National Library of Energy BETA

Sample records for future sustainable energy

  1. "Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy

    E-Print Network [OSTI]

    Dawson, Jeff W.

    "Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy GRADUATE PROGRAMS IN SUSTAINABLE ENERGY SHAPE YOUR FUTURE BASED ON YOUR RESEARCH INTERESTS Sustaining programs in sustainable energy address these crucial challenges in a unique interdisciplinary fashion

  2. for a Sustainable Energy Future Sossina M. Haile

    E-Print Network [OSTI]

    Haile, Sossina M.

    Fuel Cells for a Sustainable Energy Future Sossina M. Haile Materials Science / Chemical Engineering California Institute of Technology #12;Towards a Sustainable Energy Future Contents · The Problem of Energy ­ Growing consumption ­ Consequences ­ Sustainable energy resources · Fuel Cell Technology

  3. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    energy use. China’s Sustainable Energy Future Summary next31 -ii- China’s Sustainable Energy Future Executive Summarystudy, entitled China’s Sustainable Energy Future: Scenarios

  4. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the...

  5. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    term, sustainable energy future, and that these technologiesterm, sustainable energy future and that these technologiesLevel Sustainable Energy Futures Timothy E. Lipman Jennifer

  6. The Solar Economy: Renewable Energy for a Sustainable Global Future

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2003-01-01

    Pakistan Hermann Scheer. The Solar Economy: Renewable EnergyRenewable Energy for a Sustainable Global Future By Hermann Scheer Reviewed by Umar Karim Mirza Pakistan

  7. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solve the energy crisis through biological methods, including genetically engineering algae and cyanobacteria. Create a Sustainable Future: Living Living a Sustainable Future How...

  8. for a Sustainable Energy Future Sossina M. Haile

    E-Print Network [OSTI]

    Subramanian, Venkat

    technically feasible 0.9 TW economically feasible 0.6 TW installed capacity 12 TW gross over land small Future Energy Solutions Solar 1.2 x 105 TW at Earth surface 600 TW practical Biomass 5-7 TW gross all Sustainable Energy Future Sustainable Energy Cycle Solar plant Biomass H2O H2Capture Storage Delivery

  9. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    The promise of a clean and sustainable energy future lies infor State-Level Sustainable Energy Futures Timothy E. Lipmanfor State-Level Sustainable Energy Futures Timothy E. Lipman

  10. SEARCHING FOR SUSTAINABILITY: KENYA'S ENERGY PAST AND FUTURE, NOVEMBER 2006 SEARCHING FOR SUSTAINABILITY

    E-Print Network [OSTI]

    Jacobson, Arne

    , Kenya was the focus of numerous donor-driven projects in household energy, solar power, and other formsSEARCHING FOR SUSTAINABILITY: KENYA'S ENERGY PAST AND FUTURE, NOVEMBER 2006 1 SEARCHING FOR SUSTAINABILITY KENYA'S ENERGY PAST AND FUTURE BY ROB BAILIS, CHARLES KIRUBI AND ARNE JACOBSON SEARCHING

  11. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  12. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  13. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect (OSTI)

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible thatfuture economic growth may be supported by a relatively lower increase inenergy consumption. Over the past 20 years, energy intensity in China hasbeen reduced partly through technological and structural changes; currentannual emissions may be as much as 600 Mt-C lower than they would havebeen without intensity improvements. China must take into account itsunique circumstances in considering how to achieve a sustainabledevelopment path. This study considers the feasibility of such anachievement, while remaining open to exploring avenues of sustainabledevelopment that may be very different from existing models. Threescenarios were prepared to assist the Chinese Government to explore theissues, options and uncertainties that it confronts in shaping asustainable development path compatible with China's uniquecircumstances. The Promoting Sustainability scenario offers a systematicand complete interpretation of the social and economic goals proposed inthe Tenth Five-Year Plan. The possibility that environmentalsustainability would receive low priority is covered in the OrdinaryEffort scenario. Aggressive pursuit of sustainable development measuresalong with rapid economic expansion is featured in the Green Growthscenario. The scenarios differ in the degree to which a common set ofenergy supply and efficiency policies are implemented. In cons ultationwith technology and policy experts domestically and abroad, ERI developedstrategic scenarios and quantified them using an energy accounting model.The scenarios consider, in unprecedented detail, changes in energy demandstructure and technology, as well as energy supply, from 1998 to 2020.The scenarios in this study are an important step in estimating realistictargets for energy efficiency and energy supply development that are inline with a sustainable development strategy. The scenarios also helpanalyze and explore ways in which China might slow growth in greenhousegas emissions. The key results have important policy implications:Depending on how demand for energy services is met, China could quadrupleits gross domesti

  14. Sustainable Energy Future in China's Building Sector 

    E-Print Network [OSTI]

    Li, J.

    2007-01-01

    This article investigates the potentials of energy-saving and mitigation of green-house gas (GHG) emission offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy...

  15. COMBINED HEAT AND POWER Effective Energy Solutions for a Sustainable Future

    E-Print Network [OSTI]

    Pennycook, Steve

    COMBINED HEAT AND POWER Effective Energy Solutions for a Sustainable Future December 1, 2008 #12 Efficiency and Renewable Energy COMBINED HEAT AND POWER Effective Energy Solutions for a Sustainable Future).................... Suzanne Watson American Public Power Association (APPA)........................................... Mike

  16. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect (OSTI)

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

  17. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    2: Promoting Sustainability Energy Conservation Policiesupon. As in Promoting Sustainability, energy efficiencies of8. In Promoting Sustainability, energy demand elasticity

  18. Energy Policy 36 (2008) 15771583 Towards a sustainably certifiable futures contract for biofuels

    E-Print Network [OSTI]

    2008-01-01

    Energy Policy 36 (2008) 1577­1583 Viewpoint Towards a sustainably certifiable futures contract are biofuels to be certified as produced in a sustainable and responsible fashion? In the global debate over to the problem of sustainability certification through a biofuels futures contract equipped with `proof of origin

  19. Hydrogen and the materials of a sustainable energy future

    SciTech Connect (OSTI)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  20. A Global Sustainable Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    World energy leaders at the ribbon cutting for the CEM Innovation Showcase Pavilion, from L to R: Dr. Farooq Abdullah, Indian Minister of New & Renewable Energy; South African...

  1. Energy for a sustainable future. Summary report and recommendations

    SciTech Connect (OSTI)

    Not Available

    2010-04-15

    This year, in September, world leaders will meet at the United Nations to assess progress on the Millennium Development Goals and to chart a course of action for the period leading up to the agreed MDG deadline of 2015. Later in the year, government delegations will gather in Mexico to continue the process of working towards a comprehensive, robust and ambitious climate change agreement. Energy lies at the heart of both of these efforts. The decisions we take today on how we produce, consume and distribute energy will profoundly influence our ability to eradicate poverty and respond effectively to climate change. Addressing these challenges is beyond the reach of governments alone. It will take the active engagement of all sectors of society: the private sector; local communities and civil society; international organizations and the world of academia and research. To that end, in 2009 a high-level Advisory Group on Energy and Climate Change was established, chaired by Kandeh Yumkella, Director-General of the United Nations Industrial Development Organization (UNIDO). Comprising representatives from business, the United Nations system and research institutions, its mandate was to provide recommendations on energy issues in the context of climate change and sustainable development. The Group also examined the role the United Nations system could play in achieving internationally-agreed climate goals. The Advisory Group has identified two priorities - improving energy access and strengthening energy efficiency - as key areas for enhanced effort and international cooperation. Expanding access to affordable, clean energy is critical for realizing the MDGs and enabling sustainable development across much of the globe. Improving energy efficiency is paramount if we are to reduce greenhouse gas emissions. It can also support market competitiveness and green innovation. (LN)

  2. Innovation: Enabling a Sustainable Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to IndustrialStacks ofofPresident

  3. A Global Sustainable Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department ofApplianceU.S.Department of5thA Citizen'sThe EnergyWorld

  4. Innovating a Sustainable Energy Future (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Little, Mark (GE Global Research)

    2012-03-14

    The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  5. New Science for a Secure and Sustainable Energy Future

    SciTech Connect (OSTI)

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  6. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    will shape China’s future energy system, and consequentlybeen conducted on future energy use and pollutant emissionscould influence China’s future energy consumption and carbon

  7. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Broader source: Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  8. The Solar Economy: Renewable Energy for a Sustainable Global Future

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2003-01-01

    Review: The Solar Economy: Renewable Energy for aHermann Scheer. The Solar Economy: Renewable Energy for a

  9. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    2014-06-12

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  10. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  11. Energy for the future with Ris from nuclear power to sustainable energy Ris NatioNal laboRatoRy foR sustaiNable eNeRgy

    E-Print Network [OSTI]

    Energy for the future ­ with Risø from nuclear power to sustainable energy Risø NatioNal laboRatoRy foR sustaiNable eNeRgy edited by MoRteN JastRup #12;Energy for the future #12;Energy for the future ­ with Risø from nuclear power to sustainable energy Translated from 'Energi til fremtiden ­ med Risø fra

  12. ONLINE LEARNING Managing energy for a sustainable future

    E-Print Network [OSTI]

    California at Davis, University of

    systems; ground source heat pumps; lighting and electrical management; natural gas purchasing; thermal in understanding and managing energy in any industry, from heavy to light energy users. Develop a comprehensive applicable to commercial and industrial energy resource management. Aquire the skills necessary

  13. Measuring Energy Sustainability

    E-Print Network [OSTI]

    20 Measuring Energy Sustainability David L. Greene Abstract For the purpose of measurement, energy sustainability is defined as ensuring that future generations have energy resources that enable them to achieve that there are valid, more comprehensive understandings of sustainability and that energy sustainability as de- fined

  14. Moving Towards a More Sustainable and Secure Energy Future 

    E-Print Network [OSTI]

    Stoker, K.

    2012-01-01

    Solar 400 MW Total 600 MW CPS Energy is likely to achieve its Vision 2020 goals well ahead of schedule 30 MW Solar Project - Single-axis Tracking Polysilicon Solar Panels - 20 MW at SAWS Dos Rios... with innovative solutions that add value and reduce monthly bills ? Make a difference in our community?s local economic development to take San Antonio to the next level: The New Energy Economy ? Keep rates affordable through operational excellence...

  15. CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at04-86) (AllProvision for0 350.1Tariff

  16. Sustainability protects resources for future generations

    SciTech Connect (OSTI)

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the steps necessary to provide livable urban centers for future generations through sustainable development, or sustainability. To illustrate this concept, nonsustainable cities and sustainable cities are compared. Sustainable city projects for several major US cites are reviewed.

  17. SEARCHING FOR SUSTAINABILITY: KENYA'S ENERGY PAST AND FUTURE, NOVEMBER 2006 SEARCHING FOR SUSTAINABILITY

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , Kenya was the focus of numerous donor-driven projects in household energy, solar power, and other forms-Saharan Africa, per capita fossil fuel consumption has also increased since the Nairobi conference. This growth currently has one of the highest per capita rates of solar photovoltaic (PV) adoption in the developing

  18. Climate Science for a Sustainable Energy Future Test Bed and Data Infrastructure Final Report

    SciTech Connect (OSTI)

    Williams, Dean N.; Foster, I.; Van Dam, Kerstin Kleese; Shipman, G.

    2014-05-04

    The collaborative Climate Science for a Sustainable Energy Future (CSSEF) project started in July 2011 with the goal of accelerating the development of climate model components (i.e., atmosphere, ocean and sea ice, and land surface) and enhancing their predictive capabilities while incorporating uncertainty quantification (UQ). This effort required accessing and converting observational data sets into specialized model testing and verification data sets and building a model development test bed, where model components and sub-models can be rapidly evaluated. CSSEF’s prototype test bed demonstrated, how an integrated testbed could eliminate tedious activities associated with model development and evaluation, by providing the capability to constantly compare model output—where scientists store, acquire, reformat, regrid, and analyze data sets one-by-one—to observational measurements in a controlled test bed.

  19. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE)

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  20. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect (OSTI)

    Shipley, Ms. Anna [Sentech, Inc.; Hampson, Anne [Energy and Environmental Analysis, Inc., an ICF Company; Hedman, Mr. Bruce [Energy and Environmental Analysis, Inc., an ICF Company; Garland, Patricia W [ORNL; Bautista, Paul [Sentech, Inc.

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure modernization. The energy efficiency benefits of CHP offer significant, realistic solutions to near- and long-term energy issues facing the Nation. With growing demand for energy, tight supply options, and increasing environmental constraints, extracting the maximum output from primary fuel sources through efficiency is critical to sustained economic development and environmental stewardship. Investment in CHP would stimulate the creation of new 'green-collar' jobs, modernize aging energy infrastructure, and protect and enhance the competitiveness of US manufacturing industries. The complementary roles of energy efficiency, renewable energy, and responsible use of traditional energy supplies must be recognized. CHP's proven performance and potential for wider use are evidence of its near-term applicability and, with technological improvements and further elimination of market barriers, of its longer term promise to address the country's most important energy and environmental needs. A strategic approach is needed to encourage CHP where it can be applied today and address the regulatory and technical challenges preventing its long-term viability. Experience in the United States and other countries shows that a balanced set of policies, incentives, business models, and investments can stimulate sustained CHP growth and allow all stakeholders to reap its many well-documented benefits.

  1. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each site has slightly different instrumentation, this will require additional development to understand the uncertainty characterization associated with instrumentation at those sites. The uncertainty assignment process is implemented into the ARM program’s new Integrated Software Development Environment (ISDE) so that many of the key steps can be used in the future to screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) standards. These processes are described in more detail in the following sections.

  2. Global Energy Futures: With International Futures (IFs)

    SciTech Connect (OSTI)

    Hughes, Barry

    2013-03-20

    Dr. Hughes presents and discusses the results of simulations on alternative energy futures composed in collaboration with SNL's Sustainability Innovation Foundry.

  3. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS #12;SUSTAINABLE;6 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS ACKNOWLEDGEMENTS #12;1 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

  4. Future Plans and Milestones for the Sustainable Rangelands Roundtable

    E-Print Network [OSTI]

    Wyoming, University of

    -chairs of the Roundtable on Sustainable Forests (RSF) and Sustainable Minerals and Energy Roundtable joined us fo counterpart from the Sustainable Minerals and Energy Roundtable. SRR is scheduled to meet May 29 and 30Future Plans and Milestones for the Sustainable Rangelands Roundtable E. T. BARTLETT AND JOHN E

  5. Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future 

    E-Print Network [OSTI]

    Ferland, K.

    2014-01-01

    stream_source_info ESL-IE-14-05-18.pdf.txt stream_content_type text/plain stream_size 14223 Content-Encoding UTF-8 stream_name ESL-IE-14-05-18.pdf.txt Content-Type text/plain; charset=UTF-8 Sustaining Industrial Energy... and Management • Water Reuse and Use of Unconventional Sources ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Topic 1: Existing Technology and Operations Strategy: Sustain process...

  6. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures

    E-Print Network [OSTI]

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Trieu Berlin, Germany December 46, 2012 NREL/PR6A2057018 Renewable Electricity Futures Study (2012). Hand, M is a low carbon, low air pollutant, low fuel use, low water use, domestic, and sustainable electricity

  7. ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future

  8. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect (OSTI)

    Shipley, Anna; Hampson, Anne; Hedman, Bruce; Garland, Patti; Bautista, Paul

    2008-12-01

    This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future—as an: environmental solution, significantly reducing CO2 emissions through greater energy efficiency; competitive business solution, increasing efficiency, reducing business costs, and creating green-collar jobs; local energy solution, deployable throughout the United States; and infrastructure modernization solution, relieving grid congestion and improving energy security.

  9. Sustainability | Department of Energy

    Office of Environmental Management (EM)

    Sustainability Sustainability The Department of Energy (DOE) supports the understanding and implementation of sustainability programs throughout the complex The Department of...

