Powered by Deep Web Technologies
Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Property:Number of Plants included in Capacity Estimate | Open...  

Open Energy Info (EERE)

of Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

2

Combined power plants -- Past, present, and future  

Science Conference Proceedings (OSTI)

The early history of combined power plants is described, together with the birth of the CCGT plant (the combined cycle gas turbine). Sustained CCGT development in the 1970s and 1980s, based on sound thermodynamic considerations, is outlined. Finally more recent developments and future prospects for the combined gas turbine/steam turbine combined plant are discussed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1995-10-01T23:59:59.000Z

3

Wind Plant Cost of Energy: Past and Future (Presentation)  

SciTech Connect

This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

Hand, M.

2013-03-01T23:59:59.000Z

4

1) What are the current and future communications needs of utilities, including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(1) What are the current and future communications needs of utilities, including for the (1) What are the current and future communications needs of utilities, including for the deployment of new Smart Grid applications, and how are these needs being met? The current communication needs of SCE include: telephony, data, video, voice dispatch, mobile data, grid monitoring, grid control, tele-protection, customer communication, load management, automated meter reading, and collaboration capabilities ranging from virtual meetings to e-learning. SCE is using a combination of private, leased, and shared telecommunication networks to support these requirements. Those applications that require high availability, low latency, and stringent security rely on a private telecommunications network (SCEnet). A combination of transport media are

5

Brighter Future for Kentucky Manufacturing Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants May 28, 2010 - 3:04pm Addthis Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Stephen Graff Former Writer & editor for Energy Empowers, EERE Consider This: Saving $90,000 a year by curbing energy use is about equal to the salaries of three operators at a typical manufacturing plant in the Bluegrass State, according to wages listed from the U.S. Bureau of Labor

6

AVESTAR Center for clean energy plant operators of the future  

Science Conference Proceedings (OSTI)

Clean energy plants in the modern grid era will increasingly exploit carbon capture, utilization, and storage (CCUS), fuel/product flexibility, and load following. Integrated power/process plants will require next generation of well-trained engineering and operations professionals. High-fidelity dynamic simulators are well suited for training, education, and R&D on clean energy plant operations. Combining Operator Training System (OTS) with 3D virtual Immersive Training System (ITS) enables simultaneous training of control room and plant field operators of the future. Strong collaboration between industry, academia, and government is required to address advanced R&D challenges. AVESTAR Center brings together simulation technology and world-class expertise focused on accelerating development of clean energy plants and operators of the future.

Zitney, S.

2012-01-01T23:59:59.000Z

7

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network (OSTI)

2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

8

Property:Number of Plants Included in Planned Estimate | Open Energy  

Open Energy Info (EERE)

Plants Included in Planned Estimate Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of plants included in the estimate of planned capacity per GEA Pages using the property "Number of Plants Included in Planned Estimate" Showing 21 pages using this property. A Alaska Geothermal Region + 3 + C Cascades Geothermal Region + 1 + Central Nevada Seismic Zone Geothermal Region + 4 + G Gulf of California Rift Zone Geothermal Region + 7 + H Hawaii Geothermal Region + 1 + Holocene Magmatic Geothermal Region + 4 + I Idaho Batholith Geothermal Region + 1 + N Northern Basin and Range Geothermal Region + 9 + Northern Rockies Geothermal Region + 0 + Northwest Basin and Range Geothermal Region + 6 +

9

Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

O' Connell, J. Michael

2002-01-01T23:59:59.000Z

10

Personnel Safety for Future Magnetic Fusion Power Plants  

Science Conference Proceedings (OSTI)

The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical exposure value is ~1000 times the Earth’s magnetic field, but the Earth’s field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.

Lee Cadwallader

2009-07-01T23:59:59.000Z

11

Options for Removing Multiple Pollutants Including CO2 at Existing Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This report is a technical review of the fuel changes and technology options for existing coal-fired power plants in response to potential new requirements for increasingly stringent multi-pollutant air emissions reductions, possibly including carbon dioxide (CO2). Preliminary costing of the major options is included. A database of the U.S. coal-fired power plants has been developed for further, more specific analyses.

2002-10-08T23:59:59.000Z

12

Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report  

Science Conference Proceedings (OSTI)

OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

NONE

2000-08-01T23:59:59.000Z

13

Nuclear Power Plant NDE Challenges — Past, Present, and Future  

Science Conference Proceedings (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship

S. R. Doctor

2007-01-01T23:59:59.000Z

14

DOE Science Showcase - Energy Plants of the Future | OSTI, US...  

Office of Scientific and Technical Information (OSTI)

DOE Press Release DOE-Sponsored IGCC Project in Texas Takes Important Step Forward, Fossil Energy Techline Gasification Technology R&D How Coal Gasification Power Plants Work...

15

Future Carbon Regulations and Current Investments in Alternative Coal-Fired Power Plant Designs  

E-Print Network (OSTI)

This paper assesses the role of uncertainty over future U.S. carbon regulations in shaping the current choice of which type of power plant to build. The pulverized coal technology (PC) still offer the lowest cost power— ...

Sekar, Ram C.

16

Microgrids, virtual power plants and our distributed energy future  

Science Conference Proceedings (OSTI)

Opportunities for VPPs and microgrids will only increase dramatically with time, as the traditional system of building larger and larger centralized and polluting power plants by utilities charging a regulated rate of return fades. The key questions are: how soon will these new business models thrive - and who will be in the driver's seat? (author)

Asmus, Peter

2010-12-15T23:59:59.000Z

17

The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant  

SciTech Connect

The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

Kolb, G.J.

1991-01-01T23:59:59.000Z

18

The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant  

DOE Green Energy (OSTI)

The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

Kolb, G.J.

1991-01-01T23:59:59.000Z

19

Selection of power plant elements for future space electric power systems  

SciTech Connect

A study on the type of nuclear reactor power plants that should be developed for future space missions is described. After careful consideration of power plant configuration weights, sizes, reliabilities, safety, development cost and time, the configuration selected to be pursued was a heat-pipe reactor design with thermoelectric converters and heat-pipe radiator.

Buden, D.

1979-01-01T23:59:59.000Z

20

Selection of power plant elements for future reactor space electric power systems  

DOE Green Energy (OSTI)

Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected.

Buden, D.; Bennett, G.A.; Copper, K.

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE Science Showcase - Energy Plants of the Future | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Energy Plants of the Future DOE Science Showcase - Energy Plants of the Future Advanced Integrated Gasification Combined Cycle Power Plants Advanced IGCC is a flexible technology for generating low-cost electricity while meeting all future environment requirements Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC Technology DOE Press Release DOE-Sponsored IGCC Project in Texas Takes Important Step Forward, Fossil Energy Techline Gasification Technology R&D How Coal Gasification Power Plants Work 2010 Worldwide Gasification Database Follow NETL Gasification IGCC Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services

22

Plant Sciences for a Sustainable Future An Interdepartmental Graduate Program in Plant Sciences  

E-Print Network (OSTI)

an understanding of the biological processes that govern plant carbon sequestration, vegetation dynamics, and exchanges of carbon, water, and energy between the biosphere and atmosphere. Achieving a multilayered

23

Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

2002-11-30T23:59:59.000Z

24

Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

Ritterbusch, S.E.

2000-08-01T23:59:59.000Z

25

Include in Column B cost of all composition produced by plant. Include in Column C cost of all operations not involving printing (Col. A)  

E-Print Network (OSTI)

occupied (whether Government-owned or rented), utilities, etc. (14.5 cents per month per square foot. Amount spent for rental of equipment Total cost (Use col.A total from this line to compute cost per 1 units produced in plant this fiscal quarter Total units produced in plant this fiscal year Cost per 1

US Army Corps of Engineers

26

Nuclear Maintenance Applications Center: Motor Management Guide Supporting Plant License Renewal Including Environmental Qualification Considerations  

Science Conference Proceedings (OSTI)

This report was developed by the Electric Power Research Institute’s Large Electric Motor Users Group Information Working Group, which includes motor engineers, motor specialist consultants, and vendors. Environmental qualification (EQ) program owners were also involved in the development of this report. This report addresses the most important elements of a sound motor management program to support an informed decision on motor preservation and motor life extension. Motor life extensions of ...

2013-06-07T23:59:59.000Z

27

DISPOSAL OF TRU WASTE FROM THE PLUTONIUM FINISHING PLANT IN PIPE OVERPACK CONTAINERS TO WIPP INCLUDING NEW SECURITY REQUIREMENTS  

Science Conference Proceedings (OSTI)

The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site or, a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, Hanford incinerator ash and Sand, Slag and Crucible (SS&C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP.

Hopkins, A.M.; Sutter, C.; Hulse, G.; Teal, J.

2003-02-27T23:59:59.000Z

28

Ris Energy Report 5 Technical challenges to energy systems' operation and markets 55 A future energy system that includes a high propor-  

E-Print Network (OSTI)

become an issue, as the areas with good potential for wind power and wave energy are often located some of wind power plants Large wind farms such as the 160 MW Horns Rev and the 165 MW Nysted offshore wind to conventional power plant blocks. To obtain the maximum benefit from an overall power system, wind power should

29

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network (OSTI)

economics of the combined cycle gas turbine—an experiencePC) and natural gas combined cycle (NGCC) plants with post-integrated gasi?cation combined cycle (IGCC) plants with

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

30

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network (OSTI)

boiler; Pittsburgh #8 coal; price = 1.0 $/GJ. f IGCC plant =7FA gas turbines; Pgh #8 coal; price = 1.0 $/GJ. g Oxyfuelboiler; Pittsburgh #8 coal; price = 1.0 $/GJ. Other

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

31

ASSESSING CHEMICAL HAZARDS AT THE PLUTONIUM FINISHING PLANT (PFP) FOR PLANNING FUTURE D&D  

Science Conference Proceedings (OSTI)

This paper documents the fiscal year (FY) 2006 assessment to evaluate potential chemical and radiological hazards associated with vessels and piping in the former plutonium process areas at Hanford's Plutonium Finishing Plant (PFP). Evaluations by PFP engineers as design authorities for specific systems and other subject-matter experts were conducted to identify the chemical hazards associated with transitioning the process areas for the long-term layup of PFP before its eventual final decontamination and decommissioning (D and D). D and D activities in the main process facilities were suspended in September 2005 for a period of between 5 and 10 years. A previous assessment conducted in FY 2003 found that certain activities to mitigate chemical hazards could be deferred safely until the D and D of PFP, which had been scheduled to result in a slab-on-grade condition by 2009. As a result of necessary planning changes, however, D and D activities at PFP will be delayed until after the 2009 time frame. Given the extended project and plant life, it was determined that a review of the plant chemical hazards should be conducted. This review to determine the extended life impact of chemicals is called the ''Plutonium Finishing Plant Chemical Hazards Assessment, FY 2006''. This FY 2006 assessment addresses potential chemical and radiological hazard areas identified by facility personnel and subject-matter experts who reevaluated all the chemical systems (items) from the FY 2003 assessment. This paper provides the results of the FY 2006 chemical hazards assessment and describes the methodology used to assign a hazard ranking to the items reviewed.

HOPKINS, A.M.; KLOS, D.B.; MINETT, M.J.

2007-01-25T23:59:59.000Z

32

Striving Toward Energy Sustainability: How Plants Will Play a Role in Our Future (453rd Brookhaven Lecture)  

DOE Green Energy (OSTI)

Edible biomass includes sugars from sugar cane or sugar beets, starches from corn kernels or other grains, and vegetable oils. The fibrous, woody and generally inedible portions of plants contain cellulose, hemicellulose and lignin, three key cell-wall components that make up roughly 70 percent of total plant biomass. At present, starch can readily be degraded from corn grain into glucose sugar, which is then fermented into ethanol, and an acre of corn can yield roughly 400 gallons of ethanol. In tapping into the food supply to solve the energy crisis, however, corn and other crops have become more expensive as food. One solution lies in breaking down other structural tissues of plants, including the stalks and leaves of corn, grasses and trees. However, the complex carbohydrates in cellulose-containing biomass are more difficult to break down and convert to ethanol. So researchers are trying to engineer plants having optimal sugars for maximizing fuel yield. This is a challenge because only a handful of enzymes associated with the more than 1,000 genes responsible for cell-wall synthesis have had their roles in controlling plant metabolism defined. As Richard Ferrieri, Ph.D., a leader of a biofuel research initiative within the Medical Department, will discuss during the 453rd Brookhaven Lecture, he and his colleagues use short-lived radioisotopes, positron emission tomography and biomarkers that they have developed to perform non-invasive, real time imaging of whole plants. He will explain how the resulting metabolic flux analysis gives insight into engineering plant metabolism further.

Ferrieri, Richard A. (Ph.D., Medical Department)

2009-10-28T23:59:59.000Z

33

J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Alternative Fusion Reactors as Future Commercial Power Plants  

E-Print Network (OSTI)

Alternative reactor based on a field-reversed configuration (FRC) has advantages of the cylindrical geometry, the open field line geometry (direct energy conversion (DEC) of the charged-particle flow), and high ? (plasma pressure/magnetic-field pressure). This paper aims to evaluate the attractiveness of a low radioactive FRC fusion core. Analysis of a conceptual deuterium- helium-3 (D- 3 He) fusion power reactor is presented and reference point is defined. Principal parameters of the D- 3 He plasma reference case (RC) and comparison with conceptual D- 3 He tokamak and FRC power plants are shown.

Sergei V. Ryzhkov

2008-01-01T23:59:59.000Z

34

Impacts of meteorology-driven seed dispersal on plant migration : implications for future vegetation structure under changing climates  

E-Print Network (OSTI)

As the impacts among land cover change, future climates and ecosystems are expected to be substantial (e.g., Feddema et al., 2005), there are growing needs for improving the capability of simulating the dynamics of vegetation ...

Lee, Eunjee

2011-01-01T23:59:59.000Z

35

Review of nuclear power plant safety cable aging studies with recommendations for improved approaches and for future work.  

Science Conference Proceedings (OSTI)

Many U. S. nuclear power plants are approaching 40 years of age and there is a desire to extend their life for up to 100 total years. Safety-related cables were originally qualified for nuclear power plant applications based on IEEE Standards that were published in 1974. The qualifications involved procedures to simulate 40 years of life under ambient power plant aging conditions followed by simulated loss of coolant accident (LOCA). Over the past 35 years or so, substantial efforts were devoted to determining whether the aging assumptions allowed by the original IEEE Standards could be improved upon. These studies led to better accelerated aging methods so that more confident 40-year lifetime predictions became available. Since there is now a desire to potentially extend the life of nuclear power plants way beyond the original 40 year life, there is an interest in reviewing and critiquing the current state-of-the-art in simulating cable aging. These are two of the goals of this report where the discussion is concentrated on the progress made over the past 15 years or so and highlights the most thorough and careful published studies. An additional goal of the report is to suggest work that might prove helpful in answering some of the questions and dealing with some of the issues that still remain with respect to simulating the aging and predicting the lifetimes of safety-related cable materials.

Gillen, Kenneth Todd; Bernstein, Robert

2010-11-01T23:59:59.000Z

36

`Capture ready' regulation of fossil fuel power plants Betting the UK's carbon emissions on promises of future technology  

E-Print Network (OSTI)

preparation. In contrast, the Combined Heat and Power (CHP) plant in Seal Sands licensed in 2008 has not been CCGT Centrica Yes 05/02/09 Pembroke, South West Wales CCGT RWE npower Yes 28/08/08 Seal Sands, Teesside-leakage to boiler Design air ducts and fans for re-use for flue gas recycle FGD design that copes with different gas

Haszeldine, Stuart

37

The future of nuclear power  

SciTech Connect

Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs. (DWL)

Zeile, H.J.

1987-01-01T23:59:59.000Z

38

Environmental impacts of nonfusion power systems. [Data on environmental effects of all power sources that may be competitive with fusion reactor power plants  

DOE Green Energy (OSTI)

Data were collected on the environmental effects of power sources that may be competitive with future fusion reactor power plants. Data are included on nuclear power plants using HTGR, LMBR, GCFR, LMFBR, and molten salt reactors; fossil-fuel electric power plants; geothermal power plants; solar energy power plants, including satellite-based solar systems; wind energy power plants; ocean thermal gradient power plants; tidal energy power plants; and power plants using hydrogen and other synthetic fuels as energy sources.

