predications. A non-zero field of 0.93 MV/cm in the oxide under flat-band conditions in the GaN was inferred, which we attribute to a fixed net positive charge density of magnitude 4.60 x 10{sup 12 }cm{sup -2} at the Al{sub 2}O{sub 3}/GaN interface. We provide hypotheses to explain the origin of this charge by analyzing the energy band line-up.

  2. Diffusion, Uptake and Release of Hydrogen in p-type Gallium Nitride: Theory and Experiment

    SciTech Connect (OSTI)

    MYERS JR.,SAMUEL M.; WRIGHT,ALAN F.; PETERSEN,GARY A.; WAMPLER,WILLIAM R.; SEAGER,CARLETON H.; CRAWFORD,MARY H.; HAN,JUNG

    2000-06-27T23:59:59.000Z

    The diffusion, uptake, and release of H in p-type GaN are modeled employing state energies from density-function theory and compared with measurements of deuterium uptake and release using nuclear-reaction analysis. Good semiquantitative agreement is found when account is taken of a surface permeation barrier.

  3. Lifetime estimation of intrinsic silicon nitride MIM capacitors in a gan MMIC process

    E-Print Network [OSTI]

    Demirtas, Sefa

    We have studied the reliability of intrinsic SiN MIM capacitors designed for 48 V and 125 [superscript 0]C operation and manufactured in a GaN process flow. It is shown that very small area capacitors (10um x 10um) with a ...

  4. The equilibrium state of hydrogen in gallium nitride: Theory and experiment

    SciTech Connect (OSTI)

    MYERS JR.,SAMUEL M.; WRIGHT,ALAN F.; PETERSEN,GARY A.; SEAGER,CARLETON H.; WAMPLER,WILLIAM R.; CRAWFORD,MARY H.; HAN,JUNG

    2000-04-17T23:59:59.000Z

    Formation energies and vibrational frequencies for H in wurtzite GaN were calculated from density functional theory and used to predict equilibrium state occupancies and solid solubilities for p-type, intrinsic, and n-type material. The solubility of deuterium (D) was measured at 600--800 C as a function of D{sub 2} pressure and doping and compared with theory. Agreement was obtained by reducing the H formation energies 0.2 eV from ab-initio theoretical values. The predicted stretch-mode frequency for H bound to the Mg acceptor lies 5% above an observed infrared absorption attributed to this complex. It is concluded that currently recognized H states and physical processes account for the equilibrium behavior of H examined in this work.

  5. Group III-nitride thin films grown using MBE and bismuth

    DOE Patents [OSTI]

    Kisielowski, Christian K. (Peidmont, CA); Rubin, Michael (Berkeley, CA)

    2000-01-01T23:59:59.000Z

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  6. Group III-nitride thin films grown using MBE and bismuth

    DOE Patents [OSTI]

    Kisielowski, Christian K. (Piedmont, CA); Rubin, Michael (Berkeley, CA)

    2002-01-01T23:59:59.000Z

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  7. Scanning Tunneling Microscopy and Surface Simulation of Zinc-Blende GaN(001) Intrinsic 4 Reconstruction: Linear Gallium Tetramers?

    E-Print Network [OSTI]

    Reconstruction: Linear Gallium Tetramers? Hamad A. AL-Brithen, Rong Yang, Muhammad B. Haider, Costel Constantin and occupied states, in agreement with surface simulations based on the 4 1 linear tetramer model the existence of linear Ga tetramers. DOI: PACS numbers: 68.35.Bs, 68.37.Ef, 73.20.At Based on both fundamental

  8. Luminescence properties of defects in GaN

    SciTech Connect (OSTI)

    Reshchikov, Michael A.; Morkoc, Hadis [Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2005-03-15T23:59:59.000Z

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of other impurities, such as C, Si, H, O, Be, Mn, Cd, etc., on the luminescence properties of GaN are also reviewed. Further, atypical luminescence lines which are tentatively attributed to the surface and structural defects are discussed. The effect of surfaces and surface preparation, particularly wet and dry etching, exposure to UV light in vacuum or controlled gas ambient, annealing, and ion implantation on the characteristics of the defect-related emissions is described.

  9. Efficient Switches for Solar Power Conversion: Four Quadrant GaN Switch Enabled Three Phase Grid-Tied Microinverters

    SciTech Connect (OSTI)

    None

    2012-02-13T23:59:59.000Z

    Solar ADEPT Project: Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm’s transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions—making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

  10. LA TECHNOLOGIE GAN ET SES APPLICATIONS POUR L'ELECTRONIQUE ROBUSTE, HAUTE FREQUENCE ET DE

    E-Print Network [OSTI]

    Boyer, Edmond

    technologies carbure de silicium (SiC) et nitrure de gallium (GaN) possèdent des qualités intrinsèques réalisation de dispositifs optiques (GaN et alliages InP, Al, P), ce qui autorise un spectre d'applications du visible aux ultraviolets, en émission et en détection : le matériau GaN est le seul qui puisse prétendre à

  11. Watching GaN Nanowires Grow Eric A. Stach,*, Peter J. Pauzauskie, Tevye Kuykendall,

    E-Print Network [OSTI]

    Yang, Peidong

    Watching GaN Nanowires Grow Eric A. Stach,*, Peter J. Pauzauskie, Tevye Kuykendall, Joshua of the growth of GaN nanowires via a self-catalytic vapor-liquid-solid (VLS) mechanism. High temperature thermal decomposition of GaN in a vacuum yields nanoscale Ga liquid droplets and gallium/nitrogen vapor species

  12. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02T23:59:59.000Z

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  13. Determination of wurtzite GaN lattice polarity based on surface reconstruction

    E-Print Network [OSTI]

    Determination of wurtzite GaN lattice polarity based on surface reconstruction A. R. Smith and R. M identify two categories of reconstructions occurring on wurtzite GaN surfaces, the first associated nitride-based devices, epi- taxial growth occurs on the c plane of wurtzite GaN. A key characteristic

  14. High Efficiency m-plane LEDs on Low Defect Density Bulk GaN Substrates

    SciTech Connect (OSTI)

    David, Aurelien

    2012-10-15T23:59:59.000Z

    Solid-state lighting is a key technology for reduction of energy consumption in the US and worldwide. In principle, by replacing standard incandescent bulbs and other light sources with sources based on light-emitting diodes (LEDs), ultimate energy efficiency can be achieved. The efficiency of LEDs has improved tremendously over the past two decades, however further progress is required for solid- state lighting to reach its full potential. The ability of an LED at converting electricity to light is quantified by its internal quantum efficiency (IQE). The material of choice for visible LEDs is Gallium Nitride (GaN), which is at the basis of blue-emitting LEDs. A key factor limiting the performance of GaN LEDs is the so-called efficiency droop, whereby the IQE of the LED decreases significantly at high current density. Despite decades of research, efficiency droop remains a major issue. Since high-current operation is necessary for practical lighting applications, reducing droop is a major challenge for the scientific community and the LED industry. Our approach to solving the droop issue is the use of newly available low-defect-density bulk GaN non-polar substrates. In contrast to the standard foreign substrates (sapphire, silicon carbide, silicon) used in the industry, we have employed native bulk GaN substrates with very low defect density, thus ensuring exquisite material quality and high IQE. Whereas all commercial LEDs are grown along the c-plane crystal direction of GaN, we have used m-plane non-polar substrates; these drastically modify the physical properties of the LED and enable a reduction of droop. With this approach, we have demonstrated very high IQE performance and low droop. Our results focused on violet and blue LEDs. For these, we have demonstrated very high peak IQEs and current droops of 6% and 10% respectively (up to a high current density of 200A.cm-2). All these results were obtained under electrical operation. These high IQE and low droop values are in line with the program’s milestones. They demonstrate that bulk non-polar GaN substrates represent a disruptive technology for LED performance. Application of this technology to real-world products is feasible, provided that the cost of GaN substrates is compatible with the market’s requirement.

  15. Cubic nitride templates

    DOE Patents [OSTI]

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30T23:59:59.000Z

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  16. Ferromagnetism in undoped One-dimensional GaN Nanowires

    SciTech Connect (OSTI)

    Jeganathan, K., E-mail: kjeganathan@yahoo.com, E-mail: jagan@physics.bdu.ac.in; Purushothaman, V. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024 (India)] [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024 (India); Debnath, R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4 (Canada)] [Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4 (Canada); Arumugam, S. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli – 620 024 (India)] [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli – 620 024 (India)

    2014-05-15T23:59:59.000Z

    We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ?0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10{sup ?8} mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  17. Catalyst-Free GaN Nanowire Nucleation: Correlation of Temperature-Dependent Nanowire Orientation and Growth Matrix Changes

    E-Print Network [OSTI]

    Ayres, Virginia

    Catalyst-Free GaN Nanowire Nucleation: Correlation of Temperature-Dependent Nanowire Orientation nitride (GaN) nanowires have been under extensive investigation in recent years due to their unique that the GaN nanowires had internal structures that continued along the entire length of the nanowires

  18. (Data in kilograms of gallium content, unless noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 1995. Two companies in

    E-Print Network [OSTI]

    : No domestic primary gallium recovery was reported in 1995. Two companies in Oklahoma and Utah recovered devices, which include light-emitting diodes (LED's), laser diodes, photodetectors, and solar cells contract to a consortium of private companies to develop gallium nitride technology. Blue LED's are useful

  19. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    SciTech Connect (OSTI)

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P., E-mail: gdim@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A. [Department of Physics, Microelectronics Research Group, University of Crete, P.O. Box 2208, GR 71003, Greece and IESL, FORTH, P.O. Box 1385, GR71110 Heraklion (Greece); Christofilos, D. [Physics Division, School of Technology, Aristotle University of Thessaloniki, GR54124 Thessaloniki (Greece)

    2014-06-07T23:59:59.000Z

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  20. Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template

    SciTech Connect (OSTI)

    Wang, Y.D.; Zang, K.Y.; Chua, S.J.; Tripathy, S.; Chen, P.; Fonstad, C.G. [Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore 117576 (Singapore) and Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Department of Electrical and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2005-12-19T23:59:59.000Z

    We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110 nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

  1. Operation of ohmic Ti/Al/Pt/Au multilayer contacts to GaN at 600?°C in air

    SciTech Connect (OSTI)

    Hou, Minmin, E-mail: mmhou@stanford.edu [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Senesky, Debbie G. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305 (United States)

    2014-08-25T23:59:59.000Z

    The high-temperature characteristics (at 600?°C) of Ti/Al/Pt/Au multilayer contacts to gallium nitride (GaN) in air are reported. Microfabricated circular-transfer-line-method test structures were subject to 10 h of thermal storage at 600?°C. Intermittent electrical characterization during thermal storage showed minimal variation in the contact resistance after 2 h and that the specific contact resistivity remained on the order of 10{sup ?5} ?-cm{sup 2}. In addition, the thermally stored multilayer contacts to GaN showed ohmic I-V characteristics when electrically probed at 600?°C. The microstructural analysis with atomic force microscopy showed minimal changes in surface roughness after thermal storage. Observations of the thermochemical reactions after thermal storage using Auger electron spectroscopy chemical depth profiling showed diffusion of Pt and minimal additional Al oxidation. The results support the use of Ti/Al/Pt/Au multilayer metallization for GaN-based sensors and electronic devices that will operate within a high-temperature and oxidizing ambient.

  2. Unoccupied band structure of wurtzite GaN,,0001... T. Valla and P. D. Johnson

    E-Print Network [OSTI]

    Homes, Christopher C.

    Unoccupied band structure of wurtzite GaN,,0001... T. Valla and P. D. Johnson Department of Physics of the unoccupied states of thin-film n-type wurtzite GaN. For incident electron energies below 30 eV, free of electronic devices based on heteroepitaxially grown wurtzite films of these nitrides.1 Extensive investiga

  3. Determination of Wurtzite GaN Lattice Polarity Based on Surface Reconstruction

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Determination of Wurtzite GaN Lattice Polarity Based on Surface Reconstruction A. R. Smith,1 R. M of reconstructions occurring on wurtzite GaN surfaces, the first associated with the N-face, (000 ), and the secondN. In the fabrication of most nitride-based devices, epitaxial growth occurs on the c-plane of wurtzite GaN. A key

  4. Surface morphology evolution of m-plane (1100) GaN during molecular beam epitaxy growth: Impact of Ga/N ratio, miscut direction, and growth temperature

    SciTech Connect (OSTI)

    Shao Jiayi; Tang Liang; Malis, Oana [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Edmunds, Colin [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Gardner, Geoff [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, Michael [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2013-07-14T23:59:59.000Z

    We present a systematic study of morphology evolution of [1100] m-plane GaN grown by plasma-assisted molecular beam epitaxy on free-standing m-plane substrates with small miscut angles towards the -c [0001] and +c [0001] directions under various gallium to nitrogen (Ga/N) ratios at substrate temperatures T = 720 Degree-Sign C and T = 740 Degree-Sign C. The miscut direction, Ga/N ratio, and growth temperature are all shown to have a dramatic impact on morphology. The observed dependence on miscut direction supports the notion of strong anisotropy in the gallium adatom diffusion barrier and growth kinetics. We demonstrate that precise control of Ga/N ratio and substrate temperature yields atomically smooth morphology on substrates oriented towards +c [0001] as well as the more commonly studied -c [0001] miscut substrates.

  5. Efficient wireless charging with gallium nitride FETs

    E-Print Network [OSTI]

    Yeh, Theresa (Theresa I.)

    2014-01-01T23:59:59.000Z

    Though wireless charging is more convenient than traditional wired charging methods, it is currently less efficient. This not only wastes power but can also result in a longer charging time. Improving the efficiency of ...

  6. Nanostructured GaN Nucleation Layer for Light-Emitting Diodes

    SciTech Connect (OSTI)

    Narayan, Jagdish [North Carolina State University; Pant, Punam [North Carolina State University; Wei, Wei [North Carolina State University; Narayan, Roger [University of North Carolina, Chapel Hill; Budai, John D [ORNL

    2007-01-01T23:59:59.000Z

    This paper addresses the formation of nanostructured gallium nitride nucleation (NL) or initial layer (IL), which is necessary to obtain a smooth surface morphology and reduce defects in h-GaN layers for light-emitting diodes and lasers. From detailed X-ray and HR-TEM studies, researchers determined that this layer consists of nanostructured grains with average grain size of 25 nm, which are separated by small-angle grain boundaries (with misorientation 1 ), known as subgrain boundaries. Thus NL is considered to be single-crystal layer with mosaicity of about 1 . These nc grains are mostly faulted cubic GaN (c-GaN) and a small fraction of unfaulted c-GaN. This unfaulted Zinc-blende c-GaN, which is considered a nonequilibrium phase, often appears as embedded or occluded within the faulted c-GaN. The NL layer contained in-plane tensile strain, presumably arising from defects due to island coalescence during Volmer-Weber growth. The 10L X-ray scans showed c-GaN fraction to be over 63% and the rest h-GaN. The NL layer grows epitaxially with the (0001) sapphire substrate by domain matching epitaxy, and this epitaxial relationship is remarkably maintained when c-GaN converts into h-GaN during high-temperature growth.

  7. Formation of manganese -doped atomic layer in wurtzite GaN Meng Shi, Abhijit Chinchore, Kangkang Wang, Andrada-Oana Mandru, Yinghao Liu et al.

    E-Print Network [OSTI]

    Formation of manganese -doped atomic layer in wurtzite GaN Meng Shi, Abhijit Chinchore, Kangkang in wurtzite GaN Meng Shi, Abhijit Chinchore, Kangkang Wang, Andrada-Oana Mandru, Yinghao Liu, and Arthur R 2012) We describe the formation of a d-doped manganese layer embedded within c-plane wurtzite gallium

  8. Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy

    SciTech Connect (OSTI)

    Shi, B. M.; Xie, M. H.; Wu, H. S.; Wang, N.; Tong, S. Y. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tang, Hong Kong (China)

    2006-10-09T23:59:59.000Z

    GaN exists in both wurtzite and zinc-blende phases and the growths of the two on its (0001) or (111) surfaces are achieved by choosing proper deposition conditions of molecular-beam epitaxy (MBE). At low substrate temperatures but high gallium fluxes, metastable zinc-blende GaN films are obtained, whereas at high temperatures and/or using high nitrogen fluxes, equilibrium wurtzite phase GaN epilayers resulted. This dependence of crystal structure on substrate temperature and source flux is not affected by deposition rate. Rather, the initial stage nucleation kinetics plays a primary role in determining the crystallographic structures of epitaxial GaN by MBE.

  9. Electron transport in the III-V nitride alloys

    SciTech Connect (OSTI)

    Foutz, B.E.; O'Leary, S.K.; Shur, M.S.; Eastman, L.F.

    1999-07-01T23:59:59.000Z

    The authors study electron transport in the alloys of aluminum nitride and gallium nitride and alloys of indium nitride and gallium nitride. In particular, employing Monte Carlo simulations they determine the velocity-field characteristics associated with these alloys for various alloy compositions. They also determine the dependence of the low-field mobility on the alloy composition. They find that while the low-field mobility is a strong function of the alloy composition, the peak and saturation drift velocities exhibit a more mild dependence. Transient electron transport is also considered. They find that the velocity overshoot characteristic is a strong function of the alloy composition. The device implications of these results are discussed.

  10. MOVPE growth of semipolar III-nitride semiconductors on CVD graphene Priti Gupta n

    E-Print Network [OSTI]

    Deshmukh, Mandar M.

    MOVPE growth of semipolar III-nitride semiconductors on CVD graphene Priti Gupta n , A.A. Rahman pressure metalorganic vapor phase epitaxy B1. Graphene B1. Nitrides B2. Semiconducting III­V materials a b on graphene grown by chemical vapour deposition. GaN, AlGaN alloys, and InN layers are grown using an Al

  11. Role of defects in III-nitride based electronics

    SciTech Connect (OSTI)

    HAN,JUNG; MYERS JR.,SAMUEL M.; FOLLSTAEDT,DAVID M.; WRIGHT,ALAN F.; CRAWFORD,MARY H.; LEE,STEPHEN R.; SEAGER,CARLETON H.; SHUL,RANDY J.; BACA,ALBERT G.

    2000-01-01T23:59:59.000Z

    The LDRD entitled ``Role of Defects in III-Nitride Based Devices'' is aimed to place Sandia National Laboratory at the forefront of the field of GaN materials and devices by establishing a scientific foundation in areas such as material growth, defect characterization/modeling, and processing (metalization and etching) chemistry. In this SAND report the authors summarize their studies such as (1) the MOCVD growth and doping of GaN and AlGaN, (2) the characterization and modeling of hydrogen in GaN, including its bonding, diffusion, and activation behaviors, (3) the calculation of energetic of various defects including planar stacking faults, threading dislocations, and point defects in GaN, and (4) dry etching (plasma etching) of GaN (n- and p-types) and AlGaN. The result of the first AlGaN/GaN heterojunction bipolar transistor is also presented.

  12. Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory

    E-Print Network [OSTI]

    Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact; published online 20 October 2006 The authors have studied the electronic structure of InN and GaN employing. © 2006 American Institute of Physics. DOI: 10.1063/1.2364469 The group III-nitrides AlN, GaN, and In

  13. Step-induced misorientation of GaN grown on r-plane sapphire

    SciTech Connect (OSTI)

    Smalc-Koziorowska, J.; Dimitrakopulos, G. P.; Sahonta, S.-L.; Komninou, Ph. [Physics Department, Aristotle University, GR 54124 Thessaloniki (Greece); Tsiakatouras, G.; Georgakilas, A. [Microelectronics Research Group, Department of Physics, University of Crete, P.O. Box 2208, GR 71003, and IESL, FORTH, P.O. Box 1527, GR 71110 Heraklion (Greece)

    2008-07-14T23:59:59.000Z

    In the growth of nonpolar (1120) a-plane GaN on r-plane (1102) sapphire by plasma-assisted molecular beam epitaxy, misoriented crystallites are observed close to the substrate. They have average diameter {approx}10 nm and are oriented with the (0001){sub GaN} plane approximately parallel to the (2113){sub sapph.} plane and [0110]{sub GaN} parallel [1101]{sub sapph.}. This semipolar orientation is promoted by a low misfit (2.4%) between (1011){sub GaN} and (1210){sub sapph.} planes. Its introduction, after nitridation treatment, is due to GaN nucleation on (2113){sub sapph.} step facets inclined at 26 deg. relative to the r-plane. Two variants are observed, leading to twinning when they abut inside the epilayer.

  14. May 20, 2010 Growing gallium arsenide in thick multilayer stacks could make a big

    E-Print Network [OSTI]

    Rogers, John A.

    of photovoltaics and optoelectronic devices such as near-infrared (NIR) imagers looks set to become significantly material systems such as gallium nitride and indium phosphide (Nature 465 329). "We can generate compound of substrates, including glass and plastic. In photovoltaics, we expect the cost reductions to be significant

  15. Atomic-scale studies on the growth of palladium and titanium on GaN(0001)

    E-Print Network [OSTI]

    Castell, Martin

    Atomic-scale studies on the growth of palladium and titanium on GaN(0001) C. No¨renberg a,b,*, M nitride; Palladium; Titanium; Alloys; Epitaxy; Metal­semiconductor interfaces; Nanostructures; Scanning;Here, we have focused on atomic-scale studies of the ini- tial growth stages of palladium and titanium

  16. Synthesis, structure, and optical properties of colloidal GaN quantum dots

    SciTech Connect (OSTI)

    Micic, O.I.; Ahrenkiel, S.P.; Bertram, D.; Nozik, A.J. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)] [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    1999-07-01T23:59:59.000Z

    Colloidal chemistry was used to synthesize GaN quantum dots. A GaN precursor, polymeric gallium imide, {l_brace}Ga(NH){sub 3/2}{r_brace}{sub n}, which was prepared by the reaction of dimeric amidogallium with ammonia at room temperature, was heated in trioctylamine at 360&hthinsp;{degree}C for one day to produce GaN nanocrystals. The GaN particles were separated, purified, and partially dispersed in a nonpolar solvent to yield transparent colloidal solutions that consisted of individual GaN particles. The GaN nanocrystals have a spherical shape and mean diameter of about 30{plus_minus}12&hthinsp;{Angstrom}. The spectroscopic behavior of colloidal transparent dispersion has been investigated and shows that the band gap of the GaN nanocrystals shifts to slightly higher energy due to quantum confinement. The photoluminescence spectrum at 10 K (excited at 310 nm) shows band edge emission with several emission peaks in the range between 3.2 and 3.8 eV, while the photoluminescence excitation spectrum shows two excited-state transitions at higher energies. {copyright} {ital 1999 American Institute of Physics.}

  17. Z .Applied Surface Science 154155 2000 439443 www.elsevier.nlrlocaterapsusc

    E-Print Network [OSTI]

    nitride AlN and cubic gallium nitride GaN is studied. The effects of ambient pressure and substrate of cubic AlN and cubic GaN. Specifi- cally, the effects of substrate temperature and ambi- ent pressure temperature on the structure of the AlN and GaN films are systematically investigated. It is shown

  18. Above room-temperature ferromagnetism of Mn delta-doped GaN nanorods

    SciTech Connect (OSTI)

    Lin, Y. T.; Wadekar, P. V.; Kao, H. S.; Chen, T. H.; Chen, Q. Y.; Tu, L. W., E-mail: lwtu@faculty.nsysu.edu.tw [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Huang, H. C.; Ho, N. J. [Department of Materials and Optoelectronic Science and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)

    2014-02-10T23:59:59.000Z

    One-dimensional nitride based diluted magnetic semiconductors were grown by plasma-assisted molecular beam epitaxy. Delta-doping technique was adopted to dope GaN nanorods with Mn. The structural and magnetic properties were investigated. The GaMnN nanorods with a single crystalline structure and with Ga sites substituted by Mn atoms were verified by high-resolution x-ray diffraction and Raman scattering, respectively. Secondary phases were not observed by high-resolution x-ray diffraction and high-resolution transmission electron microscopy. In addition, the magnetic hysteresis curves show that the Mn delta-doped GaN nanorods are ferromagnetic above room temperature. The magnetization with magnetic field perpendicular to GaN c-axis saturates easier than the one with field parallel to GaN c-axis.

  19. Development of strain reduced GaN on Si (111) by substrate engineering

    SciTech Connect (OSTI)

    Jamil, M.; Grandusky, J.R.; Jindal, V.; Shahedipour-Sandvik, F.; Guha, S.; Arif, M. [College of Nanoscale Science and Engineering, University at Albany-State University of New York, 255 Fuller Rd, Albany, New York 12203 (United States); Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-22T23:59:59.000Z

    We report on a novel scheme of substrate engineering to obtain high-quality GaN layers on Si substrates. Ion implantation of an AlN/Si substrate is performed to create a defective layer that partially isolates the III-nitride layer and the Si substrate and helps to reduce the strain in the film. Raman spectroscopy shows a substantial decrease in in-plane strain in GaN films grown on nitrogen implanted substrates. This is confirmed by the enhancement of the E{sub 2} (TO) phonon frequency from 564 to 567 cm{sup -1} corresponding to 84% stress reduction and substantial decrease in crack density for a 2-{mu}m-thick GaN film. GaN films grown on implanted AlN/Si substrate have better optical properties and smoother surface morphology as compared to nonimplanted AlN/Si substrate.

  20. Nitrided Metallic Bipolar Plates

    Broader source: Energy.gov (indexed) [DOE]

    nitrided surface treatment. In this approach, an electrically-conductive and corrosion-resistant chromium-nitride surface layer is formed on the bipolar plate component by...

  1. Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Bhat, Thirumaleshwara N.; Rajpalke, Mohana K.; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore- 560012 (India); Roul, Basanta; Kumar, Mahesh [Materials Research Centre, Indian Institute of Science, Bangalore- 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore-560013 (India)

    2011-11-01T23:59:59.000Z

    Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic ({beta}) and hexagonal ({alpha}) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 deg. C when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 deg. C. Core-level photoelectron spectroscopy of Si{sub x}N{sub y} layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors ({approx}1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively.

  2. Electrical characterization of ensemble of GaN nanowires grown by the molecular beam epitaxy technique

    SciTech Connect (OSTI)

    Kolkovsky, Vl. [Technische Universität Dresden, 01062 Dresden (Germany)] [Technische Universität Dresden, 01062 Dresden (Germany); Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K. [Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32-46, 02-668 Warsaw (Poland)] [Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32-46, 02-668 Warsaw (Poland)

    2013-08-26T23:59:59.000Z

    High quality Schottky contacts are formed on GaN nanowires (NWs) structures grown by the molecular beam epitaxy technique on Si(111) substrate. The current-voltage characteristics show the rectification ratio of about 10{sup 3} and the leakage current of about 10{sup ?4} A/cm{sup 2} at room temperature. From the capacitance-voltage measurements the free carrier concentration in GaN NWs is determined as about 10{sup 16} cm{sup ?3}. Two deep levels (H200 and E280) are found in the structures containing GaN NWs. H200 is attributed to an extended defect located at the interface between the substrate and SiN{sub x} or near the sidewalls at the bottom of the NWs whereas E280 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  3. Properties of H, O and C in GaN

    SciTech Connect (OSTI)

    Pearton, S.J.; Abernathy, C.R.; Lee, J.W. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1996-04-01T23:59:59.000Z

    The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

  4. Preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, Carlos E. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide.

  5. Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy

    E-Print Network [OSTI]

    Ghosh, Sandip

    Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated; published 7 January 2002 We investigate the modification of the electronic band structure in wurtzite Ga.40.Fy I. INTRODUCTION The wurtzite WZ structure of III-V nitrides leads to electrostatic fields due

  6. Fe-Centers in GaN as Candidates for Spintronics Applications Enno Malguth, Axel Hoffmann1

    E-Print Network [OSTI]

    Nabben, Reinhard

    High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum We compare the quality factor values of the whispery gallery modes of microdisks incorporating GaN quantum dots (QDs) grown on AlN and AlGaN barriers by performing room temperature photoluminescence (PL

  7. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials

    E-Print Network [OSTI]

    Tanga, Fengzai; Moodya, Michael P.; Martina, Tomas L.; Bagota, Paul A. J.; Kappersa, Menno J.; Oliver, Rachel A.

    2015-04-30T23:59:59.000Z

    study of Cu grains 385 (Kempshall, et al., 2001). In terms of binary III-nitrides, the metal–N bond length in the 386 wurtzite structure increases from AlN, to GaN and to InN (Ambacher, 1998), being 387 associated with corresponding bond energy of 2...

