National Library of Energy BETA

Sample records for gai high energy

  1. The Dissertation Committee for Xiuli Gai certifies that this is the approved version of the following dissertation

    E-Print Network [OSTI]

    Santos, Juan

    that this is the approved version of the following dissertation: A Coupled Geomechanics and Reservoir Flow Model on Parallel #12;A Coupled Geomechanics and Reservoir Flow Model on Parallel Computers by Xiuli Gai, B.E., M teaches me through his code and through his integrity as a computer scientist, as a chemical and petroleum

  2. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing...

  3. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

  4. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage...

  5. Ultra High Energy Fermions

    E-Print Network [OSTI]

    Burra G. Sidharth

    2015-04-07

    The LHC in Geneva is already operating at a total energy of $7 TeV$ and hopefully after a pause in 2012, it will attain its full capacity of $14 TeV$ in 2013. These are the highest energies achieved todate in any accelerator. It is against this backdrop that it is worthwhile to revisit very high energy collisions of Fermions (Cf. also \\cite{bgspp}). We will in fact examine their behaviour at such energies.

  6. High Energy Photoproduction

    E-Print Network [OSTI]

    J. M. Butterworth; M. Wing

    2005-09-15

    The experimental and phenomenological status of high energy photoproduction is reviewed. Topics covered include the structure of the photon, production of jets, heavy flavours and prompt photons, rapidity gaps, energy flow and underlying events. The results are placed in the context of the current understanding of QCD, with particular application to present and future hadron and lepton colliders.

  7. High-energy detector

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E. (South Setauket, NY); Camarda, Giuseppe (Farmingville, NY); Cui, Yonggang (Upton, NY); James, Ralph B. (Ridge, NY)

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  8. High Energy Density Laboratory Plasmas

    E-Print Network [OSTI]

    High Energy Density Laboratory Plasmas General Plasma Science Developing founda/ons and advancing fundamental understanding #12;The High Energy Density developing innovative techniques to study the properties of instabilities in magnetized-high-energy-density

  9. Particle Diffraction at High Energies

    E-Print Network [OSTI]

    Vladimir A. Petrov

    1998-04-27

    A brief ideological and historical review of problems of high energy diffractive scattering is given.

  10. Sandia Energy - High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing Home Energy Research Advanced Scientific Computing Research (ASCR) High Performance Computing High Performance Computingcwdd2015-03-18T21:41:24+00:00...

  11. Sandia Energy - High Pressure Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Pressure Chemistry Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Combustion Kinetics High Pressure Chemistry High Pressure ChemistryAshley...

  12. Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  13. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  14. High energy physics

    SciTech Connect (OSTI)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  15. FSU High Energy Physics

    SciTech Connect (OSTI)

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the non-zero neutrino masses or the overwhelming astrophysical evidence for an invisible form of matter, called dark matter, that has had a marked effect on the evolution of structure in the universe. The report highlights the main, recent, experimental achievements of the experimental group, which include the investigation of properties of the W and Z bosons; the search for new heavy stable charged particles and the search for a proposed property of nature called supersymmetry in proton-proton collisions that yield high energy photons. In addition, we report a few results from a more general search for supersymmetry at the LHC, initiated by the group. The report also highlights the group's significant contributions, both theoretical and experimental, to the 2012 discovery of the Higgs boson and the measurement of its properties.

  16. High Energy Density Capacitors

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  17. Astronomy 117 High Energy Astrophysics

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Astronomy 117 High Energy Astrophysics Instructor: David A. Williams (office NS2 319, phone 459-3032, e-mail: daw@scipp.ucsc.edu) Place: Earth & Marine Sciences, B210 Time: Mondays, Wednesdays is · High Energy Astrophysics, second edition, volumes 1 and 2, by Malcolm S. Longair Course materials

  18. High Energy Cost Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing ToolSustainableSecurityHigh Energy Cost Grants High Energy

  19. High-energy Cosmic Rays

    E-Print Network [OSTI]

    Thomas K. Gaisser; Todor Stanev

    2005-10-11

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the `knee' above $10^{15}$ eV and the `ankle' above $10^{18}$ eV. An important question is whether the highest energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  20. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: Professor - ResearchAdministration |High

  1. PRACTICAL NEUTRON DOSIMETRY AT HIGH ENERGIES

    E-Print Network [OSTI]

    McCaslin, J.B.

    2010-01-01

    of High-Energy Accelerators, New York, April, 1957. USAECShielding of High-Energy Accelerators, New York, April 1957.Shielding of High-Energy Accelerators, New York, April 1957.

  2. Proposal for a High Energy Nuclear Database

    E-Print Network [OSTI]

    Brown, David A.; Vogt, Ramona

    2005-01-01

    Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?compilations of high-energy nuclear data for applications

  3. Proposal for a High Energy Nuclear Database

    E-Print Network [OSTI]

    Brown, David A.; Vogt, Ramona

    2005-01-01

    Proposal for a High Energy Nuclear Database XML documentsProposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?

  4. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  5. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  6. High energy overcurrent protective device

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  7. HIGHLY COMPRESSED ION BEAMS FOR HIGH ENERGY DENSITY SCIENCE

    E-Print Network [OSTI]

    Wurtele, Jonathan

    HIGHLY COMPRESSED ION BEAMS FOR HIGH ENERGY DENSITY SCIENCE A. Friedman1,2 , J.J.Barnard1,2 , R Energy Density regimes required for Inertial Fu- sion Energy and other applications. An interim goal we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto

  8. A high energy physics perspective

    SciTech Connect (OSTI)

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  9. Sandia Energy - High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergyGeoscience HomeGridHigh

  10. Oxides having high energy densities

    DOE Patents [OSTI]

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  11. High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context

    E-Print Network [OSTI]

    Bicknell, Geoff

    High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context 1 Some references The following set of volumes is an outstanding summary of the field of High Energy Astrophysics and its relation to the rest of Astrophysics High Energy Astrophysics, Vols. 1,2 and 3. M.S. Longair, Cam- bridge University

  12. Energy Star Helps Manufacturers To Achieve High Energy Performance 

    E-Print Network [OSTI]

    Dutrow, E.; Hicks, T.

    2001-01-01

    From personal electronic devices to homes and office buildings, ENERGY STAR® is a recognized symbol of high quality energy performance which enables consumers, home buyers, and businesses to make informed energy decisions. Now, the U...

  13. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  14. High Energy Physics and Nuclear Physics Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01

    High Energy Physics and Nuclear Physics Network RequirementsCalifornia. High Energy Physics and Nuclear Physics Networkof High Energy Physics and Nuclear Physics, DOE Office of

  15. Engineered High Energy Crop (EHEC) Programs

    Broader source: Energy.gov (indexed) [DOE]

    PAGE INTENTIONALLY LEFT BLANK Engineered High Energy Crop Programs Final Programmatic Environmental Impact Statement DOEEIS-0481 JULY 2015 THIS PAGE INTENTIONALLY LEFT BLANK...

  16. High Energy Dirac Solutions: Issues and Ramifications

    E-Print Network [OSTI]

    Burra G. Sidharth

    2013-09-10

    In this paper we consider solutions of the Dirac equation at ultra high energies. The study provides new insights including features overlooked thus far and also new ramifications.

  17. High Energy Lithium-Sulfur Cathodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Start: August 1, 2013 * End: July 31, 2016 * Percent complete: 60% Barriers of batteries - High cost (A) - Low energy density (C) - Short battery life (E) Targets:...

  18. Making glue in high energy nuclear collisions

    E-Print Network [OSTI]

    Alex Krasnitz; Raju Venugopalan

    1999-05-12

    We discuss a real time, non-perturbative computation of the transverse dynamics of gluon fields at central rapidities in very high energy nuclear collisions.

  19. Accelerators for high energy physics research

    SciTech Connect (OSTI)

    Chao, A.

    1995-12-01

    A brief survey of particle accelerators as research tools for high energy physics is given. The survey includes existing accelerators, as well as those envisioned for the future.

  20. MURI High Energy Microwave Sources F496209510253

    E-Print Network [OSTI]

    Wurtele, Jonathan

    MURI ­ High Energy Microwave Sources F49620­95­1­0253 1 August 1999 to 14 March 2000 PROGRESS University Research Initiative (MURI) High Energy Microwave (HEM) research program. The PTSG, reports, and conference papers. The PTSG is primarily involved in the modeling of microwave­beam, plasma

  1. High energy physics in the United States

    SciTech Connect (OSTI)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  2. Laser Fusion Energy The High Average Power

    E-Print Network [OSTI]

    Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

  3. ENERGY SERIES "Emerging High Power Conversion Technologies"

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "Emerging High Power Conversion Technologies" Dujic Drazen Professor, Power of embedded renewable energy sources. Whatever the renewable source of the prime energy is (wind, solar, hydro, storage or use. This is where power electronics come into a play, as key enabling technology for flexible

  4. High West Energy, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckertHidrotermica JumpPower Inc JumpHighHigh

  5. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema (OSTI)

    Ren-Yuan Zhu

    2010-01-08

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  6. Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy...

    Office of Environmental Management (EM)

    Tribal Government Counteracts High Energy Costs, Climate Challenges with Building Energy Retrofits Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy Costs,...

  7. High Country Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTLTechnology Srl JumpSubObjectsHemlock|ArnoyaEnergy

  8. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    E-Print Network [OSTI]

    Anders, Andre

    2010-01-01

    a high current ion source for ultra-low energy ions has beenthe Department of Energy ULTRA-LOW-ENERGY HIGH-CURRENT IONedited by A. Anders. ULTRA-LOW-ENERGY HIGH-CURRENT ION

  9. High-energy cosmic ray interactions

    SciTech Connect (OSTI)

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  10. High-Energy Astrophysics and Cosmology

    E-Print Network [OSTI]

    John Ellis

    2002-10-26

    Interfaces between high-energy physics, astrophysics and cosmology are reviewed, with particular emphasis on the important roles played by high-energy cosmic-ray physics. These include the understanding of atmospheric neutrinos, the search for massive cold dark matter particles and possible tests of models of quantum gravity. In return, experiments at the LHC may be useful for refining models of ultra-high-energy cosmic rays, and thereby contributing indirectly to understanding their origin. Only future experiments will be able to tell whether these are due to some bottom-up astrophysical mechanism or some top-down cosmological mechanism.

  11. High Energy Physics Research at Louisiana Tech

    SciTech Connect (OSTI)

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  12. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  13. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Vladimir Shiltsev

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  14. High Temperature | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:HiddenTemperature Cements Jump

  15. High Energy Density Ultracapacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian Li,1 DOE Hydrogen

  16. High Energy Density Ultracapacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian Li,1 DOE Hydrogen0

  17. High Energy Density Ultracapacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian Li,1 DOE Hydrogen009

  18. High-Tech Means High-Efficiency: The Business Case for Energy Management in High-Tech Industries

    E-Print Network [OSTI]

    Shamshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, Robert S.; Mills, Evan; Tschudi, William

    2005-01-01

    Comparative Energy Costs High-Tech Facilities vs. Standardof energy costs for high-tech buildings and conventionalSurvey (1999 values). High-Tech buildings from LBNL

  19. Physics at high energy photon photon colliders

    SciTech Connect (OSTI)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  20. Terrestrial Effects of High Energy Cosmic Rays

    E-Print Network [OSTI]

    Atri, Dimitra

    2011-04-26

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. ...

  1. Research in High Energy Physics. Final report

    SciTech Connect (OSTI)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  2. Engineering of High Energy Cathode Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kang Xu ( ARL) * Jun Liu (PNNL) * Toda * BASF * ECPRO Partners 2 Enable the Argonne high energy composite layered cathode xLi 2 MnO 3 *(1-x)LiNiO 2 (LMR- NMC) for 40 miles PHEV...

  3. Sandia Energy - High Pressure Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling TechnologyHeavy Duty

  4. Nuclear diffractive structure functions at high energies

    E-Print Network [OSTI]

    C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

    2008-05-30

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  5. HIGH ENERGY HADRONINDUCED DILEPTON PRODUCTION FROM

    E-Print Network [OSTI]

    HIGH ENERGY HADRON­INDUCED DILEPTON PRODUCTION FROM NUCLEONS AND NUCLEI P.L. McGaughey, J.M. Moss Drell­Yan and W \\Sigma Production 3.3 Charge Symmetry Violation of Parton Distributions 3.4 Parton Scattering and Energy Loss 4. QUARKONIUM PRODUCTION 4.1 Quarkonium Production in Hadronic Collisions 4

  6. High Mesa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHess Retail NaturalAreasHighMesa Jump

  7. Utilization of Wind Energy at High Altitude

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-10

    Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energy extracted. The main innovation consists of large free-flying air rotors positioned at high altitude for power and air stream stability, and an energy cable transmission system between the air rotor and a ground based electric generator. The air rotor system flies at high altitude up to 14 km. A stability and control is provided and systems enable the changing of altitude. This article includes six examples having a high unit power output (up to 100 MW). The proposed examples provide the following main advantages: 1. Large power production capacity per unit - up to 5,000-10,000 times more than conventional ground-based rotor designs; 2. The rotor operates at high altitude of 1-14 km, where the wind flow is strong and steady; 3. Installation cost per unit energy is low. 4. The installation is environmentally friendly (no propeller noise). -- * Presented in International Energy Conversion Engineering Conference at Providence., RI, Aug. 16-19. 2004. AIAA-2004-5705. USA. Keyword: wind energy, cable energy transmission, utilization of wind energy at high altitude, air rotor, windmills, Bolonkin.

  8. Ultra High Energy Cosmic Ray Accelerators

    E-Print Network [OSTI]

    Angela V. Olinto

    1999-11-09

    The surprising lack of a high energy cutoff in the cosmic ray spectrum at the highest energies together with an apparently isotropic distribution of arrival directions have strongly challenged most models proposed for the acceleration of ultra high energy cosmic rays. Young neutron star winds may be able to explain the mystery. We discuss this recent proposal after summarizing the observational challenge and plausible acceleration sites. Young neutrons star winds differ from alternative models in the predictions for composition, spectrum, and angular distribution which will be tested in future experiments.

  9. High Energy Particles in the Solar Corona

    E-Print Network [OSTI]

    A. Widom; Y. N. Srivastava; L. Larsen

    2008-04-16

    Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

  10. High-energy cosmic-ray acceleration

    E-Print Network [OSTI]

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montańez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldańa-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  11. High Energy Phenomena in Blazars

    E-Print Network [OSTI]

    Laura Maraschi

    2001-07-30

    Advances in the capabilities of X-ray, gamma-ray and TeV telescopes have brought new information on the physics of relativistic jets, which are responsible for the blazar "phenomenon". In particular the broad band sensitivity of the BeppoSAX satellite, extending up to 100 KeV has allowed unprecedented studies of their hard X-ray spectra. I summarize here some basic results and present a unified view of the blazar population, whereby all sources contain essentially similar jets despite diversities in other properties, like the presence or absence of emission lines in their optical spectra. Blazars with emission lines are of particular interest in that it is possible to estimate both the luminosity of the jet and the luminosity of the accretion disk. Implications for the origin of the power carried by relativistic jets, possibly involving rapidly spinning supermassive black holes are discussed. We suggest that emission line blazars are accreting at near critical rates, while BL lacs, where emission lines are weak or absent are highly subcritical.

  12. Ultra high energy cosmic rays: the highest energy frontier

    E-Print Network [OSTI]

    Neto, Joăo R T de Mello

    2015-01-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to $10^{20}$ eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determ...

  13. Future Accelerator Challenges in Support of High-Energy Physics

    E-Print Network [OSTI]

    Zisman, M.S.

    2008-01-01

    IN SUPPORT OF HIGH- ENERGY PHYSICS* M. S. Zisman ‡ , LBNL,progress in high-energy physics has largely been determinedprogress in high-energy physics has traditionally depended

  14. Strongly Interacting Matter at High Energy Density

    E-Print Network [OSTI]

    Larry McLerran

    2008-12-08

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition . At high baryon density and low temperature, large $N_c$ arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  15. Scientific applications for high-energy lasers

    SciTech Connect (OSTI)

    Lee, R.W. [comp.

    1994-03-01

    The convergence of numerous factors makes the time ripe for the development of a community of researchers to use the high-energy laser for scientific investigations. This document attempts to outline the steps necessary to access high-energy laser systems and create a realistic plan to implement usage. Since an academic/scientific user community does not exist in the USA to any viable extent, we include information on present capabilities at the Nova laser. This will briefly cover laser performance and diagnostics and a sampling of some current experimental projects. Further, to make the future possibilities clearer, we will describe the proposed next- generation high-energy laser, named for its inertial fusion confinement (ICF) goal, the multi-megaJoule, 500-teraWatt National Facility, or NIF.

  16. Why is High Energy Physics Lorentz Invariant?

    E-Print Network [OSTI]

    Afshordi, Niayesh

    2015-01-01

    Despite the tremendous empirical success of equivalence principle, there are several theoretical motivations for existence of a preferred reference frame (or aether) in a consistent theory of quantum gravity. However, if quantum gravity had a preferred reference frame, why would high energy processes enjoy such a high degree of Lorentz symmetry? While this is often considered as an argument against aether, here I provide three independent arguments for why perturbative unitarity (or weak coupling) of the Lorentz-violating effective field theories put stringent constraints on possible observable violations of Lorentz symmetry at high energies. In particular, the interaction with the scalar graviton in a consistent low-energy theory of gravity and a (radiatively and dynamically) stable cosmological framework, leads to these constraints. The violation (quantified by the relative difference in maximum speed of propagation) is limited to $\\lesssim 10^{-10} E({\\rm eV})^{-4}$ (superseding all current empirical bound...

  17. High Energy Density Laboratory Plasmas Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program...

  18. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  19. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  20. Sandia Energy - High-Resolution Computational Algorithms for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Resolution Computational Algorithms for Simulating Offshore Wind Farms Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind High-Resolution...

  1. Highly Energy Efficient Directed Green Liquor Utilization (D...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping This factsheet describes a...

  2. Final Report: High Energy Physics Program (HEP), Physics Department...

    Office of Scientific and Technical Information (OSTI)

    Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University Citation Details In-Document Search Title: Final Report: High Energy Physics Program...

  3. USABC Energy Storage Testing - High Power and PHEV Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

  4. Energy Efficiency Opportunities in Federal High Performance Computing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study...

  5. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    E-Print Network [OSTI]

    Bieniosek, F.M.

    2010-01-01

    for high energy density physics and fusion applications,IFSA 2007, Journal of Physics, Conference Series 112 (2008)high energy density physics experiments F. M. Bieniosek, E.

  6. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

  7. Vehicle Technologies Office Merit Review 2014: High Energy Lithium...

    Office of Environmental Management (EM)

    High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

  8. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with...

  9. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy...

  10. Vehicle Technologies Office Merit Review 2015: High Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Energy Lithium-Sulfur Cathodes Vehicle Technologies Office Merit Review 2015: High Energy Lithium-Sulfur Cathodes Presentation given by Stanford University at 2015 DOE...

  11. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  12. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012...

  13. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

  14. High Energy Neutrino Generator for Neutrino Telescopes

    E-Print Network [OSTI]

    Marek Kowalski; Askhat Gazizov

    2003-12-08

    We present the high energy neutrino Monte Carlo event generator ANIS (All Neutrino Interaction Simulation). The aim of the program is to provide a detailed and flexible neutrino event simulation for high energy neutrino detectors, such as AMANDA and ICECUBE. It generates neutrinos of any flavor according to a specific flux, propagates them through the Earth and in a final step simulates neutrino interactions within a specified volume. All relevant standard model processes are implemented. We discuss strength and limitations of the program, and provide as an example event rates for atmospheric and E^-2 neutrino spectra.