Brouns, R.J.

1976-09-01T23:59:59.000Z

39

FutureGen Project Launched | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Project Launched FutureGen Project Launched FutureGen Project Launched December 6, 2005 - 4:29pm Addthis Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman today announced that the Department of Energy has signed an agreement with the FutureGen Industrial Alliance to build FutureGen, a prototype of the fossil-fueled power plant of the future. The nearly $1 billion government-industry project will produce electricity and hydrogen with zero-emissions, including carbon dioxide, a greenhouse gas. The initiative is a response to President Bush's directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. Today's announcement marks the official

40

FutureGen_factsheet.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gasification plant and the receiving geologic formation. Sequester at least 90 percent of CO2 emissions from the plant with the future potential to capture and sequester nearly 100...

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. Department of Energy Roadmap on Instrumentation, Controls, and Human-Machine Interface Technologies in Current and Future Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) recently sponsored the creation of a roadmap for instrumentation, controls, and human-machine interface (ICHMI) technology development. The roadmap represents the collective efforts of a group of subject matter experts from the DOE national laboratories, academia, vendors, the U.S. Nuclear Regulatory Commission (NRC), and utilities. It is intended to provide the underpinnings to the government sponsored ICHMI research, development, and demonstration (RD&D) performed in the United States for the next several years. A distinguishing feature of this roadmapping effort is that it is not limited to a technology progression plan but includes a detailed rationale, aimed at the nonspecialist, for the existence of a focused ICHMI RD&D program. Eight specific technology areas were identified for focused RD&D as follows: (1) sensors and electronics for harsh environments,(2) uncertainty characterization for diagnostics/prognostics applications, (3) quantification of software quality for high-integrity digital applications, (4) intelligent controls for nearly autonomous operation of advanced nuclear plants, (5) plant network architecture, (6) intelligent aiding technology for operational support, (7) human system interaction models and analysis tools, and (8) licensing and regulatory challenges and solutions.

Holcomb, David Eugene [ORNL

2007-01-01T23:59:59.000Z

42

Future fuels from Montana  

SciTech Connect

To make America less dependent on foreign oil, Montana Governor Brain Schweitzer pushes for investment in synfuel technology. He advocates coal as the 'new fuel' for cars and believes synfuels from coal can bridge the gap between the petroleum economy of the past and the hydrogen economy of the future. He is pushing for a 'Future Fuels' project to form a public-private partnership to build 20 coal conversion, synfuel manufacturing plants. This could contribute to making the USA energy self-sufficient, more quickly than the FutureGen project, he believes.

Buchsbaum, L.

2006-04-15T23:59:59.000Z

43

Electric power monthly, September 1990. [Glossary included  

SciTech Connect

The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

1990-12-17T23:59:59.000Z

44

NETL: News Release - FutureGen Project Launched  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 FutureGen Project Launched Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced...

45

DOE Announces Restructured FutureGen Approach to Demonstrate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple...

46

Economics of Current and Future Biofuels  

Science Conference Proceedings (OSTI)

This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

Tao, L.; Aden, A.

2009-06-01T23:59:59.000Z

47

T Plant Cell Investigation  

Science Conference Proceedings (OSTI)

The Waste Management Project within Fluor Hanford performed an initial investigation of the current and historical contents of 221-T (T Plant Canyon) process cells. This Phase I report is intended to be followed by a final, more detailed, Phase II report. This information has been gathered in order to help reduce uncertainties and future surprises regarding cell contents during future work in and around T Plant process cells. The information was obtained from available documentation and was compiled into a database that is included in the report. Resolution of any apparently conflicting information was not a part of the Phase I effort. No information has been found to date that would indicate there could be a significant unexpected hazard in any of the process cells.

HLADEK, K.L.

2001-09-20T23:59:59.000Z

48

Future Healthcare  

E-Print Network (OSTI)

Patients want answers, not numbers. Evidence-based medicine must have numbers to generate answers. Therefore, analysis of numbers to provide answers is the Holy Grail of healthcare professionals and its future systems. ...

Datta, Shoumen

2010-12-15T23:59:59.000Z

49

Future tense  

Science Conference Proceedings (OSTI)

Future Tense, one of the revolving features on this page, presents stories and essays from the intersection of computational science and technological speculation, their boundaries limited only by our ability to imagine what will and could be.

Rudy Rucker

2011-07-01T23:59:59.000Z

50

Future QAs  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA is issuing two synopses. One is a "Notice of Intent" synopsis regarding the Kansas City Plant contract extension, and the other is a sources sought, seeking expressions of...

51

Future land use plan  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

NONE

1995-08-31T23:59:59.000Z

52

Productivity Improvement for Fossil Steam Power Plants, 2009  

Science Conference Proceedings (OSTI)

This report assembles case studies on productivity improvement taken from the webside of Productivity Improvement Expert Reviews (PIER) on subjects spanning the power plant from the boiler to the steam turbine, and including the plant auxiliaries and the environmental control equipment. These studies have been critically assessed by technical experts who have discussed the improvements with the power plant staff and judged their potential for future use in the fossil industry. This 2009 report also looks...

2010-01-15T23:59:59.000Z

53

Operator Certification Standards for Fossil Fuel Fired Plants: Survey of State and Regional Requirements  

Science Conference Proceedings (OSTI)

The Environmental Protection Agency has only started addressing the issue of certification for fossil fuel power plant operators within the last two years. This report, which includes data collected from research of state and local authorities that currently require power plant operators to be certified or licensed, is the first phase of a certification program for Fossil Fuel Fired Power Plants. The report also addresses the possible future shortage of skilled workers needed by the power plants and the ...

1999-12-16T23:59:59.000Z

54

Future power supply  

Science Conference Proceedings (OSTI)

This article is a review of the U.S. needs for new generating capacity during the next decade. Considering regulatory and technical issues and assuming a modest annual load growth of 1.9%, it is anticipated that there will be a 90 GWe deficit by the year 2000. Likely sources to provide this additional capacity are reviewed, and it is concluded that most new plants will be gas-fired simple-cycle combustion turbines. This will occur mainly because the country has excess baseload capacity and needs to add a considerable amount of peaking capacity to bring the generation mix into balance. It is also concluded that fossil-fueled plants will provide the country`s baseload for the foreseeable future.

Campbell, N.A.; Harris, K. [Burns & McDonnell Engineering Co., Kansas City, MO (United States)

1993-03-01T23:59:59.000Z

55

Genomic Aspects of Research Involving Polyploid Plants  

Science Conference Proceedings (OSTI)

Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

2011-01-01T23:59:59.000Z

56

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

57

Biogas - future fuel for power plants  

Science Conference Proceedings (OSTI)

Current fuel cells mix natural gas with steam to release hydrogen, which enters the fuel cell and combines with oxygen in the air. This formation of water is a chemical reaction which releases energy and heat. SMUD already has two 200 kw fuel cells in operation. SMUD`s desire to use alternative and renewable fuel sources is prompting research into using biogas as a cogenerator.

NONE

1994-08-01T23:59:59.000Z

58

Don Cook talks about future of Pantex mission | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Defense Programs, last week spoke to Pantexans about the future mission of Pantex and the critical role the plant will play in maintaining the nation's stockpile for...

59

FutureGen: Pathway to Near-Zero Emissions and Sustainable Energy  

DOE Green Energy (OSTI)

This presentation will highlight the U.S. Department of Energy’s (DOE) FutureGen project ? a $1 billion government-industry partnership to design, build, and operate a near-zero emissions coal-fueled power plant. The lead organization for the FutureGen initiative is the National Energy Technology Laboratory (NETL), a multi-purpose laboratory operated by the U.S. DOE’s Office of Fossil Energy. NETL has a mission to conduct R&D from fundamental science to technology demonstration for resolving the environmental, supply, and reliability constraints of producing and using fossil energy resources. The commercial-scale FutureGen R&D facility is a pathway toward future fossil-energy power plants that will produce hydrogen and electricity while nearly eliminating emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. Low carbon emissions would be achieved by integrating CO2 capture and sequestration operations with the power plant.

Zitney, S.E.; Sarkus, T.A

2007-11-04T23:59:59.000Z

60

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

Energy futures markets are ‘hubs’ that price and marketenergy price fluctuations. In theory, futures market pricesenergy prices, including most prominently, energy futures markets.

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FutureGen_factsheet.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vision Vision for Tomorrow's Clean Energy FutureGen - A Sequestration and Hydrogen Research Initiative Responding to the President's Initiatives The Technology The Integrated Sequestration and Hydrogen Research Initiative is a $1 billion government/ industry partnership to design, build and operate a nearly emission-free, coal-fired electric and hydrogen production plant. The 275-megawatt prototype plant will serve as a large scale engineering laboratory for testing new clean power, carbon capture, and coal-to-hydrogen technologies. It will be the cleanest fossil fuel-fired power plant in the world. The project is a direct response to the President's Climate Change and Hydrogen Fuels Initiatives. President Bush emphasized the importance of technology in stabilizing greenhouse gas concentrations in the atmosphere with two major policy announcements: the National Climate

62

FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation  

SciTech Connect

This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

Zitney, S.E.

2006-11-01T23:59:59.000Z

63

Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants (Cooperative Agreement DE-FC03-99SF21902, Am. M004) Final Technical Report  

SciTech Connect

OAK-B135 Research under this project addresses the barriers to long term use of nuclear-generated electricity in the United States. It was agreed that a very basic and significant change to the current method of design and regulation was needed. That is, it was believed that the cost reduction goal could not be met by fixing the current system (i.e., an evolutionary approach) and a new, more advanced approach for this project would be needed. It is believed that a completely new design and regulatory process would have to be developed--a ''clean sheet of paper'' approach. This new approach would start with risk-based methods, would establish probabilistic design criteria, and would implement defense-in-depth only when necessary (1) to meet public policy issues (e.g., use of a containment building no matter how low the probability of a large release is) and (2) to address uncertainties in probabilistic methods and equipment performance. This new approach is significantly different from the Nuclear Regulatory Commission's (NRC) current risk-informed program for operating plants. For our new approach, risk-based methods are the primary means for assuring plant safety, whereas in the NRC's current approach, defense-in-depth remains the primary means of assuring safety. The primary accomplishments in the first year--Phase 1 were (1) the establishment of a new, highly risk-informed design and regulatory framework, (2) the establishment of the preliminary version of the new, highly risk-informed design process, (3) core damage frequency predictions showing that, based on new, lower pipe rupture probabilities, the design of the emergency core cooling system equipment can be simplified without reducing plant safety, and (4) the initial development of methods for including uncertainties in a new integrated structures-systems design model. Under the new regulatory framework, options for the use of ''design basis accidents'' were evaluated. It is expected that design basis accidents would be an inherent part of the Probabilistic Safety Assessment for the plant and their evaluation would be probabilistic. Other first year accomplishments include (1) the conversion of an NRC database for cross-referencing NRC criteria and industry codes and standards to Microsoft 2000 software, (2) an assessment of the NRC's hearing process which concluded that the normal cross-examination during public hearings is not actually required by the U.S. Administrative Procedures Act, (3) the identification and listing of reliability data sources, and (4) interfacing with other industry groups (e.g., NEI and IAEA) and NRC at workshops for risk-informing regulations. The major accomplishments during the second year consisted of (1) issuance of the final report for Subtask 1.1, ''Identify Current Applicable Regulatory Requirements [and Industry Standards],'' (2) issuance of the final report for Subtask 1.2,'' Identify Structures, Systems, and Components and Their Associate d Costs for a Typical Plant,'' (3) extension of the new, highly risk-informed design and regulatory framework to non-light-water-reactor technology, (4) completion of more detailed thermal-hydraulic and probabilistic analyses of advanced conceptual reactor system/component designs, (6) initial evaluation and recommendations for improvement of the NRC design review process, and (7) initial development of the software format, procedures and statistical routines needed to store, analyze and retrieve the available reliability data. Final reports for Subtasks 1.1 (regulatory and design criteria) and 1.2 (costs for structures, systems, and components) were prepared and issued. A final report for Subtask 1.3 (Regulatory Framework) was drafted with the aim to issue it in Phase 3 (Year 3). One technical report was produced for Subtask 1.4 (methods development) and two technical reports were produced for Subtask 1.6 (sample problem analysis). An interim report on the NRC design review process (Subtask 1.7) was prepared and issued. Finally, a report on Subtask 2.2 (database weaknesses) addressed the i

Stanley E. Ritterbusch, et. al.

2003-01-29T23:59:59.000Z

64

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

65

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

66

Renewable electricity generation in California includes variable ...  

U.S. Energy Information Administration (EIA)

Have a question, comment, or suggestion for a future article? Send your feedback to todayinenergy@eia.gov

67

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

68

Bog Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

69

Options for Kentucky's Energy Future  

Science Conference Proceedings (OSTI)

Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

Larry Demick

2012-11-01T23:59:59.000Z

70

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

71

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

72

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

73

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

74

Future Electronics in CNST  

Science Conference Proceedings (OSTI)

... Electronic Transport in Nanoscale Organic/Inorganic Devices. ... for graphene, nanophotonic, nanoplasmonic, spintronic, and other future electronics. ...

2013-05-02T23:59:59.000Z

75

2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009  

Science Conference Proceedings (OSTI)

The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

Kent D. Chapman

2009-02-06T23:59:59.000Z

76

Gasification CFD Modeling for Advanced Power Plant Simulations  

Science Conference Proceedings (OSTI)

In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

Zitney, S.E.; Guenther, C.P.

2005-09-01T23:59:59.000Z

77

10 MWe Solar Thermal Central Receiver Pilot Plant maintenance experience, January 1982-March 1983  

DOE Green Energy (OSTI)

This report presents a description of the maintenance experience at the 10 MWe Solar Thermal Central Receiver Pilot Plant near Barstow, California, during the period January 1982 through March 1983. The plant systems are briefly described, and statistical data on maintenance orders, labor requirements, and maintenance costs are presented. The data presented have been extracted from Southern California Edison historical maintenance records accumulated at the plant. Pilot plant systems requiring the most maintenance activity are identified so that efforts to reduce plant maintenance costs can be properly identified. The information is analyzed for the purpose of developing a data base for general use during the economic assessment, design, and staff planning of future solar central receiver plants. However, data presented here from the Pilot Plant should not be used for direct scaling of larger power production plants. The number and size of equipment items for larger plants will not scale, the designs will vary, and the Pilot Plant includes special testing and evaluation equipment which would not be necessary in plants built for the sole purpose of power production. Data taken at the Pilot Plant during the early plant startup and operational phase shows an annual maintenance cost of approximately one perent of the recurring plant capital cost. Similar costs for recent technology steam electric generating plants are estimated to range from 1.5 to 3%. The Pilot Plant maintenance cost will not appear as favorable if based on energy produced during power production due to the small plant size and equipment intensive nature of the plant. The solar-unique systems of the plant required 45% of the total plant maintenance labor and 39% of the total maintenance cost, both percentages being lower than anticipated.

Smith, J.W.

1985-05-01T23:59:59.000Z

78

HVDC transmission: a path to the future?  

Science Conference Proceedings (OSTI)

Direct current transmission has been the poor stepchild of the U.S. electric industry. Although early-generation plants were based on DC technology, it was soon deemed uneconomical to transmit electricity over long distances, but it now appears poised for a change. Both the increasing technical potential and changing economics of HVDC lines promise a growing role in the future. (author)

Teichler, Stephen L.; Levitine, Ilia

2010-05-15T23:59:59.000Z

79

Nuclear Maintenance Applications Center: Passive Component Maintenance Guide for Nuclear Power Plant Personnel  

Science Conference Proceedings (OSTI)

The information contained in this report represents a significant collection of technical and human performance information, including techniques and good practices, related to the design, maintenance, and operation of passive components common at most domestic nuclear power plants. Assemblage of this information provides a single point of reference for plant engineering and maintenance personnel, both in the present and in the future. Through the use of this guideline, in close conjunction with the indu...

