National Library of Energy BETA

Sample records for future technologies faster

  1. The Future is Here - Smart Home Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Here - Smart Home Technology The Future is Here - Smart Home Technology Better Buildings Residential Network Peer Exchange Call Series: The Future is Here - Smart...

  2. Information Science and Technology: Celebrating the Future

    E-Print Network [OSTI]

    Haile, Sossina M.

    Information Science and Technology: Celebrating the Future A gathering to welcome 22 new IST--to be called the Walter and Leonore Annenberg Center for Information Science and Technology--is expected of information and will design the computers and materials for the next genera- tion of information technology

  3. Cost Effectiveness of Technology Solutions for Future Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technology Solutions for Future Vehicle Systems Explores the economics of CO2 emission reductions by added engine technology to determine if there is an overall...

  4. The Future of Absorption Technology in America: A Critical Look...

    Broader source: Energy.gov (indexed) [DOE]

    Building, Cooling, Heating, and Power (BCHP) and innovation in order to understand the future of absorption technology in America. absorptionfuture.pdf More Documents &...

  5. Invitation/Program Technology Watch Day on Future Biofuels

    E-Print Network [OSTI]

    Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

  6. AVLIS: The technology for the future

    SciTech Connect (OSTI)

    Rifakes, G.

    1994-12-31

    Gaseous diffusion plants have been in operation for more than 40 yr. Recognizing that these plants have a finite life, the U.S. Department of Energy (DOE) in the early 1970s began investing in advanced technologies to determine which technology would be best suited to replace these plants. The two technologies pursued by the DOE were atomic vapor laser isotope separation (AVLIS) and gas centrifuge. In 1984, the DOE determined that it was in its best interest to stop work on centrifuge technology and to continue AVLIS research. In excess of $1 billion has been sent to further the AVLIS technology.

  7. Science and Technology of Future Light Sources

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stöhr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  8. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  9. Growing America's Energy Future: Bioenergy Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    made possible by 50 million in cost-shared DOE funding. Bioenergy Successes 2014 BIOENERGY TECHNOLOGIES OFFICE Completed Feedstock Logistics Projects Demonstrate...

  10. Faster Than Light?

    E-Print Network [OSTI]

    Robert Geroch

    2010-05-10

    It is argued that special relativity remains a viable physical theory even when there is permitted signals traveling faster than light.

  11. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  12. Technology and Australia's Future a summary Australia's past has been substantially shaped by technologies both old and new.

    E-Print Network [OSTI]

    Botea, Adi

    substantially shaped by technologies both old and new. Australia's future will also be substantially shaped by new technologies. The report Technology and Australia's Future,1 which is summarised here, looked at such new technologies from a broad

  13. NREL: Transportation Research - Future Automotive Systems Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With UsSimulator Future Automotive

  14. Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Cathode Coating Enables Faster Battery Charging, Discharging Technology available for licensing: Coating increases electrical conductivity of cathode materials Coating...

  15. Industries of the Future: Creating a Sustainable Technology Edge 

    E-Print Network [OSTI]

    Glatt, S. L.

    2000-01-01

    OF THE FUTURE: Creating A Sustainable Technology Edge Sandra L. Glatt Office of Industrial Technologies Energy Efficiency and Renewable Energy U. S. Department of Energy 55 ESL-IE-00-04-10 Proceedings from the Twenty-second National Industrial Energy....S, Department of Energy Industries of the Future: Creating a Sustainable Technology Edge . cUn' OFwlOd CCooI .. LPG .Eleclric~ CNI!hnIG. AgriclAtll'e Mining A1uminu",J Totll1* kldutb't.1 Conllomption: :W, 111 TrtIlion 8tus Forest E"~ ?'913 1976...

  16. New Electricity Technologies for a Sustainable Future

    E-Print Network [OSTI]

    Jamasb, Tooraj; Nuttall, William J.; Pollitt, Michael G.

    2006-03-14

    . The role of wind speed and wind resource intermittency is discussed in the context of wind power technologies and the economics of this form of electricity generation. The paper stresses the recent emphasis on offshore wind farms with anticipated power... costs for a 3MW offshore turbine predicted to be 4.2 c€/kWh. This will be somewhat higher than the equivalent cost for onshore wind power production of 2.4 –3.0 c€/kWh. In such circumstances it is argued that onshore wind power will certainly...

  17. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    term, sustainable energy future, and that these technologiesterm, sustainable energy future and that these technologiesLevel Sustainable Energy Futures Timothy E. Lipman Jennifer

  18. Evaluation of Future Energy Technology Deployment Scenarios for

    E-Print Network [OSTI]

    Electric Light Company (HELCO) Integrated Resource Plan-31 . Three different electricity infrastructureEvaluation of Future Energy Technology Deployment Scenarios for the Big Island Prepared for the U. Following receipt of the draft report, an extensive review was conducted by Hawaii Electric Light Company

  19. The Future of TDM: Technology and Demographic Shifts and Their Implications for

    E-Print Network [OSTI]

    The Future of TDM: Technology and Demographic Shifts and Their Implications for Transportation Demand Management Final report PRC 15-25F #12;2 The Future of TDM: Technology and Demographic Shifts ........................................................................................................... 15 Future Demand and Texas Demographic Trends

  20. Long-term proliferation and safeguards issues in future technologies

    SciTech Connect (OSTI)

    Keisch, B.; Auerbach, C.; Fainberg, A.; Fiarman, S.; Fishbone, L.G.; Higinbotham, W.A.; Lemley, J.R.; O'Brien, J.

    1986-02-01

    The purpose of the task was to assess the effect of potential new technologies, nuclear and non-nuclear, on safeguards needs and non-proliferation policies, and to explore possible solutions to some of the problems envisaged. Eight subdivisions were considered: New Enrichment Technologies; Non-Aqueous Reprocessing Technologies; Fusion; Accelerator-Driven Reactor Systems; New Reactor Types; Heavy Water and Deuterium; Long-Term Storage of Spent Fuel; and Other Future Technologies (Non-Nuclear). For each of these subdivisions, a careful review of the current world-wide effort in the field provided a means of subjectively estimating the viability and qualitative probability of fruition of promising technologies. Technologies for which safeguards and non-proliferation requirements have been thoroughly considered by others were not restudied here (e.g., the Fast Breeder Reactor). The time scale considered was 5 to 40 years for possible initial demonstration although, in some cases, a somewhat optimistic viewpoint was embraced. Conventional nuclear-material safeguards are only part of the overall non-proliferation regime. Other aspects are international agreements, export controls on sensitive technologies, classification of information, intelligence gathering, and diplomatic initiatives. The focus here is on safeguards, export controls, and classification.

  1. Energy technologies at Sandia National Laboratories: Past, Present, Future

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  2. Thermal batteries: A technology review and future directions

    SciTech Connect (OSTI)

    Guidotti, R.A.

    1995-07-01

    Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couples that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.

  3. Faster than Light Quantum Communication

    E-Print Network [OSTI]

    A. Y. Shiekh

    2008-04-05

    Faster than light communication might be possible using the collapse of the quantum wave-function without any accompanying paradoxes.

  4. Conventional engine technology. volume 3: comparisons and future potential

    SciTech Connect (OSTI)

    Dowdy, M.W.

    1981-12-01

    The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  5. Conventional engine technology. Volume III. Comparisons and future potential

    SciTech Connect (OSTI)

    Dowdey, M.W.

    1981-12-15

    The status of five conventional automobile engine technologies is assessed and the future potential for increasing fuel economy and reducing exhaust emissions is discussed, using the 1980 EPA California emissions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO/sub x/ emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  6. 2005 Final Report: New Technologies for Future Colliders

    SciTech Connect (OSTI)

    Peter McIntyre; Al McInturff

    2005-12-31

    This document presents an annual report on our long-term R&D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress man-agement, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ‘free’ su-perconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A&M group ‘comes of age’ in the family of superconducting magnet R&D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design.

  7. Technology and Architecture: Informing Investment Decisions for the Future of Human Space Exploration

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Technology and Architecture: Informing Investment Decisions for the Future of Human Space;2 #12;3 Technology and Architecture Informing Investment Decisions for the Future of Human Space before the system architecture is defined. This thesis develops a framework for evaluating technologies

  8. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

  9. Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009

    Fuel Cell Technologies Publication and Product Library (EERE)

    Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

  10. Hydrogen Production Roadmap. Technology Pathways to the Future, January 2009

    SciTech Connect (OSTI)

    Curry-Nkansah, Maria; Driscoll, Daniel; Farmer, Richard; Garland, Roxanne; Gruber, Jill; Gupta, Nikunj; Hershkowitz, Frank; Holladay, Jamelyn; Nguyen, Kevin; Schlasner, Steven; Steward, Darlene; Penev, Michael

    2009-01-01

    Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

  11. Science and Technology of Future Light Sources: A White Paper

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, a= Janos; Long, Gabrielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Shenoy, Gopal; Schoenlein, Bob; Shen, Qun; /Argonne /Brookhaven /LBL, Berkeley /SLAC, SSRL

    2009-02-03

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  12. Technology Challenges in Designing the Future Grid to Enable

    E-Print Network [OSTI]

    " Funded by the U.S. DOE Vijay Vittal Director, Power Systems Engineering Research Center Professor in six technical thrust areas in the PSERC Future Grid Initiative, a DOE-funded research effort entitled

  13. Revolution Now: The Future Arrives for Four Clean Energy Technologies...

    Energy Savers [EERE]

    Now highlighting four transformational technologies that are here today: onshore wind power, polysilicon photovoltaic (PV) modules, light-emitting diodes (LEDs), and...

  14. Cost Effectiveness of Technology Solutions for Future Vehicle Systems

    Broader source: Energy.gov [DOE]

    Explores the economics of CO2 emission reductions by added engine technology to determine if there is an overall positive or negative benefit.

  15. Technology: How to build a low-energy future

    Broader source: Energy.gov [DOE]

    Advanced construction technologies promise huge energy savings, says Philip Farese. Investment is needed to bring them to market and to encourage their use.

  16. The Heritage of the Future: Historical Keyboards, Technology, and Modernism

    E-Print Network [OSTI]

    Ng, Tiffany Kwan

    2015-01-01

    park on a new carillon and UFO-shaped technology museum inleveraged the museum’s UFO likeness in a television

  17. Future of Wind Energy Technology in the United States

    SciTech Connect (OSTI)

    Thresher, R.; Robinson, M.; Veers, P.

    2008-10-01

    This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

  18. Los Alamos to study future computing technology capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology capabilities Los Alamos will lead a collaboration within the Department of Energy and with select university partners to explore what the current capabilities and...

  19. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  20. Automated construction technologies : analyses and future development strategies

    E-Print Network [OSTI]

    Hoang, Han (Han Mai)

    2005-01-01

    Substandard productivity and the lack of skilled workers in the construction industry have led major corporations all over the world aiming to produce various types of automated construction technologies. During the process, ...

  1. Future nano- and micro-systems using nanobonding technologies

    SciTech Connect (OSTI)

    Howlader, Matiar M. R. E-mail: jamal@mcmaster.ca; Deen, M. Jamal E-mail: jamal@mcmaster.ca

    2014-03-31

    In this paper, some of the recent achievements in surface-activation-based nanobonding technology are described. This bonding technology allows for the combination of electronic, photonic, fluidic and mechanical functionalities into small form-factor systems for emerging applications in health diagnostics and screening, for example. These nanobonding technologies provide void-free, strong, and nanoscale bonding at room temperature or at low temperatures (<200 °C), and they do not require chemicals, adhesives, or high external pressure. The interfaces of the nanobonded materials in ultra-high vacuum and in air correspond to the covalent bonds, and hydrogen and hydroxyl bonds, respectively, which gives rise to excellent bonding properties. Further, these nanobonding technologies are well-suited for the development of low-cost, high-performance miniaturized systems such as biophotonic imaging systems.

  2. ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In June 1998, the Chairman of the National Mining Association and the Secretary of energy entered into a Compact to pursue a collaborative technology research partnership, the Mining Industry of the Future.

  3. Technology and architecture : informing investment decisions for the future of human space exploration

    E-Print Network [OSTI]

    Battat, Jonathan Alexander

    2012-01-01

    NASA's detailed programmatic goals, system architectures, and mission designs for future human spaceflight beyond Earth orbit remain unspecified. Given this uncertainty, it is not clear exactly which technologies are ...

  4. FT-IR spectroscopy technology, market evolution and future strategies of Bruker Optics Inc.

    E-Print Network [OSTI]

    Higdon, Thomas (Thomas Charles)

    2010-01-01

    This thesis explores the technology and market evolution of FT-IR spectroscopy over its nearly forty year history to aid in determining future product design and marketing strategies for an industry-leading firm, Bruker ...

  5. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. Optical Label Switching Technology and Energy-Efficient Future Networks S. J. Ben Yoo

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Optical Label Switching Technology and Energy-Efficient Future Networks S. J. Ben Yoo Department traffic with extremely low energy consumption and high goodput. Keywords: Optical packet switching, optical label switching, energy efficient networks. 1. Introduction The future Internet is rapidly

  7. Coiled tubing technology advances to a bright future

    SciTech Connect (OSTI)

    Ghiselin, R.

    1998-07-01

    This supplement contains six short articles on coiled tubing, its advantages, performance, and materials. The articles are: Coiled Tubing--On the Brink of a New Millennium; CT Advances Promise a Broad, Dynamic Future; Performance, Safety and Cost Make the Case for HPCT; Fast and Accurate, CTD Helps Drillers Hit Their Targets; Composite Tubing Rapidly Proves Advantages in the Field; and People and Performance are Key to Coiled Tubing Growth.

  8. Past, present and future of the internet Revolutionising information technology

    E-Print Network [OSTI]

    Wyatt, Lucy

    in offshore wind power, alone, from 2011 has increased more than 60 per cent to £1.5bn, while planning approvals for onshore wind farms are at a record level. Despite these changes, key aspects of the technology, with certain renewable sources of energy, such as wind power increasing by as much as 45 per cent. Investment

  9. The Future of Connective Technology: Greater Integration through Semantic Modeling

    E-Print Network [OSTI]

    Brock, David

    engineering from the Indian Institute of Technology, Kanpur and a master's degree in logistics from MIT. #12 to significant improvements in productivity, especially in the areas of logistics, supply chain management of Director, Affiliates Program in Logistics at the MIT Center for Transportation and Logistics

  10. The Future is Here - Smart Home Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGE andOffice -Energy Clean airCompetition The Future

  11. Future Science & Technology Programs | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities Nuclear Physics (NP) NPAdministration Future

  12. Carbon capture technology: future fossil fuel use and mitigating climate change

    E-Print Network [OSTI]

    sources for countries heavily reliant on imported fuels4 . Why CCS is not just a synonym for `clean coal'? CCS technology is most frequently discussed in the context of capturing CO2 from coal-fired powerCarbon capture technology: future fossil fuel use and mitigating climate change DR N FloRiN aND DR

  13. IFE CHAMBER TECHNOLOGY STATUS AND FUTURE CHALLENGES W.R. Meier1

    E-Print Network [OSTI]

    Raffray, A. René

    1 IFE CHAMBER TECHNOLOGY ­ STATUS AND FUTURE CHALLENGES W.R. Meier1 , A.R. Raffrary2 , S.I. Abdel.gov (925) 422-8536 2. University of California, San Diego, CA 3. Georgia Institute of Technology, Atlanta-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including dry- wall

  14. IFE CHAMBER TECHNOLOGY STATUS AND FUTURE CHALLENGES W.R. Meier1

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    IFE CHAMBER TECHNOLOGY ­ STATUS AND FUTURE CHALLENGES W.R. Meier1 , A.R. Raffray2 , S.I. Abdel.gov (925) 422-8536 2. University of California, San Diego, CA 3. Georgia Institute of Technology, Atlanta-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including dry- wall

  15. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  16. Future steelmaking technologies and the role of basic research

    SciTech Connect (OSTI)

    Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

    1996-12-31

    The steel industry is going through a technological revolution which will not only change how steel is produced but, also, the entire structure of the industry. The drivers for the new or improved technologies, including reduction in capital requirements, possible shortages in raw materials such as coke and low residual scrap, environmental concerns and customer demands are briefly examined. The current status of research and development in the US and selected international producers was examined. As expected, it was found that the industry`s research capabilities have been greatly reduced. Furthermore, less than half of the companies which identified a given technology as critical have significant R and D programs addressing the technology. Examples of how basic research aided in process improvements in the past are given. The examples include demonstrating how fundamentals of reaction kinetics, improved nitrogen control, thermodynamics of systems helped reduce nozzle clogging and fluid flow studies reduced defects in casting. However, in general, basic research did not play a major role in processes previously developed, but helped understanding and aided optimization. To have a major impact, basic research must be focused and be an integral part of any new process development. An example where this has been done successfully is the AISI Direct Ironmaking and Waste Oxide Recycle Projects in which fundamental studies on reduction, slag foaming, and post combustion reactions have led to process understanding, control and optimization. Industry leaders recognize the value and need for basic research but insist it be truly relevant and done with industry input. From these examples the lessons learned on how to make basic research more effective are discussed.

  17. Technology and future prospects for lightweight plastic vehicle structures

    SciTech Connect (OSTI)

    Stodolsky, F.; Cuenca, R.M.; Bonsignore, P.V.

    1997-08-01

    The state of the technology and the materials and processing issues of using plastics in vehicle body applications (structural and semistructural) were assessed. Plastics are significantly lighter in weight, more easily fabricated into complex shapes, and more corrosion resistance than sheet steel, high-strength steel, or aluminum. However, at their current stage of development, plastics are deficient in one or more necessary properties: heat resistance and dimensional stability, stiffness and tensile strength, toughness, and impact resistance. To upgrade their physical properties for automotive chassis/body applications, plastics need to be compounds with suitable reinforcing fibers. As a short-term approach, the material of choice is a composite structure made with low-cost glass-fiber reinforcement, such as that made in the resin-transfer-molding (RTM) process and used in the body of the Dodge Viper. However, RTM technology based on thermosets requires a processing cycle time that is too long for large production runs. Adaptation of RTM to the formation of thermoplastic composite bodies could have a significant advantage over thermoset technology. Cyclic oligomers, which are precursors to thermoplastic matrix polymers, show promise for this application. Farther on the horizon are advanced composites compounds with the much more expensive (but stronger and stiffer) carbon-fiber reinforcement. However, significant price reductions of precursor materials and advances in processing and fabrication would be needed. Other materials holding promise are liquid crystal polymers (LCP) and LCP blends with other polymers (molecular composites). However, the cost of monomers and the subsequent polymerization technology also remains a considerable drawback to the widespread and increasing acceptance of LCPs.

  18. Revolution Now: The Future Arrives for Four Clean Energy Technologies |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMay 13, 2015 TheTechnologies-2015 Update | Department

  19. Los Alamos to study future computing technology capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion to local UnitedtoHOPENewTechnology strikes

  20. HIsmelt{reg_sign} technology: the future of ironmaking

    SciTech Connect (OSTI)

    Leczo, T.