  15. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  16. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutron Computed Tomography developed High energy

  17. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    Designing new electrode materials for energy devices byTo1) - a New Cathode Material for Batteries of High- Energy

  18. Structures in high-energy fusion data

    E-Print Network [OSTI]

    H. Esbensen

    2012-06-05

    Structures observed in heavy-ion fusion cross sections at energies above the Coulomb barrier are interpreted as caused by the penetration of centrifugal barriers that are well-separated in energy. The structures are most pronounced in the fusion of lighter, symmetric systems, where the separation in energy between successive angular momentum barriers is relatively large. It is shown that the structures or peaks can be revealed by plotting the first derivative of the energy weighted cross section. It is also shown how an orbital angular momentum can be assign to the observed peaks by comparing to coupled-channels calculations. This is illustrated by analyzing high-energy fusion data for $^{12}$C+$^{16}$O and $^{16}$O+$^{16}$O, and the possibility of observing similar structures in the fusion of heavier systems is discussed.

  19. High Performance Window Attachments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing ToolSustainableSecurityHigh Energy CostHigh Performance

  20. High-Efficiency Deflection of High-Energy Protons through Axial...

    Office of Scientific and Technical Information (OSTI)

    High-Efficiency Deflection of High-Energy Protons through Axial Channeling in a Bent Crystal Citation Details In-Document Search Title: High-Efficiency Deflection of High-Energy...

  1. High Energy Studies of Pulsar Wind Nebulae

    E-Print Network [OSTI]

    Patrick Slane

    2008-11-12

    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

  2. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect (OSTI)

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  3. Accelerating Polarized Protons to High Energy

    SciTech Connect (OSTI)

    Bai, M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Butler, J.; Cameron, P.; Connolly, R.; Delong, J.; D'Ottavio, T.; Drees, A.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.

    2007-06-13

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  4. High energy hadron-hadron collisions

    SciTech Connect (OSTI)

    Chou, T.T.

    1991-12-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) the e{sup +}e{sup {minus}} annihilation. More recent studies are highlighted below. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which remains to be dipole in form but contains an energy-dependent range parameter. This new expression of the opacity function fits the elastic {bar p}p scattering very well from the ISR to S{bar p}pS energies. Extrapolation of this theory also yielded results in good agreement with the {bar p}p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S{bar p}pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e{sup +}e{sup {minus}} annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. We discovered that the cluster size of emitted hadrons increases steadily with energy and is close to 2 as we predicted.

  5. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    SciTech Connect (OSTI)

    Chakraborty, N.; Pavlidou, V.; Fields, B. D.

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  6. Ultra High Temperature | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPAEnergyUltra High Temperature Jump to:

  7. New Prospects in High Energy Astrophysics

    SciTech Connect (OSTI)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  8. Prospects of High Energy Laboratory Astrophysics

    SciTech Connect (OSTI)

    Ng, J.S.T.; Chen, P.; /SLAC

    2006-09-21

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms.

  9. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  10. High energy physics at UC Riverside

    SciTech Connect (OSTI)

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  11. Why is High Energy Physics Lorentz Invariant?

    E-Print Network [OSTI]

    Niayesh Afshordi

    2015-11-24

    Despite the tremendous empirical success of equivalence principle, there are several theoretical motivations for existence of a preferred reference frame (or aether) in a consistent theory of quantum gravity. However, if quantum gravity had a preferred reference frame, why would high energy processes enjoy such a high degree of Lorentz symmetry? While this is often considered as an argument against aether, here I provide three independent arguments for why perturbative unitarity (or weak coupling) of the Lorentz-violating effective field theories put stringent constraints on possible observable violations of Lorentz symmetry at high energies. In particular, the interaction with the scalar graviton in a consistent low-energy theory of gravity and a (radiatively and dynamically) stable cosmological framework, leads to these constraints. The violation (quantified by the relative difference in maximum speed of propagation) is limited to $\\lesssim 10^{-10} E({\\rm eV})^{-4}$ (superseding all current empirical bounds), or the theory will be strongly coupled beyond meV scale. The latter happens in extended Horava-Lifshitz gravities, as a result of a previously ignored quantum anomaly. Finally, given that all cosmologically viable theories with significant Lorentz violation appear to be strongly coupled beyond meV scale, we conjecture that, similar to color confinement in QCD, or Vainshetin screening for massive gravity, high energy theories (that interact with gravity) are shielded from Lorentz violation (at least, up to the scale where gravity is UV-completed). In contrast, microwave or radio photons, cosmic background neutrinos, or gravitational waves may provide more promising candidates for discovery of violations of Lorentz symmetry.

  12. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  13. High energy astroparticle physics for high school students

    E-Print Network [OSTI]

    Krause, Maria; Classen, Lew; Holler, Markus; Hütten, Moritz; Raab, Susanne; Rautenberg, Julian; Schulz, Anneli

    2015-01-01

    The questions about the origin and type of cosmic particles are not only fascinating for scientists in astrophysics, but also for young enthusiastic high school students. To familiarize them with research in astroparticle physics, the Pierre Auger Collaboration agreed to make 1% of its data publicly available. The Pierre Auger Observatory investigates cosmic rays at the highest energies and consists of more than 1600 water Cherenkov detectors, located near Malarg\\"{u}e, Argentina. With publicly available data from the experiment, students can perform their own hands-on analysis. In the framework of a so-called Astroparticle Masterclass organized alongside the context of the German outreach network Netzwerk Teilchenwelt, students get a valuable insight into cosmic ray physics and scientific research concepts. We present the project and experiences with students.

  14. Energy savings estimates and cost benefit calculations for high...

    Office of Scientific and Technical Information (OSTI)

    Energy savings estimates and cost benefit calculations for high performance relocatable classrooms Citation Details In-Document Search Title: Energy savings estimates and cost...

  15. Research Projects in Renewable Energy for High School Student

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL STUDENTS National Renewable Energy Laboratory Education Programs 1617 Cole Blvd. Golden, CO 80401 Tel: (303) 275-3044 Home page: http:...

  16. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    of common energy-related design elements. • Online databasecost & energy analysis of design elements. High Performancetechnologies and system design elements; the next section

  17. Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy Costs, Climate Challenges with Building Energy Retrofits Gwitchyaa Zhee Gwich'in Tribal Government Counteracts...

  18. HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect (OSTI)

    LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

    2005-05-16

    We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

  19. High Current Energy Recovery Linac at BNL

    SciTech Connect (OSTI)

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  20. Angular correlations and high energy evolution

    SciTech Connect (OSTI)

    Kovner, Alex; Lublinsky, Michael

    2011-11-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  1. High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors

    SciTech Connect (OSTI)

    2010-04-01

    Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

  2. Search for High Energy Density Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartmentHigh Energy Density Cathode Materials

  3. New INL High Energy Battery Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon Pollution | Department ofEnergy 21 DOEINL High

  4. Engineering of High Energy Cathode Material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution2 DOEHigh Energy Cathode Material

  5. Engineering of High Energy Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution2 DOEHigh Energy Cathode Material2

  6. Engineering of High Energy Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution2 DOEHigh Energy Cathode

  7. Engineering of high energy cathode material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution2 DOEHigh Energy Cathodehigh

  8. High Energy Instrumentation Efforts in Turkey

    SciTech Connect (OSTI)

    Kalemci, Emrah

    2011-09-21

    This work summarizes the efforts in Turkey to build a laboratory capable of building and testing high energy astrophysics detectors that work in space. The EC FP6 ASTRONS project contributed strongly to these efforts, and as a result a fully operational laboratory at Sabanci University have been developed. In this laboratory we test and develop Si and CdZnTe based room temperature semiconductor strip detectors and develop detector and electronics system to be used as a payload on potential small Turkish satellites.

  9. High Energy Output Marx Generator Design

    SciTech Connect (OSTI)

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50×500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  10. Channeling and dechanneling at high energy

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.

    1987-09-30

    The possibility of using channeling as a tool for high energy particle physics has now been extensively investigated. Bent crystals have been used as an accelerator extraction element and for particle deflection. Applications as accelerating devices have been discussed but appear remote. The major advantage in using a bent crystal rather than a magnet is the large deflection that can be achieved in a short length. The major disadvantage is the low transmission. A good understanding of dechanneling is important for applications. 43 refs., 1 fig., 3 tabs.

  11. High Energy Scattering in Higher Dimensional Theories

    E-Print Network [OSTI]

    Maharana, Jnanadeva

    2015-01-01

    The high energy behavior of scattering amplitudes in spacetime dimensions, $D>4$, is investigated. The bound on total cross sections, $\\sigma_t \\le Constant~(los s)^{D-2}$, $D\\ge 4$ has been obtained in the past under usual assumptions. I derive new bound on scattering amplitudes in the region $|t|

  12. Emerging Computing Technologies in High Energy Physics

    E-Print Network [OSTI]

    Amir Farbin

    2009-10-19

    While in the early 90s High Energy Physics (HEP) lead the computing industry by establishing the HTTP protocol and the first web-servers, the long time-scale for planning and building modern HEP experiments has resulted in a generally slow adoption of emerging computing technologies which rapidly become commonplace in business and other scientific fields. I will overview some of the fundamental computing problems in HEP computing and then present the current state and future potential of employing new computing technologies in addressing these problems.

  13. Ignite High Tech Startups | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFBIdea One Inc JumpHigh Tech Startups

  14. Wausau High School | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy InformationWausau High School Jump to:

  15. High Impact Technology Catalyst | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy how toEM&High impact

  16. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: Professor -|High energy neutron Computed

  17. Highly Dispersed Metal Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland View school Highland ViewSeptemberHydrogen

  18. Sandia Energy - High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling TechnologyHeavyHigh-Temperature Materials

  19. Experiences with the High Energy Resolution Optics (HERO) update...

    Office of Scientific and Technical Information (OSTI)

    Experiences with the High Energy Resolution Optics (HERO) update on a physical electronics 690 auger system. Citation Details In-Document Search Title: Experiences with the High...

  20. Energy Design Guidelines for High Performance Schools: Hot and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the...

  1. Search for Acoustic Signals from Ultra-High Energy Neutrinos...

    Office of Scientific and Technical Information (OSTI)

    Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 Km3 of Sea Water Citation Details In-Document Search Title: Search for Acoustic Signals from Ultra-High Energy...

  2. New Funding Boosts Carbon Capture, Solar Energy and High Gas...

    Energy Savers [EERE]

    New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11,...

  3. High Energy Resummation in Quantum Chromo–Dynamics 

    E-Print Network [OSTI]

    Marzani, Simone

    2008-01-01

    In this thesis I discuss different aspects of high energy resummation in Quantum Chromo-Dynamics and its relevance for precision physics at hadron colliders. The high energy factorisation theorem is presented and discussed ...

  4. University of Oklahoma - High Energy Physics

    SciTech Connect (OSTI)

    Skubic, Patrick L.

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances, or at the very highest energies. The outcomes of the group's combined experimental and theoretical research will be an improved understanding of nature, at the highest energies reachable, from which applications to technological innovation will surely result, as they always have from such studies in the past.

  5. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  6. Data mining in high energy physics Bertrand Brelier

    E-Print Network [OSTI]

    Prodić, Aleksandar

    Data mining in high energy physics Bertrand Brelier SOSCIP July 3, 2014 Bertrand Brelier (SOSCIP) Data mining in high energy physics July 3, 2014 1 / 8 #12;The Large Hadron Collider (LHC) Bertrand Brelier (SOSCIP) Data mining in high energy physics July 3, 2014 2 / 8 #12;The ATLAS detector Bertrand

  7. Japanese Future Space Programs for High Energy Astrophysics KAZUHISA MITSUDA

    E-Print Network [OSTI]

    Mitsuda, Kazuhisa

    Japanese Future Space Programs for High Energy Astrophysics KAZUHISA MITSUDA Institute of space and astronautical science, Sagamihara 229-8510, Japan ABSTRACT. Japanese future space programs for high energy the Japanese future space high energy astrophysics missions in 2000's and early 2010's. The approved

  8. DIFFRACTION SCATTERING AT HIGH ENERGIES (outlook from 1980s) 1

    E-Print Network [OSTI]

    Titov, Anatoly

    DIFFRACTION SCATTERING AT HIGH ENERGIES (outlook from 1980s) 1 A.A.Vorobyov 1. Introduction In 1960 of the most exciting tasks in the high energy physics. Several theorems have been formulated based on general cross sections in the asymptotic region at high energies. Among the general theorems of the axiomatic

  9. UPR/Mayaguez High Energy Physics

    SciTech Connect (OSTI)

    Mendez, Hector

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1)#3; ?0b branching fraction, (2) B meson mass, and (3) hyperon ?-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of Puerto Rico-Rio Piedras (Carlos Malca). The students H. Moreno and C. Malca has been directly supervised by Dr. Mendez and S. Santiesteban supervised by Dr. Ramirez. During the last 13 years, our group have graduated 23 MS students on experimental High Energy Physics data analysis and applied hardware techniques. Most of the students have been supported by DOE grants, included this grant. Since 2001, Dr. Mendez have directly supervised eleven students, Dr. Ramirez three students and the former PI (Dr. Lopez) nine students. These theses work are fully documented in the group web page (http://charma.uprm.edu). The High Energy Physics group at Mayaguez is small and presently consists of three Physics faculty members, the Senior Investigators Dr. Hector Mendez (Professor) and Dr. Juan Eduardo Ramirez (Professor), and Dr. Sudhir Malik who was just hired in July 2014. Dr. Ramirez is in charge of the UPRM Tier-3 computing and will be building the network bandwidth infrastructure for the campus, while Dr. Mendez will continues his effort in finishing the heavy quark physics data analysis and moving to work on SUSY analysis for the 2015 data. Our last grant application in 2012 was awarded only for 2013-2014. As a result our postdoc position was lost last month of March. Since then, we have hired Dr. Malik as a new faculty in order to reinforce the group and to continue our efforts with the CMS experiment. Our plan is to hire another junior faculty in the next two years to strengthen the HEP group even further. Dr. Mendez continues with QuarkNet activities involving an ever larger group of high school physics teachers from all around Puerto Rico.

  10. New High-Energy Nanofiber Anode Materials

    SciTech Connect (OSTI)

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 ?m or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  11. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics

    E-Print Network [OSTI]

    Pilawa-Podgurski, R. C. N.

    The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system ...

  12. Low energy high pressure miniature screw valve

    DOE Patents [OSTI]

    Fischer, Gary J. (Sandia Park, NM); Spletzer, Barry L. (Albuquerque, NM)

    2006-12-12

    A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.

  13. Microfluidic Scintillation Detectors for High Energy Physics

    E-Print Network [OSTI]

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  14. Focusing monochromators for high energy synchrotron radiation

    SciTech Connect (OSTI)

    Suortti, P. )

    1992-01-01

    Bent crystals are introduced as monochromators for high energy synchrotron radiation. The reflectivity of the crystal can be calculated reliably from a model where the bent crystal is approximated by a stack of lamellas, which have a gradually changing angle of reflection. The reflectivity curves of a 4 mm thick, asymmetrically cut ({chi}=9.5{degree}) Si(220) crystal are measured using 150 keV radiation and varying the bending radius from 25 to 140 m. The width of the reflectivity curve is up to 50 times the Darwin width of the reflection, and the maximum reflectivity exceeds 80%. The crystal is used as a monochromator in Compton scattering measurements. The source is on the focusing circle, so that the resolution is limited essentially by the detector/analyzer. A wide bandpass, sharply focused beam is attained when the source is outside the focusing circle in the transmission geometry. In a test experiment. 10{sup 12} photons on an area of 2 mm{sup 2} was observed. The energy band was about 4 keV centered at 40 keV. A powder diffraction pattern of a few reflections of interest was recorded by an intrinsic Ge detector, and this demonstrated that a structural transition can be followed at intervals of a few milliseconds.

  15. Galactic discrete sources of high energy neutrinos

    E-Print Network [OSTI]

    W. Bednarek; G. F. Burgio; T. Montaruli

    2004-04-27

    We review recently developed models of galactic discrete sources of high energy neutrinos. Some of them are based on a simple rescaling of the TeV $\\gamma$-ray fluxes from recently detected galactic sources, such as, shell-type supernova remnants or pulsar wind nebulae. Others present detailed and originally performed modeling of processes occurring close to compact objects, i.e. neutron stars and low mass black holes, which are supposed to accelerate hadrons close to dense matter and radiation fields. Most of the models considered in this review optimistically assume that the energy content in relativistic hadrons is equal to a significant part of the maximum observable power output in specific sources, i.e. typically $\\sim 10%$. This may give a large overestimation of the neutrino fluxes. This is the case of models which postulate neutrino production in hadron-photon collisions already at the acceleration place, due to the likely $e^\\pm$ pair plasma domination. Models postulating neutrino production in hadron-hadron collisions avoid such problems and therefore seem to be more promising. The neutrino telescopes currently taking data have not detected any excess from discrete sources yet, although some models could already be constrained by the limits they are providing.

  16. DOE/NSF HIGH-ENERGY PHYSICS ADVISORY PANEL

    E-Print Network [OSTI]

    will emerge, or to separate basic science from technology - advances in one are dependent on advancesDOE/NSF HIGH-ENERGY PHYSICS ADVISORY PANEL SUBPANEL ON LONG RANGE PLANNING FOR U.S. HIGH-ENERGY PHYSICS January 2002 Department of Energy National Science Foundation #12;COVER LETTER Through the spring

  17. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission

    E-Print Network [OSTI]

    California at Berkeley, University of

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission R. P. fla B. Dennis, G mission is to investigate the physics of particle acceleration and energy release in solar flares, through-ray/gamma-ray spectroscopy 1. INTRODUCTION The primary scientific objective of the Reuven Ramaty High Energy Solar

  18. Oklahoma Center for High Energy Physics (OCHEP)

    SciTech Connect (OSTI)

    S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma�¢����s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.

  19. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  20. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Guesto-Barnak, D.

    1992-12-22

    Disclosed is a low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K[sub 90 C] >0.85 W/mK, a low coefficient of thermal expansion, [alpha][sub 20-300 C] <80[times]10[sup [minus]7]/C, low emission cross section, [sigma]<2.5[times]10[sup [minus]20] cm[sup 2], and a high fluorescence lifetime, [tau]>325 [mu]secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): (Mole %) P[sub 2]O[sub 5], (52-72); Al[sub 2]O[sub 3], (0-<20); B[sub 2]O[sub 3], (>0-25); ZnO, (0-31); Li[sub 2]O, (0-5); K[sub 2]O, (0-5); Na[sub 2]O, (0-5); Cs[sub 2]O, (0-5); Rb[sub 2]O, (0-5); MgO, (>0-<30); CaO, (0-20); BaO, (0-20); SrO, (0-<20); Sb[sub 2]O[sub 3], (0-<1); As[sub 2]O[sub 3], (0-<1); Nb[sub 2]O[sub 5], (0-<1); Ln[sub 2]O[sub 3], (up to 6.5); PbO, (0-<5); and SiO[sub 2], (0-3); wherein Ln[sub 2]O[sub 3] is the sum of lanthanide oxides; [Sigma]R[sub 2]O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al[sub 2]O[sub 3] and MgO is <24 unless [Sigma]R[sub 2]O is 0, then the sum of Al[sub 2]O[sub 3] and MgO is <42; and the ratio of MgO to B[sub 2]O[sub 3] is 0.48-4.20. 7 figs.

  1. ISSUANCE 2015-12-02: Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

  2. Enabling high-temperature nanophotonics for energy applications

    E-Print Network [OSTI]

    Yeng, YiXiang

    The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective ...

  3. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    Achieving sustainability goals may require High Performanceperformance). Coordination and potentially consolidation of energy and sustainabilityPerformance Healthcare Buildings: A Roadmap to Improved Energy Efficiency 11-Sept-2009 o Link government reimbursements to efficiency and sustainability

  4. Basic Research Needs for High Energy Density Laboratory Physics

    National Nuclear Security Administration (NNSA)

    in ICF target physics is the demonstration of high-energy gain. For a viable fusion energy power plant, the product of the driver efficiency and the target gain 8 should exceed...

  5. City of High Point Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of High Point offers the Hometown Green Program to help customers reduce energy use. Under this program, rebates are available for newly constructed energy efficient homes, heat pumps, and...