2011-11-16T23:59:59.000Z

80

Transportation Energy Futures  

E-Print Network (OSTI)

a combination of power plants using coal, natural gas, oil,natural gas Electric vehicles/current power /nix Gasoline and diesel/crude oil Electric vehicles/new coal plant

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fueling the Future with Fungal Genomics  

SciTech Connect

Fungi play important roles across the range of current and future biofuel production processes. From crop/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes and improve them to make bioenergy production efficient on an industrial scale. Genomics is the foundation of the systems biology approach that is being used to accelerate the research and development efforts across the spectrum of topic areas that impact biofuels production. In this review, we discuss past, current and future advances made possible by genomic analyses of the fungi that impact plant/feedstock health, degradation of lignocellulosic biomass and fermentation of sugars to ethanol, hydrocarbon biofuels and renewable chemicals.

Grigoriev, Igor V.; Cullen, Daniel; Hibbett, David; Goodwin, Stephen B.; Jeffries, Thomas W.; Kubicek, Christian P.; Kuske, Cheryl; Magnuson, Jon K.; Martin, Francis; Spatafora, Joey; Tsang, Adrian; Baker, Scott E.

2011-04-29T23:59:59.000Z

82

Fueling the future with fungal genomics  

E-Print Network (OSTI)

Fungi play important roles across the range of current and future biofuel production processes. From crop/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols, or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes and improve them to make bioenergy production efficient on an industrial scale. Genomics is the foundation of the systems biology approach that is being used to accelerate the research and development efforts across the spectrum of topic areas that impact biofuels production. In this review, we discuss past, current, and future advances made possible by genomic analyses of the fungi that impact plant/feedstock health, degradation of lignocellulosic biomass, and fermentation of sugars to ethanol, hydrocarbon biofuels, and renewable chemicals.

Igor V. Grigoriev A; Daniel Cullen B; Stephen B. Goodwin C; David Hibbett D; Thomas W. Jeffries B; Christian P. Kubicek E; Cheryl Kuske F; Jon K. Magnuson G; Francis Martin H; Joseph W. Spatafora I; Adrian Tsang J; Scott E. Baker A

2011-01-01T23:59:59.000Z

83

NEWS & EVENTS: 1. Creating the Future We Want --paper is included as PDF link  

E-Print Network (OSTI)

challenges, we believe that a combination of science and innovation, effective governance, and public-private

Grzybowski, Bartosz A.

84

A Simulated Future Atmospheric Observation Database Including ATOVS, ASCAT, and DWL  

Science Conference Proceedings (OSTI)

A database for study of the impact of Doppler wind lidar data on numerical weather prediction in Observation System Simulation Experiments was created. Five Doppler wind lidar scenarios, TIROS Operational Vertical Sounder, Advanced TIROS ...

Bernd Dieter Becker; Hervé Roquet; Ad Stoffelen

1996-10-01T23:59:59.000Z

85

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

Not Available

1993-04-01T23:59:59.000Z

86

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Power Demand Options in Regions of Water Stress and Future Carbon Management Sandia National Laboratories (SNL) is conducting a regional modeling assessment of non-traditional water sources for use in thermoelectric power plants. The assessment includes the development of a model to characterize water quantity and quality from several sources of non-traditional water, initially focused within the Southeastern United States. The project includes four primary tasks: (1) identify water sources, needs, and treatment options; (2) assess and model non-traditional water quantity and quality; (3) identify and characterize water treatment options including an assessment of cost; and (4) develop a framework of metrics, processes, and modeling aspects that can be applied to other regions of the United States.

87

Weekly NYMEX Coal Futures  

Reports and Publications (EIA)

The New York Mercantile Exchange (NYMEX) Report provides settlement price data for Central Appalachian (CAPP), Western Powder River Basin (PRB), and Eastern CSX Transportation (CSX) coal futures.

Information Center

88

NETL: News Release - FutureGen Industrial Alliance Announces...  

NLE Websites -- All DOE Office Websites (Extended Search)

considered when siting power plants, such as access to water, fuel delivery systems, and transmission lines, as well as requirements that are unique to the FutureGen project, such...

89

Advanced Power Plant Development and Analyses Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

90

Advanced Power Plant Development and Analysis Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

91

Fermilab | Plan for the Future | Fermilab's Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab's Future Fermilab's Future 2013-2015 Next Fermilab's research program for 2015 and beyond New facilities at Fermilab, the nation's dedicated particle physics laboratory, would provide thousands of scientists from across the United States and around the world with world-class scientific opportunities. In collaboration with the Department of Energy and the particle physics community, Fermilab is pursuing a strategic plan that addresses fundamental questions about the physical laws that govern matter, energy, space and time. Fermilab is advancing plans for the best facilities in the world for the exploration of neutrinos and rare subatomic processes, far beyond current global capabilities. The proposed construction of a two-megawatt high-intensity proton accelerator, Project X, would enable a comprehensive

92

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

93

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

94

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

95

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

96

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

97

The Future of LAB  

Science Conference Proceedings (OSTI)

The global linear alkylbenzene (LAB) industry has experienced depressed margins and feedstock shortages during the past few years. The following is an analysis of the industry’s current state and its most likely future. The Future of LAB inform Ma

98

Performance and risks of advanced pulverized-coal plants  

SciTech Connect

This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

Nalbandian, H. [IEA Clean Coal Centre, London (United Kingdom)

2009-07-01T23:59:59.000Z

99

FutureGen Industrial Alliance Announces Carbon Storage Site Selection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Industrial Alliance Announces Carbon Storage Site FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 October 6, 2010 - 12:00am Addthis WASHINGTON -- The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide (CO2) collected at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois. Last month the Department of Energy signed two agreements, one with the FutureGen Industrial Alliance and one with Ameren Energy Resources that committed $1 billion in Recovery Act funding to design, build and

100

Future Transient Testing of Advanced Fuels  

Science Conference Proceedings (OSTI)

The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the refurbishment and restart of TREAT. •TREAT is an absolute necessity in the suite of reactor fuel test capabilities •TREAT yields valuable information on reactivity effects, margins to failure, fuel dispersal, and failure propagation •Most importantly, interpretation of TREAT experiment results is a stringent test of the integrated understanding of fuel performance.

Jon Carmack

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Plants & Animals  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants & Animals Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. April 12, 2012 A rabbit on LANL land. A rabbit on LANL land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as other plants and animals not considered food sources. What plants and animals do we monitor? LANL monitors both edible and non-edible plants and animals to determine whether Laboratory operations are impacting human health via the food chain, or to find contaminants that indicate they are being moved in the

102

Plant immune systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant immune systems Plant immune systems Name: stephanie Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Do plants have an immune system? How does it work? Are plants able to "fight off" infections such as Dutch Elm disease? Replies: In the broadest sense, an immune system is any method an organism has protect itself from succeeding to another organism's efforts to undermine its health and integrity. In this sense, yes, plants have immune systems. Plants do NOT have "active" immune systems, like humans, including macrophages, lymls, antibodies, complements, interferon, etc., which help us ward off infection. Rather, plants have "passive" mechanisms of protection. For instance, the waxy secretion of some plants (cuticle) functions to help hold in moisture and keep out microorganisms. Plants can also secrete irritating juices that prevent insects and animals from eating it. The thick bark of woody plants is another example of a defensive adaptation, that protects the more delicate tissues inside. The chemical secretions of some plants are downright poisonous to many organisms, which greatly enhance the chances of survival for the plant. Fruits of plants contain large amounts of vitamin C and bioflavonoids, compounds which have been shown in the lab to be anti-bacterial and antiviral. So in these ways, plants can improve their chances of survival. Hundreds of viruses and bacteria attack plants each year, and the cost to agriculture is enormous. I would venture to guess that once an organism establishes an infection in a plant, the plant will not be able to "fight" it. However, exposure to the sun's UV light may help control an infection, possibly even defeat it, but the plant does not have any inherent "active" way to fight the infection

103

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

104

NETL: News Release - DOE Announces Restructured Approach to FutureGen  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2008 DOE Announces Restructured FutureGen Approach to Demonstrate Carbon Capture and Storage Technology at Multiple Clean Coal Plants Affirms Commitment to Clean Coal...

105

Plant maintenance and advanced reactors issue, 2004  

SciTech Connect

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Optimism about the future of nuclear power, by Ruth G. Shaw, Duke Power Company; Licensed in three countries, by GE Energy; Enhancing public acceptance, by Westinghouse Electric Company; Standardized MOV program, by Ted Neckowicz, Exelon; Inservice testing, by Steven Unikewicz, U.S. Nuclear Regulatory Commission; Asian network for education, Fatimah Mohd Amin, Malaysian Institute for Nuclear Technology Research; and, Cooling water intake optimization, by Jeffrey M. Jones and Bert Mayer, P.E., Framatome ANP.

Agnihotri, Newal (ed.)

2004-09-15T23:59:59.000Z

106

Future Communications Needs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs Future Communications Needs More Documents & Publications...

107

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

108

DISEASE SUPPRESSION WITH COMPOST: HISTORY, PRINCIPLES AND FUTURE  

E-Print Network (OSTI)

Composts have been used for centuries to maintain soil fertility and plant health. Even so, the mechanisms by which diseases are controlled by composts are just now being elucidated. This paper reviews the recent history on control of plant diseases with composts. Furthermore, the present state of knowledge in this field is reviewed. Finally, potential future opportunities for

Harry A. J. Hoitink; Professor Emeritus; Ligia Zuniga De Ramos; Senior Fullbright

2004-01-01T23:59:59.000Z

109

Hydrogen & Our Energy Future  

Fuel Cell Technologies Publication and Product Library (EERE)

Hydrogen & Our Energy Future (40 pages) expands on DOE's series of one-page fact sheets to provide an in-depth look at hydrogen and fuel cell technologies. It provides additional information on the sc

110

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

111

Renewable Energy Futures to 2050: Current Perspectives  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Futures to 2050: Current Perspectives Renewable Energy Futures to 2050: Current Perspectives Speaker(s): Eric Martinot Date: April 4, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ryan Wiser The future of renewable energy is fundamentally a choice, not a foregone conclusion given technology and economic trends. The new REN21 Renewables Global Futures Report illuminates that choice by showing the range of credible possibilities for the future of renewable energy. The report is not one scenario or viewpoint, but a synthesis of the contemporary thinking of many, as compiled from 170 interviews with leading experts from around the world, including CEOs and parliamentarians, and from 50 recently published energy scenarios by a range of organizations. Conservative projections show 15-20% global energy shares from renewables in the

112

Science Accelerator content now includes multimedia  

Office of Scientific and Technical Information (OSTI)

Science Accelerator content now includes multimedia Science Accelerator has expanded its suite of collections to include ScienceCinema, which contains videos produced by the U.S....

113

Solar thermal electricity in 1998: An IEA/SolarPACES summary of status and future prospects  

DOE Green Energy (OSTI)

Research and development activities sponsored by countries within the International Energy Agency`s solar thermal working group. SolarPACES, have helped reduce the cost of solar thermal systems to one-fifth that of the early pilot plants. Continued technological improvements are currently being proven in next-generation demonstration plants. These advances, along with cost reductions made possible by scale-up to larger production and construction of a succession of power plants, have made solar thermal systems the lowest-cost solar energy in the world and promise cost-competitiveness with fossil-fuel plants in the future. Solar thermal technologies are appropriate for a wide range of applications, including dispatchable central-station power plants where they can meet peak-load to near-base-load needs of a utility, and distributed, modular power plants for both remote and grid-connected applications. In this paper, the authors present the collective position of the SolarPACES community on solar electricity-generating technology. They discuss the current status of the technology and likely near-term improvements; the needs of target markets; and important technical and financial issues that must be resolved for success in near-term global markets.

Tyner, C.E.; Kolb, G.J. [Sandia National Labs., Albuquerque, NM (United States); Meinecke, W. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany); Trieb, F. [Deutsches Zentrum fuer Luft- und Raumfahrt, Stuttgart (Germany)

1998-07-01T23:59:59.000Z

114

Transportation Energy Futures  

E-Print Network (OSTI)

production also has potentially severe impacts, generating large quantities of solid waste (though less than oil shale) andshale plant has been built. Initially completedin 1984by UnionOil, it still has not reached full production

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

115

Electrical generating plant availability  

SciTech Connect

A discussion is given of actions that can improve availability, including the following: the meaning of power plant availability; The organization of the electric power industry; some general considerations of availability; the improvement of power plant availability--design factors, control of shipping and construction, maintenance, operating practices; sources of statistics on generating plant availability; effects of reducing forced outage rates; and comments by electric utilities on generating unit availability.

1975-05-01T23:59:59.000Z

116

IRP and the electricity industry of the future: Workshop results  

SciTech Connect

During the next several years, the U.S. electricity industry is likely to change dramatically. Instead of an industry dominated by vertically integrated companies that are regulated primarily by state public utility commissions, we may see an industry with many more participants and less regulation. These new participants may include independent power producers, entities that dispatch and control power plants on a real-time basis, entities that build and maintain transmission networks, entities that build and maintain distribution systems and also sell electricity and related to services to some retail customers, and a variety of other organizations that sell electricity and other services to retail customers. Because markets are intended to be the primary determinant of success, the role of state and federal regulators might be less than it has been in the past. During the past decade, utilities and state regulators have developed new ways to meet customer energy-service needs, called integrated resource planning (IRP). IRP provides substantial societal benefits through the consideration and acquisition of a broad array of resources, including renewables and demand-side management (DSM) programs as well as traditional power plants-, explicit consideration of the environmental effects of electricity production and transmission; public participation in utility planning; and attention to the uncertainties associated with different resources, future demands for electricity, and other factors. IRP might evolve in different ways as the electricity industry is restructured (Table S-I). To explore these issues, we ran a Workshop on IRP and the Electricity Industry of the Future in July 1994. This report presents the wisdom and experience of the 30 workshop participants. To focus discussions, we created three scenarios to represent a few of the many ways that the electricity industry might develop.

Tonn, B.; Hirst, E.; Bauer, D.

1994-09-01T23:59:59.000Z

117

Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy  

SciTech Connect

Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: 1. Highly integrated control rooms 2. Highly automated plant 3. Integrated operations 4. Human performance improvement for field workers 5. Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.

Kenneth Thomas; Bruce Hallbert

2013-02-01T23:59:59.000Z

118

Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy  

SciTech Connect

Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: (1) Highly integrated control rooms; (2) Highly automated plant; (3) Integrated operations; (4) Human performance improvement for field workers; and (5) Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.

Kenneth Thomas

2012-02-01T23:59:59.000Z

119

Winning the Biofuel Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Future Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a research team at our BioEnergy Science Center achieved yet another advance in the drive toward next generation biofuels: using a microbe to convert plant matter directly into isobutanol. Isobutanol can be burned in regular car engines with a heat value higher than ethanol and similar to gasoline. This is part of a broad portfolio of work the Department is doing to reduce America's dependence on foreign oil and create new economic opportunities for rural America. This announcement is yet another sign of the rapid progress we are making in developing the next generation of biofuels that can help reduce our oil

120

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

energy price fluctuations. In theory, futures market prices summarize privately available informationEnergy; Brookhaven National Laboratory Canadian Energy Research Institute U.S. Energy Information Administration Energy Marketsinformation about future energy prices, including most prominently, energy futures markets.

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) Impacts

122

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) ...

123

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

124

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

125

Hanford Waste Vitrification Plant technical manual  

SciTech Connect

A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

1996-03-01T23:59:59.000Z

126

IM Future | Open Energy Information  

Open Energy Info (EERE)

IM Future Jump to: navigation, search Name IM Future Place Spain Sector Services, Wind energy Product Spain-based firm that provides operation and maintenance services for wind...

127

Fully integrated safeguards and security for reprocessing plant monitoring.  

SciTech Connect

Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

2011-10-01T23:59:59.000Z

128

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Evgeny G. Fateev

2013-01-20T23:59:59.000Z

129

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Fateev, Evgeny G

2013-01-01T23:59:59.000Z

130

Plant Operational Status - Pantex Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Status Plant Operational Status Page Content Operational Status Shift 1 - Day The Pantex Plant is open for normal operations. All personnel are to report for duty according to...

131

MHD plant turn down considerations  

DOE Green Energy (OSTI)

The topic of part load operation of the MHD power plant is assessed. Current and future planned MHD research is reviewed in terms of addressing topping and bottoming cycle integration needs. The response of the MHD generator to turn up and down scenarios is reviewed. The concept of turning the MHD power to met changes in plant load is discussed. The need for new ideas and focused research to study MHD plant integration and problems of plant turn down and up is cited. 7 refs., 5 figs., 1 tab.