    2009-03-15

    The unique liquid ironmaking process of HIsmelt{reg_sign} technology produces LD-quality hot metal or pig iron using lower-quality iron ore and non-coking coal, and a variety of iron and carbon-bearing mill wastes, without blending or agglomeration. A HIsmelt facility can replace an obsolete blast furnace in a brownfield application or can be the iron-producing component of a greenfield state-of-the-art steelmaking plant. Two companies in China have signed license agreements to build HIsmelt facilities, but are waiting until the plant in Kwinana, Australia operates for 3 months without any shutdowns or delays before they start construction on their plants.

  1. Current status and future plan of uranium enrichment technology

    SciTech Connect (OSTI)

    Yonekawa, S.; Yamamoto, F.; Yato, Y.; Kishimoto, Y.

    1994-12-31

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has been conducting extensive research and development (R&D) on the centrifuge process for more than a quarter of a century. This development program, designated as a national project in 1972, has resulted in the construction and operation of a pilot plant with a capacity of 50 t separative work unit (SWU) per year as well as a demonstration plant with a capacity of 200 t SWU/yr. Under the basic agreement of cooperation concluded in 1985, the technology developed in this program has been transferred to Japan Nuclear Fuel Limited (JNFL), which is now constructing and operating the commercial plant with a capacity of 1500 t SWU/yr at Rokkasho, Aomori. This paper describes the operational experiences of the demonstration plant, the status of a new material centrifuge, which will be introduced at a later stage of construction of the commercial plant, the development of an advanced centrifuge as a next-generation machine, and the research of a superadvanced centrifuge.

  2. New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)

    SciTech Connect (OSTI)

    Roberts, J. O.

    2014-01-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  3. Renewable Electricity Futures Study Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: Energy.gov [DOE]

    This volume includes chapters discussing biopower, geothermal, hydropower, ocean, solar, wind, and storage technologies. Each chapter includes a resource availability estimate, technology cost and performance characterization, discussions of output characteristics and grid service possibilities, large-scale production and deployment issues, and barriers to high penetration along with possible responses to them. Only technologies that are currently commercially available—biomass, geothermal, hydropower, solar PV, CSP, and wind-powered systems—are included in the modeling analysis. Some of these renewable technologies—such as run-of-river hydropower, onshore wind, hydrothermal geothermal, dedicated and co-fired-with-coal biomass—are relatively mature and well-characterized. Other renewable technologies—such as fixed-bottom offshore wind, solar PV, and solar CSP—are at earlier stages of deployment with greater potential for future technology advancements over the next 40 years.

  4. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

    2002-11-30

    OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  5. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable energy Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

  6. Overview of current and future energy storage technologies for electric power applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Overview of current and future energy storage technologies for electric power applications Ioannis September 2008 Keywords: Power generation Distributed generation Energy storage Electricity storage A B energy sources (RES). The extensive use of such energy sources in today's electricity networks can

  7. GRAPHENE FLAGSHIP, 28 Jan 2013 Graphene appointed an EU Future Emerging Technology flagship

    E-Print Network [OSTI]

    GRAPHENE FLAGSHIP, 28 Jan 2013 Graphene appointed an EU Future Emerging Technology flagship The European Commission has chosen Graphene as one of Europe's first 10-year, 1,000 million euro FET flagships. The mission of Graphene is to take graphene and related layered materials from academic laboratories

  8. HPI Future SOC Lab: Call for Projects Next generation technology, such as multicore CPUs as well as increasing

    E-Print Network [OSTI]

    Weske, Mathias

    - Memory Computing Technology (SAP HANA). The SAP Business ByDesign systemHPI Future SOC Lab: Call for Projects Next generation technology, such as multicore, developers of service-oriented computing systems have to understand

  9. Spivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002.

    E-Print Network [OSTI]

    ) at the National Institute of Standards and Technology (NIST) is a cost-sharing program designed to partnerSpivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002. Advanced Technology Program

  10. Trading accuracy for faster entity linking Kristy Hughes Joel Nothman

    E-Print Network [OSTI]

    Technologies University of Sydney NSW 2006, Australia {khug2372@uni.,joel.nothman@,james.r.curran@}sydney.edu.au James R. Curran Abstract Named entity linking (NEL) can be applied to documents such as financial Hughes, Joel Nothman and James R. Curran. 2014. Trading accuracy for faster named entity linking

  11. 3/5/2014 Micro-Windmill Technology: Future Uses Include Recharging Your Smartphone | Philippine Latest News http://philsense.com/2014/01/11/micro-windmill-technology-future-uses-include-recharging-your-smartphone/ 1/6

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    3/5/2014 Micro-Windmill Technology: Future Uses Include Recharging Your Smartphone | Philippine Latest News http://philsense.com/2014/01/11/micro-windmill Micro-Windmill Technology: Future Uses Include Recharging Your Smartphone Your ads w ill be inserted

  12. Convergence for the Smart Grid -On the technology opportunities for Future Cyber-Physical Energy Systems, invited paper at New Research Directions for Future Cyber-Physical Energy

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Convergence for the Smart Grid - On the technology opportunities for Future Cyber-Physical Energy Angeles, CA. 90095 http://winmec.ucla.edu Email:smartgrid@winmec.ucla.edu Convergence for the Smart Grid into what the Future / Smart Electric Grid should look like. For example the DOE has a vision for the Modern

  13. For the MTS (Marine Transportation System Research & Technology) Conference The CCOM Chart-of-the-Future Project

    E-Print Network [OSTI]

    Ware, Colin

    For the MTS (Marine Transportation System Research & Technology) Conference The CCOM Chart-of-the-Future Project: Maximizing Mariner Effectiveness through Fusion of Marine & Visualization Technologies Matthew D-of-the-Future Project is to develop a marine decision support system that takes full advantage of existing and emerging

  14. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    ScienceCinema (OSTI)

    Gur, Ilan (Program Director and Senior Advisor, ARPA-E)

    2014-04-11

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  15. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    SciTech Connect (OSTI)

    Gur, Ilan

    2014-03-07

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  16. Suitability of Agent Technology for Military Command and Control in the Future Combat System Environment

    SciTech Connect (OSTI)

    Potok, TE

    2003-02-13

    The U.S. Army is faced with the challenge of dramatically improving its war fighting capability through advanced technologies. Any new technology must provide significant improvement over existing technologies, yet be reliable enough to provide a fielded system. The focus of this paper is to assess the novelty and maturity of agent technology for use in the Future Combat System (FCS). The FCS concept represents the U.S. Army's ''mounted'' form of the Objective Force. This concept of vehicles, communications, and weaponry is viewed as a ''system of systems'' which includes net-centric command and control (C{sup 2}) capabilities. This networked C{sup 2} is an important transformation from the historically centralized, or platform-based, C{sup 2} function since a centralized command architecture may become a decision-making and execution bottleneck, particularly as the pace of war accelerates. A mechanism to ensure an effective network-centric C{sup 2} capacity (combining intelligence gathering and analysis available at lower levels in the military hierarchy) is needed. Achieving a networked C{sup 2} capability will require breakthroughs in current software technology. Many have proposed the use of agent technology as a potential solution. Agents are an emerging technology, and it is not yet clear whether it is suitable for addressing the networked C{sup 2} challenge, particularly in satisfying battlespace scalability, mobility, and security expectations. We have developed a set of software requirements for FCS based on military requirements for this system. We have then evaluated these software requirements against current computer science technology. This analysis provides a set of limitations in the current technology when applied to the FCS challenge. Agent technology is compared against this set of limitations to provide a means of assessing the novelty of agent technology in an FCS environment. From this analysis we find that existing technologies will not likely be sufficient to meet the networked C{sup 2} requirements of FCS due to limitations in scalability, mobility, and security. Agent technology provides a number of advantages in these areas, mainly through much stronger messaging and coordination models. These models theoretically allow for significant improvements in many areas, including scalability, mobility, and security. However, the demonstration of such capabilities in an FCS environment does not currently exist, although a number of strong agent-based systems have been deployed in related areas. Additionally, there are challenges in FCS that neither current technology nor agent technology are particularly well suited, such as information fusion and decision support. In summary, we believe that agent technology has the capability to support most of the networked C{sup 2} requirements of FCS. However, we would recommend proof of principle experiments to verify the theoretical advantages of this technology in an FCS environment.

  17. The potential of future aircraft technology for noise and pollutant emissions reduction

    E-Print Network [OSTI]

    Graham, W. R.; Hall, C. A.; Vera Morales, M.

    2014-03-27

    Aviation and the Environment The potential of future aircraft technology for noise and pollutant emissions reduction W R Graham1, C A Hall, M Vera Morales2 Institute for Aviation and the Environment, University of Cambridge, Cambridge, CB3 0DY, UK... , cruising either at the same Mach number (0.77) as the A320 — the ‘fast open rotor’ — or at Mach 0.66 — the ‘reduced-speed open rotor’. Their fuel consumption figures come from a range-equation analysis (cf. Section 2.1). Estimates for the 2025 values...

  18. Lessons From the Past for Assessing Energy Technologies for the Future

    E-Print Network [OSTI]

    Lin, Albert

    2014-01-01

    a bridge fuel to a renewable energy future, there is littlebridge fuel to a renewable energy future, nations engaged inthe Future of Government Support for Renewable Energy, at

  19. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    and Clean Energy Technologies: Wind, photovoltaics and otherand Clean Energy Technologies: Wind, photovoltaics and other

  20. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore »metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  1. The confluence of ancient wisdom and future technology in our profession

    SciTech Connect (OSTI)

    Miller, D.P.

    1997-10-01

    The theme of this year`s Annual Meeting is ``Ancient Wisdom-Future Technology.`` The panel assembled for this session has been asked to think metaphorically about the theme and how it relates to their profession of human factors and ergonomics. Originally conceived as a debate centering around the older technologies and research techniques versus the newer ways of finding answers, it was soon realized that there was no dichotomy, but more of a synergy between the old and the new. If human factors is truly a philosophy of design rather than simply a body of knowledge, then one would expect consistency in approach regardless of field of application or new discoveries of human performance. Just as when two or more rivers combine to become a force mightier than the simple summation, the synergistic power of established techniques or knowledge and recent innovation is available to everyone in the profession. The invited panelists represent diverse perspectives in human factors and ergonomics, and this made for a stimulating discussion.

  2. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  3. Transportation Energy Futures Series. Vehicle Technology Deployment Pathways. An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, Steve; Stephens, Thomas; McManus, Walter

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    The promise of a clean and sustainable energy future lies infor State-Level Sustainable Energy Futures Timothy E. Lipmanfor State-Level Sustainable Energy Futures Timothy E. Lipman

  5. Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity DemandElectricity Demand-Side Management for an Energy Efficient Future in China: Technology Options: ______________________________________________________________ : Stephen R. Connors Director, Analysis Group for Regional Electricity Alternatives Thesis Supervisor

  6. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  7. Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future

    Broader source: Energy.gov [DOE]

    Making sure the best, most efficient wind energy technologies are developed and manufactured here in America.

  8. An approach for faster high field magnet technology development

    E-Print Network [OSTI]

    Hafalia, R.R.

    2011-01-01

    inaugural test of the new Subsea Ie Magnet Test Faci lity.took about 4 hours. Fig. 5. Subsea Ie module being prepared

  9. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    such as fuel cells and electrolyzers decrease through masssuch as fuel cells and electrolyzers decrease through massthe point that with future electrolyzer cost decreases, the

  10. August 22, 2002 Faster Chips That March to Their Own Improvised Beat

    E-Print Network [OSTI]

    operations and reduced power consumption, particularly in the ever smaller, ever faster circuits of the future. At Sun Microsystems Laboratories in Mountain View, Calif., a dozen or so engineers are focusing circuits are already used in Sun's UltraSparc IIIi processor chip, Dr. Ebergen said. He said his team

  11. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    technology and market development programs have proven to be effective in the past, particularly with regard to solar PV

  12. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Details and Market Status Source Solar Photo-Electrochemicaland Market Status Source Electrolysis Grid-Tied Near Term/Future NRC, 2004 Solarand market development programs have proven to be effective in the past, particularly with regard to solar

  13. Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends

    Broader source: Energy.gov [DOE]

    Learn more about the DOE's Buildings of the Future Project. Buildings will no longer be passive objects that consume resources, but rather active participants engaged in the energy system and our community.

  14. Revolution Now: The Future Arrives for Five Clean EnergyTechnologies...

    Broader source: Energy.gov (indexed) [DOE]

    four transformational technologies: land-based wind power, silicon photovoltaic (PV) solar modules, light-emitting diodes (LEDs), and electric vehicles (EVs). That study...

  15. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Commercialization Strategy for Hydrogen Energy Technologies,International Journal of Hydrogen Energy 23(7): 617-620.NYSERDA) (2005), “New York Hydrogen Energy Roadmap,” NYSERDA

  16. Hot water can freeze faster than cold?!?

    E-Print Network [OSTI]

    Monwhea Jeng

    2005-12-29

    We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described.

  17. Fast Physics Testbed for the FASTER Project

    SciTech Connect (OSTI)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  18. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy and stresses that develop during the heating and quenching processes. The proposed project will develop Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable

  19. Microfluidics in structural biology: smaller, faster. . . better Carl Hansen and Stephen R Quake

    E-Print Network [OSTI]

    Hansen, Carl L.

    Microfluidics in structural biology: smaller, faster. . . better Carl Hansen and Stephen R QuakeĆ Microfluidic technologies promise unprecedented savings in cost and time through the integration of complex of this vision a reality, facilitating the first large-scale integration of microfluidic plumbing with biological

  20. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  1. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  2. HST.921 / HST.922 Information Technology in the Health Care System of the Future, Spring 2007

    E-Print Network [OSTI]

    Bergeron, Bryan

    This course will show how information technologies (IT) shape and redefine the health care marketplace. Students will learn how IT enhances medical care through: 1) improved economies of scale, 2) greater technical ...

  3. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  4. Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth1

    E-Print Network [OSTI]

    Wing, Ian Sue

    of carbon capture and storage, nuclear, and hydroelectric generation all lead to upward shifts in the long are the drivers of future global carbon dioxide (CO2) emissions growth and how would the availability of key Classification: D58, Q4, Q54, O1, Keywords: Asia, energy use, carbon emissions, global climate change, computable

  5. Hafnium-doped tantalum oxide high-k gate dielectric films for future CMOS technology 

    E-Print Network [OSTI]

    Lu, Jiang

    2007-04-25

    A novel high-k gate dielectric material, i.e., hafnium-doped tantalum oxide (Hf-doped TaOx), has been studied for the application of the future generation metal-oxidesemiconductor field effect transistor (MOSFET). The film's electrical, chemical...

  6. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect (OSTI)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  7. Communicating the Future: Best Practices for Communication of Science and Technology to the Public

    SciTech Connect (OSTI)

    Porter, Gail

    2002-09-30

    To advance the state of the art in science and technology communication to the public a conference was held March 6-8, 2002 at the National Institute of Standards and Technology in Gaithersburg, MD. This report of the conference proceedings includes a summary statement by the conference steering committee, transcripts or other text summarizing the remarks of conference speakers, and abstracts for 48 "best practice" communications programs selected by the steering committee through an open competition and a formal peer review process. Additional information about the 48 best practice programs is available on the archival conference Web site at www.nist.gov/bestpractices.

  8. Assessing selected technologies and operational strategies for improving the environmental performance of future aircraft

    E-Print Network [OSTI]

    Mahashabde, Anuja (Anuja Anil)

    2006-01-01

    The aviation industry is expected to grow at a rate of 4-5% in the next 20 years. Such a growth rate may have important impacts on local air quality, climate change and community noise. This work assesses selected technologies ...

  9. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation 

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    1994-01-01

    Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

  10. E Effi i t T h l f th F t an Energy Efficient Technology for the Future Ch i i B hlChristian Bahl

    E-Print Network [OSTI]

    Christian Bahl Fuel Cells and Solid State Chemistry Division Fuel Cells and Solid State Chemistry Division Risų E Effi i t T h l f th F t an Energy Efficient Technology for the Future Ch i i B hl is ensured. #12;#12;Challengesg Promising technology... Hi h ffi iHigh efficiency. No CFC or HCFC gasses. C

  11. los alamos science and technology magazine JUly 2009 Wired for the Future

    E-Print Network [OSTI]

    . Menlove designed instruments to monitor operations and nuclear materials at North Korea's Yongbyon reactor, Will Travel A Trip to Nuclear North Korea 1663 los alamos science and technology magazine JUly 20 09 #12NEtIc-FIELD SENSorS For MEDIcINE aND hoMELaND SEcUrIty dialogue spotlight 25 a trip to Nuclear North Korea ForMEr DIr

  12. The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system

    SciTech Connect (OSTI)

    Mittelstadt, W.A. [USDOE Bonneville Power Administration, Portland, OR (United States); Krause, P.E.; Wilson, R.E. [USDOE Western Area Power Administration, Golden, CO (United States); Overholt, P.N. [USDOE, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

    1996-07-01

    In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

  13. STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES

    SciTech Connect (OSTI)

    Dunn, M

    2003-08-24

    Current, state of the art natural gas engines provide the lowest emission commercial technology for use in medium heavy duty vehicles. NOx emission levels are 25 to 50% lower than state of the art diesel engines and PM levels are 90% lower than non-filter equipped diesels. Yet, in common with diesel engines, natural gas engines are challenged to become even cleaner and more efficient to meet environmental and end-user demands. Cummins Westport is developing two streams of technologies to achieve these goals for medium-heavy and heavy-heavy duty applications. For medium-heavy duty applications, lowest possible emissions are sought on SI engines without significant increase in complexity and with improvements in efficiency and BMEP. The selected path builds on the capabilities of the CWI Plus technology and recent diesel engine advances in NOx controls, providing potential to reduce emissions to 2010 values in an accelerated manner and without the use of Selective Catalytic Reduction or NOx Storage and Reduction technology. For heavy-heavy duty applications where high torque and fuel economy are of prime concern, the Westport-Cycle{trademark} technology is in field trial. This technology incorporates High Pressure Direct Injection (HPDI{trademark}) of natural gas with a diesel pilot ignition source. Both fuels are delivered through a single, dual common rail injector. The operating cycle is entirely unthrottled and maintains the high compression ratio of a diesel engine. As a result of burning 95% natural gas rather than diesel fuel, NOx emissions are halved and PM is reduced by around 70%. High levels of EGR can be applied while maintaining high combustion efficiency, resulting in extremely low NOx potential. Some recent studies have indicated that DPF-equipped diesels emit less nanoparticles than some natural gas vehicles [1]. It must be understood that the ultrafine particles emitted from SI natural gas engines are generally accepted to consist predominantly of VOCs [2], and that lubricating oil is a major contributor. Fitting an oxidation catalyst to the natural gas engine leads to a reduction in nanoparticles emissions in comparison to engines without aftertreatment [2,3,4]. In 2001, the Cummins Westport Plus technology was introduced with the C Gas Plus engine, a popular choice for transit bus applications. This incorporates drive by wire, fully integrated, closed loop electronic controls and a standard oxidation catalyst for all applications. The B Gas Plus and the B Propane Plus engines, with application in shuttle and school buses were launched in 2002 and 2003. The gas-specific oxidation catalyst operates in concert with an optimized ring-pack and liner combination to reduce total particulate mass below 0.01g/bhphr, combat ultrafine particles and control VOC emissions.