  8. Substrate-dependent wetting layer formation during GaN growth: Impact on the morphology of the films

    SciTech Connect (OSTI)

    Sidorenko, A.; Peisert, H.; Neumann, H.; Chasse, T. [Universitaet Tuebingen, Institut fuer Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, D-72076 Tuebingen (Germany); Leibniz-Institut fuer Oberflaechenmodifizierung e.V. Permoserstrasse 15, D-04318 Leipzig (Germany); Universitaet Tuebingen, Institut fuer Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, D-72076 Tuebingen (Germany)

    2007-08-15T23:59:59.000Z

    We have compared epitaxial growth of GaN films on 6H-SiC(0001)-({radical}(3)x{radical}(3))R30 deg. -Ga and on (0001)-sapphire. Predeposited Ga layers were nitrided by ion beam assisted molecular beam epitaxy. Whereas on SiC the initially deposited Ga covers the substrate surface completely, on sapphire only Ga droplets are present. The different distribution of the predeposited Ga affects the morphology of GaN significantly. Scanning electron microscopy and atomic force microscopy analysis of the grown films show that the complete wetting of the SiC substrate with Ga enhances finally the size and the flatness of GaN terraces and thus the quality of the film. X-ray photoelectron spectroscopy measurements reveal that metallic Ga resides also on top of the GaN films during the growth.

  9. Electronic Transport Characteristics of Gallium Nitride Nanowire-based Nanocircuits

    E-Print Network [OSTI]

    Ayres, Virginia

    . The measurements indicate a working field effect transistor utilizing a global back gate configuration. Very high and drain contacts were patterned using electron beam lithography, with Ti/Au used for the conducting source and drain material. The backside of the wafer was stripped of silicon dioxide using hydrofluoric acid and Ti

  10. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown...

    Energy Savers [EERE]

    silicon Widespread adoption of efficient load architectures enabled by GaN-based power electronics and lighting can lead to a 25% reduction in world energy consumption ...

  11. Electrochemical Solution Growth: Gallium Nitride Crystal Growth - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use

  12. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department ofEnergy Nuclear

  13. High-Quality, Low-Cost Bulk Gallium Nitride Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r rRancho Cordoba,High-Quality,

  14. Nitride fuel performance 

    E-Print Network [OSTI]

    Reynaud, Sylvie Marie Aurel?ie

    2002-01-01T23:59:59.000Z

    The purpose of this work was to assess the potential of nitride fuels in the current context of the nuclear industry. Nitride fuels systems have indeed been for the past decade the subject of new interest from the international community...

  15. High-Efficiency Nitride-Based Solid-State Lighting

    SciTech Connect (OSTI)

    Paul T. Fini; Shuji Nakamura

    2005-07-30T23:59:59.000Z

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

  16. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect (OSTI)

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D. [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, India 110012 (India)] [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, India 110012 (India)

    2013-09-15T23:59:59.000Z

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  17. Gallium Safety in the Laboratory

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2003-05-07T23:59:59.000Z

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  18. Gallium interactions with Zircaloy

    E-Print Network [OSTI]

    West, Michael Keith

    1998-01-01T23:59:59.000Z

    -nitride insulated cylinder wrapped with a tantalum oven wire and provides for evaporation of solid source materials. For an appropriate combination of gas pressure, filament current, and anode voltage, a plasma is formed in the hollow cathode region of the source... of the goniometer motor above 100 'C. In addition, braided copper straps were wrapped around the goniometer motors and connected to the cold plates in the target chamber. Zirc-4 Target Heater Wire Current = 2. 5 A To Current Integrator Inner Cup Bias = -200...

  19. Growth kinetics of AlN and GaN films grown by molecular beam epitaxy on R-plane sapphire substrates

    SciTech Connect (OSTI)

    Chandrasekaran, R.; Moustakas, T. D. [Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 (United States); Ozcan, A. S.; Ludwig, K. F. [Physics Department, Boston University, Boston, Massachusetts 02215 (United States); Zhou, L.; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2010-08-15T23:59:59.000Z

    This paper reports the growth by molecular beam epitaxy of AlN and GaN thin films on R-plane sapphire substrates. Contrary to previous findings that GaN grows with its (1120) A-plane parallel to the (1102) R-plane of sapphire, our results indicate that the crystallographic orientation of the III-nitride films is strongly dependent on the kinetic conditions of growth for the GaN or AlN buffer layers. Thus, group III-rich conditions for growth of either GaN or AlN buffers result in nitride films having (1120) planes parallel to the sapphire surface, and basal-plane stacking faults parallel to the growth direction. The growth of these buffers under N-rich conditions instead leads to nitride films with (1126) planes parallel to the sapphire surface, with inclined c-plane stacking faults that often terminate threading dislocations. Moreover, electron microscope observations indicate that slight miscut ({approx}0.5 deg. ) of the R-plane sapphire substrate almost completely suppresses the formation of twinning defects in the (1126) GaN films.

  20. Anomalous nonlinear photoresponse in a InGaNGaN heterostructure J. Zeller,* W. Rudolph, and M. Sheik-Bahae

    E-Print Network [OSTI]

    Sheik-Bahae, Mansoor

    deposition on a c-plane sapphire substrate. A 20 nm thick low-temperature grown GaN buffer layer between the sapphire substrate and the n-GaN layer as well as linear photoconductivity in a Gallium nitride/ Indium-Gallium nitride GaN/InGaN heterostructure

  1. MODIFYING PC1D TO MODEL SPONTANEOUS AND PIEZOELECTRIC POLARIZATION IN III-V NITRIDE SOLAR CELLS

    E-Print Network [OSTI]

    Honsberg, Christiana

    absorption coefficients and radiation tolerance. These features not only enable InGaN to be exploited III-nitrides (AlN, GaN, InN and their alloys) influence the optical and electrical properties as induced-surface/interface charges at the initialization of the solving routine. Simulations of InGaN solar

  2. Device-level thermal analysis of GaN-based electronics

    E-Print Network [OSTI]

    Bagnall, Kevin Robert

    2013-01-01T23:59:59.000Z

    Gallium nitride (GaN)-based microelectronics are one of the most exciting semiconductor technologies for high power density and high frequency electronics. The excellent electrical properties of GaN and its related alloys ...

  3. Applied Materials Develops an Advanced Epitaxial Growth System to Bring Down LED Costs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Applied Materials has developed an advanced epitaxial growth system for gallium nitride (GaN) LED devices that decreases operating costs, increases internal quantum efficiency, and improves binning yields.

  4. Sandia National Laboratories: SAND 2013-0469 P

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency, Solid-State Lighting A new top-down method for fabricating gallium nitride (GaN) nanowires with precisely controlled geometries enables single-mode, rather than...

  5. 2DEG electrodes for piezoelectric transduction of AlGaN/GaN MEMS resonators

    E-Print Network [OSTI]

    Weinstein, Dana

    A 2D electron gas (2DEG) interdigitated transducer (IDT) in Gallium Nitride (GaN) resonators is introduced and demonstrated. This metal-free transduction does not suffer from the loss mechanisms associated with more commonly ...

  6. Sandia National Laboratories: BES EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency, Solid-State Lighting A new top-down method for fabricating gallium nitride (GaN) nanowires with precisely controlled geometries enables single-mode, rather than...

  7. Soraa Is Optimizing the Use of Non-Polar and Semi-Polar Substrates...

    Broader source: Energy.gov (indexed) [DOE]

    effects on cost as well as performance. Non-polar and semi-polar gallium nitride (GaN), combined with low defect density freestanding bulk-GaN technology, offers significant...

  8. Epitaxial Thin Film XRD | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of Gallium Nitride Template Layer Strain on the Growth of InxGa1-xNGaN Multiple Quantum Well Light Emitting Diodes. GaN template layer strain effects on the...

  9. Sandia National Laboratories: solid-state lighting science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency, Solid-State Lighting A new top-down method for fabricating gallium nitride (GaN) nanowires with precisely controlled geometries enables single-mode, rather than...

  10. Sandia National Laboratories: Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for example ZnO, will be important. AlGaInN Materials LEDs based on gallium nitride (GaN) and ternary ... Last Updated: June 13, 2012 Go To Top Exceptional service in the...

  11. Veeco

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to design indium gallium nitride (InGaN) MOCVD growth systems. The actual experimental GaN non-uniformity is about four times greater than predicted because the model does not...

  12. Potential effects of gallium on cladding materials

    SciTech Connect (OSTI)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01T23:59:59.000Z

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  13. Synthesis, characterization, and biotemplated assembly of indium nitride and indium gallium nitride nanoparticles

    E-Print Network [OSTI]

    Hsieh, Jennifer Chia-Jen

    2010-01-01T23:59:59.000Z

    A low-temperature, ambient pressure solution synthesis of colloidal InN nanoparticles is presented. This synthesis utilizes a previously dismissed precursor and results in individual, non-aggregated nanoparticles with ...

  14. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, James M. (Lisle, IL); Lepetre, Yves J. (Lauris, FR); Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL)

    1989-01-01T23:59:59.000Z

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  15. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04T23:59:59.000Z

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  16. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOE Patents [OSTI]

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22T23:59:59.000Z

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  17. IMPROVEMENT OF CRYSTALLINE QUALITY OF GROUP III NITRIDES ON SAPPHIRE USING LOW TEMPERATURE INTERLAYERS

    E-Print Network [OSTI]

    Wetzel, Christian M.

    cm-2 that originate at the interface between GaN and the LT-BL and/or sapphire substrate [9,10]. TDs sapphire substrate and HT-GaN is called buffer layer (BL), while the LT-layer between HT-nitride is called on the sapphire substrate. The thickness was ~20nm. HT-GaN was grown at 1,050°C on the LT-BL. The thickness

  18. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect (OSTI)

    Nandi, R., E-mail: rajunandi@iitb.ac.in; Mohan, S., E-mail: rajunandi@iitb.ac.in; Major, S. S. [Department of Physics, Indian Institute of Technology Bombay, Mumbai - 400076 (India); Srinivasa, R. S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

    2014-04-24T23:59:59.000Z

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  19. Interfacial chemistry and valence band offset between GaN and Al{sub 2}O{sub 3} studied by X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Duan, T. L.; Ang, D. S. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)] [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Pan, J. S. [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)] [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2013-05-20T23:59:59.000Z

    The interface region between Ga-face n-type GaN and Al{sub 2}O{sub 3} dielectric (achieved via atomic-layer deposition or ALD) is investigated by X-ray photoelectron spectroscopy (XPS). An increase in the Ga-O to Ga-N bond intensity ratio following Al{sub 2}O{sub 3} deposition implies that the growth of an interfacial gallium sub-oxide (GaO{sub x}) layer occurred during the ALD process. This finding may be ascribed to GaN oxidation, which may still happen following the reduction of a thin native GaO{sub x} by trimethylaluminum (TMA) in the initial TMA-only cycles. The valence band offset between GaN and Al{sub 2}O{sub 3}, obtained using both core-level and valence band spectra, is found to vary with the thickness of the deposited Al{sub 2}O{sub 3}. This observation may be explained by an upward energy band bending at the GaN surface (due to the spontaneous polarization induced negative bound charge on the Ga-face GaN) and the intrinsic limitation of the XPS method for band offset determination.

  20. Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films

    E-Print Network [OSTI]

    Tao, Jonathan Huai-Tse

    2010-01-01T23:59:59.000Z

    Converted White-Light-Emitting Diodes," Jap. J. Appl.doped III-N Light-Emitting Diodes," Appl. Phys. Lett. , 84 (in Packaging High Power Light Emitting Diode Arrays," Appl.

  1. Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films

    E-Print Network [OSTI]

    Tao, Jonathan Huai-Tse

    2010-01-01T23:59:59.000Z

    High-Color-Rendering LED Lamps Using Oxyfluoride andHigh-pressure mercury lamp LED Luxeon white 5 W LED Cree LRpressure mercury lamps; some Cree LEDs have even comparable

  2. Local environment and composition of magnesium gallium layered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR Local environment and composition of magnesium gallium...

  3. Methods for improved growth of group III nitride buffer layers

    DOE Patents [OSTI]

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15T23:59:59.000Z

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  4. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    SciTech Connect (OSTI)

    Davis, Robert

    2010-09-30T23:59:59.000Z

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. I-4 Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. I-9 Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. II-37 Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. II-52 Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films. I

  5. Charge transfer in Fe-doped GaN: The role of the donor

    SciTech Connect (OSTI)

    Sunay, Ustun; Dashdorj, J.; Zvanut, M. E.; Harrison, J. G. [Department of Physics, University of Alabama at Birmingham, 1300 University Blvd., CH 310, Birmingham, Alabama 35294-1170 (United States); Leach, J. H.; Udwary, K. [Kyma Technologies, 8829 Midway West Rd., Raleigh, North Carolina 27617 (United States)

    2014-02-21T23:59:59.000Z

    Several nitride-based device structures would benefit from the availability of high quality, large-area, freestanding semi-insulating GaN substrates. Due to the intrinsic n-type nature of GaN, however, the incorporation of compensating centers such as Fe is necessary to achieve the high resistivity required. We are using electron paramagnetic resonance (EPR) to explore charge transfer in 450 um thick GaN:Fe plates to understand the basic mechanisms related to compensation so that the material may be optimized for device applications. The results suggest that the simple model based on one shallow donor and a single Fe level is insufficient to describe compensation. Rather, the observation of the neutral donor and Fe3+ indicates that either the two species are spatially segregated or additional compensating and donor defects must be present.

  6. Self- and zinc diffusion in gallium antimonide

    SciTech Connect (OSTI)

    Nicols, Samuel Piers

    2002-03-26T23:59:59.000Z

    The technological age has in large part been driven by the applications of semiconductors, and most notably by silicon. Our lives have been thoroughly changed by devices using the broad range of semiconductor technology developed over the past forty years. Much of the technological development has its foundation in research carried out on the different semiconductors whose properties can be exploited to make transistors, lasers, and many other devices. While the technological focus has largely been on silicon, many other semiconductor systems have applications in industry and offer formidable academic challenges. Diffusion studies belong to the most basic studies in semiconductors, important from both an application as well as research standpoint. Diffusion processes govern the junctions formed for device applications. As the device dimensions are decreased and the dopant concentrations increased, keeping pace with Moore's Law, a deeper understanding of diffusion is necessary to establish and maintain the sharp dopant profiles engineered for optimal device performance. From an academic viewpoint, diffusion in semiconductors allows for the study of point defects. Very few techniques exist which allow for the extraction of as much information of their properties. This study focuses on diffusion in the semiconductor gallium antimonide (GaSb). As will become clear, this compound semiconductor proves to be a powerful one for investigating both self- and foreign atom diffusion. While the results have direct applications for work on GaSb devices, the results should also be taken in the broader context of III-V semiconductors. Results here can be compared and contrasted to results in systems such as GaAs and even GaN, indicating trends within this common group of semiconductors. The results also have direct importance for ternary and quaternary semiconductor systems used in devices such as high speed InP/GaAsSb/InP double heterojunction bipolar transistors (DHBT) [Dvorak, (2001)]. Many of the findings which will be reported here were previously published in three journal articles. Hartmut Bracht was the lead author on two articles on self-diffusion studies in GaSb [Bracht, (2001), (2000)], while this report's author was the lead author on Zn diffusion results [Nicols, (2001)]. Much of the information contained herein can be found in those articles, but a more detailed treatment is presented here.

  7. Low dislocation GaN via defect-filtering, self-assembled SiO2-sphere layers.

    SciTech Connect (OSTI)

    Wang, George T.; Li, Qiming

    2009-09-01T23:59:59.000Z

    The III-nitride (AlGaInN) materials system forms the foundation for white solid-state lighting, the adoption of which could significantly reduce U.S. energy needs. While the growth of GaN-based devices relies on heteroepitaxy on foreign substrates, the heteroepitaxial layers possess a high density of dislocations due to poor lattice and thermal expansion match. These high dislocation densities have been correlated with reduced internal quantum efficiency and lifetimes for GaN-based LEDs. Here, we demonstrate an inexpensive method for dislocation reduction in GaN grown on sapphire and silicon substrates. This technique, which requires no lithographic patterning, GaN is selectively grown through self-assembled layers of silica microspheres which act to filter out dislocations. Using this method, the threading dislocation density for GaN on sapphire was reduced from 3.3 x 10{sup 9} cm{sup -2} to 4.0 x 10{sup 7} cm{sup -2}, and from the 10{sup 10} cm{sup -2} range to {approx}6.0 x 10{sup 7} cm{sup -2} for GaN on Si(111). This large reduction in dislocation density is attributed to a dislocation blocking and bending by the unique interface between GaN and silica microspheres.

  8. Boron nitride nanotubes

    DOE Patents [OSTI]

    Smith, Michael W. (Newport News, VA); Jordan, Kevin (Newport News, VA); Park, Cheol (Yorktown, VA)

    2012-06-06T23:59:59.000Z

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  9. Heteroepitaxial VO{sub 2} thin films on GaN: Structure and metal-insulator transition characteristics

    SciTech Connect (OSTI)

    Zhou You; Ramanathan, Shriram [Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2012-10-01T23:59:59.000Z

    Monolithic integration of correlated oxide and nitride semiconductors may open up new opportunities in solid-state electronics and opto-electronics that combine desirable functional properties of both classes of materials. Here, we report on epitaxial growth and phase transition-related electrical properties of vanadium dioxide (VO{sub 2}) thin films on GaN epitaxial layers on c-sapphire. The epitaxial relation is determined to be (010){sub vo{sub 2}} parallel (0001){sub GaN} parallel (0001){sub A1{sub 2O{sub 3}}} and [100]{sub vo{sub 2}} parallel [1210]{sub GaN} parallel [0110]{sub A1{sub 2O{sub 3}}} from x-ray diffraction. VO{sub 2} heteroepitaxial growth and lattice mismatch are analyzed by comparing the GaN basal plane (0001) with the almost close packed corrugated oxygen plane in vanadium dioxide and an experimental stereographic projection describing the orientation relationship is established. X-ray photoelectron spectroscopy suggests a slightly oxygen rich composition at the surface, while Raman scattering measurements suggests that the quality of GaN layer is not significantly degraded by the high-temperature deposition of VO{sub 2}. Electrical characterization of VO{sub 2} films on GaN indicates that the resistance changes by about four orders of magnitude upon heating, similar to epitaxial VO{sub 2} films grown directly on c-sapphire. It is shown that the metal-insulator transition could also be voltage-triggered at room temperature and the transition threshold voltage scaling variation with temperature is analyzed in the framework of a current-driven Joule heating model. The ability to synthesize high quality correlated oxide films on GaN with sharp phase transition could enable new directions in semiconductor-photonic integrated devices.

  10. Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.

    SciTech Connect (OSTI)

    Kurtz, Steven Ross; Follstaedt, David Martin; Wright, Alan Francis; Baca, Albert G.; Briggs, Ronald D.; Provencio, Paula Polyak; Missert, Nancy A.; Allerman, Andrew Alan; Marsh, Phil F.; Koleske, Daniel David; Lee, Stephen Roger; Shul, Randy John; Seager, Carleton Hoover; Tigges, Christopher P.

    2005-12-01T23:59:59.000Z

    GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.

  11. Nitride semiconductor Surface and interface characterization and device design

    E-Print Network [OSTI]

    Zhang, Hongtao

    2006-01-01T23:59:59.000Z

    a a where we assume a GaN substrate for the thin film. c 13assuming a GaN GaN substrate. Because the spontaneouslayer are grown on the GaN substrate and because the lattice

  12. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Shen, X. Q.; Takahashi, T.; Matsuhata, H.; Ide, T.; Shimizu, M. [Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Central 2, Tsukuba-shi, Ibaraki 305-8568 (Japan)] [Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Central 2, Tsukuba-shi, Ibaraki 305-8568 (Japan); Rong, X.; Chen, G.; Wang, X. Q.; Shen, B. [School of Physics, Peking University, Beijing 100871 (China)] [School of Physics, Peking University, Beijing 100871 (China)

    2013-12-02T23:59:59.000Z

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.

  13. Enhanced catalyst-free nucleation of GaN nanowires on amorphous Al{sub 2}O{sub 3} by plasma-assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Sobanska, Marta, E-mail: sobanska@ifpan.edu.pl; Klosek, Kamil; Borysiuk, Jolanta; Kret, Slawomir; Tchutchulasvili, Giorgi; Gieraltowska, Sylwia; Zytkiewicz, Zbigniew R. [Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2014-01-28T23:59:59.000Z

    We report on plasma-assisted molecular beam epitaxial growth of GaN nanowires (NWs) on Si(111) substrates with a thin amorphous Al{sub 2}O{sub 3} buffer layer deposited by atomic layer deposition. Comparison of nucleation kinetics shows that presence of amorphous Al{sub 2}O{sub 3} buffer significantly enhances spontaneous nucleation of GaN NWs. Slower nucleation was observed on partially amorphous silicon nitride films. No growth of NWs was found on sapphire substrate under the same growth conditions which we explain by a low density of defects on monocrystalline substrate surface where NWs may nucleate. Our finding shows that tuning of substrate microstructure is an efficient tool to control rate of self-induced nucleation of GaN NWs.

  14. Nitrided Metallic Bipolar Plates

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

    2008-01-01T23:59:59.000Z

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  15. Invited Paper GaN HEMT reliability

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    Invited Paper GaN HEMT reliability J.A. del Alamo *, J. Joh Microsystems Technology Laboratories mechanism recently identified in GaN high-electron mobility transistors subject to electrical stress. Under high voltage, it has been found that electrically active defects are generated in the AlGaN barrier

  16. Recovery of gallium from aluminum industry residues

    SciTech Connect (OSTI)

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01T23:59:59.000Z

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  17. Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN

    E-Print Network [OSTI]

    Wang, Zhong L.

    Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN of metal organic chemical vapor deposition (MOCVD), gallium nitride (GaN) has become the most important GaN nanowires (NWs) have also been fabricated, and nanoLEDs are an active field of research.[5

  18. (Data in kilograms of gallium content unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 2009. One company in Utah

    E-Print Network [OSTI]

    58 GALLIUM (Data in kilograms of gallium content unless otherwise noted) Domestic Production 98% of domestic gallium consumption. About 67% of the gallium consumed was used in integrated and Use: No domestic primary gallium recovery was reported in 2009. One company in Utah recovered

  19. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  20. Lattice site location of impurities in group III nitrides using emission channeling

    E-Print Network [OSTI]

    De Vries, Bart; Wahl, Ulrich

    The group III nitrides comprise the semiconducting materials InN, GaN, AlN and their ternary alloys. During the last decade, GaN has attracted widespread attention due to its large band gap and hardness. These properties, combined with the fact that its band gap can be adjusted by alloying it with InN and AlN, make GaN a suitable material for the fabrication of optical components that operate in the blue to ultraviolet region of the electromagnetic spectrum, and for microwave and high-power applications. Indeed, during the last couple of years, GaN-based blue and violet light-emitting devices (LEDs) and laser diodes have been realized and commercialized: the violet laser diodes will even be the keystone to the next generation of optical data storage standards, Blu-ray and HD-DVD. A key aspect in device production is the incorporation of dopants that can alter the electronic, magnetic or optical properties of the host material. For example, Si is often used to generate n-type GaN, while Mg is the most frequent...

  1. III-nitride nanowires : novel materials for solid-state lighting.

    SciTech Connect (OSTI)

    Wang, George T.; Upadhya, Prashanth C. (Los Alamos National Laboratory, Los Alamos, NM); Prasankumar, Rohit P. (Los Alamos National Laboratory, Los Alamos, NM); Armstrong, Andrew M.; Huang, Jian Yu; Li, Qiming; Talin, Albert Alec (NIST, Gaithersburg, MD)

    2010-12-01T23:59:59.000Z

    Although planar heterostructures dominate current solid-state lighting architectures (SSL), 1D nanowires have distinct and advantageous properties that may eventually enable higher efficiency, longer wavelength, and cheaper devices. However, in order to fully realize the potential of nanowire-based SSL, several challenges exist in the areas of controlled nanowire synthesis, nanowire device integration, and understanding and controlling the nanowire electrical, optical, and thermal properties. Here recent results are reported regarding the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using cutting-edge structural, electrical, thermal, and optical nanocharacterization techniques. A new top-down fabrication method for fabricating periodic arrays of GaN nanorods and subsequent nanorod LED fabrication is also presented.

  2. Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers

    E-Print Network [OSTI]

    Zuniga-Perez, J; Hahe, R; Rashid, M J; Bouchoule, S; Brimont, C; Disseix, P; Duboz, J Y; Gommé, G; Guillet, T; Jamadi, O; Lafosse, X; Leroux, M; Leymarie, J; Li, Feng; Réveret, F; Semond, F

    2014-01-01T23:59:59.000Z

    A new platform for fabricating polariton lasers operating at room temperature is introduced: nitride-based distributed Bragg reflectors epitaxially grown on patterned silicon substrates. The patterning allows for an enhanced strain relaxation thereby enabling to stack a large number of crack-free AlN/AlGaN pairs and achieve cavity quality factors of several thousands with a large spatial homogeneity. GaN and ZnO active regions are epitaxially grown thereon and the cavities are completed with top dielectric Bragg reflectors. The two structures display strong-coupling and polariton lasing at room temperature and constitute an intermediate step in the way towards integrated polariton devices.

  3. Lattice Parameter Variation in ScGaN Alloy Thin Films on MgO(001) Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    Lattice Parameter Variation in ScGaN Alloy Thin Films on MgO(001) Grown by RF Plasma Molecular Beam ABSTRACT We present the structural and surface characterization of the alloy formation of scandium gallium GaN (w-GaN) spurred much interest in related III-nitrides such as aluminium nitride (Al

  4. Preparation of Ag Schottky contacts on n-type GaN bulk crystals grown in nitrogen rich atmosphere by the hydride vapor phase epitaxy technique

    SciTech Connect (OSTI)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de; Kolkovsky, Vl.; Weber, J. [Technische Universität Dresden, 01062 Dresden (Germany); Leibiger, Gunnar; Habel, Frank [Freiberger Compound Materials GmbH, 09599 Freiberg (Germany)

    2014-10-14T23:59:59.000Z

    Electrical properties of Schottky contacts on n-type GaN grown in nitrogen rich atmosphere with different N/Ga ratios by hydride vapor phase epitaxy were investigated. We show that tunneling of electrons from the conduction band of GaN to the metal is dominant in our samples. The quality of Schottky contacts does not only depend on surface preparation but also on the growth conditions of the crystals. Schottky contacts on these crystals show an increasing deterioration when higher N/Ga growth ratios are used. We correlate our results with the presence of negatively charged gallium vacancies in the samples. These charges compensate the positively charged donors and lead to a significant increase in series resistance.

  5. Superplastic forging nitride ceramics

    DOE Patents [OSTI]

    Panda, Prakash C. (Ithaca, NY); Seydel, Edgar R. (Ithaca, NY); Raj, Rishi (Ithaca, NY)

    1988-03-22T23:59:59.000Z

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  6. Silicon nitride ceramic comprising samaria and ytterbia

    DOE Patents [OSTI]

    Yeckley, Russell L. (Oakham, MA)

    1996-01-01T23:59:59.000Z

    This invention relates to a sintered silicon nitride ceramic comprising samaria and ytterbia for enhanced toughness.

  7. Degradation mechanisms of GaN high electron mobility transistors

    E-Print Network [OSTI]

    Joh, Jungwoo

    2007-01-01T23:59:59.000Z

    In spite of their extraordinary performance, GaN high electron mobility transistors (HEMT) have still limited reliability. In RF power applications, GaN HEMTs operate at high voltage where good reliability is essential. ...

  8. GaN Nanopore Arrays: Fabrication and Characterization

    E-Print Network [OSTI]

    Wang, Yadong

    GaN nanopore arrays with pore diameters of approximately 75 nm were fabricated by inductively coupled plasma etching (ICP) using anodic aluminum oxide (AAO) films as etch masks. Nanoporous AAO films were formed on the GaN ...

  9. Functionalized boron nitride nanotubes

    DOE Patents [OSTI]

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22T23:59:59.000Z

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  10. Pulmonary gallium-67 uptake in amiodarone pneumonitis

    SciTech Connect (OSTI)

    van Rooij, W.J.; van der Meer, S.C.; van Royen, E.A.; van Zandwijk, N.; Darmanata, J.I.

    1984-02-01T23:59:59.000Z

    Three patients are presented suffering from interstitial pneumonitis caused by amiodarone. Pulmonary Ga-67 uptake occurred in all three. There appeared to be a discrepancy between the scintigraphic and radiographic findings in two patients. Gallium-67 lung scintigraphy may offer an early, sensitive indicator for amiodarone pneumonitis.