Lineberry, J.T.; Chapman, J.N.

1991-01-01T23:59:59.000Z

132

Plant Pathogen Resistance  

Crop plants are infected by numerous fungal and bacterial pathogens that reduce crop quality and yield. Common methods for addessing this problem include time consuming processes such as genetic engeneering, and possibly enviromentally risky ...

133

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

134

Forecasting future volatility from option prices, Working  

E-Print Network (OSTI)

Weisbach are gratefully acknowledged. I bear full responsibility for all remaining errors. Forecasting Future Volatility from Option Prices Evidence exists that option prices produce biased forecasts of future volatility across a wide variety of options markets. This paper presents two main results. First, approximately half of the forecasting bias in the S&P 500 index (SPX) options market is eliminated by constructing measures of realized volatility from five minute observations on SPX futures rather than from daily closing SPX levels. Second, much of the remaining forecasting bias is eliminated by employing an option pricing model that permits a non-zero market price of volatility risk. It is widely believed that option prices provide the best forecasts of the future volatility of the assets which underlie them. One reason for this belief is that option prices have the ability to impound all publicly available information – including all information contained in the history of past prices – about the future volatility of the underlying assets. A second related reason is that option pricing theory maintains that if an option prices fails to embody optimal forecasts of the future volatility of the underlying asset, a profitable trading strategy should be available whose implementation would push the option price to the level that reflects the best possible forecast of future volatility.

Allen M. Poteshman

2000-01-01T23:59:59.000Z

135

NETL: News Release - Abraham Announces Pollution-Free Power Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

February 27, 2003 Abraham Announces Pollution-Free Power Plant of the Future 1 Billion 'Living Prototype' to Showcase Cutting-Edge Technologies to Advance President's Climate...

136

Driving the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

the Future the Future A r g o n n e ' s v e h i c l e s ys t e m s r e s e A r c h 3 2 v e h i c l e s y s t e m s r e s e a r c h At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help reduce our nation's petroleum consumption and greenhouse gas emissions. Our Vehicle Systems research focuses on maximizing vehicle performance and efficiency through in-depth studies of the interactions and integration of components and controls in a large, complex vehicle system. Working with the U.S. Department of Energy (DOE) and the automotive industry, we investigate the potential of vehicle technologies ranging from alternative fuels to advanced powertrains, such as plug-in hybrids and electric vehicles. Funding

137

Panel discussion on laboratory accelerator programs: present and future  

SciTech Connect

The present SLAC accelerator program is summarized briefly, and the future of electron-positron colliders is discussed. Present activities discussed include the PEP storage ring, the SPEAR storage ring, the Linear Accelerator, and the SLAC Linear Collider (SLC) project. Future prospects include a larger scale linear collider. The stability requirements on acceleration are briefly discussed. (LEW)

Richter, B.

1986-09-01T23:59:59.000Z

138

The Westinghouse solid oxide fuel cell program: Clean, efficient energy for the future  

DOE Green Energy (OSTI)

This paper provides an overview of the Westinghouse tubular SOFC technology and field testing program. The development program for the field testing was initiated in 1986 with a 400 W unit. This program has progressed to the installation and start-up in early 1992 of the 25 kill field unit at Rokko Island in Japan. In mid-1992 the second 25 kill field unit, a cogeneration system producing both ac electric power and intermediate pressure steam, will be delivered to the Joint Gas Utilities, a consortium of the Tokyo Gas Company and the Osaka Gas Company. This will be followed by the 20 kill SOFC unit to be supplied to Southern California Edison in early 1993. Future plans include the 100 kill Cogeneration Proof-of-Concept unit for the Southern California Gas Company which is scheduled for delivery in late 1993. Applications for SOFC technology range from on-site power generation for commercial second small industrial applications to dispersed generating plants and central station electric power generation. The design studies have included integrated coal gasification SOFC-steam turbine power plants. Installed capital costs of a 250 MW plant of this configuration compares favorably with the integrated coal gasification combined cycle plants.

Gockley, G.B.

1992-01-01T23:59:59.000Z

139

The Westinghouse solid oxide fuel cell program: Clean, efficient energy for the future  

DOE Green Energy (OSTI)

This paper provides an overview of the Westinghouse tubular SOFC technology and field testing program. The development program for the field testing was initiated in 1986 with a 400 W unit. This program has progressed to the installation and start-up in early 1992 of the 25 kill field unit at Rokko Island in Japan. In mid-1992 the second 25 kill field unit, a cogeneration system producing both ac electric power and intermediate pressure steam, will be delivered to the Joint Gas Utilities, a consortium of the Tokyo Gas Company and the Osaka Gas Company. This will be followed by the 20 kill SOFC unit to be supplied to Southern California Edison in early 1993. Future plans include the 100 kill Cogeneration Proof-of-Concept unit for the Southern California Gas Company which is scheduled for delivery in late 1993. Applications for SOFC technology range from on-site power generation for commercial second small industrial applications to dispersed generating plants and central station electric power generation. The design studies have included integrated coal gasification SOFC-steam turbine power plants. Installed capital costs of a 250 MW plant of this configuration compares favorably with the integrated coal gasification combined cycle plants.

Gockley, G.B.

1992-12-01T23:59:59.000Z

140

projects are valued at approximately $67 million (including $15 million  

NLE Websites -- All DOE Office Websites (Extended Search)

projects are valued at approximately $67 million (including $15 million projects are valued at approximately $67 million (including $15 million in non-Federal cost sharing) over four years. The overall goal of the research is to develop carbon dioxide (CO 2 ) capture and separation technologies that can achieve at least 90 percent CO 2 removal at no more than a 35 percent increase in the cost of electricity. The projects, managed by FE's National Energy Technology Laboratory (NETL), include: (1) Linde, LLC, which will use a post-combustion capture technology incorporating BASF's novel amine-based process at a 1-megawatt electric (MWe) equivalent slipstream pilot plant at the National Carbon Capture Center (NCCC) (DOE contribution: $15 million); (2) Neumann Systems Group, Inc., which will design, construct, and test a patented NeuStreamTM absorber at the Colorado

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Dedicated heterogeneous node scheduling including backfill scheduling  

DOE Patents (OSTI)

A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.

Wood, Robert R. (Livermore, CA); Eckert, Philip D. (Livermore, CA); Hommes, Gregg (Pleasanton, CA)

2006-07-25T23:59:59.000Z

142

The NRC's SPAR Models: Current Status, Future Development, and Modeling Issues  

SciTech Connect

Probabilistic risk assessments (PRAs) play an increasingly important role in the regulatory framework of the U.S. nuclear power industry. The Nuclear Regulatory Commission (NRC) relies on a set of plant-specific Standardized Plant Analysis Risk (SPAR) models to provide critical risk-based input to the regulatory process. The Significance Determination Process (SDP), Management Directive 8.3 - NRC Incident Investigation Program, Accident Sequence Precursor (ASP) and Mitigating Systems Performance Index (MSPI) programs are among the regulatory initiatives that receive significant input from the SPAR models. Other uses of the SPAR models include: Screening & Resolution of Generic Safety Issues, License Amendment reviews and Notice of Enforcement Discretion (NOEDs). This paper presents the current status of SPAR model development activities, future development objectives, and issues related to the development, verification and maintenance of the SPAR models.

Robert F. Buell

2008-09-01T23:59:59.000Z

143

US prep plant census 2008  

Science Conference Proceedings (OSTI)

Each year Coal Age conducts a fairly comprehensive survey of the industry to produce the US coal preparation plant survey. This year's survey shows how many mergers and acquisitions have given coal operators more coal washing capacity. The plants are tabulated by state, giving basic details including company owner, plant name, raw feed, product ash %, quality, type of plant builder and year built. 1 tab., 1 photo.

Fiscor, S.

2008-10-15T23:59:59.000Z

144

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

145

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

availability of supplies of natural gas, China’s Sustainable Energy Future including the West to East Gas Transmission

2004-01-01T23:59:59.000Z

146

Future Vision for Instrumentation, Information and Control Modernization  

SciTech Connect

A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. II&C has been identified as a potential life-limiting issue for the domestic LWR fleet in addressing the reliability and aging concerns of the legacy systems in service today. The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. Pilot projects are being conducted as the means for industry to gain confidence in these new technologies for use in nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision. Initial project results confirm that the technologies can address provide substantial efficiency and human performance benefits while resolving the reliability and aging concerns.

Ken D. Thomas

2012-05-01T23:59:59.000Z

147

Future Inspection of Overhead Transmission Lines  

Science Conference Proceedings (OSTI)

This report documents scenarios and technologies that can be applied in the future for the inspection of transmission lines. Scenarios describe the utilization of a range of concepts, including distributed sensors, unmanned airborne vehicles, RF communication, and robotics. An approach to performing demonstration projects using currently available technologies is provided and will be implemented in the following phases of the project.

2008-06-23T23:59:59.000Z

148

Plant maintenance and advanced reactors issue, 2008  

Science Conference Proceedings (OSTI)

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada; Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.

Agnihotri, Newal (ed.)

2009-09-15T23:59:59.000Z

149

Primer on electricity futures and other derivatives  

SciTech Connect

Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

1998-01-01T23:59:59.000Z

150

IGCC: Current Status and Future Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Developing Technologies on the Impact of Developing Technologies on the Economics and Performance of Future IGCC Power Plants John Plunkett, Noblis David Gray, Noblis Charles White, Noblis Julianne Klara, NETL Copyright © 2008 Noblis, Inc. 2 Acknowledgement This work is sponsored by the U.S. Department of Energy, National Energy Technology Laboratory 3 Study Objective Starting with present-day baseline, evaluate improved IGCC performance and cost resulting from DOE-funded R&D over the next 18 years. Examine both with and without CO 2 capture. Study results will help to prioritize technology development based on relative impact. Results will also help to assess the impact of future potential CO 2 emissions restrictions. 4 Methodology * Use Aspen Plus simulator to provide model "transparency"

151

NYMEX Futures Prices  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Futures Prices NYMEX Futures Prices (Crude Oil in Dollars per Barrel, All Others in Dollars per Gallon) Period: Daily Weekly Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/ Contract 12/10/13 12/11/13 12/12/13 12/13/13 12/16/13 12/17/13 View History Crude Oil (Light-Sweet, Cushing, Oklahoma) Contract 1 98.51 97.44 97.5 96.6 97.48 97.22 1983-2013 Contract 2 98.66 97.72 97.82 96.93 97.77 97.47 1985-2013 Contract 3 98.58 97.72 97.77 96.91 97.7 97.36 1983-2013 Contract 4 98.19 97.39 97.42 96.55 97.28 96.92 1985-2013 Reformulated Regular Gasoline (New York Harbor) Contract 1 1985-2006 Contract 2 1994-2006 Contract 3 1984-2006 Contract 4 1994-2006 RBOB Regular Gasoline (New York Harbor)

152

Securing Our Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Energy Our Energy Securing Our Energy Future Future World Energy Demand Growing Dramatically 12 1400 1200 10 1000 2000 2050 2100 Population of Population of Industrialized Countries Industrialized Countries Wo W rl r d o ld Po P pu p la l ti t on o o u a i n Wo W rl r d E d ne n rg r y o l E e gy Co C ns n um u pt p io i n o s m t on Population (Billions) Energy Consumption (Qbtu / yr) 8 800 6 600 4 400 2 200 0 0 1900 1950 Year U.S. Electricity Generation by Fue U.S. Electricity Generation by Fuel Electric Generation by Fuel 1980 - 2030 (billion kilowatt-hours) 0 1000 2000 3000 4000 5000 6000 1980 1990 2000 2010 2020 2030 Renewables/Other Nuclear Natural Gas Petroleum Coal Source: EIA Annual Energy Outlook 2008 Why Do We Keep Coal in the Mix? Why Do We Keep Coal in the Mix? World Energy Reserves World Energy Reserves Source: Energy Information Administration/ International Reserves Data

153

Finishing in the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

The Genome Institute, Washington University Areas of emphasis at this meeting included: Genome Sequencing: New sequencing technologies (454, illumina, SOLiD, Ion Torrent, MiSeq,...

154

Future AI and Robotics Technology for Nuclear Plants Decommissioning  

E-Print Network (OSTI)

Robotics Program The Robotics Program within the Nuclear Engineering Division is developing new technologies. Currently, we are exploring opportunities in applications for nuclear reactor operation, maintenance of remote energy installations, decontamination and decommissioning, and minimally invasive surgery

Hu, Huosheng

155

Divertor Development for a Future Fusion Power Plant.  

E-Print Network (OSTI)

??The thesis begins by describing the fusion process and operation of a fusion reactor, the approach in the conceptual development of a helium-cooled divertor, and… (more)

Norajitra, Prachai

2011-01-01T23:59:59.000Z

156

Intentionally Including - Engaging Minorities in Physics Careers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of Physics Resources. Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the

157

Future nuclear fuel cycles: prospects and challenges  

Science Conference Proceedings (OSTI)

Solvent extraction has played, from the early steps, a major role in the development of nuclear fuel cycle technologies, both in the front end and back end. Today's stakes in the field of energy enhance further than before the need for a sustainable management of nuclear materials. Recycling actinides appears as a main guideline, as much for saving resources as for minimizing the final waste impact, and many options can be considered. Strengthened by the important and outstanding performance of recent PUREX processing plants, solvent-extraction processes seem a privileged route to meet the new and challenging requirements of sustainable future nuclear systems. (author)

Boullis, Bernard [Commissariat a l'Energie Atomique, Direction de l'Energie Nucleaire, Centre de Saclay, 91191, Gif-sur-Yvette cedex (France)

2008-07-01T23:59:59.000Z

158

Transmission line including support means with barriers  

DOE Patents (OSTI)

A gas insulated transmission line includes an elongated outer sheath, a plurality of inner conductors disposed within and extending along the outer sheath, and an insulating gas which electrically insulates the inner conductors from the outer sheath. A support insulator insulatably supports the inner conductors within the outer sheath, with the support insulator comprising a main body portion including a plurality of legs extending to the outer sheath, and barrier portions which extend between the legs. The barrier portions have openings therein adjacent the main body portion through which the inner conductors extend.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

159

Hydrogen & Our Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

160

Future Prospects of Synthetic Fuels  

E-Print Network (OSTI)

It is important for the future of this nation to reach the goal of demonstrated definition and quantification of the parameters which influence the ability to use this country's vast resources of coal and oil shale for production of synthetic fuels which can contribute to the nation's future energy needs. Those parameters are: technical, environmental, and economic viability. In the final analysis, the key word is economics; can, or when can synthetic fuels compete in the marketplace? A commercial synthetic fuels plant requires a multi-billion dollar capital investment. It is the purpose of this paper to discuss the risk elements of a synthetic fuels venture and to speculate on what impact the current environment, e.g. governmental policy, world crude market prices, and general economic climate may have on the timetable for achievement of the aforementioned goal. In June 1980 the author presented a paper at the AIChE Meeting in Philadelphia, Pa. entitled 'Synthetic Fuels - Their Problems and Their Promises.' The opening paragraph of that paper started as follows: 'For three decades, since the days of World War II, a U.S. synthetic fuels industry has several times verged on becoming a reality but never succeeding, the ups and downs resembling a sine wave of variable frequency. As of this writing we are at the crest of the wave. Is this the time it will happen? For the good of the nation hopefully the answer will be yes.' It is the purpose of this paper, some 20 months later, to examine what has transpired in that time interval and to speculate, in the light of those events, about their impact on the likelihood of the answer still being 'yes' and on the timing as to when it may occur. To set the stage for consideration of the importance of recent events and to put them in perspective, it is necessary to return again to the earlier paper where some of the impediments to the establishment of a U.S. synfuels industry were discussed. In essence what was said was that the principal impediments were: economic, environmental, and regulatory, and since both the economic and regulatory aspects exert some direct and/or indirect influence on cost, the problem really reduced to the single most important factor--project economics. Synthetic fuels simply are expensive to produce!

Fryback, M. G.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The semantics of the future  

E-Print Network (OSTI)

Natural languages use a number of different methods to refer to future eventualities: among them are futurates, as in (la), and futures, as in (lb) and (c). (1) a. The Red Sox (are) play(ing) the Yankees tomorrow. b. We'll ...