  10. Nanoscience for Energy Technology and Sustainability

    E-Print Network [OSTI]

    Giger, Christine

    Nanoscience for Energy Technology and Sustainability Research Profile Prof. Park's Professorship issues of future energy & environmen- tal sustainability. Five strategic foci of Prof. Park's group of Energy Technology focuses on fundamental nanoscience for energy and clean technology applications

  11. The Future of Sustainable Waste Management: Challenging the Status Quo STEPHEN J. JONES, President and C.E.O., Covanta Energy, Morristown, NJ

    E-Print Network [OSTI]

    The Future of Sustainable Waste Management: Challenging the Status Quo STEPHEN J. JONES, President and C.E.O., Covanta Energy, Morristown, NJ 10:10am-11:10am Location: 833 Mudd (SEAS wastes, projected to double in the next fifteen years. Recycling is the first priority for sustainable

  12. Chu at COP-16: Building a Sustainable Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV) charging station in RhodeofEnergyDepartment

  13. Strategic Sustainability Performance Plan - Discovering Sustainable Solutions to Power and Secure America’s Future

    SciTech Connect (OSTI)

    none,

    2010-09-01

    Sustainability is fundamental to the Department of Energy’s research mission and operations as reflected in the Department’s Strategic Plan. Our overarching mission is to discover the solutions to power and secure America’s future.

  14. Fuel Cells: Thermodynamic Engine to a Sustainable Energy Future Richard T. Carlin

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    sustainable, reliable electrical grids and micro-grids. Integration of fuel cell systems with renewable electrical generation (wind, photovoltaic, geothermal, etc.) facilitates high-percentage renewable penetration; enhances grid and micro-grid power management; provides efficient electrical power generation

  15. Atkinson Center for a Sustainable Future Topical Lunch Summary Title: How Can We Put Innovation in Renewable Energy, Economics and Agriculture to Work to Save

    E-Print Network [OSTI]

    Walter, M.Todd

    Atkinson Center for a Sustainable Future ­ Topical Lunch Summary Title: How Can We Put Innovation in Renewable Energy, Economics and Agriculture to Work to Save Nature? Organizer: Drew Harvell Date: Tuesday on a very large scale. He especially considers Cornell to be a leader in areas of renewable energy

  16. Sustainable Energy Energies renouvelables

    E-Print Network [OSTI]

    Ernst, Damien

    1 Cours de Sustainable Energy Energies renouvelables en Belgique Avril 2015 Dr. Ir. Raoul NIHART'énergie de stock » · Notion « d'énergie de flux » #12;4 Pourquoi les SER ? (SER = Sources d'Energie,1 % Structure de la production à partir d'Energies Renouvelables dans le monde en 2012 Source : EDF Géothermie 1

  17. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    such as fuel cells and electrolyzers decrease through masssuch as fuel cells and electrolyzers decrease through massthe point that with future electrolyzer cost decreases, the

  18. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    and Clean Energy Technologies: Wind, photovoltaics and otherand Clean Energy Technologies: Wind, photovoltaics and other

  19. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Commercialization Strategy for Hydrogen Energy Technologies,International Journal of Hydrogen Energy 23(7): 617-620.NYSERDA) (2005), “New York Hydrogen Energy Roadmap,” NYSERDA

  20. September 2, 2011 Competence Center for Sustainable Energy

    E-Print Network [OSTI]

    Noé, Reinhold

    September 2, 2011 Competence Center for Sustainable Energy Technologies (KET) Kompetenzzentrum für nachhaltige Energietechnik E. Y. Kenig #12;September 2, 2011 Competence Center for Sustainable Energy Technologies Why Energy Technologies? Critical topics for today and the future Energy generation Sustainable

  1. Future Challenges for the Earth Sciences Sustainable Development of Energy and

    E-Print Network [OSTI]

    USGS 1,200 0.6 67 95 10,700Th USGS 1,200 0.6 67 95 10,700 Nuclear electricity consumption 2007=8.9EJ;Long Term Sustainability from Fast Breeder g y Reactors Generation of 1 EJ* of Electricity Requires Years at 2007 U & Th tons reactor EJ consumption reactor EJ consumption UUSGS 3,200 1.6 180 250 28

  2. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Details and Market Status Source Solar Photo-Electrochemicaland Market Status Source Electrolysis Grid-Tied Near Term/Future NRC, 2004 Solarand market development programs have proven to be effective in the past, particularly with regard to solar

  3. Goals and strategies for a sustainable future!

    E-Print Network [OSTI]

    Goals and strategies for a sustainable future! Department of Forest Resource Management SRH:s goals Editor: Sofia Hansson #12;With combined efforts we have now formulated our future goals and strategies, competence and what we want to accomplish in the future.Together we have a unique and genuine expertise

  4. Environmental Sustainability & Green Energy

    E-Print Network [OSTI]

    Lennard, William N.

    Environmental Sustainability & Green Energy With escalating concerns about global energy shortages in research related to energy deficits, sustainability and pollution. Biofuels and Alternative EnergyBioproductsInitiative: promoting sustainable farming and renewable energy through a biogas facility and the Institute for

  5. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Delivered Hydrogen Costs Clean Energy Group l l Renewableand Delivered Hydrogen Costs Clean Energy Group l 41 l R e ncap. cost Commercial Spath et al, 2000 Clean Energy Group l

  6. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Personal Communication, New York State Energy Research andPress, Washington, D.C. New York State Energy Research andNYSERDA) (2005), “New York Hydrogen Energy Roadmap,” NYSERDA

  7. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Hummers at the retreat. Clean Energy Group l 19 l R e n e wthese on- going efforts for further clean energy developmentactivities among state clean energy funds and other regional

  8. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Hummers at the retreat. Clean Energy Group l 19 l R e n e wTorrance, CA uses a Stuart Energy hydrogen fueling stationefforts for further clean energy development activities

  9. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    damental renewable energy-to-electricity costs of solar,of the Delivered Cost of Hydrogen, National Renewable EnergyHydrogen Costs Clean Energy Group l l Renewable Hydrogen

  10. The Sustainability of Sustainable Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Critical Materials from a U.S. Corporate Perspective Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Steven Duclos Chief...

  11. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Solar Hydrogen,” In Renewable Energy: Sources for Fuels and Electricity,renewable energy-to-electricity costs of solar, wind, and

  12. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    applications can use renewable wind and solar power toUsing Concentrated Solar Energy, National Renewable Energyand J. Nitsch (1993), “Solar Hydrogen,” In Renewable Energy:

  13. Industries of the Future: Creating a Sustainable Technology Edge 

    E-Print Network [OSTI]

    Glatt, S. L.

    2000-01-01

    OF THE FUTURE: Creating A Sustainable Technology Edge Sandra L. Glatt Office of Industrial Technologies Energy Efficiency and Renewable Energy U. S. Department of Energy 55 ESL-IE-00-04-10 Proceedings from the Twenty-second National Industrial Energy....S, Department of Energy Industries of the Future: Creating a Sustainable Technology Edge . cUn' OFwlOd CCooI .. LPG .Eleclric~ CNI!hnIG. AgriclAtll'e Mining A1uminu",J Totll1* kldutb't.1 Conllomption: :W, 111 TrtIlion 8tus Forest E"~ ?'913 1976...

  14. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    of Defense molten carbonate fuel cells from FuelCell EnergyFour 250 kW molten carbonate fuel cells power the Sierraacid system) and Fuel Cell Energy (250 kW molten carbonate

  15. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Partnership Finalizes Hydro- gen Energy Roadmap,” World Wideenergy funds and other stakeholders can help develop this knowledge base for renewable hydro-energy sources; • The status of major U.S. state activities for hydro-

  16. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Pyrolysis Liquids and Natural Gas, National Renewable EnergyG = gaseous; L = liquid; NG = natural gas; MeOH = methanol;

  17. Sustainable Energy: Choosing Among Options

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01

    Review: Sustainable Energy: Choosing Among Options Byand William A. Peters. Sustainable Energy: Choosing AmongAll the authors of Sustainable Energy are associated with

  18. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    1: U.S. and International Renewable Hydrogen Demonstrationfueling station powered by renewable electricity. The systemand Natural Gas, National Renewable Energy Laboratory, U.S.

  19. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Renewables-Based Electrolysis 12. Prince Edward Island Wind-Hydrogen Village Project Prince Edward Island is home to theCorporation and Prince Edward Island Energy Corporation.

  20. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Based Electrolysis 12. Prince Edward Island Wind-HydrogenVillage Project Prince Edward Island is home to the AtlanticCorporation and Prince Edward Island Energy Corporation.

  1. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    High Efficiency Generation Of Hydrogen Fuels Using NuclearU.S. Department of Energy Hydrogen Fuel Cells and HydrogenGas Emissions of Hydrogen Fuel Pathways GHGs % Change from

  2. Think and Do: Mapping a Sustainable Future for Energy in North Carolina

    Broader source: Energy.gov [DOE]

    This forum on energy issues in North Carolina features more than 90 speakers and poster presenters; 25 sessions in five tracks; networking options for sponsors, exhibitors, speakers, and students;...

  3. Global Impact for a Safe and Sustainable Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGet Current: SwitchGlenn Podonsky AboutGlobal

  4. Sustainable Energy: Choosing Among Options

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01

    on environment and energy sustainability is given as well.an account of energy systems and sustainability metrics.

  5. Sustainability Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Awards Sustainability Awards Significant sustainability achievements at U.S. Department of Energy (DOE) facilities are recognized in several ways. DOE recognizes...

  6. Michigan Town Committed to Sustainable Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Charlevoix, Mich. residents are taking steps to become a more environmentally-conscious community, and a $50,000 Energy Efficiency and Conservation Block Grant will help that cause. The funding will be used to launch projects aimed at energy efficiency and sustainability, such as retrofitting the city’s fire and emergency vehicles with new, energy-efficient lighting.

  7. ENERGY TRANSFORMED: SUSTAINABLE ENERGY SOLUTIONS

    E-Print Network [OSTI]

    Roe, Paul

    ENERGY TRANSFORMED: SUSTAINABLE ENERGY SOLUTIONS AUSTRALIAN UNIVERSITY SURVEY SUMMARY OF QUESTIONNAIRE RESULTS WHAT IS THE STATE OF EDUCATION FOR ENERGY EFFICIENCY IN AUSTRALIAN ENGINEERING EDUCATION? PREPARED BY: #12;State of Education for Energy Efficiency in Australian Engineering Education Summary

  8. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  9. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  10. Transportation Energy Futures

    E-Print Network [OSTI]

    Sperling, Daniel

    1989-01-01

    s values, forecasts of future energy prices and politicalYergin, D. , eds. 1979. Energy Future: Report of the Energy02, Sacramento, Calif. ENERGY FUTURES 103. Ullman, T. L. ,

  11. MSC SUSTAINABLE ENERGY SCIENCE MSC SUSTAINABLE ENERGY ENGINEERING

    E-Print Network [OSTI]

    Karlsson, Brynjar

    or no technical background the opportunity to take introductory level courses in fields such as geothermal energy1 MSC SUSTAINABLE ENERGY SCIENCE MSC SUSTAINABLE ENERGY ENGINEERING COURSE PROSPECTUS 2015/16 #12;2 MSC SUSTAINABLE ENERGY SCIENCE 120 ECTS, 18 MONTHS, FULL- TIME STUDY The MSc Sustainable Energy

  12. Annual Report David R. Atkinson Center for a Sustainable Future

    E-Print Network [OSTI]

    Walter, M.Todd

    Annual Report David R. Atkinson Center for a Sustainable Future Advancing Research and Cultivating Collaborations #12;The David R. Atkinson Center for a Sustainable Future (ACSF) represents a bold commitment and friends. M I S S I O N Cornell University's David R. Atkinson Center for a Sustainable Future advances

  13. Engi 9614: Renewable Energy and Resource Conservation, Assignment #2, Nov. 28th "Opportunities and challenges for a sustainable energy future"

    E-Print Network [OSTI]

    Coles, Cynthia

    Engi 9614: Renewable Energy and Resource Conservation, Assignment #2, Nov. 28th 2013 temperatures 6. About 2% and 9% 7. They are 61% lower 8. IEA estimates onshore wind energy will cost $90 MWh-1% of the energy from the plant will be required for the CCS operations. 14. It is a plant for which the full costs

  14. Sustainable energy Examen Final

    E-Print Network [OSTI]

    Ernst, Damien

    Sustainable energy Examen Final 24 mai 2013 Consignes ­ Vous disposez de 2 heures 30. ­ N'air. (2 points) [C] A partir de l`a, proposez une expression math´ematique permettant de calculer l'´energie pour pouvoir minimiser sa consommation en ´energie. (1 point) [E] Calculez le minimum d'´energie

  15. Sustainable energy Examen Final

    E-Print Network [OSTI]

    Ernst, Damien

    Sustainable energy Examen Final 3 juin 2015 Consignes -- Vous disposez de 2h30. -- N'oubliez pas de a discut´e au cours de son expos´e intitul´e "Une histoire d'´energie : ´equations et transition" du fait que la prosp´erit´e des civilisations est intrins`equement li´ee `a leur consommation d'´energie

  16. Integrated Renewable Energy and Campus Sustainability Initiative

    SciTech Connect (OSTI)

    Uthoff, Jay; Jensen, Jon; Bailey, Andrew

    2013-09-25

    Renewable energy, energy conservation, and other sustainability initiatives have long been a central focus of Luther College. The DOE funded Integrated Renewable Energy and Campus Sustainability Initiative project has helped accelerate the College’s progress toward carbon neutrality. DOE funds, in conjunction with institutional matching funds, were used to fund energy conservation projects, a renewable energy project, and an energy and waste education program aimed at all campus constituents. The energy and waste education program provides Luther students with ideas about sustainability and conservation guidelines that they carry with them into their future communities.

  17. Sustainable energy Examen Final

    E-Print Network [OSTI]

    Ernst, Damien

    Sustainable energy Examen Final 30 mai 2014 Consignes -- Vous disposez de 2 heures 30. -- N produire une quantit´e d'´energie ´equivalente `a la quantit´e d'´energie ´electrique consomm´ee par un) La mise `a disposition d'´energie dans une soci´et´e n´ecessite elle-m^eme de l'´energie. Dans la lit

  18. International Conference on Sustainable Energy and Environmental Strategies

    E-Print Network [OSTI]

    Delaware, University of

    International Conference on Sustainable Energy and Environmental Strategies: Taiwan and the World on the requirements of an environmentally sustainable and socially equitable energy future. The current energy system warming by building a new and sustainable energy regime? Relatedly, will we continue to subsidize energy

  19. Campus Sustainability Goals Energy & Climate

    E-Print Network [OSTI]

    Jacobs, Lucia

    Campus Sustainability Goals Energy & Climate By 2014, reduce greenhouse gas emissions to 1990 and water consumption and wastewater production; incorporate sustainable design principles into capital levels. Food & Dining By 2020, increase sustainable food purchases by campus foodservice providers

  20. Sustainability Performance Office | Department of Energy

    Office of Environmental Management (EM)

    Performance Office Sustainability Performance Office The U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) oversees departmental sustainability...

  1. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future 2008 SUSTAINABILITY REPORT and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. #12;1 NATIONAL RENEWABLE ENERGY LABORATORY The National Renewable Energy Laboratory (NREL) is the only federal laboratory dedicated

  2. Sustainable Energy Management Programs 

    E-Print Network [OSTI]

    Hanner, S.

    2014-01-01

    stream_source_info ESL-KT-14-11-45.pdf.txt stream_content_type text/plain stream_size 4632 Content-Encoding UTF-8 stream_name ESL-KT-14-11-45.pdf.txt Content-Type text/plain; charset=UTF-8 Sustainable Energy Management... Existing Conditions • Develop Plan • Implement and Monitor Program ESL-KT-14-11-45 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Sustainable Programs Feature – District Commitment – Qualified Energy Manager – Facility...