  6. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    SciTech Connect (OSTI)

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  7. Observable to explore high density behaviour of symmetry energy

    E-Print Network [OSTI]

    Aman D. Sood

    2011-09-28

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  8. Electroweak Radiative Corrections at High Energies

    E-Print Network [OSTI]

    Ansgar Denner

    2001-10-11

    For energies far above the electroweak scale, large electroweak radiative corrections occur that grow logarithmically with energy and can easily reach several tens of per cent in the TeV range. Recent work on these corrections is reviewed.

  9. High power and high energy electrodes using carbon nanotubes

    DOE Patents [OSTI]

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  10. Energy Savings Potential and Opportunities for High-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    sponsored this assignment and provided comments on draft versions of the report. iii Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential...

  11. QCD and High Energy Interactions: Moriond 2014 Theory Summary

    E-Print Network [OSTI]

    Thomas Gehrmann

    2014-06-20

    This article summarizes new theoretical developments, ideas and results that were presented at the 2014 Moriond "QCD and High Energy Interactions".

  12. Azimuthal anisotropy distributions in high-energy collisions...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Azimuthal anisotropy distributions in high-energy collisions Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the...

  13. Energy-Efficient Melting and Direct Delivery of High Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Quality Molten Aluminum itmdelivery.pdf More Documents & Publications ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the...

  14. High energy eigenfunctions of one-dimensional Schrödinger ...

    E-Print Network [OSTI]

    2015-11-25

    High energy eigenfunctions of one-dimensional. Schrödinger operators with polynomial. potentials. A. Eremenko?, A. Gabrielov and B. Shapiro. October 5, 2007.

  15. The Effective Action for QCD at High Energies

    E-Print Network [OSTI]

    Lech Szymanowski

    1994-11-16

    I discuss the construction of the effective action for QCD suitable for the description of high-energy and small momentum transfer diffractive processes.

  16. HEPTech funding opportunites HEPTech -High Energy Physics Technology Transfer Network

    E-Print Network [OSTI]

    Roma "La Sapienza", Universitŕ di

    HEPTech funding opportunites 1 HEPTech - High Energy Physics Technology Transfer Network May 2015 Prepared by: Jozef Stefan Institute, CTT - Center for Technology Transfer and Innovation, Slovenia dr

  17. High Energy Materials for PHEVs: Cathodes (New Project) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for PHEVs: Cathodes (New Project) High Energy Materials for PHEVs: Cathodes (New Project) Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit...

  18. Why Onion-Like Carbons Make High-Energy Supercapacitors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Make High-Energy Supercapacitors Simulations explain experimental results for electrical storage devices June 1, 2012 JiangCummingsCoverLarge.gif Capacitance and geometry...

  19. Energy Efficiency Opportunities in Federal High Performance Computing...

    Broader source: Energy.gov (indexed) [DOE]

    Case study describes an outline of energy efficiency opportunities in federal high-performance computing data centers. dchpcc.pdf More Documents & Publications Case Study:...

  20. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  1. Enabling high-temperature nanophotonics for energy applications

    E-Print Network [OSTI]

    suppressed by 50% at 75° compared to nor- mal incidence. Finally, a precise high-temperature measurement applications, especially high-efficiency energy conversion systems encompassing hydrocarbon and radio- isotope

  2. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

    1996-06-11

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  3. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T. (Clarks Summit, PA); Payne, Stephen A. (Castro Valley, CA); Hayden, Joseph S. (Clarks Summit, PA); Campbell, John H. (Livermore, CA); Aston, Mary Kay (Moscow, PA); Elder, Melanie L. (Dublin, CA)

    1996-01-01

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  4. High-Order Energy Stable WENO Schemes

    E-Print Network [OSTI]

    A third-order Energy Stable Weighted Essentially Non--Oscillatory (ESWENO) finite difference scheme developed by the authors of the paper [N. K. Yamaleev ...

  5. Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  6. Comment on the $?^+$-production at high energy

    E-Print Network [OSTI]

    A. I. Titov; A. Hosaka; S. Date'; Y. Ohashi

    2004-09-15

    We show that the cross sections of the $\\Theta^+$-pentaquark production in different processes decrease with energy faster than the cross sections of production of the conventional three-quark hyperons. Therefore, the threshold region with the initial energy of a few GeV or less seemsto be more favorable for the production and experimental study of $\\Theta^+$-pentaquark.

  7. Muon Collider Physics at Very High Energies

    E-Print Network [OSTI]

    M. S. Berger

    2000-01-03

    Muon colliders might greatly extend the energy frontier of collider physics. One can contemplate circular colliders with center-of-mass energies in excess of 10 TeV. Some physics issues that might be relevant at such a machine are discussed.

  8. Service Members Aim High-- for Energy Savings

    Broader source: Energy.gov [DOE]

    Service members are helping reduce our dependency on oil, and saving taxpayers' money, with their energy-saving efforts. Operation Change Out has cut $26.3 million in total energy costs and helped prevent more than 396 lbs. of carbon dioxide.

  9. Energy Measurement and Strategy for a Trigger of Ultra High Energy Cosmic

    E-Print Network [OSTI]

    Erdmann, Martin

    Energy Measurement and Strategy for a Trigger of Ultra High Energy Cosmic Rays Measured with Radio Ray induced Air Showers 3 2.1 Physics of Ultra High Energy Cosmic Rays . . . . . . . . . . . . . . . 3 2.1.1 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Composition

  10. LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS

    E-Print Network [OSTI]

    McDonald, Kirk

    LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS G. I. Silvestrov, Budker Institute for Nuclear Physics Novosibirsk, August 1998. #12;1 LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS target of liquid metal. The technical solution is producing the target in the form of flat jet flowing

  11. HIGH-ENERGY PHYSICS LABORATORIES AND AGENCIES Particle Data Group

    E-Print Network [OSTI]

    HIGH-ENERGY PHYSICS LABORATORIES AND AGENCIES Particle Data Group Lawrence Berkeley National, write to: List of Addresses of High-Energy Physics Institutes Scientific Information Service CERN Greenwich (Universal) time. Cities with negative numbers lie to the east of Greenwich, England; cities

  12. Participation in High Energy Physics at the University of Chicago

    SciTech Connect (OSTI)

    Martinec, Emil J. [University of Chicago

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  13. Precise energies of highly excited hydrogen and deuterium

    E-Print Network [OSTI]

    Kotochigova, Svetlana

    1373 Precise energies of highly excited hydrogen and deuterium Svetlana Kotochigova, Peter J. Mohr, and Barry N. Taylor Abstract: The energy levels of hydrogen and deuterium atoms are calculated to provide RĂ©daction] 1. Introduction In this article, we describe our calculation of the energy levels of hydrogen

  14. High energy cosmic rays, gamma rays and neutrinos from AGN

    E-Print Network [OSTI]

    Yukio Tomozawa

    2008-02-03

    The author reviews a model for the emission of high energy cosmic rays, gamma-rays and neutrinos from AGN (Active Galactic Nuclei) that he has proposed since 1985. Further discussion of the knee energy phenomenon of the cosmic ray energy spectrum requires the existence of a heavy particle with mass in the knee energy range. A possible method of detecting such a particle in the Pierre Auger Project is suggested. Also presented is a relation between the spectra of neutrinos and gamma-rays emitted from AGN. This relation can be tested by high energy neutrino detectors such as ICECUBE, the Mediterranean Sea Detector and possibly by the Pierre Auger Project.

  15. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  16. AGNs and microquasars as high energy gamma-ray sources

    E-Print Network [OSTI]

    Josep M. Paredes

    2004-12-02

    The extragalactic analogs of the microquasars, the quasars, are strong gamma-ray emitters at GeV energies. It is expected that microquasars are also gamma-ray sources, because of the analogy with quasars and because theoretical models predict the high-energy emission. There are two microquasars that appear as the possible counterparts for two unidentified high-energy gamma-ray sources.

  17. Sandia Energy - High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of mirrors, as seen in the image of this solar concentrator facility. Energy security and climate change are two of the most daunting issues facing humanity today. To address these...

  18. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle caylor.pdf More Documents & Publications Nanostructured High-Temperature Bulk...

  19. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  20. High Energy Neutrino Astronomy - the cosmic-ray connection

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2000-11-28

    Several of the models for origin of the highest energy cosmic rays also predict significant neutrino fluxes. A common factor of the models is that they must provide sufficient power to supply the observed energy in the extragalactic component of the cosmic radiation. The assumption that a comparable amount of energy goes into high-energy neutrinos allows a model-independent estimate of the neutrino signal that may be expected.

  1. High Energy Two-Body Deuteron Photodisintegration

    SciTech Connect (OSTI)

    Terburg, Bart

    1999-07-31

    The differential cross section for two­body deuteron photodisintegration was measured at photon energies between 0.8 and 4.0 GeV and center­of­mass angles theta_cm =37deg, 53deg, 70deg, and 90deg as part of CEBAF experiment E89­012. Constituent counting rules predict a scaling of this cross section at asymptotic energies. In previous experiments this scaling has surprisingly been observed at energies between 1.4 and 2.8 GeV at 90deg. The results from this experiment are in reasonable agreement with previous measurements at lower energies. The data at 70deg and 90deg show a constituent counting rule behavior up to 4.0 GeV photon energy. The 37deg and 53deg data do not agree with the constituent counting rule prediction. The new data are compared with a variety of theoretical models inspired by quantum chromodynamics (QCD) and traditional hadronic nuclear physics.

  2. Energy spectrum of ultra high energy cosmic rays

    E-Print Network [OSTI]

    Ioana C. Maris; for the Pierre Auger Collaboration

    2008-08-12

    The construction of the southern site of the Pierre Auger Observatory is almost completed. Three independent measurements of the flux of the cosmic rays with energies larger than 1 EeV have been performed during the construction phase. The surface detector data collected until August 2007 have been used to establish a flux suppression at the highest energies with a 6 sigma significance. The observations of cosmic rays by the fluorescence detector allowed the extension of the energy spectrum to lower energies, where the efficiency of the surface detector is less than 100% and a change in the spectral index is expected.

  3. High Penetration Solar Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24.7 million to fund six projects to increase the growth of grid-tied solar photovoltaic systems. Part of the SunShot Systems Integration efforts, the goal of the High...

  4. High energy octupole resonance in Sn-116 

    E-Print Network [OSTI]

    Clark, HL; Youngblood, David H.; Lui, YW.

    1996-01-01

    The region of excitation energy from 7 less than or equal to E(x) less than or equal to 38 MeV in Sn-116 was studied with inelastic scattering of 240 MeV alpha particles. Parameters obtained for the isoscalar giant monopole resonance...

  5. Studies of High Energy Particle Astrophysics

    SciTech Connect (OSTI)

    Nitz, David F; Fick, Brian E

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  6. High Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:HiddenTemperature Cements

  7. High Temperature PEM - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptionsthroughputEnergySalaryInnovation

  8. High-energy sub-cycle optical waveform synthesizer

    E-Print Network [OSTI]

    Huang, Shu-Wei, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Over the last decade, the control of atomic-scale electronic motion by optical fields strong enough to mitigate the atomic Coulomb potential, has broken tremendous new ground with the advent of phase controlled high-energy ...

  9. Energy Saving Through High Frequency Electric Resistance Welding 

    E-Print Network [OSTI]

    Udall, H. N.

    1983-01-01

    compared to most other methods. This has led to lower manufacturing costs through higher productivity. In addition to the higher productivity, however, the High-Frequency processes typically provide considerable savings of energy. In these days...

  10. Renewable Energy Executive Summary High-Yield Scenario

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency & Renewable Energy Executive Summary High-Yield Scenario Workshop Series Report INLEXT-10-18930 December 2009 The 2005 Billion-Ton Study a (BTS) esti- mates the amount...

  11. Large Scale Computing and Storage Requirements for High Energy Physics

    E-Print Network [OSTI]

    Gerber, Richard A.

    2011-01-01

    Journal of Computational Physics, Large Scale Computing andRequirements for High Energy Physics [3] A. S. Almgren, J.Journal of Computational Physics, 87:171–200, 1990. [7] G.

  12. On the use of Satellite Television in High Energy Physics

    E-Print Network [OSTI]

    Lucas Taylor; David O. Williams

    1998-10-24

    This paper assesses the feasibility of exploiting commercial satellite television technologies to broadcast video signals and data from major High Energy Physics facilities to collaborating institutes throughout the world.

  13. DOE Zero Energy Ready Home Case Study: High Performance Homes...

    Energy Savers [EERE]

    R-15 unfaced batt on walls, sealed attic with R-49 ocsf under roof deck; ground source heat pump COP 4.4. DOE Zero Energy Ready Home Case Study: High Performance Homes,...

  14. Probing high-energy spin fluctuations in iron pnictide superconductors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing high-energy spin fluctuations in iron pnictide superconductors and the metal-insulator transition in rare-earth nickelates by soft X-ray RIXS Wednesday, November 18, 2015 -...

  15. Search for anomalous production of events with a high energy...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Search for anomalous production of events with a high energy lepton and photon at the Tevatron Citation Details In-Document Search Title: Search for anomalous...

  16. High Temperature Cements | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:HiddenTemperature Cements Jump to:

  17. Meitag High Tech Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop,SmwMeister Consultants Group Jump

  18. High Risk Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy howBuilding America

  19. Bellevue High School | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcher Homes Jump to:OASBell

  20. High Energy Physics Division, ANL Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptionsthroughput spectrometerEnergy Physics Division,

  1. High Temperature Interfacial Superconductivity - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptionsthroughputEnergySalaryInnovation Portal

  2. Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth

    E-Print Network [OSTI]

    Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth Max Tabak ignition robust burn Supernova core MFE ICF ignition requires large energy and power densities Log10 Achieving the necessary multiplication of power,energy and mass densities requires a well controlled

  3. Engineered High Energy Crop (EHEC) Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution2 DOE Hydrogen and Fuel Cells1

  4. High Temperature Superconductivity Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGHof

  5. ANIS: High Energy Neutrino Generator for Neutrino Telescopes

    E-Print Network [OSTI]

    Askhat Gazizov; Marek P. Kowalski

    2004-06-19

    We present the high-energy neutrino Monte Carlo event generator ANIS (All Neutrino Interaction Simulation). The program provides a detailed and flexible neutrino event simulation for high-energy neutrino detectors, such as AMANDA, ANTARES or ICECUBE. It generates neutrinos of any flavor according to a specified flux and propagates them through the Earth. In a final step neutrino interactions are simulated within a specified volume. All relevant standard model processes are implemented. We discuss strengths and limitations of the program.

  6. High energy photon production in strong colliding laser beams

    E-Print Network [OSTI]

    Michael Kuchiev; Julian Ingham

    2015-07-21

    The collision of two intense, low-frequency laser beams is considered. The $e^-e^+$ pairs created in this field are shown to exhibit recollisions, which take place at high energy accumulated due to the wiggling of fermions. The resulting $e^-e^+$ annihilation produces high energy photons, or heavy particles. The coherent nature of the laser field provides strong enhancement of the probability of these events. Analytical and numerical results are outlined.

  7. High energy, low frequency, ultrasonic transducer

    DOE Patents [OSTI]

    Brown, Albert E. (Hayward, CA)

    2000-01-01

    A wide bandwidth, ultrasonic transducer to generate nondispersive, extensional, pulsed acoustic pressure waves into concrete reinforced rods and tendons. The wave propagation distance is limited to double the length of the rod. The transducer acoustic impedance is matched to the rod impedance for maximum transfer of acoustic energy. The efficiency of the transducer is approximately 60 percent, depending upon the type of active elements used in the transducer. The transducer input energy is, for example, approximately 1 mJ. Ultrasonic reflections will occur at points along the rod where there are changes of one percent of a wavelength in the rod diameter. A reduction in the rod diameter will reflect a phase reversed echo, as compared with the reflection from an incremental increase in diameter. Echo signal processing of the stored waveform permits a reconstruction of those echoes into an image of the rod. The ultrasonic transducer has use in the acoustic inspection of long (40+foot) architectural reinforcements and structural supporting members, such as in bridges and dams.

  8. Co-axial, high energy gamma generator

    DOE Patents [OSTI]

    Reijonen, Jani Petteri (Princeton, NJ); Gicquel, Frederic (Pennington, NJ)

    2011-08-16

    A gamma ray generator includes an ion source in a first chamber. A second chamber is configured co-axially around the first chamber at a lower second pressure. Co-axially arranged plasma apertures separate the two chambers and provide for restricted passage of ions and gas from the first to the second chamber. The second chamber is formed by a puller electrode having at least one long channel aperture to draw ions from the first chamber when the puller electrode is subject to an appropriate applied potential. A plurality of electrodes rings in the third chamber in third pressure co-axially surround the puller electrode and have at least one channel corresponding to the at least one puller electrode aperture and plasma aperture. The electrode rings increase the energy of the ions to a selected energy in stages in passing between successive pairs of the electrodes by application of an accelerating voltage to the successive pairs of accelerator electrodes. A target disposed co-axially around the plurality of electrodes receives the beam of accelerated ions, producing gamma rays.

  9. High renewable energy penetrations in the Australian National Electricity Market

    E-Print Network [OSTI]

    New South Wales, University of

    Distribution Sector: - DNSPS Electricity flow Multi-region five-minute energy & FCAS markets Intentions, offers by AEMO ­ A multi-region gross wholesale electricity spot market with dynamic intra-regional loss factorsHigh renewable energy penetrations in the Australian National Electricity Market: key challenges

  10. Hindawi Publishing Corporation Advances in High Energy Physics

    E-Print Network [OSTI]

    Mcdonough, William F.

    Hindawi Publishing Corporation Advances in High Energy Physics Volume 2012, Article ID 235686, 34 under the Creative Commons Attribution License, which permits unrestricted use, distribution . The initial hot state 4.5 billion years ago was a result of gravitational energy of accretion and global

  11. High-Damping Energy-Harvesting Electrostatic CMOS Charger

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    High-Damping Energy-Harvesting Electrostatic CMOS Charger Karl Peterson and Gabriel A. Rincón increases this force, which is what the energy-harvesting 0.35-µm CMOS charger proposed achieves with a 10-n in the system) a net gain of 8.8 nJ/Cycle at 16 V. I. POWERING WIRELESS MICROSENSORS Wireless microsensors add

  12. Free energy of Lorentz-violating QED at high temperature

    E-Print Network [OSTI]

    M. Gomes; T. Mariz; J. R. Nascimento; A. Yu. Petrov; A. F. Santos; A. J. da Silva

    2010-02-25

    In this paper we study the one- and two-loop contribution to the free energy in QED with the Lorentz symmetry breaking introduced via constant CPT-even Lorentz-breaking parameters at the high temperature limit. We find the impact of the Lorentz-violating term for the free energy and carry out a numerical estimation for the Lorentz-breaking parameter.

  13. High Energy Cosmic Rays from Local GRBs Armen Atoyan1

    E-Print Network [OSTI]

    High Energy Cosmic Rays from Local GRBs Armen Atoyan1 and Charles D. Dermer2 1 CRM, Universit´e de Montr´eal, Montr´eal, Canada H3C 3J7; atoyan@crm.umontreal.ca 2 NRL, Code 7653, Washington, DC 20375 with energies E between 0.1 - 1 PeV and the energy of the second knee at E2 3 � 1017 eV as originating from

  14. FACT - Monitoring Blazars at Very High Energies

    E-Print Network [OSTI]

    Dorner, D; Bergmann, M; Biland, A; Balbo, M; Bretz, T; Buss, J; Einecke, S; Freiwald, J; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Meier, K; Mueller, S; Neise, D; Neronov, A; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Steinbring, T; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2015-01-01

    The First G-APD Cherenkov Telescope (FACT) was built on the Canary Island of La Palma in October 2011 as a proof of principle for silicon based photosensors in Cherenkov Astronomy. The scientific goal of the project is to study the variability of active galatic nuclei (AGN) at TeV energies. Observing a small sample of TeV blazars whenever possible, an unbiased data sample is collected. This allows to study the variability of the selected objects on timescales from hours to years. Results from the first three years of monitoring will be presented. To provide quick flare alerts to the community and trigger multi-wavelength observations, a quick look analysis has been installed on-site providing results publicly online within the same night. In summer 2014, several flare alerts were issued. Results of the quick look analysis are summarized.