Copley, Bridget, Lynn, 1974-

2002-01-01T23:59:59.000Z

162

DOE Considers Natural Gas Utility Service Options: Proposal Includes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Considers Natural Gas Utility Service Options: Proposal Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering natural gas transportation and distribution requirements to support the Waste Treatment Plant (WTP) and evaporator operations at the Hanford Site in southeastern Washington State. DOE awarded a task order worth up to $5 million to the local, licensed supplier of natural gas in the Hanford area, Cascade Natural Gas Corporation (Cascade). Cascade will support DOE and its Environmental

163

DISASTER POLICY Including Extreme Emergent Situations (EES)  

E-Print Network (OSTI)

on the ACGME website with information relating to the ACGME response to the disaster. 3. The University-specific Program Requirements. Defined Responsibilities Following the Declaration of a Disaster or Extreme EmergentPage 123 DISASTER POLICY Including Extreme Emergent Situations (EES) The University of Connecticut

Oliver, Douglas L.

164

future science group  

NLE Websites -- All DOE Office Websites (Extended Search)

35 35 ISSN 1759-7269 10.4155/BFS.13.56 © 2013 Future Science Ltd While lignocellulosic feedstocks represent a promising renewable and sustainable alternative to petroleum- based fuels, high production costs associated with con- version processes currently prevent them from being economically viable for large-scale implementation [1]. The production of biofuels from lignocellulosic feedstocks requires the depolymerization of cell wall carbohydrates into simple sugars that can be utilized during fermentation. However, the desired cellulose microfibrils are surrounded by a matrix of lignin and hemicellulose, which greatly inhibits their accessibility to hydrolytic enzymes [1,2]. Lignin is a phenolic polymer that reinforces the secondary cell wall, confers struc-

165

future science group  

NLE Websites -- All DOE Office Websites (Extended Search)

61 61 ISSN 1759-7269 10.4155/BFS.11.150 © 2012 Future Science Ltd In 1950 Reese et al. proposed a mechanism for cel- lulose hydrolysis, which involved two general com- ponents, C 1 and C x , acting in sequence [1]. According to the model, the C 1 component first disrupted and swelled the crystalline cellulose, possibly releasing soluble oligo saccharides into solution. The C x compo- nent, which was shown to have endoglucanase activity, was then able to effectively hydrolyze the previously inaccessible substrate along with the soluble oligo- saccharides. Furthermore, the activity of the mixture was found to be higher than the activity of each com- ponent acting alone, indicating that the components were acting synergistically. In the following years, a number of groups began to identify and characterize

166

FAQ : Future Scientists  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ FAQ How do I get started as a school volunteer? You can talk with program coordinator, Rick Diamond, or any of the EETD staff who have already participated in the Future Scientist program. To contact Rick Diamond, please call (510) 486-4459 or enable JavaScript within your browser's preferences. When you are ready to plan a classroom visit, call the Community Resources for Science (CRS) and ask about school and grade availability for your topic. CRS staff will place you with a K-6 grade teacher in the East Bay. CRS can also provide excellent advise on classroom guidance and materials, and handle all the contact logistics. All you do is give them a call. Community Resources for Science 1375 Ada Street Berkeley, CA 94702 (510) 654-6433 http://www.crscience.org/

167

Energy sources for the future  

SciTech Connect

The symposium program was designed for college faculty members who are teaching or plan to teach energy courses at their educational institutions. Lectures were presented on socio-economic aspects of energy development, fusion reactors, solar energy, coal-fired power plants, nuclear power, radioactive waste disposal, and radiation hazards. A separate abstract was prepared for each of 16 of the 18 papers presented; two papers were processed earlier: Residential Energy Use Alternatives to the Year 2000, by Eric Hurst (EAPA 2:257; ERA 1:25978) and The Long-Term Prospects for Solar Energy, by W. G. Pollard (EAPA 3:1008). Fourteen of the papers are included in Energy Abstracts for Policy Analysis. (EAPA).

Duggan, J.L.; Cloutier, R.J. (eds.)

1977-04-01T23:59:59.000Z

168

Interdisciplinary Research and Training Program in the Plant Sciences  

Science Conference Proceedings (OSTI)

Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

Wolk, C.P.

1992-01-01T23:59:59.000Z

169

Frozen plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

170

Buildings Included on EMS Reports"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Office of Legacy Management Buildings Included on EMS Reports" "Site","Property Name","Property ID","GSF","Incl. in Water Baseline (CY2007)","Water Baseline (sq. ft.)","Water CY2008 (sq. ft.)","Water CY2009 (sq. ft.)","Water Notes","Incl. in Energy Baseline (CY2003)","Energy Baseline (sq. ft.)","CY2008 Energy (sq. ft.)","CY2009 Energy (sq. ft.)","Energy Notes","Included as Existing Building","CY2008 Existing Building (sq. ft.)","Reason for Building Exclusion" "Column Totals",,"Totals",115139,,10579,10579,22512,,,3183365,26374,115374,,,99476 "Durango, CO, Disposal/Processing Site","STORAGE SHED","DUD-BLDG-STORSHED",100,"no",,,,,"no",,,,"OSF","no",,"Less than 5,000 GSF"

171

Power generation method including membrane separation  

SciTech Connect

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

172

Nuclear reactor shield including magnesium oxide  

DOE Patents (OSTI)

An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

1981-01-01T23:59:59.000Z

173

Expression of multiple proteins in transgenic plants  

DOE Patents (OSTI)

A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

Vierstra, Richard D. (Madison, WI); Walker, Joseph M. (Madison, WI)

2002-01-01T23:59:59.000Z

174

ENVIRONMENTAL ASSESSMENT FOR OTEC PILOT PLANTS  

SciTech Connect

Logical and orderly progression of the OTEC program from conceptual designs through component testing to the goal of commercially viable OTEC plants require that the socio-legal requirements be met and the proper operating permits be obtained and maintained. This function is accomplished in a series of activities including: (1) Development and annual revision of a published OTEC Environmental Development Plan (EDP); (2) Compliance with NEPA/EPA and other regulatory requirements; and (3) Studies and research in support of the above. The Environmental Development Plan (EDP) lists the concerns, outlines the program to consider the effects and validity of such concerns on the OTEC program, and gives the time-table to meet the schedule, integrated with that of the engineering and design programs. The schedules of compliance activities and, to a lesser degree, research also are governed by the development progress of the technology. However, because of the lead time necessary to insure proper review the appropriate regulatory agencies, the environmental assessment program for the OTEC pilot plants (initially starting with the 10/40 MWe unit) is founded on the strategy of progressive improvement of previously accepted documentation. Based on experience with OTEC-1, the procedure for pilot plants will be: (1) Produce generic Environmental Assessment (EA) at the appropriate level of technology in advance of hardware contract; (2) Produce generic Environmental Impact Statement (EIS) at approximately the same time as the hardware procurement; (3) Monitor production of site specific supplement to the generic EIS prepared by the hardware contractor; (4) Assist pilot plant operator in applying and obtaining permits by providing current research and modeling data; (5) Monitor environmental program as required by regulatory agency; and (6) Use new site data for refining models for future pilot plant. assessments.

Wilde, P.

1980-06-01T23:59:59.000Z

175

Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

Science Conference Proceedings (OSTI)

The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

Not Available

1993-09-01T23:59:59.000Z

176

Future Upgrades | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Upgrades Future Upgrades Magnetic field inside a Nb3Sn quadropole magnet Magnetic field inside a Nb3Sn quadropole magnet. Brookhaven leads various technical coordination efforts for the upgrade of the ATLAS detector, including constructing the new silicon tracker, liquid argon electronics, and the new muon chambers. Brookhaven also contributes to the commissioning and future upgrade of the LHC itself in two areas: accelerator physics and superconducting magnets. This work is carried out as part of the U.S. LHC Accelerator Research Program (LARP) in collaboration with Fermilab, Lawrence Berkeley National Lab, and the Stanford Linear Accelerator Center. The ultimate goal of the upgrade program is to increase the rate and efficiency of particle collisions, a measure known as luminosity.

177

Carnivorous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

178

U.S. and India Sign Historic Agreement on FutureGen Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sign Historic Agreement on FutureGen Project Sign Historic Agreement on FutureGen Project U.S. and India Sign Historic Agreement on FutureGen Project April 3, 2006 - 10:02am Addthis India to Participate in World's First Integrated CO2 Sequestration and Hydrogen Production Research Power Plant, FutureGen Initiative NEW DELHI, INDIA - The U.S. Department of Energy (DOE) announced the signing of an agreement with India that makes it the first country to join the U.S. on the government steering committee for the FutureGen Initiative. FutureGen is an initiative to build and operate the world's first coal-based power plant that removes and sequesters carbon dioxide (CO2) while producing electricity and hydrogen. "Adding India to our list of partners is an exciting step for the FutureGen project," Secretary of Energy Samuel W. Bodman said. "The success of

179

The future steelmaking industry and its technologies  

SciTech Connect

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

180

Water vulnerabilities for existing coal-fired power plants.  

SciTech Connect

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considere

Elcock, D.; Kuiper, J.; Environmental Science Division

2010-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Shaping the future of IT within the academy  

Science Conference Proceedings (OSTI)

We summarize the problems and potential solutions put forward in the four articles by the Deans and then offer three lenses to consider as we reimagine the future of IT education and research. These lenses include major disruptions in education that ... Keywords: disruptive technology, future of it, information abundance, it education, it research, khan academy, moore's law, perspectives on the is field

Blake Ives; Dennis Adams

2012-05-01T23:59:59.000Z

182

Thermovoltaic semiconductor device including a plasma filter  

DOE Patents (OSTI)

A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

Baldasaro, Paul F. (Clifton Park, NY)

1999-01-01T23:59:59.000Z

183

Hydrogen: Fueling the Future  

DOE Green Energy (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

184

AVESTAR® - Smart Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Plant In the area of smart plant operations, AVESTAR's dynamic simulators enable researchers to analyze plant-wide performance over a wide range of operating scenarios, including plant startup (cold, warm, hot), shutdown, fuel switchovers, on-load cycling, high-load operations of 90-120% of rated capacity, and high frequency megawatt changes for automatic generation control. The dynamic simulators also let researchers analyze the plant's response to disturbances and malfunctions. The AVESTAR team is also using dynamic simulators to develop effective strategies for the operation and control of pre-combustion capture technology capable of removing at least 90% of the CO2 emissions. Achieving operational excellence can have significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. If deployment of new CO2 capture technologies is to be accelerated, power generators must be confident in ensuring efficient, flexible, reliable, environmentally-friendly, and profitable plant operations.

185

Idaho Chemical Processing Plant product denitrator upgrade  

SciTech Connect

The uranium product denitrator at the Idaho Chemical Processing Plant has had serious operating problems since 1970, including inadequate contamintion control, fluidized bed caking, frequent bed heater failure, product overflow plugging, and poor feed control. These problems were minimized through selective redesign and upgrade of the process equipment as part of a process upgrade program completed in March 1981. Following startup and testing of the rebuilt product denitrator, 1044 kg of enriched uranium was processed in three weeks while demonstrating greater reliability, ease of operation, and improved contamination control. To maximize personnel safety in the future, the denitrator vessel should be made critically safe by geometry and process instrumentation isolated from the process for semi-remote operation.

Rindfleisch, J.A.; Durst, P.C.; Dahl, C.A.; Casterline, C.E.; Petig, A.V.

1982-05-01T23:59:59.000Z

186

Future of Voting System Symposium  

Science Conference Proceedings (OSTI)

... for the poster and demonstration session can be submitted to future-voting@ nist ... NIST Visitor Information airports, directions, public transportation.

2013-03-04T23:59:59.000Z

187

Central Appalachian Coal Futures Overview  

U.S. Energy Information Administration (EIA)

Central Appalachian Coal Futures Overview In 1996, the New York Mercantile Exchange (NYMEX) began providing companies in the electric power industry with secure and ...

188

Models of Procyon A including seismic constraints  

E-Print Network (OSTI)

Detailed models of Procyon A based on new asteroseismic measurements by Eggenberger et al (2004) have been computed using the Geneva evolution code including shellular rotation and atomic diffusion. By combining all non-asteroseismic observables now available for Procyon A with these seismological data, we find that the observed mean large spacing of 55.5 +- 0.5 uHz favours a mass of 1.497 M_sol for Procyon A. We also determine the following global parameters of Procyon A: an age of t=1.72 +- 0.30 Gyr, an initial helium mass fraction Y_i=0.290 +- 0.010, a nearly solar initial metallicity (Z/X)_i=0.0234 +- 0.0015 and a mixing-length parameter alpha=1.75 +- 0.40. Moreover, we show that the effects of rotation on the inner structure of the star may be revealed by asteroseismic observations if frequencies can be determined with a high precision. Existing seismological data of Procyon A are unfortunately not accurate enough to really test these differences in the input physics of our models.

P. Eggenberger; F. Carrier; F. Bouchy

2005-01-14T23:59:59.000Z

189

Current and Future Economics of Parabolic Trough Technology  

Science Conference Proceedings (OSTI)

Solar energy is the largest energy resource on the planet. Unfortunately, it is largely untapped at present, in part because sunlight is a very diffuse energy source. Concentrating solar power (CSP) systems use low cost reflectors to concentrate the sun's energy to allow it to be used more effectively. Concentrating solar power systems are also well suited for large solar power plants that can be connected into the existing utility infrastructure. These two facts mean that CSP systems can be used to make a meaningful difference in energy supply in a relatively short period. CSP plants are best suited for the arid climates in the Southwestern United States, Northern Mexico, and many desert regions around the globe. A recent Western Governors' Association siting study [1] found that the solar potential in the U.S. Southwest is at least 4 times the total U.S. electric demand even after eliminating urban areas, environmentally sensitive areas, and all regions with a ground slope greater than 1%.While it is currently not practical to power the whole county from the desert southwest, only a small portion of this area is needed to make a substantial contribution to future U.S. electric needs. Many of the best sites are near existing high-voltage transmission lines and close to major power load centers in the Southwest (Los Angeles, Las Vegas, and Phoenix). In addition, the power provided by CSP technologies has strong coincidence with peak electric demand, especially in the Southwest where peak demand corresponds in large part to air conditioning loads. Parabolic troughs currently represent the most cost-effective CSP technology for developing large utility-scale solar electric power systems. These systems are also one of the most mature solar technologies, with commercial utility-scale plants that have been operating for over 20 years. In addition, substantial improvements have been made to the technology in recent years including improved efficiency and the addition of thermal energy storage. The main issue for parabolic trough technology is that the cost of electricity is still higher than the cost of electricity from conventional natural gas-fired power plants. Although higher natural gas prices are helping to substantially reduce the difference between the cost of electricity from solar and natural gas plants, in the near-term increased incentives such as the 30% Investment Tax Credit (ITC) are needed to make CSP technology approach competitiveness with natural gas power on a financial basis. In the longer term, additional reductions in the cost of the technology will be necessary. This paper looks at the near-term potential for parabolic trough technology to compete with conventional fossil power resources in the firm, intermediate load power market and at the longer term potential to compete in the baseload power market. The paper will consider the potential impact of a reduced carbon emissions future.

Price, H.; Mehos, M.; Kutscher, C.; Blair, N.