  3. Toward an energy surety future.

    SciTech Connect (OSTI)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  4. ENERGY, CLIMATE AND SUSTAINABLE

    E-Print Network [OSTI]

    OUNtries: a Perspective from southern africa . . . . . . . . . . 33 WashingtonZhakata aN Observer's PersDenmark,theNetherlandsMinistryofForeignAffairs,nortotherespectiveorganizationsofeachindividualauthor. CapacityDevelopmentforCDM(CD4CDM)Project UNEPRisøCentre, RisøNationalLaboratoryforSustainableEnergy Thetherewereabout5000projectsinthe pipeline,whichwereprojectedtogenerateatotal issuanceof1.2billiontonnesof

  5. Energy Realpolitik: Towards a Sustainable Energy Strategy

    E-Print Network [OSTI]

    Schroeder, W Udo

    2008-01-01

    A long-term strategy based on existing technological, ecological, economical, and geopolitical realities is urgently needed to develop a sustainable energy economy, which should be designed with adaptability to unpredicted changes in any of these aspects. While only a highly diverse energy portfolio and conservation can ultimately guarantee optimum sustainability, based on a comparison of current primary energy generation methods, it is argued that future energy strategy has to rely heavily on expanded coal and nuclear energy sectors. A comparison of relative potentials, merits and risks associated with fossil-fuel, renewable, and nuclear technologies suggests that the balance of technologies should be shifted in favor of new-generation, safe nuclear methods to produce electricity, while clean-coal plants should be assigned to transportation fuel. Novel nuclear technologies exploit fission of uranium and thorium as primary energy sources with fast-spectrum and transmutation (burner) reactors. A closed fuel cy...

  6. Nigeria: Energy for sustainable development

    SciTech Connect (OSTI)

    Eleri, E.O. [Fridtjof Nansen Inst., Oslo (Norway)

    1993-12-31

    Though an essentially contested concept, it is safe to acknowledge that the attainment of sustainable development requires that the growth and well-being of present generations are brought about in such ways that the ability of future people to meet their own needs will not be compromised. The availability of safe and sound energy as a factor of production is a key element in such a development process. Despite the abundance of energy resources, acute shortages of energy services have become endemic in Nigeria. This paper reassesses the common proposition that energy has fueled growth and development in Nigeria by its role as the chief source of state revenue and through its input into economic activities in the country. It is argued here, however, that conventional energy management in Nigeria has tended to create development flaws of its own. The article is divided into six sections: 1st, a general account of the energy and development linkages in Nigeria; 2nd, the failures of these linkages are assessed; 3rd, policy initiatives are considered that would be reconcilable to the nation`s sustainable development; 4th, the present reform agenda, its inadequacies and barriers are surveyed; 5th, the achievement of sustainable development, it is argued, will demand the re-institutionalization of the political economy of the energy sector in Nigeria, which will depend largely on the resolution of the dilemmas and conflicts in the country`s broader political and economic reforms; and 6th, an outlook is suggested for future policy development.

  7. SUSTAINABLE ENERGY UTILITY DESIGN: OPTIONS

    E-Print Network [OSTI]

    Delaware, University of

    SUSTAINABLE ENERGY UTILITY DESIGN: OPTIONS FOR THE CITY OF SEOUL FINAL REPORT TO SEOUL DEVELOPMENT INSTITUTE APRIL 2008 #12;#12;SUSTAINABLE ENERGY UTILITY DESIGN: OPTIONS FOR THE CITY OF SEOUL Final Report....................................................................................i 1. A New Model for Sustainable Energy Service Delivery.....................1 2. Learning form

  8. WANGER INSTITUTE FOR SUSTAINABLE ENERGY

    E-Print Network [OSTI]

    Heller, Barbara

    of the most sustainable campuses in the nation by enhancing our programs to develop more renewable energy by developing and supporting undergraduate research in energy and sustainability related areas. · Develop co undergraduate projects in sustainable energy including the Formula Hybrid Project, which involves more than 20

  9. Fuel Cells for a Sustainable Future? Jane Powell, Michael Peters,

    E-Print Network [OSTI]

    Watson, Andrew

    Fuel Cells for a Sustainable Future? Jane Powell, Michael Peters, Alan Ruddell and Jim Halliday March 2004 Tyndall Centre for Climate Change Research Working Paper 50 #12;Fuel Cells for a Sustainable Future? A review of the opportunities and barriers to the development of fuel cell technology Powell, J

  10. A Holistic Approach to the Sustainable Workplace of the Future 

    E-Print Network [OSTI]

    Andersen, S. E.

    2008-01-01

    of the future. In his presentation, Mr. Andersen will be focusing on: Buildings and the Environment: Sustainable Development - many new sustainable building are being designed and built with a focus only on their physical and environment impact... as criteria to achieve sustainable development. However, these criteria alone cannot guarantee a good sustainable workplace. Buildings and People: The Integrated Workplace - many new workplace design projects are being designed and built with a focus...

  11. California's future `Smart Grid' system will integrate solar, wind, and other renewable electricity generation with energy storage to meet our electricity demands and to support electric transportation. The Sustainable Integrated Grid

    E-Print Network [OSTI]

    California at Riverside, University of

    California's future `Smart Grid' system will integrate solar, wind, and other renewable electricity. The Sustainable Integrated Grid Initiative at UCR combines these elements so that researchers, utility personnel and wind are intermittent in nature and may not be available when needed. Electrical energy stored

  12. Hopi Sustainable Energy Plan

    SciTech Connect (OSTI)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  13. RENEWABLE ENERGIES Innovations for the future

    E-Print Network [OSTI]

    Peinke, Joachim

    RENEWABLE ENERGIES Innovations for the future #12;Imprint Publisher: Federal Ministry Böhme BMU, Division KI I1 "General and Fundamental Aspects of Renewable Energies" Content: Dr. Martin in a seminal global market: with both renewable energy and energy efficiency. For a sustainable energy economy

  14. Atkinson Center for a Sustainable Future topical lunch summary Title: "The Future of Fracking: Transparency, Waste Production and Disposal, Regional

    E-Print Network [OSTI]

    Walter, M.Todd

    Atkinson Center for a Sustainable Future topical lunch summary Title: "The Future of Fracking in the discussion of shale gas exploration and social impacts. Attendees: Last Name First Name NetID or email Dept seamusm@ptd.net Guest Tester Jeff jwt54 Cornell Energy Inst. Wilber Tom wilberwrites@hotmail.com Guest

  15. The road still not taken : how combined heat and power can contribute to a sustainable energy future in Massachusetts

    E-Print Network [OSTI]

    Montoya, Luis D. (Luis Daniel)

    2008-01-01

    In order to address rising energy costs and global climate change, Massachusetts has adopted greenhouse gas reduction goals and implemented programs and policies to promote the clean and efficient use of energy. Despite ...

  16. Examining Sustainable Development Policy in California Cities: 2011 Energy Sustainable California Communities Survey

    E-Print Network [OSTI]

    Kwon, Myungjung

    2013-01-01

    Cities: 2011 Energy Sustainable California Communitiesusing the 2011 Energy Sustainable California Communitiessurveyed in 2011 (Energy Sustainable California Communities

  17. David R. Atkinson Center for a Sustainable Future E N E R G Y

    E-Print Network [OSTI]

    Walter, M.Todd

    from climate change to wind technology, energy efficient architecture to sustainable food systemsDavid R. Atkinson Center for a Sustainable Future E N E R G Y E N V I R O N M E N TE C O N O M I C D E V E L O P M E N T ANNUALREPORT2011 #12;Cornell's David R. Atkinson Center for a Sustainable

  18. 1. INTRODUCTION The need for increased production of clean and sustainable energy in the near future has

    E-Print Network [OSTI]

    Byrne, Byron

    a renewable energy policy to reduce CO2 emissions. Currently, offshore wind farms are being built along the UK estimated that about 3000 turbines might be necessary to achieve the 10% target. In an offshore wind farm. The wind speed is typically higher and steadier offshore than onshore, so offshore wind turbines can

  19. Sustainable Building Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future...

  20. Briggs & Stratton Sustainable Energy Efficiency 

    E-Print Network [OSTI]

    Feustel, R.

    2013-01-01

    Sustainable Energy Efficiency Richard Feustel Corporate Energy Manager ESL-IE-13-05-22 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 2 Briggs & Stratton ? World?s largest producer of gasoline... and Goal ? Signed Energy Policy in 2009, incorporated into Employee Business Integrity Program ? First Sustainability Report published July 2009 ? Tracking and publishing energy related metrics according to the Global Reporting Initiative ? Save...

  1. ENERGY TECHNOLOGY AND SUSTAINABLE DEVELOPMENT

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    ENERGY TECHNOLOGY AND SUSTAINABLE DEVELOPMENT #12; 1 9/8 2 9/15 3 9/22 LED : 4 9/29 5 10 Boyle Published : OXFORD 2004 2. Renewable Energy : Its physics, engineering, environmental impacts, economics & planning 3rd edition · Editor: Bent Sorensen Published : ELSEVIER 2004 3. Sustainable

  2. Energy futures-2

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants.

  3. Community Innovation for Sustainable Energy

    E-Print Network [OSTI]

    Bateman, Ian J.

    of community-led initiatives for sustainable energy consumption and production. Such initiatives include green lifestyle-based activities to reduce energy consumption (e with new consumption practices based on alternative `new economics' values. However

  4. A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004

    Office of Energy Efficiency and Renewable Energy (EERE)

    Blueprint to define sustainable energy planning as integrated energy & environmental planning to support community sustainability

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Technology. ” London: Renewable UK. Available at: http://tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi." Renewable and Sustainable Energy

  6. Transportation Energy Futures Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  7. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

  8. Efficient and Sustainable EnergyEfficient and Sustainable Energy NIU Energy Initiative

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    to alternative (including nuclear) and renewable energy sources (including solar,energy sources (including solar, until alternative and renewable energy infrastructure is developed and maturedinfrastructureEfficient and Sustainable EnergyEfficient and Sustainable Energy NIU Energy Initiative: Efficient

  9. Re-Engineering For a Sustainable Future

    E-Print Network [OSTI]

    Reed, Nancy E.

    to renewable forms of energy, mitigate the effects of global warming, design secure built and cyber (electric vehicles and rail, etc.), renewable energy sources (solar, wind, geothermal, etc.), and new with the challenges that the islands now face. These include building and maintaining renewable energy sources

  10. Building a Sustainable Future FACILITIES & OPERATIONS

    E-Print Network [OSTI]

    the contributions made toward the efficient use of energy in the federal sector. #12;Renovation PNNL conserves to the Department of Energy's (DOE) Hanford Site focusing on designing reactors, fabricating reactor fuel on delivering scientific solutions for energy, national security, and the environment. PNNL provides science

  11. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;1 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS ACKNOWLEDGEMENTS Introduction: Imagining the Future of Transportation We stand

  12. Leveraging Manufacturing for a Sustainable Future

    E-Print Network [OSTI]

    Dornfeld, David

    2011-01-01

    payback time Carbon footprint Efficiency improvement (forin embedded energy, carbon footprint, etc. ) would be moreenergy consumption or carbon footprint in operation of the “

  13. MaterialsChemistryA Materials for energy and sustainability

    E-Print Network [OSTI]

    Lin, Zhiqun

    Journalof MaterialsChemistryA Materials for energy and sustainability www.rsc.org/MaterialsA ISSN the prognosis for future progress in exploiting perovskite materials for high efficiency solar cells. 1-renewableenergyandwilleventuallybeexhaustedin the future. In this context, solar cells that convert solar energy into electrical energy possess cost

  14. Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctober 22,SustainabilitySustainability

  15. Strengthening Tribal Communities, Sustaining Future Generations

    SciTech Connect (OSTI)

    2015-09-01

    The DOE Office of Indian Energy brochure is an overview of the program and highlights education and capacity building, technical assistance, and resources to Indian Tribes and Alaska Native villages.

  16. Powering Our Sustainable Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    One of the Energy Department's most successful outreach efforts, the Solar Decathlon provides sponsors with rich opportunities for recognition - from naming rights to signage and speaking opportunities to special events. Support from the business community is crucial to the success of the competition and the experience of thousands of student decathletes. This sponsorship brochure reveals reasons why sponsors support the U.S. Department of Energy Solar Decathlon and how organizations can become involved as Solar Decathlon sponsors.

  17. The Future of Sustainable Waste Management

    E-Print Network [OSTI]

    Columbia University

    water instead of potable water #12;Investing in technology 10 ·Low NOx technology ­ Received Clean Air technology that turns trash into electricity," said Mark Donnelly, OCRRA executive director. "It saves jobs · GHG Savings 264 million tons CO2e closing 63 coal-fired power plants · Energy Savings 2

  18. Capitol Hill Briefing The Future of Sustainable Transportation

    E-Print Network [OSTI]

    California at Davis, University of

    vehicle efficiency, increasing use of alternative fuels, and sustainability challenges, Policy Institute for Energy, Environment, and the Economy, UC Davis 12:10 p Reached Peak Travel and What Does it Mean? Vehicle use seems to be peaking

  19. Planning for a Sustainable Future of the Cincinnati Union Terminal

    SciTech Connect (OSTI)

    2012-04-30

    The Cincinnati Museum Center invited a number of local stakeholders, political leaders, nationally and internationally recognized design professionals and the Design Team, that has been engaged to help shape the future of this remarkable resource, to work together in a Workshop that would begin to shape a truly sustainable future for both the Museum and its home, the Union Terminal, one of the most significant buildings in America. This report summarizes and highlights the discussions that took place during the Workshop and presents recommendations for shaping a direction and a framework for the future.

  20. Examining Sustainable Development Policy in California Cities: 2011 Energy Sustainable California Communities Survey

    E-Print Network [OSTI]

    Kwon, Myungjung

    2013-01-01

    The Adoption of Energy Sustainability and Climate Protectionclimate protection and energy sustainability policy actions;climate protection and energy sustainability programs, such

  1. Sustainable Buildings and Infrastructure | Department of Energy

    Energy Savers [EERE]

    (MOU) DOE Space Allocation Standard Implementation Resources U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan DOE Sustainable...

  2. Sustainability Performance Office | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Argonne National Laboratory's Mira Supercomputer The U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) oversees departmental sustainability efforts...

  3. Sustainable Buildings and Campuses | Department of Energy

    Energy Savers [EERE]

    Buildings and Campuses Sustainable Buildings and Campuses Sustainable Buildings and Campuses The Federal Energy Management Program (FEMP) provides strategies, best practices, and...

  4. Energy Security, Innovation & Sustainability Initiative

    SciTech Connect (OSTI)

    2010-04-30

    More than a dozen energy experts convened in Houston, Texas, on February 13, 2009, for the first in a series of four regionally-based energy summits being held by the Council on Competitiveness. The Southern Energy Summit was hosted by Marathon Oil Corporation, and participants explored the public policy, business and technological challenges to increasing the diversity and sustainability of U.S. energy supplies. There was strong consensus that no single form of energy can satisfy the projected doubling, if not tripling, of demand by the year 2050 while also meeting pressing environmental challenges, including climate change. Innovative technology such as carbon capture and storage, new mitigation techniques and alternative forms of energy must all be brought to bear. However, unlike breakthroughs in information technology, advancing broad-based energy innovation requires an enormous scale that must be factored into any equation that represents an energy solution. Further, the time frame for developing alternative forms of energy is much longer than many believe and is not understood by the general public, whose support for sustainability is critical. Some panelists estimated that it will take more than 50 years to achieve the vision of an energy system that is locally tailored and has tremendous diversity in generation. A long-term commitment to energy sustainability may also require some game-changing strategies that calm volatile energy markets and avoid political cycles. Taking a page from U.S. economic history, one panelist suggested the creation of an independent Federal Energy Reserve Board not unlike the Federal Reserve. The board would be independent and influence national decisions on energy supply, technology, infrastructure and the nation's carbon footprint to better calm the volatile energy market. Public-private efforts are critical. Energy sustainability will require partnerships with the federal government, such as the U.S. Department of Energy's National Laboratories, that can provide real-world improvements in both the short- and long-term. Indeed, the roles of government and the private sector in energy sustainability were brought into sharper focus by the pending American Recovery and Reinvestment Act of 2009, also known as the economic stimulus bill. There was cautious optimism that the bill was moving the nation in the right direction by way of focusing on greater energy efficiency, alternative forms of energy and improved infrastructure. Nevertheless, there was concern over Congress picking energy winners and losers. Instead, Congress should challenge industry to produce solutions that will create a clear path forward to energy sustainability that the American people can support.