  15. CONTINUED HIGH PERFORMANCE ENERGY MANAGEMENT COMPANY Fitesa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-N Goods PO 1 ofHIGH PERFORMANCE

  16. MHL High Speed Cavitation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKembla <CanalSmarTurbine <hyTideHigh

  17. High Impact Technology Catalyst | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996 EMBG-PLN-003611,DepartmentMaterial |SecurityHigh Impact Technology

  18. High Lonesome Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHess Retail NaturalAreasHigh

  19. High Performance Buildings Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHess Retail NaturalAreasHighMesa

  20. High Plains Tech Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHess Retail NaturalAreasHighMesaTech

  1. High-Powered Lasers for Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumps An error occurred. Try|High-Powered Lasers

  2. High Impact Technology Hub | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian Li,1and

  3. High Performance Valve Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High PerformancePerformance Valve

  4. High Temperature Thermoelectric Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGHofWaste Heat

  5. Energy Conservation and Pomeron Loops in High Energy Evolution

    E-Print Network [OSTI]

    Emil Avsar

    2006-10-31

    We present a formalism which modifies the Mueller Dipole Model such that it incorporates energy-momentum conservation and also important colour suppressed effects. We implement our formalism in a Monte Carlo simulation and compare the results to inclusive data from HERA and the Tevatron, where we see that there is a good agreement between the data and our model.

  6. High energy femtosecond fiber laser at 1018 nm and high power Cherenkov radiation generation

    E-Print Network [OSTI]

    Yang, Hongyu, S.M. Massachusetts Institute of Technology

    2014-01-01

    Two novel laser systems for ultrafast applications have been designed and built. For the seeding of a high energy cryogenically cooled Yb:YLF laser, a novel 1018 nm fiber laser system is demonstrated. It produces >35 nJ ...

  7. Sgoldstinos: Primaries of Ultra-High Energy Cosmic Rays

    E-Print Network [OSTI]

    D. S. Gorbunov

    2002-05-30

    I describe supersymmetric extensions of the Standard Model with light sgoldstinos and discuss the explanation of Ultra High Energy Cosmic Rays above GZK cutoff in these models. Also I briefly discuss the possibility to solve other cosmological and astrophysical puzzles, such as gamma-ray bursts and dimming of high-redshift supernovae, within the models with light sgoldstinos.

  8. Use of Oriented Crystals at High-Energy Accelerators

    SciTech Connect (OSTI)

    Kotov, V.I.; Afonin, A.G.; Baranov, V.T.; Biryukov, V.M.; Ivanov, Yu.M.; Kardash, A.A.; Maisheev, V.A.; Terekhov, V.I.; Troyanov, E.F.; Fedotov, Yu.S.; Chepegin, V.N.; Chesnokov, Yu.A.

    2005-06-01

    The application of bent crystals for extracting accelerated beams from high-energy accelerators is reviewed. The results of realizing highly efficient extraction of protons from the IHEP accelerator are presented. Proposals on using oriented crystals for designing efficient positron sources at linear colliders and on developing new undulators are discussed.

  9. High-Performance Energy Applications and Systems

    SciTech Connect (OSTI)

    Miller, Barton

    2014-05-19

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  10. High Energy Vision: Processing X-rays

    E-Print Network [OSTI]

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  11. Double parton scattering at high energies

    E-Print Network [OSTI]

    Antoni Szczurek

    2015-04-24

    We discuss a few examples of rich newly developing field of double parton scattering. We start our presentation from production of two pairs of charm quark-antiquark and argue that it is the golden reaction to study the double parton scattering effects. In addition to the DPS we consider briefly also mechanism of single parton scattering and show that it gives much smaller contribution to the $c \\bar c c \\bar c$ final state. Next we discuss a perturbative parton-splitting mechanism which should be included in addition to the conventional DPS mechanism. We show that the presence of this mechanism unavoidably leads to collision energy and other kinematical variables dependence of so-called $\\sigma_{eff}$ parameter being extracted from different experiments. Next we briefly discuss production of four jets. We concentrate on estimation of the contribution of DPS for jets remote in rapidity. Understanding of this contribution is very important in the context of searches for BFKL effects known under the the name Mueller-Navelet jets. We discuss the situation in a more general context. Finally we briefly mention about DPS effects in production of $W^+ W^-$. Outlook closes the presentation.

  12. Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    to be adopted in P-HEVs and EVs. In this talk, we report several high-energy system s that offer the potential #12;2 2005 Global Human2005 Global Human--Activity Energy FlowsActivity Energy Flows Hydro 10 Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 12

  13. Frontiers for Discovery in High Energy Density Physics

    SciTech Connect (OSTI)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  14. New High-Energy Nanofiber Anode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon Pollution | Department ofEnergy 21 DOE Hydrogen

  15. New High-Energy Nanofiber Anode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon Pollution | Department ofEnergy 21 DOE Hydrogen0

  16. Development of High Energy Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy 1 DOEEnergy

  17. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  18. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics

    E-Print Network [OSTI]

    ). TPVs present an extremely appealing approach for small-scale power sources due to the combination-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive- thermophotovoltaic (TPV) generator. The approach is predicted to be capable of up to 32% efficient heat

  19. High Falls, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:Hidden Hills,Implications ForFalls,

  20. High Point, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:Hidden Hills,ImplicationsFlorida:

  1. High West Energy, Inc (Nebraska) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:HiddenTemperature CementsNebraska)

  2. Watauga High School Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastes Hazardous or

  3. USDA High Energy Cost Grant Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed| DepartmentOFAdvancedGridThis16, 2015, the

  4. VIBROACOUSTICS AT HIGH FREQUENCIES Coupling of Statistical Energy Analysis and numerical methods

    E-Print Network [OSTI]

    Huerta, Antonio

    VIBROACOUSTICS AT HIGH FREQUENCIES Coupling of Statistical Energy Analysis and numerical methods at high frequencies. Instead, a statistical approach (Statistical Energy Analysis) can be used: Deterministic methods: expensive and too detailed at high frequencies. Statistical methods: require energy

  5. Partonic EoS in High-Energy Nuclear Collisions at RHIC

    E-Print Network [OSTI]

    Xu, Nu

    2006-01-01

    Partonic EoS in High-Energy Nuclear Collisions at RHIC Nu Xuproperties. In high-energy nuclear collisions, the term ?owthe early stage of high-energy nuclear collision, both the

  6. Hindered energy cascade in highly helical isotropic turbulence

    E-Print Network [OSTI]

    Stepanov, Rodion; Frick, Peter; Shestakov, Alexander

    2015-01-01

    The conventional approach to the turbulent energy cascade, based on Richardson-Kolmogorov phenomenology, ignores the topology of emerging vortices, which is related to the helicity of the turbulent flow. It is generally believed that helicity can play a significant role in turbulent systems, e.g., supporting the generation of large-scale magnetic fields, but its impact on the energy cascade to small scales has never been observed. We suggest for the first time a generalized phenomenology for isotropic turbulence with an arbitrary spectral distribution of the helicity. We discuss various scenarios of direct turbulent cascades with new helicity effect, which can be interpreted as a hindering of the spectral energy transfer. Therefore the energy is accumulated and redistributed so that the efficiency of non-linear interactions will be sufficient to provide a constant energy flux. We confirm our phenomenology by high Reynolds number numerical simulations based on a shell model of helical turbulence. The energy in...

  7. Search for high-energy neutrinos from dust obscured Blazars

    E-Print Network [OSTI]

    Maggi, G; Correa, P; Vries, K D; Gentile, G; Scholten, O; van Eijndhoven, N

    2015-01-01

    The recent discovery of high-energy cosmic neutrinos by the IceCube neutrino observatory opens up a new field in physics, the field of neutrino astronomy. Using the IceCube neutrino detector we plan to search for high-energy neutrinos emitted from Active Galactic Nuclei (AGN), since AGN are believed to be one of the most promising sources of the most energetic cosmic rays and hence of high-energy neutrinos. We discuss a specific type of AGN which we plan to investigate in more detail with data obtained by the IceCube observatory. The main properties of the AGN category in which we are interested are given by a high-energy jet which is pointing in our line of sight defining a class of AGN, called Blazars, and in particular the ones that are obscured by surrounding dust. The jet-matter interaction is expected to give an increased high-energy neutrino production. The properties of this specific type of AGN are expected to give very distinct features in the electromagnetic spectrum, which are discussed in detail.

  8. The Gamma Ray Burst Rate at High Photon Energies

    E-Print Network [OSTI]

    Karl Mannheim; Dieter Hartmann; Burkhardt Funk

    1996-05-17

    Some gamma-ray burst (GRB) spectra exhibit high energy tails with the highest photon energy detected at 18 GeV. The spectral slope of the high-energy tails is sufficiently flat in nu F_nu to consider the possibility of their detection at still higher energies. We calculate how many bursts can reasonably be expected above a given energy threshold for a cosmological distribution of bursts satisfying the observed apparent brightness distribution. The crucial point is that the gamma-ray absorption by pair production in the intergalactic diffuse radiation field eliminates bursts from beyond the gamma-ray horizon tau ~ 1, thus drastically reducing the number of bursts at high energies. Our results are consistent with the non-detection of bursts by current experiments in the 100 GeV to 100 TeV energy range. For the earth-bound detector array MILAGRO, we predict a maximal GRB rate of ~ 10 events per year. The Whipple Observatory can detect, under favorable conditions, ~1 event per year. The event rate for the HEGRA array is ~ 0.01 per year. Detection of significantly higher rates of bursts would severely challenge cosmological burst scenarios.

  9. Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates

    SciTech Connect (OSTI)

    2004-11-01

    Energy Design Guidelines for High Performance Schools book detailing DOE's EnergySmart Schools Program for Arctic Climates.

  10. High energy hadron-hadron collisions. Annual progress report

    SciTech Connect (OSTI)

    Chou, T.T.

    1992-12-31

    Results of a study on high energy collisions with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) e{sup +}e{sup {minus}} annihilation. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which is still dipole in form but contains an energy--dependent range parameter. This new expression of the opacity function fits the elastic {bar p}p scattering very well from the ISR to S{bar p}pS energies. Extrapolation of this theory also yielded results {bar p}p in good agreement with the {bar p}p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S{bar p}pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e{sup +}e{sup {minus}} annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. The cluster size of emitted hadrons increases gradually with energy. Aside from high-energy collisions, the giant fullerene molecules were studied and precise algebraic eigenvalue expressions of the Hueckel problem for carbon-240 were obtained.

  11. High West Energy, Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckertHidrotermica JumpPower Inc JumpHigh

  12. High Bridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHess Retail NaturalAreasHigh Bridge,

  13. High Energy Novel Cathode / Alloy Automotive Cell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian Li,1 DOE

  14. EL Program: Net-Zero Energy, High-Performance Build Program Manager: William Healy, Energy and Environment Div

    E-Print Network [OSTI]

    EL Program: Net-Zero Energy, High-Performance Build Program Manager: William Healy, Energy the nation towards net-zero energy, high- performance buildings in a cost-effective manner while maintaining Goal: Net-Zero Energy, High-Performance Buildings Program; Sustainable and Energy-Efficient Materials

  15. The DPHEP Study Group: Data Preservation in High Energy Physics

    E-Print Network [OSTI]

    David M. South

    2013-02-14

    An inter-experimental study group, DPHEP, was formed in 2009 to systematically investigate the technical and organisational aspects of data preservation and long-term analysis in high-energy physics, a subject which had hitherto lacked clarity in the field. The study group includes representation from all major high-energy physics collider-based experiments and laboratories, as well as computing centres and funding agencies. A major report was released in May 2012, greatly expanding on the ideas contained in a preliminary publication three years earlier, and providing a more solid set of recommendations, not only concerning data preservation and its implementation in high-energy physics, but also the future direction and organisational model of the study group. A brief description of the DPHEP Study Group and some of the key messages from the major report are presented.

  16. High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter 2004...

  17. High Energy Physics Advisory Panel October 1-2, 2015 | U.S. DOE...

    Office of Science (SC) Website

    High Energy Physics Advisory Panel October 1-2, 2015 High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings 2015 HEPAP Membership ChargesReports Charter...

  18. The Office of High Energy Physics Announces the Launch of Its...

    Office of Science (SC) Website

    News & Resources News Archives 2013 The Office of High Energy Physics Announces the Launch of Its New Accelerator R&D Stewardship Webpages High Energy Physics (HEP) HEP...

  19. Graduate Fellows in High Energy Theory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Graduate Fellows in High Energy Theory High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Closed Funding...

  20. Cleanroom energy benchmarking in high-tech and biotech industries

    SciTech Connect (OSTI)

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-04-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems.

  1. Revisit of Energy Use and Technologies of High Performance Buildings

    SciTech Connect (OSTI)

    Li , Cheng; Hong , Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  2. High-Energy Scattering vs Static QCD Strings

    E-Print Network [OSTI]

    V. A. Petrov; R. A. Ryutin

    2014-09-30

    We discuss the shape of the interaction region of the elastically scattered protons stipulated by the high-energy Pomeron exchange which turns out to be very similar with the shape of the static string representing the confining QCD flux tube. This similarity disappears when we enter the LHC energy region, which corresponds to many-Pomeron exchanges. Reversing the argument we conjecture a modified relationship between the width and the length of the confining string at very large lengths.

  3. Ultra High Energy Cosmic Rays: present status and future prospects

    E-Print Network [OSTI]

    A. A. Watson

    2001-12-20

    Reasons for the current interest in cosmic rays above 10^19 eV are described. The latest results on the energy spectrum, arrival direction distribution and mass composition of cosmic rays are reviewed, including data that were reported after the meeting in Blois in June 2001. The enigma set by the existence of ultra high-energy cosmic rays remains. Ideas proposed to explain it are discussed and progress with the construction of the Pierre Auger Observatory is outlined.

  4. High energy KrCl electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  5. Double Pair Production by Ultra High Energy Cosmic Ray Photons

    E-Print Network [OSTI]

    S. V. Demidov; O. E. Kalashev

    2008-12-22

    With use of CompHEP package we've made the detailed estimate of the influence of double e+e- pair production by photons (DPP) on the propagation of ultra high energy electromagnetic cascade. We show that in the models in which cosmic ray photons energy reaches few thousand EeV refined DPP analysis may lead to substantial difference in predicted photon spectrum compared to previous rough estimates.

  6. Recoil proton distribution in high energy photoproduction processes

    E-Print Network [OSTI]

    E. Bartos; E. A. Kuraev; Yu. P. Peresunko; E. A. Vinokurov

    2006-11-22

    For high energy linearly polarized photon--proton scattering we have calculated the azimuthal and polar angle distributions in inclusive on recoil proton experimental setup. We have taken into account the production of lepton and pseudoscalar meson charged pairs. The typical values of cross sections are of order of hundreds of picobarn. The size of polarization effects are of order of several percents. The results are generalized for the case of electroproduction processes on the proton at rest and for high energy proton production process on resting proton.

  7. Compilation of current high-energy physics experiments

    SciTech Connect (OSTI)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1981-05-01

    This is the fourth edition of the compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. Only approved experiments are included.

  8. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    E-Print Network [OSTI]

    Zhou, Kai; Xu, Nu; Zhuang, Pengfei

    2016-01-01

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  9. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema (OSTI)

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2009-09-01

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  10. High-Energy QCD Asymptotics of Photon--Photon Collisions

    SciTech Connect (OSTI)

    Brodsky, Stanley J.

    2002-07-26

    The high-energy behavior of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.

  11. High-performance Electrochemical Capacitors - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutronHigh-Pressure

  12. NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01

    Flow in Central High Energy Nuclear Collisions H. Stockera,under Contract High energy nuclear collisions offer a uniquesidewards flow·in high-energy nuclear collisions. The

  13. High Energy Scattering in the AdS/CFT Correspondence

    E-Print Network [OSTI]

    Joao Penedones

    2008-02-06

    This work explores the celebrated AdS/CFT correspondence in the regime of high energy scattering in Anti--de Sitter (AdS) spacetime. In particular, we develop the eikonal approximation to high energy scattering in AdS and explore its consequences for the dual Conformal Field Theory (CFT). Using position space Feynman rules, we rederive the eikonal approximation for high energy scattering in flat space. Following this intuitive position space perspective, we then generalize the eikonal approximation for high energy scattering in AdS and other spacetimes. Remarkably, we are able to resum, in terms of a generalized phase shift, ladder and cross ladder Witten diagrams associated to the exchange of an AdS spin j field, to all orders in the coupling constant. By the AdS/CFT correspondence, the eikonal amplitude in AdS is related to the four point function of CFT primary operators in the regime of large 't Hooft coupling, including all terms of the 1/N expansion. We then show that the eikonal amplitude determines the behavior of the CFT four point function for small values of the cross ratios in a Lorentzian regime and that this controls its high spin and dimension conformal partial wave decomposition. These results allow us to determine the anomalous dimension of high spin and dimension double trace primary operators, by relating it to the AdS eikonal phase shift. Finally we find that, at large energies and large impact parameters in AdS, the gravitational interaction dominates all other interactions, as in flat space. Therefore, the anomalous dimension of double trace operators, associated to graviton exchange in AdS, yields a universal prediction for CFT's with AdS gravitational duals.

  14. Photon and dilepton production in high energy heavy ion collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  15. Type IIn supernovae as sources of high energy neutrinos

    E-Print Network [OSTI]

    Zirakashvili, V N

    2015-01-01

    It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration.

  16. High energy density lithium-oxygen secondary battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1989-02-07

    A high energy density lithium-oxygen secondary cell is described comprising a lithium-containing negative electrode; a lithium ion conducting molten salt electrolyte contacting the negative electrode; an oxygen ion conducting solid electrolyte contacting and containing the molten salt electrolyte; and an oxygen redox positive electrode contacting the oxygen ion conducting solid electrolyte.

  17. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  18. Multiplicity Distributions in QCD at Very High Energies

    E-Print Network [OSTI]

    I. M. Dremin

    1994-08-18

    Recent results in QCD on multiplicity distributions are briefly reviewed. QCD is able to predict very tiny features of multiplicity distributions which demonstrate that the negative binomial distribution (and, more generally, any infinitely divisible distribution) is inappropriate for precise description of experimental data. New fits of high energy multiplicity distributions can be derived.

  19. Wave Function Properties in a High Energy Process

    E-Print Network [OSTI]

    Arjun Berera

    1994-11-14

    A model example is given of how properties of the hadronic light-cone wave function are revealed in a particular high energy process. The meson wave function is derived in scalar quark QCD. We apply it to compute the form of the cross section for lossless diffractive jet-production, an upcoming possiblity at HERA.

  20. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01

    COVERED (From - To) Renewable Energy and Efficiency Modelinga Common High Renewable Energy Penetration Scenario in 2025OnLocation) National Renewable Energy Laboratory 1617 Cole

  1. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01

    DATES COVERED (From - To) Renewable Energy and EfficiencyModels Addressed a Common High Renewable Energy PenetrationWood (OnLocation) National Renewable Energy Laboratory 1617

  2. Experimental And Theoretical High Energy Physics Research At UCLA

    SciTech Connect (OSTI)

    Cousins, Robert D.

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  3. Beam energy tracking system on Optima XEx high energy ion implanter

    SciTech Connect (OSTI)

    David, Jonathan; Satoh, Shu; Wu Xiangyang; Geary, Cindy; Deluca, James [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, and each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.

  4. Overview of surface studies on high energy materials at Mound

    SciTech Connect (OSTI)

    Moddeman, W.E.; Collins, L.W.; Wang, P.S.; Haws, L.D.; Wittberg, T.N.