  11. Rapid Communications Strong piezoelectricity in individual GaN nanowires

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Rapid Communications Strong piezoelectricity in individual GaN nanowires Majid Minary@northwestern.edu (Received 12 July 2011; accepted 15 September 2011) Abstract GaN nanowires are promising building blocks piezoelectricity in individual single-crystal GaN nanowires revealed by direct measurement of the piezoelectric

  12. Growth of GaN on porous SiC and GaN substrates C. K. Inoki1

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Growth of GaN on porous SiC and GaN substrates C. K. Inoki1 , T. S. Kuan1 , Ashutosh Sagar2 , C, Albuquerque, NM 87185 4 Beckman Institute, University of Illinois, Urbana, IL 61801 GaN films were grown on porous SiC and GaN templates using both plasma-assisted molecular beam epitaxy (PAMBE) and metal

  13. High optical and structural quality of GaN epilayers grown on (2{sup ¯}01) ?-Ga{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Muhammed, M. M.; Roqan, I. S., E-mail: iman.roqan@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Peres, M.; Franco, N.; Lorenz, K. [IPFN, Instituto Superior Técnico (IST), Campus Tecnológico e Nuclear, Estrada Nacional 10, P-2695-066 Bobadela LRS (Portugal); Yamashita, Y.; Morishima, Y.; Sato, S.; Kuramata, A. [Tamura Corporation, Sayama, Saitama 350-1328 (Japan)

    2014-07-28T23:59:59.000Z

    Producing highly efficient GaN-based optoelectronic devices has been a challenge for a long time due to the large lattice mismatch between III-nitride materials and the most common substrates, which causes a high density of threading dislocations. Therefore, it is essential to obtain alternative substrates with small lattice mismatches, appropriate structural, thermal and electrical properties, and a competitive price. Our results show that (2{sup ¯}01) oriented ?-Ga{sub 2}O{sub 3} has the potential to be used as a transparent and conductive substrate for GaN-growth. Photoluminescence spectra of thick GaN layers grown on (2{sup ¯}01) oriented ?-Ga{sub 2}O{sub 3} are found to be dominated by intense bandedge emission. Atomic force microscopy studies show a modest threading dislocation density of ?10{sup 8?}cm{sup ?2}. X-ray diffraction studies show the high quality of the single-phase wurtzite GaN thin film on (2{sup ¯}01) ?-Ga{sub 2}O{sub 3} with in-plane epitaxial orientation relationships between the ?-Ga{sub 2}O{sub 3} and the GaN thin film defined by (010) ?-Ga{sub 2}O{sub 3} || (112{sup ¯}0) GaN and (2{sup ¯}01) ?-Ga{sub 2}O{sub 3} || (0001) GaN leading to a lattice mismatch of ?4.7%. Complementary Raman spectroscopy indicates that the quality of the GaN epilayer is high.

  14. (Data in kilograms of gallium content unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 2005. One company in Utah

    E-Print Network [OSTI]

    66 GALLIUM (Data in kilograms of gallium content unless otherwise noted) Domestic Production, [(703) 648-7719, dkramer@usgs.gov, fax: (703) 648-7975] #12;67 GALLIUM Consolidation of companies and Use: No domestic primary gallium recovery was reported in 2005. One company in Utah recovered

  15. (Data in kilograms of gallium content, unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 1998. Two companies in

    E-Print Network [OSTI]

    66 GALLIUM (Data in kilograms of gallium content, unless otherwise noted) Domestic Production A. Kramer [(703) 648-7719, dkramer@usgs.gov, fax: (703) 648-7722] #12;67 GALLIUM Events, Trends and Use: No domestic primary gallium recovery was reported in 1998. Two companies in Oklahoma and Utah

  16. Interactions of zircaloy cladding with gallium -- 1997 status

    SciTech Connect (OSTI)

    Wilson, D.F.; DiStefano, J.R.; King, J.F.; Manneschmidt, E.T.; Strizak, J.P.

    1997-11-01T23:59:59.000Z

    A four phase program has been implemented to evaluate the effect of gallium in mixed oxide (MOX) fuel derived from weapons grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in LWR. This graded, four phase experimental program will evaluate the performance of prototypic Zircaloy cladding materials against: (1) liquid gallium (Phase 1), (2) various concentrations of Ga{sub 2}O{sub 3} (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of an initial series of tests for phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement (LME), and (3) corrosion mechanical. These tests are designed to determine the corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at {ge} 300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (in parts per million) of gallium in the MOX fuel. While continued migration of gallium into the initially formed intermetallic compound results in large stresses that can lead to distortion, this is also highly unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed.

  17. Nucleation and growth of GaN nanorods on Si (111) surfaces by plasma-assisted molecular beam epitaxy - The influence of Si- and Mg-doping

    SciTech Connect (OSTI)

    Furtmayr, Florian; Vielemeyer, Martin; Stutzmann, Martin; Eickhoff, Martin [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Arbiol, Jordi [EME/CeRMAE/IN2UB, Departament d'Electronica, Universitat de Barcelona, c/ Marti Franques 1, E-08080 Barcelona, CAT (Spain); TEM-MAT, Serveis Cientificotecnics, Universitat de Barcelona, c/ Lluis Sole i Sabaris 1-3, E-08080 Barcelona, CAT (Spain); Estrade, Sonia; Peiro, Francesca; Morante, Joan Ramon [EME/CeRMAE/IN2UB, Departament d'Electronica, Universitat de Barcelona, c/ Marti Franques 1, E-08080 Barcelona, CAT (Spain)

    2008-08-01T23:59:59.000Z

    The self-assembled growth of GaN nanorods on Si (111) substrates by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions is investigated. An amorphous silicon nitride layer is formed in the initial stage of growth that prevents the formation of a GaN wetting layer. The nucleation time was found to be strongly influenced by the substrate temperature and was more than 30 min for the applied growth conditions. The observed tapering and reduced length of silicon-doped nanorods is explained by enhanced nucleation on nonpolar facets and proves Ga-adatom diffusion on nanorod sidewalls as one contribution to the axial growth. The presence of Mg leads to an increased radial growth rate with a simultaneous decrease of the nanorod length and reduces the nucleation time for high Mg concentrations.

  18. Photonuclear Reaction Cross Sections for Gallium Isotopes

    E-Print Network [OSTI]

    Serkan Akkoyun; Tuncay Bayram

    2014-09-08T23:59:59.000Z

    The photon induced reactions which are named as photonuclear reactions have a great importance in many field of nuclear, radiation physics and related fields. Since we have planned to perform photonuclear reaction on gallium target with bremmstrahlung photons from clinical linear accelerator in the future, the cross-sections of neutron (photo-neutron ({\\gamma},xn)) and proton (photo-proton ({\\gamma},xn)) productions after photon activation have been calculated by using TALYS 1.2 computer code in this study. The target nucleus has been considered gallium which has two stable isotopes, 69Ga and 71Ga. According to the results, we have seen that the calculations are in harmony in the limited literature values. Furthermore, the pre-equilibrium and compound process contributions to the total cross-section have been investigated.

  19. Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films

    E-Print Network [OSTI]

    Hart, Gus

    Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

  20. Gallium nanoparticles grow where light is

    E-Print Network [OSTI]

    K. F. MacDonald; W. S. Brocklesby; V. I. Emelyanov; V. A. Fedotov; S. Pochon; K. J. Ross; G. Stevens; N. I. Zheludev

    2001-05-15T23:59:59.000Z

    The study of metallic nanoparticles has a long tradition in linear and nonlinear optics [1], with current emphasis on the ultrafast dynamics, size, shape and collective effects in their optical response [2-6]. Nanoparticles also represent the ultimate confined geometry:high surface-to-volume ratios lead to local field enhancements and a range of dramatic modifications of the material's properties and phase diagram [7-9]. Confined gallium has become a subject of special interest as the light-induced structural phase transition recently observed in gallium films [10, 11] has allowed for the demonstration of all-optical switching devices that operate at low laser power [12]. Spontaneous self-assembly has been the main approach to the preparation of nanoparticles (for a review see 13). Here we report that light can dramatically influence the nanoparticle self-assembly process: illumination of a substrate exposed to a beam of gallium atoms results in the formation of nanoparticles with a relatively narrow size distribution. Very low light intensities, below the threshold for thermally-induced evaporation, exert considerable control over nanoparticle formation through non-thermal atomic desorption induced by electronic excitation.

  1. GaN based nanorods for solid state lighting

    SciTech Connect (OSTI)

    Li Shunfeng; Waag, Andreas [Institute of Semiconductor Technology, Braunschweig University of Technology, 38106 Braunschweig (Germany)

    2012-04-01T23:59:59.000Z

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  2. Empirical modeling of uranium nitride fuels

    E-Print Network [OSTI]

    Brozak, Daniel Edward

    1987-01-01T23:59:59.000Z

    of this work was to develop an irradiation performance data base for nitride fuels and to provide empirical modeling capabilities for fuel swelling and fission gas release in nitride fuels. The nitride fuels data base represents the most extensive effort... to date to systematically collect, evaluate and analyze irradiation performance data for nitride fuels. The data base will be a valuable tool for all researchers in the advanced fuel modeling field in that it provides a foundation for the construction...

  3. Damage Evolution in GaN Under MeV Heavy Ion Implantation. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution in GaN Under MeV Heavy Ion Implantation. Damage Evolution in GaN Under MeV Heavy Ion Implantation. Abstract: Damage evaluation processes in patterned GaN implanted by 3...

  4. Mapping misorientation and crystallographic tilt in GaN layers via polychromatic microdiffraction

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    coefficients between GaN and the substrate. Understandingpenetrate both the GaN layer and the substrate. Two samplespattern from the GaN layer and the substrate on a charge-

  5. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, Carlos E. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  6. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-04-12T23:59:59.000Z

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  7. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOE Patents [OSTI]

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01T23:59:59.000Z

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  8. GALLIUM--2001 29.1 By Deborah A. Kramer

    E-Print Network [OSTI]

    the largest application for gallium, with optoelectronic devices [mostly laser diodes and light near the town of McDermitt in Humboldt County, NV. The company began initial drilling in October and announced preliminary results in November. According to the drilling results, gallium concentrations over

  9. GROWTH OF GaN ON POROUS SiC AND GaN SUBSTRATES C. K. Inoki and T. S. Kuan

    E-Print Network [OSTI]

    Feenstra, Randall

    1 GROWTH OF GaN ON POROUS SiC AND GaN SUBSTRATES C. K. Inoki and T. S. Kuan Department of Physics Institute, University of Illinois, Urbana, IL 61801 ABSTRACT We have studied the growth of GaN on porous SiC and GaN substrates, employing both plasma-assisted molecular beam epitaxy (PAMBE) and metalorganic

  10. MOCVD synthesis of group III-nitride heterostructure nanowires for solid-state lighting.

    SciTech Connect (OSTI)

    Wang, George T.; Creighton, James Randall; Talin, Albert Alec

    2006-11-01T23:59:59.000Z

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  11. Commercialization of gallium nitride nanorod arrays on silicon for solid-state lighting

    E-Print Network [OSTI]

    Wee, Qixun

    2008-01-01T23:59:59.000Z

    One important component in energy usage is lighting, which is currently dominated by incandescent and fluorescent lamps. However, due to potentially higher efficiencies and thus higher energy savings, solid-state lighting ...

  12. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist, Senior Fellow - Emerging Technologies

  13. High-Quality, Low-Cost Bulk Gallium Nitride Substrates | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist, SeniorVolume 6 Building

  14. Sandia Energy - BES Web Highlight: Single-mode gallium nitride nanowire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6Andy

  15. Compatibility of ITER candidate structural materials with static gallium

    SciTech Connect (OSTI)

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01T23:59:59.000Z

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400{degrees}C, corrosion rates are {approx}4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400{degrees}C are {ge}88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400{degrees}C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized.

  16. Investigation into nitrided spur gears

    SciTech Connect (OSTI)

    Yilbas, B.S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Abdul Aleem, B.J. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-12-01T23:59:59.000Z

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6Al-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  17. Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting

    SciTech Connect (OSTI)

    Jan Talbot; Kailash Mishra

    2007-12-31T23:59:59.000Z

    This report provides a summary of research activities carried out at the University of California, San Diego and Central Research of OSRAM SYLVANIA in Beverly, MA partially supported by a research contract from US Department of Energy, DE-FC26-04NT422274. The main objective of this project was to develop III-V nitrides activated by rare earth ions, RE{sup 3+}, which could eliminate the need for phosphors in nitride-based solid state light sources. The main idea was to convert electron-hole pairs injected into the active layer in a LED die to white light directly through transitions within the energy levels of the 4f{sup n}-manifold of RE{sup 3+}. We focused on the following materials: Eu{sup 3+}(red), Tb{sup 3+}(green), Er{sup 3+}(green), Dy{sup 3+}(yellow) and Tm{sup 3+}(blue) in AlN, GaN and alloys of AlN and GaN. Our strategy was to explore candidate materials in powder form first, and then study their behavior in thin films. Thin films of these materials were to be deposited on sapphire substrates using pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). The photo- and cathode-luminescence measurements of these materials were used to investigate their suitability for white light generation. The project proceeded along this route with minor modifications needed to produce better materials and to expedite our progress towards the final goal. The project made the following accomplishments: (1) red emission from Eu{sup 3+}, green from Tb{sup 3+}, yellow from Dy{sup 3+} and blue from Tm{sup 3+} in AlN powders; (2) red emission from Eu{sup 3+} and green emission from Tb{sup 3+} in GaN powder; (3) red emission from Eu{sup 3+} in alloys of GaN and AlN; (4) green emission from Tb{sup 3+} in GaN thin films by PLD; (5) red emission from Eu{sup 3+} and Tb{sup 3+} in GaN thin films deposited by MOVPE; (6) energy transfer from host to RE{sup 3+}; (7) energy transfer from Tb{sup 3+} to Eu{sup 3+} in AlN powders; (8) emission from AlN powder samples codoped with (Eu{sup 3+} ,Tb{sup 3+} ) and (Dy{sup 3+}, Tm{sup 3+}); and (9) white emission from AlN codoped with Dy{sup 3+} and Tm{sup 3+}. We also extensively studied the stabilities of rare earth ions in GaN, and the nature of oxygen defects in GaN and its impact on the optical properties of the host material, using first principles method. Results from these theoretical calculations together with fluorescence measurements from the materials essentially proved the underlying concepts for generating white light using RE{sup 3+}-activated nitrides. For this project, we successfully built a horizontal MOVPE reactor and used it to deposit thin films of undoped and doped nitrides of GaN and InGaN, which is a very significant achievement. Since this reactor was designed and built by in-house experts, it could be easily modified and reassembled for specific research purposes. During this study, it was successfully modified for homogeneous distribution of rare earth ions in a deposited film. It will be an ideal tool for future research involving novel thin film material concepts. We examined carefully the suitability of various metal organic precursors for incorporating RE{sup 3+}. In order to avoid oxygen contamination, several oxygen-free RE{sup 3+} precursors were identified. Both oxygen-free and oxygen- containing metal organic precursors were used for certain rare earth ions (Eu{sup 3+}, Tb{sup 3+} and Er{sup 3+}). However, the suitability of any particular type of precursor for MOVPE deposition was not established during this study, and further study is needed. More intensive research in the future is needed to improve the film quality, and eliminate the separation of rare earth oxide phases during the deposition of thin films by MOVPE. The literature in the area of the chemistry of rare earth ions in nitrides is almost nonexistent, in spite of the significant research on luminescence of RE{sup 3+} in nitrides. Consequently, MOVPE as a method of deposition of RE{sup 3+}-activated nitrides is relatively unexplored. In the following sections of this report, the ou

  18. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect (OSTI)

    Paul T. Fini; Shuji Nakamura

    2003-10-30T23:59:59.000Z

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  19. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect (OSTI)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-04-30T23:59:59.000Z

    In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  20. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect (OSTI)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01T23:59:59.000Z

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  1. P-type doping of GaN

    SciTech Connect (OSTI)

    Wong, R.K.

    2000-04-10T23:59:59.000Z

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C. The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.

  2. Free excitons in wurtzite GaN A. V. Rodina*

    E-Print Network [OSTI]

    Nabben, Reinhard

    Free excitons in wurtzite GaN A. V. Rodina* I. Physics Institute, Justus Liebig University in wurtzite GaN. Using polarization-dependent measurements we were able to resolve the fine-structure energy these data a theory is developed for the exciton energy structure in hexagonal semiconductors with wurtzite

  3. New Faces of GaN: Growth, Doping and Devices

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    New Faces of GaN: Growth, Doping and Devices James S. Speck Materials Department University of California Santa Barbara, CA LEO of a-GaN from circular opening Engineering Insights 2006 #12;#12;Personnel. Wraback (ARL) $$$ JST ­ ERATO UCSB SSLDC AFOSR ONR #12;Reversed direction of polarization Bulk GaN

  4. (Data in kilograms of gallium content, unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 1996. Two companies in

    E-Print Network [OSTI]

    on world production of primary gallium were unavailable because data on the output of the few producers62 GALLIUM (Data in kilograms of gallium content, unless otherwise noted) Domestic Production in optoelectronic devices, which include light-emitting diodes (LED's), laser diodes, photodetectors, and solar

  5. Ga NMR spectra and relaxation in wurtzite GaN M. Corti and A. Gabetta

    E-Print Network [OSTI]

    Svane, Axel Torstein

    69,71 Ga NMR spectra and relaxation in wurtzite GaN M. Corti and A. Gabetta Department of Physics properties of wurtzite GaN are studied by Ga nuclear magnetic resonance NMR in a GaN bulk crystal containing GaN is a wide band-gap semiconductor which crystallizes in the hexagonal wurtzite structure

  6. Structural and electronic properties of Fe3+ in GaN from optical and EPR experiments

    E-Print Network [OSTI]

    Nabben, Reinhard

    into GaN to compensate inherent n-type conductivity and to produce semi-insulating substrate materialStructural and electronic properties of Fe3+ and Fe2+ centers in GaN from optical and EPR, and electronic properties of Fe-doped GaN. A set of high-quality GaN crystals doped with Fe at concentrations

  7. Reversible expansion of gallium-stabilized (delta)-plutonium

    SciTech Connect (OSTI)

    Wolfer, W G; Oudot, B; Baclet, N

    2006-02-27T23:59:59.000Z

    It is shown that the transient expansion of plutonium-gallium alloys observed both in the lattice parameter as well as in the dimension of a sample held at ambient temperature can be explained by assuming incipient precipitation of Pu{sub 3}Ga. However, this ordered {zeta}-phase is also subject to radiation-induced disordering. As a result, the gallium-stabilized {delta}-phase, being metastable at ambient temperature, is driven towards thermodynamic equilibrium by radiation-enhanced diffusion of gallium and at the same time reverted back to its metastable state by radiation-induced disordering. A steady state is reached in which only a modest fraction of the gallium present is arranged in ordered {zeta}-phase regions.

  8. Design and Implementation of Silicon Nitride Valves for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Poster presentation at the...

  9. amorphous carbon nitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Si-rich nitride Er:SRN materials have 3 Carbon Nitride and Conjugated Polymer Composite Materials. Open Access Theses and Dissertations Summary: ??The semiconductor and...

  10. Nitride semiconductor Surface and interface characterization and device design

    E-Print Network [OSTI]

    Zhang, Hongtao

    2006-01-01T23:59:59.000Z

    Lett. 80 , D. Schroder, Semiconductor Material and Devicein III-V Nitride Semiconductors: Applications and Devices ,SAN DIEGO Nitride Semiconductor Surface and Interface

  11. Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors

    SciTech Connect (OSTI)

    Lyons, J. L.; Janotti, A.; Van de Walle, C. G. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2014-01-07T23:59:59.000Z

    We examine how hole localization limits the effectiveness of substitutional acceptors in oxide and nitride semiconductors and explain why p-type doping of these materials has proven so difficult. Using hybrid density functional calculations, we find that anion-site substitutional impurities in AlN, GaN, InN, and ZnO lead to atomic-like states that localize on the impurity atom itself. Substitution with cation-site impurities, on the other hand, triggers the formation of polarons that become trapped on nearest-neighbor anions, generally leading to large ionization energies for these acceptors. Unlike shallow effective-mass acceptors, these two types of deep acceptors couple strongly with the lattice, significantly affecting the optical properties and severely limiting prospects for achieving p-type conductivity in these wide-band-gap materials.

  12. Plasma chemistries for dry etching GaN, AlN, InGaN and InAlN

    SciTech Connect (OSTI)

    Pearton, S.J.; Vartuli, C.B.; Lee, J.W.; Donovan, S.M.; MacKenzie, J.D.; Abernathy, C.R. [Univ. of Florida, Gainesville, FL (United States); Shul, R.J. [Sandia National Labs., Albuquerque, NM (United States); McLane, G.F. [Army Research Lab., Fort Monmouth, NJ (United States); Ren, F. [AT and T Bell Labs., Murray Hill, NJ (United States)

    1996-04-01T23:59:59.000Z

    Etch rates up to 7,000 {angstrom}/min. for GaN are obtained in Cl{sub 2}/H{sub 2}/Ar or BCl{sub 3}/Ar ECR discharges at 1--3mTorr and moderate dc biases. Typical rates with HI/H{sub 2} are about a factor of three lower under the same conditions, while CH{sub 4}/H{sub 2} produces maximum rates of only {approximately}2,000 {angstrom}/min. The role of additives such as SF{sub 6}, N{sub 2}, H{sub 2} or Ar to the basic chlorine, bromine, iodine or methane-hydrogen plasma chemistries are discussed. Their effect can be either chemical (in forming volatile products with N) or physical (in breaking bonds or enhancing desorption of the etch products). The nitrides differ from conventional III-V`s in that bond-breaking to allow formation of the etch products is a critical factor. Threshold ion energies for the onset of etching of GaN, InGaN and InAlN are {ge} 75 eV.

  13. Nanostructure, Chemistry and Crystallography of Iron Nitride...

    Broader source: Energy.gov (indexed) [DOE]

    Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods DOE 2011 Vehicle Technologies...

  14. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Sutton, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Worcester, MA); Yeckley, Russell L. (Latrobe, PA)

    1998-01-01T23:59:59.000Z

    A ceramic body comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa.

  15. Nanostructure, Chemistry and Crystallography of Iron Nitride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

  16. Sandia National Laboratories: III-nitride materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III-nitride materials SSLS Scientist Andy Armstrong Receives 2013 Employee Recognition Award On September 9, 2013, in EC, Energy, Energy Efficiency, Events, News, News & Events,...

  17. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    SciTech Connect (OSTI)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01T23:59:59.000Z

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  18. GaN: Defect and Device Issues

    SciTech Connect (OSTI)

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09T23:59:59.000Z

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  19. ARM - AMIE Gan Island - Data Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^APPLIANCETracerOverviewGan

  20. Exact-exchange-based quasiparticle energy calculations for the band gap, effective masses, and deformation potentials of ScN

    E-Print Network [OSTI]

    of less than 2% to cubic gallium nitride GaN . This makes ScN structurally compatible with the group devices. Alloying ScN with GaN Refs. 9­12 might provide a viable alternative to InGaN alloys for use tunneling spectroscopy and optical-absorption mea- surements, Al-Brithen et al.18 were able to reduce

  1. Transphorm Takes Energy Efficiency to a New Level

    Broader source: Energy.gov [DOE]

    Transphorm, a startup partially funded by ARPA-E, develops Gallium nitride (GaN) semiconductors that could be used to make cost-effective, high-performance power converters for electric motor drives and components of solar panels and electric vehicles.

  2. CX-011468: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Low-Cost Silicon-Carbide (SiC) and Gallium-Nitride (GaN) Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction... CX(s) Applied: B3.6 Date: 10/29/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  3. Sandia Energy - Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZnO, will be important. AlGaInN Materials LEDs based on gallium nitride (GaN) and ternary alloys with indium (InGaN) and aluminum (AlGaN) as well as quaternary alloys (AlGaInN) can...

  4. CX-009000: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    "High Quality, Low Cost Bulk Gallium Nitride (GaN) Substrates Grown by the Electrochemical Solution Growth Method CX(s) Applied: A9, B3.6 Date: 08/20/2012 Location(s): Missouri Offices(s): Golden Field Office"

  5. CX-000845: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A2445 - Ammonothermal Bulk Gallium Nitride (GaN) Crystal Growth for Energy Efficient LightingCX(s) Applied: B3.6Date: 01/15/2010Location(s): New YorkOffice(s): Advanced Research Projects Agency - Energy

  6. CX-010973: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Low-Cost Silicon Carbide (SiC) and Gallium Nitride (GaN) Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction... CX(s) Applied: B3.6 Date: 09/16/2013 Location(s): Arkansas Offices(s): National Energy Technology Laboratory

  7. Sandia National Laboratories: Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for example ZnO, will be important. AlGaInN Materials LEDs based on gallium nitride (GaN) and ternary alloys with indium (InGaN) and aluminum (AlGaN) as well as quaternary...

  8. CX-010974: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Low-Cost Silicon Carbide (SiC) and Gallium Nitride (GaN) Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction... CX(s) Applied: B3.6 Date: 09/16/2013 Location(s): Arkansas Offices(s): National Energy Technology Laboratory

  9. Band-Gap Engineering of Zinc Oxide Colloids via Lattice Substitution with Sulfur Leading to Materials with Advanced Properties for

    E-Print Network [OSTI]

    Nabben, Reinhard

    gap semiconductors like III/V compounds, for instance, gallium nitride (GaN),2 or II/VI compounds bandgap of 3.37 eV at room temperature.7 Thus, one of its most elemental functions is the absorption

  10. Not Your Grandma's Quilt Researchers develop technique to keep cool high-power semiconductor

    E-Print Network [OSTI]

    devices used in wireless applications, traffic lights and electric cars By Sean Nealon On MAY 8, 2012 in everything from traffic lights to electric cars. Gallium Nitride (GaN), a semiconductor material found by the Nano-Device Laboratory research group led byAlexander Balandin, professor of electrical engineering

  11. Optical spectroscopy of cubic GaN in nanowires

    SciTech Connect (OSTI)

    Renard, J. [CEA-CNRS Group 'Nanophysique et semiconducteurs', CEA-Grenoble INAC-SP2M, Institut Neel, CNRS, Universite Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble (France); Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Tourbot, G. [CEA-CNRS Group 'Nanophysique et semiconducteurs', CEA-Grenoble INAC-SP2M, Institut Neel, CNRS, Universite Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble (France); CEA-LETI, MINATEC, 17 rue des Martyrs 38054 Grenoble Cedex 9 (France); Sam-Giao, D.; Bougerol, C.; Daudin, B.; Gayral, B. [CEA-CNRS Group 'Nanophysique et semiconducteurs', CEA-Grenoble INAC-SP2M, Institut Neel, CNRS, Universite Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble (France)

    2010-08-23T23:59:59.000Z

    We show that highly homogeneous cubic GaN can be grown by plasma-assisted molecular beam epitaxy on wurtzite GaN nanowires. The line width of the donor bound exciton is below 3 meV and can reach 1.6 meV in the best parts of the studied sample. This allows to perform a detailed spectroscopy of cubic GaN, and, in particular, to determine the precise spectral positions of the donor bound exciton, the fundamental free exciton and the split-off exciton in a photoluminescence experiment.

  12. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09T23:59:59.000Z

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  13. Application of ultrasound in solvent extraction of nickel and gallium

    SciTech Connect (OSTI)

    Pesic, B.

    1996-07-01T23:59:59.000Z

    The effects of ultrasound on the rate of solvent extraction of nickel with Lix 65N and Lix 70, and gallium with Kelex 100 were investigated. These solvent extraction systems are noted by their sluggish nature. Low frequency (20 kHz) ultrasound increased the rates of extraction of nickel by factors of four to seven. The ultrasound had no effect on the final chemical equilibrium. Gallium extraction rates were enhanced with the use of ultrasound by as much as a factor of 15. Again, the ultrasound had no effect on extraction equilibrium. For both nickel and gallium, the enhanced rates were attributed to increased interfacial surface area associated with ultrasonically induced cavitation and microdroplet formation. The stability of the microdroplets permitted intermittent application of ultrasound with corresponding decreases in ultrasonic energy requirements. The lowest energy consumption was observed with short (0.25 to 5 s) bursts of high power (41 to 61 W) ultrasonic inputs. The study also provided insight into the factors that affect the complex extraction of gallium from sodium aluminate solutions. The rate controlling step was found to be the dehydration of the gallate ion, Ga(OH)4, and the first complex formation between gallium and Kelex 100. Sodium was found to enhance the extraction rate up to a point, beyond which increased concentration was detrimental. Increasing aluminum concentration was found to slow extraction rates. Modifiers and diluents were shown to markedly affect extraction rates even without ultrasound. Ketone modifiers, particularly 2-undecanone, when used with Kermac 470B or Escaid 200 diluents enhanced extraction rates of gallium to the point that the use of ultrasound provided no additional benefits. The positive effects of ketone modifiers for the solvent extraction of gallium had not been previously reported.