  5. Sustainability: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore NationalSurprisingSustainability

  6. Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctober 22,Sustainability

  7. Federal Progress Toward Energy/Sustainability Goals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Toward Energy Sustainability Goals June 10, 2014 Chris Tremper Program Analyst, Federal Energy Management Program U.S. Department of Energy 2 Overall Federal Energy...

  8. Public Relations for Energy Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Relations for Energy Sustainability Public Relations for Energy Sustainability This presentation covers the public relations aspect of industrial energy efficiency projects...

  9. Implementation of global energy sustainability

    SciTech Connect (OSTI)

    Grob, G.R.

    1998-02-01

    The term energy sustainability emerged from the UN Conference on Environment and Development in Rio 1992, when Agenda 21 was formulated and the Global Energy Charter proclaimed. Emission reductions, total energy costing, improved energy efficiency, and sustainable energy systems are the four fundamental principles of the charter. These principles can be implemented in the proposed financial, legal, technical, and education framework. Much has been done in many countries toward the implementation of the Global Energy Charter, but progress has not been fast enough to ease the disastrous effects of the too many ill-conceived energy systems on the environment, climate, and health. Global warming is accelerating, and pollution is worsening, especially in developing countries with their hunger for energy to meet the needs of economic development. Asian cities are now beating all pollution records, and greenhouse gases are visibly changing the climate with rising sea levels, retracting glaciers, and record weather disasters. This article presents why and how energy investments and research money have to be rechanneled into sustainable energy, rather than into the business-as-usual of depleting, unsustainable energy concepts exceeding one trillion dollars per year. This largest of all investment sectors needs much more attention.

  10. Strategic Partnership for Sustainable Energy Innovation

    E-Print Network [OSTI]

    ecando Strategic Partnership for Sustainable Energy Innovation and Climate Change Mitigation www.eit-energy and innovators developing sustainable energy solutions eCANDO sets out to achieving the following major outputs: Sustainable energy solutions independent of nuclear energy Highly qualified innovators that will be global

  11. Energy technology progress for sustainable development

    SciTech Connect (OSTI)

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  12. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  13. SUSTAINABLE ENERGY Andrew Blakers

    E-Print Network [OSTI]

    Climate change is a major issue. Energy efficiency, renewable energy, carbon capture & storage ("clean coal"), afforestation and other measures all need to be harnessed to solve the problem. None

  14. Alliance For Sustainable Energy

    Broader source: Energy.gov [DOE]

    Response from National Renewable Energy Laboratory on the Technology Transfer Questions in Federal Register dated November 26, 2008

  15. Entropy and Energy: Toward a Definition of Physical Sustainability

    E-Print Network [OSTI]

    Hermanowicz, Slawomir W

    2005-01-01

    of entropy-energy definition of sustainability as well asto assess the sustainability is based on the energy. Thisand Energy: Toward a Definition of Physical Sustainability

  16. Energy: Science, Policy, and the Pursuit of Sustainability

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2004-01-01

    Energy: Science, Policy, and the Pursuit of SustainabilityEnergy: Science, Policy and the Pursuit of Sustainability.Energy: Science, Policy and the Pursuit of Sustainability is

  17. Culham Centre for Fusion Energy Fusion -A clean future

    E-Print Network [OSTI]

    Culham Centre for Fusion Energy Fusion - A clean future FUSION REACTION Research at Culham Centre that drives the sun ­ could play a big part in our sustainable energy future. Around the globe, scientists are divided over whether to include nuclear fission in their energy portfolios; and renewable sources

  18. Sustainable Transportation Energy Pathways Research

    E-Print Network [OSTI]

    Handy, Susan L.

    800 1995 2000 2005 Year #Vehicles LPG CNG/LNG M85/M100 E85/E95 Electricity Hydrogen Total #12;CURRENT FACING FUTURE ENERGY SYSTEM · Growth of demand, esp. in developing countries · Diversity

  19. Friday, February 27, 2015 MDEA CLEAN, EFFICIENT AND SUSTAINABLE ENERGY CONVERSION

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Friday, February 27, 2015 MDEA CLEAN, EFFICIENT AND SUSTAINABLE ENERGY CONVERSION FOR DATA CENTERS to significantly increase energy sustainability for future IT needs such as data centers. Renewable fuels derived continuously as part of the sustainable energy portfolio. The uncontrollability and intermittent availability

  20. Portsmouth Site Sustainability Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EMS, Energy, Greenhouse Gases, High Performance Buildings, NEPA, Electronics Stewardship, Pollution Prevention, Chemical Management, Sustainability, Transportation, Climate Change...

  1. Report of the Alternative Sustainable Energy

    E-Print Network [OSTI]

    Maoz, Shahar

    Report of the Alternative Sustainable Energy Research Initiative 2010 Prof. David Cahen Scientific Director #12;Alternative and sustainable Energy Research Initiative (AERI) Weizmann Institute of Science Designer Cellulosomes 28 SSC2010: Solar Student Conference 2010 30 #12;Alternative and sustainable Energy

  2. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  3. Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaffSunShot NewsLong-HaulResearch

  4. Efficient and Sustainable Energy: Ecology and Energy Challenges Energy Efficient and Sustainable Buildings M. Kostic

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    existing buildings, and to develop a proposal for funding of a model "Energy Efficient Building" on NIU and practices and develop new ones. The new "Energy Efficient Building" could be a Model Energy LandmarkEfficient and Sustainable Energy: Ecology and Energy Challenges Energy Efficient and Sustainable

  5. ENERGY WHITE PAPER Our energy future -

    E-Print Network [OSTI]

    ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

  6. Energy Efficiency Market Sustainable Business Planning

    Broader source: Energy.gov [DOE]

    Energy Efficiency Market Sustainable Business Planning, a presentation by Danielle Sass Byrnett of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  7. Sustainability Performance Office | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office...

  8. Achieving Sustainability, Energy Savings, and Occupant Comfort 

    E-Print Network [OSTI]

    Fisher, D.; Bristow, G.

    2009-01-01

    Sustainability, energy savings, and occupant comfort are not mutually exclusive objectives, as buildings can be designed that incorporate all of these features. Sustainability is often defined as meeting the needs of the present without compromising...

  9. Departmental Sustainability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-12-17

    The order defines requirements and responsibilities for managing sustainability DOE to ensure that the Department carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges, and advances sustainable, efficient and reliable energy for the future; institute wholesale cultural change to factor sustainability and greenhouse gas (GHG) reductions into all DOE corporate management decisions; and ensure that DOE achieves the sustainability goals established in its Strategic Sustainability Performance Plan.

  10. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Ito, Garrett

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  11. |What is energy sustainability? W e frequently hear that our energy system is not sustainable. This

    E-Print Network [OSTI]

    1 |What is energy sustainability? W e frequently hear that our energy system is not sustainable and five years chairing an energy regulatory agency ­ I have assumed that the shift to a sustainable energy exhaust one day, perhaps soon. Fossil fuels provide energy via combustion and in the process release

  12. for Florida's Energy Future

    E-Print Network [OSTI]

    Jawitz, James W.

    Technology A.S. Degree with specializations in Alternative Energy Technology and Industrial Energy Efficiency - CCC in Alternative Energy Systems Specialist and Industrial Energy Efficiency Specialist - College alternative energy strategies, improving energy efficiencies and expanding economic development for the State

  13. Sustain Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDriveEconomiesNewSustain Ltd Jump

  14. Sustainable Endeavors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDriveEconomiesNewSustain Ltd

  15. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...

    Office of Environmental Management (EM)

    Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy...

  16. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    E-Print Network [OSTI]

    Delaware, University of

    95 The Sustainable Energy Utility (SEU) Model for Energy Service Delivery Jason Houck San Francisco to finance, market, and deliver sustainable energy services to energy end-users. This study outlines the concept of a new third-party administrative model, a sustainable energy utility (SEU), with the potential

  17. Review: Greenhouse Solutions with Sustainable Energy

    E-Print Network [OSTI]

    Hamilton-Smith, Elery

    2009-01-01

    Review: Greenhouse Solutions with Sustainable Energy By MarkDiesendorf, Mark. Greenhouse Solutions with Sustainablevehicles could halve greenhouse emissions within a few

  18. 2014 DOE Sustainability Awards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    4, the U.S. Department of Energy (DOE) Sustainability Awards recognized 14 teams and individuals representing DOE sites and national laboratories. These winners are being...

  19. 2014 Site Sustainability Plan | Department of Energy

    Energy Savers [EERE]

    Executive Orders, Presidential Memorandums, and DOE directives or memorandums. 2014 Site Sustainability Plan, U.S. Department of Energy Office of Legacy Management More Documents...

  20. National Energy Technology Laboratory Captures Three Sustainability...

    Office of Environmental Management (EM)

    by example, showing what's possible when employees bring creativity, innovation, and dedication to their efforts to make the Department of Energy more sustainable," said Deputy...

  1. First Western Forum on Energy & Water Sustainability

    E-Print Network [OSTI]

    Keller, Arturo A.

    First Western Forum on Energy & Water Sustainability University of California, Santa Barbara John R/Business Support for Comprehensive Energy/Water Program Objective: Support development of water sustainability ­ boils down to economics. Water drives technology and price of energy." "Looking to move to dry or hybrid

  2. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Evidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation EnergyCCST 2011a. California’s Energy Future - The View to 2050,

  3. About the Sustainability Performance Office | Department of Energy

    Energy Savers [EERE]

    the Sustainability Performance Office About the Sustainability Performance Office The U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) oversees departmental...

  4. CenterPoint Energy Sustainable Schools Program

    Broader source: Energy.gov [DOE]

    The Sustainable Schools Program focuses on energy savings through behavioral and operational improvements, and may be used along with CenterPoint Energy’s SCORES and Load Management programs. It...

  5. Consumer Electronics Show 2013 Highlights Sustainable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Efficiency & Renewable Energy What does this mean for me? Watch for the new sustainable technologies displayed at CES this year. Energy savings aren't all about...

  6. for Florida's Energy Future

    E-Print Network [OSTI]

    Mazzotti, Frank

    Florida to deliver educational programs and fact sheets related to energy and resource-efficient community Technology A.S. Degree with specializations in Alternative Energy Technology and Industrial Energy Efficiency - CCC in Alternative Energy Systems Specialist and Industrial Energy Efficiency Specialist - College

  7. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    part of the Integrated Energy Policy Report (IEPR) shouldIEPR Integrated Energy Policy Report ISO Independent Systemand Policy and Director, Sustainable Transportation Energy

  8. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeff

    2008-01-01

    Towards a Sustainable Energy Balance: Progressive Efficiencyachieve a sustainable energy balance. Along the way, we may1.2 Sustainable Energy Balance as the Goal of Energy Policy

  9. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    renewable case) alone almost exceed the target emissions. California’s Energy Future -renewable energy, i.e. the “median case. ” California’s Energy Future -

  10. RISNEWS JUNE 2007 NO Energy, climate and sustainable development in

    E-Print Network [OSTI]

    RISØNEWSNO 12007PAGE1 RISØNEWS JUNE 2007 NO 1 Energy, climate and sustainable development .....................................................................................11 Energy to create development...........................................................................17 Sustainable energy for isolated communities in the Arctic

  11. Entropy and Energy: Toward a Definition of Physical Sustainability

    E-Print Network [OSTI]

    Hermanowicz, Slawomir W

    2005-01-01

    of entropy-energy definition of sustainability as well asand Energy: Toward a Definition of Physical Sustainabilityto assess the sustainability is based on the energy. This

  12. Go Sustainable Energy, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia: Energy Resources Jump to: navigation,

  13. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 to 100 times more energy than the amount of laser energy required to initiate the fusion reaction. The nuclear power plants in use around the world today use fission, or...

  14. Thematic note to substantiate Ris's strategy impact on society Impact on society: Sustainable energy supply

    E-Print Network [OSTI]

    Thematic note to substantiate Risø's strategy ­ impact on society Bioenergy Impact on society: Sustainable energy supply Introduction Biomass (wood, energy crops, by-products and organic waste from agriculture and society) is an important resource for the sustainable energy supply of the future

  15. Reducing the energy consumption of the nation's buildings is essential for achieving a sustainable

    E-Print Network [OSTI]

    Pennycook, Steve

    Reducing the energy consumption of the nation's buildings is essential for achieving a sustainable that improve the energy efficiency, moisture durability, and environmental sustainability of residential clean energy future and will be an enormous challenge. Buildings account for 40% of the nation's carbon

  16. California's Energy Future

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    will investigate the tradeoffs represented by reliance on different energy sources, including oil, natural gas gas emissions (including direct land use change associated with fossil energy), alternative Officer, 44 Energy Technologies, Inc. Vera Pardee, Senior Attorney, Center for Biological Diversity Sonia

  17. Fuel cells for a sustainable future II: stakeholder attitudes to the barriers

    E-Print Network [OSTI]

    Watson, Andrew

    Fuel cells for a sustainable future II: stakeholder attitudes to the barriers and opportunities for stationary fuel cell technologies in the UK Michael Peters and Jane Powell November 2004 Tyndall Centre for Climate Change Research Working Paper 64 #12;1 Fuel cells for a sustainable future II Stakeholder

  18. Examining Sustainable Development Policy in California Cities: 2011 Energy Sustainable California Communities Survey

    E-Print Network [OSTI]

    Kwon, Myungjung

    2013-01-01

    Energy Sustainable California Communities Survey, Interna- tional County/City Management Association (ICMA), and US

  19. MMMaaattteeerrriiiaaalllsss SSSeeemmmiiinnnaaarrr Support of Sustainable Energy Research by the

    E-Print Network [OSTI]

    MMMaaattteeerrriiiaaalllsss SSSeeemmmiiinnnaaarrr Support of Sustainable Energy Research by the National Science Foundation Gregory Rorrer Energy for Sustainability Program National Science Foundation Abstract Achieving sustainable production of energy is one of the grand challenges of the 21st century

  20. DELAWARE TECHNICAL & COMMUNITY COLLEGE Sustainable Energy Management Plan

    E-Print Network [OSTI]

    Delaware, University of

    DELAWARE TECHNICAL & COMMUNITY COLLEGE Sustainable Energy Management Plan Office of the President and collaborative research and supports graduate instruction in energy, environmental, and sustainable development policy, sustainable development, political economy of energy, environment and development, environmental

  1. Energy: Science, Policy, and the Pursuit of Sustainability

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2004-01-01

    Energy: Science, Policy, and the Pursuit of SustainabilityEnergy: Science, Policy and the Pursuit of Sustainability.energy use with key environmental issues like population, pollution, and sustainability.

  2. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...

    Energy Savers [EERE]

    Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable...

  3. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Summit on America’s Energy Future (2008), http://www.natural gas. California’s Energy Future - The View to 2050supply California’ s Energy Future - The View to 2050 and

  4. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeffrey; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-01-01

    WP 171 Towards a Sustainable Energy Balance: ProgressiveTowards a Sustainable Energy Balance: Progressive Efficiencyin order to achieve a sustainable energy balance. Along the

  5. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeff

    2008-01-01

    Towards a Sustainable Energy Balance: Progressive Efficiencyin order to achieve a sustainable energy balance. Along theconsumer desires. 1.2 Sustainable Energy Balance as the Goal

  6. Sustainable Development of Renewable Energy Mini-grids for Energy Access: A Framework for Policy Design

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2014-01-01

    supply,” Renewable and Sustainable Energy Reviews, vol. 12,scenarios,” Renewable and Sustainable Energy Reviews, vol.Brazilian Amazon,” Energy for Sustainable Development, vol.

  7. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeffrey; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-01-01

    Towards a Sustainable Energy Balance: Progressive EfficiencyTowards a Sustainable Energy Balance: Progressive Efficiencyachieve a sustainable energy balance. Along the way, we may

  8. Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

  9. Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  10. Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  11. University of Colorado at Boulder Renewable and Sustainable Energy...