    1980-01-01

    Since 1975 Mound has been examining the surface structure of high energy materials and the interaction of these materials with various metal containers. The high energy materials that have been studied include: the pyrotechnic TiH/sub x//KClO/sub 4/, the Al/Cu/sub 2/O machinable thermite, the PETN, HMX and RDX explosives, and two plastic bonded explosives (PBX). Aluminum and alloys of Fe, Ni and Cr have been used as the containment materials. Two aims in this research are: (1) the elucidation of the mechanism of pyrotechnic ignition and (2) the compatibility of high energy materials with their surroundings. New information has been generated by coupling Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) with thermal data. In particular, AES and XPS studies on the pyrotechnic materials and on thermites have shown the mechanism of ignition to be nearly independent of the type of oxidizer present but directly related to surface chemistry of the fuels. In studies on the two PBX's, PBX-9407 and LX-16, it was concluded that the Exon coating on 9407 was complete and greater than or equal to 100A; whereas in LX-16, the coating was < 100A or even incomplete. AES and scanning Auger have been used to characterize the surface composition and oxide thickness for an iron-nickel alloy and showed the thicker oxides to have the least propensity for atmospheric hydrocarbon adsorption. Data are presented and illustrations made which highlight this new approach to studying ignition and compatibility of high energy materials. Finally, the salient features of the X-SAM-800 purchased by Mound are discussed in light of future studies on high energy materials.

  5. Composition of Primary Cosmic-Ray Nuclei at High Energies

    E-Print Network [OSTI]

    M. Ave; P. J. Boyle; F. Gahbauer; C. Hoppner; J. R. Horandel; M. Ichimura; D. Muller; A. Romero-Wolf

    2008-01-03

    The TRACER instrument (``Transition Radiation Array for Cosmic Energetic Radiation'') has been developed for direct measurements of the heavier primary cosmic-ray nuclei at high energies. The instrument had a successful long-duration balloon flight in Antarctica in 2003. The detector system and measurement process are described, details of the data analysis are discussed, and the individual energy spectra of the elements O, Ne, Mg, Si, S, Ar, Ca, and Fe (nuclear charge Z=8 to 26) are presented. The large geometric factor of TRACER and the use of a transition radiation detector make it possible to determine the spectra up to energies in excess of 10$^{14}$ eV per particle. A power-law fit to the individual energy spectra above 20 GeV per amu exhibits nearly the same spectral index ($\\sim$ 2.65 $\\pm$ 0.05) for all elements, without noticeable dependence on the elemental charge Z.

  6. Extinction Monitor by Using a Dissociation of Hydrogen Molecule to Atoms with High Energy Proton Beam

    E-Print Network [OSTI]

    Itahashi, I; Arimoto, Y; Kuno, Y; Sato, A; Yoshida, M Y

    2008-01-01

    Extinction Monitor by Using a Dissociation of Hydrogen Molecule to Atoms with High Energy Proton Beam

  7. Influence of Multiple Scattering on High-energy Deuteron Quasi-optical Birefringence Effect

    E-Print Network [OSTI]

    V. G. Baryshevsky; A. R. Shyrvel

    2011-01-12

    Influence of multiple scattering on high-energy deuteron quasi-optical birefringence effect is discussed.

  8. Modelling Neutral Particle Analyzer Measurements of High Energy Fusion Alpha-Particle Distributions in JET

    E-Print Network [OSTI]

    Modelling Neutral Particle Analyzer Measurements of High Energy Fusion Alpha-Particle Distributions in JET

  9. High energy hadron-hadron collisions. Annual progress report

    SciTech Connect (OSTI)

    Chou, T.T.

    1991-12-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) the e{sup +}e{sup {minus}} annihilation. More recent studies are highlighted below. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which remains to be dipole in form but contains an energy-dependent range parameter. This new expression of the opacity function fits the elastic {bar p}p scattering very well from the ISR to S{bar p}pS energies. Extrapolation of this theory also yielded results in good agreement with the {bar p}p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S{bar p}pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e{sup +}e{sup {minus}} annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. We discovered that the cluster size of emitted hadrons increases steadily with energy and is close to 2 as we predicted.

  10. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect (OSTI)

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  11. Crystal Ball: On the Future High Energy Colliders

    E-Print Network [OSTI]

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of ...

  12. An Experimental and Theoretical High Energy Physics Program

    SciTech Connect (OSTI)

    Shipsey, Ian

    2012-07-31

    The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

  13. Angle-Time-Energy Images of Ultra-High Energy Cosmic Ray Sources

    E-Print Network [OSTI]

    Guenter Sigl

    1997-12-10

    Substantial amount of information both on the source and on characteristics of intercepting magnetic fields is encoded in the distribution in arrival times, directions, and energies of charged ultra-high energy cosmic rays from discrete sources. We present a numerical approach that allows to extract such information from data from next generation experiments.

  14. Charmonium Transverse Momentum Distribution in High Energy Nuclear Collisions

    E-Print Network [OSTI]

    Zebo Tang; Nu Xu; Kai Zhou; Pengfei Zhuang

    2014-09-19

    The Charmonium transverse momentum distribution is more sensitive to the nature of the hot QCD matter created in high energy nuclear collisions, in comparison with the yield. Taking a detailed transport approach for charmonium motion together with a hydrodynamic description for the medium evolution, the cancelation between the two hot nuclear matter effects, the dissociation and the regeneration, controls the charmonium transverse momentum distribution. Especially, the second moment of the distribution can be used to differentiate between the hot mediums produced at SPS, RHIC and LHC energies.

  15. Evolution equation for soft physics at high energy

    E-Print Network [OSTI]

    P. Brogueira; J. Dias de Deus

    2010-05-20

    Based on the non-linear logistic equation we study, in a qualitative and semi-quantitative way, the evolution with energy and saturation of the elastic differential cross-section in $pp(\\bar{p}p)$ collisions at high energy. Geometrical scaling occurs at the black disk limit, and scaling develops first for small values of the scaling variable $|t|\\sigma_{tot.}$. Our prediction for $d \\sigma / \\ d t$ at LHC, with two zeros and a minimum at large $|t|$ differs, as far as we know, from all existing ones.

  16. High Energy Absorption Top Nozzle For A Nuclaer Fuel Assembly

    DOE Patents [OSTI]

    Sparrow, James A. (Irmo, SC); Aleshin, Yuriy (Columbia, SC); Slyeptsov, Aleksey (Columbia, SC)

    2004-05-18

    A high energy absorption top nozzle for a nuclear fuel assembly that employs an elongated upper tubular housing and an elongated lower tubular housing slidable within the upper tubular housing. The upper and lower housings are biased away from each other by a plurality of longitudinally extending springs that are restrained by a longitudinally moveable piston whose upward travel is limited within the upper housing. The energy imparted to the nozzle by a control rod scram is mostly absorbed by the springs and the hydraulic affect of the piston within the nozzle.

  17. A Study of Soft Interactions at Ultra High Energies

    E-Print Network [OSTI]

    E. Gotsman; E. Levin; U. Maor

    2008-05-04

    We present and discuss our recent study of an eikonal two channel model, in which we reproduce the soft total, integrated elastic and diffractive cross sections, and the corresponding forward differential slopes in the ISR-Tevatron energy range. Our study is extended to provide predictions at the LHC and Cosmic Rays ene$ These are utilized to assess the role of unitarity at ultra high energies, as well as predict the implied survival probability of exclusive diffractiv$ central production of a light Higgs. Our approach is critically examined so as to estimate the margins of error of the calculated survival probability for diffractive Higgs production

  18. LBNL High-Tech Buildings Energy Efficiency Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergyJoe OlenczKnow Your Energy Bill!LBNL High-tech

  19. Advanced High Strength Steel Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2EnergyEnergy Systems

  20. Advanced High-Strength Steel Stamping | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2EnergyEnergy

  1. Radiative return capabilities of a high-energy, high-luminositye+e-collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; Wang, Lian-Tao

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy ECM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at ECM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e+e- colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

  2. High-Voltage Insulators and Components - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutronHigh-Pressure MOFElectricity Transmission

  3. Ionization and fragmentation of C60 by highly charged, high-energy xenon ions S. Cheng,* H. G. Berry,

    E-Print Network [OSTI]

    Bauer, Wolfgang

    Ionization and fragmentation of C60 by highly charged, high-energy xenon ions S. Cheng,* H. G 19 June 1996 C60 vapor was bombarded by 136 Xe35 and 136 Xe18 ions in the energy range 420­625 MeV to study the various ionization and fragmentation processes that occur. Since the center-of-mass energies

  4. Entropy Production at High Energy and mu_B

    E-Print Network [OSTI]

    Peter Steinberg

    2007-02-08

    The systematics of bulk entropy production in experimental data on A+A, p+p and e+e- interactions at high energies and large mu_B is discussed. It is proposed that scenarios with very early thermalization, such as Landau's hydrodynamical model, capture several essential features of the experimental results. It is also pointed out that the dynamics of systems which reach the hydrodynamic regime give similar multiplicities and angular distributions as those calculated in weak-coupling approximations (e.g. pQCD) over a wide range of beam energies. Finally, it is shown that the dynamics of baryon stopping are relevant to the physics of total entropy production, explaining why A+A and e+e- multiplicities are different at low beam energies.

  5. Proceedings of the 8th high energy heavy ion study

    SciTech Connect (OSTI)

    Harris, J.W.; Wozniak, G.J.

    1988-01-01

    This was the eighth in a series of conferences jointly sponsored by the Nuclear Science Division of LBL and the Gesellschaft fuer Schwerionenforschung in West Germany. Sixty papers on current research at both relativistic and intermediate energies are included in this report. Topics covered consisted of: Equation of State of Nuclear Matter, Pion and High Energy Gamma Emission, Theory of Multifragmentation, Intermediate Energies, Fragmentation, Atomic Physics, Nuclear Structure, Electromagnetic Processes, and New Facilities planned for SIS-ESR. The latest design parameters of the Bevalac Upgrade Proposal were reviewed for the user community. Also, the design of a new electronic 4..pi.. detector, a time projection chamber which would be placed at the HISS facility, was presented.

  6. Methods for point source analysis in high energy neutrino telescopes

    E-Print Network [OSTI]

    Jim Braun; Jon Dumm; Francesco De Palma; Chad Finley; Albrecht Karle; Teresa Montaruli

    2008-01-10

    Neutrino telescopes are moving steadily toward the goal of detecting astrophysical neutrinos from the most powerful galactic and extragalactic sources. Here we describe analysis methods to search for high energy point-like neutrino sources using detectors deep in the ice or sea. We simulate an ideal cubic kilometer detector based on real world performance of existing detectors such as AMANDA, IceCube, and ANTARES. An unbinned likelihood ratio method is applied, making use of the point spread function and energy distribution of simulated neutrino signal events to separate them from the background of atmospheric neutrinos produced by cosmic ray showers. The unbinned point source analyses are shown to perform better than binned searches and, depending on the source spectral index, the use of energy information is shown to improve discovery potential by almost a factor of two.

  7. Compton Scattered Transition Radiation from Very High Energy Particles

    E-Print Network [OSTI]

    M. L. Cherry; G. L. Case

    2002-06-04

    X-ray transition radiation can be used to measure the Lorentz factor of relativistic particles. At energies approaching gamma = E/mc^2 = 10^5, transition radiation detectors (TRDs) can be optimized by using thick (sim 5 - 10 mil) foils with large (5-10 mm) spacings. This implies X-ray energies >100 keV and the use of scintillators as the X-ray detectors. Compton scattering of the X-rays out of the particle beam then becomes an important effect. We discuss the design of very high energy detectors, the use of metal radiator foils rather than the standard plastic foils, inorganic scintillators for detecting Compton scattered transition radiation, and the application to the ACCESS cosmic ray experiment.

  8. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1987-05-26

    A rechargeable high energy density lithium-based cell is described comprising: a solvated electron lithium negative electrode comprising a solution of lithium dissolved in liquid ammonia; a lithium ion conducting solid electrolyte contacting the negative electrode; a liquid non-aqueous lithium ion conducting electrolyte comprising a lithium ion conducting supporting electrolyte dissolved in a non-aqueous solvent. The liquid electrolyte contacting the lithium ion conducting solid electrolyte; and a solid lithium intercalation positive electrode contacting the liquid electrolyte.

  9. Science with the new generation high energy gamma- ray experiments

    E-Print Network [OSTI]

    Alvarez, M; Agnetta, G; Alberdi, A; Antonelli, A; Argan, A; Assis, P; Baltz, E A; Bambi, C; Barbiellini, G; Bartko, H; Basset, M; Bastieri, D; Belli, P; Benford, G; Bergström, L; Bernabei, R; Bertone, G; Biland, A; Biondo, B; Bocchino, F; Branchini, E; Brigida, M; Bringmann, T; Brogueira, P; Bulgarelli, A; Caballero, J A; Caliandro, G A; Camarri, P; Cappella, F; Caraveo, P; Carbone, R; Carvajal, M; Casanova, S; Castro-Tirado, A J; Catalano, O; Catena, R; Celi, F; Celotti, A; Cerulli, R; Chen, A; Clay, R; Cocco, V; Conrad, J; Costa, E; Cuoco, A; Cusumano, G; Dai, C J; Dawson, B; De Lotto, B; De Paris, G; Postigo, A de Ugarte; Del Monte, E; Delgado, C; Di Ciaccio, A; Di Cocco, G; Di Falco, S; Di Persio, G; Dingus, B L; Dominguez, A; Donato, F; Donnarumma, I; Doro, M; Edsjö, J; Navas, J M Espino; Santo, M C Espirito; Evangelista, Y; Evoli, C; Fargion, D; Favuzzi, C; Feroci, M; Fiorini, M; Foggetta, L; Fornengo, N; Froysland, T; Frutti, M; Fuschino, F; Gómez, J L; Gómez, M; Gaggero, D; Galante, N; Gallardo, M I; Galli, M; García, J E; Garczarczyk, M; Gargano, F; Gaug, M; Gianotti, F; Giarrusso, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Giuliani, A; Glicenstein, J; Gonçalves, P; Grasso, D; Guerriero, M; He, H L; Incicchitti, A; Kirk, J; Kuang, H H; La Barbera, A; La Rosa, G; Labanti, C; Lamanna, G; Lapshov, I; Lazzarotto, F; Liberati, S; Liello, F; Lipari, P; Longo, F; Loparco, F; Lozano, M; De Sanctis, P G Lucentini; Ma, J M; Maccarone, M C; Maccione, L; Malvezzi, V; Mangano, A; Mariotti, M; Marisaldi, M; Martel, I; Masiero, A; Massaro, E; Mastropietro, M; Mattaini, E; Mauri, F; Mazziotta, M N; Mereghetti, S; Mineo, T; Mizobuchi, S; Moiseev, A; Moles, M; Monte, C; Montecchia, F; Morelli, E; Morselli, A; Moskalenko, I; Nozzoli, F; Ormes, J F; Peres-Torres, M A; Pacciani, L; Pellizzoni, A; Pérez-Bernal, F; Perotti, F; Picozza, P; Pieri, L; Pietroni, M; Pimenta, M; Pina, A; Pittori, C; Pontoni, C; Porrovecchio, G; Prada, F; Prest, M; Prosperi, D; Protheroe, R; Pucella, G; Quesada, J M; Quintana, J M; Quintero, J R; Rainó, S; Rapisarda, M; Rissi, M; Rodríguez, J; Rossi, E; Rowell, G; Rubini, A; Russo, F; Sanchez-Conde, M; Sacco, B; Scapin, V; Schelke, M; Segreto, A; Sellerholm, A; Sheng, X D; Smith, A; Soffitta, P; Sparvoli, R; Spinelli, P; Stamatescu, V; Stark, L S; Tavani, M; Thornton, G; Titarchuk, L G; Tomé, B; Traci, A; Trifoglio, M; Trois, A; Vallania, P; Vallazza, E; Vercellone, S; Vernetto, S; Vitale, V; Wild, N; Ye, Z P; Zambra, A; Zandanel, F; Zanello, D

    2007-01-01

    This Conference is the fifth of a series of Workshops on High Energy Gamma- ray Experiments, following the Conferences held in Perugia 2003, Bari 2004, Cividale del Friuli 2005, Elba Island 2006. This year the focus was on the use of gamma-ray to study the Dark Matter component of the Universe, the origin and propagation of Cosmic Rays, Extra Large Spatial Dimensions and Tests of Lorentz Invariance.

  10. Spectral function at high missing energies and momenta

    E-Print Network [OSTI]

    T. Frick; Kh. S. A. Hassaneen; D. Rohe; H. Müther

    2004-06-03

    The nuclear spectral function at high missing energies and momenta has been determined from a self-consistent calculation of the Green's function in nuclear matter using realistic nucleon-nucleon interactions. The results are compared with recent experimental data derived from ($e,e'p$) reactions on $^{12}C$. A rather good agreement is obtained if the Green's functions are calculated in a non-perturbative way.

  11. CERN and high energy physics, the grand picture

    ScienceCinema (OSTI)

    None

    2011-10-06

    The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D; and technology transfer at CERN?

  12. Automatic anomaly detection in high energy collider data

    E-Print Network [OSTI]

    Simon de Visscher; Michel Herquet

    2011-04-13

    We address the problem of automatic anomaly detection in high energy collider data. Our approach is based on the random generation of analytic expressions for kinematical variables, which can then be evolved following a genetic programming procedure to enhance their discriminating power. We apply this approach to three concrete scenarios to demonstrate its possible usefulness, both as a detailed check of reference Monte-Carlo simulations and as a model independent tool for the detection of New Physics signatures.

  13. Tunneling through high energy barriers in simulated quantum annealing

    E-Print Network [OSTI]

    Elizabeth Crosson; Mingkai Deng

    2014-10-30

    We analyze the performance of simulated quantum annealing (SQA) on an optimization problem for which simulated classical annealing (SA) is provably inefficient because of a high energy barrier. We present evidence that SQA can pass through this barrier to find the global minimum efficiently. This demonstrates the potential for SQA to inherit some of the advantages of quantum annealing (QA), since this problem has been previously shown to be efficiently solvable by quantum adiabatic optimization.

  14. Neutrino-Nucleon Cross section in Ultra High Energy Regime

    E-Print Network [OSTI]

    Bora, Kalpana

    2015-01-01

    Neutrino Physics is now entering precision era and neutrino-nucleon cross sections are an im- portant ingredient in all neutrino oscillation experiments. Specially, precise knowledge of neutrino- nucleon cross sections in Ultra High Energy (UHE) regime (TeV-PeV) is becoming more important now, as several experiments worldwide are going to observe processes involving such UHE neutrinos. In this work, we present new results on neutrino-nucleon cross-sections in this UHE regime, using QCD.

  15. High energy XeBr electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  16. Development of high magnetic fields for energy research

    SciTech Connect (OSTI)

    Thompson, J.D.; Campbell, L.J.; Modler, R.; Movshovich, R. [Los Alamos National Lab., NM (United States); Lawrence, J.M. [Univ. of California, Irvine, CA (United States); Awschalom, D.D. [Univ. of California, Santa Barbara, CA (United States)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The primary purpose of work has been to develop the scientific basis for DOE support of a program that would build a novel, nondestructive 100-tesla magnet that would be available as a user facility for cutting-edge, energy-related research and technology at very high magnetic fields.

  17. High-Temperature Downhole Tools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey,High-Temperature Downhole Tools Jump to:

  18. High Tonnage Forest Biomass Production Systems from Southern Pine Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing ToolSustainableSecurityHigh Energy CostHighofPlantations |

  19. Eliminating High Risk Work at Hanford | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergy 1 DOEEliminating High Risk Work at

  20. Natural Gas Study Guide - High School | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartmentNatural ContaminationDepartment ofHigh School

  1. Oil Study Guide - High School | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHighOffice ofProject | DepartmentRD&DHigh

  2. High Impact Technology - Request for Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS PolicyandHigh Impact Technology -

  3. JC3 High Impact Assessment Bulletins | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | International Nuclear Energyat Larger26,High Impact

  4. On the Origin of Ultra High Energy Cosmic Rays

    SciTech Connect (OSTI)

    Fowler, T; Colgate, S; Li, H

    2009-07-01

    Turbulence-driven plasma accelerators produced by magnetized accretion disks around black holes are proposed as the mechanism mainly responsible for observed cosmic ray protons with ultra high energies 10{sup 19}-10{sup 21} eV. The magnetized disk produces a voltage comparable to these cosmic ray energies. Here we present a Poynting model in which this voltage provides all of the energy to create the jet-like structures observed to be ejected from accretion disks, and this voltage also accelerates ions to high energies at the top of the expanding structure. Since the inductive electric field E = -v x B driving expansion has no component parallel to the magnetic field B, ion acceleration requires plasma wave generation - either a coherent wave accelerator as recently proposed, or instability-driven turbulence. We find that turbulence can tap the full inductive voltage as a quasi-steady accelerator, and even higher energies are produced by transient events on this structure. We find that both MHD modes due to the current and ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution contribute to acceleration. We apply our results to extragalactic giant radiolobes, whose synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other astrophysical structures. Approximate calculations of the cosmic ray intensity and energy spectrum are in rough agreement with data and serve to motivate more extensive MHD and kinetic simulations of turbulence that could provide more accurate cosmic ray and synchrotron spectra to be compared with observations. A distinctive difference from previous models is that the cosmic ray and synchrotron emissions arise from different parts of the magnetic structure, thus providing a signature for the model.