  14. Molten-Salt-Based Growth of Group III Nitrides

    DOE Patents [OSTI]

    Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

    2008-10-14T23:59:59.000Z

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  15. Design, characterization, and modeling of GaN based HFETs for millimeter wave and microwave power amplifier applications

    E-Print Network [OSTI]

    Conway, Adam M.

    2006-01-01T23:59:59.000Z

    power GaN electronics thermally resistive substrates,” IEEE400um SiC (Si, GaN, Sapphire, Diamond) substrate 5um Au 50umfree standing GaN or SiC substrates). At room temperature,

  16. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOE Patents [OSTI]

    Hogan, S.J.

    1983-03-13T23:59:59.000Z

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  17. Point defects as a test ground for the local density approximation +U theory: Mn, Fe, and V{sub Ga} in GaN

    SciTech Connect (OSTI)

    Volnianska, O.; Zakrzewski, T. [Institute of Physics PAS, 02-668 Warsaw (Poland); Boguslawski, P. [Institute of Physics PAS, 02-668 Warsaw (Poland); Institute of Physics, Kazimierz Wielki University, 85-072 Bydgoszcz (Poland)

    2014-09-21T23:59:59.000Z

    Electronic structure of the Mn and Fe ions and of the gallium vacancy V{sub Ga} in GaN was analysed within the GGA + U approach. First, the +U term was treated as a free parameter, and applied to p(N), d(Mn), and d(Fe). The band gap of GaN is reproduced for U(N) ? 4 eV. The electronic structure of defect states was found to be more sensitive to the value of U than that of the bulk states. Both the magnitude and the sign of the U-induced energy shifts of levels depend on occupancies, and thus on the defect charge state. The energy shifts also depend on the hybridization between defect and host states, and thus are different for different level symmetries. In the case of V{sub Ga}, these effects lead to stabilization of spin polarization and the “negative-U{sub eff}” behavior. The values of Us were also calculated using the linear response approach, which gives U(Fe) ? U(Mn) ? 4 eV. This reproduces well the results of previous hybrid functionals calculations. However, the best agreement with the experimental data is obtained for vanishing or even negative U(Fe) and U(Mn)

  18. TEM-Untersuchungen an GaN basierten Halbleiterheterostrukturen fur

    E-Print Network [OSTI]

    Schubart, Christoph

    TEM-Untersuchungen an GaN basierten Halbleiterheterostrukturen f¨ur optoelektronische Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1.2 Versetzungen bei Homoapitaxie auf GaN-Substraten . . . . 79 5.2 Versetzungsreduktion durch

  19. Micro Raman Spectroscopy of Annealed Erbium Implanted GaN

    E-Print Network [OSTI]

    Vajpeyi, Agam P.

    Wurtzite GaN epilayers grown by metal organic chemical vapor deposition on sapphire substrates were subsequently ion implanted with Er to a dose of 5×10¹? cm?². The implanted samples were annealed in nitrogen atmosphere ...

  20. Ion-beam-induced chemical disorder in GaN

    SciTech Connect (OSTI)

    Ishimaru, Manabu; Zhang, Yanwen; Weber, William J.

    2009-09-08T23:59:59.000Z

    Atomistic structures of high-energy ion irradiated GaN have been examined using transmission electron microscopy (TEM). Single crystalline GaN substrates were irradiated at cryogenic temperature with 2 MeV Au2+ ions to a fluence of 7.35x1015 Au/cm2. Cross-sectional TEM observations revealed that damaged layers consisting of amorphous and nanocrystalline phases are formed at the surface and buried depth of the as-irradiated GaN substrate. Atomic radial distribution functions of the amorphous/poly-nanocrystalline regions showed that not only heteronuclear Ga-N bonds but also homonuclear Ga-Ga bonds exist within the first coordination shell. It was found that the ratio of heteronuclear-to-homonuclear bonds, i.e., the degree of chemical disorder is different between the surface and buried damaged layers. The alternation of chemical disorder was attributed to the difference in the defect formation processes between these layers.

  1. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan

    SciTech Connect (OSTI)

    Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

    2011-04-11T23:59:59.000Z

    The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde launches at a rate of eight per day for the duration of the deployment. The increased sonde launches for the entire period matches that of the AMIE-Manus campaign and makes possible a far more robust Variational Analysis forcing data set product for the entire campaign, and thus better capabilities for modeling studies and synergistic research using the data from both AMIE sites.

  2. Interaction of a Liquid Gallium Jet with ISTTOK Edge Plasmas

    SciTech Connect (OSTI)

    Gomes, R. B.; Fernandes, H.; Silva, C.; Pereira, T.; Figueiredo, J.; Carvalho, B.; Soares, A.; Duarte, P.; Varandas, C. [Associacao EURATOM/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa, Porugal (Portugal); Sarakovskis, A.; Lielausis, O.; Klyukin, A.; Platacis, E.; Tale, I. [Association EURATOM/University of Latvia, Institute of Solid State Physics, 8 Kengaraga Str., LV-1063 Riga (Latvia)

    2008-04-07T23:59:59.000Z

    The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages in the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaust from fusion devices. Presently the most promising candidate materials are lithium and gallium. However, lithium has a short liquid state range when compared, for example, with gallium that has essentially better thermal properties and lower vapor pressure. To explore further these properties, ISTTOK tokamak is being used to test the interaction of a free flying, fully formed liquid gallium jet with the plasma. The interacting, 2.3 mm diameter, jet is generated by hydrostatic pressure and has a 2.5 m/s flow velocity. The liquid metal injector has been build to allow the positioning of the jet inside the tokamak chamber, within a 13 mm range. This paper presents the first obtained experimental results concerning the liquid gallium jet-plasma interaction. A stable jet has been obtained, which was not noticeably affected by the magnetic field transients. ISTTOK has been successfully operated with the gallium jet without degradation of the discharge or a significant plasma contamination by liquid metal. This observation is supported by spectroscopic measurements showing that gallium radiation is limited to the region around the jet. Furthermore, the power deposited on the jet has been evaluated at different radial locations and the surface temperature increase estimated.

  3. Thermal evolution of microstructure in ion-irradiated GaN. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evolution of microstructure in ion-irradiated GaN. Thermal evolution of microstructure in ion-irradiated GaN. Abstract: The thermal evolution of the microstructure created by...

  4. High Density Single Crystalline GaN Nanodot Arrays Fabricated Using Template-Assisted Selective Growth

    E-Print Network [OSTI]

    Wang, Yadong

    High density, uniform GaN nanodot arrays with controllable size have been synthesized by using template-assisted selective growth. The GaN nanodots with average diameter 40nm, 80nm and 120nm were selectively grown by ...

  5. Damage and Microstructure Evolution in GaN under Au Ion Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Microstructure Evolution in GaN under Au Ion Irradiation. Damage and Microstructure Evolution in GaN under Au Ion Irradiation. Abstract: Damage and microstructure evolution in...

  6. Structural Defects in Laterally Overgrown GaN Layers Grown on Non-polar Substrates

    E-Print Network [OSTI]

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2007-01-01T23:59:59.000Z

    Overgrown GaN Layers Grown on Non-polar Substrates Z.in GaN layers grown on polar and non-polar substrates areGaN-based layers, since they are grown heteroepitaxially on foreign substrates (

  7. Raman scattering from defects in GaN: The question of vibrational or electronic scattering mechanism

    E-Print Network [OSTI]

    Nabben, Reinhard

    Raman scattering from defects in GaN: The question of vibrational or electronic scattering on defects in GaN, which appear in the Raman spectra as sharp and intense lines in the low-energy region from into the GaN material. S0163-1829 98 00344-0 I. INTRODUCTION Low-temperature Raman spectra of GaN films grown

  8. Zeeman spectroscopy of the Fe3 center in GaN

    E-Print Network [OSTI]

    Nabben, Reinhard

    vapor deposition grown GaN Ronny Kirste, Ramón Collazo, Gordon Callsen, Markus R. Wagner, Thomas Kure et vapor deposition grown GaN Ronny Kirste,1,a) Ramo´n Collazo,2 Gordon Callsen,1 Markus R. Wagner,1 Thomas in GaN. GaN with Ga- to N-polar junctions was grown on sapphire using an AlN buffer layer. Results from

  9. Low temperature route to uranium nitride

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Sattelberger, Alfred P. (Darien, IL); Yeamans, Charles (Berkeley, CA); Hartmann, Thomas (Idaho Falls, ID); Silva, G. W. Chinthaka (Las Vegas, NV); Cerefice, Gary (Henderson, NV); Czerwinski, Kenneth R. (Henderson, NV)

    2009-09-01T23:59:59.000Z

    A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.

  10. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Omatete, Ogbemi O. (Lagos, NG); Young, Albert C. (Flushing, NY)

    1994-01-01T23:59:59.000Z

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  11. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1998-06-02T23:59:59.000Z

    A ceramic body is disclosed comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa. 4 figs.

  12. High thermal conductivity aluminum nitride ceramic body

    SciTech Connect (OSTI)

    Huseby, I. C.; Bobik, C. F.

    1985-10-15T23:59:59.000Z

    A process for producing a polycrystalline aluminum nitride ceramic body having a porosity of less than about 10% by volume of said body and a thermal conductivity greater than 1.0 W/cm-K at 22/sup 0/ C., which comprises forming a mixture comprised of aluminum nitride powder and an yttrium additive selected from the group consisting of yttrium, yttrium hydride, yttrium nitride and mixtures thereof, said aluminum nitride and yttrium additive having a predetermined oxygen content, said mixture having a composition wherein the equivalent % of yttrium, aluminum, nitrogen and oxygen shapping said mixture into a compact and sintering said compact at a temperature ranging from about 1850/sup 0/ C. to about 2170/sup 0/ C. in an atmosphere selected from the group consisting of nitrogen, argon, hydrogen and mixtures thereof to produce said polycrystalline body.

  13. Metal Nitride Diffusion Barriers for Copper Interconnects

    E-Print Network [OSTI]

    Araujo, Roy A.

    2010-01-14T23:59:59.000Z

    nanocrystalline TiN film enhances grain boundary sliding and grain boundary diffusion related creep phenomena, and the ductility of the coatings is also improved. On the other hand, compositional designed TiN based alloys, such as cubic-phase Ti1-xAlxN thin... Nitrides ...................... 26 2.3 Composition and Structures of TiN, TaN and HfN ................. 33 2.4 Nitride Formation, Electronegativity, Atomic Radius and Bonding...

  14. Piezoelectric polarization associated with dislocations in wurtzite GaN Changchun Shi,a)

    E-Print Network [OSTI]

    Yu, Edward T.

    Piezoelectric polarization associated with dislocations in wurtzite GaN Changchun Shi,a) Peter M axis in wurtzite GaN. It is shown that the polarization field generated by screw components with the c-axis oriented dislocations in wurtzite GaN, and de- scribe the piezoelectric polarization

  15. Wurtzite GaN Surface Structures Studied by Scanning Tunneling Microscopy and Reflection High Energy

    E-Print Network [OSTI]

    Feenstra, Randall

    Wurtzite GaN Surface Structures Studied by Scanning Tunneling Microscopy and Reflection High Energy studies of the surface reconstructions for both the Ga-face and the N-face of wurtzite GaN films grown a surface phenomenon. Although numerous surface studies of wurtzite GaN have been performed, progress

  16. Inversion of wurtzite GaN(0001) by exposure to V. Ramachandran and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Inversion of wurtzite GaN(0001) by exposure to magnesium V. Ramachandran and R. M. Feenstra 15213 Abstract Magnesium incorporation during the molecular beam epitaxy growth of wurtzite GaN is found important. Most devices are built on the polar basal plane of wurtzite GaN, and the characteristics

  17. Ab initio prediction of GaN ,,1010... and ,,110... anomalous surface relaxation John E. Jaffe

    E-Print Network [OSTI]

    Pandey, Ravi

    Ab initio prediction of GaN ,,101¯0... and ,,110... anomalous surface relaxation John E. Jaffe Received 22 September 1995 The results of a study of the surface relaxation of GaN in the framework is minimized the Ga-N surface bonds show a very small rotation angle of about 6° accompanied by a reduction

  18. Temperature and pressure dependence of Mg local modes in GaN G. Kaczmarczyk,a)

    E-Print Network [OSTI]

    Nabben, Reinhard

    Temperature and pressure dependence of Mg local modes in GaN G. Kaczmarczyk,a) A. Kaschner, A in the hexagonal modification of GaN was studied within a valence-force model. The contribution caused by thermal the shift of the GaN host modes. © 2001 American Institute of Physics. DOI: 10.1063/1.1339848 Doped III

  19. Stress analysis of selective epitaxial growth of GaN Q. K. K. Liua)

    E-Print Network [OSTI]

    Nabben, Reinhard

    Stress analysis of selective epitaxial growth of GaN Q. K. K. Liua) Bereich Theoretische Physik Stress distributions in selectively overgrown self-organized GaN hexagonal pyramids have been analyzed in the literature and an effective lattice mismatch between the GaN and the substrate that was determined from

  20. Band gap changes of GaN shocked to 13 GPa M. D. McCluskeya)

    E-Print Network [OSTI]

    McCluskey, Matthew

    Band gap changes of GaN shocked to 13 GPa M. D. McCluskeya) and Y. M. Gupta Institute for Shock, California 94304 Received 24 October 2001; accepted for publication 19 December 2001 The band gap of GaN in shock-wave experiments. Shock waves were generated by impacting the GaN samples with c-cut sapphire

  1. Indium-induced changes in GaN,,0001... surface morphology John E. Northrup

    E-Print Network [OSTI]

    Indium-induced changes in GaN,,0001... surface morphology John E. Northrup Xerox Palo Alto Research-principles calculations of the energetics of the In-terminated GaN 0001 , (0001), (1011), and (1011) surfaces indicate- retical studies to determine the behavior of In on GaN sur- faces. The term surfactant is used often

  2. Large atomic displacements associated with the nitrogen antisite in GaN T. Mattila*

    E-Print Network [OSTI]

    Large atomic displacements associated with the nitrogen antisite in GaN T. Mattila* Laboratory of an extensive theoretical study of the nitrogen antisite in GaN. The neutral antisite in c-GaN is reported the nitrogen antisite and the yellow luminescence commonly observed in GaN is discussed. S0163-1829 96 05824

  3. Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination

    E-Print Network [OSTI]

    Zhou, Chongwu

    Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination Song Han carried out with single crystal GaN nanowires. The nanowire transistors exhibited a sub- stantial increase was demonstrated and studied for GaN nanowires working as polarized UV detectors. The nanowire conductance varied

  4. Porous GaN nanowires synthesized using thermal chemical vapor deposition

    E-Print Network [OSTI]

    Kim, Bongsoo

    Porous GaN nanowires synthesized using thermal chemical vapor deposition Seung Yong Bae a , Hee Won 2003 Abstract Porous structured GaN nanowires were synthesized with a large scale by chemical vapor to 1 mm. The porous GaN nanowires consist of the wurtzite single crystal grown with the [0 1 1

  5. Properties of GaN and ZnO Quantum Dots

    E-Print Network [OSTI]

    CHAPTER 3 Properties of GaN and ZnO Quantum Dots Vladimir A. Fonoberov, Alexander A. Balandin Nano. GaN Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 2.1. Electron and Hole States in Strained Wurtzite and Zincblende GaN Quantum Dots

  6. A conductivity-based selective etching for next generation GaN devices

    E-Print Network [OSTI]

    Cao, Hui

    A conductivity-based selective etching for next generation GaN devices Yu Zhang 1 , Sang-Wan Ryu 2 etching having large selectivity based on the conductivity of n-type GaN was investigated to demonstrate on the doping concentration and applied voltage. For photonic applications, GaN microdisks and distributed Bragg

  7. Growth of GaN Thin Films on Silicon Using Single Source Precursors

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    Growth of GaN Thin Films on Silicon Using Single Source Precursors and Development of New We have grown the GaN thin films on silicon substrates using the newly developed single source precursors by thermal MOCVD method. Highly oriented GaN thin films in the [002] direction with hexagonal

  8. Control of growth orientation of GaN nanowires H.Y. Peng, N. Wang 1

    E-Print Network [OSTI]

    Zheng, Yufeng

    -dependent growth directions. At a substrate temperature of 900­950 °C, the growth direction of GaN nanowires, it has become possible to grow single crystal films of GaN on various substrates by metalControl of growth orientation of GaN nanowires H.Y. Peng, N. Wang 1 , X.T. Zhou, Y.F. Zheng, C

  9. Microstructures of GaN films deposited on (001) and (111) Si substrates using electron

    E-Print Network [OSTI]

    Basu, Soumendra N.

    Microstructures of GaN films deposited on (001) and (111) Si substrates using electron cyclotron 1993; accepted 26 April 1994) The microstructures of GaN films, grown on (001) and (111) Si substrates-blende structure. The GaN buffer layer, grown in the first deposition step, accommodated the 17% lattice mismatch

  10. In situ growth regime characterization of cubic GaN using reflection high energy electron diffraction

    E-Print Network [OSTI]

    As, Donat Josef

    from Knudsen cells. Cubic GaN layers were deposited at 720 °C directly on 3C-SiC substrates shutters the GaN surface was exposed to different Ga fluxes for a certain time. The substrate temperatureIn situ growth regime characterization of cubic GaN using reflection high energy electron

  11. Strain dependent facet stabilization in selective-area heteroepitaxial growth of GaN nanostructures

    E-Print Network [OSTI]

    Sharma, Pradeep

    of submicron GaN islands on GaN-sapphire, AlN-sapphire, and bare sapphire substrates. It is shown that strain due to the lattice mismatch between GaN and the underlying substrate has a significant influence- structures has received less attention. Heteroepitaxial growth of GaN is commonly carried out on substrates

  12. Vertical strain and doping gradients in thick GaN layers H. Siegle,a)

    E-Print Network [OSTI]

    Nabben, Reinhard

    between layer and common substrates, e.g., sapphire or GaAs.1 Consequently, most GaN layers and also from the surface of the GaN layer nearer to the substrate interface, as can be seen from the CLVertical strain and doping gradients in thick GaN layers H. Siegle,a) A. Hoffmann, L. Eckey, and C

  13. Growth of GaN on porous SiC by molecular beam epitaxy

    E-Print Network [OSTI]

    Feenstra, Randall

    growth of high quality GaN thin films is the unavailability suitable substrates. The lack of suitable matched between the GaN and the substrate are the lattice parameter and the coefficient of thermal to the absence of high quality, large area GaN substrates. Therefore one has to resort to the heteroepitaxial

  14. TEM studies of laterally overgrown GaN layers grown on non-polar substrates

    E-Print Network [OSTI]

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2006-01-01T23:59:59.000Z

    between these substrates and the GaN layers leads to a highpendeo-epitaxial GaN layer grown on (1120) 4H-SiC substrate.in GaN layers grown on polar and non-polar substrates are

  15. The Nitrogen-Nitride Anode.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01T23:59:59.000Z

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  16. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect (OSTI)

    Yang, Minghui, E-mail: m.yang@cornell.edu [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States); Allen, Amy J.; Nguyen, Minh T. [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States); Ralston, Walter T. [College of Chemistry, University of California, Berkeley 94720-1460, CA (United States); MacLeod, Michelle J. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139-4307, MA (United States); DiSalvo, Francis J., E-mail: fjd3@cornell.edu [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States)

    2013-09-15T23:59:59.000Z

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  17. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    SciTech Connect (OSTI)

    Deen, David A., E-mail: david.deen@alumni.nd.edu; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C. [Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375-5347 (United States); Gougousi, Theodosia [Physics Department, University of Maryland Baltimore County, Baltimore, Maryland 21250 (United States); Evans, Keith R. [Kyma Technologies, Raleigh, North Carolina 27617 (United States)

    2014-09-01T23:59:59.000Z

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6?nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700?cm{sup 2}/V s and sheet resistance of 130 ?/? for a 3?nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  18. Anti-phase domains in cubic GaN

    SciTech Connect (OSTI)

    Maria Kemper, Ricarda; Schupp, Thorsten; Haeberlen, Maik; Lindner, Joerg; Josef As, Donat [University of Paderborn, Department of Physics, Warburger Str. 100, D-33098 Paderborn (Germany); Niendorf, Thomas; Maier, Hans-Juergen [University of Paderborn, Lehrstuhl fuer Werkstoffkunde, Pohlweg 47-49, D-33098 Paderborn (Germany); Dempewolf, Anja; Bertram, Frank; Christen, Juergen [University of Magdeburg, Institut fuer Festkoerperphysik, P.O. Box 4120, D-39016 Magdeburg (Germany); Kirste, Ronny; Hoffmann, Axel [Technische Universitaet Berlin, Institute of Solid State Physics, Hardenbergstr. 36, D-10623 Berlin (Germany)

    2011-12-15T23:59:59.000Z

    The existence of anti-phase domains in cubic GaN grown on 3C-SiC/Si (001) substrates by plasma-assisted molecular beam epitaxy is reported. The influence of the 3C-SiC/Si (001) substrate morphology is studied with emphasis on the anti-phase domains (APDs). The GaN nucleation is governed by the APDs of the substrate, resulting in equal plane orientation and the same anti-phase boundaries. The presence of the APDs is independent of the GaN layer thickness. Atomic force microscopy surface analysis indicates lateral growth anisotropy of GaN facets in dependence of the APD orientation. This anisotropy can be linked to Ga and N face types of the {l_brace}111{r_brace} planes, similar to observations of anisotropic growth in 3C-SiC. In contrast to 3C-SiC, however, a difference in GaN phase composition for the two types of APDs can be measured by electron backscatter diffraction, {mu}-Raman and cathodoluminescence spectroscopy.

  19. Abstract--A high performance GaN HFET WCDMA basestation power amplifier is presented, which uses an envelope

    E-Print Network [OSTI]

    Asbeck, Peter M.

    Abstract--A high performance GaN HFET WCDMA basestation power amplifier is presented, which uses, digital predistortion, WCDMA, GaN HFET. I. INTRODUCTION High power-added efficiency is an important] and FETs[3], and GaN HFETs[4][5] has been carried out. GaN HFETs are attractive options since they can

  20. Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    doped MOCVD grown GaN on sapphire substrate [2]. Park et al. performed the growth of Cr doped GaN singleScanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Orleans, New Orleans, LA 70148, USA Abstract: Cr doped GaN was grown by rf N-plasma molecular beam epitaxy

  1. Pair distribution function study on compression of liquid gallium

    SciTech Connect (OSTI)

    Luo, Shengnian [Los Alamos National Laboratory; Yu, Tony [SUNY-SB; Chen, Jiuhua [SUNY-SB; Ehm, Lars [SUNY-SB; Guo, Quanzhong [SUNY-SB; Parise, John [SUNY-SB

    2008-01-01T23:59:59.000Z

    Integrating a hydrothermal diamond anvil cell (HDAC) and focused high energy x-ray beam from the superconductor wiggler X17 beamline at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL), we have successfully collected high quality total x-ray scattering data of liquid gallium. The experiments were conducted at a pressure range from 0.1GPa up to 2GPa at ambient temperature. For the first time, pair distribution functions (PDF) for liquid gallium at high pressure were derived up to 10 {angstrom}. Liquid gallium structure has been studied by x-ray absorption (Di Cicco & Filipponi, 1993; Wei et al., 2000; Comez et al., 2001), x-ray diffraction studies (Waseda & Suzuki, 1972), and molecular dynamics simulation (Tsay, 1993; Hui et al., 2002). These previous reports have focused on the 1st nearest neighbor structure, which tells us little about the atomic arrangement outside the first shell in non- crystalline materials. This study focuses on the structure of liquid gallium and the atomic structure change due to compression. The PDF results show that the observed atomic distance of the first nearest neighbor at 2.78 {angstrom} (first G(r) peak and its shoulder at the higher Q position) is consistent with previous studies by x-ray absorption (2.76 {angstrom}, Comez et al., 2001). We have also observed that the first nearest neighbor peak position did not change with pressure increasing, while the farther peaks positions in the intermediate distance range decreased with pressure increasing. This leads to a conclusion of the possible existence of 'locally rigid units' in the liquid. With the addition of reverse Monte Carlo modeling, we have observed that the coordination number in the local rigit unit increases with pressure. The bulk modulus of liquid gallium derived from the volume compression curve at ambient temperature (300K) is 12.1(6) GPa.

  2. (Data in kilograms of gallium content, unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 2002. Two companies in

    E-Print Network [OSTI]

    and Use: No domestic primary gallium recovery was reported in 2002. Two companies in Oklahoma and Utah diodes, photodetectors, and solar cells. Integrated circuits represented 65% of gallium demand forecasts of market growth, several companies were consolidating, reducing, or eliminating their Ga

  3. Method of manufacture of atomically thin boron nitride

    DOE Patents [OSTI]

    Zettl, Alexander K

    2013-08-06T23:59:59.000Z

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  4. Redistribution of Implanted Dopants in GaN

    SciTech Connect (OSTI)

    Fu, M.; Gao, X.A.; Han, J.; Pearton, S.J.; Rieger, D.J.; Scarvepalli, V. Sekhar, J.A.; Shul, R.J.; Singh, R.K.; Wilson, R.G.; Zavada, J.M.; Zolper, J.C.

    1998-11-20T23:59:59.000Z

    Donor (S, Se and Te) and acceptor (Mg, Be and C) dopants have been implanted into GaN at doses of 3-5x1014 cm-2 and annealed at temperatures up to 1450 *C. No redistribution of any of the elements is detectable by Secondary Ion Mass Spectrometry, except for Be, which displays an apparent damage-assisted diffusion at 900 "C. At higher temperatures there is no further movement of the Be, suggesting that the point defect flux that assists motion at lower temperatures has been annealed. Effective diffusivities are <2X 1013 cm2.sec-1 at 1450 `C for each of the dopants in GaN.

  5. Evidence of N substitution by Mn in GaN

    E-Print Network [OSTI]

    Pereira, LMC; Decoster, S; Correia, JG; da Silva, MR; Vantomme, A; Araújo, JP

    2012-01-01T23:59:59.000Z

    We report on the lattice location of Mn in wurtzite GaN using beta? emission channeling. In addition to the majority substituting for Ga, we locate up to 20% of the Mn atoms in N sites. We propose that the incorporation of Mn in N sites is enabled under sufficiently high concentrations of N vacancies, and stabilized by a highly charged state of the Mn cations. Since N substitution by Mn impurities in wurtzite GaN has never been observed experimentally or even considered theoretically before, it challenges the current paradigm of transition metal incorporation in wide-gap dilute magnetic semiconductors.

  6. GaN for x-ray detection

    SciTech Connect (OSTI)

    Duboz, Jean-Yves; Lauegt, Marguerite; Schenk, David [CRHEA, CNRS, rue Bernard Gregory, Sophia Antipolis, F-06560 Valbonne (France); Beaumont, Bernard [Lumilog, 2720 chemin de saint Bernard, F-06220 Vallauris (France); Reverchon, Jean-Luc [THALES R and T, route departementale 128, F-91767 Palaiseau Cedex (France); Wieck, Andreas D.; Zimmerling, Tino [Fakultaet fuer Physik und Astronomie, D-44780 Bochum (Germany)

    2008-06-30T23:59:59.000Z

    The potential of GaN based materials for x-ray detection is investigated. The absorption coefficient in GaN is measured as a function of photon energy between 6 and 40 keV. Metal-semiconductor-metal photodetectors are fabricated and characterized. The response dependence on bias, the temporal dynamics, and the response dependence on detector geometry all together point toward a mixing of photovoltaic and photoconductive effects. Thanks to a large photoconductive gain, the detector has a decent responsivity at the expense of a large response time.

  7. Silicon nitride ceramic having high fatigue life and high toughness

    DOE Patents [OSTI]

    Yeckley, Russell L. (Oakham, MA)

    1996-01-01T23:59:59.000Z

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  8. E-Print Network 3.0 - arsenide- gallium instrument Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science 5 Formation of etch pits during carbon doping of gallium arsenide with carbon tetrachloride by metalorganic vapor-phase epitaxy Summary: Formation of etch pits...