  14. Value of Faster Computation for Power Grid Operation

    SciTech Connect (OSTI)

    Chen, Yousu; Huang, Zhenyu; Elizondo, Marcelo A.

    2012-09-30

    As a result of the grid evolution meeting the information revolution, the power grid is becoming far more complex than it used to be. How to feed data in, perform analysis, and extract information in a real-time manner is a fundamental challenge in today’s power grid operation, not to mention the significantly increased complexity in the smart grid environment. Therefore, high performance computing (HPC) becomes one of the advanced technologies used to meet the requirement of real-time operation. This paper presents benefit case studies to show the value of fast computation for operation. Two fundamental operation functions, state estimation (SE) and contingency analysis (CA), are used as examples. In contrast with today’s tools, fast SE can estimate system status in a few seconds—comparable to measurement cycles. Fast CA can solve more contingencies in a shorter period, reducing the possibility of missing critical contingencies. The benefit case study results clearly show the value of faster computation for increasing the reliability and efficiency of power system operation.

  15. Dark Matter as a Possible New Energy Source for Future Rocket Technology

    E-Print Network [OSTI]

    Jia Liu

    2009-10-09

    Current rocket technology can not send the spaceship very far, because the amount of the chemical fuel it can take is limited. We try to use dark matter (DM) as fuel to solve this problem. In this work, we give an example of DM engine using dark matter annihilation products as propulsion. The acceleration is proportional to the velocity, which makes the velocity increase exponentially with time in non-relativistic region. The important points for the acceleration are how dense is the DM density and how large is the saturation region. The parameters of the spaceship may also have great influence on the results. We show that the (sub)halos can accelerate the spaceship to velocity $ 10^{- 5} c \\sim 10^{- 3} c$. Moreover, in case there is a central black hole in the halo, like the galactic center, the radius of the dense spike can be large enough to accelerate the spaceship close to the speed of light.

  16. IGBT PEBB Technology for Future High Energy Physics Machine Operation Applications

    SciTech Connect (OSTI)

    Macken, K.J.P.; MacNair, D.; Nguyen, M.N.; Hugyik, J.; Olsen, J.; Kemp, M.; /SLAC

    2012-04-11

    Terascale physics is driving the demand for innovative pulsed power modulators having greater compactness and better manufacturability with increasingly superior performance. A particularly promising route for such modulators is Marx-architecture based. Moreover, there is opportunity for improvement and gain of greater benefits through further development of topology and architecture, gate driver method, and control schemes. Prior work discussed a new concept of droop correction, which was the result of topology hybridisation using a nesting approach, and illustrated its great potential. This is further investigated here. This paper details various design aspects of a hybrid Marx cell Power Electronic Building Block (PEBB) and includes specifics about estimated losses and efficiency, thermal management issues, protection strategies, gate driver development, and control implementation. In addition, figures-of-merit of the cell design are given for comparison and evaluation purposes. Experimental results, based on both single-cell and three-cell hardware prototypes, are presented demonstrating the functionality and performance of the new topology. This is a significant milestone in the progression toward constructing a full 32-cell PEBB-based Marx klystron modulator with nested droop correction. Lessons learned during various stages of the prototype development and future directions are commented on.

  17. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    SciTech Connect (OSTI)

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; Bjornstad, Bruce N.; Mackley, Rob D.; Kelly, Mark E.; Sullivan, Charlotte; Williams, Mark D.; Amonette, James E.; Downs, Janelle L.; Fritz, Brad G.; Szecsody, Jim E.; Bonneville, Alain; Gilmore, Tyler J.

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoring strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.

  18. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; Bjornstad, Bruce N.; Mackley, Rob D.; Kelly, Mark E.; Sullivan, Charlotte; Williams, Mark D.; Amonette, James E.; Downs, Janelle L.; et al

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore »strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  19. The DOE Wide Area Measurement System (WAMS) Project -- Demonstration of dynamic information technology for the future power system

    SciTech Connect (OSTI)

    Mittelstadt, W.A. [Bonneville Power Administration (United States); Hauer, J.F. [Pacific Northwest Lab., Richland, WA (United States); Krause, P.E.; Wilson, R.E. [Western Power Administration (United States); Overholt, P.N. [USDOE (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    In 1989 the Bonneville Power Administration (BPA) and the Western Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands in an environment characterized by increased competition, a wider range of services and vendors, and much narrower operating margins. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI).

  20. Biomass energy: State of the technology present obstacles and future potential

    SciTech Connect (OSTI)

    Dobson, L.

    1993-06-23

    The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

  1. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Renewable Electricity Generation and Storage Technologies for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable;Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  2. Sun-Sentinel South Florida consumer costs rising faster than

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Sun-Sentinel South Florida consumer costs rising faster than the national average May 18, 2011|By Donna Gehrke-White, Sun Sentinel We are not imagining it: The cost of living has jumped in South Florida

  3. Future CIS Manufacturing Technology Development: Final Report, 8 July 1998--17 October 2001

    SciTech Connect (OSTI)

    Anderson, T. J.; Crisalle, O. D.; Li, S. S.; Holloway, P. H.

    2003-06-01

    The University of Florida served as the basis for educating 12 graduate students in the area of photovoltaics engineering and research with a focus on thin-film CIS manufacturing technologies. A critical assessment of the thermodynamic data and of the phase diagrams for the Cu-Se and In-Se binary systems were carried out. We investigated the use of two novel precursor structures that used stacked In-Se and Cu-Se binary layers instead of conventional elemental layers, followed by rapid thermal processing (RTP) to produce CIS films. We investigated the evolution of electrical and microstructural properties of sputter-deposited ZnO:Al thin films. An assessment of the thermodynamics of the pseudobinary Cu2Se-Ga2Se3 system was done by using available experimental data, as well as an empirical method for estimating interactions in semiconductor solid solutions. Optimization studies were conducted to characterize the RTP of binary bilayer precursors for CIS synthesis using a newly acquired AG Associates Heatpulse furnace. Progress was made on the calculation of the 500C isothermal section of the phase diagram of the ternary Cu-In-Se system. Pursuit of developing alternative buffer layers for Cd-free CIS-based solar cells using a chemical-bath deposition (CBD) process has resulted in specific recipes for deposition. A rigorous model has been derived to predict the metal mass fluxes produced by conical thermal effusion sources. A two-dimensional model of the heat transfer was developed to model the substrate temperature distribution in the UF PMEE Reactor that features a rotating platen/substrates and effusion sources. We have grown and characterized polycrystalline CIS epitaxial films on single-crystal GaAs substrates under conditions that enhance the influence of surface effects on the resulting films and their properties. Progress was made on the study of CIS and CGS single-crystal growth, along with accompanying morphological and compositional characterizations. We have developed physical models and performed numerical simulations using AMP-1D program to predict the performance of the CIS-based solar cells constructed with different buffer layers (such as CdS and Cd-free materials) and to compare the results with experimental data. A new computer-controlled automated measurement system for the characterization of the solar cell performance parameters has been developed. The plasma-enhanced migration-enhanced epitaxial reactor (PMEE) is used for the deposition of a wide variety of thin CIS films. A new instrumentation and control interface for the plasma-enhanced migration-enhanced reactor has been designed and deployed to enable the implementation of advanced control strategies envisioned for the local sources, as well as the supervisory control structure.

  4. Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Patel, Kamlesh D [Ken]; SNL,

    2013-01-25

    Kamlesh (Ken) Patel from Sandia National Laboratories (Livermore, California) presents "Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology " at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  5. Technology Section of the White Paper on the Status and Future of Ground-based TeV Gamma-ray Astronomy

    E-Print Network [OSTI]

    K. Byrum; J. Buckley; S. Bugayov; B. Dingus; S. Fegan; S. Funk; E. Hays; J. Holder; D. Horan; A. Konopelko; H. Krawczynski; F. Krennrich; S. Lebohec; G. Sinnis; A. Smith; V. Vassiliev; S. Wakely

    2008-10-24

    This is a report on the findings of the technology working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper is an APS commissioned document, and the overall version has also been released and can be found on astro-ph. This detailed section of the white paper discusses different technology opportunities and the technical feasibility for substantially improving IACTS and ground based particle detectors to achieve an order of magnitude better sensitivity than the instruments employed today as well as their planned upgrades. A technology roadmap for improving IACTS and ground based particle detectors is presented.

  6. Technology Section of the White Paper on the Status and Future of Ground-based TeV Gamma-ray Astronomy

    E-Print Network [OSTI]

    Byrum, K; Bugayov, S; Dingus, B; Fegan, S; Funk, S; Hays, E; Holder, J; Horan, D; Konopelko, A; Krawczynski, H; Krennrich, F; Lebohec, S; Sinnis, G; Smith, A; Vasilev, V; Wakely, S

    2008-01-01

    This is a report on the findings of the technology working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper is an APS commissioned document, and the overall version has also been released and can be found on astro-ph. This detailed section of the white paper discusses different technology opportunities and the technical feasibility for substantially improving IACTS and ground based particle detectors to achieve an order of magnitude better sensitivity than the instruments employed today as well as their planned upgrades. A technology roadmap for improving IACTS and ground based particle detectors is presented.

  7. Hydrogen Futures and Technologies

    E-Print Network [OSTI]

    Forsberg, Charles H.

    Concerns about the security of oil supplies and the environmental consequences of burning fossil fuels

  8. Towards faster method search through static ecosystem analysis

    E-Print Network [OSTI]

    Jäger, Gerhard

    by augmenting the data available to the developer with information derived from the analysis of the ecosystemTowards faster method search through static ecosystem analysis Boris Spasojevi“c University of Bern from the same ecosystem ­ written in the same language and sharing dependencies. We implemented a proof

  9. Faster, More Effective Connection for Probabilistic Roadmaps \\Lambda

    E-Print Network [OSTI]

    Dale, Lucia K.

    Faster, More Effective Connection for Probabilistic Roadmaps \\Lambda Lucia K. Dale Guang Song Nancy attempting to improve the running times of prob­ abilistic roadmap motion planning methods (prms). We show) roadmap methods (prms), which have shown promising signs for solving high dimensional problems [1, 2, 3, 5

  10. Faster software for fast endomorphisms Billy Bob Brumley

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Faster software for fast endomorphisms Billy Bob Brumley Department of Pervasive Computing Tampere software libraries. Furthermore, side-channel vulnerabilities, specifically cache- timing attacks, remain method are well understood, un- fortunately it has yet to find its way into elliptic curve software

  11. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    E-Print Network [OSTI]

    Spentzouris, Panagiotis

    2008-01-01

    Architecture for High-Performance Scientific Computing Int J High Performance Computing Applications 20 163–202 [22] Bernholdt 2007 Center for Technology

  12. Kicking Off the ARPA-E Energy Innovation Summit: Where Innovations in Energy Technology Are “Winning the Future”

    Broader source: Energy.gov [DOE]

    A preview of the ARPA-E Energy Innovation Summit, which showcases the most advanced and revolutionary breakthroughs in energy technology today.

  13. Electricity demand-side management for an energy efficient future in China : technology options and policy priorities

    E-Print Network [OSTI]

    Cheng, Chia-Chin

    2005-01-01

    The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

  14. Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies

    E-Print Network [OSTI]

    Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment-emission electricity within one or two decades. Renewable generation is also planned to increase over similar time, it is therefore possible that large (~45%) reductions in CO2 emissions from UK electricity generation could

  15. Elements of a Faster Fusion Program A personal perspective

    E-Print Network [OSTI]

    , and not on the niceties of our science or technology options. We need to speak the language of our customers. Roadmaps

  16. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  17. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  18. Technology Overview Fundamentals of Wind Energy (Presentation)

    SciTech Connect (OSTI)

    Butterfield, S.

    2005-05-01

    A presentation that describes the technology, costs and trends, and future development of wind energy technologies.

  19. Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint

    SciTech Connect (OSTI)

    Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

    2011-01-01

    Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

  20. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  1. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  2. Savings from energy efficient windows: Current and future savings from new fenestration technologies in the residential market

    SciTech Connect (OSTI)

    Frost, K.; Arasteh, D.; Eto, J.

    1993-04-01

    Heating and cooling energy lost through windows in the residential sector (estimated at two-thirds of the energy lost through windows in all sectors) currently accounts for 3 percent (or 2.8 quads) of total US energy use, costing over $26 billion annually in energy bills. Installation of energy-efficient windows is acting to reduce the amount of energy lost per unit window area. Installation of more energy efficient windows since 1970 has resulted in an annual savings of approximately 0.6 quads. If all windows utilized existing cost effective energy conserving technologies, then residential window energy losses would amount to less than 0.8 quads, directly saving $18 billion per year in avoided energy costs. The nationwide installation of windows that are now being developed could actually turn this energy loss into a net energy gain. Considering only natural replacement of windows and new construction, appropriate fenestration policies could help realize this potential by reducing annual residential window energy losses to 2.2 quids by the year 2012, despite a growing housing stock.

  3. Technology enabled evolutions in liquids marketing

    SciTech Connect (OSTI)

    Manning, S. [SolArc Inc., Tulsa, OK (United States)

    1998-12-31

    Deregulation, mergers, changing economic conditions, and downsizing have captured the headlines in the energy industry in recent times. To say that companies have struggled to react to these changes would be an understatement. Huge trading organizations have grown from nothing in a few years, while entire industry segments have been forced to restructure themselves. Information technology has enabled much of this change. By bringing information management out of the back office and onto the trading floors, companies have radically redesigned their work processes. The future promises even faster change, with business focus turning to innovative packaging of services with products, expanding asset bases, and reducing costs. Information technology will fuel this transformation by providing enterprise-wide trading solutions and, ultimately, linking the entire industry into a virtual supply chain. To remain competitive, companies need a strategy to manage information technology as a core asset.

  4. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in...

  5. ITP Mining: Mining Industry of the Future Mineral Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf More Documents & Publications ITP...

  6. DOE Announces Restructured FutureGen Approach to Demonstrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple...

  7. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies

  8. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology

  9. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    technologies to satisfy future energy demands. On anotheraffecting the choice of future energy technologies can noabout the character of future energy alternatives (Schwartz,

  10. Building Science Solutions Ā… Faster and Better | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of EnergyEmerging TechnologiesBuilding LifeScience

  11. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D

  12. The Future of Bioenergy Feedstock Production

    Office of Environmental Management (EM)

    2 Bioenergy Technologies Office background Feedstock assessment, production and logistics Biomass yield improvements Sustainable feedstock production Future...

  13. The Future of Forensic DNA

    E-Print Network [OSTI]

    History and Mission · National Institute of Standards and Technology (NIST) was created in 1901The Future of Forensic DNA John M. Butler, PhD National Institute of Standards and Technology.S. Department of Commerce with a mission to develop and promote measurement, standards, and technology

  14. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles decreases with time. * Manufacturing costs associated with batteries and electric machines fall faster than those of conventional technologies (i.e., engine,...

  15. UNIVERSITY of STRATHCLYDE TECHNOLOGY &

    E-Print Network [OSTI]

    Mottram, Nigel

    electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within

  16. Challenges in the Better, Faster, Cheaper Era of Aeronautical Design, Engineering and Manufacturing

    E-Print Network [OSTI]

    Murman, Earll

    Starting in the 1990s, the aerospace industry was challenged to produce products and systems Better, faster, Cheaper. In this paper, we examine some of the underlying reasons for BFC and offer some thoughts to help frame ...

  17. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory's Future Technologies Group (FTG) to assess emerging technologies in architecture, algorithms, parallel programming paradigms and languages. "Computing...

  18. Technology & Engineering Division

    E-Print Network [OSTI]

    Technology & Engineering Division High-Temperature Superconducting Magnets for Fusion: New & Engineering Division Contents · Background on Superconductivity · Fusion Magnets ­ Present and Future ­ Vision/15/2014 2Joseph V. Minervini #12;Technology & Engineering Division Superconductivity #12;Technology

  19. Venus Technology Plan Venus Technology Plan

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

  20. Energy futures-2

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants.

  1. Future Internet Research, Services

    E-Print Network [OSTI]

    Sztrik, Jįnos

    -financed by the European Social Fund. National Development Agency www.ujszechenyiterv.gov.hu 06 40 638 638 Foreword research and development projects were granted, and many young colleagues were involved into the work;3 Future Internet Research, Services and Technology The project is supported by the European Union and co

  2. Submitted to RAeS Rotorcraft Conference: The Future Rotorcraft Enabling Capability Through the Application of Technology, London, UK, 15 16th June 2011.

    E-Print Network [OSTI]

    ­ Enabling Capability Through the Application of Technology, London, UK, 15 ­ 16th June 2011. University.buelthoff@tuebingen.mpg.de, +49-7071-601-601 ) 1 myCopter: Enabling Technologies for Personal Air Transport Systems1 M. Jump, G at an early stage so the paper starts with the current transportation issues faced by developed countries

  3. Background paper for "The 10-50 Solution: Technologies and Policies for a Low-Carbon Future" Pew Center & NCEP Conference, Washington, DC, March 25 26, 2004

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , and nations. Over the next five decades solar and wind energy could provide well over one third of electricity our current energy system. To accomplish this the markets for solar, wind, and biomass energy must, and to international leadership in clean energy technology development and deployment. Technological and Market Outlook

  4. SEARCH FUTURITY Go Futurity: Discover the Future

    E-Print Network [OSTI]

    Glaser, Rainer

    & Technology Society & Culture Earth & Environment - Posted by Christian Basi-Missouri on Thursday, March 1. As climate heats up, grapes ripen sooner Climate winners and losers on California coast Climate may crank

  5. CURRENT FUTURE Students taking Introduction

    E-Print Network [OSTI]

    Linhardt, Robert J.

    an additive manufacturing center, and a common large project space » develop a showcase of advanced technologies in; additive manufacturing, composites, advanced machin- ing, manufacturing systems controlCURRENT FUTURE Students taking Introduction to Engineering Design, the new Manufacturing Processes

  6. Texas Industries of the Future 

    E-Print Network [OSTI]

    Ferland, K.

    2002-01-01

    The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

  7. Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

  8. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Ito, Garrett

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  9. Custom data support for the FAst -physics System Testbed and Research (FASTER) Project

    SciTech Connect (OSTI)

    Toto, T.; Jensen, M.; Vogelmann, A.; Wagener, R.; Liu, Y.; Lin, W.

    2010-03-15

    The multi-institution FAst -physics System Testbed and Research (FASTER) project, funded by the DOE Earth System Modeling program, aims to evaluate and improve the parameterizations of fast processes (those involving clouds, precipitation and aerosols) in global climate models, using a combination of numerical prediction models, single column models, cloud resolving models, large-eddy simulations, full global climate model output and ARM active and passive remote sensing and in-situ data. This poster presents the Custom Data Support effort for the FASTER project. The effort will provide tailored datasets, statistics, best estimates and quality control data, as needed and defined by FASTER participants, for use in evaluating and improving parameterizations of fast processes in GCMs. The data support will include custom gridding and averaging, for the model of interest, using high time resolution and pixel level data from continuous ARM observations and complementary datasets. In addition to the FASTER team, these datasets will be made available to the ARM Science Team. Initial efforts with respect to data product development, priorities, availability and distribution are summarized here with an emphasis on cloud, atmospheric state and aerosol properties as observed during the Spring 2000 Cloud IOP and the Spring 2003 Aerosol IOP at the ARM Southern Great Plains site.