  5. FPGA based High Speed Data Acquisition System for High Energy Physics Application

    E-Print Network [OSTI]

    Mandal, Swagata; Chakrabarti, Amlan; Chattopadhyay, Subhasis

    2015-01-01

    In high energy physics experiments (HEP), high speed and fault resilient data communication is needed between detectors/sensors and the host PC. Transient faults can occur in the communication hardware due to various external effects like presence of charged particles, noise in the environment or radiation effects in HEP experiments and that leads to single/multiple bit error. In order to keep the communication system functional in such a radiation environment where direct intervention of human is not possible, a high speed data acquisition (DAQ) architecture is necessary which supports error recovery. This design presents an efficient implementation of field programmable gate array (FPGA) based high speed DAQ system with optical communication link supported by multi-bit error correcting model. The design has been implemented on Xilinx Kintex-7 board and is tested for board to board communication as well as for PC communication using PCI (Peripheral Component Interconnect express). Data communication speed up...

  6. Determination of ultra high-energy cosmic ray composition using surface detector parameters

    E-Print Network [OSTI]

    van Suijlekom, Walter

    know that sources of low-energy cosmic rays are stars like our sun. For high energy cosmic raysDetermination of ultra high-energy cosmic ray composition using surface detector parameters Marie This bachelor thesis is the result of my Bachelor project at the department of Experimental High Energy Physics

  7. Symmetry energy systematics and its high density behavior

    E-Print Network [OSTI]

    Lie-Wen Chen

    2015-06-30

    We explore the systematics of the density dependence of nuclear matter symmetry energy in the ambit of microscopic calculations with various energy density functionals, and find that the symmetry energy from subsaturation density to supra-saturation density can be well determined by three characteristic parameters of the symmetry energy at saturation density $\\rho_0 $, i.e., the magnitude $E_{\\text{sym}}({\\rho_0 })$, the density slope $L$ and the density curvature $K_{\\text{sym}}$. This finding opens a new window to constrain the supra-saturation density behavior of the symmetry energy from its (sub-)saturation density behavior. In particular, we obtain $L=46.7 \\pm 12.8$ MeV and $K_{\\text{sym}}=-166.9 \\pm 168.3$ MeV as well as $E_{\\text{sym}}({2\\rho _{0}}) \\approx 40.2 \\pm 12.8$ MeV and $L({2\\rho _{0}}) \\approx 8.9 \\pm 108.7$ MeV based on the present knowledge of $E_{\\text{sym}}({\\rho_{0}}) = 32.5 \\pm 0.5$ MeV, $E_{\\text{sym}}({\\rho_c}) = 26.65 \\pm 0.2$ MeV and $L({\\rho_c}) = 46.0 \\pm 4.5$ MeV at $\\rho_{\\rm{c}}= 0.11$ fm$^{-3}$ extracted from nuclear mass and the neutron skin thickness of Sn isotopes. Our results indicate that the symmetry energy cannot be stiffer than a linear density dependence.In addition, we also discuss the quark matter symmetry energy since the deconfined quarks could be the right degree of freedom in dense matter at high baryon densities.

  8. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    metering - Energy monitoring and management systems targetedconstruction - Energy monitoring and management systems forEnergy monitoring, assessment, and management systems -

  9. Equilibrium Statistical-Thermal Models in High-Energy Physics

    E-Print Network [OSTI]

    Abdel Nasser Tawfik

    2014-10-25

    We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics, that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948 an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analysed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical-thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical-thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze out parameters.

  10. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    operation with energy efficiency in building systems. X X Xoperation with energy efficiency in building systems. 10.3.for Energy Efficiency and Renewable Energy, Building

  11. Ultra High Energy Neutrino Signature in Top-Down Scenario

    E-Print Network [OSTI]

    Roberto Aloisio

    2006-12-22

    Neutrinos are the best candidates to test the extreme Universe and ideas beyond the Standard Model of particle Physics. Once produced, neutrinos do not suffer any kind of attenuation by intervening radiation fields like the Cosmic Microwave Background and are not affected by magnetic fields. In this sense neutrinos are useful messengers from the far and young Universe. In the present paper we will discuss a particular class of sources of Ultra High Energy Cosmic Rays introduced to explain the possible excess of events with energy larger than the Graisen-Zatsepin-Kuzmin cut-off. These sources, collectively called top-down, share a common feature: UHE particles are produced in the decay or annihilation of superheavy, exotic, particles. As we will review in the present paper, the largest fraction of Ultra High Energy particles produced in the top-down scenario are neutrinos. The study of these radiation offers us a unique opportunity to test the exotic mechanisms of the top-down scenario.

  12. Progress in ultra high energy neutrino experiments using radio techniques

    SciTech Connect (OSTI)

    Liu Jiali [Physics department, Kunming University, Kunming, 650214 (China); Tiedt, Douglas [Physics department, South Dakota School of Mines and Technology, Rapid City, SD, 57701-3995 (United States)

    2013-05-23

    Studying the source of Ultra High Energy Cosmic Ray (UHECR) can provide important clues on the understanding of UHE particle physics, astrophysics, and other extremely energetic phenomena in the universe. However, charged CR particles are deflected by magnetic fields and can not point back to the source. Furthermore, UHECR charged particles above the Greisen-Zatsepin-Kuzmin (GZK) cutoff (about 5 Multiplication-Sign 10{sup 19} eV) suffer severe energy loss due to the interaction with the Cosmic Microwave Background Radiation (CMBR). Consequently almost all the information carried by CR particles about their origin is lost. Neutrinos, which are neutral particles and have extremely weak interactions with other materials can arrive at the earth without deflection and absorption. Therefore UHE neutrinos can be traced back to the place where they are produced. Due to their weak interaction and ultra high energies (thus extremely low flux) the detection of UHE neutrinos requires a large collecting area and massive amounts of material. Cherenkov detection at radio frequency, which has long attenuation lengths and can travel freely in natural dense medium (ice, rock and salt et al), can fulfill the detection requirement. Many UHE neutrino experiments are being performed by radio techniques using natural ice, lunar, and salt as detection mediums. These experiments have obtained much data about radio production, propagation and detection, and the upper limit of UHE neutrino flux.

  13. A Phenomenological Cost Model for High Energy Particle Accelerators

    E-Print Network [OSTI]

    Vladimir Shiltsev

    2014-04-15

    Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  14. High Energy Physics at the University of Illinois

    SciTech Connect (OSTI)

    Liss, Tony M.; Thaler, Jon J.

    2013-07-26

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  15. Secondary Photons from High-energy Protons Accelerated in Hypernovae

    E-Print Network [OSTI]

    K. Asano; P. Mészáros

    2008-03-15

    Recent observations show that hypernovae may deposit some fraction of their kinetic energy in mildly relativistic ejecta. In the dissipation process of such ejecta in a stellar wind, cosmic ray protons can be accelerated up to $\\sim 10^{19}$ eV. We discuss the TeV to MeV gamma-ray and the X-ray photon signatures of cosmic rays accelerated in hypernovae. Secondary X-ray photons, emitted by electron-positron pairs produced via cascade processes due to high-energy protons, are the most promising targets for X-ray telescopes. Synchrotron photons emitted by protons can appear in the GeV band, requiring nearby ($photons emitted by electron-positron pairs generated by CMB attenuation of $\\pi^0$ decay photons.

  16. PAMELA's Measurements of Magnetospheric Effects on High Energy Solar Particles

    E-Print Network [OSTI]

    Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bravar, U; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Christian, E C; De Donato, C; de Nolfo, G A; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Lee, M; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Ryan, J M; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stochaj, S; Stozhkov, Y I; Thakur, N; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N

    2015-01-01

    The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections (CMEs), is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle to the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument, enables unique observations of SEPs including composition and the angular distribution of the particles about the magnetic field, i.e. pitch angle distribution, over a broad energy range (>80 MeV) -- bridging a critical gap between space-based measurements and ground-based. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two dist...

  17. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    SciTech Connect (OSTI)

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  18. DDbar Correlations probing Thermalization in High-Energy Nuclear Collisions

    E-Print Network [OSTI]

    K. Schweda; X. Zhu; M. Bleicher; S. L. Huang; H. Stoecker; N. Xu; P. Zhuang

    2006-10-30

    We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons.

  19. High-current, low-energy synchrotrons and compressor rings

    SciTech Connect (OSTI)

    Kustom, R.L.

    1984-05-01

    The primary application of high-current, low-energy synchrotrons and linac compressor rings is as proton drivers for pulsed-spallation neutron sources. They operate in the range of 500 to 1500 MeV with extracted beam repetition rates between 12 to 100 Hz. The time-averaged currents on target are a few tens of microamperes today, soon will be a few thousand in the future. The characteristics for the accelerators and compressor rings, their limitations, and existing and proposed major facilities are described. 22 references, 5 figures, 6 tables.

  20. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect (OSTI)

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  1. High Energy Colliders as Tools to Understand the Early Universe

    SciTech Connect (OSTI)

    Tait, Tim (ANL) [ANL

    2008-08-16

    Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

  2. Spin rotation of polarized beams in high energy storage ring

    E-Print Network [OSTI]

    V. G. Baryshevsky

    2006-03-23

    The equations for spin evolution of a particle in a storage ring are obtained considering contributions from the tensor electric and magnetic polarizabilities of the particle along with the contributions from spin rotation and birefringence effect in polarized matter of an internal target. % Study of the spin rotation and birefringence effects for a particle in a high energy storage ring provides for measurement both the spin-dependent real part of the coherent elastic zero-angle scattering amplitude and tensor electric (magnetic) polarizabilities.

  3. Meson production in high-energy electron-nucleus scattering

    E-Print Network [OSTI]

    Göran Fäldt

    2010-06-09

    Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering is now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus. The process takes place in the small-angle-Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

  4. Sandia Energy - High School Girls Honored for Math, Science Achievements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETL

  5. Alleghany High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamoCalifornia:Wave BasinRecentAlleganHigh

  6. High Temperature Polymer Capacitor Dielectric Films | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGHof EnergyTemperature2

  7. High Temperature Polymer Capacitor Dielectric Films | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGHof EnergyTemperature21

  8. High Temperature Polymer Capacitor Dielectric Films | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGHof EnergyTemperature210

  9. High Strength Gold Wire for Microelectronics Miniaturization - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptionsthroughputEnergySalaryInnovation Portal High

  10. High Temperature Optical Gas Sensing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptionsthroughputEnergySalaryInnovation PortalHigh

  11. Highly Directional Antenna for Improved Communications - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland View school Highland ViewSeptember

  12. Highly Efficient Multigap Solar Cell Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland View school Highland

  13. Highly Efficient, Scalable Microbial Fuel Cell - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland View school HighlandHydrogen and Fuel Cell

  14. Glauber model for heavy ion collisions from low energies to high energies

    E-Print Network [OSTI]

    P. Shukla

    2001-12-13

    The Glauber model is extensively applied to heavy ion collision for describing a number of interaction processes over a wide range of energies from near the Coulomb barrier to higher energies. The model gives the nucleus-nucleus interaction in terms of interaction between the constituent nucleons with a given density distribution. The model is a semiclassical model picturing the nuclear collision in the impact parameter representation where the nuclei move along the collision direction in a straight path. In these lectures we derive this model and discuss its applications in variety of problems in nuclear and high energy physics.

  15. Research and Development of High-Power and High-Energy Electrochemical Storage Devices

    SciTech Connect (OSTI)

    No, author

    2014-04-30

    The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers to leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOE’s effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): • Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). • Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. • Calendar Life: Achieving 15-year life and getting accurate life prediction. • Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOE’s Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report – DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits and provides direction on future areas of technology and performance needs for vehicle applicatio

  16. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  17. U.S. Department of Energy High Performance and Sustainable Buildings...

    Energy Savers [EERE]

    High Performance and Sustainable Buildings Implementation Plan U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan Plan outlining DOE's...

  18. HEPAP White Paper on planning for U.S. high-energy physics [High Energy Physics Advisory Panel

    SciTech Connect (OSTI)

    None

    2000-10-01

    High-energy physicists seek to understand what the universe is made of, how it works, and where it has come from. They investigate the most basic particles and the forces between them. Experiments and theoretical insights over the past several decades have made it possible to see the deep connection between apparently unrelated phenomena, and to piece together more of the story of how a rich and complex cosmos could evolve from just a few kinds of elementary particles. The 1998 Subpanel of the High Energy Physics Advisory Panel (HEPAP) laid out a strategy for U.S. high-energy physics for the next decade. That strategy balanced exciting near-term opportunities with preparations for the most important discovery possibilities in the longer-term. Difficult choices were made to end several highly productive programs and to reduce others. This year HEPAP was charged to take the plan given in the Subpanel's report, understand it in the context of worldwide progress, and update it. In response to that charge, this White Paper provides an assessment of where we stand, states the next steps to take in the intermediate term, and serves as input for a longer range planning process involving a new HEPAP subpanel and high-energy physics community evaluation in 2001. Since the 1998 Subpanel, there have been important developments and a number of the Subpanel's recommendations have been implemented. Notably, construction of the B-factory at SLAC, the Main Injector at Fermilab, and the upgrade of CESR at Cornell have all been finished on schedule and on budget. We have gained great confidence in the performance of these accelerators and the associated detectors. The B-factory at SLAC is already operating above design luminosity and plans are in place to reach three times the design in the next few years. In addition, there have been major physics developments that lead us to believe that these completed projects are guaranteed to produce frontier physics results and have an enhanced potential for a truly major breakthrough. However, taking advantage of these facilities requires greater funding for operations than the significantly reduced level of the last several years.

  19. On the Origin of Ultra High Energy Cosmic Rays II

    SciTech Connect (OSTI)

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  20. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of...

  1. Plug-In Electric Vehicle R&D on High Energy Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D on High Energy Materials Plug-In Electric Vehicle R&D on High Energy Materials Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  2. High-Energy, Low-Frequency Risk to the North American Bulk Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) A...

  3. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact...

    Office of Scientific and Technical Information (OSTI)

    Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Citation Details In-Document Search Title: Prospects for Future Very High-Energy...

  4. Energy savings estimates and cost benefit calculations for high performance relocatable classrooms

    E-Print Network [OSTI]

    Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, William J.

    2003-01-01

    energy performance and cost models for high performance relocatable classrooms (RCs) across CaliforniaCost Benefit Calculations for High Performance Relocatable Classrooms 6 Acknowledgements This research was sponsored by the California Energy

  5. Agenda from the U.S. Department of Energy's High Throughput Screening...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the U.S. Department of Energy's High Throughput Screening of Hydrogen Storage Materials Workshop on June 26, 2007 Agenda from the U.S. Department of Energy's High Throughput...

  6. EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow April 1, 2009 - 11:35am Addthis The growth of...

  7. Design of Safer High-Energy Density Materials for Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Safer High-Energy Density Materials for Lithium-Ion Cells Design of Safer High-Energy Density Materials for Lithium-Ion Cells 2012 DOE Hydrogen and Fuel Cells Program and...

  8. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY...

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION Citation Details In-Document Search Title: THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY...

  9. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    tech hospitals use more energy per square foot but presentlyenergy intensity (energy used per square foot of facilitythermal units of energy on site per square foot of floor

  10. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    needs. • Include energy efficiency best practice in designand benchmarking energy use; best practices and training;of practitioners. Energy performance best practices ideally

  11. Revisit of Energy Use and Technologies of High Performance Buildings

    E-Print Network [OSTI]

    Li Ph.D., Cheng

    2014-01-01

    determine the building energy performance, the underlyingthis, the energy performance of individual building and theinto the actual energy performance of these buildings and to

  12. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    hospitals in their building energy performance standard (Information on energy performance of building products. •information on energy performance of building products.

  13. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    Healthcare Buildings: A Roadmap to Improved EnergyHealthcare Buildings: A Roadmap to Improved EnergyHealthcare Buildings: A Roadmap to Improved Energy

  14. Investigation of the formation and energy density of high-current pulsed electron beams

    E-Print Network [OSTI]

    Daichi, Yoshiaki; WANG, ZHIGANG; Yamazaki, Kazuo; Sano, Sadao

    2007-01-01

    of the formation and energy density of high-current pulsednot clear about the energy density of HCPEB under differentof HCPEB and its energy density. Then, effects of argon gas

  15. Do high energy astrophysical neutrinos trace star formation?

    E-Print Network [OSTI]

    Emig, Kimberly; Windhorst, Rogier

    2015-01-01

    The IceCube Neutrino Observatory has provided the first map of the high energy (~ 0.01 -- 1 PeV) sky in neutrinos. Since neutrinos propagate undeflected, their arrival direction is an important identifier for sources of high energy particle acceleration. Reconstructed arrival directions are consistent with an extragalactic origin, with possibly a galactic component, of the neutrino flux. We present a statistical analysis of positional coincidences of the IceCube neutrinos with known astrophysical objects from several catalogs. For the brightest gamma-ray emitting blazars and for Seyfert galaxies, the number of coincidences is consistent with the random, or "null", distribution. Instead, when considering starburst galaxies with the highest flux in gamma-rays and infrared radiation, up to n = 8 coincidences are found, representing an excess over the ~4 predicted for the null distribution. The probability that this excess is realized in the null case, the p-value, is p = 0.042. This value falls to p = 0.003 for ...

  16. Sharpening of field emitter tips using high-energy ions

    DOE Patents [OSTI]

    Musket, Ronald G. (Danville, CA)

    1999-11-30

    A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

  17. GZK Photons as Ultra High Energy Cosmic Rays

    E-Print Network [OSTI]

    Graciela B. Gelmini; Oleg E. Kalashev; Dmitry V. Semikoz

    2007-11-01

    We calculate the flux of "GZK-photons", namely the flux of Ultra High Energy Cosmic Rays (UHECR) consisting of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. We We calculate the flux of "GZK-photons", namely the flux of Ultra High Energy Cosmic Rays (UHECR) consisting of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. We show that, for primary nucleons, the GZK photon fraction of the total UHECR flux is between $10^{-4}$ and $10^{-2}$ above $10^{19}$ eV and up to the order of 0.1 above $10^{20}$ eV. The GZK photon flux depends on the assumed UHECR spectrum, slope of the nucleon flux at the source, distribution of sources and intervening backgrounds. Detection of this photon flux would open the way for UHECR gamma-ray astronomy. Detection of a larger photon flux would imply the emission of photons at the source or new physics. We compare the photon fractions expected for GZK photons and the minimal predicted by Top-Down models. We find that the photon fraction above $10^{19}$ eV is a crucial test for Top-Down models.

  18. What Can We Learn from the Study of Single Diffractive Dissociation at High Energies?

    E-Print Network [OSTI]

    A. A. Arkhipov

    1999-09-28

    The fundamental relations in the dynamics of single diffraction dissociation and elastic scattering at high energies are discussed.