    Open Energy Info (EERE)

    University of Colorado at Boulder Renewable and Sustainable Energy Institute Jump to: navigation, search Logo: CU-Boulder Renewable and Sustainable Energy Institute Name:...

  12. Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  13. Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Montserrat-Caribbean Community (CARICOM) Sustainable Energy...

  14. The Energy Exchange: Doing Our Part to Support Sustainable Practices...

    Office of Environmental Management (EM)

    The Energy Exchange: Doing Our Part to Support Sustainable Practices in the Federal Government The Energy Exchange: Doing Our Part to Support Sustainable Practices in the Federal...

  15. Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  16. Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

  17. EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate...

    Open Energy Info (EERE)

    EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EBRD-Sustainable Energy Initiative:...

  18. PROJECT PROFILE: California Center for Sustainable Energy (Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Center for Sustainable Energy (Solar Market Pathways) PROJECT PROFILE: California Center for Sustainable Energy (Solar Market Pathways) Title: Virtual Net Metering...

  19. Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  20. Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy...

    Open Energy Info (EERE)

    Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Saint-LuciaCaribbean Community (CARICOM) Sustainable Energy...

  1. Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

  2. Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  3. Energy Department Projects Focus on Sustainable Natural Gas Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Projects Focus on Sustainable Natural Gas Development Energy Department Projects Focus on Sustainable Natural Gas Development January 10, 2013 - 1:00pm Addthis...

  4. U.S. Department of Energy 2014 Strategic Sustainability Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Strategic Sustainability Performance Plan U.S. Department of Energy 2014 Strategic Sustainability Performance Plan Document displays the U.S. Department of Energy's 2014...

  5. U.S. Department of Energy 2012 Strategic Sustainability Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Strategic Sustainability Performance Plan U.S. Department of Energy 2012 Strategic Sustainability Performance Plan This document details the U.S. Department of Energy's 2012...

  6. Futures for energy cooperatives

    SciTech Connect (OSTI)

    None

    1981-01-01

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  7. Sustainable Energy Advantage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDriveEconomiesNewSustain

  8. Sustainable Energy Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center of the

  9. Sustainable Marine Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center ofCase studies from

  10. Chapter 2: Sustainable and Unsustainable Developments in the U.S. Energy System

    E-Print Network [OSTI]

    Levine, Mark D.

    2008-01-01

    transitioning to a more sustainable energy system. From 2000toward a less sustainable energy system. This chapterStates toward a more sustainable energy system. Sustainable

  11. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable federal...

  12. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Areas Sustainable Buildings & Campuses Interagency Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group...

  13. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Ritschard, R.L.

    1977-01-01

    NEVADA: REQUIREMENTS FOR FUTURE ENERGY PRODUCTION STATE'SWATERREQUIREMENTS FOR FUTURE ENERGY PRODUCTIONIN ENERGYREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIA

  14. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    NEVADA: REQUIREMENTS FOR FUTURE ENERGY PRODUCTION STATE'SWATERREQUIREMENTS FOR FUTURE ENERGY PRODUCTIONIN ENERGYREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIA

  15. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy StorageTricks Lead toJohnUnit Pre

  16. Sustainable energy Academic year 2014-2015

    E-Print Network [OSTI]

    Ernst, Damien

    @ulg.ac.be 1 #12;1. Motivations Typical quotes about energy: · There is an impending energy crisis. We conceivably survive on their own renewable energy sources? 2. If everyone turns their thermostats one degreeSustainable energy Academic year 2014-2015 Damien Ernst ­ University of Li`ege Email: dernst

  17. A Robust Strategy for Sustainable Energy

    E-Print Network [OSTI]

    A Robust Strategy for Sustainable Energy ONCE AGAIN THE debate has intensified over whether energy uncertainties.4 Strategies for long-term energy planning must be robust to unpredictable variations Even if the world's oil resources are indeed plentiful, world energy supply remains very much

  18. Progress on linking gender and sustainable energy

    SciTech Connect (OSTI)

    Farhar, B.

    2000-04-05

    The field of gender and energy has been identified as critical in global sustainable energy development and is increasingly important to decision makers. The theme of women and energy was of significance at the 1998 World Renewable Energy Congress in Florence, Italy. This paper traces further developments in this field by summarizing selected programmatic initiatives, meetings, and publications over the past 18 months.

  19. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    of meeting California’s transportation energy needs andEvidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation Energy

  20. VisionTo be a premier institute to advance transformative, interdisciplinary research for a sustainable future.

    E-Print Network [OSTI]

    Crawford, T. Daniel

    for a sustainable future. MissionTo serve Virginia Tech, the Commonwealth of Virginia, the nation and the world enhancement and preservation for future generations. What is ICTAS? #12;T H E V E N N D I A G R A M The VENN compromising the ability of future generations to meet their needs. It recognize

  1. Sustainable Energy Utility (SEU)- Agricultural Loan Program

    Broader source: Energy.gov [DOE]

    Delaware Sustainable Energy Utility (DESEU) offers customized loans for agricultural customer as a part of DESEU’s revolving loan program. Program applications are accepted on a rolling basis, and...

  2. Dark Energy Present and Future

    E-Print Network [OSTI]

    Paul H. Frampton

    2003-07-03

    By studying the present cosmological data, particularly on CMB, SNeIA and LSS, we find that the future fate of the universe, for simple linear models of the dark energy equation-of-state, can vary between the extremes of (I) a divergence of the scale factor in as little as 7 Gyr; (II) an infinite lifetime of the universe with dark energy dominant for all future time; (III) a disappearing dark energy where the universe asymptotes as $t \\to \\infty$ to $a(t) \\sim t^{2/3}$ {\\it i.e.} matter domination. Precision cosmological data hint that a dark energy with equation of state $w = P/\\rho 0$ to $\\Lambda = 0$ in a first-order phase transition. The critical radius is argued to be at least of galactic size and the corresponding nucleation rate glacial, thus underwriting the dark energy's stability and rendering remote any microscopic effect.

  3. THE FUTURE OF ENERGY Carlo Rubbia

    E-Print Network [OSTI]

    THE FUTURE OF ENERGY Carlo Rubbia ENEA Opening remarks at the 18th IAEA Fusion Energy Conference Sorrento, Italy, 4th October 2000 #12;2 TABLE OF CONTENT 1.-- Energy is necessary. ..................................................................................... 3 2.-- Energies for the future

  4. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  5. ECE 465: Realistic Sustainable Energy -Energy use in transportation,

    E-Print Network [OSTI]

    Connors, Daniel A.

    ECE 465: Realistic Sustainable Energy - Energy use in transportation, HVAC and electric generation Sustainable Energies are covered in depth including: Solar, Wind, Hydro and Geothermal. - Shortcomings is detailed in units of kW-Hr - Alternative Energy sources for fuels and electric generation are covered

  6. Ris Energy Report 8 The intelligent energy system infrastructure for the future

    E-Print Network [OSTI]

    Risø Energy Report 8 The intelligent energy system infrastructure for the future Risø-R-1695(EN) September 2009 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 8 Edited by Hans Larsen and Leif Sønderberg Petersen, Risø National Laboratory for Sustainable Energy Technical University

  7. Sustainable Energy Policy University Facilities (UF)

    E-Print Network [OSTI]

    Stuart, Steven J.

    . Conservation Goals It is the goal of Clemson University to reduce energy consumption per gross square foot of building space on average by 1% per year beginning July 1, 2008, with an ultimate goal of reducing energySustainable Energy Policy University Facilities (UF) POLICY 10 Effective Date: August 11, 2008 Last

  8. Proceedings of ES2007 Energy Sustainability 2007

    E-Print Network [OSTI]

    Kissock, Kelly

    Proceedings of ES2007 Energy Sustainability 2007 June 27-30, 2007, Long Beach, CA ES2007-36080 TARGETING RESIDENTIAL ENERGY ASSISTANCE Gregory Raffio, Ovelio Isambert, George Mertz, Charlie Schreier, Kelly Kissock Building Energy Center, Department of Mechanical and Aerospace Engineering University

  9. --SNAPSHOT --STEPS (Sustainable Transportation Energy Pathways)

    E-Print Network [OSTI]

    California at Davis, University of

    of all types of alternative fuels and fuel uses and further the Energy Commission's goals of promoting of alternative vehicles and fuels in California, in order to help inform the Energy Commission's investment-- SNAPSHOT -- STEPS (Sustainable Transportation Energy Pathways) TECHNICAL ASSISTANCE AGREEMENT

  10. |Sustainable energy choices: comparing the options

    E-Print Network [OSTI]

    for addressing these growing service demands, each of which has its attractions. Energy efficiency reduces are not renewable, but the resource can endure for centuries and is a high quality form of energy that can7 |Sustainable energy choices: comparing the options O ver the next century and beyond humans

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    policy implications.   Energy Policy.   2009. 37 (12). ppin Southern California”, Energy Policy, 39 (2011) 1923–1938.and Policy and Director, Sustainable Transportation Energy

  12. UNIDO-Training Program on Sustainable Energy Regulation and Policymaki...

    Open Energy Info (EERE)

    UNIDO-Training Program on Sustainable Energy Regulation and Policymaking for Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNIDO-Training Program on Sustainable...

  13. Making Sustainability "Business as Usual" | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Sustainability "Business as Usual" Making Sustainability "Business as Usual" March 21, 2014 - 11:45am Addthis David Morin, Energy Manager for Laughlin Air Force Base,...

  14. Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning, October 25, 2011.

  15. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  16. Sustainable Buildings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority SustainX Inc Isothermal

  17. Sustainability Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctober 22,Sustainability Around the

  18. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 4: POLICY AND SUSTAINABLE TRANSPORTATION Part 4: Policy and pollutants such as aerosols and black carbon. Third, more #12;250 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

  19. Departmental Sustainability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-02

    The order defines requirements and responsibilities for managing sustainability DOE to ensure that the Department carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges, and advances sustainable, efficient and reliable energy for the future; institute wholesale cultural change to factor sustainability and greenhouse gas (GHG) reductions into all DOE corporate management decisions; and ensure that DOE achieves the sustainability goals established in its Strategic Sustainability Performance Plan. Supersedes DOE O 450.1A and DOE O 430.2B

  20. Institutional Change for Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Change for Sustainability Institutional Change for Sustainability Motivate Staff to be More Sustainable Motivate Staff to be More Sustainable Learn how making public...

  1. Sustainable Electricity | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Monitoring, Modeling, and Analysis Advanced Components and Materials Systems Integration Energy Security Wind Geothermal Solar Energy-Water Resource Systems Systems Biology...

  2. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and developing a multi-year program for standards and for optimizing the industrial motor systems in China. Past work has included a comprehensive study of China's oil refining sector. Cross-Cutting--analysis and research focused on multisector, policy, and long-term development issues. Current cross-cutting policy and analysis research includes work on government procurement programs; energy service companies; a national energy policy assessment including the National Energy Strategy released by the government in early 2005; energy efficiency policy; an analysis of past trends in energy consumption in China as well as of future scenarios; and our China Energy Databook accompanied by chapter summaries and analysis of recent trends.

  3. Sustainable Acquisition | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority SustainX Inc Isothermal CompressedResearch

  4. Sustainable Energy: Choosing Among Options

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01

    today, their economic evaluation and the technologies toare discussed. Economic evaluation of energy projects is

  5. Implementing and Sustaining Operator Led Energy Efficiency Improvements 

    E-Print Network [OSTI]

    Hoyle, A.; Knight, N.; Rutkowski, M.

    2011-01-01

    , to significantly reduce energy consumption, the site must focus on a strategic approach which involves developing, implementing and sustaining a client specific program of energy optimization. We discuss ways of sustaining energy performance through operator led...

  6. SUSTAINABLE ENERGY ORGANIZATIONS: A Comparative Study of Administration, Business

    E-Print Network [OSTI]

    Delaware, University of

    SUSTAINABLE ENERGY ORGANIZATIONS: A Comparative Study of Administration, Business Models economics, policy analysis, sustainable development, political economy of energy, environment Information Center for Energy and Environmental Policy -- 278 Graham Hall, Newark, Delaware 19716 T: (302) 831

  7. Energy Solutions for Sustainable Development

    E-Print Network [OSTI]

    energy technologies such as clean coal technologies · Providing renewable energy for the transport sector Session 2 - Scenarios and Policy Options 32 Session 3 ­ Clean Coal Technologies 55 Session 4 ­ Bioenergy

  8. Sustainable Transportation Energy Pathways Research

    E-Print Network [OSTI]

    Handy, Susan L.

    FUEL/VEHICLE PATHWAYS (ROAD VEH.) #12;Transport Fuels Today (94% petro-based, 2% biofuel) IEA Energy Technology Perspectives (2010) #12;IEA ETP 2012: THREE ENERGY SCENARIOS 6 DS (Current Policies), 4 DS, 2DS Source: IEA Energy Technology Perspectives (2012) #12;MEETING 2050 GHG REDUCTION GOALS => FUEL MIX

  9. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Renewable Electricity Generation and Storage Technologies for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable;Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  10. 3. Sustaining Behavioural Change 4. Solution Package 5. Evaluation and Future Work

    E-Print Network [OSTI]

    Sun, Yu

    commitment 4. Develop sustainability representative code of ethics Forgetfulness Intangible benefits reducing the amount of energy consumed by the unit · Analyzed feasibility of recommendations from previous to client and stakeholders to much satisfaction. · Conducted literature review on adopting energy conscious

  11. California Energy Futures Study Working Committee

    E-Print Network [OSTI]

    California at Davis, University of

    #12;#12;#12;California Energy Futures Study Working Committee Robert Budnitz, LBNL Linda Cohen, UC Somerville, UC Berkeley H. Youngs ­ EBI, UC Berkeley California's Energy Future, Biofuels #12;Stress tests California's Energy Future, Biofuels #12;#12;#12;Reduced Fuel Demand Scenario H. Youngs ­ EBI, UC Berkeley

  12. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    Sustainable Energy (4) Danish Energy Agency (DEA). (1999).al. [3] and the Danish Energy Agency (DEA) [4], illustrate

  13. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  14. Sustainable Development of Renewable Energy Mini-grids for Energy Access: A Framework for Policy Design

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2014-01-01

    Minigrid Design Manual,” Energy Sector Management AssistanceRenewable and Sustainable Energy Reviews, vol. 12, no. 5,the Brazilian Amazon,” Energy for Sustainable Development,

  15. Nuclear Power Trends Energy Economics and Sustainability

    E-Print Network [OSTI]

    Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear Nuclear Today · 439 nuclear power reactors (31 countries) · Over 12,000 years of operating experience · Nuclear reactors supply 16% of the world's electricity as base-load power (372,000 MWe of total capacity

  16. First Western Forum on Energy & Water Sustainability

    E-Print Network [OSTI]

    Keller, Arturo A.

    (1987 - 1998) ...Leads to Subsidence in the Central City #12;Colorado River Water Renewable GroundwaterFirst Western Forum on Energy & Water Sustainability March 22, 2007 WATER PLAN: 2000-2050 CITY Provide Service Which Meets Our Customers' Expectations Maximize Use of Renewable Water Supplies Achieve

  17. Preparation and Characterization of Nanomaterials for Sustainable Energy

    E-Print Network [OSTI]

    Wang, Zhong L.

    Preparation and Characterization of Nanomaterials for Sustainable Energy Production Chang-jun Liu. Therefore, it is necessary to de- velop a suite of sustainable energy sources and energy-storage materials were discussed at the Symposium on Nano- technology for Sustainable Energy and *Address correspondence

  18. Sustainable Energy for All A Framework for Action

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Edison Lobão, Minister of Energy and Mines of Brazil Peter Löscher, President and CEO, Siemens Helge Lund1 Sustainable Energy for All A Framework for Action The Secretary-General's High-level Group on Sustainable Energy for All January 2012 #12;2 The Secretary-General's High-level Group on Sustainable Energy

  19. Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation

    E-Print Network [OSTI]

    Kemner, Ken

    Batteries and electrochemical energy storage are central to any future alternative energy energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all electrochemical energy storage devices, these corrosive reactions are not always detrimental to the operation

  20. Energy for Poverty Reduction and Sustainable Development: UNDP...

    Open Energy Info (EERE)

    Energy for Poverty Reduction and Sustainable Development: UNDP Energy Documents and Publications Catalogue Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy for...