  10. Circuit switches have simpler data paths and are potentially much faster than

    E-Print Network [OSTI]

    McKeown, Nick

    2 Circuit switches have simpler data paths and are potentially much faster than packet switches. Taking advantage of this dif- ference makes very high capacity all-optical circuit switches feasible, whereas all-optical packet switches are a long way from com- mercial practicality. Peak

  11. Is the fast Hankel transform faster than quadrature? The fast Hankel transform (FHT) implemented with digital

    E-Print Network [OSTI]

    Key, Kerry

    Is the fast Hankel transform faster than quadrature? Kerry Key1 ABSTRACT The fast Hankel transform (FHT) implemented with digital filters has been the algorithm of choice in EM geophysics for a few transform integral into a sum of partial integrals that are each evaluated with quadrature. The convergence

  12. A faster numerical scheme for a coupled system modelling soil erosion and sediment transport

    E-Print Network [OSTI]

    d'OrlƩans, UniversitƩ

    A faster numerical scheme for a coupled system modelling soil erosion and sediment transport M flow and the bed sediment, are classically described by a well-established system coupling the shallow states and the positivity of both water depth and sediment concentration. Recently, finite volume schemes

  13. Reply to `On a recent proposal of faster than light quantum communication'

    E-Print Network [OSTI]

    A. Y. Shiekh

    2007-12-29

    In a recent paper the author proposed the possibility of an experiment to perform faster-than-light communication via the collapse of the quantum wave-function. This was analyzed by Bassi and Ghirardi, and it is believed that this analysis itself merits a detailed examination.

  14. Faster Defect Resolution with Higher Technical Quality of Software Bart Luijten

    E-Print Network [OSTI]

    Visser, Joost

    Faster Defect Resolution with Higher Technical Quality of Software Bart Luijten Delft University of the relation between technical quality of software products and the defect resolution performance of numerous software products that have been evaluated with the SIG quality model in the context of software

  15. "Do costs fall faster than revenues? Dynamics of renewables entry into electricity markets"

    E-Print Network [OSTI]

    TSE-591 "Do costs fall faster than revenues? Dynamics of renewables entry into electricity markets of renewables entry into electricity markets Richard J. Green Thomas-Olivier Léautier June 26, 2015 Abstract In many countries, entry of renewable electricity producers has been supported by subsidies and financed

  16. Forming the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future This feature article from the April 2014 edition of the Fabricating and Forming Journal (FFJournal) describes how Ford Motor Co.'s sheet metal freeforming technology...

  17. Consumer Electronics and Buildings: Future Interoperability?

    Broader source: Energy.gov (indexed) [DOE]

    Consumer Electronics and Buildings: Future Interoperability?? Alan Messer, Ph.D. Vice PresidentHead of Advanced SW Technology Samsung Electronics - Silicon Valley IoT's Ecosystem...

  18. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel...

  19. 5G Network Architecture and the Future Mobile Internet

    E-Print Network [OSTI]

    Garfunkel, Eric

    Vision Faster radio ~Gbps Low-latency wireless access ~ms Dynamic spectrum, multiple radio access Internet Architecture LTE w/FIA interface WiFi w/FIA interface Standard FIA Router FIA Distributed Control Internet Architecture (FIA) MobilityFirst Project Wireless Technology Trend "5G" Internet Technology Trend

  20. Future Healthcare

    E-Print Network [OSTI]

    Datta, Shoumen

    2010-12-15

    Patients want answers, not numbers. Evidence-based medicine must have numbers to generate answers. Therefore, analysis of numbers to provide answers is the Holy Grail of healthcare professionals and its future systems. ...

  1. for a Sustainable Energy Future Sossina M. Haile

    E-Print Network [OSTI]

    Haile, Sossina M.

    Fuel Cells for a Sustainable Energy Future Sossina M. Haile Materials Science / Chemical Engineering California Institute of Technology #12;Towards a Sustainable Energy Future Contents · The Problem of Energy ­ Growing consumption ­ Consequences ­ Sustainable energy resources · Fuel Cell Technology

  2. FuturICT

    E-Print Network [OSTI]

    Helbing, Dirk; Lukowicz, Paul

    2012-01-01

    FuturlCT is a FET Flagship project using collective, participatory research, integrated across ICT, the social sciences and complexity science, to design socio-inspired technology and develop a science of global, socially interactive systems. The project will bring together, on a global level, Big Data, new modelling techniques and new forms of interaction, leading to a new understanding of society and its coevolution with technology. It aims to understand, explore and manage our complex, connected world in a more sustainable and resilient way. FuturICT is motivated by the fact that ubiquitous communication and sensing blur the boundaries between the physical and digital worlds, creating unparalleled opportunities for understanding the socio-economic fabric of our world, and for empowering humanity to make informed, responsible decisions for its future. The intimate, complex and dynamic relationship between global, networked ICT systems and human society directly influences the complexity and manageability of...

  3. Buildings of the Future

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the Pacific Northwest National Laboratory are developing a vision for future buildings—at least one hundred years from today—based on the collective views of thought leaders. As part of this effort, we will explore technology and demographic trends that could revolutionize the built environment across energy, water, environment, resilient design, health, security, and productivity.

  4. FASTER: A new DOE effort to bridge ESM and ASR sciences

    SciTech Connect (OSTI)

    Liu, Y.

    2010-03-15

    In order to better use the long-term ARM measurements to evaluate parameterizations of fast processes used in global climate models --- mainly those related to clouds, precipitation and aerosols, the DOE Earth System Modeling (ESM) program funds a new multi-institution project led by the Brookhaven National Laboratory, FAst -physics System Testbed and Research (FASTER). This poster will present an overview of this new project and its scientific relationships to the ASR sciences and ARM measurements.

  5. Renaissance in Flow-Cell Technologies: Recent Advancements and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Presentation...

  6. About the Bioenergy Technologies Office: Growing America's Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You are here Home About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S....

  7. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990?

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States); McDermott, K.A. [Argonne National Lab., IL (United States)]|[Illinois State Univ., Normal, IL (United States)

    1991-12-31

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  8. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. (Argonne National Lab., IL (United States)); McDermott, K.A. (Argonne National Lab., IL (United States) Illinois State Univ., Normal, IL (United States))

    1991-01-01

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  9. Warming of the arctic ice-ocean system is faster than the global average since the 1960s

    E-Print Network [OSTI]

    Zhang, Jinlun

    Warming of the arctic ice-ocean system is faster than the global average since the 1960s Jinlun.203°C. The warming of the world ocean is associated with an increase in global surface air temperature heat flux. Citation: Zhang, J. (2005), Warming of the arctic ice-ocean system is faster than the global

  10. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridOPTICSTM : A Software Framework for Power System Operations technologies needed to support the operations and planning of the future power grid » provide a framework to the GridPACK numerical library that is being developed in the Future Power Grid Initiative APPROACH

  11. Water: The Future’s Fuel

    E-Print Network [OSTI]

    Benavente, Carlos

    2014-01-01

    George W. 1881. The Use of Water as a Fuel. Science, 321-combusted  with  O  Water:  The  Future’s  Fuel   163  Sciences, 3329-3342.  Water:  The  Future’s  Fuel   165  

  12. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on Review of Recent Reliability Issues and Systems Events

    SciTech Connect (OSTI)

    Hauer, John F.; Dagle, Jeffery E.

    1999-12-01

    This report is one of six reports developed under the U.S. Department of Energy (DOE) program in Power System Integration and Reliability (PSIR). The objective of this report is to review, analyze, and evaluate critical reliability issues demonstrated by recent disturbance events in the North America power system. Eleven major disturbances are examined, most occurring in this decade. The strategic challenge is that the pattern of technical need has persisted for a long period of time. For more than a decade, anticipation of market deregulation has been a major disincentive to new investments in system capacity. It has also inspired reduced maintenance of existing assets. A massive infusion of better technology is emerging as the final option to continue reliable electrical services. If an investment in better technology will not be made in a timely manner, then North America should plan its adjustments to a very different level of electrical service. It is apparent that technical operations staff among the utilities can be very effective at marshaling their forces in the immediate aftermath of a system emergency, and that serious disturbances often lead to improved mechanisms for coordinated operation. It is not at all apparent that such efforts can be sustained through voluntary reliability organizations in which utility personnel external to those organizations do most of the technical work. The eastern interconnection shows several situations in which much of the technical support has migrated from the utilities to the Independent System Operator (ISO), and the ISO staffs or shares staff with the regional reliability council. This process may be a natural and very positive consequence of utility restructuring. If so, the process should be expedited in regions where it is less advanced.

  13. The Exponentially Faster Stick-Slip Dynamics of the Peeling of an Adhesive Tape

    E-Print Network [OSTI]

    Nachiketa Mishra; Nigam Chandra Parida; Soumyendu Raha

    2014-05-07

    The stick-slip dynamics is considered from the nonlinear differential-algebraic equation (DAE) point of view and the peeling dynamics is shown to be a switching differential index DAE model. In the stick-slip regime with bifurcations, the differential index can be arbitrarily high. The time scale of the peeling velocity, the algebraic variable, in this regime is shown to be exponentially faster compared to the angular velocity of the spool and/or the stretch rate of the tape. A homogenization scheme for the peeling velocity which is characterized by the bifurcations is discussed and is illustrated with numerical examples.

  14. Pyroprocessing Technologies

    E-Print Network [OSTI]

    Kemner, Ken

    of pyrochemical processes for the recycle of oxide, carbide and other advanced fuels and laid the foundationPyroprocessing Technologies RECYCLING USED NUCLEAR FUEL FOR A SUSTAINABLE ENERGY FUTURE #12;32 Storing Used Nuclear Fuel is a Real Waste Nuclear power is the most environmentally friendly way

  15. FUTURES with Jaime Escalante

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    The United States Department of Energy awarded the Foundation for Advancements in Science and Education (FASE) $826,000 as support to produce the second set of FUTURES segments consisting of 12, 15-minute programs. The programs provide motivation for students to study math by connecting math to the work place and real-life problem scenarios. The programs are broadcast in 50 states through PBS Elementary and Secondary Service (E/SS). The grant term ended on December 16, 1993 and this final report documents program and financial activity results. The 12 episodes are titled: Animal Care, Meteorology, Mass Communication, Advanced Energy, Oceanography, Graphic Design, Future Habitats, Environmental Science & Technology, Fitness & Physical Performance, Interpersonal Communications, Advanced Transportation and Product Design. Each program addresses as many as ten careers or job types within the broader field named. Minority and gender-balanced role models appear throughout the programs.

  16. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  17. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  18. Bosch Powertrain Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Bosch Powertrain Technologies Provides major supplier view of future gasoline engine powertrain developments deer12yilmaz.pdf More Documents & Publications Flex...

  19. Accretion of Chaplygin gas upon black holes: Formation of faster outflowing winds

    E-Print Network [OSTI]

    Ritabrata Biswas; Subenoy Chakraborty; Tarun Deep Saini; Banibrata Mukhopadhyay

    2011-01-24

    We study the accretion of modified Chaplygin gas upon different types of black hole. Modified Chaplygin gas is one of the best candidates for a combined model of dark matter and dark energy. In addition, from a field theoretical point of view the modified Chaplygin gas model is equivalent to that of a scalar field having a self-interacting potential. We formulate the equations related to both spherical accretion and disc accretion, and respective winds. The corresponding numerical solutions of the flow, particularly of velocity, are presented and are analyzed. We show that the accretion-wind system of modified Chaplygin gas dramatically alters the wind solutions, producing faster winds, upon changes in physical parameters, while accretion solutions qualitatively remain unaffected. This implies that modified Chaplygin gas is more prone to produce outflow which is the natural consequence of the dark energy into the system.

  20. Loving Faster Than Light: Romance and Readers in Einstein's Universe by K. Price, University of Chicago Press, Chicago, 2012 Jimena Canales*

    E-Print Network [OSTI]

    Canales, Jimena

    Loving Faster Than Light: Romance and Readers in Einstein's Universe by K. Price, University in Love. But Katy Price is after a deeper connec- tion in Loving Faster Than Light. The cover modestly

  1. Pasolini for the Future

    E-Print Network [OSTI]

    Ricciardi, Alessia

    2011-01-01

    Pasolini for the Future 1 AlessiaRicciardi Although “the future” may represent an ever hazierloss of hope regarding the future has become integral to our

  2. The Future Metropolitan Landscape

    E-Print Network [OSTI]

    Bosselmann, Peter; Ruggeri, Deni

    2007-01-01

    The Future Metropolitan Landscape Peter Bosselmann and DeniMetropolitan Landscape The Future Metropolitan Landscape Thecomplex phenomenon of “The Future Metropolitan Landscape. ”

  3. ITP Mining: Exploration and Mining Technology Roadmap

    Broader source: Energy.gov [DOE]

    This document describes the Mining Industry of the Future's development of technology roadmaps to guide collaborative research activities for mining.

  4. Practical Issues when Selecting PV Technologies (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2010-09-09

    Presentation highlighting practical considerations for photovoltaic technologies and strategies for future reductions in cost and increases in efficiency.

  5. A View to the FutureBERKELEY LAB 2005/2006 REPORT A Note from the Director / 2 Energy Technologies and Environmental Solutions / 4 Living Systems and Quantitative Biology / 8 Frontiers in Nanoscience / 12 Exploring Matter and Energy in the Universe / 16

    E-Print Network [OSTI]

    Knowles, David William

    A View to the FutureBERKELEY LAB 2005/2006 REPORT #12;A Note from the Director / 2 Energy Technologies and Environmental Solutions / 4 Living Systems and Quantitative Biology / 8 Frontiers in Nanoscience / 12 Exploring Matter and Energy in the Universe / 16 X-Ray and Ultrafast Science / 20 Advanced

  6. Factors shaping the future of Cloud Computing

    E-Print Network [OSTI]

    Francis, Steven (Steven Douglas)

    2011-01-01

    Many different forces are currently shaping the future of the Cloud Computing Market. End user demand and end user investment in existing technology are important drivers. Vendor innovation and competitive strategy are ...

  7. Programmable Cellular Logic: Past, Present, and Future

    E-Print Network [OSTI]

    Tessier, Russell

    Programmable Cellular Logic: Past, Present, and Future Russell Tessier \\Lambda Laboratory changes in technology and architectural trends as they pertain to cellular arrays since the 1960's. Direct comparisons of various cellular array architectural features with contemporary programmable logic features

  8. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  9. Superconducting Magnet Technology for Future Hadron Colliders

    E-Print Network [OSTI]

    Scanlan, R.M.

    2011-01-01

    version of the project (CBA) based on magnets wound fromand the early phase of the CBA. Constructed in two stages asdipoles and the cold iron CBA geometry. Sadly, the next

  10. Illuminating the Future of RenewableTechnology

    E-Print Network [OSTI]

    Oviedo, Néstor J.

    THE AUTHOR: Joel Patenaude is sun deprived several months a year in Madison, Wis., where he's the managing MAGAZINE 17 ill Guiney is strongly considering assembling his company's solar energy collectors in Merced Guiney's commercial design of Winston's External Concentrating Parabolic Collector (XCPC) panel, which

  11. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01

    the discovery of new materials for energy applications.sustainable energy production and storage, new materials,new synthesis pathways for generating and storage of high-energy-density materials

  12. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01

    development, and electron and photo beam diagnostics. Thebeam diagnostics will be needed to monitor and control micron-sized electron

  13. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01

    on the construction of LCLS, the first hard x-ray laser, towith storage-ring sources and LCLS will extend this down todown to sub-microseconds and LCLS will cover the range from

  14. Superconducting Magnet Technology for Future Hadron Colliders

    E-Print Network [OSTI]

    Scanlan, R.M.

    2011-01-01

    Trans. on Applied Superconductivity, 5 (1995), J.R. Millersummer study on superconductingdevices and acceleratorsGeneral. Advanced Superconductors (IGC). Waterbury.

  15. Future, Opportunities and Challenges of Inkjet Technologies

    E-Print Network [OSTI]

    Castrejon-Pita, J. R.; Baxter, W. R. S.; Morgan, J.; Temple, S.; Martin, G. D.; Hutchings, I. M.

    2013-08-07

    to stabilize because the dense particles tends to settle out of suspension quickly in a low-viscosity ink. Jetting stability enforces tight control of composition and rheology on inkjet inks, whereas inks for conventional printing have a wider operating window... are the most common. Apart from these common printing modes, other meth- ods can also be used to produce droplets. Most of these have been developed in response to a particular indus- trial need, such as for the printing of very small droplets, or for colloidal...

  16. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01

    necessarily be fixed-energy optics (as determined by thedevelop high-resolution optics at energies matched to atomicinclude: a. high-energy-resolution optics with resolving

  17. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01

    to inelastic neutron scattering, such studies providestudies have replaced neutron scattering as the technique ofusing spin-echo neutron scattering or quasi-elastic nuclear

  18. Growing America's Energy Future: Bioenergy Technologies Office...

    Energy Savers [EERE]

    develop cost-competitive biofuels and bioproducts in the United States from non-food biomass resources. accomplishmentstwopager2014.pdf More Documents & Publications...

  19. Optical Technology Needs for Future Space Telescopes

    E-Print Network [OSTI]

    Van Stryland, Eric

    , Visible, Near-IR, Far-IR, Sub-MM, Microwave, Radio Wave, Gravity Waves, etc. See Advanced Telescope / Spectroscopy (Vis-IR-FIR) Multi-Spectral Sensing (UV-Gamma) Laser / LIDAR Remote Sensing Microwave Instruments Structure #12;NASA's Science Missions Directorate Themes: Earth Science Sun-Solar System Connection Solar

  20. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01

    energy-density materials and for understanding fundamental physics and chemistry in simple hydrogen-

  1. ITP Aluminum: Alumina Technology Roadmap

    Broader source: Energy.gov [DOE]

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry’s collective future and establishes a clear pathway forward.

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    electricity demand growth; existing state policies that are insufficient to support future wind power capacity additions at the levels 2011 Wind Technologies Market

  3. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect (OSTI)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  4. A faster implementation of the pivot algorithm for self-avoiding walks

    E-Print Network [OSTI]

    Tom Kennedy

    2001-09-17

    The pivot algorithm is a Markov Chain Monte Carlo algorithm for simulating the self-avoiding walk. At each iteration a pivot which produces a global change in the walk is proposed. If the resulting walk is self-avoiding, the new walk is accepted; otherwise, it is rejected. Past implementations of the algorithm required a time O(N) per accepted pivot, where N is the number of steps in the walk. We show how to implement the algorithm so that the time required per accepted pivot is O(N^q) with q<1. We estimate that q is less than 0.57 in two dimensions, and less than 0.85 in three dimensions. Corrections to the O(N^q) make an accurate estimate of q impossible. They also imply that the asymptotic behavior of O(N^q) cannot be seen for walk lengths which can be simulated. In simulations the effective q is around 0.7 in two dimensions and 0.9 in three dimensions. Comparisons with simulations that use the standard implementation of the pivot algorithm using a hash table indicate that our implementation is faster by as much as a factor of 80 in two dimensions and as much as a factor of 7 in three dimensions. Our method does not require the use of a hash table and should also be applicable to the pivot algorithm for off-lattice models.