  19. Theoretical Research in Cosmology, High-Energy Physics and String Theory

    SciTech Connect (OSTI)

    Ng, Y Jack; Dolan, Louise; Mersini-Houghton, Laura; Frampton, Paul

    2013-07-29

    The research was in the area of Theoretical Physics: Cosmology, High-Energy Physics and String Theory

  20. Extensive Air Showers and the Physics of High Energy Interactions

    E-Print Network [OSTI]

    A. D. Erlykin

    2007-03-20

    Extensive Air Showers are still the only source of information on primary cosmic rays and their interactions at energies above PeV. However, this information is hidden inside the multiplicative character of the cascading process. Inspite of the great experimental and theoretical efforts the results of different studies are often ambiguous and even conflicting. These controversies can partly be referred to imperfections of our models of high energy interactions. The first part of the paper is concerned with this problem. The author thinks that the present models should be corrected to give slightly deeper penetration of the cascade into the atmosphere. In this respect the modification suggested by the QGSJET-II model seems to be the step in the right direction. The Sibyll 2.1 model provides a similar penetrating properties. However, this modification is not enough and a small additional transfer of the energy from EAS hadrons to the electromagnetic component is needed too. As a possible candidate for such a process the inelastic charge exchange of pions is discussed. In the second part of the paper the author discusses the need to account for the interaction of EAS with the stuff of detectors, their environment and the ground in the light of the 'neutron thunder' phenomenon, discovered recently.

  1. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  2. Sandia Energy - High-Pressure and High-Temperature Neutron Reflectometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCell for Solid-Fluid

  3. Azimuthal anisotropy in high-energy heavy-ion collisions at RHIC energies

    E-Print Network [OSTI]

    ShinIchi Esumi

    2004-05-19

    Directed and elliptic event anisotropy parameters measured in the experiments at relativistic heavy-ion collider are presented. The possible origin of the measured elliptic anisotropy parameter $v_2$ and its sensitivity to the early phase of the high-energy heavy-ion collisions are discussed.

  4. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    McGehee, Michael

    High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells Brian E soluble energy relay dyes with high molar extinction coefficients. KEYWORDS Solar cell, energy transfer-sensitized solar cells, the excited ERDs must be able to efficiently transfer energy to the sensitizing dyes

  5. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation packagemore »capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).« less

  6. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect (OSTI)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

  7. High-energy x-ray production with pyroelectric crystals Jeffrey A. Geuthera

    E-Print Network [OSTI]

    Danon, Yaron

    High-energy x-ray production with pyroelectric crystals Jeffrey A. Geuthera and Yaron Danon, the usefulness of an x-ray source is determined by its yield and endpoint energy. In x-ray fluorescence, for example, high-energy sources enable the excitation of the K-shell x-ray peaks for high-Z materials as well

  8. Alternative Techniques for High Energy Neutrino Astronomy John G. Learned a

    E-Print Network [OSTI]

    Learned, John

    1 Alternative Techniques for High Energy Neutrino Astronomy John G. Learned a a Department interest in high energy astrophysical neutrinos and particularly neutrinos near the upper end of the cosmic were known to have a high energy threshold (radio and acous­ tic thresholds expected to be above the 10

  9. Highly conductive paper for energy-storage devices Liangbing Hua,1

    E-Print Network [OSTI]

    Cui, Yi

    Highly conductive paper for energy-storage devices Liangbing Hua,1 , Jang Wook Choia,1 , Yuan Yanga, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here be a highly scalable and low-cost solution for high-performance energy storage devices. conformal coating

  10. High energy neutrinos from astrophysical sources: An upper bound Eli Waxman* and John Bahcall +

    E-Print Network [OSTI]

    Bahcall, John

    luminous AGN accelerator of high­energy protons. The hypothesized black­hole accelerators are ``neutrinoHigh energy neutrinos from astrophysical sources: An upper bound Eli Waxman* and John BahcallV/cm 2 s sr to the intensity of high­energy neutrinos produced by photo­meson ~or p­p! interactions

  11. High energy neutrinos from astrophysical sources: An upper bound Eli Waxman* and John Bahcall

    E-Print Network [OSTI]

    Bahcall, John

    neutrinos for, or against, the hypothesized luminous AGN accelerator of high-energy protonsHigh energy neutrinos from astrophysical sources: An upper bound Eli Waxman* and John Bahcall to the intensity of high-energy neutrinos produced by photo-meson or p-p interactions in sources of size not much

  12. IMPACT OF MAGNETIC ENVIRONMENT ON THE GENERATION OF HIGH-ENERGY NEUTRONS AT THE SUN

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    IMPACT OF MAGNETIC ENVIRONMENT ON THE GENERATION OF HIGH-ENERGY NEUTRONS AT THE SUN L. G. KOCHAROV emissions to deduce spectra of high-energy ions interacting at the Sun (for a review see Mandzhavidze at the flare site is proved to be the most important parameter limiting anisotropy of high-energy secondary

  13. Present and future perspectives for high energy density physics with intense heavy ion and laser beams

    E-Print Network [OSTI]

    , Germany! accelerator facilities, together with two high energy laser systems: petawatt high energy laserPresent and future perspectives for high energy density physics with intense heavy ion and laser!, Plasmaphysik, Darmstadt, Germany 2 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt

  14. MIT Research using High-Energy Density Plasmas at OMEGA and the NIF

    E-Print Network [OSTI]

    MIT Research using High-Energy Density Plasmas at OMEGA and the NIF Hans Rinderknecht Wednesday He D-D T 2.3 m SiO2 D3He gas 860 m #12;The High Energy Density Physics Division at MIT of Inertial Confinement Fusion (ICF) implosions VII. Proton Radiography #12;High Energy Density Physics

  15. National Research Council Study on Frontiers in High-Energy-Density Physics

    E-Print Network [OSTI]

    National Research Council Study on Frontiers in High-Energy-Density Physics David D. Meyerhofer of Fusion Fusion Power Associates Washington, DC 19­21 November 2003 #12;E12541 High-energy-density physics (HEDP) is a rapidly growing research area · Pressures in excess of 1 Mbar constitute high-energy-density

  16. Revisit of Energy Use and Technologies of High Performance Buildings

    E-Print Network [OSTI]

    Li Ph.D., Cheng

    2014-01-01

    Turner C, Frankel M. 2008. Energy performance of LEED forsponsored by the U.S. Department of Energy under the U.S. -China Clean Energy Research Center for Building Energy

  17. Welcome to the High Voltage Laboratory The EEH -High Voltage Laboratory is part of the Energy Transmission and High Voltage Laboratory

    E-Print Network [OSTI]

    Grabner, Helmut

    Welcome to the High Voltage Laboratory The EEH - High Voltage Laboratory is part of the Energy Transmission and High Voltage Laboratory (EEH) of the Department of Information Technology and Electrical focus of the high voltage laboratory is in the area of technologies for a future sustainable electric

  18. Cleanroom energy benchmarking in high-tech and biotech industries

    E-Print Network [OSTI]

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-01-01

    comparisons of energy per square foot are of little valueAnnual Energy Cost per Cleanroom Square Foot Annual Fuel

  19. FPGA based High Speed Data Acquisition System for High Energy Physics Application

    E-Print Network [OSTI]

    Swagata Mandal; Suman Sau; Amlan Chakrabarti; Subhasis Chattopadhyay

    2015-03-30

    In high energy physics experiments (HEP), high speed and fault resilient data communication is needed between detectors/sensors and the host PC. Transient faults can occur in the communication hardware due to various external effects like presence of charged particles, noise in the environment or radiation effects in HEP experiments and that leads to single/multiple bit error. In order to keep the communication system functional in such a radiation environment where direct intervention of human is not possible, a high speed data acquisition (DAQ) architecture is necessary which supports error recovery. This design presents an efficient implementation of field programmable gate array (FPGA) based high speed DAQ system with optical communication link supported by multi-bit error correcting model. The design has been implemented on Xilinx Kintex-7 board and is tested for board to board communication as well as for PC communication using PCI (Peripheral Component Interconnect express). Data communication speed up to 4.8 Gbps has been achieved in board to board and board to PC communication and estimation of resource utilization and critical path delay are also measured.

  20. Energy Loss Effect in High Energy Nuclear Drell-Yan Process

    E-Print Network [OSTI]

    Chun-Gui Duan; Li-Hua Song; Li-Juan Huo; Guang-Lie Li

    2004-05-13

    The energy loss effect in nuclear matter, which is another nuclear effect apart from the nuclear effect on the parton distribution as in deep inelastic scattering process, can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of the nuclear parton distribution studied only with lepton deep inelastic scattering experimental data, measured Drell-Yan production cross sections for 800GeV proton incident on a variety of nuclear targets are analyzed within Glauber framework which takes into account energy loss of the beam proton. It is shown that the theoretical results with considering the energy loss effect are in good agreement with the FNAL E866.

  1. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Kotwal, Ashutosh V.; Goshaw, Al; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, #12;ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22; ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water-#12;lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  2. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22;{mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  3. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

  4. THE HIGH-ENERGY GAMMA-RAY FLUENCE AND ENERGY SPECTRUM OF GRB 970417a FROM OBSERVATIONS WITH MILAGRITO

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    is related to the energy of the primary gammTHE HIGH-ENERGY GAMMA-RAY FLUENCE AND ENERGY SPECTRUM OF GRB 970417a FROM OBSERVATIONSV fluence and the energy spectrum are now derived using additional data from a scaler system that recorded

  5. Energy-efficient wireless communication In this chapter we present an energy-efficient highly adaptive network

    E-Print Network [OSTI]

    Havinga, Paul J.M.

    Energy-efficient wireless communication In this chapter we present an energy-efficient highly substantial research in the hardware aspects of mobile communications energy-efficiency, such as low-power electronics, power-down modes, and energy efficient modulation. However, due to fundamental physical

  6. Final project report: High energy rotor development, test and evaluation

    SciTech Connect (OSTI)

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  7. High-energy accelerator for beams of heavy ions

    DOE Patents [OSTI]

    Martin, Ronald L. (La Grange, IL); Arnold, Richard C. (Chicago, IL)

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  8. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    SciTech Connect (OSTI)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  9. Power/energy use cases for high performance computing.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven [National Renewable Energy Laboratory] [National Renewable Energy Laboratory; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  10. Cosmic ray transport and anisotropies to high energies

    E-Print Network [OSTI]

    Biermann, P L; Meli, A; Nath, B N; Seo, E -S; de Souza, V; Tjus, J Becker

    2015-01-01

    A model is introduced, in which the irregularity spectrum of the Galactic magnetic field beyond the dissipation length scale is first a Kolmogorov spectrum $k^{-5/3}$ at small scales $\\lambda \\, = \\, 2 \\pi/k$ with $k$ the wave-number, then a saturation spectrum $k^{-1}$, and finally a shock-dominated spectrum $k^{-2}$ mostly in the halo/wind outside the Cosmic Ray disk. In an isotropic approximation such a model is consistent with the Interstellar Medium (ISM) data. With this model we discuss the Galactic Cosmic Ray (GCR) spectrum, as well as the extragalactic Ultra High Energy Cosmic Rays (UHECRs), their chemical abundances and anisotropies. UHECRs may include a proton component from many radio galaxies integrated over vast distances, visible already below 3 EeV.

  11. High energy hadron-hadron collisions. Final report

    SciTech Connect (OSTI)

    Chou, T.T.

    1995-08-01

    This project of studying high energy collision phenomena with the geometrical model has been undertaken and developed by this investigator and collaborators since 1967. Instead of basing conjectures on mathematical extrapolations from some ad hoc theories, this approach was to scrutinize first the general features of the phenomena before going into specific details. This particular method has proved successful in correlating experimental data, suggesting experiments, predicting new phenomena and guiding future experimental studies. In the following, important results of the geometrical model obtained with the support of the DOE grant are summarized in three parts: the elastic hadron-hadron scattering, the inelastic hadron-hadron collision, and the hadronic production in e{sup +}e{sup {minus}} annihilation. The fourth part of this report outlines the results of other topics of investigation. To avoid repetition, only the main physical ideas and essential experimental evidences are presented, leaving out detailed discussions which can be found in the literature and previous reports.

  12. Automatic Metadata Extraction - The High Energy Physics Use Case

    E-Print Network [OSTI]

    Boyd, Joseph; Rajman, Martin

    Automatic metadata extraction (AME) of scientific papers has been described as one of the hardest problems in document engineering. Heterogeneous content, varying style, and unpredictable placement of article components render the problem inherently indeterministic. Conditional random fields (CRF), a machine learning technique, can be used to classify document metadata amidst this uncertainty, annotating document contents with semantic labels. High energy physics (HEP) papers, such as those written at CERN, have unique content and structural characteristics, with scientific collaborations of thousands of authors altering article layouts dramatically. The distinctive qualities of these papers necessitate the creation of specialised datasets and model features. In this work we build an unprecedented training set of HEP papers and propose and evaluate a set of innovative features for CRF models. We build upon state-of-the-art AME software, GROBID, a tool coordinating a hierarchy of CRF models in a full document ...

  13. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  14. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  15. High energy. Progress report, March 1, 1992--February 28, 1997

    SciTech Connect (OSTI)

    Bonner, B.E.; Roberts, J.B. Jr.

    1996-09-01

    The Bonner Lab High Energy Group at Rice University has major hardware and software design and construction responsibilities in three of the flagship experiments of US High Energy Physics: D0, CMS, and KTeV. These commitments were undertaken after managing boards of the collaborations had evaluated the unique capabilities that Bonner Lab has to offer. Although fiscal constraints prohibited their participation in the final year of the SMC experiment (1996) on the spin dependent structure functions of nucleons, they played a major role there since it was proposed in 1988. The new results from the SMC data taken in previous years continue to generate a buzz of theoretical activity--and to increase understanding of the nucleon structure functions and their behavior as a function of Q{sup 2} and x. They have also spawned large new experimental spin physics programs at HERA and at RHIC that ultimately will provide answers to these fundamental questions. This is a direct result of the unprecedented precision and kinematic range of the SMC results. Such precision would not have been possible without the improvement in the knowledge of the muon beam polarization using the Rice-designed beam polarimeter. In D0 Bonner Lab has been active in data taking, data analysis, upgrade design, and upgrade construction projects. In CMS they are responsible for the design and construction of the trigger electronics for one of the crucial subsystems: the end cap muon detectors. Other responsibilities are fully expected as the US commitment to LHC projects becomes clearer. The technical capabilities are well matched to the enormous challenges posed by the physics measurements being contemplated for the CMS detector. KTeV will be taking data shortly. Rice made major contributions to the construction and commissioning of this experiment. The long list of publications and presentations during the past five years attests to the fact that the group has been working hard and productively.

  16. A high-spatial-resolution fiber-optic-coupled CMOS imager with novel scintillator for high-energy x-ray

    E-Print Network [OSTI]

    Gruner, Sol M.

    A high-spatial-resolution fiber-optic-coupled CMOS imager with novel scintillator for high-energy x, Cornell University, Ithaca NY 14853 USA 2 Cornell High Energy Synchrotron Source, Cornell University-mail: rbaur@physics.cornell.edu Abstract. A fast, high-spatial-resolution detector for high-energy microscopy

  17. High-Energy Composite Permanent Magnets: High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy

    SciTech Connect (OSTI)

    2010-02-15

    Broad Funding Opportunity Announcement Project: The University of Delaware is developing permanent magnets that contain less rare earth material and produce twice the energy of the strongest rare earth magnets currently available. The University of Delaware is creating these magnets by mixing existing permanent magnet materials with those that are more abundant, like iron. Both materials are first prepared in the form of nanoparticles via techniques ranging from wet chemistry to ball milling. After that, the nanoparticles must be assembled in a 3-D array and consolidated at low temperatures to form a magnet. With small size particles and good contact between these two materials, the best qualities of each allow for the development of exceptionally strong composite magnets.

  18. GALAXIES CORRELATING WITH ULTRA-HIGH ENERGY COSMIC RAYS

    SciTech Connect (OSTI)

    Zaw, Ingyin; Farrar, Glennys R. [Center for Cosmology and Particle Physics and Department of Physics, New York University, New York, NY 10003 (United States); Greene, Jenny E. [Department of Astronomy and Astrophysics, Peyton Hall, Princeton, NJ 08854 (United States)

    2009-05-10

    The Pierre Auger Observatory reported that 20 of the 27 highest energy cosmic rays have arrival directions within 3.{sup 0}2 of a nearby galaxy in the Veron-Cetty and Veron (VCV) Catalog of Quasars and Active Galactic Nuclei (12th ed.), with a 1% probability that this would be due to chance if the cosmic ray directions were isotropic. In this paper, we examine the correlated galaxies to gain insight into the possible ultra-high energy cosmic ray (UHECR) sources. We find that 14 of the 21 correlated VCV galaxies are active galactic nuclei (AGNs) and we determine their bolometric luminosities. The remaining seven are primarily star-forming galaxies. The bolometric luminosities of the correlated AGNs are all greater than 5 x 10{sup 42} erg s{sup -1}. This may explain the absence of UHECRs from the Virgo region in spite of the large number of VCV galaxies in Virgo, since most of the VCV galaxies in the Virgo region are low-luminosity AGNs. Interestingly, the bolometric luminosities of most of the AGNs are significantly lower than that required to satisfy the minimum condition for UHECR acceleration in a continuous jet. If a UHECR-AGN correlation is substantiated with further statistics, our results lend support to the recently proposed 'giant AGN flare' mechanism for UHECR acceleration.

  19. Metrology Challenges for High Energy Density Science Target Manufacture

    SciTech Connect (OSTI)

    Seugling, R M; Bono, M J; Davis, P

    2009-02-19

    Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

  20. Low-energy U(1) x USp(2M) gauge theory from simple high-energy gauge group

    E-Print Network [OSTI]

    Sven Bjarke Gudnason; Kenichi Konishi

    2010-05-17

    We give an explicit example of the embedding of a near BPS low-energy (U(1) x USp(2M))/Z_2 gauge theory into a high-energy theory with a simple gauge group and adjoint matter content. This system possesses degenerate monopoles arising from the high-energy symmetry breaking as well as non-Abelian vortices due to the symmetry breaking at low energies. These solitons of different codimensions are related by the exact homotopy sequences.

  1. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect (OSTI)

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  2. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

  3. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    1.5. Effective energy management systems. 1.6. Fill gaps incontrols and energy management systems (20-30 min) Intro:through building or energy management system trending or

  4. HIGH ENERGY EXCITATION FUNCTIONS IN THE HEAVY REGION

    E-Print Network [OSTI]

    Meinke, W.W.; Wick, G.C.; Seaborg, G.T.

    2008-01-01

    of the U. S. Atomic Energy Commission. UCRL-868 Page 62Calvin, U. S. Atomic Energy Commission Declassified DocumentvL Mel,nke:i 'i], iL Atomic Energy Commission Declassified

  5. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10johansson.pdf More Documents & Publications Partially...

  6. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect (OSTI)

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.

  7. Sandia Energy - High-Fidelity Hydrostructural Analysis of Ocean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine Home Renewable Energy Energy Water Power Partnership News News & Events Computational...

  8. Velocity distribution of high-energy particles and the solar neutrino problem

    E-Print Network [OSTI]

    Jian-Miin Liu

    2001-08-18

    High energy infers high velocity and high velocity is a concept of special relativity. The Maxwellian velocity distribution is corrected to be consistent with special relativity. The corrected distribution reduces to the Maxwellian distribution for small velocities, contains a relatively depleted high-energy tail and vanishes at the velocity of light. This corrected distribution will lower solar neutrino fluxes and change solar neutrino energy spectra but keep solar sound speeds.

  9. Searching for Very High Energy Emission from Pulsars Using the High Altitude Water Cherenkov (HAWC) Observatory

    E-Print Network [OSTI]

    C. Alvarez Ochoa; P. M. Saz Parkinson; A. Belfiore; A. Carramińana; C. Rivičre; E. Moreno Barbosa; for the HAWC collaboration

    2015-08-20

    There are currently over 160 known gamma-ray pulsars. While most of them are detected only from space, at least two are now seen also from the ground. MAGIC and VERITAS have measured the gamma ray pulsed emission of the Crab pulsar up to hundreds of GeV and more recently MAGIC has reported emission at $\\sim2$ TeV. Furthermore, in the Southern Hemisphere, H.E.S.S. has detected the Vela pulsar above 30 GeV. In addition, non-pulsed TeV emission coincident with pulsars has been detected by many groups, including the Milagro Collaboration. These GeV-TeV observations open the possibility of searching for very-high-energy (VHE, > 100GeV) pulsations from gamma-rays pulsars in the HAWC field of view.