  9. Nanosecond dynamics of a gallium mirror's light-induced reflectivity change

    E-Print Network [OSTI]

    V. Albanis; S. Dhanjal; V. I. Emelyanov; V. A. Fedotov; K. F. MacDonald; P. Petropoulos; D. J. Richardson; N. I. Zheludev

    2000-10-05T23:59:59.000Z

    Transient pump-probe optical reflectivity measurements of the nano/microsecond dynamics of a fully reversible, light-induced, surface-assisted metallization of gallium interfaced with silica are reported. The metallization leads to a considerable increase in the interface's reflectivity when solid a-gallium is on the verge of melting. The reflectivity change was found to be a cumulative effect that grows with light intensity and pulse duration. The reflectivity relaxes back to that of alpha-gallium when the excitation is withdrawn in a time that increases critically at gallium's melting point. The effect is attributed to a non-thermal light-induced structural phase transition.

  10. Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire

    E-Print Network [OSTI]

    Gilchrist, James F.

    phase epitaxy (MOVPE) of GaN on sapphire substrate, the low-temperature GaN buffer layer is etched-back and recovery process employed in conventional MOVPE of GaN on sapphire substrate adds up to 30­45 min to the GaN, and Grain growth) c-plane sapphire substrate by employ- ing abbreviated GaN growth mode (AGGM). Studies

  11. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N. (Littleton, CO); Contreras, Miguel A. (Golden, CO); Keane, James (Lakewood, CO); Tennant, Andrew L. (Denver, CO), Tuttle, John R. (Denver, CO); Ramanathan, Kannan (Lakewood, CO); Noufi, Rommel (Golden, CO)

    1998-08-08T23:59:59.000Z

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  12. Refractive index of erbium doped GaN thin films

    SciTech Connect (OSTI)

    Alajlouni, S.; Sun, Z. Y.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Zavada, J. M. [Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States)

    2014-08-25T23:59:59.000Z

    GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540?nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those obtained by conventional growth method of continuous flow of reaction precursors. X-ray diffraction rocking curve linewidths of less than 300?arc sec were achieved for the GaN (0002) diffraction peak, which is comparable to the typical results of undoped high quality GaN epilayers and represents a major improvement over previously reported results for GaN:Er. Spectroscopic ellipsometry was used to determine the refractive index of the GaN:Er epilayers in the 1540?nm wavelength window and a linear dependence on Er concentration was found. The observed refractive index increase with Er incorporation and the improved crystalline quality of the GaN:Er epilayers indicate that low loss GaN:Er optical waveguiding structures are feasible.

  13. Nitride Fuel Development at the INL

    SciTech Connect (OSTI)

    W.E. Windes

    2007-06-01T23:59:59.000Z

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon – hydrogen - nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 µm) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90 -95 % nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form.

  14. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    SciTech Connect (OSTI)

    Han,W.Q.

    2008-08-01T23:59:59.000Z

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c-axis. The rhombohedral system consists of three-layered units: ABCABC..., whose honeycomb layers are arranged in a shifted phase, like as those of graphite. Reflecting its weak interlayer bond, the h-BN can be cleaved easily along its layers, and hence, is widely used as a lubricant material. The material is stable up to a high temperature of 2300 C before decomposition sets in [2] does not fuse a nitrogen atmosphere of 1 atm, and thus, is applicable as a refractory material. Besides having such properties, similar to those of graphite, the material is transparent, and acts as a good electric insulator, especially at high temperatures (10{sup 6} {Omega}m at 1000 C) [1]. c-BN and w-BN are tetrahedrally linked BN. The former has a cubic sphalerite-type structure, and the latter has a hexagonal wurtzite-type structure. c-BN is the second hardest known material (the hardest is diamond), the so-called white diamond. It is used mainly for grinding and cutting industrial ferrous materials because it does not react with molten iron, nickel, and related alloys at high temperatures whereas diamond does [1]. It displays the second highest thermal conductivity (6-9 W/cm.deg) after diamond. This chapter focuses principally upon information about h-BN nanomaterials, mainly BN nanotubes (BNNTs), porous BN, mono- and few-layer-BN sheets. There are good reviews book chapters about c-BN in [1, 4-6].

  15. Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction

    E-Print Network [OSTI]

    Brown, J S; Koblmuller, G; Wu, F; Averbeck, R; Riechert, H; Speck, J S

    2006-01-01T23:59:59.000Z

    PA-MBE GaN growth conditions, with substrate temperatures ofthe GaN surface roughness evolution, substrate vicinality,vapor and substrate temperature could form the basis for GaN

  16. In situ characterization of GaN quantum dot growth with reflection high-energy electron diffraction and line-of-sight mass spectrometry

    E-Print Network [OSTI]

    Brown, J S; Koblmuller, G; Averbeck, R; Riechert, H; Speck, J S

    2006-01-01T23:59:59.000Z

    PA-MBE GaN growth conditions, with substrate temperatures ofthe GaN surface roughness evolution, substrate vicinality,vapor and substrate temperature could form the basis for GaN

  17. Fabrication and Characterization of Nano-porous GaN Template for Strain Relaxed GaN Growth

    E-Print Network [OSTI]

    Hartono, Haryono

    A simple and cost-effective Si-doped porous GaN is fabricated by UV-enhanced electrochemical etching. An optimum current density of 20 mA/cm² applied for an hour in dilute NaOH solution produces a high density of uniform ...

  18. DESIGN AND ANALYSIS OF AN INTEGRATED PULSE MODULATED S-BAND POWER AMPLIFIER IN GALLIUM NITRIDE PROCESS

    SciTech Connect (OSTI)

    STEVE SEDLOCK

    2012-04-04T23:59:59.000Z

    The design of power amplifiers in any semi-conductor process is not a trivia exercise and it is often encountered that the simulated solution is qualitatively different than the results obtained. Phenomena such as oscillation occurring either in-band or out of band and sometimes at subharmonic intervals, continuous spectrum noticed in some frequency bands, often referred to as chaos, and jumps and hysteresis effects can all be encountered and render a design useless. All of these problems might have been identified through a more rigorous approach to stability analysis. Designing for stability is probably the one area of amplifier design that receives the least amount of attention but incurs the most catastrophic of effects if it is not performed properly. Other parameters such as gain, power output, frequency response and even matching may suitable mitigation paths. But the lack of stability in an amplifier has no mitigating path. In addition to of loss of the design completely there are the increased production cycle costs, costs involved with investigating and resolving the problem and the costs involved with schedule slips or delays resulting from it. The Linville or Rollett stability criteria that many microwave engineers follow and rely exclusively on is not sufficient by itself to ensure a stable and robust design. It will be shown that the universal belief that unconditional stability is obtained through an analysis of the scattering matrix S to determine if 1 and |{Delta}{sub S}| < 1 is only part of the procedure and other tools must be used to validate the criteria. The research shown contributes to the state of the art by developing a more thorough stability design technique for designing amplifiers of any class, whether that be current mode or switch mode, than is currently undertaken with the goal of obtaining first pass design success.

  19. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    SciTech Connect (OSTI)

    Yang, Tsung-Jui; Wu, Yuh-Renn, E-mail: yrwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Shivaraman, Ravi; Speck, James S. [Department of Materials, University of California, Santa Barbara, California 93106 (United States)

    2014-09-21T23:59:59.000Z

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  20. Synthesis and microstructure of gallium phosphide nanowires W. S. Shi, Y. F. Zheng, N. Wang,a)

    E-Print Network [OSTI]

    Zheng, Yufeng

    Synthesis and microstructure of gallium phosphide nanowires W. S. Shi, Y. F. Zheng, N. Wang,a) C. S May 2001 Gallium phosphide GaP nanowires of 22 nm in diameter and hundreds micrometers in length were synthesized by laser ablation of a powder mixture of GaP and gallium oxide (Ga2O3 . The morphology

  1. Photodetectors using III-V nitrides

    DOE Patents [OSTI]

    Moustakas, T.D.

    1998-12-08T23:59:59.000Z

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal. 24 figs.

  2. Boron nitride solid state neutron detector

    DOE Patents [OSTI]

    Doty, F. Patrick

    2004-04-27T23:59:59.000Z

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  3. Nitride-bonded silicon carbide composite filter

    SciTech Connect (OSTI)

    Thomson, B.N.; DiPietro, S.G.

    1995-12-01T23:59:59.000Z

    The objective of this program is to develop and demonstrate an advanced hot gas filter, using ceramic component technology, with enhanced durability to provide increased resistance to thermal fatigue and crack propagation. The material is silicon carbide fiber reinforced nitride bonded silicon carbide.

  4. Titanium nitride electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F. (Farmington Hills, MI); Schmatz, Duane J. (Dearborn Heights, MI); Hunt, Thomas K. (Ann Arbor, MI)

    1987-12-22T23:59:59.000Z

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  5. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Millbury, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Sterling, MA); Yeckley, Russell L. (Oakham, MA)

    1996-01-01T23:59:59.000Z

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  6. Photodetectors using III-V nitrides

    DOE Patents [OSTI]

    Moustakas, Theodore D. (Dover, MA)

    1998-01-01T23:59:59.000Z

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal.

  7. IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption

    E-Print Network [OSTI]

    Grandidier, Jonathan

    IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption--Gallium arsenide, nanospheres, photovoltaic systems, whispering gallery modes (WGMs). I. INTRODUCTION THE route as the active layer is thinned [2]. Thin-film photovoltaics offer the possibility to significantly reduce

  8. Two-photon photovoltaic effect in gallium arsenide Jeff Chiles,1

    E-Print Network [OSTI]

    Fathpour, Sasan

    Two-photon photovoltaic effect in gallium arsenide Jichi Ma,1 Jeff Chiles,1 Yagya D. Sharma,2 214669); published September 4, 2014 The two-photon photovoltaic effect is demonstrated in gallium; (230.0250) Optoelectronics; (040.5350) Photovoltaic; (130.4310) Nonlinear. http://dx.doi.org/10.1364/OL

  9. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2000-01-01T23:59:59.000Z

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  10. Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics A. V penetration of gallium into an aluminum film. These composite films form mirrorlike interfaces with silica optics and active plasmonics. The material is a polycrystalline aluminum film on a silica sub- strate

  11. Growth and characterization of horizontal GaN wires on silicon

    SciTech Connect (OSTI)

    Zou, Xinbo; May Lau, Kei, E-mail: eekmlau@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon (Hong Kong); HKUST Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon (Hong Kong); Lu, Xing [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon (Hong Kong); Lucas, Ryan [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Kuech, Thomas F. [HKUST Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon (Hong Kong); Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Choi, Jonathan W.; Gopalan, Padma [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-06-30T23:59:59.000Z

    We report the growth of in-plane GaN wires on silicon by metalorganic chemical vapor deposition. Triangular-shaped GaN microwires with semi-polar sidewalls are observed to grow on top of a GaN/Si template patterned with nano-porous SiO{sub 2}. With a length-to-thickness ratio ?200, the GaN wires are well aligned along the three equivalent ? 112{sup ¯}0 ? directions. Micro-Raman measurements indicate negligible stress and a low defect density inside the wires. Stacking faults were found to be the only defect type in the GaN wire by cross-sectional transmission electron microscopy. The GaN wires exhibited high conductivity, and the resistivity was 20–30 m? cm, regardless of the wire thickness. With proper heterostructure and doping design, these highly aligned GaN wires are promising for photonic and electronic applications monolithically integrated on silicon.

  12. Computational synthesis of single-layer GaN on refractory materials

    SciTech Connect (OSTI)

    Singh, Arunima K.; Hennig, Richard G., E-mail: rhennig@cornell.edu [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2014-08-04T23:59:59.000Z

    The synthesis of single-layer materials relies on suitable substrates. In this paper, we identify suitable substrates for the stabilization and growth of single-layer GaN and characterize the effect of the substrate on the electronic structure of single-layer GaN. We identify two classes of epitaxial substrates, refractory metal diborides and transition-metal dichalcogenides. We find that the refractory diborides provide epitaxial stabilization for the growth and functionalization of single layer GaN. We show that chemical interactions of single layer GaN with the diboride substrates result in n-type doping of the single-layer GaN. Transition-metal dichalcogenides, on the other hand, although epitaxially matched, cannot provide sufficient thermodynamic stabilization for the growth of single layer GaN. Nonetheless, energy band alignments of GaN/metal chalcogenides show that they make good candidates for heterostructures.

  13. Cubic GaN on Nanopatterned 3C-SiC/Si (001) Substrates

    E-Print Network [OSTI]

    As, Donat Josef

    Chapter 15 Cubic GaN on Nanopatterned 3C-SiC/Si (001) Substrates Ricarda Maria Kemper, Donat Josef relaxed cubic GaN by plasma-assisted molecular beam epitaxy on prepat- terned 3C-SiC/Si (001) substrates) process. We analyze the influence of the substrate on the GaN growth and show that it is possible to grow

  14. GaN Nanowire Arrays for High-Output Nanogenerators Chi-Te Huang,,

    E-Print Network [OSTI]

    Wang, Zhong L.

    epitaxially grown on GaN/sapphire substrates. The GaN NW possesses a triangular cross section enclosed by (0001j), (21j1j2), and (2j112) planes, and the angle between the GaN NW and the substrate surface is 62 process. For the epitaxial growth of GaN NW arrays, the substrates play an important role in determining

  15. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect (OSTI)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Wang, Jiannong [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-07-21T23:59:59.000Z

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4?eV at a small forward bias larger than ?2?V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  16. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09T23:59:59.000Z

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  17. Structural defects in GaN revealed by Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Liliental-Weber, Zuzanna

    2014-04-18T23:59:59.000Z

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  18. Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN

    E-Print Network [OSTI]

    in quantum cryptography5 or in photocatalysis6 are being explored. Applications in solid state lighting

  19. Ultra High Temperature Rapid Thermal Annealing of GaN

    SciTech Connect (OSTI)

    Cao, X.A.; Fu, M.; Han, J.; Pearton, S.J.; Rieger, D.J.; Sekhar, J.A.; Shul, R.J.; Singh, R.K.; Wilson, R.G.; Zolper, J.C.

    1998-11-20T23:59:59.000Z

    All of the major acceptor (Mg, C, Be) and donor (Si, S, Se and Te) dopants have been implanted into GaN films grown on A1203 substrates. Annealing was performed at 1100- 1500 C, using AIN encapsulation. Activation percentages of >90Y0 were obtained for Si+ implantation annealed at 1400 C, while higher temperatures led to a decrease in both carrier concentration and electron mobility. No measurable redistribution of any of the implanted dopants was observed at 1450 C.

  20. Low-loss binder for hot pressing boron nitride

    DOE Patents [OSTI]

    Maya, Leon (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

  1. Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass

    E-Print Network [OSTI]

    Hughes, M; Rutt, H; Hewak, D

    2014-01-01T23:59:59.000Z

    Vanadium doped gallium lanthanum sulphide glass (V:GLS) displays three absorption bands at 580, 730 and 1155 nm identified by photoluminescence excitation measurements. Broad photoluminescence, with a full width half maximum (FWHM) of 500 nm, is observed peaking at 1500 nm when exciting at 514, 808 and 1064 nm. The fluorescence lifetime and quantum efficiency at 300 K were measured to be 33.4 us and 4 % respectively. From the available spectroscopic data we propose the vanadium ions valence to be 3+ and be in tetrahedral coordination The results indicate potential for development of a laser or optical amplifier based on V:GLS.

  2. Fabrication of a gated gallium arsenide heterostructure resonant tunneling diode

    E-Print Network [OSTI]

    Kinard, William Brian

    1989-01-01T23:59:59.000Z

    , . ' 'CONTACT PAD' PLANAR I ZED POLYAM I DE RECTIFYI CONTACT N DBHS Pig. 2. f'utavvay vieiv of a gated gallium arsenide heterostructure resonant tunneling diode 1018 graded from 10 18 io" 10? (lightly doped) units=cm 8 ?graded from 10 to 18...FABRICATION OF A GATED GALLIL". tl ARSEXIDE HETEROSTRL CTL RF. RESONANT TF'XXELI'XG DIODE A Thesis bt ttrILLIAAI BRIA'. s KI'iARD Subnut ted to the Office of Graduate Studies of Texas AE;M Eniverstty tn partial fulfillment of the requirements...

  3. Submitted to J. Appl. Phys., revised October, 1999 1 A Rate Equation Model for the Growth of GaN on GaN(0001) by Molecular Beam Epitaxy

    E-Print Network [OSTI]

    Cohen, Philip I.

    Submitted to J. Appl. Phys., revised October, 1999 1 A Rate Equation Model for the Growth of GaN on GaN(000¯1) by Molecular Beam Epitaxy R.Held, B.E. Ishaug, A. Parkhomovsky, A.M. Dabiran, and P (October 7, 1999) GaN(000¯1)filmsweregrownbymolecularbeamepitaxyusingammoniaandelemental

  4. A3.2 Raman and IR studies of GaN C. Wetzel and I. Akasaki

    E-Print Network [OSTI]

    Wetzel, Christian M.

    energies in wurtzite and in zincblende GaN (Table 1.) [1-10]. Phonon and coupled modes have been employed of optical phonons modes in are very similar in wurtzite and cubic GaN. Selection rules in wurtzite allow to values in bulk GaN (Table 1): Table 1. Phonon modes in wurtzite GaN Symmetry active in Experiment (cm-1

  5. Intrinsic degradation mechanism of nearly lattice-matched InAlN layers grown on GaN substrates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Intrinsic degradation mechanism of nearly lattice-matched InAlN layers grown on GaN substrates compared to GaN, In0.17Al0.83N layers lattice-matched to GaN are an attractive solution for applications-standing (0001) GaN substrates with a low density of threading dislocations, for In compositions of 13.5% (layers

  6. GaN1-xBix: Extremely mismatched semiconductor alloys A. X. Levander,1,2

    E-Print Network [OSTI]

    Wu, Junqiao

    GaN1-xBix: Extremely mismatched semiconductor alloys A. X. Levander,1,2 K. M. Yu,1,a S. V. Novikov epitaxy, we have grown GaN1-xBix alloys on sapphire substrates with x up to 0.11. The GaN1-xBix alloys are found to be amorphous with GaN crystals distributed throughout the film. A dramatic reduction

  7. Local vibrational modes of the MgH acceptor complex in GaN W. Gotz,a)

    E-Print Network [OSTI]

    McCluskey, Matthew

    Local vibrational modes of the Mg­H acceptor complex in GaN W. Go¨tz,a) N. M. Johnson,b) and D. P are reported for Mg-doped GaN grown by metalorganic chemical vapor deposition. Hetero-epitaxial layers of GaN complex. The new LVMs are assigned to the stretch modes of the Mg­H and Mg­D complexes in GaN

  8. Morphology and surface reconstructions of GaN(1 1 00) surfaces C. D. Lee and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    assisted molecular beam epitaxy on ZnO(1 1 00) substrates. Well-oriented (1 1 00) GaN surfaces are obtained, ZnO offers an attractive substrate for GaN heteroepitaxy. We obtain well oriented (1 1 00) GaN films this structure consists of 2 monolayers of Ga terminating the GaN surface. ZnO(1 1 00) substrates were obtained

  9. Red light emission by photoluminescence and electroluminescence from Pr-doped GaN on Si substrates

    E-Print Network [OSTI]

    Steckl, Andrew J.

    Red light emission by photoluminescence and electroluminescence from Pr-doped GaN on Si substrates to higher level Er3 transitions. In this letter, we report on Pr-doped GaN growth on Si 111 substrates from Pr-doped GaN thin films grown on Si 111 . The GaN was grown by molecular beam epitaxy using solid

  10. Green emission from Er-doped GaN grown by molecular beam epitaxy on Si substrates

    E-Print Network [OSTI]

    Steckl, Andrew J.

    Green emission from Er-doped GaN grown by molecular beam epitaxy on Si substrates R. Birkhahn and A grown by MBE on sapphire substrates. In this letter, we report on Er-doped GaN growth experiments on Si Er-doped -GaN thin films grown on Si 111 . The GaN was grown by molecular beam epitaxy using solid

  11. Vacancies in fully hydrogenated boron nitride layer: implications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using density functional theory, a series of calculations of structural and electronic properties of hydrogen vacancies in a fully hydrogenated boron nitride (fH-BN) layer were...

  12. aluminium nitrides: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Mutombo, Faustin Kalenda 2012-01-01 22 Carbon Nitride and Conjugated Polymer Composite Materials. Open Access Theses and Dissertations Summary: ??The semiconductor and...

  13. americium nitrides: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heterostructure Zhang, Hongtao 2006-01-01 19 Carbon Nitride and Conjugated Polymer Composite Materials. Open Access Theses and Dissertations Summary: ??The semiconductor and...

  14. aligned carbon nitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 23 24 25 Next Page Last Page Topic Index 1 Carbon Nitride and Conjugated Polymer Composite Materials. Open Access Theses and Dissertations Summary: ??The semiconductor and...

  15. III-Nitride Nanowires: Emerging Materials for Lighting and Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    building blocks in LEDs, lasers, sensors, photovoltaics, and high power and high speed electronics. Compared to planar films, III-nitride nanowires have several potential...

  16. GaN(0001) Surface Structures Studied Using Scanning Tunneling Microscopy and First-Principles Total Energy Calculations

    E-Print Network [OSTI]

    occurring on the (0001) surface of wurtzite GaN are studied using scanning tunneling microscopy, electron and electronic properties of wurtzite GaN surfaces. Several prior studies have reported that these surfaces do reconstructions were identified, corresponding to the two inequivalent polar fac- es of wurtzite GaN, the (0001

  17. Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy electron diffraction

    E-Print Network [OSTI]

    Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy-face of wurtzite GaN films grown using molecular beam epitaxy. N-face reconstructions are primarily adatom numerous surface studies of wurtzite GaN have been performed, progress in determining the true surface

  18. Phonon deformation potentials in wurtzite GaN and ZnO determined by uniaxial pressure dependent Raman measurements

    E-Print Network [OSTI]

    Nabben, Reinhard

    Phonon deformation potentials in wurtzite GaN and ZnO determined by uniaxial pressure dependent deformation potentials in wurtzite GaN and ZnO determined by uniaxial pressure dependent Raman measurements G online 9 February 2011 We report the phonon deformation potentials of wurtzite GaN and ZnO for all zone

  19. Mn-and Fe-doped GaN for spintronic applications Enno Malguth1,2

    E-Print Network [OSTI]

    Nabben, Reinhard

    Resonant Raman scattering on free and bound excitons in GaN A. Kaschner,* A. Hoffmann, and C Raman scattering effect in GaN at low temperatures applying a frequency-doubled titan-sapphire laser to detect inelastic scattered light from small sample volumes, for instance, in buried Al- GaN structures7

  20. Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN

    E-Print Network [OSTI]

    Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN conductivity and dielectric function of GaN by terahertz time-domain spectroscopy. Transmission measurements are performed on an n-type, 180- m-thick, freestanding GaN crystal. Frequency dependent electron dynamics, power

  1. Physica B 376377 (2006) 486490 Preferential substitution of Fe on physically equivalent Ga sites in GaN

    E-Print Network [OSTI]

    Nabben, Reinhard

    2006-01-01T23:59:59.000Z

    in GaN W. GehlhoffÃ, D. Azamat1 , U. Haboeck, A. Hoffmann Institute for Solid State Physics, Technical freestanding hydride vapor phase grown GaN have been studied in the X- and Q-band. A complex resonance pattern with C3v symmetry in the wurtzite structure of GaN. Aside from the displacement of their magnetic axis

  2. Comment on ``Shallow donors in GaN studied by electronic Raman scattering in resonance with yellow luminescence transitions''

    E-Print Network [OSTI]

    Nabben, Reinhard

    Photoluminescence and Raman study of compensation effects in Mg-doped GaN epilayers L. Eckey, U for publication 17 July 1998 The compensation of Mg-doped GaN is systematically studied by low in semiconductor technology during the recent years was the realization of p conductivity in GaN, leading

  3. Selective growth of high quality GaN on Si,,111... substrates M. Seon, T. Prokofyeva, and M. Holtza)

    E-Print Network [OSTI]

    Holtz, Mark

    Selective growth of high quality GaN on Si,,111... substrates M. Seon, T. Prokofyeva, and M. Holtza September 1999; accepted for publication 4 February 2000 We demonstrate selective growth of high-quality GaN by gas-source molecular beam epitaxy on Si 111 wafers patterned with SiO2. GaN was grown on wafers having

  4. Temperature dependent photoluminescence of lateral polarity junctions of metal organic chemical vapor deposition grown GaN

    E-Print Network [OSTI]

    Nabben, Reinhard

    implantation of Cu, Li and Ag into silicon doped GaN films grown by Metalorganic Chemical Vapor Deposition temperature (700-900°C) annealing. Low temperature (6K) photoluminescence (PL) for Cu-implanted GaN showed recovery of standard crystalline GaN features. Additional donor-acceptor pair features are observed below 3

  5. Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    length in single GaN nanowires Gilles Nogues,1, 2, a) Thomas Auzelle,3 Martien Den Hertog,1, 2 Bruno correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature that carrier diffusion length in InGaN and GaN bidimensional (2D) layers are rather small, in the range of 50

  6. Oxidized GaN(0001) Surfaces studied by Scanning Tunneling Microscopy and Spectroscopy and by First-Principles Theory

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Oxidized GaN(0001) Surfaces studied by Scanning Tunneling Microscopy and Spectroscopy Abstract Oxidized Ga-polar GaN surfaces have been studied both experimentally and theoretically. For in tunneling spectroscopy revealed a surface band gap with size close to that of GaN, indicating that any

  7. PHYSICAL REVIEW B 86, 104114 (2012) Molecular dynamics of irradiation-induced defect production in GaN nanowires

    E-Print Network [OSTI]

    Nordlund, Kai

    2012-01-01T23:59:59.000Z

    in GaN nanowires Wei Ren,* Antti Kuronen, and Kai Nordlund Department of Physics, University of Helsinki the defect production of small-cross-section GaN nanowires by Ar ion irradiation. We performed 200 random production in the nanowires was increased by a factor of 2 compared to bulk GaN. A simple model to estimate

  8. Strain relaxation in GaN grown on vicinal 4H-SiC(0001) J. Pernot and E. Bustarret

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Strain relaxation in GaN grown on vicinal 4H-SiC(0001) substrates J. Pernot and E. Bustarret, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands Abstract The strain of GaN layers grown by Metal Organic, the GaN layer grown on on-axis substrate has a slight and homogeneous tensile in-plane stress due

  9. Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D Majid Minary-Jolandan, Rodrigo A. Bernal, Irma Kuljanishvili,

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D Majid Minary-Jolandan, Rodrigo A, Northwestern University, Evanston, Illinois 60208, United States ABSTRACT: Semiconductor GaN NWs are promising, the electromechanical coupling leads to a third rank tensor that for wurtzite crystals (GaN NWs) possesses three

  10. The adsorption of oxygen at GaN surfaces Tosja K. Zywietz, a) Jo rg Neugebauer, and Matthias Scheffler

    E-Print Network [OSTI]

    The adsorption of oxygen at GaN surfaces Tosja K. Zywietz, a) Jo Ë? rg Neugebauer, and Matthias based on GaN is the controlled doping and the incorporation of impurities like, e.g., oxygen. We have explored the adsorption of oxygen at the wurtzite ~0001! and (0001 â?¢ ) GaN surfaces employing density

  11. Radiative recombination and ultralong exciton photoluminescence lifetime in GaN freestanding film via two-photon excitation

    E-Print Network [OSTI]

    Radiative recombination and ultralong exciton photoluminescence lifetime in GaN freestanding film of a freestanding GaN film using one-photon and two-photon excitations to demonstrate the dramatic difference at 295 K is observed from a GaN freestanding film using two-photon excitation, whereas less than 100 ps

  12. Defect reduction in (112_O) a-plane GaN by two-stage epitaxial lateral overgrowth

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    c-axis (b) 50 ?m GaN c-axis (c) substrate window Ga wing NN wing (b) GaN c-axis 20 ?m (c) 10 ?m substrate Figure 3: (GaN films were grown on (1 102) r-plane sapphire substrates (

  13. GROWTH OF GaN ON POROUS SiC SUBSTRATES BY PLASMA-ASSISTED MOLECULAR BEAM EPITAXY

    E-Print Network [OSTI]

    Feenstra, Randall

    1 GROWTH OF GaN ON POROUS SiC SUBSTRATES BY PLASMA-ASSISTED MOLECULAR BEAM EPITAXY C. K. Inoki ABSTRACT We have explored the growth of GaN on porous SiC substrates by plasma-assisted molecular beam Ga droplets. Plan-view TEM observations indicate that the GaN layers grown on porous substrates

  14. Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ;2 ABSTRACT Selective area growth of GaN nanostructures has been performed on full 2" c-sapphire substrates on GaN layer template grown on c-sapphire substrate and usually result in pyramid-shaped nanostructures of homogeneity of the nucleation selectivity of SAG GaN nanostructures on c- sapphire substrate remains an issue

  15. Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    on sapphire substrate [2]. Park et al. performed the growth of Cr doped GaN single crystal by sodium fluxScanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Orleans, New Orleans, LA 70148, USA Abstract: Cr doped GaN was grown by rf N-plasma molecular beam epitaxy

  16. Focused ion beam micromilling of GaN and related substrate materials ,,sapphire, SiC, and Si...

    E-Print Network [OSTI]

    Steckl, Andrew J.