  5. Parallel input makes the brain run faster Tommi Raij,a, Jari Karhu,b

    E-Print Network [OSTI]

    , Kuopio University Hospital, Finland c BioMag Laboratory, HUSLAB -- Helsinki University Central Hospital, Finland d Department of Biomedical Engineering and Computational Science, Helsinki University of Technology, Finland e Helsinki Brain Research Center, Finland f Institute of Biomedical Engineering, National

  6. Assessment of Future Vehicle Transportation Options and their...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional...

  7. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Injection System and Engine Strategies for Advanced Emission Standards SCR Technologies for NOx Reduction Powertrain Trends and Future...

  8. ITP Glass: Glass Industry of the Future: Energy and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: A Clear Vision for a Bright Future ITP Glass: Glass Industry Technology Roadmap; April 2002...

  9. Technology in water conservation 

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01

    ?? percent to ?? percent. Water reuse systems treat wastewater by various technologies including ?ltering, bioremediation and ozone exposure. ?ese technologies can involve billions of gallons of wastewater ? such as in a municipal recycling e... Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a behavioral exercise and urge...

  10. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  11. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect (OSTI)

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  12. Rationale for State Support of Industries of the Future 

    E-Print Network [OSTI]

    Trabachino, C.; Muller, M.

    2002-01-01

    Through its Industries of the Future (IOF) strategy, the US DOE's Office of Industrial Technologies (OIT) seeks to develop and deploy advanced technologies and practices that will increase energy efficiency, environmental performance...

  13. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  14. FutureGen Project Report

    SciTech Connect (OSTI)

    Cabe, Jim; Elliott, Mike

    2010-09-30

    This report summarizes the comprehensive siting, permitting, engineering, design, and costing activities completed by the FutureGen Industrial Alliance, the Department of Energy, and associated supporting subcontractors to develop a first of a kind near zero emissions integrated gasification combined cycle power plant and carbon capture and storage project (IGCC-CCS). With the goal to design, build, and reliably operate the first IGCC-CCS facility, FutureGen would have been the lowest emitting pulverized coal power plant in the world, while providing a timely and relevant basis for coal combustion power plants deploying carbon capture in the future. The content of this report summarizes key findings and results of applicable project evaluations; modeling, design, and engineering assessments; cost estimate reports; and schedule and risk mitigation from initiation of the FutureGen project through final flow sheet analyses including capital and operating reports completed under DOE award DE-FE0000587. This project report necessarily builds upon previously completed siting, design, and development work executed under DOE award DE-FC26- 06NT4207 which included the siting process; environmental permitting, compliance, and mitigation under the National Environmental Policy Act; and development of conceptual and design basis documentation for the FutureGen plant. For completeness, the report includes as attachments the siting and design basis documents, as well as the source documentation for the following: • Site evaluation and selection process and environmental characterization • Underground Injection Control (UIC) Permit Application including well design and subsurface modeling • FutureGen IGCC-CCS Design Basis Document • Process evaluations and technology selection via Illinois Clean Coal Review Board Technical Report • Process flow diagrams and heat/material balance for slurry-fed gasifier configuration • Process flow diagrams and heat/material balance for dry-fed gasifier configuration • Full capital cost report and cost category analysis (CAPEX) • Full operating cost report and assumptions (OPEX) Comparative technology evaluations, value engineering exercises, and initial air permitting activities are also provided; the report concludes with schedule, risk, and cost mitigation activities as well as lessons learned such that the products of this report can be used to support future investments in utility scale gasification and carbon capture and sequestration. Collectively, the FutureGen project enabled the comprehensive site specific evaluation and determination of the economic viability of IGCC-CCS. The project report is bound at that determination when DOE formally proposed the FutureGen 2.0 project which focuses on repowering a pulverized coal power plant with oxy-combustion technology including CCS.

  15. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOE Patents [OSTI]

    Hanson, Gregory R.; Bingham, Philip R.

    2006-10-03

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  16. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOE Patents [OSTI]

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  17. Nanoscience for Energy Technology and Sustainability

    E-Print Network [OSTI]

    Giger, Christine

    Nanoscience for Energy Technology and Sustainability Research Profile Prof. Park's Professorship issues of future energy & environmen- tal sustainability. Five strategic foci of Prof. Park's group of Energy Technology focuses on fundamental nanoscience for energy and clean technology applications

  18. TECHNOLOGY TRANSFER: PROBLEMS AND PROSPECTS

    E-Print Network [OSTI]

    TECHNOLOGY TRANSFER: PROBLEMS AND PROSPECTS Jesse w. Fussell Department of Defense 9800 Savage Road of technology transfer in this technical area in the past, to forecast prospects for technology transfer in the future, and to suggest some ideas for stimulating the process. 2. TECHNOLOGY TRANSFER PROBLEMS Many

  19. Faster index calculus for the medium prime case Application to 1175-bit and 1425-bit finite fields

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    the cost of the main phases. In most cases, the designers of index calculus algorithms aim at balancingFaster index calculus for the medium prime case Application to 1175-bit and 1425-bit finite fields avenue des “Etats-Unis, F-78035 Versailles Cedex, France antoine.joux@m4x.org Abstract. Many index

  20. It has been demonstrated that pictures whose names occur more frequently (e.g., dog) are named faster than

    E-Print Network [OSTI]

    Caramazza, Alfonso

    It has been demonstrated that pictures whose names occur more frequently (e.g., dog) are named faster than pictures whose names occur less frequently (e.g., deer; Oldfield & Wingfield, 1965 with variables like structural similarity in picture naming experiments (Humphreys, Riddoch, & Quinlan, 1988

  1. Transportation Energy Futures

    E-Print Network [OSTI]

    Sperling, Daniel

    1989-01-01

    s values, forecasts of future energy prices and politicalYergin, D. , eds. 1979. Energy Future: Report of the Energy02, Sacramento, Calif. ENERGY FUTURES 103. Ullman, T. L. ,

  2. Hydrogen: Fueling the Future

    SciTech Connect (OSTI)

    Leisch, Jennifer

    2007-02-27

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

  3. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solve the energy crisis through biological methods, including genetically engineering algae and cyanobacteria. Create a Sustainable Future: Living Living a Sustainable Future How...

  4. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the...

  5. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. Nuclear Waste and the Distant Future Nuclear Waste and the Distant Future

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Nuclear Waste and the Distant Future 1 Nuclear Waste and the Distant Future PER F. PETERSON WILLIAM E. KASTENBERG MICHAEL CORRADINI Issues in Science and Technology. Summer: pp. 47-50. http://www.issues.org/22.4/peterson.html Regulation of nuclear hazards must be consistent with rules governing other

  7. Getting to Know Nuclear Energy: The Past, Present & Future

    E-Print Network [OSTI]

    Kemner, Ken

    Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

  8. Global Energy Futures: With International Futures (IFs)

    SciTech Connect (OSTI)

    Hughes, Barry

    2013-03-20

    Dr. Hughes presents and discusses the results of simulations on alternative energy futures composed in collaboration with SNL's Sustainability Innovation Foundry.

  9. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  10. IBVS 6000, 2011 Budapest -A. Holl: Electronic IBVS technology 1 Electronic IBVS technology -

    E-Print Network [OSTI]

    Holl, Andrįs

    IBVS 6000, 2011 Budapest - A. Holl: Electronic IBVS technology 1 Electronic IBVS technology - innovation: past, present, future Andrįs Holl Konkoly Observatory #12;IBVS 6000, 2011 Budapest - A. Holl: Electronic IBVS technology

  11. Wireless Technologies for Structural Wireless Technologies for Structural Health MonitoringHealth Monitoring

    E-Print Network [OSTI]

    Wireless Technologies for Structural Wireless Technologies for Structural Health MonitoringHealth responses · Structural monitoring structural health monitoring: ­ Very few structural "health" monitoring and buildings · Future directions and technology trends Structural Monitoring SystemsStructural Monitoring

  12. ITER:The Future International Burning Plasma Experiment Present Status

    E-Print Network [OSTI]

    ITER5/8/01 ITER:The Future International Burning Plasma Experiment Present Status R. Aymar, ITER/8/01 strategic objective „ to establish fusion energy as a real energy option for the future Š e.g. Ņcreating availability and integration of essential fusion technologies Š test components for a future reactor Š test

  13. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Inc. (EEA). 2001. Technology and Cost of Future Fuel Economyproduction leads to lower technology costs. In the case ofpollution control technology costs. As a result, the cost-

  14. 2010 Fuel Cell Technologies Market Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    along with policy and market drivers and the future outlook for fuel cells. 2010 Fuel Cell Technologies Market Report More Documents & Publications 2008 Fuel Cell Technologies...

  15. Before House Committee on Science, Space, and Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee on Science, Space, and Technology Before House Committee on Science, Space, and Technology By: Peter Lyons Subject: Assessing America's Nuclear Future - A review of the...

  16. Galen Sasaki EE 361 University of Hawaii 1 Memory technologies

    E-Print Network [OSTI]

    Sasaki, Galen H.

    1 Galen Sasaki EE 361 University of Hawaii 1 Memory · Memory technologies · Memory hierarchy of Hawaii 2 Memory Technologies · Read Only Memory (ROM) · Static RAM (SRAM) ­ Basic cell: clocked D latch) ­ Basic cell ­ Faster DRAM, e.g. synchronous DRAM #12;2 Galen Sasaki EE 361 University of Hawaii 3 ROM

  17. Faster history matching and uncertainty in predicted production profiles with stochastic modeling

    SciTech Connect (OSTI)

    Tyler, K.; Svanes, T.; Omdal, S. [Statoil, Stavanger (Norway)

    1994-12-31

    High resolution sequence stratigraphical methods have been used in the detailed geological modeling of the Ness formation of a North Sea field. This updated geological description has been used as input to the stochastic geological model for development of the reservoir description for reservoir simulation for an element area of the Ness formation. 14 realizations of facies architecture and petrophysical properties have been generated. The stochastically generated realizations have been scaled up to a refined element of an existing deterministic, history matched reservoir simulation model for the full Upper Brent reservoir. The up-scaled versions of the realizations have been connected to the full field model, and reservoir simulations have been performed to compare twelve years of production history with simulated results for well production, RFT- and PLT-data. Six of the realizations gave good to very good results when compared to measured production data. these realizations were used for simulation of the future production performance to the year 2010, making it possible to estimate its uncertainty.

  18. Technology Assessment TECHNOLOGY ASSESSMENT

    E-Print Network [OSTI]

    Rock, Chris

    Technology Assessment 10/14/2004 1 TECHNOLOGY ASSESSMENT STRATEGIC PLAN MISSION STATEMENT Support the Mission of Texas Tech University and the TTU Information Technology Division by providing timely and relevant information and assistance in current and emerging technologies and their practical applications

  19. Bioscience Technology Bioscience Technology

    E-Print Network [OSTI]

    Vertes, Akos

    Bioscience Technology Bioscience Technology Advantage Business Media 100 Enterprise Drive Rockaway, co-director of George Washington University's Institute for Proteomics Technology and Applications-by-point. Manufacturers have stampeded to offer the new technology. Applied Biosystems got out in front in 2004 when

  20. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  1. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  4. Planning for the future

    SciTech Connect (OSTI)

    Lesh, Pamela

    2009-06-15

    Four changes to integrated resource planning could significantly improve alignment between future utility spending and the forces and changes that are upending past preconceptions of how to predict future load. (author)

  5. Renewable Electricity Futures Study Executive Summary

    Broader source: Energy.gov [DOE]

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  6. Renewable Electricity Futures for the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  7. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  8. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  9. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  10. Appointment Future work

    E-Print Network [OSTI]

    Phillips, David

    1/17 Appointment scheduling Example: a glaucoma clinic Future work Appointment scheduling #12;2/17 Appointment scheduling Example: a glaucoma clinic Future work Have you heard this one? So: a glaucoma clinic Future work Have you heard this one? So a mathematician walks into a room full

  11. FINDYOUR FOCUS. YOUR FUTURE.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    FINDYOUR FOCUS. #12;YOUR FUTURE. DRIVE West Virginia University (ISSN 0362-3009) is published, Morgantown, WV 26506-6009. You're about to start the race of your life. Travis is racing toward his future has great options for his future. You have great options, too. Ready to get started? Tell us

  12. Mathematical Future work

    E-Print Network [OSTI]

    Phillips, David

    1/15 Mathematical modeling Example: Glaucoma clinic Future work Scheduling and resource planning;2/15 Mathematical modeling Example: Glaucoma clinic Future work So a mathematician walks into a room full of healthcare providers... · Mathematical modeling · A model for the glaucoma clinic · Future possibilities #12

  13. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  14. Methodological Research Future Work

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Outline Background Methodological Research Results Future Work New Dataset 1878 PCA for 1000 rmfs Background Methodological Research Results Future Work New Dataset 1878 PCA for 1000 rmfs Background Quasar Analysis Future Work Doubly-intractable Distribution Other Calibration Uncertainty New Dataset

  15. Space reactors - past, present, and future

    SciTech Connect (OSTI)

    Buden, D.; Angelo, J.

    1983-01-01

    In the 1990s and beyond, advanced-design nuclear reactors could represent the prime source of both space power and propulsion. Many sophisticated military and civilian space missions of the future will require first kilowatt and then megawatt levels of power. This paper reviews key technology developments that accompanied past US space nuclear power development efforts, describes on-going programs, and then explores reactor technologies that will satisfy megawatt power level needs and beyond.

  16. Oakland Operations Office, Oakland, California: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

  17. Microsoft Word - Applications of HVDC Technologies - Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    grids; this capability may have more value in the future with greater numbers of microgrids. HVDC technologies can also provide extremely rapid stability control, power flow...

  18. Generation IV International Forum Updates Technology Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    strengthen future collaboration. As part of the decadal planning, the GIF technology roadmap was updated to reflect revised schedule projections for the deployment of advanced...

  19. Vehicle Technologies Office: Electrical Machines | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in efficiency, cost, weight, and volume for competitive future electric vehicles. Tesla Motors, a U.S. electric vehicle manufacturer, uses induction motor technology....

  20. Faster Proton Transfer Dynamics of Water on SnO2 Compared to TiO2

    SciTech Connect (OSTI)

    Kumar, Nitin [ORNL; Kent, Paul R [ORNL; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Kubicki, James D. [Pennsylvania State University; Wesolowski, David J [ORNL; Cole, David R [ORNL; Sofo, Jorge O. [Pennsylvania State University

    2011-01-01

    Proton jump processes in the hydration layer on the isostructural TiO2 rutile (110) and SnO2 cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.

  1. Value chain dynamics in the RFID technology

    E-Print Network [OSTI]

    Tavshikar, Milind (Milind Murlidhar)

    2006-01-01

    RFID (Radio Frequency Identification) technology has been one of the oldest renewed technologies with a promise of becoming a foundation of "The Internet of Things" in future. MIT's Auto-ID labs and EPCGlobal have been ...

  2. DelftResearchInitiatives Medical technology for

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    technology is creating a wave of innovation in healthcare, improving quality and efficiency while keepingDelftResearchInitiatives Medical technology for the future of healthcare Delft Health Initiative,affordablegreenenergy,acleanandsafelivingenvironment andcommutingandtransportationwithnotailbacks.Health,energy,environment, infrastructuresandmobilityaretoday

  3. Deep-Space Optical Communications: Future

    E-Print Network [OSTI]

    Djordjevic, Ivan B.

    INVITED P A P E R Deep-Space Optical Communications: Future Perspectives and Applications Current technologies available for deep-space optical data transmission and networking are discussed in this paper IEEE, Abhijit Biswas, and Ivan B. Djordjevic, Senior Member IEEE ABSTRACT | The concept of deep

  4. The Future of Financial Risk Management: Lessons

    E-Print Network [OSTI]

    Aronov, Boris

    The Future of Financial Risk Management: Lessons Charles S. Tapiero, Topfer Chair Distinguished Professor of Financial Engineering and Technology Management Department of Finance and Risk Engineering NYU, leading risk managers to turn to qualitative stress testingto turn to qualitative stresstesting, 4

  5. Introduction Conclusions, Future Directions, and Acknowledgements

    E-Print Network [OSTI]

    different curve shapes for each polymer and have different formal potentials. - PPV spectrum isn't clean cells to store energy Why is PSI useful for solar technology? - High quantum efficiency - Abundant - Possible 3-D network - Future work in solid state studies Synthesize PolymersSynthesize Polymers

  6. HVDC transmission: a path to the future?

    SciTech Connect (OSTI)

    Teichler, Stephen L.; Levitine, Ilia

    2010-05-15

    Direct current transmission has been the poor stepchild of the U.S. electric industry. Although early-generation plants were based on DC technology, it was soon deemed uneconomical to transmit electricity over long distances, but it now appears poised for a change. Both the increasing technical potential and changing economics of HVDC lines promise a growing role in the future. (author)

  7. Programmable Cellular Logic: Past, Present, and Future

    E-Print Network [OSTI]

    Tessier, Russell

    Programmable Cellular Logic: Past, Present, and Future Russell Tessier Laboratory for Computer in technology and architectural trends as they pertain to cellular arrays since the 1960's. Direct comparisons of various cellular array architectural features with contemporary programmable logic features are made

  8. A comparison of three cap-and-trade market designs and incentives for new technologies to reduce Greenhouse gases

    SciTech Connect (OSTI)

    Van Horn, Andrew; Remedios, Edward

    2008-03-15

    A source-based market design is preferable for its simplicity, lower costs, faster implementation, more accurate tracking and verification, and greater incentives for the adoption of lower-emitting technologies. (author)

  9. Towards a new high technology development in the Silicon Valley : a 21st century urban design vision

    E-Print Network [OSTI]

    Pang, Jonathan K. (Jonathan Kam)

    1988-01-01

    Santa Clara Valley, perhaps better known as the Silicon Valley, is currently facing many problems and uncertainties. The explosion of the high technology industry has changed the regional scene faster than anyone could ...

  10. The Future of Network Neutrality

    E-Print Network [OSTI]

    Guttentag, Mikhail

    2009-01-01

    November 3, 2007). Print. The Future of Network Neutralityappeali.html>. The Future of Network Neutrality 19 ———. "Books, 2006. Print. ———. The Future of Ideas. New York, NY:

  11. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  12. Introduction to Futures Markets 

    E-Print Network [OSTI]

    Mintert, James R.; Welch, Mark

    2009-01-07

    or settlement price. Although the margin require- ments are small relative to the total value of the 4 Using Futures Contracts in a Farm Marketing Program There are a number of ways futures contracts can be used in a farm marketing program. Futures... their risk exposure, grain dealers began selling ?To Arrive? contracts, which specified the future date (usually the month) a speci- fied quantity of grain would be delivered to a particular location at a price identified in the contract. Fixing the price...