  1. Site Sustainability Plan Pushing Forward to a Better Future

    E-Print Network [OSTI]

    PV photovoltaic R&D research and development RDHx rear door heat exchanger REC Renewable Energy 16 Electronic Stewardship and Data Centers 17 Renewable Energy 20 Climate Change Resilience 21 High-Energy Mission-Specific Facilities 26 Budget and Funding 28 Utility Usage, Costs and Projections 29 Appendix

  2. Chapter 2: Sustainable and Unsustainable Developments in the U.S. Energy System

    E-Print Network [OSTI]

    Levine, Mark D.

    2008-01-01

    distribution, increased energy sustainability in the Unitedthree trends in U.S. energy sustainability: declining carbonindicators of U.S. energy system sustainability. Declining

  3. Sustainable energy in china: the closing window of opportunity

    SciTech Connect (OSTI)

    Fei Feng; Roland Priddle; Leiping Wang; Noureddine Berrah

    2007-03-15

    China's remarkable economic growth has been supported by a generally adequate and relatively low-cost supply of energy, creating the world's largest coal industry, its second-largest oil market, and an eclectic power business that is adding capacity at an unprecedented rate. If energy requirements continue to double every decade, China will not be able to meet the energy demands of the present without seriously compromising the ability of future generations to meet their own energy needs. This title uses historical data from 1980 and alternative scenarios through 2020 to assess China's future energy requirements and the resources to meet them. It calls for a high-level commitment to develop and implement an integrated, coordinated, and comprehensive energy policy. The authors recommend eight building blocks to reduce energy consumption growth well below the targeted rate of economic growth, to use national resources on an economically and environmentally sound basis, and to establish a robust energy system that can better ensure the security of a diverse supply of competitively priced energy forms. Sustainability calls for persistence of effort, greater reliance on advanced energy technologies, and better standards enforcement. Achieving these goals will require policy initiatives that restrict demand and create a 'resources-conscious society', reconcile energy needs with environmental imperatives, rationalize pricing, and tackle supply security. While the challenges are daunting, China has a unique opportunity to position itself as a world leader in the application of cutting-edge energy developments to create a sustainable energy sector effectively supporting a flourishing economy and society.

  4. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 12: KEY MEASUREMENT UNCERTAINTIES FOR BIOFUEL POLICY

  5. National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future nation but the world #12;National Renewable Energy Laboratory Innovation for Our Energy Future Campus facilities · Carbon neutral · Net zero energy · Living Laboratory #12;National Renewable Energy Laboratory

  6. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Highlight (Fact Sheet), Weatherization And Intergovernmental Programs (WIP) Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet), Weatherization...

  7. Environmental Sustainability of Cellulosic Energy

    E-Print Network [OSTI]

    Sims, Gerald K.

    forms of energy extraction/production/use have environmental footprints, most of which have not been the expectation is that those crops would be grown on existing croplands and with only minor inputs of water and crop residue harvested from existing agricultural land cleared or culti- vated prior to December 19

  8. ESC: Energy Synchronized Communication in Sustainable Sensor Networks

    E-Print Network [OSTI]

    He, Tian

    ESC: Energy Synchronized Communication in Sustainable Sensor Networks Yu Gu, Ting Zhu and Tian He Abstract--With advances in energy harvesting techniques, it is now feasible to build sustainable sensor of sustainable sensor networks is to effectively utilize a continuous stream of ambient energy. Instead

  9. CCSF Topical Lunch Summary Systems Approach to Sustainable Energy

    E-Print Network [OSTI]

    Walter, M.Todd

    1 CCSF Topical Lunch Summary Systems Approach to Sustainable Energy October 28, 2009 Introduction their interest in systems, sustainability and energy, mentioned related research areas and colleagues who should/micro grids and wind energy Kevin Pratt Systems approach to sustainable design; develop a very fast

  10. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan presented in this book was drawn from the Sustainable Transportation Energy Pathways (STEPS) program.S. Environmental Protection Agency Volkswagen #12;312 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS ACKNOWLEDGEMENTS

  11. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan their feedstocks displaces food crops. #12;298 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CONCLUSION: KEY FINDINGS. · Biofuels can make limited but significant contributions to a sustainable transportation energy supply

  12. Smithsonian Institution 2014 Scorecard on Sustainability and Energy Performance

    E-Print Network [OSTI]

    Miller, Scott

    Smithsonian Institution 2014 Scorecard on Sustainability and Energy Performance In October 2009 are committed to the strategic objectives of the order. Our January 2015 Sustainability/Energy scorecard Scorecard on Sustainability/Energy Scope1&2GHGEmissionReductionTarget ForScope1&2GHGReductionTargetof32%by

  13. Co-Designing Sustainable Communities: The Identification and Incorporation of Social Performance Metrics in Native American Sustainable Housing and Renewable Energy System Design

    E-Print Network [OSTI]

    Shelby, Ryan

    2013-01-01

    about sustainability and renewable energy technologies byranging from sustainability endeavors to energy developmentof Renewable Energy and Sustainability (CARES) in the hope

  14. Co-Designing Sustainable Communities: The Identification and Incorporation of Social Performance Metrics in Native American Sustainable Housing and Renewable Energy System Design

    E-Print Network [OSTI]

    Shelby, Ryan

    2013-01-01

    of Renewable Energy and Sustainability (CARES) in the hopeof Renewable Energy and Sustainability (CARES) project (withor save energy and water” and address the “sustainability….

  15. Alliance for Sustainable Energy, LLC

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONYDepartmentandACCESSINGAttemptsNepotismSixth

  16. Winning the Biofuel Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winning the Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a...

  17. Assessing the Sustainability of Buildings From Energy Certificate to Sustainability Report 

    E-Print Network [OSTI]

    Lutzkendorf, T.

    2008-01-01

    & Business Engineering Sustainable Management of Housing & Real Estate Kaiserstr. 12 76128 Karlsruhe 00 49 72 1/ 6 08 83 40 thomas.luetzkendorf@wiwi.uka.de Assessing the Sustainability of Buildings - From Energy Certificate to Sustainability Report... In its current work on the development, testing and implementation of a national system to describe, evaluate and certify sustainable buildings (DGNB ? Deutsches G?tesiegel Nachhaltiges Bauen), Germany is focussed on the current state of international...

  18. Sustainable Transportation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaffSunShotSustainable

  19. 784 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 3, NO. 4, OCTOBER 2012 Market Solutions for Managing Ramp Flexibility

    E-Print Network [OSTI]

    McCalley, James D.

    784 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 3, NO. 4, OCTOBER 2012 Market Solutions generation provides us a greener and more sustainable future, it also introduces new challenges in scheduling entry of new flexible suppliers such as energy storage devices or demand response. Index Terms

  20. Sustainable Energy Resources for Consumers Fact Sheet July 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energys Sustainable Energy Resources for Consumers (SERC) grants, including information on the programs history, who is eligible, and how to participate....

  1. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  2. U.S. Department of Energy 2012 Strategic Sustainability Performance...

    Broader source: Energy.gov (indexed) [DOE]

    This document details the U.S. Department of Energy's 2012 strategic sustainability performance plan. doesspp2012.pdf More Documents & Publications U.S. Department of Energy 2014...

  3. SUSTAINABLE OCEAN SYSTEMS During the twenty-first century, issues concerned with environmental and energy sustainability

    E-Print Network [OSTI]

    Walter, M.Todd

    and education at Cornell, with a special focus on sustainable energy and living marine resources. Cornell and energy sustainability increasingly have become the focus of world attention. As one of the premier a leading role in analyzing the environmental and energy problems confronting society. Among

  4. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01

    part analysis of energy and sustainability related topicsChair Energy security and environmental sustainability areenergy system by mitigating the effects of intermittent power production. However, the sustainability

  5. What Sustainable Road Transport Future? Trends and Policy Options | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What Is a Small Community Wind Project? Jump to:Energy

  6. Planning For a New Energy & Climate Future

    E-Print Network [OSTI]

    New South Wales, University of

    Planning For a New Energy & Climate Future 10th International Urban Planning and Environment solar energy resources ­ Can an analysis of urban residential rooftops inform planning policy for carbonNicoleGurran,PeterPhibbsandSusanThompson www.upe10.org Page 1 #12;Planning For a New Energy & Climate Future FIRST PUBLISHED 2013 by ICMS PTY

  7. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan #12;279 PART 4 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 13: BEYOND LIFE-CYCLE ANALYSIS://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;278 SUSTAINABLE

  8. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan of the fuels we consider #12;122 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 5: COMPARING INFRASTRUCTURE://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;121 SUSTAINABLE

  9. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan. #12;188 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 3: SCENARIOS FOR A LOW-CARBON TRANSPORTATION://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;187 SUSTAINABLE

  10. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan scenario. #12;210 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 9: TRANSITION SCENARIOS FOR THE U://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;209 SUSTAINABLE

  11. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan, batteries, and ultracapacitors. Andrew #12;316 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS AUTHORS://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;315 SUSTAINABLE

  12. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan by 2030, even though transportation accounts for #12;235 PART 3 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;234 SUSTAINABLE

  13. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  14. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    aviation, marine and rail sectors. Energy use, broken out bysuch as aviation and marine. California’s Energy Future -and marine. We believe that the CEF transportation energy

  15. Energy Security: A Key Requirement forSustainable Development

    E-Print Network [OSTI]

    1 Energy Security: A Key Requirement forSustainable Development Perspective and Action Plan Robert Card Under Secretary US Department of Energy August 30, 2002 Session One: Maintaining Energy Security WSSD Side Event Energy for Sustainable Development IEA/UNEP/Eskom #12;2 Energy Security is a Key

  16. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    H. (2008). Renewable Energy Outlook 2030 – Energy WatchA Sustainable World Energy Outlook. Brussels, Belgium:Assumptions to the Annual Energy Outlook 2011. DOE/EIA-0554.

  17. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    CALIFORNIA WATER RESOURCES. Water Demand Energy Suppon future forecasts of of Water energy predicted energy aunder these PHASE II: WATER ENERGY REQUIREMENTS FOR FUTURE

  18. Building Our Energy Future: Teaching Students the Significance...

    Office of Environmental Management (EM)

    Building Our Energy Future: Teaching Students the Significance of Energy Efficiency Building Our Energy Future: Teaching Students the Significance of Energy Efficiency April 2,...

  19. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  20. UNEP Ris Centre Energy, Climate and Sustainable Development

    E-Print Network [OSTI]

    UNEP Risø Centre ­ Energy, Climate and Sustainable Development International and Danish research's energy and climate programmes. · Projects are mainly funded by bilateral or multilateral institutions energy projects and designing energy projects that impact better on the development process (MDGs

  1. Driving Water and Wastewater Utilities to More Sustainable Energy Management 

    E-Print Network [OSTI]

    Ferrel, L.; Liner, B.

    2013-01-01

    The Water Environment Federation (WEF) and industry leaders have identified the need for an energy roadmap to guide utilities of all sizes down the road to sustainable energy management through increased renewable energy production, energy...

  2. SOLAR ENERGY AND OUR ELECTRICITY FUTURE

    E-Print Network [OSTI]

    SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

  3. The Future of Energy on Ea FFFFUUUUSSSSIIIIOOOONNNN

    E-Print Network [OSTI]

    Administration Assist. Sec., Defense Programs Energy Efficiency & Renewable Energy Office of Science (SC) Science of Basic Energy Sciences Associate Director Patricia M. Dehmer Office of Resource Management AssociateThe Future of Energy on Ea FFFFUUUUSSSSIIIIOOOONNNN is the Energy of the FFFFUUUUSSSSIIIIOOOONNNN

  4. Energy Implications of Alternative Water Futures

    E-Print Network [OSTI]

    Keller, Arturo A.

    Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

  5. LM Receives Sustainability Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LM Receives Sustainability Award LM Receives Sustainability Award January 8, 2013 - 1:17pm Addthis Award ceremony (left to right): Melvin G. Williams, Jr., Associate Deputy...

  6. Cooperation on Sustainability Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooperation on Sustainability Standards Cooperation on Sustainability Standards Keith Kline, ORNL, presentation at the December 5, 2012, Biomass Program-hosted International...

  7. Sustainable EnergiesSustainable Energies & Their Environmental Impacts& Their Environmental Impacts

    E-Print Network [OSTI]

    Budker, Dmitry

    dominant Rapid increase of Hydroelectricity & Nuclear Power Data from Statistical Review of World Energy-6- empty-or-0-4-full/ #12;Energy Consumption Energy consumption in 2009 About 3% Hydroelectricity Low Information Administration) #12;Energy in Future From 1965 to 2100 (prediction) Hydroelectricity dominant

  8. Energy Research at the UW Crea ng sustainable energy sources

    E-Print Network [OSTI]

    Matrajt, Graciela

    environmental- impact materials and natural processes Energy harves ng: powering small devices from renewable energy at the lowest cost Mechanical storage: flywheels, pumped storage, compressed gas Ba eries and policy: roles government can and should play Forest and natural resource management: sustainable resource

  9. Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore

  10. Eco Sustainable Solutions Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, RhodeEchols County, Georgia: EnergyFuelSustainable

  11. Portsmouth Site Sustainability Team | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS -Portmouth Site Sustainability Team (SST)

  12. Sustainable Development Capital LLP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center of the Rockies JumpCapital

  13. Sustainable Europe Research Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center of theEurope Research

  14. Sustainable Forest Finance Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center of theEurope ResearchForest

  15. Sustainable Green Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center of theEurope

  16. Sustainable Investments Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center of

  17. Sustainable Spaces Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center ofCase studies fromSpaces Inc

  18. Sustainable Technology Capital, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center ofCase studies

  19. Centrotec Sustainable AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo EnergyOhio:ElecSustainable AG Jump to:

  20. Department of Energy 2014 Sustainability Awards Information

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOEAnalysis,DepartmentAboveProgram to Assist7 enSustainability

  1. The Cornell Center for a Sustainable Future (CCSF) represents a bold commitment to develop and deploy knowledge to address some of society's most complex and press-

    E-Print Network [OSTI]

    Walter, M.Todd

    , develop, and deliver high-impact innova- tions through sustainability science. We also convene#12;The Cornell Center for a Sustainable Future (CCSF) represents a bold commitment to develop Compliance and Sustainability; Cornell International Institute for Food, Agriculture, and Development

  2. Designing the Future Energy System for Cleaner Air: A National Laboratory Perspective 

    E-Print Network [OSTI]

    Cale, J.

    2014-01-01

    of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. James Cale, Ph.D., Group Manager Distributed Energy Systems Integration (DESI) Power Systems Engineering Center... National Renewable Energy Laboratory Designing the Future Energy System for Cleaner Air: A National Laboratory Perspective ESL-KT-14-11-23 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 2DOE and National Laboratories 2...

  3. Virginia Tech Sustainability Annual Report The Virginia Tech Office of Energy and Sustainability is pleased to present the Virginia Tech Sustainability

    E-Print Network [OSTI]

    Virginia Tech Sustainability Annual Report 20132014 1 The Virginia Tech Office of Energy.2% #12;Virginia Tech Sustainability Annual Report 20132014 2 2. Energy Use Intensity (kbtu and Sustainability is pleased to present the Virginia Tech Sustainability Annual Report for 2013 2014. The purpose

  4. Fusion Energy: Visions of the Future

    E-Print Network [OSTI]

    energy conversion Direct energy conversion No $$$ turbines Why Is Aneutronic Fusion Cheap? #12;Dense Star Formation REPRODUCING NATURAL INSTABILITIES Solar Flares #12;Energy (X-rays, Ion Beams) CaptureFusion Energy: Visions of the Future Dec. 10-11, 2013 FOCUS FUSION Cheap, Clean, Safe & Unlimited

  5. Sustainable Scientists

    E-Print Network [OSTI]

    Mills, Evan

    2009-01-01

    Exascale for Energy, Ecological Sustainability and Globalrating energy efficiency and other sustainability features,of sustainability often do so in highly energy- intensive

  6. U.S. Department of Energy Sustainability Performance Office:...

    Office of Environmental Management (EM)

    their outstanding sustainability contributions, including accomplishments in managing pollution, waste, energy, water, and vehicle fleets. The extraordinary efforts of our award...