    Focused ion beam micromilling of GaN and related substrate materials ,,sapphire, SiC, and Si... A. In addition, we report similar results for materials currently utilized as substrates for GaN growth. II-0030 Received 15 October 1998; accepted 18 December 1998 Micromilling of GaN films has been obtained using a Ga

  17. Growth of p-type and n-type m-plane GaN by molecular beam epitaxy

    E-Print Network [OSTI]

    McLaurin, M; Mates, T E; Wu, F; Speck, J S

    2006-01-01T23:59:59.000Z

    other more conventional substrates for GaN growth. As anbetween the GaN ?lm and the SiC substrate is considered. 19oriented GaN ?lms were grown on 6H m-plane SiC substrates

  18. A Comparison of Magnesium and Beryllium Acceptors in GaN Grown by rf-Plasma Assisted Molecular Beam Epitaxy

    E-Print Network [OSTI]

    Myers, Tom

    as a function of substrate temperature and dopant flux for Ga-polarity and N-polarity GaN. Incorporation GaN templates on (0001) sapphire substrates. The doped layers were grown at a rate of 0.25 µmA Comparison of Magnesium and Beryllium Acceptors in GaN Grown by rf-Plasma Assisted Molecular Beam

  19. Plasma-assisted molecular beam epitaxy of GaN on porous SiC substrates with varying porosity

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Plasma-assisted molecular beam epitaxy of GaN on porous SiC substrates with varying porosity York, 12222 Abstract: We have grown GaN on porous SiC substrates and studied the effect of substrate show that the GaN film grown on porous substrates contains open tubes and a low dislocation density

  20. Gallium phosphide high-temperature bipolar junction transistor

    SciTech Connect (OSTI)

    Zipperian, T.E.; Dawson, L.R.; Caffin, R.J.

    1981-03-01T23:59:59.000Z

    Preliminary results are reported on the development of a high-temperature (> 350/sup 0/C) gallium phosphide bipolar junction transistor (BJT) for goethermal and other energy applications. This four-layer p/sup +/n/sup -/pp/sup +/ structure was fromed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The gallium phosphide BJT is observed to have a common-emitter current gain peaking in the range of 6 to 10 (for temperatures from 20/sup 0/C to 400/sup 0/C) and a room-temperature, punchthrough-limited, collector-emitter breakdown voltage of approximately -6V. Other parameters of interest include an f/sub/ = 400 KHz (at 20/sup 0/C) and a collector base leakage current = 200 ..mu..A (at 350/sup 0/C).

  1. Hexagonal Growth Spirals on GaN Grown by Molecular Beam Epitaxy: Kinetics vs Thermodynamics

    E-Print Network [OSTI]

    Cohen, Philip I.

    prepared, Ga-polar GaN(0001) templates. The surface morphology was studied using reflection high-energy-edge energy of 0.26 eV/Ã?. They suggest that local conditions at step edges dominate the growth. 1 conducted ex situ using AFM. Desorption mass spectrometry (DMS) was used to measure the GaN growth rate. Our

  2. K.K. Gan Siena02 1 The Ohio State University

    E-Print Network [OSTI]

    Gan, K. K.

    .K. Gan Siena02 6 l Decode Bi-Phase Mark encoded (BPM) clock and command signals from PIN diode l Input Error Rate (BER): BPM #12;K.K. Gan Siena02 7 l Training period: ~25 ms of 20 MHz clock (BPM with no data) DORIC Logic ] Ready

  3. Controlled oxygen doping of GaN using plasma assisted molecular-beam epitaxy

    E-Print Network [OSTI]

    Myers, Tom

    Controlled oxygen doping of GaN using plasma assisted molecular-beam epitaxy A. J. Ptak, L. J-assisted molecular-beam epitaxy to study the dependence of oxygen incorporation on polarity and oxygen partial pressure. Oxygen incorporates at a rate ten times faster on nitrogen-polar GaN than on the Ga polarity

  4. Structural effects of field emission from GaN nanofilms on SiC substrates

    SciTech Connect (OSTI)

    Chen, Cheng-Cheng; Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn; Zhu, Man-Kang; Yan, Hui [College of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124 (China); Liu, Peng [Department of Physics Tsinghua University, Tsinghua-Foxconn Nanotechnology Research Center, Beijing 100084 (China); Wang, Bi-Ben [College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054 (China)

    2014-04-21T23:59:59.000Z

    GaN nanofilms (NFs) with different structures are grown on SiC substrates by pulsed laser deposition under different conditions. The synthesized GaN NFs are studied by X-ray diffraction, field-emission (FE) scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The GaN NFs are composed of diversified GaN nanoparticles with a diameter of 9–38?nm, thickness of 10–50?nm, and roughness of 0.22–13.03?nm. FE from the GaN NFs is structure dependent, which is explained by stress changing the band gap of the NFs. By structure modulation, the turn-on field of GaN NFs can be as low as 0.66?V/?m at a current density of 1??A/cm{sup 2}, with a current density of up to 1.1?mA/cm{sup 2} at a field of 4.18?V/?m. Fowler-Nordheim curves of some samples contain multiple straight lines, which originate from the structural change and diversification of GaN nanoparticles under an applied field. Overall, our results suggest that GaN NFs with excellent FE properties can be prepared on SiC substrates, which provides a new route to fabricate high-efficiency FE nanodevices.

  5. Preparation and characterization of one-dimensional GaN nanorods with Tb intermediate layer

    SciTech Connect (OSTI)

    Shi, Feng, E-mail: sf751106@sina.com.cn [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China)] [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Xue, Chengshan [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China)] [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China)

    2012-12-15T23:59:59.000Z

    Graphical abstract: Display Omitted Highlights: ? GaN nanorods have been prepared on Si substrates by magnetron sputtering. ? GaN nanorods are single crystal with hexagonal wurtzite structure. ? GaN nanorods are high-quality crystalline after ammoniating at 950 °C for 15 min. ? Ammoniating temperatures and times affect the growth of GaN nanorods significantly. -- Abstract: GaN nanorods have been successfully prepared on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga{sub 2}O{sub 3}/Tb thin films. X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), FT-IR spectrophotometer, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), and photoluminescence (PL) spectroscopy were used to characterize the microstructures, morphologies compositions and optical properties of the GaN samples. The results demonstrate that the nanorods are single crystal GaN with hexagonal wurtzite structure and high-quality crystalline after ammoniating at 950 °C for 15 min, which have the size of 100–150 nm in diameter. Ammoniating temperatures and times affect the growth of GaN nanorods significantly. The growth procedure mainly follows the Tb catalyst-assisted VLS mechanism.

  6. GaN light-emitting diodes with Archimedean lattice photonic crystals Aurlien David,a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GaN light-emitting diodes with Archimedean lattice photonic crystals Aurélien David,a Tetsuo Fujii 2005; published online 16 February 2006 We study GaN-based light emitting diodes incorporating the semiconductor due to its index contrast with air.1­6 Recently, PhCs were used as out- coupling gratings in GaN

  7. Fermi Level Control of Point Defects During Growth of Mg-Doped GaN

    E-Print Network [OSTI]

    Nabben, Reinhard

    Fermi Level Control of Point Defects During Growth of Mg-Doped GaN ZACHARY BRYAN,1,4 MARC HOFFMANN defects during metalorganic chem- ical vapor deposition (MOCVD) of Mg-doped GaN has been demonstrated of magnitude lower resistivity values compared with typical unan- nealed GaN:Mg samples. The PL spectra

  8. Anti-phase domains in cubic GaN Ricarda Maria Kemper,1,a)

    E-Print Network [OSTI]

    As, Donat Josef

    ) substrate morphology is studied with emphasis on the anti-phase domains (APDs). The GaN nucleation are the substrate of choice. There are three types of basic defects in epitaxial c-GaN thin films grown on 3CAnti-phase domains in cubic GaN Ricarda Maria Kemper,1,a) Thorsten Schupp,1 Maik Ha¨berlen,1 Thomas

  9. Polarization anisotropy in GaN films for different nonpolar orientations studied by polarized photoreflectance spectroscopy

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    lms grown on GaN substrates. 11–13 To determine ? cr and ?respective substrate. For optical spectra of GaN layers, theGaN ?lm ?sample III? also grown by PAMBE on ? -LiAlO 2 ?100? substrates.

  10. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    SciTech Connect (OSTI)

    Verma, Jai, E-mail: jverma@nd.edu; Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-01-13T23:59:59.000Z

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365?nm (3.4?eV, the bulk bandgap) to below 240?nm (>5.2?eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  11. Zone-boundary phonons in hexagonal and cubic GaN H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen

    E-Print Network [OSTI]

    Nabben, Reinhard

    Zone-boundary phonons in hexagonal and cubic GaN H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P results of second-order Raman-scattering experiments on hexagonal and cubic GaN covering the acoustic- boundary phonons in hexagonal GaN. S0163-1829 97 01812-2 I. INTRODUCTION The wide-band-gap semiconductor GaN

  12. Hydrogen sensing characteristics of semipolar (112{sup ¯}2) GaN Schottky diodes

    SciTech Connect (OSTI)

    Hyeon Baik, Kwang [School of Materials Science and Engineering, Hongik University, Jochiwon, Sejong 339-701 (Korea, Republic of); Kim, Hyonwoong; Jang, Soohwan, E-mail: jangmountain@dankook.ac.kr [Department of Chemical Engineering, Dankook University, Yongin 448-701 (Korea, Republic of); Lee, Sung-Nam [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung, Gyeonggi 429-793 (Korea, Republic of); Lim, Eunju [Department of Applied Physics, Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701 (Korea, Republic of); Pearton, S. J. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Ren, F. [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-02-17T23:59:59.000Z

    The hydrogen detection characteristics of semipolar (112{sup ¯}2) plane GaN Schottky diodes were investigated and compared to c-plane Ga- and N-polar and nonpolar a-plane (112{sup ¯}0) GaN diodes. The semipolar GaN diodes showed large current response to 4% hydrogen in nitrogen gas with an accompanying Schottky barrier reduction of 0.53?eV at 25?°C, and the devices exhibited full recovery to the initial current level upon switching to a nitrogen ambient. The current-voltage characteristics of the semipolar devices remained rectifying after hydrogen exposure, in sharp contrast to the case of c-plane N-polar GaN. These results show that the surface atom configuration and polarity play a strong role in hydrogen sensing with GaN.

  13. Polarity of semipolar wurtzite crystals: X-ray photoelectron diffraction from GaN(101?1) and GaN(202?1) surfaces

    SciTech Connect (OSTI)

    Romanyuk, O., E-mail: romanyuk@fzu.cz; Ji?í?ek, P.; Bartoš, I. [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague (Czech Republic); Paskova, T. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606 (United States)

    2014-09-14T23:59:59.000Z

    Polarity of semipolar GaN(101?1) (101?1?) and GaN(202?1) (202?1?) surfaces was determined with X-ray photoelectron diffraction (XPD) using a standard MgK? source. The photoelectron emission from N 1s core level measured in the a-plane of the crystals shows significant differences for the two crystal orientations within the polar angle range of 80–100° from the (0001) normal. It was demonstrated that XPD polar plots recorded in the a-plane are similar for each polarity of the GaN(101?1) and GaN(202?1) crystals if referred to (0001) crystal axes. For polarity determinations of all important GaN(h0h?l) semipolar surfaces, the above given polar angle range is suitable.

  14. Strain-induced polarization in wurtzite III-nitride semipolar layers

    E-Print Network [OSTI]

    Romanov, A E; Baker, T J; Nakamura, S; Speck, J S

    2006-01-01T23:59:59.000Z

    x Ga 1?x N layers on a GaN substrate ?under compression? forAl y Ga 1?y N layers on GaN substrate ?under tension? for yon these substrates were ?101 ¯ ? GaN on ?100? spinel,

  15. M R S Internet Journal o f Nitride Semiconductor Research Volume 1, Article 12

    E-Print Network [OSTI]

    Cohen, Philip I.

    and the incident fluxes during growth. Excess surface Ga decreases the GaN formation rate when the substrate desorption at elevated substrate temperature [2] [3] as well as to the decomposition of GaN [4]. At lower Reduction of GaN Due to Ga Surface Accumulation D.E. Crawford, R. Held, A. M. Johnston, A. M. Dabiran

  16. Nitrided Metallic Bipolar Plates M.P. Brady (project lead)

    E-Print Network [OSTI]

    Nitrided Metallic Bipolar Plates M.P. Brady (project lead) P. F. Tortorelli Oak Ridge National - $2480 K · ORNL (Lead) · Allegheny Ludlum · Funding for Year 2 · Arizona State University - $2050 K wt.% ­ pre-oxidation key to protective surface nitride formation ­ V segregation into Cr-oxide makes

  17. Dual Templating Synthesis of Mesoporous Titanium Nitride Microspheres

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Dual Templating Synthesis of Mesoporous Titanium Nitride Microspheres By Jin Ho Bang and Kenneth S pyrolysis (USP) preparation of hierarchically nanostructured titanium nitride (TiN) using an in situ dual as a nitrogen source.[5b,7] Several attempts have been made toward the preparation of nanostructured TiN,[5a,6a

  18. Isothermal nitridation kinetics of TiSi{sub 2} powders

    SciTech Connect (OSTI)

    Roger, J., E-mail: roger@lcts.u-bordeaux1.fr; Maillé, L.; Dourges, M.A.

    2014-04-01T23:59:59.000Z

    The aim of the present work is to determine the kinetics of reaction between TiSi{sub 2} powder and gaseous nitrogen. Isothermal nitridation of TiSi{sub 2} powders with fine (1.4 µm) and medium (4.5 µm) particle size has been studied in pure nitrogen atmosphere from 1000 to 1200 °C for duration up to 50 h. The isothermal nitridation kinetics of TiSi{sub 2} powders were investigated by thermogravimetry. The nitridation rate strongly depends on the particle size and temperature. Smaller size particle exhibits higher nitridation rate due to its larger surface area. The conversion process is complex with nucleation and growth of TiN at the surface of the grain and Si{sub 3}N{sub 4} inside the grain promoted by the Kirkendall effect with an influence of the volume increase. - Graphical abstract: Backscattered electrons image of a transverse TiSi{sub 2} grain nitrurated at 1100 °C for 50 h. - Highlights: • Influence of grain size on TiSi{sub 2} powder nitridation. • Influence of temperature on TiSi{sub 2} powder nitridation. • Experimental measurements of the nitridation kinetics. • An explanation of the nitridation mechanism.

  19. Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering

    SciTech Connect (OSTI)

    Dr. Paul A. Lessing

    2012-03-01T23:59:59.000Z

    Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

  20. Process for producing ceramic nitrides anc carbonitrides and their precursors

    DOE Patents [OSTI]

    Brown, G.M.; Maya, L.

    1987-02-25T23:59:59.000Z

    A process for preparing ceramic nitrides and carbon nitrides in the form of very pure, fine particulate powder. Appropriate precursors is prepared by reaching a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  1. Anisotropic strain relaxation and the resulting degree of polarization by one- and two-step growth in nonpolar a-plane GaN grown on r-sapphire substrate

    SciTech Connect (OSTI)

    Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Chen, Yu-Yu [Department of Applied Physics, National University of Kaohsiung No.700, Kaohsiung University Road, Nan-Tzu Dist., 811. Kaohsiung, Taiwan (China); Lai, Chih-Ming [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Tu, Li-Wei [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Han, Jung [Department of Electrical Engineering, Yale University, New Haven 06520, Connecticut (United States)

    2013-12-21T23:59:59.000Z

    Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the k?p perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.

  2. Specific interaction of fluoride ions with aluminum and gallium solvates in an ethylene glycol solutions

    SciTech Connect (OSTI)

    Petrosyants, S.P.; Tsabel', E.R.; Buslaev, Yu.A.

    1986-01-01T23:59:59.000Z

    The interaction of aluminum chloride and gallium chloride with KF in ethylene glycol solutions with F:M/sup 3 +/ mole ratios approximately equal to 2 includes a step involving the formation of fluorine-containing species, in which the fluoride ions are held in the outer sphere of ethylene glycol solvates of aluminum and gallium. Complexes based on hexacoordinate solvates predominate in the solutions of aluminum, while in the case of gallium, in contrast to aluminum, the coexistence of tetra- and hexacoordinate complexes is characteristic. The configurational equilibrium in the solutions of gallium is one of the causes of the structurization of the solutions, i.e., polymerization due to the formation of H bonds between the fluoride ions and the coordinated ethylene glycol molecules.

  3. First Results of the Testing of the Liquid Gallium Jet Limiter Concept for ISTTOK

    SciTech Connect (OSTI)

    Gomes, R. B.; Fernandes, H.; Silva, C.; Borba, D.; Carvalho, B.; Varandas, C. [Associacao EURATOM/IST, Centro de FuSao Nuclear, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Lielausis, O.; Klyukin, A.; Platacis, E.; Mikelsons, A.; Platnieks, I. [Association EURATOM/University of Latvia, Institute of Physics, 32 Miera Str., Salaspils, LV-2169 (Latvia)

    2006-12-04T23:59:59.000Z

    The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages to the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaustion from fusion devices. Presently the most promising materials are Lithium and Gallium. ISTTOK, a small size tokamak, will be used to test the behavior of a liquid Gallium jet in the vacuum chamber and its influence on the plasma. This paper presents a description of the conceived setup as well as experimental results. The liquid Gallium jet is generated by hydrostatic pressure and injected in a radial position close to a moveable stainless steel limiter. Both the jet and the limiter positions are variable allowing for a controlled exposure of the liquid Gallium to the edge plasma. The main components of the Gallium loop are a MHD pump, the liquid metal injector and a filtering system. The MHD pump is of the induction type, based on rotating permanent magnets. The injector is build from a stainless steel pipe ended by a shaping nozzle. A setup has been developed to introduce oxide-free Gallium inside the loop's main supply tank. Raw liquid metal is placed inside a chamber heated and degassed under high vacuum while clean Gallium is extracted from the main body of the liquefied metal. Prior to installation on the tokamak, the experimental rig has been implemented using a Pyrex tube as test chamber to investigate the stability of the Gallium jet and its break-up length for several nozzle sizes. Results are presented in this paper. This rig was also useful to assess the behavior of the overall implemented apparatus.

  4. GaN directional couplers for integrated quantum photonics

    E-Print Network [OSTI]

    Yanfeng Zhang; Loyd McKnight; Erman Engin; Ian M. Watson; Martin J. Cryan; Erdan Gu; Mark G. Thompson; Stephane Calvez; Jeremy L. O'Brien; Martin D. Dawson

    2012-02-20T23:59:59.000Z

    Large cross-section GaN waveguides are proposed as a suitable architecture to achieve integrated quantum photonic circuits. Directional couplers with this geometry have been designed with aid of the beam propagation method and fabricated using inductively coupled plasma etching. Scanning electron microscopy inspection shows high quality facets for end coupling and a well defined gap between rib pairs in the coupling region. Optical characterization at 800 nm shows single-mode operation and coupling-length-dependent splitting ratios. Two photon interference of degenerate photon pairs has been observed in the directional coupler by measurement of the Hong-Ou-Mandel dip with 96% visibility.

  5. Indium and gallium oxynitrides prepared in the presence of Zn{sup 2+} by ammonolysis of the oxide precursors obtained via the citrate route

    SciTech Connect (OSTI)

    Miyaake, Azumi; Masubuchi, Yuji; Takeda, Takashi [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628 (Japan)] [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628 (Japan); Kikkawa, Shinichi, E-mail: kikkawa@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628 (Japan)] [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628 (Japan)

    2010-04-15T23:59:59.000Z

    Ammonia nitridation of indium and gallium oxide precursors obtained through a soft solution route led to their oxynitrides [In{sub 0.97}{open_square}{sub 0.03}][N{sub 0.92}O{sub 0.08}] at 660 {sup o}C and [Ga{sub 0.89}{open_square}{sub 0.11}][N{sub 0.66}O{sub 0.34}] at 850 {sup o}C, respectively, where {open_square} refers to a In or Ga vacancy. Cation vacancies in their wurtzite-type lattice were eliminated in similar preparations with the co-presence of Zn{sup 2+} by forming complete solid solutions of (InN){sub 1-x}(ZnO){sub x} and (GaN){sub 1-y}(ZnO){sub y}. The optical absorption edge shape was found to be relatively steep at the solid solution limits of x {approx} 0.23 and y {approx} 0.33 compared to the case without zinc.

  6. High-Temperature Decomposition of Brønsted Acid Sites in Gallium-Substituted Zeolites

    SciTech Connect (OSTI)

    K Al-majnouni; N Hould; W Lonergan; D Vlachos; R Lobo

    2011-12-31T23:59:59.000Z

    The dehydroxylation of Broensted acid sites (BAS) in Ga-substituted zeolites was investigated at temperatures up to 850 C using X-ray absorption spectroscopy (XAS), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry-temperature programmed desorption (MS-TPD). X-ray absorption near-edge spectroscopy (XANES) revealed that the majority of gallium has tetrahedral coordination even after complete dehydroxylation. The interatomic gallium-oxygen distance and gallium coordination number determined by extended X-ray absorption fine structure (EXAFS) are consistent with gallium in tetrahedral coordination at low T (< 550 C). Upon heating Ga-Beta and Ga-ZSM5 to 850 C, analysis of the EXAFS showed that 70 and 80% of the gallium was still in tetrahedral coordination. The remainder of the gallium was found to be in octahedral coordination. No trigonal Ga atoms were observed. FTIR measurements carried out at similar temperatures show that the intensity of the OH vibration due to BAS has been eliminated. MS-TPD revealed that hydrogen in addition to water evolved from the samples during dehydroxylation. This shows that dehydrogenation in addition to dehydration is a mechanism that contributes to BAS decomposition. Dehydrogenation was further confirmed by exposing the sample to hydrogen to regenerate some of the BAS as monitored by FTIR and MS-TPD.

  7. Study of liquid gallium at high pressure using synchrotron x-ray

    SciTech Connect (OSTI)

    Yu, Tony; Guo Quanzhong; Parise, John [Department of Geosciences, Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794-2100 (United States); Chen Jiuhua [Department of Geosciences, Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794-2100 (United States); Department of Mechanical and Materials Engineering, Center for the Study of Matters at Extreme Conditions, Florida International University, Miami, Florida 33199 (United States); Ehm, Lars [Department of Geosciences, Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794-2100 (United States); National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Huang Shu [Department of Mechanical and Materials Engineering, Center for the Study of Matters at Extreme Conditions, Florida International University, Miami, Florida 33199 (United States); Luo Shengnian [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-06-01T23:59:59.000Z

    Liquid gallium has been studied at high pressure up to 2 GPa and ambient temperature in a diamond anvil cell using high energy synchrotron x-ray beam. The total x-ray scattering data of liquid gallium were collected up to Q = 12 A{sup -1} and analyzed using pair distribution functions (PDF). The results indicate that the first nearest neighbor peak and second nearest neighbor (shoulder) peak of PDF in liquid gallium does not change with pressure, whereas the higher order (i.e., third and fourth) nearest neighbor peaks shift towards shorter distance with increasing pressure. Reverse Monte Carlo modeling based on the observed data shows that the coordination number in the liquid gallium increases with pressure from 10.5 at 0.3 GPa to 11.6 at 2 GPa. An atomic arrangement similar to the crystalline phase of Ga(II) with coordination number of 12 is proposed for the locally dense-packed rigid unit in liquid gallium. The volume compression data derived from the structure modeling yield a bulk modulus of 12.1(6) GPa for liquid gallium.

  8. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    SciTech Connect (OSTI)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13T23:59:59.000Z

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  9. Nanowire-templated lateral epitaxial growth of non-polar group III nitrides

    DOE Patents [OSTI]

    Wang, George T. (Albuquerque, NM); Li, Qiming (Albuquerque, NM); Creighton, J. Randall (Albuquerque, NM)

    2010-03-02T23:59:59.000Z

    A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

  10. Hard and low friction nitride coatings and methods for forming the same

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Urgen, Mustafa (Istanbul, TR); Cakir, Ali Fuat (Istanbul, TR); Eryilmaz, Osman Levent (Bolingbrook, IL); Kazmanli, Kursat (Istanbul, TR); Keles, Ozgul (Istanbul, TR)

    2007-05-01T23:59:59.000Z

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  11. Growth of GaN on Ge(111) by molecular beam epitaxy

    SciTech Connect (OSTI)

    Lieten, R. R.; Degroote, S.; Cheng, K.; Leys, M.; Kuijk, M.; Borghs, G. [MCP/ART, IMEC, Kapeldreef 75, 3001 Leuven (Belgium) and ETRO, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); MCP/ART, IMEC, Kapeldreef 75, 3001 Leuven (Belgium); ETRO, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); MCP/ART, IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2006-12-18T23:59:59.000Z

    The epitaxial growth of GaN on Ge is reported. The authors found that direct growth of GaN performs exceptionally well on Ge(111) with plasma assisted molecular beam epitaxy. A streaky reflection high energy electron diffraction pattern is observed during growth. X-ray diffraction showed a rocking curve full width at half maximum of only 371 arc sec for a 38 nm GaN layer and indicates an abrupt interface between the GaN and Ge. Secondary ion mass spectrometry shows limited diffusion of Ga atoms into the Ge substrate and Ge atoms into the GaN layers. Current-voltage measurements show rectifying behavior for n-GaN on p-Ge. Their results indicate that GaN growth on Ge does not require intermediate layers, allowing the Ge substrate to be used as back contact in vertical devices. A p-n junction formed between GaN and Ge can be used in heterojunction devices.

  12. Improved superconducting qubit coherence using titanium nitride

    E-Print Network [OSTI]

    J. Chang; M. R. Vissers; A. D. Corcoles; M. Sandberg; J. Gao; David W. Abraham; Jerry M. Chow; Jay M. Gambetta; M. B. Rothwell; G. A. Keefe; Matthias Steffen; D. P. Pappas

    2013-03-17T23:59:59.000Z

    We demonstrate enhanced relaxation and dephasing times of transmon qubits, up to ~ 60 \\mu s by fabricating the interdigitated shunting capacitors using titanium nitride (TiN). Compared to lift-off aluminum deposited simultaneously with the Josephson junction, this represents as much as a six-fold improvement and provides evidence that previous planar transmon coherence times are limited by surface losses from two-level system (TLS) defects residing at or near interfaces. Concurrently, we observe an anomalous temperature dependent frequency shift of TiN resonators which is inconsistent with the predicted TLS model.

  13. X-Ray Studies of GaN Film Grown on Si Using Electrochemical Deposition Techniques

    SciTech Connect (OSTI)

    Al-Heuseen, K.; Hashim, M. R. [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia (USM), 11800 Minden, Penang (Malaysia)

    2011-03-30T23:59:59.000Z

    This paper reports on the X-ray studies of GaN thin films deposited on Si (111) substrate at different current density using electrochemical deposition technique. The structural properties of GaN films were studied by X-ray diffraction (XRD). XRD analysis showed that hexagonal wurtzite and cubic zinc blende GaN phases were both deposited on Si (111). The lattice constants, the average size of h-GaN crystals and the in-plane (along a-axis) and out of plane (along c-axis) strains were calculated from XRD analysis.