  13. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE)

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  14. My Amazing Future 2012

    ScienceCinema (OSTI)

    None

    2013-05-28

    Idaho National Laboratory's My Amazing Future program gives 8th grade women the opportunity to experience careers in science and engineering.

  15. Growing the Future Bioeconomy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Future Bioeconomy JOEL VELASCO July 2014 2 Copyright 2012 Amyris, Inc. All rights reserved. This presentation and oral statements accompanying this presentation contain...

  16. My Amazing Future 2012

    SciTech Connect (OSTI)

    None

    2012-01-01

    Idaho National Laboratory's My Amazing Future program gives 8th grade women the opportunity to experience careers in science and engineering.

  17. Vehicle Technologies Program Educational Activities

    SciTech Connect (OSTI)

    2011-12-13

    Description of educational activities including: EcoCAR2: Plugging In to the Future, EcoCAR: The NeXt Challenge, Green Racing, Automotive X Prize, Graduate Technology Automotive Education (GATE), and Hydrogen Education.

  18. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Fuel Cell Technologies Publication and Product Library (EERE)

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

  19. Coal: the cornerstone of America's energy future

    SciTech Connect (OSTI)

    Beck, R.A. [National Coal Council (United Kingdom)

    2006-06-15

    In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

  20. for Florida's Energy Future

    E-Print Network [OSTI]

    Jawitz, James W.

    Technology A.S. Degree with specializations in Alternative Energy Technology and Industrial Energy Efficiency - CCC in Alternative Energy Systems Specialist and Industrial Energy Efficiency Specialist - College alternative energy strategies, improving energy efficiencies and expanding economic development for the State

  1. FutureGen Industrial Alliance Announces Carbon Storage Site Selection...

    Office of Environmental Management (EM)

    collected at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia,...

  2. ITP Glass: A Clear Vision for a Bright Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document presents perspectives on the glass industry's past, present and future, with special attention to competitive challenges now facing the industry and technological responses that will reinforce its continuing contribution...

  3. Astroinformatics, data mining and the future of astronomical research

    E-Print Network [OSTI]

    Longo, Giuseppe

    Astroinformatics, data mining and the future of astronomical research Massimo Bresciaa , Giuseppe the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of ICT technologies. Keywords: astroinformatics, Data Mining, virtual organizations 1. Introduction

  4. Present and Future Uses of Industrial Absorption Heat Pumps 

    E-Print Network [OSTI]

    Erickson, D. C.; Davidson, W. F.

    1985-01-01

    This paper examines the present and projects the future uses of industrial absorption heat pumping. AHP technology is seen as an increasingly important component of plant and process heat integration for energy conservation. Existing installations...

  5. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Use in California PEV Technology and Costs The mainEnergy Use in California Component HEV Battery Cost, $/kWhaccount the cost of delivery. California’s Energy Future -

  6. Technology reviews: Glazing systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

  7. Future Trends in Microelectronics

    E-Print Network [OSTI]

    Luryi, Serge

    Future Trends in Microelectronics Reflections on the Road to Nanotechnology edited by Serge Luryi;Proceedings of the NATO Advanced Research Workshop on Future Trends in Microelectronics: Reflections is available from the Library of Congress ISBN 0-7923-4169-4 Published by Kluwer Academic Publishers, P.O. Box

  8. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  10. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  11. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  12. The Hanford Story: Future

    Broader source: Energy.gov [DOE]

    The Future Chapter of the Hanford Story illustrates the potential and possibilities offered by a post-cleanup Hanford. From land use plans and preservation at Hanford to economic development and tourism opportunities, the Future chapter touches on a variety of local economic, cultural and environmental perspectives.

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  14. Multi-Path Transportation Futures Study: Results from Phase 1

    SciTech Connect (OSTI)

    Phil Patterson, P.; Singh, M.; Plotkin, S.; Moore, J.

    2007-03-09

    Presentation reporting Phase 1 results, 3/9/2007. Projecting the future role of advanced drivetrains and fuels in the light vehicle market is inherently difficult, given the uncertainty (and likely volatility) of future oil prices, inadequate understanding of likely consumer response to new technologies, the relative infancy of several important new technologies with inevitable future changes in their performance and costs, and the importance — and uncertainty — of future government marketplace interventions (e.g., new regulatory standards or vehicle purchase incentives). The Multi-Path Transportation Futures (MP) Study has attempted to improve our understanding of this future role by examining several scenarios of vehicle costs, fuel prices, government subsidies, and other key factors. These are projections, not forecasts, in that they try to answer a series of “what if” questions without assigning probabilities to most of the basic assumptions.

  15. Solar Smarter Faster

    SciTech Connect (OSTI)

    Armbrust, Dan; Haldar, Pradeep; Kaloyeros, Alain; Holladay, Dan

    2011-01-01

    As part of the SunShot Initiative, U.S. Department of Energy Secretary Steven Chu announced on April 15th the selection of up to $112.5 million over five years for funding to support the development of advanced solar photovoltaic (PV)-related manufacturing processes throughout the United States. The effort is led by Sematech, with a proven track record in breathing life back into the US semiconduster industry, and in partnership with CNSE, The College of Nanoscale Science and Engineering, who supplies world class R&D experts and facilities.

  16. Controlling chaos faster

    SciTech Connect (OSTI)

    Bick, Christian [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Bernstein Center for Computational Neuroscience (BCCN), 37077 Göttingen (Germany); Institute for Mathematics, Georg–August–Universität Göttingen, 37073 Göttingen (Germany); Kolodziejski, Christoph [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); III. Physical Institute—Biophysics, Georg–August–Universität Göttingen, 37077 Göttingen (Germany); Timme, Marc [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Institute for Nonlinear Dynamics, Georg–August–Universität Göttingen, 37077 Göttingen (Germany)

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  17. Solar Smarter Faster

    ScienceCinema (OSTI)

    Armbrust, Dan; Haldar, Pradeep; Kaloyeros, Alain; Holladay, Dan

    2013-05-29

    As part of the SunShot Initiative, U.S. Department of Energy Secretary Steven Chu announced on April 15th the selection of up to $112.5 million over five years for funding to support the development of advanced solar photovoltaic (PV)-related manufacturing processes throughout the United States. The effort is led by Sematech, with a proven track record in breathing life back into the US semiconduster industry, and in partnership with CNSE, The College of Nanoscale Science and Engineering, who supplies world class R&D experts and facilities.

  18. Fuel Cells for a Sustainable Future? Jane Powell, Michael Peters,

    E-Print Network [OSTI]

    Watson, Andrew

    Fuel Cells for a Sustainable Future? Jane Powell, Michael Peters, Alan Ruddell and Jim Halliday March 2004 Tyndall Centre for Climate Change Research Working Paper 50 #12;Fuel Cells for a Sustainable Future? A review of the opportunities and barriers to the development of fuel cell technology Powell, J

  19. BLUEPRINT FOR A SECURE ENERGY FUTURE March 30, 2011

    E-Print Network [OSTI]

    Lotko, William

    , including renewables like wind and solar, as well as clean coal, natural gas, and nuclear power ­ keeping America on the cutting edge of clean energy technology so that we can build a 21st century clean energy. Innovate Our Way to a Clean Energy Future Harness America's Clean Energy Potential Win the future through

  20. Wood Fuel Future: The Potential Web Text December 2010

    E-Print Network [OSTI]

    burn wood chips or pellets, which are fed into the boilers automatically by an electronically regulatedWood Fuel Future: The Potential Web Text 31st December 2010 Wood Fuel Future: The Potential Wood') supports the development of renewable energy from wood fuel. Of all the clean energy technologies, wood

  1. THE FUTURE IN BRAIN/NEURAL-COMPUTER INTERACTION

    E-Print Network [OSTI]

    Theune, Mariėt

    THE FUTURE IN BRAIN/NEURAL-COMPUTER INTERACTION: HORIZON 2020 Roadmap #12;ISBN 978-3-85125-379-5 DOI 10.3217/978-3-85125-379-5 © 2015 Graz University of Technology This roadmap and its appendix can #12;THE FUTURE IN BRAIN/NEURAL-COMPUTER INTERACTION: HORIZON 2020 Roadmap #12;© Kurhan - Fotolia.com 4

  2. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  3. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY #12;#12;A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John

  4. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY #12;#12;A REPORT fOR THE MIT fUTURE Of SOLAR ENERGY STUDY A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John

  5. Alumina Technology Roadmap

    SciTech Connect (OSTI)

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals. (PDF 316 KB).

  6. FUTURE POWER GRID INITIATIVE Future Power Grid

    E-Print Network [OSTI]

    of all 16 machines damped quickly ­ improved frequency performance » AGC ensures tie line power flows on the Electricity Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science and develop the technologies

  7. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  8. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    DOCU[viENTS SECTION DISTRIBUTED ENERGY SYSTEMS STUDY GROUPIMPLICATIONS OF UTILIZING DISTRIBUTED ENERGY TECHNOLOGIES .to implement a distributed energy future. RECENT TRENDS IN

  9. High Field Magnets for a Future High Energy Proton-proton Collider...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    brief review of current progress, the talk will describe the key issues facing future development and present a roadmap for moving high field accelerator magnet technology forward...

  10. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  11. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  12. Overture Past Interlude Present Interlude Future Finale Geometry's Future

    E-Print Network [OSTI]

    Lee, Carl

    Overture Past Interlude Present Interlude Future Finale Geometry's Future: Past, Present, and Future Carl Lee University of Kentucky http://www.ms.uky.edu/lee NCTM -- April 2011 Geometry's Future UK #12;Overture Past Interlude Present Interlude Future Finale Overture Past Interlude Present Interlude

  13. Future Choices 1 Running head: EFFECT OF FUTURE CHOICES

    E-Print Network [OSTI]

    Future Choices 1 Running head: EFFECT OF FUTURE CHOICES The Effect of Highlighting Future Choices on Current Preferences Uzma Khan Carnegie Mellon University Ravi Dhar Yale School of Management #12;Future future choices rather than as an isolated choice. Our finding contrasts with the general wisdom

  14. Transportation Energy Futures Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  15. Future Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Physics March 5, 2009 In late January, we held a meeting of our Physics Advisory Committee, PAC34 to be precise. We had two primary goals for the PAC, one related to the...

  16. Comparative analysis of automotive powertrain choices for the near to mid-term future

    E-Print Network [OSTI]

    Kasseris, Emmanuel P

    2006-01-01

    This thesis attempts a technological assessment of automotive powertrain technologies for the near to mid term future. The powertrain types to be assessed include naturally aspirated gasoline engines, turbocharged gasoline ...

  17. Transportation Energy Futures

    E-Print Network [OSTI]

    Sperling, Daniel

    1989-01-01

    TRANSPORTATION ment of Oil Shale Technology. Washing- ton,interest and investments in oil shale, ethanol, coal liquidsbiomass materials, coal, oil shale, tar sands, natural gas,

  18. Galen Sasaki EE 361 University of Hawaii 1 Memory technologies

    E-Print Network [OSTI]

    Sasaki, Galen H.

    Galen Sasaki EE 361 University of Hawaii 1 Memory · Memory technologies · Memory hierarchy ­ Cache basics ­ Cache variations ­ Virtual memory · Synchronization Galen Sasaki EE 361 University of Hawaii 2 cell ­ Faster DRAM, e.g. synchronous DRAM #12;Galen Sasaki EE 361 University of Hawaii 3 ROM · Random

  19. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  20. Future land use plan

    SciTech Connect (OSTI)

    NONE

    1995-08-31

    The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

  1. FUTURE CLIMATE ANALYSIS

    SciTech Connect (OSTI)

    R.M. Forester

    2000-03-14

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog.

  2. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance a given location for the best technology, or a renewable energy technology for the best location, accurate

  3. Future directions of accelerator-based NP and HEP facilities

    SciTech Connect (OSTI)

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  4. The Future of Cyber Security Prof. Ravi Sandhu

    E-Print Network [OSTI]

    Sandhu, Ravi

    1 The Future of Cyber Security Prof. Ravi Sandhu Executive Director February 2010 ravi! Institute for Cyber Security #12;Good News, Bad News Cyber security profession will not disappear Cyber New attacks Old technologies New technologies #12;Productivity-Security Number 1 cyber-centric nation

  5. The Future of the Hollings Manufacturing Extension Partnership

    E-Print Network [OSTI]

    Magee, Joseph W.

    of Standards and Technology, U.S. Department of Commerce #12;The Future of the Hollings Manufacturing Extension Partnership A Program of the National Institute of Standards and Technology U.S. Department of Commerce 2 pressure to cut costs, improve quality, meet environmental and international standards, and get to market

  6. Toward an energy surety future.

    SciTech Connect (OSTI)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  7. for Florida's Energy Future

    E-Print Network [OSTI]

    Mazzotti, Frank

    Florida to deliver educational programs and fact sheets related to energy and resource-efficient community Technology A.S. Degree with specializations in Alternative Energy Technology and Industrial Energy Efficiency - CCC in Alternative Energy Systems Specialist and Industrial Energy Efficiency Specialist - College

  8. Nuclear materials safeguards for the future

    SciTech Connect (OSTI)

    Tape, J.W.

    1995-12-31

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

  9. Future Climate Analysis

    SciTech Connect (OSTI)

    James Houseworth

    2001-10-12

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department''. (BSC 2001b, Addendum B, Section 4.1).

  10. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  11. The house of the future

    ScienceCinema (OSTI)

    None

    2010-09-01

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  12. A Renewable Energy Future: Innovation and Beyond

    Broader source: Energy.gov [DOE]

    This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is needed to make it happen. The presentation also includes a discussion of the integration challenges that affect solar energy systems.

  13. Historical impacts and future trends in industrial cogeneration

    SciTech Connect (OSTI)

    Bluestein, J.; Lihn, M.

    1999-07-01

    Cogeneration, also known as combined heat and power (CHP), is the combined sequential generation of electricity and thermal or electric energy. The technology has been known essentially since the first commercial generation of electricity as a high efficiency technology option. After a period of decline, its use increased significantly during the 1980s and it is receiving renewed interest lately as a means of increasing efficiency and reducing emissions of air pollutants including carbon emissions. New and developing technology options have added to this potential. Forecasts of future growth and efforts to stimulate cogeneration need to take into account the history of the technology, the factors that have driven it in the past, and factors which could stimulate or retard future growth. This paper reviews and analyzes these factors and looks toward the future potential for cogeneration.

  14. Water for future Mars astronauts?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water for future Mars astronauts? Water for future Mars astronauts? Within its first three months on Mars, NASA's Curiosity Rover saw a surprising diversity of soils and sediments...

  15. Too Much History MORE Future

    E-Print Network [OSTI]

    Schubart, Christoph

    Too Much History SHARE MORE Future #12;Vortrag: ,,The view from Eastern Ukraine: challenges MORE Future Donnerstag, 27. November 2014, 18 Uhr Kino im Andreasstadel, Andreasstraße 28, 93059

  16. Debris and Future Space Activities

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Debris and Future Space Activities Prof. Joel R. Primack Physics Department University would be endangered. Every person who cares about the human future in space should also realize

  17. Future Climate Analysis

    SciTech Connect (OSTI)

    C. G. Cambell

    2004-09-03

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Other alternative approaches could include simulation of climate over the 10,000-year period; however, this modeling extrapolation is well beyond the bounds of current scientific practice and would not provide results with better confidence. A corroborative alternative approach may be found in ''Future Climate Analysis-10,000 Years to 1,000,000 Years After Present'' (Sharpe 2003 [DIRS 161591]). The current revision of this report is prepared in accordance with ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]).

  18. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  19. Cooperative Monitoring Center Occasional Paper/16: The Potential of Technology for the Control of Small Weapons: Applications in Developing Countries

    SciTech Connect (OSTI)

    ALTMANN, JURGEN

    2000-07-01

    For improving the control of small arms, technology provides many possibilities. Present and future technical means are described in several areas. With the help of sensors deployed on the ground or on board aircraft, larger areas can be monitored. Using tags, seals, and locks, important objects and installations can be safeguarded better. With modern data processing and communication systems, more information can be available, and it can be more speedily processed. Together with navigation and transport equipment, action can be taken faster and at greater range. Particular considerations are presented for cargo control at roads, seaports, and airports, for monitoring designated lines, and for the control of legal arms. By starting at a modest level, costs can be kept low, which would aid developing countries. From the menu of technologies available, systems need to be designed for the intended application and with an understanding of the local conditions. It is recommended that states start with short-term steps, such as acquiring more and better radio transceivers, vehicles, small aircraft, and personal computers. For the medium term, states should begin with experiments and field testing of technologies such as tags, sensors, and digital communication equipment.

  20. FUTURE POWER GRID INITIATIVE Decision Support for Future

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Decision Support for Future Power Grid Organizations OBJECTIVE Northwest National Laboratory (509) 371-6607 angela.dalton@pnnl.gov ABOUT FPGI The Future Power Grid a more secure, efficient and reliable future grid. Building on the Electricity Infrastructure Operations

  1. Coupling of Two Motor Proteins: A New Motor Can Move Faster Evgeny B. Stukalin, Hubert Phillips III, and Anatoly B. Kolomeisky

    E-Print Network [OSTI]

    Coupling of Two Motor Proteins: A New Motor Can Move Faster Evgeny B. Stukalin, Hubert Phillips III February 2005; published 13 June 2005) We study the effect of a coupling between two motor domains in highly processive motor protein complexes. A simple stochastic discrete model, in which the two parts

  2. Future Students Current Students

    E-Print Network [OSTI]

    Menzel, Suzanne

    Search Home Future Students Current Students For Alumni For Employers News & Media Upcoming Events IU Home IUB Home IUB Computer Science IUPUI Home IUPUI Informatics IUPUI New Media IUSB Informatics the expertise of the Industrial Light & Magic. Alex Sutter, a special effects creator who works in ILM

  3. Quantum motor and future

    E-Print Network [OSTI]

    Evgeny G. Fateev

    2013-01-20

    In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

  4. Investing in the Future 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01

    Engineering; Elizabeth Bristow, Department of Civil Engineering; Regan M. Errera and Danielle M. Rutka, Department of Wildlife and Fisheries Sciences; David Hansen, Stephen Lichlyter and Douglas S. Sassen, Department of Geology and Geophysics; and Shelli L... in the Future TWRI awards Mills Scholarships to graduate students tx H2O | pg. 21 ...

  5. Pennsylvania's Natural Gas Future

    E-Print Network [OSTI]

    Lee, Dongwon

    1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

  6. Energy and technology review

    SciTech Connect (OSTI)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P.

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  7. NREL: Technology Transfer - NREL to Play Pivotal Role in White...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White House Initiative to Bolster America's Manufacturing Future A photo of a large scale wind turbine with foothills in the background. Experts at the National Wind Technology...