  7. Sustainable Energy Resources for Consumers (SERC)- Solar Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Photovoltaics.

  8. Sustainable Energy Resources for Consumers (SERC) Success Story...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success Story: Montana Sustainable Energy Resources for Consumers (SERC) Success Story: Montana This document contains information on how Montana SERC Program Delivers Strong...

  9. Sustainable Energy Resources for Consumers (SERC) - On-Demand...

    Broader source: Energy.gov (indexed) [DOE]

    aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters....

  10. Sustainable Energy Resources for Consumers (SERC) Success Story...

    Broader source: Energy.gov (indexed) [DOE]

    upgrade measures to maximize savings. sercmdhighlight.pdf More Documents & Publications Sustainable Energy Resources for Consumers Fact Sheet July 2011 SERC Grant Webinar...

  11. 2011 U.S. Department of Energy Strategic Sustainability Performance...

    Broader source: Energy.gov (indexed) [DOE]

    1 U.S. Department of Energy Strategic Sustainability Performance Plan developed as required by Executive Order 13514. doesspp2011.pdf More Documents & Publications 2010 U.S....

  12. 2010 U.S. Department of Energy Strategic Sustainability Performance...

    Broader source: Energy.gov (indexed) [DOE]

    0 U.S. Department of Energy Strategic Sustainability Performance Plan developed as required by Executive Order 13514. doesspp.pdf More Documents & Publications 2011 U.S....

  13. Sustainable Energy Economy: The Next Challenge for Systems Engineers; Preprint

    SciTech Connect (OSTI)

    Snyder, N.

    2008-06-01

    This paper discusses large, past projects that may provide insights into how systems engineers can help in the transition to a sustainable energy economy.

  14. Notice of proposed rulemaking, Energy Efficiency and Sustainable...

    Energy Savers [EERE]

    Notice of proposed rulemaking, Energy Efficiency and Sustainable Design Standards for New Federal Buildings, 75 Fed. Reg. 29,933 (May 28, 2010) Notice of proposed rulemaking,...

  15. Panel 1, Towards Sustainable Energy Systems: The Role of Large...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Towards sustainable energy systems - The role of large scale hydrogen storage in Germany May 14th, 2014 | Sacramento Political background for the transition to renewable...

  16. Second Forum on Energy & Water Sustainability: Increasing Resource Productivity

    E-Print Network [OSTI]

    Keller, Arturo A.

    in resource efficiency, for energy and water? · What are the co-benefits of implementing these technologiesSecond Forum on Energy & Water Sustainability: Increasing Resource Productivity April 10, 2009 of energy and water sustainability, considering the important linkages between these two resources

  17. Renewable Energy Strategies for Sustainable Development Henrik Lund*

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Renewable Energy Strategies for Sustainable Development Henrik Lund* Department of Development of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development. Such strategies typically involve three major technological changes: energy savings on the demand side, efficiency

  18. NC Sustainable Energy Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver,Minnesota:EnergyNARI Jump to: navigation,NAU GmbHNC

  19. Global energy - assessing the future

    SciTech Connect (OSTI)

    Edmonds, J.; Reiley, J.M.

    1985-01-01

    This book applies various forecasts of energy use to the CO/sub 2/ problem. The effect of demographic factors and economic growth on energy consumption are considered and a model is proposed relating energy consumption and carbon dioxide; predictions are made up to the year 2050 and the uncertainties in these long-term energy projections considered. Energy forms taken into account include oil and gas (both conventional and unconventional), coal, nuclear energy, solar and wind power, hydroelectricity and ocean thermal energy conversion systems and biomass.

  20. Center for BioEnergy Sustainability http://www.ornl.gov/cbes/ Bioenergy, Sustainability, and Land-Use Change Report

    E-Print Network [OSTI]

    Pennycook, Steve

    designs. Renewable & Sustainable Energy Review. ORNL Presentations: February 2-4 ­ Esther Parish "Sustainability, Ecosystem Services, and Bioenergy Development across the Americas" Project. February 27 ­ UpdateCenter for BioEnergy Sustainability http://www.ornl.gov/cbes/ 1 Bioenergy, Sustainability, and Land

  1. Sustainable Energy Coalition | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for

  2. Sustainable Energy Technologies Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies Ltd Jump to: navigation, search Name:

  3. Concord Comprehensive Sustainable Energy Committee | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal

  4. Sustainability Around the House | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Around the House Sustainability Around the House April 13, 2015 - 7:46am Addthis Rain barrels collect rain water and provide a free source of fresh water for your...

  5. Sustainable Energy Works LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies Ltd Jump to: navigation, searchWorks

  6. Caribbean Sustainable Energy Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to: navigation, search Name: Carbon TradeEthanol

  7. Northeast Sustainable Energy Association (Massachusetts) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishi ElectricElecCompany LLC JumpPwrP P

  8. Northeast Sustainable Energy Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishi ElectricElecCompany LLC JumpPwrP

  9. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    trends in China, India, Eastern Europe and other developing areas. China oil demand +104% by 2030, India 2000 2020 2040 2060 Supply demand Energy UWM-CUTS 14 U.S. DOE viewpoint, source:http://tonto.eia.doe.gov/FTPROOT/features/longterm.pdf#search='oilTransportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05

  10. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  11. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    24. EROEIs and 2030 Installed Capacity by Alternative Energy75 Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  12. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;171 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 1: INDIVIDUAL FUEL/VEHICLE PATHWAYS PART 2 Chapter 7: Comparing Land, Water

  13. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;133 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 1: INDIVIDUAL FUEL/VEHICLE PATHWAYS PART 2 Chapter 6: Comparing Greenhouse

  14. Lindsay Millert GEOS 206--Renewable Energy and the Sustainable Campuses

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    Millert 1 Lindsay Millert GEOS 206--Renewable Energy and the Sustainable Campuses Final Paper--Green Renovation/Design May 13, 2008 Greening Garfield: the Issues and the Solutions Aldo Leopold writes in his and the natural world. Sustainability is the intersection of these realms, the ultimate goal. The Renewable Energy

  15. The Future of Atomic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(active tab) 2016TheTheFuture is bright for

  16. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  17. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    total primary energy will be supplied by alternative energy by 2030 with the 2030 electricity supply

  19. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Use in California PEV Technology and Costs The mainEnergy Use in California Component HEV Battery Cost, $/kWhaccount the cost of delivery. California’s Energy Future -

  20. Bright Future NW Energy Coalition

    E-Print Network [OSTI]

    as coal or natural-gas generation. Wind and biomass nearly twice as many. Solar PV job potential is huge on natural gas. Energy Efficiency 3¢/kWh Energy Efficiency 3¢/kWh RPS 2020 10¢/kWh RPS 2020 10¢/kWh New Natural Gas 10¢/kWh Repower Existing Coal Plants 6¢/kWh New Renewables 2020-2050 10¢/kWh Repower

  1. Building Energy Supply Infrastructures and Urban Sustained Development of Shenyang 

    E-Print Network [OSTI]

    Feng, G.; Wang, Y.; Gao, Y.

    2006-01-01

    in the current situation of Shenyang's building energy supply take a back seat to urban sustained development. Recent strategies and suggestions for Shenyang building energy consumption have been presented....

  2. Panel Discussion: Career Paths in Energy & Sustainability: Perspective...

    Broader source: Energy.gov (indexed) [DOE]

    Capitol Chapter of the Association of Energy Engineers, will co-host the Energy & Sustainability Extravaganza at The George Washington University from 11:30 a.m.-7 p.m. The events...

  3. Sustainability Assessment of Residential Building Energy System in Belgrade 

    E-Print Network [OSTI]

    Vucicevic, B.; Bakic, V.; Jovanovic, M.; Turanjanin, V.

    2010-01-01

    is based on geographic position and type of heating. This paper presents the sustainable assessment of energy system for residential building sector in Belgrade. In order to present the energy system options for residential building sector, three sets...

  4. A Renewable Energy Future: Innovation and Beyond

    Broader source: Energy.gov [DOE]

    This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is needed to make it happen. The presentation also includes a discussion of the integration challenges that affect solar energy systems.

  5. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 22nd NREL Industry Growth Forum

    E-Print Network [OSTI]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 22nd NREL Industry Growth Forum;National Renewable Energy Laboratory Innovation for Our Energy Future The 22nd NREL Industry Growth Forum

  6. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    AND FUTURE COST OF WIND ENERGY Eric Lantz & Maureen Hand National RenewableRenewable Energy Laboratory. Further improving our understanding of possible future

  7. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    presented in a 2007 Geothermal Energy Association report (Solar Water Heater Geothermal energy Biomass Pellets mil m2an increasingly important geothermal energy user in the last

  8. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    3. Revised 2020 Alternative Energy Capacity Targets and 2011installed renewable energy capacity in 2009 (Pew, 2011).of 106% in renewable energy capacity from 2005 to 2010 (Pew,

  9. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    compared to other renewable energy policies illustrate thatExpansion Policy Drivers Renewable Energy Law of China TheRenewable Energy Law, other technology-specific policies

  10. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    ANL), 2011, “Offshore Wind Energy. ” Outer Continental Shelffocus on advancing offshore wind energy development. AfterOffshore Wind Development 27 3.5 Remaining Challenges for Wind Energy

  11. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    ANL), 2011, “Offshore Wind Energy. ” Outer Continental Shelffull_report_2010.pdf British Wind Energy Association (BWEA),on advancing offshore wind energy development. After the

  12. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    average FFDR. If hydro and nuclear energy inputs and outputsAll Alt Energy Technologies Excluding Hydro & Nuclear It iswind, solar, hydro, nuclear and geothermal, renewable energy

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Outer Continental Shelf Alternative Energy and Alternate Usealternative non-fossil and alternative energy technologiesbe effectively addressed and alternative energy development

  14. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    GW Other Renewable Energy Applications Solar Water Heatergrowth of renewable energy industries, particularly solar PVUnlike other renewable energy such as solar and wind, policy

  15. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizonaAugust 16,Security 40EnergyClean Energy andRush

  16. Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK Energy Research Centre

    E-Print Network [OSTI]

    Gilfillan, Stuart

    Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK information and leadership, on sustainable energy systems. UKERC undertakes world-class research addressing: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 3 UK Energy Research Centre Morning Session 1 ) I

  17. Implementation Regulations 3TU MSc Sustainable Energy Technology Delft, 2015-2016 THE IMPLEMENTATION REGULATIONS

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Implementation Regulations 3TU MSc Sustainable Energy Technology ­ Delft, 2015-2016 THE IMPLEMENTATION REGULATIONS 2015 - 2016 3TU MASTER'S DEGREE PROGRAMME Sustainable Energy Technology - Delft (SET) DELFT UNIVERSITY OF TECHNOLOGY Administrative data Nomenclature in CROHO M Sustainable Energy Technology

  18. Implementation Regulations 3TU MSc Sustainable Energy Technology Delft, 2014-2015 THE IMPLEMENTATION REGULATIONS

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Implementation Regulations 3TU MSc Sustainable Energy Technology ­ Delft, 2014-2015 THE IMPLEMENTATION REGULATIONS 2014 - 2015 3TU MASTER'S DEGREE PROGRAMME Sustainable Energy Technology - Delft (SET) DELFT UNIVERSITY OF TECHNOLOGY #12;Implementation Regulations MSc Sustainable Energy Technology SET

  19. Hydrogen and OUr Energy Future

    SciTech Connect (OSTI)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  20. Energy & Sustainable Chemistry: Light Harvesting & Biocatalysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Sustainable Chemistry: Light Harvesting & Biocatalysis November 30, 1999 at http:www.rle.mit.eduexcitonicswp-contentuploads201408Olsen-efrc-video-highlight-artf.chloro..m...

  1. Engaging Reluctant Americans into Energy Efficiency and Sustainability 

    E-Print Network [OSTI]

    Shelton, S.

    2013-01-01

    CATEE December 18, 2012 But I don’t want to! Engaging reluctant Americans (almost all of them) into energy efficiency and sustainability ESL-KT-13-12-58 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Gain a... sustainable advantage ESL-KT-13-12-58 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Gain a sustainable advantage ESL-KT-13-12-58 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    output by each alternative energy type from 2010 to 2030 isof each alternative energy technology type, an energy returntypes of PV power plants with CIS having the lowest water intensity of all alternative energy

  3. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    energy in China. ” Renewable Energy 36 (5): 1374-1378. Chen,GoC/World Bank/GEF China Renewable Energy Scale-up Programwind power systems. ” Renewable Energy 35: 218-225. Lechon

  4. Sustainable Development of Renewable Energy Mini-grids for Energy Access: A Framework for Policy Design

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2014-01-01

    electricity supply,” Renewable and Sustainable EnergyGanapathy, “Decetralized Renewable Energy (DRE) Micro-gridsextension, off-grid and renewable energy sources,” in World

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Fuel Cycle Processes Thermal Energy Intensity Electricityprocess uses less energy than the dry kiln, and an average of reported thermal

  6. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance a given location for the best technology, or a renewable energy technology for the best location, accurate

  7. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance two-way power flow with communication and control. Renewable Energy Grid Integration As the market

  8. Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information ResourcesHeat & Cool » Home

  9. THE FUTURE OF GEOTHERMAL ENERGY

    SciTech Connect (OSTI)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  10. Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper

    E-Print Network [OSTI]

    Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Thrust Area 1 White Paper Electric Energy Challenges of the Future Project Team Gerald T. Heydt, Kory Hedman Arizona

  11. Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability...

    Office of Environmental Management (EM)

    for future generations. The projects feature multiple energy efficiency and renewable energy technologies and are part of the Forest County Potawatomi Community's project...

  12. SUSTAINABILITY, RESOURCE SUBSTITUTION IN ENERGY INPUTS AND LEARNING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SUSTAINABILITY, RESOURCE SUBSTITUTION IN ENERGY INPUTS AND LEARNING Pierre-André JOUVET Ingmar resources (in the sense of non-depletable energy which also includes hydro power, wind energy, solar energy non- renewable fossil fuels and renewable energy resources. As said Andr´e and Cerda (2006), the main

  13. Sandia Energy - Secure and Sustainable Energy Future Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory Fellows JerryPredictive4:Safety, SecuritySecure

  14. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  15. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    technology in China. ” Energy 35: 4445-4450. Xinhua News,photovoltaic market in China. ” Energy Policy 39 (4): 2204-and X. Zhang, 2010, “Nuclear energy development in China: A

  16. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    for electricity. Energy and Emissions Impact of Solar WaterElectricity Production by Solarthermal Power Plants in Spain. ” Journal of Solar EnergySolar Water Heaters, 2010-2030 Share of Displaced Energy for Water Heating LPG Natural Gas Electricity

  17. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    wind and large hydro are the only two energy technologiesWind Energy Association (BWEA), 2005, “BWEA Briefing Sheet: Wind Turbine Technology. ”energy technologies through 2030, particularly for solar, wind,

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    GW Solar Thermal GW Tidal Power GW Other Renewable Energys solar thermal power technology development. ” Energy 35:Energy EROEIs in Existing Literature Value in this study EROEI Concentrated Solar Thermal (

  19. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Expansion Policy Drivers Renewable Energy Law of ChinaThe 2005 Renewable Energy Law of China marked the beginningsin the 2005 Renewable Energy Law, a goal of raising the

  20. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  1. The silver bullet myth of sustainable energy savings

    SciTech Connect (OSTI)

    Pasqualetti, Martin J.; Tabbert, Michael K.; Boscamp, Robert L.