2007-01-01T23:59:59.000Z

190

Future technologies for our future world Research in the School of Electronics and Computer Science  

E-Print Network (OSTI)

ECS Research groups Communications 12 Dependable Systems and Software Engineering 14 Electrical Power for our future world This brochure presents an overview of the School's research, profiling some of our of innovation characterizes all the School's endeavours. Our recent `world firsts' include harvesting energy

Southampton, University of

191

Vision of the Future Grid | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid The GTT developed a draft vision (below) which describes a future electricity system and lists several key attributes of that system. In its current form, this vision incorporates comments made by stakeholders during meetings organized by the GTT. The vision will continue to evolve and be refined as the GTT engages with the broader stakeholder community. Vision of the Future Grid A seamless, cost-effective electricity system, from generation to end-use, capable of meeting all clean energy demands and capacity requirements, with: Significant scale-up of clean energy (renewables, natural gas, nuclear, clean fossil) Universal access to consumer participation and choice (including

192

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

193

Future of the universe in modified gravitational theories: Approaching to the finite-time future singularity  

E-Print Network (OSTI)

We investigate the future evolution of the dark energy universe in modified gravities including $F(R)$ gravity, string-inspired scalar-Gauss-Bonnet and modified Gauss-Bonnet ones, and ideal fluid with the inhomogeneous equation of state (EoS). Modified Friedmann-Robertson-Walker (FRW) dynamics for all these theories may be presented in universal form by using the effective ideal fluid with an inhomogeneous EoS without specifying its explicit form. We construct several examples of the modified gravity which produces accelerating cosmologies ending at the finite-time future singularity of all four known types by applying the reconstruction program. Some scenarios to resolve the finite-time future singularity are presented. Among these scenarios, the most natural one is related with additional modification of the gravitational action in the early universe. In addition, late-time cosmology in the non-minimal Maxwell-Einstein theory is considered. We investigate the forms of the non-minimal gravitational coupling which generates the finite-time future singularities and the general conditions for this coupling in order that the finite-time future singularities cannot emerge. Furthermore, it is shown that the non-minimal gravitational coupling can remove the finite-time future singularities or make the singularity stronger (or weaker) in modified gravity.

Kazuharu Bamba; Shin'ichi Nojiri; Sergei D. Odintsov

2008-07-16T23:59:59.000Z

194

FutureGen 2.0 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal » Major Demonstrations » Clean Coal » Major Demonstrations » FutureGen 2.0 FutureGen 2.0 On August 5, 2010, U.S. Energy Secretary Steven Chu announced the awarding of $1 billion in Recovery Act funding to the FutureGen Alliance, Ameren Energy Resources, Babcock & Wilcox, and Air Liquide Process & Construction, Inc. to build FutureGen 2.0, a clean coal repowering program and carbon dioxide (CO2) storage network. The project partners will repower Ameren's 200 megawatt Unit 4 in Meredosia, Illinois with advanced oxy-combustion technology to capture approximately 1.3 million tonnes of CO2 each year - more than 90 percent of the plant's carbon emissions. Other emissions will be reduced to near zero levels. Oxy-combustion burns coal with a mixture of oxygen and CO2 instead of air

195

Advanced fission and fossil plant economics-implications for fusion  

Science Conference Proceedings (OSTI)

In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

Delene, J.G.

1994-09-01T23:59:59.000Z

196

452 Plant Disease / Vol. 82 No. 5 A. R. Biggs  

E-Print Network (OSTI)

452 Plant Disease / Vol. 82 No. 5 A. R. Biggs West Virginia University, Kearneysville G. G. Grove with information sharing in plant pathology extension via the World Wide Web; (ii) provide background on hardware of current and future web-based technologies that potentially influence extension plant pathology. West

Biggs, Alan R.

197

Conformal formulation of cosmological futures  

E-Print Network (OSTI)

We summarise the new conformal framework of an Anisotropic Future Endless Universe and an Anisotropic Future Singularity. Both new definitions are motivated by, but not restricted to quiescent cosmology and the Weyl curvature hypothesis, which previously only possessed a framework for a classical initial state of the universe, namely the Isotropic Singularity. Some of the features of the framework are briefly discussed.

Philipp A Hoehn; Susan M Scott

2010-01-22T23:59:59.000Z

198

Program Pu Futures 2006  

SciTech Connect

The coordination chemistry of plutonium remains relatively unexplored. Thus, the fundamental coordination chemistry of plutonium is being studied using simple multi-dentate ligands with the intention that the information gleaned from these studies may be used in the future to develop plutonium-specific sequestering agents. Towards this goal, hard Lewis-base donors are used as model ligands. Maltol, an inexpensive natural product used in the commercial food industry, is an ideal ligand because it is an all-oxygen bidentate donor, has a rigid structure, and is of small enough size to impose little steric strain, allowing the coordination preferences of plutonium to be the deciding geometric factor. Additionally, maltol is the synthetic precursor of 3,4-HOPO, a siderophore-inspired bidentate moiety tested by us previously as a possible sequestering agent for plutonium under acidic conditions. As comparisons to the plutonium structure, Ce(IV) complexes of the same and related ligands were examined as well. Cerium(IV) complexes serve as good models for plutonium(IV) structures because Ce(IV) has the same ionic radius as Pu(IV) (0.94 {angstrom}). Plutonium(IV) maltol crystals were grown out of a methanol/water solution by slow evaporation to afford red crystals that were evaluated at the Advanced Light Source at Lawrence Berkeley National Laboratory using single crystal X-ray diffraction. Cerium(IV) complexes with maltol and bromomaltol were crystallized via slow evaporation of the mother liquor to afford tetragonal, black crystals. All three complexes crystallize in space group I4{sub 1}/a. The Ce(IV) complex is isostructural with the Pu(IV) complex, in which donating oxygens adopt a trigonal dodecahedral geometry around the metal with the maltol rings parallel to the crystallographic S{sub 4} axis and lying in a non-crystallographic mirror plane of D{sub 2d} molecular symmetry (Fig 1). The metal-oxygen bonds in both maltol complexes are equal to within 0.04 {angstrom} for each oxygen type. In contrast to the maltol structures, the cerium(IV) bromomaltol complex arranges the maltol rings in a drastically different manner while maintaining the S{sub 4} crystallographic symmetry (Fig 2). The coordination geometry around the cerium remains a trigonal dodecahedron, but the chelating ligands span a different set of edges as in the maltol structures; the two-fold related bromomaltol ligands twist away from planarity, breaking the D{sub 2d} molecular symmetry. It is unlikely that steric interaction with a bromine on the same molecule would have caused the observed rearrangement, as there would be sufficient separation between them to accommodate their bulk in the geometry of the plutonium and cerium maltol complexes. The extended packing in the unit cell of both the plutonium and cerium maltol crystals indicates that pi stacking occurs throughout the lattice via the maltol rings with close contacts between rings of approximately 3.6 {angstrom}. Introduction of the bromine to this structure would disrupt the packing that would allow these interactions, causing the molecule to adopt the geometry present in the bromomaltol structure. In this unexpected arrangement the complex is still able to maintain some pi stacking with the maltol rings of adjacent molecules with a close contact of approximately 3.3 {angstrom}. Additionally, the bromine on each ligand is arranged such that its next closest contact is with a bromine 3.64 {angstrom} away on another molecule. Despite the different ligand geometry, the bromomaltol structure exhibits metal-oxygen bond distances that are within 0.06 {angstrom} of those in the maltol complexes.

Fluss, M

2006-06-12T23:59:59.000Z

199

Mechanisms in Plant Development  

SciTech Connect

This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

Hake, Sarah [USDA ARS Plant Gene Expression Center

2013-08-21T23:59:59.000Z

200

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: News Release - FutureGen Industrial Alliance Announces Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2010 6, 2010 FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 Washington, D.C. - The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide (CO2) collected at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois. Last month the Department of Energy signed two agreements, one with the FutureGen Industrial Alliance and one with Ameren Energy Resources that committed $1 billion in Recovery Act funding to design, build and operate FutureGen 2.0. MORE INFO FutureGen 2.0 Siting Guidance FutureGen 2.0 Fact Sheet

202

An analysis of the impacts of economic incentive programs on commercial nuclear power plant operations and maintenance costs  

SciTech Connect

Operations and Maintenance (O and M) expenditures by nuclear power plant owner/operators possess a very logical and vital link in considerations relating to plant safety and reliability. Since the determinants of O and M outlays are considerable and varied, the potential linkages to plant safety, both directly and indirectly, can likewise be substantial. One significant issue before the US Nuclear Regulatory Commission is the impact, if any, on O and M spending from state programs that attempt to improve plant operating performance, and how and to what extent these programs may affect plant safety and pose public health risks. The purpose of this study is to examine the role and degree of impacts from state promulgated economic incentive programs (EIPs) on plant O and M spending. A multivariate regression framework is specified, and the model is estimated on industry data over a five-year period, 1986--1990. Explanatory variables for the O and M spending model include plant characteristics, regulatory effects, financial strength factors, replacement power costs, and the performance incentive programs. EIPs are found to have statistically significant effects on plant O and M outlays, albeit small in relation to other factors. Moreover, the results indicate that the relatively financially weaker firms are more sensitive in their O and M spending to the presence of such programs. Formulations for linking spending behavior and EIPs with plant safety performance remains for future analysis.

Kavanaugh, D.C.; Monroe, W.H. [Pacific Northwest Lab., Richland, WA (United States); Wood, R.S. [Nuclear Regulatory Commission, Washington, DC (United States)

1996-02-01T23:59:59.000Z

203

Hybrid Wet/Dry Cooling for Power Plants (Presentation)  

DOE Green Energy (OSTI)

This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

Kutscher, C.; Buys, A.; Gladden, C.

2006-02-01T23:59:59.000Z

204

Property:FuturePlans | Open Energy Information  

Open Energy Info (EERE)

FuturePlans FuturePlans Jump to: navigation, search Property Name FuturePlans Property Type Text Subproperties This property has the following 3 subproperties: C Coso Geothermal Area R Raft River Geothermal Area S Salt Wells Geothermal Area Pages using the property "FuturePlans" Showing 3 pages using this property. B Beowawe Hot Springs Geothermal Area + With the award of the $2 million USDOE ARRA grant and the industry match of $4 million, the 1.5 MW binary bottoming-cycle plant is on-line. Once the plant is fully operational it will provide nonproprietary data to the National Geothermal Data System (NGDS) and the Department of Energy Geothermal Technologies Program (DOE GTP) for a minimum of two years. C Chena Geothermal Area + In 2011, Chena Hot Springs was awarded a $900,000 grant from the Fairbanks North Star Borough (FNSB) for the development to help locate and develop high-temperature resources in the Borough. The total cost of the project that is not covered by the grant is $1.25 Million. (Frey, 2011) In the mid 2000's geochemical research indicated that there may be resources in the 200°F range. fP If such resources do exist, the plan will be to expand the capacity of Chena Power. This would allow for the expansion of the resort, and the potential to finally tie Chena into the local power grid. Tying into the grid would provide clean energy to Golden Valley Electric Association and FNSB residents. Chena currently has the required equipment for a 250 kW addition when additional heat is able to be recovered. (Frey, 2011) To help gain public support for geothermal power that utilizes low temperature resources, Chena Power has built a mobile 0.28 MW ORC (organic rankine cycle) system. Chena built the mobile ORC system with the help of United Technologies (UTC) to be an entirely mobile and self contained unit by mounting the ORC system on two 45 foot step deck trailers. The two trailers are placed side by side when operational. Chena Power is currently continuing to deploy the mobile unit state to state to extract energy from the waste water that is rejected from an oil well.

205

Nuclear power plant design analysis  

SciTech Connect

Information concerning the engineering aspects of the design of commercial nuclear power plants is presented. Topics discussed include: electric utility economics; nuclear plant cconomics; thermal-transport systems and core design; nuclear analysis methods; safcty requirements; fuel-system analysis; dcsign considerations; and optimization approaches. (DCC)

Sesonske, A.

1973-01-01T23:59:59.000Z

206

Water requirements for future energy production in California  

DOE Green Energy (OSTI)

This assessment estimates the impact of future national energy development on water resources. Energy development would include various types of electric power plants, production of synthetic fuels, coal and uranium mining, oil and gas extraction, and other conversion processes. The Energy Analysis Program at LBL has conducted this analysis for its assigned region, the states of California and Nevada. The objective of this study is to determine water requirements of energy technologies and their implications, with emphasis on emerging technologies for aggregated subareas (ASA) in California. The first phase of this study provides energy-supply projections and corresponding demands for water resources as perceived by regional and state groups responsible for or involved in energy planning in California and Nevada. The second phase of the study is designed to calculate the water requirements for the levels of energy development in California as specified by a Department of Energy scenario for the year 2000 and by utility projections as reported by the Federal Power Commission for 1985. The implications of these water requirements on competing water users are explored briefly. 24 references.

Sathaye, J.A.; Ritschard, R.L.

1977-05-01T23:59:59.000Z

207

Integral Fast Reactor: A future source of nuclear energy  

SciTech Connect

Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality.

Southon, R.

1993-09-01T23:59:59.000Z

208

The Future of Atomic Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

the synthesis of plutonium produce energy in amounts comparable to that of the largest hydro- electric plants. The energy that is produced in the piles built until now, ,...

209

Historical plant cost and annual production expenses for selected electric plants, 1982  

SciTech Connect

This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants.

1984-08-20T23:59:59.000Z

210

Rare Plants of the ORR  

NLE Websites -- All DOE Office Websites (Extended Search)

or applying herbicides to maintain rights-of-way can kill plants, and changes in adjacent land use can impact a population. Other threats include illegal harvesting of some...

211

ALARA at nuclear power plants  

SciTech Connect

Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

Baum, J.W.

1990-01-01T23:59:59.000Z

212

AVESTAR Center for Operational Excellence of Electricity Generation Plants  

Science Conference Proceedings (OSTI)

To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

Zitney, Stephen

2012-08-29T23:59:59.000Z

213

Medicinal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

214

Prompt-Month Energy Futures  

Gasoline and Diesel Fuel Update (EIA)

Prompt-Month Energy Futures Prompt-Month Energy Futures Prices and trading activity shown are for prompt-month (see definition below) futures contracts for the energy commodities listed in the table below. Note that trading for prompt-month futures contracts ends on different dates at the end of the month for the various commodities; therefore, some commodity prices may reference delivery for the next month sooner than other commodity prices. Product Description Listed With Crude Oil ($/barrel) West Texas Intermediate (WTI) light sweet crude oil delivered to Cushing, Oklahoma More details | Contract specifications New York Mercantile Exchange (Nymex) Gasoline-RBOB ($/gallon) Reformulated gasoline blendstock for oxygenate blending (RBOB) gasoline delivered to New York Harbor More details | Contract specifications Nymex

215

CURRENT AND FUTURE IGCC TECHNOLOGIES:  

NLE Websites -- All DOE Office Websites (Extended Search)

future. On the other hand, the projected demand for electricity coupled with high fuel costs (particularly high oil prices and volatile natural gas prices) presents a near-term...

216

AUTO ID FUTURE - FREQUENCY AGNOSTIC  

E-Print Network (OSTI)

Identification of information is one key to the development of intelligent decision systems of the future. Frequency agnostic automatic identification is only one step in the physical world to make physical objects identify ...

DATTA, SHOUMEN

217

The Future of Housing - TMS  

Science Conference Proceedings (OSTI)

May 20, 2008 ... From climate change to power deregulation and suburban sprawl to the rapid ... This presentation speaks directly to our future housing needs and ... using the 2007 Carnegie Mellon Solar Decathlon house as a case study.

218

Interim performance criteria for photovoltaic energy systems. [Glossary included  

DOE Green Energy (OSTI)

This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

1980-12-01T23:59:59.000Z

219

Water is used for many purposes, includ-ing growing crops, producing copper,  

E-Print Network (OSTI)

WATER USES Water is used for many purposes, includ- ing growing crops, producing copper, generating electricity, watering lawns, keeping clean, drinking and recreation. Bal- ancing the water budget comes down of the water budget. Reducing demand involves re- ducing how much water each person uses, lim- iting the number

220

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. and South Korea Sign Agreement on FutureGen Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Korea Sign Agreement on FutureGen Project South Korea Sign Agreement on FutureGen Project U.S. and South Korea Sign Agreement on FutureGen Project June 26, 2006 - 2:34pm Addthis Korea to Participate in World's First Integrated Carbon Sequestration and Hydrogen Production Research Power Plant WASHINGTON, DC - U.S. Energy Secretary Samuel W. Bodman and South Korean Minister of Commerce, Industry & Energy, Chung Sye Kyun, today signed an agreement making South Korea the second country, after India, to join the United States in the FutureGen International Partnership. Korea has pledged $10 million to help build and operate the world's first zero-emissions coal-fired power plant and will sit on a government steering committee to oversee this initiative. Once operational, this plant will remove and sequester carbon dioxide while producing electricity and

222

Water Power for a Clean Energy Future (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

223

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

Science Conference Proceedings (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

224

Current Status and the Future of the Irradiation Services in the HANARO Reactor  

SciTech Connect

As a central plant of the Korea Atomic Energy Research Institute, Hi-flux Advanced Neutron Application Reactor, the HANARO, has been playing an important role in nuclear technology development and the utilization of radiation technology. HANARO's reputation such as a stable operation, build up of various research results and the support of the government picks up more research needs. Major utilizations of the HANARO reactor in Korea have focused on its irradiation service. It offers various types of irradiation tests for fuel and materials, which provides us with very useful information for designing and evaluating reactor materials. A number of irradiation capsules have been developed and installed in HANARO. Necessary technologies regarding HANARO are still being developed. The on-going and future researches, especially, about fuel and material irradiation including university programs and the current utilization statistics of the HANARO research reactor, are described in this article.