  14. Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides

    SciTech Connect (OSTI)

    Wang, Shanmin; Yu, Xiaohui; Lin, Zhijun; Zhang, Ruifeng; He, Duanwei; Qin, Jiaqian; Zhu, Jinlong; Han, Jiantao; Wang, Lin; Mao, Ho-kwang; Zhang, Jianzhong; Zhao, Yusheng (UNLV); (Ehime U); (CIW); (Sichuan U.); (LANL)

    2012-12-13T23:59:59.000Z

    Among transition metal nitrides, tungsten nitrides possess unique and/or superior chemical, mechanical, and thermal properties. Preparation of these nitrides, however, is challenging because the incorporation of nitrogen into tungsten lattice is thermodynamically unfavorable at atmospheric pressure. To date, most materials in the W-N system are in the form of thin films produced by nonequilibrium processes and are often poorly crystallized, which severely limits their use in diverse technological applications. Here we report synthesis of tungsten nitrides through new approaches involving solid-state ion exchange and nitrogen degassing under pressure. We unveil a number of novel nitrides including hexagonal and rhombohedral W{sub 2}N{sub 3}. The final products are phase-pure and well-crystallized in bulk forms. For hexagonal W{sub 2}N{sub 3}, hexagonal WN, and cubic W3N4, they exhibit elastic properties rivaling or even exceeding cubic-BN. All four nitrides are prepared at a moderate pressure of 5 GPa, the lowest among high-pressure synthesis of transition metal nitrides, making it practically feasible for massive and industrial-scale production.

  15. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

    1988-01-01T23:59:59.000Z

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  16. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28T23:59:59.000Z

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  17. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.

    1984-07-20T23:59:59.000Z

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  18. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOE Patents [OSTI]

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31T23:59:59.000Z

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  19. Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1-xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    fabricated on freestanding GaN substrates T. Koyama and T.on freestanding m-plane GaN substrates. Although the ? inton the freestanding GaN substrate. cause the current was

  20. By Deborah A. Kramer No primary gallium was produced in the United States in consumption were adjusted to reflect full industry coverage.

    E-Print Network [OSTI]

    that it would reopen its 50-ton-per-year gallium recovery facility in Pinjarra, Western Australia, in 1996

  1. Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today’s best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

  2. (Data in kilograms of gallium content, unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 1997. Two companies in

    E-Print Network [OSTI]

    and Use: No domestic primary gallium recovery was reported in 1997. Two companies in Oklahoma and Utah in optoelectronic devices, which include light-emitting diodes (LED's), laser diodes, photodetectors, and solar-than-expected increase in demand. The company planned to operate its refineries in France and Germany using stockpiled

  3. (Data in kilograms of gallium content, unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 1999. Two companies in

    E-Print Network [OSTI]

    and Use: No domestic primary gallium recovery was reported in 1999. Two companies in Oklahoma and Utah in optoelectronic devices, which include light-emitting diodes (LED's), laser diodes, photodetectors, and solar in July. The additional facility was expected to double the company's refinery capacity to 100

  4. Millimeter-wave GaN high electron mobility transistors and their integration with silicon electronics

    E-Print Network [OSTI]

    Chung, Jinwook W. (Jinwook Will)

    2011-01-01T23:59:59.000Z

    In spite of the great progress in performance achieved during the last few years, GaN high electron mobility transistors (HEMTs) still have several important issues to be solved for millimeter-wave (30 ~ 300 GHz) applications. ...

  5. Light extraction in individual GaN nanowires on Si for LEDs

    E-Print Network [OSTI]

    Zhou, Xiang

    GaN-based nanowires hold great promise for solid state lighting applications because of their waveguiding properties and the ability to grow nonpolar GaN nanowire-based heterostructures, which could lead to increased light ...

  6. Chromatin Ionic Atmosphere Analyzed by a Mesoscale Electrostatic Hin Hark Gan

    E-Print Network [OSTI]

    Schlick, Tamar

    Chromatin Ionic Atmosphere Analyzed by a Mesoscale Electrostatic Approach Hin Hark Gan and Tamar an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin

  7. Thermal Conductivity and Large Isotope Effect in GaN from First Principles

    SciTech Connect (OSTI)

    Lindsay, L. [Naval Research Lab. (NRL), Washington, DC (United States); Broido, D. A. [Boston College, Chestnut Hill, MA (United States); Reinecke, T. L. [Naval Research Lab. (NRL), Washington, DC (United States)

    2012-08-01T23:59:59.000Z

    We present atomistic first principles results for the lattice thermal conductivity of GaN and compare them to those for GaP, GaAs, and GaSb. In GaN we find a large increase to the thermal conductivity with isotopic enrichment, ~65% at room temperature. We show that both the high thermal conductivity and its enhancement with isotopic enrichment in GaN arise from the weak coupling of heat-carrying acoustic phonons with optic phonons. This weak scattering results from stiff atomic bonds and the large Ga to N mass ratio, which give phonons high frequencies and also a pronounced energy gap between acoustic and optic phonons compared to other materials. Rigorous understanding of these features in GaN gives important insights into the interplay between intrinsic phonon-phonon scattering and isotopic scattering in a range of materials.

  8. Atomic-Level Study of Melting Behavior of GaN Nanotubes. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behavior of GaN Nanotubes. Abstract: Molecular dynamics simulations with a Stillinger-Weber potential have been used to investigate the melting behavior of wurtzite-type single...

  9. RF Power Degradation of GaN High Electron Mobility Transistors

    E-Print Network [OSTI]

    Joh, Jungwoo

    We have developed a versatile methodology to systematically investigate the RF reliability of GaN High-Electron Mobility Transistors. Our technique utilizes RF and DC figures of merit to diagnose the degradation of RF ...

  10. Correlation of doping, structure, and carrier dynamics in a single GaN nanorod

    E-Print Network [OSTI]

    Zhou, Xiang

    We report the nanoscale optical investigation of a single GaN p-n junction nanorod by cathodoluminescence (CL) in a scanning transmission electron microscope. CL emission characteristic of dopant-related transitions was ...

  11. Reliability of GaN high electron mobility transistors on silicon substrates

    E-Print Network [OSTI]

    Demirtas, Sefa

    2009-01-01T23:59:59.000Z

    GaN High Electron Mobility Transistors are promising devices for high power and high frequency applications such as cellular base stations, radar and wireless network systems, due to the high bandgap and high breakdown ...

  12. Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology

    SciTech Connect (OSTI)

    Lefebvre, P.; Fernandez-Garrido, S.; Grandal, J.; Ristic, J.; Sanchez-Garcia, M.-A.; Calleja, E. [Instituto de Sistemas Optoelectronicos y Microtecnologia, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2011-02-21T23:59:59.000Z

    Low-temperature photoluminescence is studied in detail in GaN nanocolumns (NCs) grown by plasma-assisted molecular beam epitaxy under various conditions (substrate temperature and impinging Ga/N flux ratio). The relative intensities of the different emission lines, in particular those related to structural defects, appear to be correlated with the growth conditions, and clearly linked to the NC sample morphology. We demonstrate, in particular, that all lines comprised between 3.10 and 3.42 eV rapidly lose intensity when the growth conditions are such that the NC coalescence is reduced. The well-known line around 3.45 eV, characteristic of GaN NC samples, shows, however, a behavior that is exactly the opposite of the other lines, namely, for growth conditions leading to reduced NC coalescence, this line tends to become more prominent, thus proving to be intrinsic to individual GaN NCs.

  13. Measurement of Channel Temperature in GaN High-Electron Mobility Transistors

    E-Print Network [OSTI]

    Joh, Jungwoo

    In this paper, a simple and reliable method to estimate the channel temperature of GaN high-electron mobility transistors (HEMTs) is proposed. The technique is based on electrical measurements of performance-related figures ...

  14. The study of in situ scanning tunnelling microscope characterization on GaN thin film grown by plasma assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Yang, R.; Krzyzewski, T.; Jones, T. [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom)] [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2013-03-18T23:59:59.000Z

    The epitaxial growth of GaN by Plasma Assisted Molecular Beam Epitaxy was investigated by Scanning Tunnelling Microscope (STM). The GaN film was grown on initial GaN (0001) and monitored by in situ Reflection High Energy Electron Diffraction and STM during the growth. The STM characterization was carried out on different sub-films with increased thickness. The growth of GaN was achieved in 3D mode, and the hexagonal edge of GaN layers and growth gradient were observed. The final GaN was of Ga polarity and kept as (0001) orientation, without excess Ga adlayers or droplets formed on the surface.

  15. Optical Properties of Mn-doped GaN O. Gelhausen1

    E-Print Network [OSTI]

    Nabben, Reinhard

    measurements. In the GaN:Mn, an intense absorption peak at 1.414 +/- 0.002 eV was observed. This peakOptical Properties of Mn-doped GaN O. Gelhausen1 , E. Malguth1,3 , M. R. Phillips1 , E. M. Goldys2, Germany ABSTRACT Molecular beam epitaxy-grown GaN with different Mn concentrations (5-23 x 1019 cm-3

  16. Reactive DC magnetron sputtering of ultrathin superconducting niobium nitride films

    E-Print Network [OSTI]

    Dane, Andrew E. (Andrew Edward)

    2015-01-01T23:59:59.000Z

    DC reactive magnetron sputtering was used to deposit few-nanometer-thick films of niobium nitride for fabrication of superconducting devices. Over 1000 samples were deposited on a variety of substrates, under various chamber ...

  17. NOVEL SALTS OF GRAPHITE AND A BORON NITRIDE SALT

    E-Print Network [OSTI]

    Bartlett, Neil

    2011-01-01T23:59:59.000Z

    ~ i\\f'{y AND DOCUMENTS SECTION NOVEL SALTS OF GRAPHITE ANDA BORON NITRIDE SALT Neil Bartlett, R. N. Biagioni, B. W.privately owned rights. Novel Salts of Graphite and a Boron

  18. argon nitrides: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystals of these nitrides are potentially (more) Du, Li 2011-01-01 8 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  19. aluminum nitride insulator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-r grown by a modified Bridgman tech- nique,r6 Rollins, Andrew M. 27 Low-voltage organic thin film transistors with hydrophobic aluminum nitride film as gate insulator Materials...

  20. Single-layer graphene on silicon nitride micromembrane resonators

    E-Print Network [OSTI]

    Schmid, Silvan

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization ...

  1. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect (OSTI)

    Bolat, S., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B. [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ozgit-Akgun, C.; Biyikli, N. [UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Okyay, A. K., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey)

    2014-06-16T23:59:59.000Z

    We report GaN thin film transistors (TFT) with a thermal budget below 250?°C. GaN thin films are grown at 200?°C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?°C, which is the lowest process temperature reported for GaN based transistors, so far.

  2. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2002-01-01T23:59:59.000Z

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  3. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2001-01-01T23:59:59.000Z

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  4. Apparatus for the production of boron nitride nanotubes

    SciTech Connect (OSTI)

    Smith, Michael W; Jordan, Kevin

    2014-06-17T23:59:59.000Z

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  5. Multi-length Scale Modeling of Titanium Nitride Coatings

    E-Print Network [OSTI]

    Grujicic, Mica

    Multi-length Scale Modeling of Titanium Nitride Coatings M. Grujicic and S. G. LaiM. Grujicic and S Conservation Circumferential Momentum Conservation Thermal Energy Balance Species Continuity Dependent of Titanium Nitride Surface Species TiCl4(S): NH2(S): TiCl2(S): NH(S): TiCl(S): N(S): Ti (S): N*(S): Ti*(S): N

  6. The design, construction, and testing of a nuclear fuel rod thermal simulation system to study gallium/Zircaloy interactions

    E-Print Network [OSTI]

    Allison, Christopher Curtis

    1999-01-01T23:59:59.000Z

    The presence of gallium in weapons grade plutonium has raised many questions concerning its use in light water reactor (LWR) fuel rods. The biggest concern is that the gallium will migrate down the thermal gradient in the fuel rod and deposit...

  7. Behavior of aluminum adsorption and incorporation at GaN(0001) surface: First-principles study

    SciTech Connect (OSTI)

    Qin, Zhenzhen; Xiong, Zhihua, E-mail: xiong-zhihua@126.com; Wan, Qixin [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330018 (China); Qin, Guangzhao [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, University of Chinese Academy of Sciences, Beijing 101408 (China)

    2013-11-21T23:59:59.000Z

    First-principles calculations are performed to study the energetics and atomic structures of aluminum adsorption and incorporation at clean and Ga-bilayer GaN(0001) surfaces. We find the favorable adsorption site changes from T4 to T1 as Al coverage increased to 1 monolayer on the clean GaN(0001) surface, and a two-dimensional hexagonal structure of Al overlayer appears. It is interesting the Al atoms both prefer to concentrate in one deeper Ga layer of clean and Ga-bilayer GaN(0001) surface, respectively, while different structures could be achieved in above surfaces. For the case of clean GaN(0001) surface, corresponding to N-rich and moderately Ga-rich conditions, a highly regular superlattice structure composed of wurtzite GaN and AlN becomes favorable. For the case of Ga-bilayer GaN(0001) surface, corresponding to extremely Ga-rich conditions, the Ga bilayer is found to be sustained stable in Al incorporating process, leading to an incommensurate structure directly. Furthermore, our calculations provide an explanation for the spontaneous formation of ordered structure and incommensurate structure observed in growing AlGaN films. The calculated results are attractive for further development of growth techniques and excellent AlGaN/GaN heterostructure electronic devices.

  8. Nondestructive characterization of GaN films grown at low and high temperatures

    SciTech Connect (OSTI)

    Yan, C.H.; Yao, H.W.; Hove, J.M. van; Wowchak, A.M.; Chow, P.P.; Han, J.; Zavada, J.M.

    2000-07-01T23:59:59.000Z

    GaN films grown on GaAs and sapphire substrates by molecular beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOVPE) at both low and high temperatures (LT and HT) were characterized by Raman scattering and variable angle spectroscopic ellipsometry (VASE). Optical phonon spectra of GaN films are obtained through back-scattering geometry. Crystal quality of these films was qualitatively examined using phonon line-width. Phonon spectra showed that the HT GaN has wurtzite crystal structure, while LT GaN and GaN/GaAs have cubic-like structures. Thickness nonuniformity and defect-related absorption can be characterized by pseudo dielectric functions directly. Surface roughness also can be determined by using an effective-medium approximation (EMA) over-layer in a VASE analysis. Anisotropic optical constants of GaN, both ordinary and extraordinary, were obtained in the spectral range of 0.75 to 6.5 eV with the consideration of surface roughness, through the small and large angles of incidence, respectively. The film thickness of the GaN was accurately determined via the analysis as well.

  9. Deposition of CVD diamond onto GaN P.W. May a,*, H.Y. Tsai b

    E-Print Network [OSTI]

    Bristol, University of

    of the polycrystalline diamond surface would prevent light from leaking out of the GaN layer and channel it to the endsDeposition of CVD diamond onto GaN P.W. May a,*, H.Y. Tsai b , W.N. Wang c , J.A. Smith a a School performed to deposit continuous layers of CVD diamond onto epitaxial GaN films. Such diamond coatings would

  10. Molecular Beam Epitaxial Growth of Zinc-Blende FeN(111) on Wurtzite GaN(0001)

    E-Print Network [OSTI]

    Molecular Beam Epitaxial Growth of Zinc-Blende FeN(111) on Wurtzite GaN(0001) Wenzhi Lin, Jeongihm], but not hexagonal (wurtzite) GaN, a fast-developing semiconductor material with important technological applicationsN on wurtzite GaN(0001), by employing e-beam evaporation in an ultra-high vacuum MBE cham- ber. The FeN films

  11. Calculated second-harmonic susceptibilities of BN, AlN, and GaN Jian Chen,a)

    E-Print Network [OSTI]

    Wilkins, John

    and the second-harmonic susceptibility d for BN, AlN, and GaN in both zincblende and wurtzite structures within the Kohn­Sham local-density approximation. For wurtzite AlN and GaN, the computed dxxz (w) and dzzz (w) closely agree with experiment. For zincblende AlN and GaN as well as zincblende and wurtzite BN, we

  12. Doping of GaN12xAsx with high As content A. X. Levander,1,2

    E-Print Network [OSTI]

    Wu, Junqiao

    Doping of GaN12xAsx with high As content A. X. Levander,1,2 S. V. Novikov,3 Z. Liliental-Weber,1 R; published online 2 November 2011) Recent work has shown that GaN1ÀxAsx can be grown across the entire report the bipolar doping of GaN1ÀxAsx with high As content to conductivities above 4 S=cm at room

  13. Role of nitrogen vacancies in the luminescence of Mg-doped GaN Qimin Yan,1

    E-Print Network [OSTI]

    Role of nitrogen vacancies in the luminescence of Mg-doped GaN Qimin Yan,1 Anderson Janotti,1 or act as recombination centers in Mg- doped GaN is essential for improving the performance of group-vacancy complexes (MgGa-VN) on the electrical and optical properties of GaN. We find that MgGa-VN are compensating

  14. The adsorption of oxygen at GaN surfaces Tosja K. Zywietz, Jrg Neugebauer, and Matthias Scheffler

    E-Print Network [OSTI]

    The adsorption of oxygen at GaN surfaces Tosja K. Zywietz, Jörg Neugebauer, and Matthias Scheffler://apl.aip.org/about/rights_and_permissions #12;The adsorption of oxygen at GaN surfaces Tosja K. Zywietz,a) Jo¨rg Neugebauer, and Matthias based on GaN is the controlled doping and the incorporation of impurities like, e.g., oxygen. We have

  15. Low gap amorphous GaN1-xAsx alloys grown on glass substrate K. M. Yu,1,a

    E-Print Network [OSTI]

    Wu, Junqiao

    Low gap amorphous GaN1-xAsx alloys grown on glass substrate K. M. Yu,1,a S. V. Novikov,2 R September 2010 Amorphous GaN1-xAsx layers with As content in the range of x=0.1 to 0.6 were grown defined optical absorption edges. The measured band gap values for the crystalline and amorphous GaN1-x

  16. Comparison of strong coupling regimes in bulk GaAs, GaN and ZnO semiconductor microcavities

    E-Print Network [OSTI]

    Boyer, Edmond

    , transmission and absorption spectra of bulk GaAs, GaN and ZnO microcavities, in order to compareComparison of strong coupling regimes in bulk GaAs, GaN and ZnO semiconductor microcavities SAs and GaN microcavities. PACS numbers: 78.67.-n, 71.36.+c, 78.20.Ci, 78.55.Cr, 78.55.Et Keywords: polariton

  17. Thermal Stability of MOCVD and HVPE GaN Layers in H2, HCl, NH3 and N2

    E-Print Network [OSTI]

    Anderson, Timothy J.

    GaN, and the black is the sapphire substrate. At 900 C nearly 1/4 of the film has sublimated leavingThermal Stability of MOCVD and HVPE GaN Layers in H2, HCl, NH3 and N2 M. A. Mastro1 ) (a), O. M.60.Dv; 81.15.Gh; S7.14 This work represents a complete study of GaN annealed in H2, HCl, NH3 and N2

  18. Process for preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-06-17T23:59:59.000Z

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

  19. A boron nitride nanotube peapod thermal rectifier

    SciTech Connect (OSTI)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28T23:59:59.000Z

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  20. Method for silicon nitride precursor solids recovery

    DOE Patents [OSTI]

    Crosbie, Gary M. (Dearborn, MI); Predmesky, Ronald L. (Livonia, MI); Nicholson, John M. (Wayne, MI)

    1992-12-15T23:59:59.000Z

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  1. Apparatus for silicon nitride precursor solids recovery

    DOE Patents [OSTI]

    Crosbie, Gary M. (Dearborn, MI); Predmesky, Ronald L. (Livonia, MI); Nicholson, John M. (Wayne, MI)

    1995-04-04T23:59:59.000Z

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  2. Electron backscatter diffraction of plutonium-gallium alloys

    SciTech Connect (OSTI)

    Boehlert, C. J. (Carl J.); Zocco, T. G. (Thomas G.); Schulze, R. K. (Roland K.); Mitchell, J. N. (Jeremy N.); Pereyra, R. A. (Ramiro A.)

    2002-01-01T23:59:59.000Z

    At Los Alamos National Laboratory a recent experimental technique has been developed to characterize reactive metals, including plutonium arid cerium, using electron backscatter diffraction (EBSD). Microstructural characterization of plutonium and its alloys by EBSD had been previously elusive primarily because of the extreme toxicity and rapid surface oxidation rate associated with plutonium metal. The experimental techniques, which included ion-sputtering the metal surface using a scanning auger microprobe (SAM) followed by vacuum transfer of the sample from the SAM to the scanning electron microscope (SEM), used to obtain electron backscatter diffraction Kikuchi patterns (EBSPs) and orientation maps for plutonium-gallium alloys are described and the initial microstructural observations based on the analysis are discussed. Combining the SEM and EBSD observations, the phase transformation behavior between the {delta} and {var_epsilon} structures was explained. This demonstrated sample preparation and characterization technique is expected to be a powerful means to further understand phase transformation behavior, orientation relationships, and texlure in the complicated plutonium alloy systems.

  3. Crystal chemistry and self-lubricating properties of monochalcogenides gallium selenide and tin selenide

    SciTech Connect (OSTI)

    Erdemir, A.

    1993-02-01T23:59:59.000Z

    This paper describes the fundamentals of the crystal chemistry and self-lubricating mechanisms of two monochalcogenides; tin selenide and gallium selenide. Specifically, it enumerates their inter-atomic array and bond structure in crystalline states, and correlates this fundamental knowledge with their self-lubricating capacity. Friction tests assessing the self-lubricating performance of gallium and tin selenides were carried out on a pin-on-disk machine. Specifically, large crystalline pieces of gallium selenide and tin selenide were cut and cleaved into flat squares and subsequently rubbed against the sapphire balls. In another case, the fine powders (particle size {approx} 50--100 {mu}m) of gallium selenide and tin selenide were manually fed into the sliding interfaces of 440C pins and 440C disks. For the specific test conditions explored, it was found that the friction coefficients of the sapphire/gallium selenide and sapphire/tin selenide pairs were {approx} 0.23 and {approx} 0.35, respectively. The friction coefficients of 440C pin/440C disk test pairs with gallium selenide and tin selenide powders were on the orders of {approx} 0.22 and {approx} 0.38, respectively. For comparison, a number of parallel friction tests were performed with MoS{sub 2} powders and compacts and the results of these tests were also reported. The friction data together with the crystal-chemical knowledge and the electron microscopic evidence supported the conclusion that the lubricity and self-lubricating mechanisms of these solids are closely related to their crystal chemistry and the nature of interlayer bonding.

  4. Epitaxial growth of zinc blende and wurtzitic allied nitride thin films on (001) silicon

    E-Print Network [OSTI]

    Moustakas, Theodore

    hasbeenreported to be grown on ,@SiCand MgO( 100) substrates,"'which are closely lat- tice matchedto &GaN, and on GaAs substrate,"*" which has a significant mismatch to P-GaN. Growth of GaN onto silicon expansioncoefficient,it is rather difficult to epitaxially grow GaN on Si substrate. Early attempts have led

  5. Impact of substrate temperature on the incorporation of carbon-related defects and mechanism for semi-insulating behavior in GaN grown by molecular beam epitaxy

    E-Print Network [OSTI]

    Armstrong, A; Poblenz, C; Green, D S; Mishra, U K; Speck, J S; Ringel, S A

    2006-01-01T23:59:59.000Z

    GaN grown by molecular beam epitaxy and codoped with carbon and silicon were investigated for substratesubstrate temperature on the incorporation of carbon-related defects and mechanism for semi-insulating behavior in GaN

  6. Results of the Gallium-Clad Phase 3 and Phase 4 tasks (canceled prior to completion)

    SciTech Connect (OSTI)

    Morris, R.N.

    1998-08-01T23:59:59.000Z

    This report summarizes the results of the Gallium-Clad interactions Phase 3 and 4 tasks. Both tasks were to involve examining the out-of-pile stability of residual gallium in short fuel rods with an imposed thermal gradient. The thermal environment was to be created by an electrical heater in the center of the fuel rod and coolant flow on the rod outer cladding. Both tasks were canceled due to difficulties with fuel pellet fabrication, delays in the preparation of the test apparatus, and changes in the Fissile Materials Disposition program budget.

  7. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals

    SciTech Connect (OSTI)

    Faraby, H. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States); DiBattista, M. [Qualcomm Technologies Incorporated, San Diego, California 92121 (United States); Bandaru, P. R., E-mail: pbandaru@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2014-04-28T23:59:59.000Z

    Metal deposition through focused ion beam (FIB) based systems is thought to result in material composed of the primary metal from the metallo-organic precursor in addition to carbon, oxygen, and gallium. We determined, through electrical resistance and chemical composition measurements on a wide range of FIB deposited platinum and tungsten lines, that the gallium ion (Ga{sup +}) concentration in the metal lines plays the dominant role in controlling the electrical resistivity. Effective medium theory, based on McLachlan's formalisms, was used to describe the relationship between the Ga{sup +} concentration and the corresponding resistivity.

  8. Synthesis of III-V nitride nanowires with controlled structure, morphology, and composition

    E-Print Network [OSTI]

    Crawford, Samuel Curtis

    2014-01-01T23:59:59.000Z

    The III-V nitride materials system offers tunable electronic and optical properties that can be tailored for specific electronic and optoelectronic applications by varying the (In,Ga,Al)N alloy composition. While nitride ...

  9. Comparing directed efficiency of III-nitride nanowire light-emitting diodes

    E-Print Network [OSTI]

    Gradecak, Silvija

    III-nitride-based nanowires are a promising platform for solid-state lighting. III-nitride nanowires that act as natural waveguides to enhance directed extraction have previously been shown to be free of extended defects ...

  10. Feasibility of breeding in hard spectrum boiling water reactors with oxide and nitride fuels

    E-Print Network [OSTI]

    Feng, Bo, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    This study assesses the neutronic, thermal-hydraulic, and fuel performance aspects of using nitride fuel in place of oxides in Pu-based high conversion light water reactor designs. Using the higher density nitride fuel ...

  11. 596 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 4, APRIL 2005 Nanoscale Spatial Phase Modulation of GaN on

    E-Print Network [OSTI]

    New Mexico, University of

    Modulation of GaN on a V-Grooved Si Substrate--Cubic Phase GaN on Si(001) for Monolithic Integration S. C Abstract--Nanoscale spatial phase modulation of GaN gorwn on a 355-nm period array of V-grooves fabricated in a Si(001) substrate is reported. Orientation-dependent selective nucleation of GaN in metal

  12. Energetics of H and NH2 on GaN,,1010... and implications for the origin of nanopipe defects John E. Northrup and R. Di Felice

    E-Print Network [OSTI]

    Energetics of H and NH2 on GaN,,101¯0... and implications for the origin of nanopipe defects John E-terminated GaN 101¯0 surfaces. The calculations indicate that H adsorption on GaN 101¯0 will proceed. The implications of these results for the origin of nanopipe defects in GaN are examined. S0163-1829 97 51832

  13. IPAP Conference Series 1: IWN2000, Nov., 2000 1 Morphology Dependent Growth Kinetics of Ga-polar GaN(0001)

    E-Print Network [OSTI]

    Cohen, Philip I.