  10. Searching for Very High Energy Emission from Pulsars Using the High Altitude Water Cherenkov (HAWC) Observatory

    E-Print Network [OSTI]

    Ochoa, C Alvarez; Belfiore, A; Carramińana, A; Rivičre, C; Barbosa, E Moreno

    2015-01-01

    There are currently over 160 known gamma-ray pulsars. While most of them are detected only from space, at least two are now seen also from the ground. MAGIC and VERITAS have measured the gamma ray pulsed emission of the Crab pulsar up to hundreds of GeV and more recently MAGIC has reported emission at $\\sim2$ TeV. Furthermore, in the Southern Hemisphere, H.E.S.S. has detected the Vela pulsar above 30 GeV. In addition, non-pulsed TeV emission coincident with pulsars has been detected by many groups, including the Milagro Collaboration. These GeV-TeV observations open the possibility of searching for very-high-energy (VHE, > 100GeV) pulsations from gamma-rays pulsars in the HAWC field of view.

  11. Energy Dependence of Particle Ratios in High Energy Nucleus-Nucleus Collisions: A USTFM Approach

    E-Print Network [OSTI]

    Bashir, Inam-ul

    2015-01-01

    We study the identified particle ratios produced at mid-rapidity in heavy ion collisions, along with their correlations with the collision energy. We employ our earlier proposed Unified Statistical Thermal Freeze-out Model (USTFM), which incorporates the effects of both longitudinal as well as transverse hydrodynamic flow in the hot hadronic system. A fair agreement seen between the experimental data and our model results confirms that the particle production in these collisions is of statistical nature. The variation of the chemical freeze-out temperature and the baryon chemical potential with respect to collision energies is studied. The chemical freeze-out temperature is found to be almost constant beyond the RHIC energy and is found to be close to the QCD predicted phase transition temperature suggesting that the chemical freeze-out occurs soon after the hadronization takes place. The vanishing value of chemical potential at LHC indicates very high degree of nuclear transparency in the collision.

  12. High-Tech Means High-Efficiency: The Business Case for Energy Management in High-Tech Industries

    E-Print Network [OSTI]

    Shamshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, Robert S.; Mills, Evan; Tschudi, William

    2005-01-01

    100-times as much energy per square foot as a typical officeuses far more energy and water per square foot than thewhole-building energy savings ($3.60 per square foot annual

  13. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect (OSTI)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.

  14. High Performance Indoor Air Quality Specification for Net Zero Energy Homes

    E-Print Network [OSTI]

    High Performance Indoor Air Quality Specification for Net Zero Energy Homes White + GreenSpec SHEET PHOTOVOLTAIC PANELS #12;High Performance Indoor Air Quality Specification for Net Zero Energy Homes NIST GCR 14 Division provides scientific leadership to help the U.S. achieve its vision of net zero energy (NZE

  15. ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR HIGH-PERFORMANCE COMPUTING PLATFORMS

    E-Print Network [OSTI]

    Qin, Xiao

    ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR HIGH-PERFORMANCE COMPUTING PLATFORMS Except where School Engineering #12;ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR HIGH-PERFORMANCE COMPUTING PLATFORMS energy-aware resource management techniques to #12;v HPC platforms. We have conducted extensive

  16. Running Behavior and Its Energy Cost in Mice Selectively Bred for High Voluntary Locomotor Activity

    E-Print Network [OSTI]

    Saltzman, Wendy

    662 Running Behavior and Its Energy Cost in Mice Selectively Bred for High Voluntary Locomotor. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed. 2006; Oufiero and Garland 2007). In these contexts, both the limits to performance and the energy costs

  17. Energy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems

    E-Print Network [OSTI]

    Conte, Thomas M.

    time of a slow PCM based memory and significant energy reductions against a DDR3 commodity DRAM memoryEnergy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems Abstract the point of view of scaling and energy consumption. PCM-only memories suffer from latency issues, high

  18. Self-Constructive High-Rate System Energy Modeling for Battery-Powered Mobile Systems

    E-Print Network [OSTI]

    Zhong, Lin

    of a system in the lab using high quality external power measurements. Such methods are not only laborSelf-Constructive High-Rate System Energy Modeling for Battery-Powered Mobile Systems Mian Dong, low power, mobile systems 1. Introduction An energy model estimates the energy consumption by a mobile

  19. technology offer SandTES -High Temperature Sand Thermal Energy Storage

    E-Print Network [OSTI]

    Szmolyan, Peter

    technology offer SandTES - High Temperature Sand Thermal Energy Storage key words: High Temperature Energy Storage | Fluidized Bed | Sand | The invention consists of a fluidized bed with internal heat together with Dr. Eisl of ENRAG GmbH. Background Thermal energy storage (TES) systems are essential

  20. A NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY

    E-Print Network [OSTI]

    Danon, Yaron

    Laboratory P.O. Box 1072, Schenectady, New York 12301-1072 A new high energy resolution modular neutronA NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY capabilities at the Laboratory in and above the resolved resonance energy region from 1 keV to 600 ke

  1. Single-Walled Carbon Nanotubes for High-Energy Optical Pulse Formation Yong-Won Song

    E-Print Network [OSTI]

    Maruyama, Shigeo

    - 1 - Single-Walled Carbon Nanotubes for High-Energy Optical Pulse Formation Yong-Won Song Center-Walled Carbon Nanotubes for High-Energy Optical Pulse Formation Authors: Yong-Won Song, Shinji Yamashita, Shigeo for Energy Materials Research, Korea Institute of Science and Technology, Seoul 136-791, Korea E-mail: ysong

  2. Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro P. M. Saz Parkinson 95064 Abstract. Gamma-Ray Bursts (GRBs) have been detected at GeV energies by EGRET and models predict for very high energy emission from a sample of 106 gamma-ray bursts (GRB) detected since the beginning

  3. Limits on Very High Energy Emission from Gamma-Ray Bursts with the Milagro

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Limits on Very High Energy Emission from Gamma-Ray Bursts with the Milagro Observatory Miguel F of Milagro allow it to detect very high energy (VHE) gamma-ray burst emission with much higher sensitivity gamma-ray burst satellites at keV to MeV energies. Even in the absence of a positive detection, VHE

  4. Energy-transfer dynamics of high-pressure rovibrationally excited molecular H2

    E-Print Network [OSTI]

    Augustine, Mathew P.

    Energy-transfer dynamics of high-pressure rovibrationally excited molecular H2 David J. Saiki 2005; published online 14 September 2005 The energy-transfer dynamics of high-pressure molecular H2 gas energy transfer is described and used to fit the experimental Raman scattering results obtained

  5. ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR HIGH-PERFORMANCE COMPUTING PLATFORMS

    E-Print Network [OSTI]

    Qin, Xiao

    ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR HIGH-PERFORMANCE COMPUTING PLATFORMS Except where School Engineering #12;ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR HIGH-PERFORMANCE COMPUTING PLATFORMS of the Requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 9, 2008 #12;iii ENERGY-EFFICIENT

  6. Energy-Efficient Scheduling for Best-Effort Interactive Services to Achieve High Response Quality

    E-Print Network [OSTI]

    Bader, David A.

    Energy-Efficient Scheduling for Best-Effort Interactive Services to Achieve High Response Quality. In this paper, we study the quality-energy tradeoff for such services by using a composite performance metric the concave quality function of best-effort applications to achieve high service quality with low energy

  7. Load Scheduling and Power Trading in Systems with High Penetration of Renewable Energy

    E-Print Network [OSTI]

    Wong, Vincent

    Load Scheduling and Power Trading in Systems with High Penetration of Renewable Energy Resources with high penetration of renewable energy resources (RERs). We adopt approximate dynamic programming friendly renewable energy resources (RERs). Regulations have been passed to increase the pro- duction

  8. The High Energy Solar Spectroscopic Imager (HESSI) R. P. Lin and the HESSI team1

    E-Print Network [OSTI]

    California at Berkeley, University of

    The High Energy Solar Spectroscopic Imager (HESSI) Mission R. P. Lin and the HESSI team1 Physics objective of the High Energy Solar Spectroscopic Imager (HESSI) Small Explorer mission selected by NASA is to investigate the physics of particle acceleration and energy release in solar flares. The HESSI instrument

  9. PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda

    E-Print Network [OSTI]

    PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda J.S.T. Ng, P. Chen, W present results from the SLAC E­150 experiment on plasma focusing of high energy density electron and experiments to test this con­ cept were carried out with low energy density electron beams [2]. The goals

  10. Proceedings of the Workshop on Producing High Luminosity High Energy Proton-Antiproton Collisions

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    in the Fermilab Energy Doubler/Saver and in Brook- haven'sovercome by using the Energy Doubler/Saver ring to momentum-the forthcoming Energy Doubler/Saver at Fermilab could give

  11. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    it appears in Energy & Environmental Science, 4(6), 2011. BoTheoretical Study", Energy & Environmental Science, 4(6), 3.it appears in Energy & Environmental Science, 4(6), 2011. Bo

  12. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C

    E-Print Network [OSTI]

    Moskalenko, Igor V.

    2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy releaseFermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C The Fermi LAT and Fermi GBM together record GRBs over a broad energy range spanning about 7 decades of gamma- ray energy. In September

  13. Benefits of Green Energy and Proportionality in High Speed Wide Area Networks Connecting Data Centers

    E-Print Network [OSTI]

    Simunic, Tajana

    Benefits of Green Energy and Proportionality in High Speed Wide Area Networks Connecting Data Network ModelBackbone Network Model Green EnergyGreen Energy SPR vs. GEARSPR vs. GEAR All vs. Necessary (MuSyC), National Science Foundation (NSF) Project GreenLight, Energy Sciences Network (ESnet), NSF

  14. High Energy Neutrino Physics with Liquid Scintillation Detectors John G. Learned #

    E-Print Network [OSTI]

    Learned, John

    , and these point sharply back towards the sun. But this low energy capability still has not been enough to detectHigh Energy Neutrino Physics with Liquid Scintillation Detectors John G. Learned # Department scintillation detectors have been generally dedicated to low energy neutrino measure­ ments, in the MeV energy

  15. High Energy Neutrino Physics with Liquid Scintillation Detectors John G. Learned

    E-Print Network [OSTI]

    Learned, John

    , and these point sharply back towards the sun. But this low energy capability still has not been enough to detectHigh Energy Neutrino Physics with Liquid Scintillation Detectors John G. Learned Department scintillation detectors have been generally dedicated to low energy neutrino measure- ments, in the MeV energy

  16. Modular multi-element high energy particle detector

    DOE Patents [OSTI]

    Coon, D.D.; Elliott, J.P.

    1990-01-02

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins projecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array. 5 figs.

  17. High-energy solar particle events in cycle 24

    E-Print Network [OSTI]

    Gopalswamy, Nat; Yashiro, Seiji; Xie, Hong; Akiyama, Sachiko; Thakur, Neeharika

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000...

  18. Modular multi-element high energy particle detector

    DOE Patents [OSTI]

    Coon, Darryl D. (Pittsburgh, PA); Elliott, John P. (Pittsburgh, PA)

    1990-01-02

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins porjecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array.

  19. High-energy emission of the first millisecond pulsar

    SciTech Connect (OSTI)

    Ng, C.-Y.; Takata, J.; Leung, G. C. K.; Cheng, K. S. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Philippopoulos, P., E-mail: ncy@bohr.physics.hku.hk [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada)

    2014-06-01

    We report on X-ray and gamma-ray observations of the millisecond pulsar (MSP) B1937+21 taken with the Chandra X-ray Observatory, XMM-Newton, and the Fermi Large Area Telescope. The pulsar X-ray emission shows a purely non-thermal spectrum with a hard photon index of 0.9 ± 0.1, and is nearly 100% pulsed. We found no evidence of varying pulse profile with energy as previously claimed. We also analyzed 5.5 yr of Fermi survey data and obtained much improved constraints on the pulsar's timing and spectral properties in gamma-rays. The pulsed spectrum is adequately fitted by a simple power-law with a photon index of 2.38 ± 0.07. Both the gamma-ray and X-ray pulse profiles show similar two-peak structure and generally align with the radio peaks. We found that the aligned profiles and the hard spectrum in X-rays seem to be common properties among MSPs with high magnetic fields at the light cylinder. We discuss a possible physical scenario that could give rise to these features.

  20. Upgrading of biorenewables to high energy density fuels

    SciTech Connect (OSTI)

    Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. "" Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  1. Formation of Superdense Hadronic Matter in High-Energy Heavy-Ion Collisions 

    E-Print Network [OSTI]

    Li, Ba0-An; Ko, Che Ming.

    1995-01-01

    We present the detail of a newly developed relativistic transport model (ART 1.0) for high energy heavy-ion collisions. Using this model, we first study the general collision dynamics between heavy ions at the AGS energies. ...

  2. Policies and Programs to Integrate High Penetrations of Variable Renewable Energy (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2012-06-01

    The goals of this project are to highlight the diverse approaches for enabling high renewable energy penetration; synthesize lessons on effective policies and programs and present avenues for action to energy ministers and other stakeholders.

  3. Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy Conversion Devices

    E-Print Network [OSTI]

    Rappe, Andrew M.

    Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy of applications, such as sensing, data storage, and energy conversion. For example, perovskite solid solutions

  4. Economic Effect on Agricultural Production of Alternative Energy Input Prices: Texas High Plains 

    E-Print Network [OSTI]

    Adams, B. M.; Lacewell, R. D.; Condra, G. D.

    1976-01-01

    The Arab oil embargo of 1973 awakened the world to the reality of energy shortages and higher fuel prices. Agriculture in the United States is highly mechanized and thus energy intensive. This study seeks to develop an evaluative capability...

  5. The National Ignition Facility: A New Era in High Energy Density Science

    SciTech Connect (OSTI)

    Moses, E

    2009-06-10

    The National Ignition Facility, the world's most energetic laser system, is now operational. This talk will describe NIF, the ignition campaign, and new opportunities in fusion energy and high energy density science enabled by NIF.

  6. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect (OSTI)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  7. The National Ignition Facility - Applications for Inertial Fusion Energy and High Energy Density Science

    SciTech Connect (OSTI)

    Campbell, E.M.; Hogan, W.J.

    1999-08-12

    Over the past several decades, significant and steady progress has been made in the development of fusion energy and its associated technology and in the understanding of the physics of high-temperature plasmas. While the demonstration of net fusion energy (fusion energy production exceeding that required to heat and confine the plasma) remains a task for the next millennia and while challenges remain, this progress has significantly increased confidence that the ultimate goal of societally acceptable (e.g. cost, safety, environmental considerations including waste disposal) central power production can be achieved. This progress has been shared by the two principal approaches to controlled thermonuclear fusion--magnetic confinement (MFE) and inertial confinement (ICF). ICF, the focus of this article, is complementary and symbiotic to MFE. As shown, ICF invokes spherical implosion of the fuel to achieve high density, pressures, and temperatures, inertially confining the plasma for times sufficient long (t {approx} 10{sup -10} sec) that {approx} 30% of the fuel undergoes thermonuclear fusion.

  8. High-Rise Residential Building Energy Analysis in Shanghai, China 

    E-Print Network [OSTI]

    Zhou, Hongyun

    2014-07-30

    the growing residential energy use in Shanghai. The energy efficiency measures explored in this study should also provide policy makers with alternatives other than building more power plants, transmission and distribution systems....

  9. Cleanroom energy benchmarking in high-tech and biotech industries

    E-Print Network [OSTI]

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-01-01

    Benchmarking In High-Tech and Biotech Industries WilliamBenchmarking In High- Tech and Biotech Industries Williamindustries (electronics and biotech) were selected. The

  10. Radiative energy loss and radiative p_T-broadening of high-energy partons in QCD matter

    E-Print Network [OSTI]

    Wu, Bin

    2015-01-01

    I give a self-contained review on radiative p_T-broadening and radiative energy loss of high-energy partons in QCD matter. The typical p_T^2 of high-energy partons receives a double logarithmic correction due to the recoiling effect of medium-induced gluon radiation. Such a double logarithmic term, averaged over the path length of the partons, can be taken as the radiative correction to the jet quenching parameter qhat and hence contributes to radiative energy loss. This has also been confirmed by detailed calculations of energy loss by radiating two gluons.

  11. High-energy high-luminosity electron-ion collider eRHIC

    SciTech Connect (OSTI)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.; et al

    2011-08-09

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 10{sup 33}-10{sup 34} cm{sup -2} sec{sup -1} range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high-luminosity eRHIC. In it, electrons from the polarized pre-injector will be accelerated to their top energy by passing six times through two SRF linacs. After colliding with the hadron beam in up to three detectors, the e-beam will be decelerated by the same linacs and dumped. The six-pass magnetic system with small-gap magnets will be installed from the start. We will stage the electron energy from 5 GeV to 30 GeV stepwise by increasing the lengths of the SRF linacs. We discuss details of eRHIC's layout in Section 3. We considered several IR designs for eRHIC. The latest one, with a 10 mrad crossing angle and {beta}* = 5 cm, takes advantage of newly commissioned Nb{sub 3}Sn quadrupoles. Section 4 details the eRHIC lattice and the IR layout. The current eRHIC design focuses on electron-hadron collisions. If justified by the EIC physics, we will add a 30 GeV polarized positron ring with full energy injection from eRHIC ERL. This addition to the eRHIC facility provide for positron-hadron collisions, but at a significantly lower luminosity than those attainable in the electron-hadron mode. As a novel high-luminosity EIC, eRHIC faces many technical challenges, such as generating 50 mA of polarized electron current. eRHIC also will employ coherent electron cooling (CeC) for the hadron beams. Staff at BNL, JLab, and MIT is pursuing vigorously an R&D program for resolving addressing these obstacles. In collaboration with Jlab, BNL plans experimentally to demonstrate CeC at the RHIC. We discuss the structure and the status of the eRHIC R&D in Section 5.

  12. Modeling California's high-elevation hydropower systems in energy units

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    conditions, hydropower provides 5­10% of the electricity used in the United States [National Energy Education it a valuable renewable energy source. In the mid-1990s, hydropower was about 19% of world's total electricity Development Project, 2007] and almost 75% of the nation's electricity from all renew- able sources [Energy

  13. , 2003, 123, . 3, . 1 16 c INTERNAL ENERGY OF HIGH-DENSITY HYDROGEN

    E-Print Network [OSTI]

    Bonitz, Michael

    �Ý��, 2003, òîì 123, âûï. 3, ñòð. 1#21;16 c 2003 INTERNAL ENERGY OF HIGH-DENSITY HYDROGEN 2002 The internal energy of high-density hydrogen plasmas in the temperature range T = 10000-Universität Berlin D-10115, Berlin, Germany b Institute for High Energy Density, Russian Academy of Sciences 127412

  14. Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium, with a specific discharge capacity of 260 mAh gŔ1 and no capacity fading over 100 cycles at 100 mA gŔ1 . The excellent cyclic stability and high specific discharge capacity of the material are attributed to the novel

  15. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014.

  16. High Current Energy Recovery Linac at BNL | U.S. DOE Office of...

    Office of Science (SC) Website

    High Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of...

  17. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...

    Office of Science (SC) Website

    Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  18. Super stable garnet ceramics may be ideal for high-energy lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (865) 574-7308 Super stable garnet ceramics may be ideal for high-energy lithium batteries ORNL researchers used scanning transmission electron microscopy to take an...

  19. New solar cell technology captures high-energy photons more efficientl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (click to enlarge) Argonne's Center for Nanoscale Materials (click to enlarge) New solar cell technology captures high-energy photons more efficiently By Jared Sagoff *...

  20. Hadron-hadron and hadron-nuclei collisions at high energies

    E-Print Network [OSTI]

    G. Giacomelli; R. Giacomelli

    2000-11-15

    A brief review is made of the present situation of hadron-hadron and hadron-nuclei total elastic and inelastic cross sections at high energies