  8. 2013 Wind Technologies Market Report Cover | Department of Energy

    Office of Environmental Management (EM)

    Technologies Market Report Cover.JPG More Documents & Publications NOWEGIS Report Cover 2014 Water Power Peer Review Report Cover Water Power For a Clean Energy Future Cover Photo...

  9. Office of Building Technology, State and Community Programs Strategic Plan

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    This is the strategic plan for the Building Technology Program in 1998. This describes trends in the BTP program and projects goals for the future.

  10. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  11. Cooling and Dehumidification HVAC Technology for 1990s

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Desiccant Cooling and Dehumidification HVAC Technology for 1990s HVAC: Heating, Ventilation, and Air Conditioning Desiccant Cooling Group Solar Energy Research Institute Golden, Colorado #12;Table of Contents * Background and Fundamentals * SERI Desiccant Research * Status of Desiccant Technology * Future

  12. Natural Gas Vehicle Webinar: Technology, Best Strategies, and Lessons Learned

    Broader source: Energy.gov [DOE]

    This Clean Cities program webinar elaborates first on successful past technology choices and then suggests future technological pathways that can be taken for the United States to expand its use of...

  13. Thermally Activated Technologies Technology Roadmap, May 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a...

  14. California's Energy Future

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    will investigate the tradeoffs represented by reliance on different energy sources, including oil, natural gas gas emissions (including direct land use change associated with fossil energy), alternative Officer, 44 Energy Technologies, Inc. Vera Pardee, Senior Attorney, Center for Biological Diversity Sonia

  15. Future Climate Engineering Solutions

    E-Print Network [OSTI]

    technology development Achieve GHG reductions by using energy more wisely Action needed in the transport for Norway. . . . . . . . . .27 Summary of National Report from the Institution of Mechanical Engineers, UK for Germany. . . . . . . . . . .39 The Strategy of Japan Society of Mechanical Engineers (JSME

  16. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture for SolarTechnologyNew Amber

  17. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  18. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    SciTech Connect (OSTI)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  19. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  20. Buying Hedge with Futures 

    E-Print Network [OSTI]

    Welch, Mark; Kastens, Terry L.

    2009-01-07

    , David Anderson and Terry Kastens* 2 hogs, corn, wheat and soybeans are a few examples. A notable exception is grain sorghum. Because of grain sorghum?s close price relationship to corn, producers can use corn futures to manage grain sorghum price... of gain) is 7. The cattle feeder?s projected feed requirement is 6,750 bushels (54,000 pounds total gain x 7 pounds of feed per pound of gain ? 56 pounds per bushel). Since one Chicago Board of Trade (CBOT) corn contract is specified as 5,000 bushels...

  1. ARM - Future Trends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENAField Participants Campaign Details News FieldgovFrontFuture

  2. Protecting America's Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)ProjectProposedAmerica's Future The most

  3. Future City Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities Nuclear Physics (NP) NP HomeSciencesreactorFuture

  4. Nuclear and Particle Futures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclear and Particle Futures Nuclear and

  5. NYMEX Futures Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIARegionalMethodology forNYMEX Futures Prices

  6. An evaluation of enhanced geothermal systems technology

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    A review of the assumptions and conclusions of the DOE-sponsored 2006 MIT study on "The Future of Geothermal Energy" and an evaluation of relevant technology from the commercial geothermal industry.

  7. Milk Futures, Options and Basis 

    E-Print Network [OSTI]

    Haigh, Michael; Stockton, Matthew; Anderson, David P.; Schwart Jr., Robert B.

    2001-10-12

    The milk futures and options market enables producers and processors to manage price risk. This publication explains hedging, margin accounts, basis and how to track it, and other fundamentals of the futures and options market....

  8. How predictable is technological progress?

    E-Print Network [OSTI]

    Farmer, J Doyne

    2015-01-01

    Recently it has become clear that many technologies follow a generalized version of Moore's law, i.e. costs tend to drop exponentially, at different rates that depend on the technology. Here we formulate Moore's law as a time series model and apply it to historical data on 53 technologies. Under the simple assumption of a correlated geometric random walk we derive a closed form expression approximating the distribution of forecast errors as a function of time. Based on hind-casting experiments we show that it is possible to collapse the forecast errors for many different technologies at many time horizons onto the same universal distribution. As a practical demonstration we make distributional forecasts at different time horizons for solar photovoltaic modules, and show how our method can be used to estimate the probability that a given technology will outperform another technology at a given point in the future.

  9. IMPROVING FUTURE CLIMATE PREDICTION USING

    E-Print Network [OSTI]

    Henderson, Gideon

    IMPROVING FUTURE CLIMATE PREDICTION USING PALAEOCLIMATE DATA A community White Paper for consideration by the Natural Environment Research Council, UK #12;#12;IMPROVING FUTURE CLIMATE PREDICTION USING Climate Symposium 2008 - Earth's Climate: Past, Present and Future", convened by H. Elderfield, M. Bickle

  10. The semantics of the future

    E-Print Network [OSTI]

    Copley, Bridget, Lynn, 1974-

    2002-01-01

    Natural languages use a number of different methods to refer to future eventualities: among them are futurates, as in (la), and futures, as in (lb) and (c). (1) a. The Red Sox (are) play(ing) the Yankees tomorrow. b. We'll ...

  11. (and the future) Mike Cruise

    E-Print Network [OSTI]

    Crowther, Paul

    AGP 2009 (and the future) Mike Cruise #12;The 2009 Grants Round · The funding model we were working years and in future rounds. · At the level of 75 posts modelling indicates there would be 12 SG and only's awarded out of 20 #12;The Future · If the grants funding were limited to the equivalent of about 56 posts

  12. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  13. Physics Potential of Future Atmospheric Neutrino Searches

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-12-12

    The potential of future high statistics atmospheric neutrino experiments is considered, having in mind currently discussed huge detectors of various technologies (water Cerekov, magnetized iron, liquid Argon). I focus on the possibility to use atmospheric data to determine the octant of $\\theta_{23}$ and the neutrino mass hierarchy. The sensitivity to the $\\theta_{23}$-octant of atmospheric neutrinos is competitive (or even superior) to long-baseline experiments. I discuss the ideal properties of a fictitious atmospheric neutrino detector to determine the neutrino mass hierarchy.

  14. Future nuclear fuel cycles: prospects and challenges

    SciTech Connect (OSTI)

    Boullis, Bernard

    2008-07-01

    Solvent extraction has played, from the early steps, a major role in the development of nuclear fuel cycle technologies, both in the front end and back end. Today's stakes in the field of energy enhance further than before the need for a sustainable management of nuclear materials. Recycling actinides appears as a main guideline, as much for saving resources as for minimizing the final waste impact, and many options can be considered. Strengthened by the important and outstanding performance of recent PUREX processing plants, solvent-extraction processes seem a privileged route to meet the new and challenging requirements of sustainable future nuclear systems. (author)

  15. Technology and the Future of Intensive Care Unit Design

    E-Print Network [OSTI]

    Rashid, Mahbub

    2011-10-01

    treatment. Plasma pyrolysis and ICU wastes American hospitals produce an average of 2 million tons of waste per year, according to the American Hospital Association (AHA). About 15% of hospital waste is classified as infectious. Infectious waste... and sterile drapes because of their potential to be infectious after use (50). Therefore, focusing on other alternatives to the disposal of hospital waste, such as plasma pyrolysis, is the key to reducing costs and environmental impact. Plasma pyrolysis...

  16. The Heritage of the Future: Historical Keyboards, Technology, and Modernism

    E-Print Network [OSTI]

    Ng, Tiffany Kwan

    2015-01-01

    carillon cast by the French foundry Paccard, but plans wereof bells from three Dutch foundries, each note symbolizing acould finally be placed. The foundries had agreed to offer a

  17. Future Implications of China's Energy-Technology Choices

    E-Print Network [OSTI]

    ................................................................................................. 17 3.3.5 Hydroelectric Power

  18. Bioseparations- An Assessment of Current Technologies and Future Applications 

    E-Print Network [OSTI]

    Kitto, G. B.; Humphrey, J. L.

    1986-01-01

    size. Because of the small-pore size of these membranes (2 - 100 AO) the process is relatively slow and filtration is usually carried out under the pressure of an inert gas such as nitrogen. Like hollow fiber apparatus, these filtration molecular... centrifuge. Typically the next step is t Spec1al.cons1deration must be given to concentrate the clarified solutio separat10n of recombinant organisms further purification. This can b S1nce federal regulations strictly accomplished by a variety of mean...

  19. Recapitalizing EMSL: Meeting Future Science and Technology Challenges

    SciTech Connect (OSTI)

    Felmy, Andrew R.

    2008-07-01

    EMSL, located in Richland, Washington, is a national scientific user facility operated for the U.S. Department of Energy (DOE) by the Pacific Northwest National Laboratory. The vision that directed the development of EMSL as a problem-solving environment for environmental molecular science has led to significant scientific progress in many areas ranging from subsurface science to atmospheric sciences, and from biochemistry to catalysis. Our scientific staff and users are recognized nationally and internationally for their significant contributions to solving challenging scientific problems. We have explored new scientific frontiers and organized a vibrant and diverse user community in support of our mission as a national scientific user facility that provides integrated experimental and computational resources in the environmental molecular sciences. Users from around the world - from academia to industry and national laboratories to international research organizations - use the resources of EMSL because of the quality of science that we enable.

  20. Evaluation of Future Energy Technology Deployment Scenarios for

    E-Print Network [OSTI]

    to assess unit commitment, unit dispatch, operating economics and the environmental supported by the United States Department of Energy under Award Number DE-FC- 06NT42847. #12;This report. Following receipt of the draft report, an extensive review was conducted by Hawaii Electric Light Company

  1. Future Engine Fluids Technologies: Durable, Fuel-Efficient, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Controlled Experiments on the Effects of LubricantAdditive (Low-Ash, Ashless) Characteristics on DPF Degradation Diesel Particulate Filters: Market...

  2. The Role of Emerging Geothermal Technologies in California's Future

    E-Print Network [OSTI]

    California at Davis, University of

    Improve Geothermal Generation Capacity: I. Flexible Generation #12;Enhanced geothermal systems (EGS) CGEC Capacity: II. Enhanced Geothermal Systems #12;Cost Projections: O&M 1975 1980 1985 1990 1995 2000 2005 2010 production #12;· Conventional geothermal resource potential is ~15,000 MW (mean est.) · Estimated enhanced

  3. Microsoft Word - Science and Technology of Future Light Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is the dispersion relations of the quasi-particles in these regions. A natural tool is angle-resolved photoemission spectroscopy (ARPES) which has emerged as the mainstream...

  4. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAbout SAGE About

  5. Revolution Now: The Future Arrives for Four Clean Energy Technologies --

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7|Energyand Performance AssuranceEnergy-

  6. Wide Bandgap Semiconductors: Essential to Our Technology Future |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesign Ā» Design forWHY WIPP?Why is

  7. COLLOQUIUM: Future Electrical Technologies From a GE Viewpoint | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury ScienceComplexPlasmaPhysicsPlasma Physics

  8. Renaissance in Flow-Cell Technologies: Recent Advancements and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatory and

  9. Growing America's Energy Future: Bioenergy Technologies Office Successes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGetDepartment1Sustained Pumping at2009of 2014

  10. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FAL 99-01 More5, 2014 Dr.Alliance |About UsDepartment of

  11. Revolution Now: The Future Arrives for Four Clean Energy Technologies --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesA Token Requesting AQuestions |InitiativesReviews

  12. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  13. Futures for energy cooperatives

    SciTech Connect (OSTI)

    None

    1981-01-01

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  14. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  15. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  16. Ris Energy Report 4 Supply technologies in the future energy system 10 Supply technologies in the future energy system

    E-Print Network [OSTI]

    fuel (REtrol, Chapter 4) or heat, whether from direct electric heating, or heat pumps. Other uses biomass covers wood, agricultural residues, energy crops, household waste and agro-industrial waste and heat Denmark is one of the few countries where the use of both straw and wood in power plants

  17. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Technology Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact...

  18. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The...

  19. Recent Action-Research and future course in Water Sector.

    E-Print Network [OSTI]

    Sohoni, Milind

    -soil, water, energy end-user defined or demand-driven-drinking water. Towards change-deliver technology Block 380 Thakar people. 200 animals. 40 households. And an acute shortage of water for 5 monthsRecent Action-Research and future course in Water Sector. Milind Sohoni, CTARA, IIT

  20. FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking,

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking, Equipment, and Technology (powerNET) Testbed OBJECTIVE A lot of interest in research, improvements, and testing surrounds the power grid to bear on the challenges of the power grid Therefore, a community resource is needed to enable needed

  1. The Future of Cyber Security Prof. Ravi Sandhu

    E-Print Network [OSTI]

    Sandhu, Ravi

    1 The Future of Cyber Security Prof. Ravi Sandhu Executive Director and Endowed Chair ravi! Institute for Cyber Security #12;Cyber technologies and systems have evolved Cyber security goals have TO Coupled and integrated Information assurance Mission assurance Cyber security research/practice have

  2. Speculations on the Future of Cyber Security in 2025

    E-Print Network [OSTI]

    Sandhu, Ravi

    1 Speculations on the Future of Cyber Security in 2025 Prof. Ravi Sandhu Executive Director and Chief Scientist Institute for Cyber Security University of Texas at San Antonio November 2009 ravi;Two Big Drivers Security can never hold back technology Cyber and physical space are increasingly

  3. How ARPA-e is "Winning the Future"

    ScienceCinema (OSTI)

    Obama, Barack; Chu, Steven; Majumdar, Arun;

    2013-05-29

    The Advanced Research Projects Agency - Energy (ARPA-E) is answering the President's call to "Win the Future". By directly funding some of the most groundbreaking discoveries in science and technology, we're encouraging the development of the most advanced clean tech innovations out there today.

  4. What History Can Teach Us about the Future Costs

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Viewpointt What History Can Teach Us about the Future Costs of U.S. NUCLEAR POWER Past experience suggests that high-cost surprises should be included in the planning process. NATHAN E. HULTMAN GEORGETOWN total cost, and incur financial risks no greater than those for other energy technologies. In this ar

  5. Nanophotonics: Shrinking light-based technology

    E-Print Network [OSTI]

    Polman, Albert

    , optical computing, solar, and medical technologies, setting high expectations for many novel discoveries bulbs are being replaced by efficient solid-state lighting, and solar energy technologies)/visible/near-infrared spec- tral range, and provide an outlook for the bright future of this research field. Photonic

  6. Technology Licensing Opportunity Non-Confidential Summary

    E-Print Network [OSTI]

    Peak, Derek

    into the targeted oil crop to assemble VLPUFA synthesis pathway #12;Technology Licensing Opportunity NonTechnology Licensing Opportunity Non-Confidential Summary Industry Liaison Office 121 Research in demand of 21%. Fish oil is the traditional source of omega-3 and is unable to meet future demand due

  7. Pellet Fueling Technology Development S. K. Combs

    E-Print Network [OSTI]

    Pellet Fueling Technology Development S. K. Combs Fusion Energy Division, Oak Ridge National/10/00 Pellet Sizes Are Relevant for Fueling Applications on Any Present Experimental Fusion Device and Future pellet injector technology „ Hydrogen properties „ Ice/pellet formation techniques „ Acceleration

  8. Emerging Technology Presentation to NEET Executive Committee

    E-Print Network [OSTI]

    Center, NEEA, NWPCC, WSU Energy Program HVAC TAG AHRI, Arup, BC Hydro, BPA, Davis Energy Group, EWEB" full to meet future energy efficiency needs." Emerging Opportunities MARKETPENETRATION TIME 2 4 NORTHWEST ENERGY EFFICIENCY TECHNOLOGY ROADMAP MARCH 2010 Regional EE Emerging Technology Roadmap

  9. Graz University of Technology Rechbauerstrasse 12

    E-Print Network [OSTI]

    Graz University of Technology Rechbauerstrasse 12 A-8010 Graz, Austria PROGRAMME 18: Dr. Josef Mantl, Spokesman of the Sustainable Future Campaign & Al Gore Climate Leader, Austria Univ.-Prof. Dipl.-Ing. Dr.techn. Dr.h.c. Harald Kainz, Rector of the Graz University of Technology O

  10. Future Directions in Spatial Demography, Final Report

    E-Print Network [OSTI]

    Matthews, Stephen A.; Janelle, Donald G.; Goodchild, Michael F.

    2012-01-01

    the meeting’s final reception. Future Directions in SpatialH. (2007) Five Minds for the Future. Cambridge, MA: Harvardhorizons, envisioning the future. Social Science and

  11. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  12. The Wave of the Future 

    E-Print Network [OSTI]

    Swyden, Courtney

    2006-01-01

    stream_source_info The wave of the future.pdf.txt stream_content_type text/plain stream_size 10577 Content-Encoding ISO-8859-1 stream_name The wave of the future.pdf.txt Content-Type text/plain; charset=ISO-8859...-1 The Wave of the Future Story by Courtney Swyden THEWAVE OF THE FUTURE tx H2O | pg. 2 Plans use local involvement to enhance water quality Comprehensive watershed protection plans,outlining ways to preserve or restore water-sheds, are becoming a popular...

  13. Technology Assessment

    Office of Environmental Management (EM)

    capabilities that are energy efficient, low environmental impact 72 and lower cost and that are employed to manufacture technologies and products for clean energy 73...

  14. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture for SolarTechnology Transfer

  15. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    33 Nuclear Technology34 5.1 Nuclear Technology Overview: Current Status anddevelopment. 5. Nuclear Technology Outlook Nuclear

  16. Future Steelmaking Processes

    SciTech Connect (OSTI)

    Prof. R. J. Fruehan

    2004-09-20

    There is an increasing demand for an ironmaking process with lower capital cost, energy consumption and emissions than a blast furnace. It is the hypothesis of the present work that an optimized combination of two reasonable proven technologies will greatly enhance the overall process. An example is a rotary hearth furnace (RHF) linked to a smelter (e.g., AISI, HIsmelt). The objective of this research is to select promising process combinations, develop energy, materials balance and productivity models for the individual processes, conduct a limited amount of basic research on the processes and evaluate the process combinations. Three process combinations were selected with input from the industrial partners. The energy-materials and productivity models for the RHF, smelter, submerged arc furnace and CIRCOFER were developed. Since utilization of volatiles in coal is critical for energy and CO{sub 2} emission reduction, basic research on this topic was also conducted. The process models developed are a major product developed in this research. These models can be used for process evaluation by the industry. The process combinations of an RHF-Smelter and a simplified CIRCOFER-Smelter appear to be promising. Energy consumption is reduced and productivity increased. Work on this project is continuing using funds from other sources.

  17. Saft Factory of the Future

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  19. Future Carbon Regulations and Current Investments in Alternative Coal-Fired Power Plant Designs

    E-Print Network [OSTI]

    Sekar, Ram C.

    This paper assesses the role of uncertainty over future U.S. carbon regulations in shaping the current choice of which type of power plant to build. The pulverized coal technology (PC) still offer the lowest cost power— ...