    IPAP Conference Series 1: IWN2000, Nov., 2000 1 Morphology Dependent Growth Kinetics of Ga-polar GaN, cohen@ece.umn.edu GaN grown on Ga polar GaN templates prepared by metal-organic vapor deposition shows to equilibrium models of the growth. The results indicate that Ga-polar GaN(0001) has a step energy of the order

  14. Crystallographically tilted and partially strain relaxed GaN grown on inclined (111) facets etched on Si(100) substrate

    SciTech Connect (OSTI)

    Ansah Antwi, K. K. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, 117602 Singapore (Singapore); Soh, C. B. [Singapore Institute of Technology, 10 Dover Drive, Singapore 138683 (Singapore); Wee, Q. [Singapore-MIT Alliance, National University of Singapore, Singapore 117576 (Singapore); Tan, Rayson J. N.; Tan, H. R. [Institute of Materials Research and Engineering, 3 Research Link, 117602 Singapore (Singapore); Yang, P. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, 117603 Singapore (Singapore); Sun, L. F.; Shen, Z. X. [School of Physical and Mathematical Sciences, Nanyang Technological University, SPMS-03-01, 21 Nanyang Link (Singapore); Chua, S. J., E-mail: elecsj@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, 117602 Singapore (Singapore); Singapore-MIT Alliance, National University of Singapore, Singapore 117576 (Singapore)

    2013-12-28T23:59:59.000Z

    High resolution X-ray diffractometry (HR-XRD), Photoluminescence, Raman spectroscopy, and Transmission electron microscope measurements are reported for GaN deposited on a conventional Si(111) substrate and on the (111) facets etched on a Si(100) substrate. HR-XRD reciprocal space mappings showed that the GaN(0002) plane is tilted by about 0.63°?±?0.02° away from the exposed Si(111) growth surface for GaN deposited on the patterned Si(100) substrate, while no observable tilt existed between the GaN(0002) and Si(111) planes for GaN deposited on the conventional Si(111) substrate. The ratio of integrated intensities of the yellow to near band edge (NBE) luminescence (I{sub YL}/I{sub NBE}) was determined to be about one order of magnitude lower in the case of GaN deposited on the patterned Si(100) substrate compared with GaN deposited on the conventional Si(111) substrate. The Raman E{sub 2}(high) optical phonon mode at 565.224?±?0.001?cm{sup ?1} with a narrow full width at half maximum of 1.526?±?0.002?cm{sup ?1} was measured, for GaN deposited on the patterned Si(100) indicating high material quality. GaN deposition within the trench etched on the Si(100) substrate occurred via diffusion and mass-transport limited mechanism. This resulted in a differential GaN layer thickness from the top (i.e., 1.8??m) of the trench to the bottom (i.e., 0.3??m) of the trench. Mixed-type dislocation constituted about 80% of the total dislocations in the GaN grown on the inclined Si(111) surface etched on Si(100)

  15. SUBMILLIMETER OPTICAL PROPERTIES OF HEXAGONAL BORON NITRIDE A. J. Gatesman, R. H. Giles and J. Waldman

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    boron nitride was obtained in four grades (A, HP, M, M26) from The Carborundum Co. in Niagara Fall, NY

  16. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy

    SciTech Connect (OSTI)

    Kyle, Erin C. H., E-mail: erinkyle@umail.ucsb.edu; Kaun, Stephen W.; Burke, Peter G.; Wu, Feng; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Wu, Yuh-Renn [Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, Taipei City 10617, Taiwan (China)

    2014-05-21T23:59:59.000Z

    The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup ?}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (?2?×?10{sup 6}?cm{sup ?2} to ?2?×?10{sup 10}?cm{sup ?2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimized GaN growth on free-standing GaN templates with a low TDD (?2?×?10{sup 6}?cm{sup ?2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296?K and 3327 cm{sup 2}/Vs at 113?K.

  17. Millimeter wave ferromagnetic resonance in gallium-substituted ?-iron oxide

    SciTech Connect (OSTI)

    Chao, Liu, E-mail: liu.chao@tufts.edu; Afsar, Mohammed N. [Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States); Ohkoshi, Shin-ichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-05-07T23:59:59.000Z

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60?GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A new series of gallium-substituted ?-iron oxides (?-Ga{sub x}Fe{sub 2?x}O{sub 3}) are synthesized which have ferromagnetic resonant frequencies appearing over the frequency range 30 GHz–150 GHz. The ?-Ga{sub x}Fe{sub 2?x}O{sub 3} is synthesized by the combination of reverse micelle and sol-gel techniques or the sol-gel method only. The particle sizes are observed to be smaller than 100 nm. In this paper, the free space magneto-optical approach has been employed to study these newly developed ?-Ga{sub x}Fe{sub 2?x}O{sub 3} particles in millimeter waves. This technique enables to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the millimeter wave frequency range from a single set of direct measurements. The transmittance and absorbance spectra of ?-Ga{sub x}Fe{sub 2?x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  18. Micro-Raman and cathodoluminescence studies of epitaxial laterally overgrown GaN with tungsten masks: A method to map the free-carrier

    E-Print Network [OSTI]

    Nabben, Reinhard

    Micro-Raman and cathodoluminescence studies of epitaxial laterally overgrown GaN with tungsten properties of two epitaxial-laterally overgrown GaN structures with tungsten masks in 1100 and 1120 direction by tungsten masks3 to prevent the in-diffusion of silicon and oxygen atoms in the overgrown GaN, which

  19. GaN nanowire lasers with low lasing thresholds Silvija Gradecak, Fang Qian, Yat Li, Hong-Gyu Park, and Charles M. Liebera

    E-Print Network [OSTI]

    Li, Yat

    GaN nanowire lasers with low lasing thresholds Silvija Gradecak, Fang Qian, Yat Li, Hong-Gyu Park September 2005; published online 18 October 2005 We report optically pumped room-temperature lasing in GaN of 22 kW/cm2 that are substantially lower than other previously reported GaN nanowires. Key

  20. PHYSICAL REVIEW B VOLUME 52, NUMBER 23 15 DECEMBER 1995-I Properties of the yellow luminescence in undoped GaN epitaxial layers

    E-Print Network [OSTI]

    Nabben, Reinhard

    Micro-Raman and cathodoluminescence studies of epitaxial laterally overgrown GaN with tungsten masks: A method to map the free-carrier concentration of thick GaN samples A. Kaschner,a) A. Hoffmann properties of two epitaxial-laterally overgrown GaN structures with tungsten masks in 1100 and 1120 direction

  1. Impact of high-power stress on dynamic ON-resistance of high-voltage GaN HEMTs Donghyun Jin

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    Impact of high-power stress on dynamic ON-resistance of high-voltage GaN HEMTs Donghyun Jin-resistance (RON) in high- voltage GaN High-Electron-Mobility Transistors (HEMTs). We use a newly proposed dynamic. All rights reserved. 1. Introduction In the last decade, GaN Field-Effect Transistors have emerged

  2. GaN0.011P0.989–GaP Double-Heterostructure Red Light-Emitting Diodes Directly Grown on GaP Substrates

    E-Print Network [OSTI]

    Tu, Charles W

    2000-01-01T23:59:59.000Z

    and C. W. Tu, GaN diodes on GaP substrates, 2000. [7] J. W.on a GaN directly grown on a GaP substrate was successfullyDH) directly a GaN grown on a (100) GaP substrate. Fig. 1(a)

  3. The influence of substrate surface preparation on LP MOVPE GaN epitaxy on differently oriented 4H-SiC substrates

    E-Print Network [OSTI]

    Ozbay, Ekmel

    The influence of substrate surface preparation on LP MOVPE GaN epitaxy on differently oriented 4H preparation and off-cut of 4H-SiC substrates on morphological and structural properties of GaN grown by low-SiC is most suitable for GaN epitaxy and that substrate etching improves the surface morphology of epilayer

  4. Growth of GaN on SiC(0001) by Molecular Beam Epitaxy C. D. LEE (a), ASHUTOSH SAGAR (a), R. M. FEENSTRA

    E-Print Network [OSTI]

    Feenstra, Randall

    years as a substrate for both molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy of GaN of the substrate preparation and growth technique. Experimental GaN films of typically 1 mm thickness are deposited1 Growth of GaN on SiC(0001) by Molecular Beam Epitaxy C. D. LEE (a), ASHUTOSH SAGAR (a), R. M

  5. Effect of dislocation scattering on the transport properties of InN grown on GaN substrates by molecular beam epitaxy

    E-Print Network [OSTI]

    Effect of dislocation scattering on the transport properties of InN grown on GaN substrates on GaN substrates by plasma-assisted molecular beam epitaxy. They have found a strong correlation, optical, and transport properties of InN on GaN substrates. In this work, we have studied the MBE growth

  6. OXIDATION MECHANISMS OF LOW ENERGY-HIGH FLUX NITRIDED ODS FeAl INTERMETALLIC ALLOY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    OXIDATION MECHANISMS OF LOW ENERGY-HIGH FLUX NITRIDED ODS FeAl INTERMETALLIC ALLOY F. Pedraza*, J)5.46.45.72.72 Abstract Microscopy studies of low energy-high flux nitrided ODS FeAl Grade 3 intermetallic alloy reveal nitridation treatment at moderate temperature of ODS FeAl Grade 3 has been performed to modify the surface

  7. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOE Patents [OSTI]

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01T23:59:59.000Z

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  8. DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME

    E-Print Network [OSTI]

    Hart, Gus

    DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM deposition and characterization of reactively-sputtered uranium nitride thin films. I also report optical.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

  9. Molecular orbital studies of titanium nitride chemical vapor deposition: gas phase b-elimination

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular orbital studies of titanium nitride chemical vapor deposition: gas phase b) of titanium nitride can be carried out using TiNR24 and NH3 (R Me or Et). Imido compounds are thought. Ó 2001 Pub- lished by Elsevier Science B.V. 1. Introduction It is well known that titanium nitride

  10. Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Gas Phase Complex Formation,

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Gas Phase Complex Received June 6, 2000 The chemical vapor deposition (CVD) of titanium nitride can be carried out with TiCl4 Titanium nitride thin films have a variety of proper- ties, such as extreme hardness, high chemical

  11. Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Imido Dimer Formation and

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Imido Dimer Formation- ization of Ti(NR2)2NH in the chemical vapor deposition (CVD) of titanium nitride films. This study uses lead to the formation of higher oligomers. Introduction Titanium nitride thin films have a number

  12. Half-metallic to insulating behavior of rare-earth nitrides C. M. Aerts,1

    E-Print Network [OSTI]

    Svane, Axel Torstein

    Half-metallic to insulating behavior of rare-earth nitrides C. M. Aerts,1 P. Strange,1 M. Horne,1 W in the literature that rare-earth nitrides may form half-metallic ferromagnets.6­8 This is sur- prising because 30 January 2004 The electronic structure of the rare-earth nitrides is studied systematically using

  13. Europium Nitride: A Novel Diluted Magnetic Semiconductor Do Le Binh,1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Europium Nitride: A Novel Diluted Magnetic Semiconductor Do Le Binh,1 B. J. Ruck,1,* F. Natali,1 H June 2013; published 18 October 2013) Europium nitride is semiconducting and contains nonmagnetic Eu3þ­24]. Europium nitride has also been demonstrated to be semiconducting [25], but EuN stands out amongst the rare

  14. Gallium-cladding compatibility testing plan: Phase 3 -- Test plan for centrally heated surrogate rodlet test. Revision 2

    SciTech Connect (OSTI)

    Morris, R.N.; Baldwin, C.A.; Wilson, D.F.

    1998-07-01T23:59:59.000Z

    The Fissile Materials Disposition Program (FMDP) is investigating the use of weapons grade plutonium in mixed oxide (MOX) fuel for light-water reactors (LWR). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons derived fuel may differ from the previous commercial fuels because of small amounts of gallium impurities. A concern presently exists that the gallium may migrate out of the fuel, react with and weaken the clad, and thereby promote loss of fuel pin integrity. Phases 1 and 2 of the gallium task are presently underway to investigate the types of reactions that occur between gallium and clad materials. This is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. This Plan summarizes the projected Phase 3 Gallium-Cladding compatibility heating test and the follow-on post test examination (PTE). This work will be performed using centrally-heated surrogate pellets, to avoid unnecessary complexities and costs associated with working with plutonium and an irradiation environment. Two sets of rodlets containing pellets prepared by two different methods will be heated. Both sets will have an initial bulk gallium content of approximately 10 ppm. The major emphasis of the PTE task will be to examine the material interactions, particularly indications of gallium transport from the pellets to the clad.

  15. Optically active centers in Eu implanted, Eu in situ doped GaN, and Eu doped GaN quantum dots

    SciTech Connect (OSTI)

    Bodiou, L.; Braud, A.; Doualan, J.-L.; Moncorge, R. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP), CNRS-CEA-ENSICAEN, Universite de Caen, UMR 6252, 14050 Caen (France); Park, J. H.; Munasinghe, C.; Steckl, A. J. [University of Cincinnati, Cincinnati, Ohio 45221-0030 (United States); Lorenz, K.; Alves, E. [Instituto Tecnologico e Nuclear, Estrada Nacional 10, PT-2685-953 Sacavem (Portugal); Daudin, B. [INAC SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2009-02-15T23:59:59.000Z

    A comparison is presented between Eu implanted and Eu in situ doped GaN thin films showing that two predominant Eu sites are optically active around 620 nm in both types of samples with below and above bandgap excitation. One of these sites, identified as a Ga substitutional site, is common to both types of Eu doped GaN samples despite the difference in the GaN film growth method and in the doping technique. High-resolution photoluminescence (PL) spectra under resonant excitation reveal that in all samples these two host-sensitized sites are in small amount compared to the majority of Eu ions which occupy isolated Ga substitutional sites and thus cannot be excited through the GaN host. The relative concentrations of the two predominant host-sensitized Eu sites are strongly affected by the annealing temperature for Eu implanted samples and by the group III element time opening in the molecular beam epitaxy growth. Red luminescence decay characteristics for the two Eu sites reveal different excitation paths. PL dynamics under above bandgap excitation indicate that Eu ions occupying a Ga substitutional site are either excited directly into the {sup 5}D{sub 0} level or into higher excited levels such as {sup 5}D{sub 1}, while Eu ions sitting in the other site are only directly excited into the {sup 5}D{sub 0} level. These differences are discussed in terms of the spectral overlap between the emission band of a nearby bound exciton and the absorption bands of Eu ions. The study of Eu doped GaN quantum dots reveals the existence of only one type of Eu site under above bandgap excitation, with Eu PL dynamics features similar to Eu ions in Ga substitutional sites.

  16. Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys and Alexander A. Balandin

    E-Print Network [OSTI]

    with the active thermoelectric cooling implemented on the same material system can improve the device performance, for the pro- posed cooling system should also be based on GaN. To real- ize this, the high-efficiency Ga,6 Great progress has been achieved in GaN-based microwave technology. GaN transistors with very high

  17. First-principles studies of beryllium doping of GaN Chris G. Van de Walle* and Sukit Limpijumnong

    E-Print Network [OSTI]

    First-principles studies of beryllium doping of GaN Chris G. Van de Walle* and Sukit Limpijumnong Received 12 October 2000; published 8 June 2001 The structural and electronic properties of beryllium acceptors, and between hydrogen and substitutional beryllium. The results for wurtzite GaN are compared

  18. Reconstructions of GaN,,0001... and ,,0001... surfaces: Ga-rich metallic A. R. Smith and R. M. Feenstraa)

    E-Print Network [OSTI]

    wurtzite material.1­9 A common theme regarding the growth of these surfaces in the absence of hydrogen and elec- tronic properties of two reconstructions for wurtzite GaN: the 1 1 structure of the GaN 0001

  19. PHYSICAL REVIEW B 86, 075207 (2012) Optical signature of Mg-doped GaN: Transfer processes

    E-Print Network [OSTI]

    Nabben, Reinhard

    2012-01-01T23:59:59.000Z

    PHYSICAL REVIEW B 86, 075207 (2012) Optical signature of Mg-doped GaN: Transfer processes G; published 23 August 2012) Mg doping of high quality, metal organic chemical vapor deposition grown GaN films GaN:Mg grown on sapphire substrates and identify two Mg related acceptor states, one additional

  20. Belgirate, Italy, 28-30 September 2005 THERMAL MODELLING OF MULTI-FINGER ALGAN/GAN HEMT's

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Belgium contact author: herman.oprins@imec.be ABSTRACT AlGaN/GaN high electron mobility transistors (HEMTs validation of the modelling, both structures are thermally optimized. 1. INTRODUCTION As GaN devices operate of delivering about 0.75W/mm. The rapid increase in power density since the beginning of the development of GaN

  1. Luminescence Efficiency of InGaN/GaN Quantum Wells on Bulk GaN Substrate M. Dworzak1

    E-Print Network [OSTI]

    Nabben, Reinhard

    Luminescence Efficiency of InGaN/GaN Quantum Wells on Bulk GaN Substrate M. Dworzak1 , T. Stempel1/37, 01-142 Warsaw, Poland ABSTRACT Time-integrated and time-resolved photoluminescence measurements on InGaN quantum wells grown by MOCVD on two different substrates (sapphire and GaN) show that the lumines- cence

  2. Effect of Trapping on the Critical Voltage for Degradation in GaN High Electron Mobility Transistors

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    power and high frequency applications. Si is an attractive substrate for GaN HEMTs because of its lower and thermal mismatch between GaN and Si as compared to the more commonly used substrate, SiC, results in more regardless of the characteristics of the substrate. II. EXPERIMENTAL We studied experimental AlxGa1­xN/GaN

  3. The Effect of Periodic Silane Burst on the Properties of GaN on Si (111) Substrates

    E-Print Network [OSTI]

    Zang, Keyan

    The periodic silane burst technique was employed during metalorganic chemical vapor deposition of epitaxial GaN on AlN buffer layers grown on Si (111). Periodic silicon delta doping during growth of both the AlN and GaN ...

  4. Development and modeling of iron-gallium alloys Rick Allen Kellogg

    E-Print Network [OSTI]

    Flatau, Alison B.

    Development and modeling of iron-gallium alloys by Rick Allen Kellogg A dissertation submitted APPENDIX C: POISSON'S RATIOS OF Fe-Al ALLOYS 154 REFERENCES 155 #12;iv ACKNOWLEDGEMENTS Many people deserve University and the Department of Aerospace Engineering and Engineering Mechanics for providing academic

  5. Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells

    E-Print Network [OSTI]

    Rockett, Angus

    conversion efficiency of solar cells made from this material [1]. One of the special qualities of the CIGS improve the solar cell performance. In many of the different CIGS fabrication techniques, an in depthDiffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells O. Lundberga,*, J. Lua , A

  6. Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array

    E-Print Network [OSTI]

    Zhou, Chongwu

    Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire, and will aid in the design and optimization of nanowire-based systems for solar energy-conversion applications, and the photoelectrochemical energy-conversion properties of GaAs nanowire arrays were evaluated in contact with one

  7. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    SciTech Connect (OSTI)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01T23:59:59.000Z

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  8. Characterization of nitrided silicon-silicon dioxide interfaces

    SciTech Connect (OSTI)

    Polignano, M.L.; Alessandri, M.; Brazzelli, D. [and others

    2000-07-01T23:59:59.000Z

    A newly-developed technique for the simultaneous characterization of the oxide-silicon interface properties and of bulk impurities was used for a systematic study of the nitridation process of thin oxides. This technique is based upon surface recombination velocity measurements, and does not require the formation of a capacitor structure, so it is very suitable for the characterization of as-grown interfaces. Oxides grown both in dry and in wet environments were considered, and nitridation processes in N{sub 2}O and in NO were compared to N{sub 2} annealing processes. The effect of nitridation temperature and duration were also studied, and RTO/RTN processes were compared to conventional furnace nitridation processes. Surface recombination velocity was correlated with nitrogen concentration at the oxide-silicon interface obtained by Secondary Ion Mass Spectroscopy (SIMS) measurements. Surface recombination velocity (hence surface state density) decreases with increasing nitrogen pile-up at the oxide-silicon interface, indicating that in nitrided interfaces surface state density is limited by nitridation. NO treatments are much more effective than N{sub 2}O treatments in the formation of nitrogen-rich interface layer and, as a consequence, in surface state reduction. Surface state density was measured in fully processed wafers before and after constant current stress. After a complete device process surface states are annealed out by hydrogen passivation, however they are reactivated by the electrical stress, and surface state results after stress were compared with data of surface recombination velocity in as-processed wafers.

  9. Structural studies of magnesium nitride fluorides by powder neutron diffraction

    SciTech Connect (OSTI)

    Brogan, Michael A. [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Hughes, Robert W. [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Smith, Ronald I. [ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Gregory, Duncan H., E-mail: Duncan.Gregory@glasgow.ac.uk [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2012-01-15T23:59:59.000Z

    Samples of ternary nitride fluorides, Mg{sub 3}NF{sub 3} and Mg{sub 2}NF have been prepared by solid state reaction of Mg{sub 3}N{sub 2} and MgF{sub 2} at 1323-1423 K and investigated by powder X-ray and powder neutron diffraction techniques. Mg{sub 3}NF{sub 3} is cubic (space group: Pm3m) and has a structure related to rock-salt MgO, but with one cation site vacant. Mg{sub 2}NF is tetragonal (space group: I4{sub 1}/amd) and has an anti-LiFeO{sub 2} related structure. Both compounds are essentially ionic and form structures in which nitride and fluoride anions are crystallographically ordered. The nitride fluorides show temperature independent paramagnetic behaviour between 5 and 300 K. - Graphical abstract: Definitive structures of the ternary magnesium nitride fluorides Mg{sub 3}NF{sub 3} and the lower temperature polymorph of Mg{sub 2}NF have been determined from powder neutron diffraction data. The nitride halides are essentially ionic and exhibit weak temperature independent paramagnetic behaviour. Highlights: Black-Right-Pointing-Pointer Definitive structures of Mg{sub 3}NF{sub 3} and Mg{sub 2}NF were determined by neutron diffraction. Black-Right-Pointing-Pointer Nitride and fluoride anions are crystallographically ordered in both structures. Black-Right-Pointing-Pointer Both compounds exhibit weak, temperature independent paramagnetic behaviour. Black-Right-Pointing-Pointer The compounds are essentially ionic with ionicity increasing with F{sup -} content.

  10. Tuning linear and nonlinear optical properties of wurtzite GaN by c-axial stress

    E-Print Network [OSTI]

    Cai, Duanjun; 10.1088/0022-3727/42/18/185107

    2009-01-01T23:59:59.000Z

    We study the linear and nonlinear optical properties of wurtzite GaN under c-axial stress field, using density functional theory calculations. The fully structural optimization at each c-axial strain was performed. The calculated dielectric functions show that tensile c-axial strain effectively improves the linear optical efficiency, especially for the band-edge transitions, and significantly increase the mobility of electrons in the conduction band. Second-order nonlinear optical susceptibilities show that the tensile c-axial strain will enhance the zero- and low-frequency nonlinear responses of GaN. The enhancement of the nonlinear optical property is explained by the reduction of the polarization of wurtzite GaN under tensile c-axial strains. Based on these findings, we propose a method for improving the electrical and optical properties of the crystal through imposing appropriate stress on the high symmetry crystalline directions.

  11. Long-Lived, Coherent Acoustic Phonon Oscillations in GaN Single Crystals

    SciTech Connect (OSTI)

    Wu, S.; Geiser, P.; Jun, J.; Karpinski, J.; Park, J.-R.; Sobolewski, R.

    2006-01-31T23:59:59.000Z

    We report on coherent acoustic phonon (CAP) oscillations studied in high-quality bulk GaN single crystals with a two-color femtosecond optical pump-probe technique. Using a far-above-the-band gap ultraviolet excitation (~270 nm wavelength) and a near-infrared probe beam (~810 nm wavelength), the long-lived, CAP transients were observed within a 10 ns time-delay window between the pump and probe pulses, with a dispersionless (proportional to the probe-beam wave vector) frequency of ~45 GHz. The measured CAP attenuation corresponded directly to the absorption of the probe light in bulk GaN, indicating that the actual (intrinsic) phonon-wave attenuation in our crystals was significantly smaller than the measured 65.8 cm^-1 value. The velocity of the phonon propagation was equal to the velocity of sound in GaN.

  12. Effect of buffer layer growth temperature on epitaxial GaN films deposited by magnetron sputtering

    SciTech Connect (OSTI)

    Mohanta, P.; Singh, D.; Kumar, R.; Ganguli, T.; Srinivasa, R. S.; Major, S. S. [Center For Research in Nano-Technology and Science (India); Semiconductor Laser Section, RRCAT, Indore-452013 (India); Department of Metallurgical Engineering and Materials Science (India); Department of Physics, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

    2012-06-05T23:59:59.000Z

    Epitaxial GaN films were deposited by reactive sputtering of a GaAs target in 100 % nitrogen at 700 deg. C on ZnO buffer layers grown at different substrate temperatures over sapphire substrates. High resolution X-ray diffraction measurements and the corresponding analysis show that the growth temperature of buffer layers significantly affects the micro-structural parameters of GaN epilayer, such as lateral coherence length, tilt and twist, while the vertical coherence length remains unaffected. The optimum substrate temperature for buffer layer growth has been found to be 300 deg. C. High epitaxial quality GaN film grown on such a buffer layer exhibited micro strain of 1.8x10{sup -4} along with screw and edge type dislocation densities of 7.87x10{sup 9} and 1.16x10{sup 11}, respectively.

  13. Evidence of satellite valley position in GaN by photoexcited field emission spectroscopy

    SciTech Connect (OSTI)

    Yilmazoglu, O.; Pavlidis, D.; Hartnagel, H. L. [Department of High Frequency Electronics, Technische Universitaet Darmstadt, 64283 Darmstadt (Germany); Evtukh, A.; Litovchenko, V.; Semenenko, N. [Institute of Semiconductor Physics, NASU, 03028 Kiev (Ukraine)

    2008-06-01T23:59:59.000Z

    GaN field emitter rods with nanometer diameter were fabricated by photoelectrochemical etching on a n{sup +}-GaN substrate. Their electron field emission properties were investigated under ultraviolet (UV) illumination. The Fowler-Nordheim plots of the emission current show different slopes for nonilluminated and UV illuminated devices. A model based on the electron emission from valleys having different specific electron affinities is proposed to explain the experimental results. In the absence of illumination, the GaN rods are almost fully depleted and emission takes place only from the lower valley. Upon UV illumination and presence of a high electric field at the emitter tip, the upper valley of the conduction band appears to be occupied by electrons generated at the valence band. The energy difference between the lower and upper valleys was determined to be 1.15 eV and is in good agreement with formerly published theoretical and measured values.

  14. Preconceptual design for separation of plutonium and gallium by ion exchange

    SciTech Connect (OSTI)

    DeMuth, S.F.

    1997-09-30T23:59:59.000Z

    The disposition of plutonium from decommissioned nuclear weapons, by incorporation into commercial UO{sub 2}-based nuclear reactor fuel, is a viable means to reduce the potential for theft of excess plutonium. This fuel, which would be a combination of plutonium oxide and uranium oxide, is referred to as a mixed oxide (MOX). Following power generation in commercial reactors with this fuel, the remaining plutonium would become mixed with highly radioactive fission products in a spent fuel assembly. The radioactivity, complex chemical composition, and large size of this spent fuel assembly, would make theft difficult with elaborate chemical processing required for plutonium recovery. In fabricating the MOX fuel, it is important to maintain current commercial fuel purity specifications. While impurities from the weapons plutonium may or may not have a detrimental affect on the fuel fabrication or fuel/cladding performance, certifying the effect as insignificant could be more costly than purification. Two primary concerns have been raised with regard to the gallium impurity: (1) gallium vaporization during fuel sintering may adversely affect the MOX fuel fabrication process, and (2) gallium vaporization during reactor operation may adversely affect the fuel cladding performance. Consequently, processes for the separation of plutonium from gallium are currently being developed and/or designed. In particular, two separation processes are being considered: (1) a developmental, potentially lower cost and lower waste, thermal vaporization process following PuO{sub 2} powder preparation, and (2) an off-the-shelf, potentially higher cost and higher waste, aqueous-based ion exchange (IX) process. While it is planned to use the thermal vaporization process should its development prove successful, IX has been recommended as a backup process. This report presents a preconceptual design with material balances for separation of plutonium from gallium by IX.

  15. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    SciTech Connect (OSTI)

    Drryl P. Butt; Brian Jaques

    2009-03-31T23:59:59.000Z

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ? X ? 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  16. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOE Patents [OSTI]

    Koc, Rasit (Lakewood, CO); Glatzmaier, Gregory C. (Boulder, CO)

    1995-01-01T23:59:59.000Z

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  17. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOE Patents [OSTI]

    Koc, R.; Glatzmaier, G.C.

    1995-05-23T23:59:59.000Z

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  18. On-wafer seamless integration of GaN and Si (100) electronics

    E-Print Network [OSTI]

    Chung, Jinwook

    The high thermal stability of nitride semiconductors allows for the on-wafer integration of (001)Si CMOS electronics and electronic devices based on these semiconductors. This paper describes the technology developed at ...

  19. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    DOE Patents [OSTI]

    Wang, George T. (Albuquerque, NM); Li, Qiming (Albuquerque, NM); Creighton, J. Randall (Albuquerque, NM)

    2010-06-29T23:59:59.000Z

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  20. Design and Experimental Characterization of an Erbium Doped GaN Waveguide

    E-Print Network [OSTI]

    Wang, Qian

    2012-05-31T23:59:59.000Z

    temperatures as compared to other semiconductor host materials such as Si and GaAs. 1540nm optical emission in Er- doped waveguide has also been demonstrated using a 365nm light emitting diode as the optical pumping source. UV pumping above the GaN bandgap....9 eV In Table 2 - 1, GaN is the semiconductor material with the largest bandgap (SiO2 is not a semiconductor), which has proven to be an accomplished host of erbium, with reports of fabrication of light- emitting diodes operating in the visible...