Kang, Y-H.; Kim, B-G.; Cho, M-S.; Choo, K-N.; Kim, Y-J.

2004-10-06T23:59:59.000Z

225

Plant critical concept  

SciTech Connect

The achievement of operation and maintenance (O&M) cost reductions is a prime concern for plant operators. Initiatives by the nuclear industry to address this concern are under way and/or in development. These efforts include plant reliability studies, reliability-centered maintenance, risk ranking and testing philosophies, performance-based testing philosophies, graded quality assurance, and so forth. This paper presents the results of an effort to develop a methodology that integrates and applies the common data and analysis requirements for a number of risk-based and performance-based initiatives. This initial phase of the effort applied the methodology and its results to two initiatives. These were the procurement function and the preventive maintenance function. This effort integrated multiple programs and functions to identify those components that are truly critical from an integrated plant performance perspective. The paper describes the scope of the effort, the development of a methodology to identify plant critical components, and the application of these results to the maintenance rule compliance, preventive maintenance, and procurement functions at the candidate plant.

O`Regan, P.J. [Yankee Atomic Electric Co., Bolton, MA (United States)

1995-12-31T23:59:59.000Z

226

Poisonous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

227

cDNA encoding a polypeptide including a hevein sequence  

DOE Patents (OSTI)

A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.

Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

1999-05-04T23:59:59.000Z

228

CDNA encoding a polypeptide including a hevein sequence  

DOE Patents (OSTI)

A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

1995-03-21T23:59:59.000Z

229

cDNA encoding a polypeptide including a hevein sequence  

DOE Patents (OSTI)

A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

1999-05-04T23:59:59.000Z

230

cDNA encoding a polypeptide including a hevein sequence  

DOE Patents (OSTI)

A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.

Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

1995-03-21T23:59:59.000Z

231

HigHligHts Fossil Energy Techline, "DOE Announces Restructured FutureGen  

NLE Websites -- All DOE Office Websites (Extended Search)

Announces Restructured FutureGen Announces Restructured FutureGen Approach to Demonstrate Carbon Capture and Storage Technology at Multiple Clean Coal Plants." On January 30, US Secretary of Energy Samuel W. Bodman announced a restructured approach to the FutureGen project, which involves the demonstration of carbon capture and storage (CCS) t e c h n o l o g y a t s e v e r a l commercial-scale Integrated Gasification Combined Cycle (IGCC) power plants. The US Department of Energy (DOE) said that the reorganized approach caps their financing at no more than the plant's CCS component, allowing for plants to be operational as early as 2015. Under this restructured approach, DOE believes that at least twice the amount of carbon dioxide

232

Future risks of satellite-based tracking  

Science Conference Proceedings (OSTI)

This study finds out if in the future, some special risks concerning satellite-based tracking and navigation occur. To find out possible future risks, future research methods such as scenarios were being used. Forecasting the future is impossible, but ... Keywords: future research, risk management, satellite-base tracking, satellite-based navigation, tracking

Miikka Ohisalo; Otto Tiuri; Tatu Urpila; Jyri Rajamäki

2011-03-01T23:59:59.000Z

233

Estimates of deep drainage rates at the U.S. Department of Energy Pantex Plant, Amarillo, Texas  

Science Conference Proceedings (OSTI)

In FY 1996, the Pacific Northwest National Laboratory (PNNL) provided technical assistance to Battelle Columbus Operations (BCO) in their ongoing assessment of contaminant migration at the Pantex Plant in Amarillo, Texas. The objective of this report is to calculate deep drainage rates at the Pantex Plant. These deep drainage rates may eventually be used to predict contaminant loading to the underlying unconfined aquifer for the Pantex Plant Baseline Risk Assessment. These rates will also be used to support analyses of remedial activities involving surface alterations or the subsurface injection withdrawal of liquids or gases. The scope of this report is to estimate deep drainage rates for the major surface features at the Pantex Plant, including ditches and playas, natural grassland, dryland crop rotation, unvegetated soil, and graveled surfaces. Areas such as Pantex Lake that are outside the main plant boundaries were not included in the analysis. All estimates were derived using existing data or best estimates; no new data were collected. The modeling framework used to estimate the rates is described to enable future correlations, improvements, and enhancements. The scope of this report includes only data gathered during FY 1996. However, a current review of the data gathered on weather, soil, plants, and other information in the time period since did not reveal anything that would significantly alter the results presented in this report.

Fayer, M.J.; Richmond, M.C.; Wigmosta, M.S. [Pacific Northwest National Lab., Richland, WA (United States); Kelley, M.E. [Battelle Environmental Restoration Dept., Columbus, OH (United States)

1998-04-01T23:59:59.000Z

234

February 27, 2003: Abraham and Dobriansky announce "FutureGen" | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2003: Abraham and Dobriansky announce "FutureGen" 7, 2003: Abraham and Dobriansky announce "FutureGen" February 27, 2003: Abraham and Dobriansky announce "FutureGen" February 27, 2003: Abraham and Dobriansky announce "FutureGen" February 27, 2003 Secretary Abraham and Under Secretary of State for Global Affairs Paula Dobriansky announce the formation of an ambitious new international effort to advance carbon capture and storage technology as a way to reduce greenhouse gas emissions. The Secretary states that the U.S. will lead a $1 billion, 10-year public-private-international effort to construct the world's first fossil fuel, pollution-free power plant, known as "FutureGen." Designed by an industrial consortium, the plant will turn coal into a hydrogen-rich gas, rather than burning it directly. The hydrogen

235

DOE Takes Next Steps with Restructured FutureGen Approach | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Restructured FutureGen Approach with Restructured FutureGen Approach DOE Takes Next Steps with Restructured FutureGen Approach May 7, 2008 - 11:30am Addthis Announces Draft Solicitation for Multiple Commercial-Scale Clean Coal Plants with Sequestration WASHINGTON, DC - The U.S. Department of Energy (DOE) today released a draft Funding Opportunity Announcement (FOA) to solicit public input on the demonstration of multiple commercial-scale Integrated Gasification Combined Cycle (IGCC) or other clean coal power plants with cutting-edge carbon capture and storage (CCS) technology under the Department's restructured FutureGen approach. The draft solicitation outlines the planned scope of the project, evaluation criteria, terms and conditions, and cost sharing requirements for public-private cooperation under FutureGen.

236

NETL: News Release - DOE Estimates Future Water Needs for Thermoelectric  

NLE Websites -- All DOE Office Websites (Extended Search)

December 6, 2007 December 6, 2007 DOE Estimates Future Water Needs for Thermoelectric Power Plants 2007 Analysis Adds Projected Water Requirements for Carbon Capture WASHINGTON, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has released a 2007 update to its groundbreaking study, Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements. The updated analysis increases understanding of regional and national water needs and usage in the power industry, and provides input for research and development aimed at water-use reduction. MORE INFO Link to the updated study NETL's Water-Energy Interface web page New in this year's report is a response to heightened concerns over atmospheric carbon dioxide. The report examines the possibility that future

237

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

against the risk of energy price fluctuations. In theory,The poor track record of energy price forecasting models hasof information about future energy prices, including most

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

238

Greenhouse of the future. Final report  

Science Conference Proceedings (OSTI)

This greenhouse of the future is located at the Center for Regenerative Studies (CRS) at Cal Poly Pomona. The building design was driven by desired environmental conditions. The primary objective was to keep the interior space warm during winter for the breeding of fish and other greenhouse activities, especially in the winter. To do this, a highly insulating envelope was needed. Straw bales provide excellent insulation with an R-value of approximately 50 and also help solve the environmental problems associated with this agricultural waste product. A summary of the construction progress, construction costs and operating costs are included.

Cavin, B. III

1998-07-03T23:59:59.000Z

239

Energy Options for the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Options for the Future * John Sheffield, 1 Stephen Obenschain, 2,12 David Conover, 3 Rita Bajura, 4 David Greene, 5 Marilyn Brown, 6 Eldon Boes, 7 Kathyrn McCarthy, 8 David Christian, 9 Stephen Dean, 10 Gerald Kulcinski, 11 and P.L. Denholm 11 This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geo- thermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion. KEY WORDS: Energy; fuels; nuclear; fusion; efficiency; renewables.

240

Water for future Mars astronauts?  

NLE Websites -- All DOE Office Websites (Extended Search)

Water for future Mars astronauts? Water for future Mars astronauts? Water for future Mars astronauts? Within its first three months on Mars, NASA's Curiosity Rover saw a surprising diversity of soils and sediments along a half-kilometer route that tell a complex story about the gradual desiccation of the Red Planet. September 26, 2013 This image shows two areas on Mars in a location named Rocknest that were scooped out by the Curiosity Rover last year. Researchers took samples of the areas to determine whether they were wetter underneath or whether they dried out after scooping. Researchers found that soil moisture was consistent at the surface and underneath. Nevertheless, there is a small amount of water in the soil that astronauts might be able to use to sustain themselves. These finding and others are outlined in a series of papers appearing today in the Journal "Science." (Image credit: NASA)

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen Future Act of 1996  

NLE Websites -- All DOE Office Websites (Extended Search)

4-271-OCT. 9, 1996 4-271-OCT. 9, 1996 HYDROGEN FUTURE ACT OF 1996 110 STAT. 3304 PUBLIC LAW 104-271-OCT. 9, 1996 Oct. 9, 1996 [H.R. 4138] Hydrogen Future Act of 1996. 42 USC 12401 note. 42 USC 7238 note. Public Law 104-271 104th Congress An Act To authorize the hydrogen research, development, and demonstration programs of the Department of Energy, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Hydrogen Future Act of 1996''. SEC. 2. DEFINITIONS. For purposes of titles II and III- (1) the term ''Department'' means the Department of Energy; and (2) the term ''Secretary'' means the Secretary of Energy. TITLE I-HYDROGEN SEC. 101. PURPOSES AND DEFINITIONS.

242

Texas Industries of the Future  

E-Print Network (OSTI)

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. The bottom line for Texas industry is savings in energy and materials, cost-effective environmental compliance, increased productivity, reduced waste, and enhanced product quality. The state program leverages the programs and tools of the federal Department of Energy's Industries of the Future. At the federal level, there are nine Industries of the Future: refining, chemicals, aluminum, steel, metal casting, glass, mining, agriculture, and forest products. These industries were selected nationally because they supply over 90% of the U.S. economy's material needs and account for 75% of all energy use by U.S. industry. In Texas, three IOF sectors, chemicals, refining and forest products, account for 86% of the energy used by industry in this state.

Ferland, K.

2002-04-01T23:59:59.000Z

243

FUTURE POWER GRID INITIATIVE Decision Support for Future  

E-Print Network (OSTI)

data to generate and share mission-critical analysis and insights. November 2012 PNNL-SA-90020 Gariann Gelston Pacific Northwest National Laboratory (509) 372-4480 gariann.gelston@pnnl.gov Angie Dalton Pacific Northwest National Laboratory (509) 371-6607 angela.dalton@pnnl.gov ABOUT FPGI The Future Power Grid

244

Rethinking the Car of the Future  

E-Print Network (OSTI)

Rethinking the Car of the Future Darnel Sperhng Reprint UCTC~flaUon or Rethinking the Car of the Future Daniel SperlingSPERLING Rethinking the Car of the Future I I The governmen>

Sperling, Daniel

2001-01-01T23:59:59.000Z

245

Rethinking the Car of the Future  

E-Print Network (OSTI)

Rethinking the Car of the Future Darnel Sperhng Reprint UCTC~flaUon or Rethinking the Car of the Future Daniel SperlingSPERLING Rethinking the Car of the Future I I The governmen>

Sperling, Daniel

1996-01-01T23:59:59.000Z

246

Dirty kilowatts: America's most polluting power plants  

SciTech Connect

In 2006, the US EPA tracked more than 1,400 fossil-fired power plants of varying sizes through its Acid Rain Program. This report ranks each of the 378 largest plants (generating at least 2 million megawatt-hours in 2006) for which both the most recent EPA emissions data and Energy Information Administration (EIA) electric generation data are available. The report ranks each plant based on emission rates, or pounds of pollutant for each megawatt-hour (or million megawatt-hours, in the case of mercury) the plant produced. It ranks the top fifty power plants polluters for sulfur dioxide, nitrogen oxides, carbon dioxide, and mercury. A complete listing of all 378 plants is included as Appendix A. Appendix B contains overheads of an NETL presentation: Tracking new coal-fired power plants - coal's resurgence in electric power generation, 24 January 2007. The 12 states with the heaviest concentrations of the dirtiest power plants, in terms of total tons of carbon dioxide emitted, are: Texas (five, including two of the top 10 dirtiest plants); Pennsylvania (four); Indiana (four, including two of the top 10 dirtiest plants); Alabama (three); Georgia (three, including two of the top three dirtiest plants); North Carolina (three); Ohio (three); West Virginia (three); Wyoming (two); Florida (two); Kentucky (two); and New Mexico (two). Carbon dioxide emissions from power plants are now at roughly 2.5 billion tons per year. Power plants are responsible for about 30%-40% of all man-made CO{sub 2} emissions in the USA. Power plants, especially those that burn coal, are by far the largest single contributor of SO{sub 2} pollution in the United States. Power plant mercury emissions remain steady as compared to previous years. A searchable database ranking 378 U.S. power plants on carbon dioxide, sulfur dioxide, nitrogen oxide and mercury pollution is available online at http://www.dirtykilowatts.org. 22 refs., 8 tabs., 2 apps.

NONE

2007-07-15T23:59:59.000Z

247

Bagdad Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bagdad Plant Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was planning to make the following closing comments at the DOE Public Meeting on February 23, 2012, but since the extended building evacuation caused the meeting to run well past the scheduled completion time I decided to submit my comments directly to you for the record.

248

Postgraduate Handbook Courses, programs and any arrangements for programs including staff  

E-Print Network (OSTI)

corn oil; Camelina oil. One of the following: Trans-Esterification, Esterification, Hydrotreating-process renewable biomass and petroleum. 5 POTENTIALLY RELEVANT I Naphtha, LPG Camelina oil Hydrotreating 5 including peat, dung, plant-oils, bees wax, rendered animal fats, draft animals, natural derived sources

Benatallah, Boualem

249

Future Energy Yorkshire | Open Energy Information  

Open Energy Info (EERE)

Future Energy Yorkshire Jump to: navigation, search Name Future Energy Yorkshire Place Leeds, United Kingdom Zip LS11 5AE Sector Services Product Leeds-based, wholly owned...

250

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Future Science & Technology Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs...

251

Aluminum: Industry of the future  

SciTech Connect

For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

1998-11-01T23:59:59.000Z

252

Debris and Future Space Activities  

E-Print Network (OSTI)

Debris and Future Space Activities Prof. Joel R. Primack Physics Department University eleven year cycle, it heats the upper atmosphere and makes it expand so that debris and spacecraft in low which overflows occasionally and washes only the lowest hillsides clear of debris. Debris in orbit

California at Santa Cruz, University of

253

Pheromones, probabilities, and multiple futures  

Science Conference Proceedings (OSTI)

Most agent-based modeling techniques generate only a single trajectory in each run, greatly undersampling the space of possible trajectories. Swarming agents can explore many alternative futures in parallel, particularly when they interact through digital ... Keywords: Markov decision process, Monte Carlo tree search, agent-based modeling, polyagent, probability distributions, swarming

H. Van Dyke Parunak

2010-05-01T23:59:59.000Z

254

Natural Gas Futures Prices (NYMEX)  

U.S. Energy Information Administration (EIA) Indexed Site

120313 View History Spot Price Henry Hub 3.871 3.871 3.871 3.853 1997-2013 Futures Prices Contract 1 3.818 3.895 3.895 3.954 3.988 3.976 1994-2013 Contract 2 3.864 3.899 3.899...