  20. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01

    OF UTILIZING DISTRIBUTED ENERGY TECHNOLOGIES . . . . . . .DISTRIBUTED ENERGY SYSTEMS I~N CALIF RNIA/S FUTURE: UU-6831Ur'l1E:i\\i-fS SECTION DISTRIBUTED ENERGY SYSTEMS STUDY GROUP

  1. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  2. CSIRO AUSTRALIA Future Emissions and

    E-Print Network [OSTI]

    CSIRO AUSTRALIA Future Emissions and Concentrations of Carbon Dioxide: Key Ocean Cataloguing­in­Publication Entry Enting, I.G. Future Emissions and Concentrations of Carbon Dioxide: Key Ocean Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land Analyses Written and edited by I

  3. Rights, Obligations, and Future Generations

    E-Print Network [OSTI]

    Strole, Donald

    the right to use whatever we can regardless of the effects such action may have on future persons.2 On the other extreme are people who argue that future generations are entitled to a polution free environment, vast food reserves, and an abundance...

  4. Alternative futures: Have EPA projects

    E-Print Network [OSTI]

    Jenny, Bernhard

    Alternative futures: Have EPA projects made a difference? Denis White, US EPA, Research Richard are alternative futures assessments? A process by which to evaluate potential changes to land and water use, where Two or more alternative landscape-scale scenarios are considered, The alternatives are represented

  5. President's The Future of Health

    E-Print Network [OSTI]

    Alexandrova, Ivana

    President's Forum on Data The Future of Health Data Analytics 2nd ANNUAL FORUM TUESDAY, FEBRUARY 24's Forum is focused on a critical and timely topic: The Future of Health Data Analytics. Across the nation, groundbreaking advances in capturing, managing, and using data in health care are making it possible to push

  6. sustainable technologies

    E-Print Network [OSTI]

    Zhang, Junshan

    : · realize continuous improvements in performance (efficiency), cost and manufacturability of PV technologies, transformative PV technologies that circumvent cost/performance trade-offs and maintain compatibility with P the growing demand for energy. Photovoltaics (PV) leverages one of the 20th century's greatest scientific

  7. A PowerConstrained MPU Roadmap for the International Technology Roadmap for Semiconductors (ITRS)

    E-Print Network [OSTI]

    Kahng, Andrew B.

    A Power­Constrained MPU Roadmap for the International Technology Roadmap for Semiconductors (ITRS@vlsicad.ucsd.edu, abk@cs.ucsd.edu Abstract--- Technology roadmaps help predict requirements for future technologies and guide ongoing technology research and development. The International Technology Roadmap

  8. A Power-Constrained MPU Roadmap for the International Technology Roadmap for Semiconductors (ITRS)

    E-Print Network [OSTI]

    Kahng, Andrew B.

    A Power-Constrained MPU Roadmap for the International Technology Roadmap for Semiconductors (ITRS@vlsicad.ucsd.edu, abk@cs.ucsd.edu Abstract-- Technology roadmaps help predict requirements for future technologies and guide ongoing technology research and development. The International Technology Roadmap

  9. Renewable Electricity Futures Study Volume 1: Exploration of High-Penetration Renewable Electrcity Futures

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Renewable Electricity Futures Study (RE Futures) is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States1 over the next several decades. This study includes geographic and electric system operation resolution that is unprecedented for long-term studies of the U.S. electric sector. The analysis examines the implications and challenges of renewable electricity generation levels—from 30% up to 90%, with a focus on 80%, of all U.S. electricity generation from renewable technologies—in 2050. The study focuses on some key technical implications of this environment, exploring whether the U.S. power system can supply electricity to meet customer demand with high levels of renewable electricity, including variable wind and solar generation. The study also begins to address the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the United States.

  10. Multi-path transportation futures study : vehicle characterization and scenario analyses.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Singh, M. K.; Energy Systems; TA Engineering; ORNL

    2009-12-03

    Projecting the future role of advanced drivetrains and fuels in the light vehicle market is inherently difficult, given the uncertainty (and likely volatility) of future oil prices, inadequate understanding of likely consumer response to new technologies, the relative infancy of several important new technologies with inevitable future changes in their performance and costs, and the importance - and uncertainty - of future government marketplace interventions (e.g., new regulatory standards or vehicle purchase incentives). This Multi-Path Transportation Futures (MP) Study has attempted to improve our understanding of this future role by examining several scenarios of vehicle costs, fuel prices, government subsidies, and other key factors. These are projections, not forecasts, in that they try to answer a series of 'what if' questions without assigning probabilities to most of the basic assumptions.

  11. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  12. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  13. Ris Energy Report 6 Innovation indicators and future options 1 8.1 Introduction

    E-Print Network [OSTI]

    Risų Energy Report 6 Innovation indicators and future options 1 8 8.1 Introduction A number energy technologies. The best-known source for future trends in energy is the annual World Energy Outlook (WEO) from the Interna- tional Energy Agency (IEA), which is part of the OECD [1]. The WEO is based

  14. Fuel cells for a sustainable future II: stakeholder attitudes to the barriers

    E-Print Network [OSTI]

    Watson, Andrew

    Fuel cells for a sustainable future II: stakeholder attitudes to the barriers and opportunities for stationary fuel cell technologies in the UK Michael Peters and Jane Powell November 2004 Tyndall Centre for Climate Change Research Working Paper 64 #12;1 Fuel cells for a sustainable future II Stakeholder

  15. ORNL/TM-2004/181 Future Potential of Hybrid and Diesel

    E-Print Network [OSTI]

    ORNL/TM-2004/181 Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle. #12;FUTURE POTENTIAL OF HYBRID AND DIESEL POWERTRAINS IN THE U.S. LIGHT-DUTY VEHICLE MARKET David L .....................................................................................................................1 2. HYBRID AND DIESEL TECHNOLOGY STATUS AND PROSPECTS...............................3 2.1 DIESELS

  16. INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY

    E-Print Network [OSTI]

    Columbia University

    1 INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY AN OVERVIEW Presented to the DELAWARE SOLID WASTE MANAGEMENT TECHNICAL WORKING GROUP January 10, 2006 #12;2 INTERSTATE WASTE MANAGEMENT ALLIANCE and maintenance (30 years) ­ Will guarantee performance and Operation and Maintenance ­ Serves solid waste

  17. Technology Transfer David Basin and Thai Son Hoang

    E-Print Network [OSTI]

    Basin, David

    Technology Transfer David Basin and Thai Son Hoang Institute of Information Security, ETH Zurich, Switzerland Abstract. This paper presents our experience of knowledge and technology transfer within the lessons learned and what we would do differently in future technology transfer projects. Keywords

  18. ContraVision: Exploring Users' Reactions to Futuristic Technology

    E-Print Network [OSTI]

    Nuseibeh, Bashar

    ContraVision: Exploring Users' Reactions to Futuristic Technology Clara Mancini*, Yvonne Rogers How can we best explore the range of users' reactions when developing future technologies that maybe, or other narrative forms, that convey either negative or positive aspects of the proposed technology

  19. Information Technology Systems Division University of North Carolina Wilmington

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    Information Technology Systems Division University of North Carolina Wilmington Last updated 8 "Run": #12;Information Technology Systems Division University of North Carolina Wilmington Last updated for the TealWare system you may have to repeat this process in the future. #12;Information Technology Systems

  20. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  1. AUTO ID FUTURE - FREQUENCY AGNOSTIC

    E-Print Network [OSTI]

    DATTA, SHOUMEN

    Identification of information is one key to the development of intelligent decision systems of the future. Frequency agnostic automatic identification is only one step in the physical world to make physical objects identify ...

  2. The Future of Microbial Genomics

    SciTech Connect (OSTI)

    Kyrpides, Nikos [Genome Biology group at the DOE Joint Genome Institute

    2010-06-02

    Nikos Kyrpides, head of the Genome Biology group at the DOE Joint Genome Institute discusses current challenges in the field of microbial genomics on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  3. Quantum effects near future singularities

    E-Print Network [OSTI]

    John D. Barrow; Antonio B. Batista; Giuseppe Dito; Julio C. Fabris; M. J. S. Houndjo

    2012-01-09

    General relativity allows a variety of future singularities to occur in the evolution of the universe. At these future singularities, the universe will end in a singular state after a finite proper time and geometrical invariants of the space time will diverge. One question that naturally arises with respect to these cosmological scenarios is the following: can quantum effects lead to the avoidance of these future singularities? We analyze this problem considering massless and conformally coupled scalar fields in an isotropic and homogeneous background leading to future singularities. It is shown that near strong, big rip-type singularities, with violation of the energy conditions, the quantum effects are very important, while near some milder classes of singularity like the sudden singularity, which preserve the energy conditions, quantum effects are irrelevant.

  4. Independent Inventors: An Uncertain Future

    E-Print Network [OSTI]

    Pi, Xiaoqing

    2013-01-01

    https://www.eff.org/patent Inventors Alliance http://A.  Cotropia, “The Individual Inventor Motif in the Age of Title: Independent Inventors: An Uncertain Future Abstract:

  5. The Future Potential of Waver Power in the United States

    SciTech Connect (OSTI)

    Mirko Previsic; Jeff Epler; Maureen Hand; Donna Heimiller; Walter Short; Kelly Eurek

    2012-09-20

    The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the United States, is located close to coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As a renewable electricity generation technology, ocean wave energy offers a low air pollutant option for diversifying the U.S. electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses the following: (1) The theoretical, technical and practical potential for electricity generation from wave energy (2) The present lifecycle cost profile (Capex, Opex, and Cost of Electricity) of wave energy conversion technology at a reference site in Northern California at different plant scales (3) Cost of electricity variations as a function of deployment site, considering technical, geo-spatial and and electric grid constraints (4) Technology cost reduction pathways (5) Cost reduction targets at which the technology will see significant deployment within US markets, explored through a series of deployment scenarios RE Vision Consulting, LLC (RE Vision), engaged in various analyses to establish current and future cost profiles for marine hydrokinetic (MHK) technologies, quantified the theoretical, technical and practical resource potential, performed electricity market assessments and developed deployment scenarios. RE Vision was supported in this effort by NREL analysts, who compiled resource information, performed analysis using the ReEDSa model to develop deployment scenarios, and developed a simplified assessment of the Alaska and Hawaii electricity markets.

  6. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive...

  7. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving...

  8. ICEPT Working Paper Comparison of Fuel Cell and Combustion Micro-CHP under Future Residential

    E-Print Network [OSTI]

    Energy Demand Scenarios June 14th 2007 Adam Hawkes1 Matthew Leach Centre for Energy Policy and Technology and Combustion Micro-CHP under Future Residential Energy Demand Scenarios A.D. Hawkes2 and M.A. Leach Centre for Energy Policy and Technology, Imperial College London, Exhibition Rd, London SW7 2AZ, UK Abstract Energy

  9. Optimal Use of Organic Waste in Future Energy Systems the Danish case

    E-Print Network [OSTI]

    Optimal Use of Organic Waste in Future Energy Systems ­ the Danish case Marie Münster*, Henrik Lund a comparative energy system analysis of different technologies utilizing organic waste for heat, power and fuel to assess energy technologies together with the energy systems they are part of and influence. The energy

  10. Informing the DebateInforming the DebateInforming the Debate Michigan's Energy Future

    E-Print Network [OSTI]

    Riley, Shawn J.

    An Examination of Costs and Technologies Impacting Policy which will influence Michigan's Energy Future AuthorsInforming the Debate An Examination of Costs and Technologies Impacting Policy which will influence Michigan's Energy in the public sector. Renewable energy companies invest in countries and states that are committed

  11. Back to the FutureGen?

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-04-15

    After years of political wrangling, Democrats may green-light the experimental clean coal power plants. The article relates how the project came to be curtailed, how Senator Dick Durbin managed to protect $134 million in funding for FutureGen in Mattoon, and how once Obama was in office a $2 billion line item to fund a 'near zero emissions power plant(s)' was placed in the Senate version of the Stimulus Bill. The final version of the legislation cut the funding to $1 billion for 'fossil energy research and development'. In December 2008 the FutureGen Alliance and the City of Mattoon spent $6.5 billion to purchase the plants eventual 440 acre site. A report by the Government Accountability Office (GAO) said that Bush's inaction may have set back clean coal technology in the US by as much as a decade. If additional funding comes through construction of the plant could start in 2010. 1 fig., 1 photo.

  12. Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions

    E-Print Network [OSTI]

    Holmes, C. D; Prather, M. J; Sovde, O. A; Myhre, G.

    2013-01-01

    of present-day and future OH and methane lifetime, Atmos.Chemistry and Physics Future methane, hydroxyl, and theirand emission parameters for future predictions C. D. Holmes

  13. Advanced Technology R&D | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    advancing certain concepts or technologies in order to demonstrate their feasibility and engineering readiness for use in future projects. Long-term, proposal-driven research...

  14. Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application

    Reports and Publications (EIA)

    1993-01-01

    Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

  15. Breakout Session: Disruptive Solar Technologies: Frontiers in New Materials and Approaches

    Broader source: Energy.gov [DOE]

    Disruptive solar technologies entering the PV and CSP landscape today hold the potential to greatly impact the future of solar energy conversion. This session will highlight new techniques,...

  16. Bill Gates and Deputy Secretary Poneman Discuss the Energy Technology Landscape

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bill Gates and Deputy Secretary of Energy Daniel Poneman discuss the future of energy technology during the twenty-second Plenary Meeting of the Nuclear Suppliers Group.

  17. Hawaiis EVolution: Hawaii Powered. Technology Driven. ...

    Broader source: Energy.gov (indexed) [DOE]

    Powered. Technology Driven. Table of Contents Charting the Course Toward a Clean Energy Future 4 Forging a New Path for Island Transportation 5 Embracing New Alternatives 6...

  18. Edison is Back and Faster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network RequirementsEdison ElectrifiesJob Sizeis Back

  19. Edison is Back and Faster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy andSavingYearOutreachEdison Down for

  20. Science And Technology > Thinner silicon chips for making... http://news.newkerala.com/technology-news-india/?action=f... 1 of 1 6/22/2004 8:37 AM

    E-Print Network [OSTI]

    Rogers, John A.

    . More Space . Faster New Kerala Mail Service News Channels India News World News Kerala News Business India Sports India Cinema India Health News Technology India Kerala Classifieds Real Estate Matrimonial Automobile Kerala Recipes Recipes in English Recipes in Malayalam Kerala Information Kerala Info Kerala

  1. Product Futures Andrew B. Kahng

    E-Print Network [OSTI]

    Kahng, Andrew B.

    -based products and sys- tems that incorporate these technologies? In the Interna- tional Technology Roadmap for Semiconductors (ITRS; http://www.itrs.net), the chapter on system drivers con- tains simple, center-line roadmaps. The ITRS iden- tifies product roadmaps up to the level of packages and modules. Another prominent effort

  2. Imaging detectors and electronics - A view of the future

    SciTech Connect (OSTI)

    Spieler, Helmuth

    2004-06-16

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large scale imaging systems routine in high energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.

  3. Options Impacting the Electric System of the Future (ESF); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Cory, Karlynn

    2015-08-10

    As utilities are faced with adapting to new technologies, technology and policy due diligence are necessary to ensure the development of a future grid that brings greater value to utilities and their consumers. This presentation explores the different kinds of future directions the power industry could consider to create, discussing key components necessary for success. It will also discuss the practical application and possible strategies for utilities and innovators to implement smart technologies that will enable an ultimate ‘intelligent’ grid capable of two-way communication, interoperability, and greater efficiency and system resiliency.

  4. How ATP3 is Addressing the Challenges of Scale-up in Algae Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D Breakout Session 2-A: The Future...

  5. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Summit on America’s Energy Future (2008), http://www.natural gas. California’s Energy Future - The View to 2050supply California’ s Energy Future - The View to 2050 and

  6. Introduction: California's Growth: An Uncertain Future

    E-Print Network [OSTI]

    Teitz, Michael B.

    2008-01-01

    s Growth: An Uncertain Future BY MICHAEL B. TEITZ Editor'shave to be California’s future? Clearly, not so. This ofat the issue of accommodating future tions within them, for

  7. Future Directions in Spatial Demography, Position Papers

    E-Print Network [OSTI]

    Center for Spatial Studies (UCSB), Population Research Institute (Pennsylvania State University)

    2011-01-01

    2011 Specialist Meeting—Future Directions in Spatial3–13. 2011 Specialist Meeting—Future Directions in SpatialInc. 2011 Specialist Meeting—Future Directions in Spatial

  8. Future Directions for Federal Research Funding

    E-Print Network [OSTI]

    i Future Directions for Federal Research Funding Merrill Series on The Research Cells: Current Challenges and Future Promise First panel of research administrators Prem Paul and Developmental Disabilities Research Center, University of Kansas Past as Prelude: Lessons for the Future

  9. Future Forests Program Plan 2013 2016

    E-Print Network [OSTI]

    1 Future Forests Program Plan 2013 ­ 2016 (November 2012) #12;2 Summary Mission and vision The mission of Future Forests is to provide management of forests in a future characterized by change. Our vision

  10. Multiple hypothesis testing -recent developments and future

    E-Print Network [OSTI]

    Steinsland, Ingelin

    NTNU Multiple hypothesis testing - recent developments and future challenges Ingelin Steinsland developments and future challenges ­ p.1/28 #12;NTNU Outline Single hypothesis testing Multiple hypothesis testing Quantities and issues False discovery rates Future challenges Within false discovery rates

  11. Internet of Things Exploring and Securing a Future

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Internet of Things Exploring and Securing a Future Concept CRISTIAN BUDE and ANDREAS KERVEFORS OF TECHNOLOGY I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y #12;Internet of Things) Department of Communication Systems SE-100 44 Stockholm, Sweden #12;Abstract | i Abstract Internet of Things

  12. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    generation or advanced nuclear technology. 17 “Nuclear Powerour energy needs. Bin Nuclear Technology Coal or Natural Gas4A. Summary of technology readiness for nuclear and CCS. The

  13. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Brain Receptor Structures Key to Future Therapeutics Print Wednesday, 28 January 2015 00:00 With an aging population in...

  14. Rocky Mountain Futures: An Ecological Perspective

    E-Print Network [OSTI]

    Aguero, Tania

    2003-01-01

    changes in the Rocky Mountains, global warming, and severalReview: Rocky Mountain Futures: An Ecological Perspective ByJill S. Baron (Ed. ). Rocky Mountain Futures: An Ecological

  15. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  16. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    renewable case) alone almost exceed the target emissions. California’s Energy Future -renewable energy, i.e. the “median case. ” California’s Energy Future -

  17. Knowledge Exchange at CRFR: Past, present, future 

    E-Print Network [OSTI]

    Morton, Sarah

    to the future. It discusses CRFR’s approach to KE, showcases some highlights of its KE activities, and identifies challenges for the future....

  18. Future Bottlenecks for Industrial Water Recycling. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Future Bottlenecks for Industrial Water Recycling. Citation Details In-Document Search Title: Future Bottlenecks for Industrial Water Recycling. Authors: Brady, Patrick V....

  19. Presentation to EAC: Renewable Electricity Futures Activities...

    Energy Savers [EERE]

    Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010 Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010...

  20. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...