    2010-10-15

    Especially in the U.S., people like to think that solving problems just requires finding the proper ''silver bullet.'' Such fixes are not sustainable. Any utility company wanting sustainable long-term savings in personal energy demand requires a more thorough commitment that might be referred to as ''head'' (education), ''heart'' (motivation), and ''hands'' (action). (author)

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    in overall renewable energy finance and investment, Chinarenewable energy fund set up under the Ministry of Financeenergy law by including a provision that allows the Ministry of Finance

  3. Future Energy Enterprises | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtc JumpInformationFurnas

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Energy Development 73 Table 34. Installed Capacity by Power Generation Technology and Scenario 83 i List

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    energy through ground source heat pumps and conventionalrapid expansion of ground source heat pump installation from

  6. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear,

  7. Renewability and sustainability aspects of nuclear energy

    SciTech Connect (OSTI)

    ?ahin, Sümer

    2014-09-30

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG?PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG?PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG?PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG?PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG?PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG?PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ? 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ? 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG?PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ?160 kg {sup 233}U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ?1.3.

  8. SUSTAINABLE GENERATION AND UTILIZATION OF ENERGY THE CASE OF ICELAND.

    E-Print Network [OSTI]

    Valfells, Ágúst

    ­hydro and geothermal energy. It has been estimated that the total potential energy of all precipitation Director, National Power Company #12;Figure I. Hydro Energy Derived from Precipitation in Iceland/annum of hydro- and geothermal energy may be used for generation of electricity in a sustainable manner

  9. Renewable Energy and the Sustainable Campus Boyd and Dethier

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    1 GEOS 206 Renewable Energy and the Sustainable Campus Boyd and Dethier 5/19/09 "With Grumbling;2 Introduction The importance of energy is rarely far from the American psyche. Gasoline runs our cars, oil heats of energy has severe and costly environmental impacts. In addition, many current sources of energy

  10. Sustaining Performance Improvements in Energy Intensive Industries 

    E-Print Network [OSTI]

    Moore, D. A.

    2005-01-01

    operators. Below the surface, process operators and managers have very different goals for when operating the process. These differences cause significant barriers to sustained performance improvements. The magnitude of performance losses can be orders...

  11. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  12. Sustainable Buildings and Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctober 22,SustainabilitySustainability

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    with the 2010 annual copper demand for alternative energySteel Copper Uranium Fuel Cycle Energy Demand Because therethe cumulative demand of 4.7 Mt copper exceeds the 2009

  14. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    a 2008 meta-review of nuclear LCA studies (Sovacool, 2008).LCA often underestimates total construction energy because nuclearLCA tends to overestimate total construction energy because components for nuclear

  15. Resources for the Future | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformationfor the Future Jump

  16. Powering the Future | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment ofofWednesday, April 29,Powering the Future

  17. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  18. Sustainability at Home: Raising the Bar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    home improvement steps to save as much energy-and money-as you can. But did you know that sustainability at home starts before you move in? It starts with your home's structure....

  19. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  20. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  1. Ris Energy Report 7 Future low carbon energy systems

    E-Print Network [OSTI]

    Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

  2. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory Report NREL/TP-620-38800 October 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden Efficiency and Renewable Energy by Midwest Research Institute · Battelle Contract No. DE-AC36-99-GO10337 #12

  3. Energy Efficiency of Future Networks Energy Efficient Transmission in

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Efficiency of Future Networks Part 1: Energy Efficient Transmission in Classical Wireless #12;Goals Energy Efficiency: What it meant last decade; what it means today From a communication network design perspective what should we care about for energy efficient design of cellular

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Solar Water Heater Geothermal energy Biomass Pellets mil m2 Mtce Mt consumption Biogas and Biomass Gasification Liquid Biofuels Bioethanol Biodiesel mil rural households

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    stage of the cycle. Uranium Mining and Milling China hasissues surrounding uranium mining, the land intensity for40 Table 17. Uranium Ore Mining and Milling Energy Intensity

  6. Dark Energy and Life's Ultimate Future

    E-Print Network [OSTI]

    Ruediger Vaas

    2007-03-19

    The discovery of the present accelerated expansion of space changed everything regarding cosmology and life's ultimate prospects. Both the optimistic scenarios of an ever (but decelerated) expanding universe and of a collapsing universe seem to be no longer available. The final future looks deadly dark. However, the fate of the universe and intelligence depends crucially on the nature of the still mysterious dark energy which drives the accelerated expansion. Depending on its - perhaps time-dependent - equation of state, there is a confusing number of different models now, popularly called Big Rip, Big Whimper, Big Decay, Big Crunch, Big Brunch, Big Splat, etc. This paper briefly reviews possibilities and problems. It also argues that even if our universe is finally doomed, perhaps that doesn't matter ultimately because there might be some kind of eternal recurrence. - Key words: Cosmology, Universe, Dark Energy, Cosmological Constant, Quintessence, Phantom Energy, Inflation, Quantum Gravity, Far Future, Life, Intelligence

  7. GDF Future Energies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co Ltd JumpLatinoEngineering |Future

  8. Probing dark energy with future surveys

    E-Print Network [OSTI]

    Roberto Trotta

    2006-07-21

    I review the observational prospects to constrain the equation of state parameter of dark energy and I discuss the potential of future imaging and redshift surveys. Bayesian model selection is used to address the question of the level of accuracy on the equation of state parameter that is required before explanations alternative to a cosmological constant become very implausible. I discuss results in the prediction space of dark energy models. If no significant departure from w=-1 is detected, a precision on w of order 1% will translate into strong evidence against fluid-like dark energy, while decisive evidence will require a precision of order 10^-3.

  9. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  10. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Vladimir Shiltsev

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  11. Sustainable Energy Capital Partners SECP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDriveEconomiesNewSustainCapital

  12. Sustainable Energy Fund of Central Eastern Pennsylvania | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center of the Rockies

  13. Sustainable Energy Society Southern Africa (SESSA) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center of the RockiesInformation

  14. Systems Approach to Sustainable Energy Organizer: Al George

    E-Print Network [OSTI]

    Walter, M.Todd

    Systems Approach to Sustainable Energy Organizer: Al George October 28, 2009, 12:00 ­ 1:30 PM, Rice of energy than most of the world has had previously. At the same time our traditional fossil fuels to be caused by man's influence on the environment. In order to effect a smooth transition from existing energy

  15. Ph.D. Positions in "ICT for Sustainable Energy Management"

    E-Print Network [OSTI]

    Teschner, Matthias

    -edge applications for energy efficiency. We are developing and evaluating distributed systems for monitoring of complex systems Background in energy management and power systems is considered a plus Interest Ph.D. Positions in "ICT for Sustainable Energy Management" Key words: distributed information

  16. Ris Energy Report 2 Three growing concerns sustainability (particularly in

    E-Print Network [OSTI]

    1 Risø Energy Report 2 Three growing concerns ­ sustainability (particularly in the transport sector), security of energy supply and cli- mate change ­ have combined to increase interest in bioenergy and significant changes in energy markets. We even have a new term, "modern bioenergy", to cover those areas

  17. An Operational Excellence Approach to Sustainable Energy Management 

    E-Print Network [OSTI]

    McMullan, A.

    2009-01-01

    interest wanes when energy prices are lower. With today’s high energy prices and growing interest in reducing CO2 emissions, energy management must become a core business activity and be implemented in a sustainable fashion as an embedded work process...

  18. Renewable Energy & Sustainability Prof. Martin J. (Mike) Pasqualetti

    E-Print Network [OSTI]

    Rhoads, James

    Renewable Energy & Sustainability Prof. Martin J. (Mike) Pasqualetti Professor, School depletion for the next 1000 years (in 100,000 TWh/year) #12;We Have Many Renewable Energy Resources At Our Disposal Reality #4 #12;#12;Renewable Energy is Minor at Present Source: U.S. EIA http://www.eia

  19. Center for Sustainability Hybrid Renewable Energy Systems (HyRES) Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    TODAY Center for Sustainability Hybrid Renewable Energy Systems (HyRES) Laboratory Hydrogen fueling State's Center for Sustainability. www.engr.psu.edu/cfs Current Sponsors U.S. Department of Energy (NREL) National Electrical Contracting Association West Penn Power Sustainable Energy Fund Sustainable Energy Fund

  20. Sustainable Transportation Day | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainable Land Lab Tour Sustainable Land

  1. Sustainable Coal Use | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority SustainX Inc IsothermalSustainable Coal Use

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    s solar thermal power technology development. ” Energy 35:GW Solar Thermal GW Tidal Power GW Other Renewable Energyenergy development will likely remain solar photovoltaic (PV) and concentrated solar thermal

  3. National Nanotechnology Initiative's Signature Initiative Sustainable Nanomanufacturing: Creating the Industries of the Future

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by National Nanotechnology Coordination Office held on June 26, 2012

  4. U.S. Department of Energy High Performance and Sustainable Buildings...

    Energy Savers [EERE]

    High Performance and Sustainable Buildings Implementation Plan U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan Plan outlining DOE's...

  5. Sustainable Building Basics

    Broader source: Energy.gov [DOE]

    Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

  6. Future Communications Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathyEnergydetailsof EnergyStandardFuture

  7. Growing America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial OpportunitiesDepartment of EnergyGrowing America's

  8. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  9. Biofuels: A Look into the Future of Sustainable Transportation Kathryn Abbott, Kyle Becker, Kat Burgoyne, Tara Donohoe

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Biofuels: A Look into the Future of Sustainable Transportation Kathryn Abbott, Kyle Becker, Kat such source that has garnered recent media attention is "biofuel", or any fuel derived from living matter. Although gasoline itself is a biofuel (derived from ancient decayed plant matter), it is becoming clear

  10. Financing Sustainable Urban Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to: navigation, search Tool Summary LAUNCH TOOL

  11. 2012 DOE Sustainability Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks2 DOE Sustainability Awards 2012 DOE

  12. Sustainability Around the House | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctober 22,Sustainability Around the House

  13. Sustainable Federal Fleets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctoberSustainable Federal Fleets Catalog

  14. Future Energy Assets LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado:Georgia: EnergyGeothermal Field

  15. Future Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado:Georgia: EnergyGeothermal

  16. Examining Sustainable Development Policy in California Cities: 2011 Energy Sustainable California Communities Survey

    E-Print Network [OSTI]

    Kwon, Myungjung

    2013-01-01

    2004) “What Makes a Good Sustainable Development Plan? AnPrinciples of Sustainable Development,” Environment and1396. Examining Sustainable Development Policy in California

  17. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS CHAPTER 4: COMPARING FUEL ECONOMIES AND COSTS OF ADVANCED VS. CONVENTIONAL

  18. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS CHAPTER 8: SCENARIOS FOR DEEP REDUCTIONS IN GREENHOUSE GAS EMISSIONS PART 3

  19. Strategic Energy and Sustainability Planning in El Paso, Texas

    Broader source: Energy.gov [DOE]

    Presentation at the January 27, 2010 TAP Webinar by Alexander Dane and Brian Levite of the DOE National Renewable Energy Laboratory on strategic energy planning and sustainability planning, with a case study from the City of El Pasto, Texas. The Webinar was sponsored by the DOE Technical Assistance Project (TAP) for state and local officials under the auspices of the DOE Office of Energy Efficiency and Renewable Energy.

  20. 2 | energy & automotive research laboratory2 | energy & automotive research laboratory Creating Sustainable Energy Solutions

    E-Print Network [OSTI]

    Feeny, Brian

    nergy& utomotive esearch aboratory #12;2 | energy & automotive research laboratory2 | energy & automotive research laboratory Creating Sustainable Energy Solutions on the cover: A prototype cylinder head-third of all the energy used in the country. The critical need to reduce the nation's dependence on oil imports

  1. Sustainability is defined here as non-declining utility over time: future generations should be no worse off than the current generation.

    E-Print Network [OSTI]

    Sustainability is defined here as non-declining utility over time: future generations should; Natural capital; Sustainable development Introduction Global warming is an ideal object of study for ques of sustainability under uncertainty. Its essential features are that current eco- nomic activity has large

  2. Site Sustainability Plan (SSP) 2010 | Department of Energy

    Energy Savers [EERE]

    Site Sustainability Plan (SSP) 2010 Site Sustainability Plan (SSP) 2010 Site Sustainability Plan (SSP) 2010 2010 More Documents & Publications 2015 Site Sustainability Plan Site...

  3. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  4. Energy Security Planning for Sustainable Buildings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capabilities are sufficient to serve their most critical needs during a prolonged outage. Energy Security Assessments For analysis and planning, see Performing Energy Security...

  5. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  6. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  7. 2010 DOE Strategic Sustainability Performance Plan - Report to...

    Office of Environmental Management (EM)

    clean energy economy to secure America's energy future; and Security to reduce nuclear dangers and environmental risks. 2010 DOE Strategic Sustainability Performance Plan -...

  8. The Role Of IC Engines In Future Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of IC Engines In Future Energy Use The Role Of IC Engines In Future Energy Use Reviews future market trends and forecasts, and future engine challenges and research focus...

  9. Coal: the cornerstone of America's energy future

    SciTech Connect (OSTI)

    Beck, R.A. [National Coal Council (United Kingdom)

    2006-06-15

    In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

  10. Sustainability Performance Office News | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore NationalSurprisingSustainability Sign In

  11. Sustainable Housing: Opportunities for improved energy efficient home construction by Habitat for Humanity in Saskatoon, Saskatchewan

    E-Print Network [OSTI]

    Saskatchewan, University of

    Sustainable Housing: Opportunities for improved energy efficient home construction by Habitat of Saskatchewan Saskatoon By Kurtis Trefry Keywords: Sustainable, energy efficient, insulation, Habitat for energy efficient building practices to be more readily adopted by Habitat for Humanity in Saskatoon

  12. Events & Topics in Renewable Energy & the Environment Sustainable Land Lab Tour

    E-Print Network [OSTI]

    Subramanian, Venkat

    Events & Topics in Renewable Energy & the Environment Sustainable Land Lab Tour What. Events & Topics in Renewable Energy & the Environment is sponsored by the Photosynthetic Antenna Research Center (PARC) and I-CARES (International Center for Advanced Renewable Energy and Sustainability

  13. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics

    E-Print Network [OSTI]

    Wang, Zhong L.

    Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable: Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based

  14. Japanese Future Space Programs for High Energy Astrophysics KAZUHISA MITSUDA

    E-Print Network [OSTI]

    Mitsuda, Kazuhisa

    Japanese Future Space Programs for High Energy Astrophysics KAZUHISA MITSUDA Institute of space and astronautical science, Sagamihara 229-8510, Japan ABSTRACT. Japanese future space programs for high energy the Japanese future space high energy astrophysics missions in 2000's and early 2010's. The approved

  15. MACHINE DESIGN CONSIDERATIONS FOR THE FUTURE ENERGY CHALLENGE

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    MACHINE DESIGN CONSIDERATIONS FOR THE FUTURE ENERGY CHALLENGE Jonathan W. Kimball and Marco Amrhein. As part of the International Future Energy Challenge, student teams are endeavoring to improve the effi and finite- element results are shown. I. INTRODUCriON The International Future Energy Challenge (FEC

  16. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product

  17. The Quest for Sustainable Energy Renewable fuel is at the heart of

    E-Print Network [OSTI]

    The Quest for Sustainable Energy Renewable fuel is at the heart of Government energy policy be cheaper than other fuels The Quest for Sustainable Energy Renewable fuel is at the heart of Government renewable energy targets. · Woodfuel businesses create and sustain rural jobs. Woodfuel technology is energy

  18. Energy Sustainability: Role of Makerere University inRole of Makerere University in

    E-Print Network [OSTI]

    Huang, Xun

    Energy Sustainability: Role of Makerere University inRole of Makerere University in Facing a eas · More information: http://mak.ac.ug; www.cit.mak.ac.ug #12;Sustainability of Energy in UgandaSustainability of Energy in Uganda · Research at CIT· Research at CIT · Energy challenges in Uganda: prices of energy

  19. A Blueprint for Urban Sustainability: Integrating Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004 A Blueprint for Urban Sustainability: Integrating Sustainable...

  20. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends and Future Outlook Nan Zhou, Michael A.2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , Washington