255

Office of Legacy Management Buildings Included on EMS Reports...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Buildings Included on EMS Reports Office of Legacy Management Buildings Included on EMS Reports Office of Legacy Management Buildings Included on EMS...

256

Blue Ribbon Commission on America's Nuclear Future Charter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blue Ribbon Commission on America's Nuclear Future Charter Blue Ribbon Commission on America's Nuclear Future Charter Blue Ribbon Commission on America's Nuclear Future Charter March 2, 2010 - 12:00am Addthis The Secretary of Energy, acting at the direction of the President, is establishing the Commission to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, including all alternatives for the storage, processing, and disposal of civilian and defense used nuclear fuel, high-level waste, and materials derived from nuclear activities. Specifically, the Commission will provide advice, evaluate alternatives, and make recommendations for a new plan to address these issues, including: Evaluation of existing fuel cycle technologies and R&D programs. Criteria for evaluation should include cost, safety, resource utilization

257

Primer on Flexible Operations in Fossil Plants  

Science Conference Proceedings (OSTI)

This primer describes the significant changes that have occurred over the past decade in the duty cycles of fossil power plants and the implications for plant equipment and costs. These changes include the increasing shift in coal-fired and natural-gas-fired power plants from high-capacity-factor, baseloaded operation to various modes of flexible operation, including load-following and low-load operation. ...

2013-09-27T23:59:59.000Z

258

History and future of spark ignition engines  

SciTech Connect

A report on the history and future of spark ignition engines for automobile propulsion is presented, with particular emphasis on their environmental impact. Topics covered include: factors affecting early decisions in favor of spark ignition engines and influencing continued reliance on spark ignition engines; the early history of automobile engines, including propulsion by steam, electricity, spark ignition, and diesel power; and contemporary alternative power sources such as the stratified charge engine and the Wankel rotary combustion engine. There appear to be no equivalents in knowledge, experience, or data with alternative engine designs to allow for the prediction that a change from spark ignition propulsion to one of the possible alternatives would be beneficial either in terms of emission reduction or performance and fuel economy. The stratified charge engine, however, appears to offer great promise for adequate emission control with good fuel economy and performance characteristics; moreover, it has the significant advantage of being an incremental change from the current spark ignition engine.

1973-01-01T23:59:59.000Z

259

Geothermal Power Plants in China  

DOE Green Energy (OSTI)

Nine small experimental geothermal power plants are now operating at six sites in the People's Republic of China. These range in capacity from 50 kW to 3MW, and include plants of the flash-steam and binary type. All except two units utilize geofluids at temperatures lower than 100 C. The working fluids for the binary plants include normal- and iso-butane, ethyl chloride, and Freon. The first geothermal plant came on-line in 1970, the most recent ones in 1979. Figure 1 shows the location of the plants. Major cities are also shown for reference. Table 1 contains a listing of the plants and some pertinent characteristics. The total installed capacity is 5,186 kW, of which 4,386 kW is from flash-steam units. In the report, they given an example of the results of exploratory surveys, and show system diagrams, technical specifications, and test results for several of the power plants.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

260

Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling  

Science Conference Proceedings (OSTI)

A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.

Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.

2003-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Evaluation of methods for seismic analysis of mixed-oxide fuel fabrication plants  

SciTech Connect

Guidelines are needed for selecting appropriate methods of structural analyses to evaluate the seismic hazard of mixed-oxide fuel fabrication plants. This study examines the different available methods and their applicability to fabrication plants. These results should provide a basis for establishing guidelines recommending methods of analysis to ensure safe design against seismic hazards. Using the Westinghouse Recycle Fuels Plant as representative of future mixed-oxide fuel fabrication plants, critical structures and equipment (systems, components, and piping/ducting) were identified. These included the manufacturing building and 11 different pieces of equipment. After examination of the dynamic response characteristics of the building and the different methods available to analyze equipment, appropriate methods of analyses were recommended. Because critical equipment analysis and test methods generally use floor-response spectra as their seismic input loading, several methods used to generate floor spectra were also examined. These include the time-history approach and the Kapur and Biggs approximate methods. The examination included the effect of site characteristics and both horizontal and vertical structural response. (auth)

Tokarz, F.J.; Arthur, D.F.; Murray, R.C.

1975-10-01T23:59:59.000Z

262

Spring 2009 Engineering Our Future  

E-Print Network (OSTI)

of whirring wind turbines JeffSammons The Energy Issue: Going Green Donovan Maddox Chair Created Cash Chair and Computer Engineering. Grid-connected wind turbines, solar power plants, and other renewable sources have, to install, maintain, and repair wind turbines and related equipment. The program offers Wind Technician

Zhang, Yuanlin

263

Future of Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

Nuckolls, J H; Wood, L L

2002-09-04T23:59:59.000Z

264

Wood Burning Combined Cycle Power Plant  

E-Print Network (OSTI)

A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas turbine combined cycle system that obtains its heat input from a high temperature, high pressure ceramic air heater burning wood waste products as a fuel. This paper presents the results of the design study including the cycle evaluation and a description of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step forward in wood-fueled power plants.

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

265

Plant Rosettes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rosettes Rosettes Nature Bulletin No. 662 January 13, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist PLANT ROSETTES In winter our landscape is mostly leafless trees silhouetted against the sky, and the dead stalks of wildflowers, weeds and tall grasses -- with or without a blanket of snow. Some snows lie on the ground for only a few days. Others follow one after another and cover the ground with white for weeks at a time. Soon the eye begins to hunger for a glimpse of something green and growing. Then, in sunny spots where the snow has melted or where youngsters have cleared it away, there appear clusters of fresh green leaves pressed tight to the soil. Whether it is a dandelion in the lawn, a pansy in a flower border, or a thistle in a vacant lot, such a typical leaf cluster -- called a winter rosette -- is a ring of leaves around a short central stem. The leaves are narrow at the base, wider toward the tip, and spread flat on the ground with little or no overlap. This arrangement gives full exposure to sunlight and close contact with the warmer soil beneath. Such plants continue to grow, sometimes faster, sometimes slower, even under snow, throughout winter.

266

Future Earth: International Coordination of Research for Global  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Earth: International Coordination of Research for Global Sustainability Print E-mail Future Earth: International Coordination of Research for Global Sustainability Print E-mail Monday, January 28, 2013 On Saturday, February 16, 2013 from 1:30-4:30pm the American Association for the Advancement of Science (AAAS) will be holding a symposium to present Future Earth, a new 10-year international initiative on integrated global environmental change research. Future Earth is mobilizing the global scientific community, funders, and users of research to define together and address the most pressing research questions on sustainable development and its integrated environmental, social, and economic dimensions. This includes strengthened links between science, policy, and society. The discussion on February 16th will address international coordination of research and funding; co-designing research with funders, scientists, and users; and the role of science in bridging to policy and practice. For more information about the symposium please click here

267

Winning the Future with a Responsible Budget | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winning the Future with a Responsible Budget Winning the Future with a Responsible Budget Winning the Future with a Responsible Budget February 11, 2011 - 2:24pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy As part of President Obama's commitment to winning the future, the Department of Energy will make critical investments in science, research and innovation that will create jobs, grow the economy, and position America to lead the global clean energy economy. Next week, the Administration will unveil its budget for FY 2012, which will include over $8 billion for research, development, and deployment investments in clean energy technology programs. But while we are making these investments, we are taking responsible steps to cut wasteful spending and reduce expenses. Fiscal responsibility demands shared sacrifice - it means cutting

268

Status and Future of TRANSCOM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steve Casey Steve Casey U.S. Dept. of Energy Carlsbad Field Office ï‚¡ Current Program status g ï‚¡ Upcoming Changes ï‚¡ Glimpse at future options ï‚¡ DOE Commitments 2 6/3/2010 2 ï‚¡ Current Program status g * Computer Based Training * User Support Site * Program Support * Program Accomplishments U i Ch ï‚¡ Upcoming Changes ï‚¡ Glimpse at future options ï‚¡ DOE Commitments 3 ï‚¡ 1 st release - December 2009 9 ï‚¡ Covers general user training ï‚¡ Allows organizations access to training without waiting for a traditional class ï‚¡ Computer security module to be added Autumn 2010 Autumn 2010 ï‚¡ Shipper/Scheduler training - being considered 4 6/3/2010 3 ï‚¡ Completely overhauled in p y 2009 ï‚¡ Features are user friendly ï‚¡ Layout more intuitive

269

Brookhaven Physics: Into the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics: Into the Future Physics: Into the Future To remain at the frontier of science, Brookhaven is continually evaluating its research programs and planning new or revised investigations in areas that the U.S. Department of Energy identifies as national science priorities and that make use of Brookhaven scientists' interests and strengths. STAR detector (L) and PHENIX detector After discovering quark-gluon plasma, physicists will proceed to measure details of its many intriguing characteristics and properties, and continue to investigate many other aspects of heavy ion physics and spin physics. To undertake these tasks, Brookhaven is planning to upgrade RHIC to RHIC-II by increasing the facility's luminosity, or collision rate, by a factor of ten, thereby increasing the rate of plasma production and the ability to

270

Issues and Future Research Directions  

E-Print Network (OSTI)

RFID technology is currently considered as a key enabler of supply chain transformation. However, very little has been written about the deployment and use of RFID in the dairy industry. Drawing on an extensive literature review and a case example, this exploratory study seeks to present current applications and issues related to RFID’s adoption in the dairy industry and discuss future research directions.

S. F. Wamba; Alison Wicks; Samuel Fosso Wamba, Ph.D.; Alison Wicks Ph. D

2010-01-01T23:59:59.000Z

271

Why Time is Future Oriented  

E-Print Network (OSTI)

We assume that the universe consists of clusters which in turns have sub-clusters and the sub-clusters have sub-subclusters and so on. Confining to three-dimensional space, it is shown that the universe is expanding if entropy of the universe increases. It is also shown that clocks slow down when time progresses towards future. Our model also justifies the big bang theory.

Shahid N. Afridi; M. Khalid Khan

2004-12-09T23:59:59.000Z

272

Natural Gas Futures Prices (NYMEX)  

U.S. Energy Information Administration (EIA) Indexed Site

4.0 2.75 1997-2012 NGL Composite 12.91 15.20 8.99 11.83 15.12 10.98 2007-2012 Futures Prices Contract 1 7.114 8.899 4.159 4.382 4.03 2.83 1994-2012 Contract 2 7.359 9.014 4.428...

273

Natural Gas Futures Prices (NYMEX)  

U.S. Energy Information Administration (EIA) Indexed Site

13 View History Spot Price Henry Hub 3.69 3.55 3.47 3.62 3.68 3.87 1997-2013 Futures Prices Contract 1 3.64 3.56 3.50 3.60 3.66 3.87 1994-2013 Contract 2 3.76 3.65 3.57 3.65 3.71...

274

Natural Gas Futures Prices (NYMEX)  

U.S. Energy Information Administration (EIA) Indexed Site

3.62 3.43 3.62 3.68 1997-2013 NGL Composite 9.48 9.06 9.57 10.21 2009-2013 Futures Prices Contract 1 4.07 3.81 3.64 3.41 3.62 3.65 1994-2013 Contract 2 4.11 3.82 3.64 3.45 3.70...

275

Clean coal reference plants: Atmospheric CFB. Topical report, Task 1  

Science Conference Proceedings (OSTI)

The Clean Coal Technology Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the US energy marketplace with a number of advanced, more efficient and environmentally responsive coal-using technologies. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which correspond to the center`s areas of technology development, including atmospheric fluidized bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. A measure of success in the CCT program will be the commercial acceptance of the new technologies being demonstrated. The dissemination of project information to potential users is being accomplished by producing a series of reference plant designs which will provide the users a basis for the selection of technologies applicable to their future energy requirements. As a part of DOE`s monitoring and evaluation of the CCT Projects, Gilbert/Commonwealth (G/C) has been contracted to assist in this effort by producing the design of a commercial size Reference Plant, utilizing technologies developed in the CCT Program. This report, the first in a series, describes the design of a 400 MW electric power plant, utilizing an atmospheric pressure, circulating fluidized bed combustor (ACFB) similar to the one which was demonstrated at Colorado-Ute`s Nucla station, funded in Round 1 of the CCT Program. The intent of the reference plant design effort was to portray a commercial power plant with attributes considered important to the utility industry. The logical choice for the ACFB combustor was Pyropower since they supplied the ACFB for the Nucla Project.

Rubow, L.N.; Harvey, L.E.; Buchanan, T.L.; Carpenter, R.G.; Hyre, M.R.; Zaharchuk, R.

1992-06-01T23:59:59.000Z

276

future science group 451ISSN 1759-726910.4155/BFS.10.18 2010 Future Science Ltd SchoolofForestResources&EnvironmentalScience,EcosystemScienceCenter,MichiganTechnologicalUniversity,1400TownsendDrive,Houghton,  

E-Print Network (OSTI)

future science group 451ISSN 1759-726910.4155/BFS.10.18 © 2010 Future Science Ltd 1 SchoolofForestResources&EnvironmentalScience,EcosystemScienceCenter,Michigan or the distillation of liquid fuels such as ethanol and biodiesel from grains and plant seeds with high oil content understanding of scale-dependent relationships (within and among fields; Figure 2) between diversity

Gratton, Claudio

277

Economic Growth in Urban Regions: Implications for Future Transportation  

E-Print Network (OSTI)

Implications for Future Transportation Robert Cervero,implications for future transportation policy. The collapseimplications for future transportation policy. Smart

Cervero, Robert

2006-01-01T23:59:59.000Z

278

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Conference Proceedings (OSTI)

Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

Yusibani, Elin [Research Center for Hydrogen Industrial Use and Storage, AIST (Japan); Department of Physics, Universitas Syiah Kuala (Indonesia); Kamil, Insan; Suud, Zaki [Department of Physics, Institut Teknologi Bandung (Indonesia)

2010-06-22T23:59:59.000Z

279

Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration  

SciTech Connect

Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.

Wu, C.H.; Bernard, S.; Andersen, G.L.; Chen, W.

2009-03-01T23:59:59.000Z

280

FutureGen Case 2-1-1, 2.1.2 Topical Report  

NLE Websites -- All DOE Office Websites (Extended Search)

other liquid products or chemical feedstocks that can be shipped to a conventional oil refinery or chemical plant. * The system does not include carbon capturesequestration...

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

282

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

283

NETL: News Release - PPL Corporation Joins FutureGen Industrial Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

23, 2006 23, 2006 PPL Corporation Joins FutureGen Industrial Alliance Washington, DC - The FutureGen Industrial Alliance today announced that power generator PPL Corporation has joined the non-profit consortium of global electric utilities and coal companies working with the U.S. Department of Energy to site and develop FutureGen, the world's cleanest coal-fueled power plant. MORE INFO FutureGen Industrial Alliance web site PPL becomes the tenth member of the Alliance, which is facilitating design, construction and operation of the first "zero-emissions" coal-fueled power plant and hydrogen production facility with integrated carbon capture and sequestration. "PPL's participation demonstrates continued interest among U.S. and international energy companies to work toward developing solutions to meet

284

Trojan Nuclear Power Plant Reactor Vessel and Internals Removal: Trojan Nuclear Plant Decommissioning Experience  

Science Conference Proceedings (OSTI)

One goal of the EPRI Decommissioning Technology Program is to capture the growing utility experience in nuclear plant decommissioning activities for the benefit of other utilities facing similar challenges in the future. This report provides historical information on the background, scope, organization, schedule, cost, contracts, and support activities associated with the Trojan Nuclear Plant Reactor Vessel and Internals Removal (RVAIR) Project. Also discussed are problems, successes, and lessons learned...

2000-10-16T23:59:59.000Z

285

U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)  

Reports and Publications (EIA)

Nuclear power plants generate approximately 20 percent of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of GHG regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

Information Center

2010-05-11T23:59:59.000Z

286

Sequencing, Finishing and Analysis in the Future Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequencing, Finishing and Analysis in the Future Meeting Sequencing, Finishing and Analysis in the Future Meeting Wednesday - Friday, May 29 - 31, 2013 La Fonda Hotel in Santa Fe, NM Overview "Sequencing, Finishing and Analysis in the Future" (SFAF) is an annual meeting dedicated to bringing together experts in the field of genomic sequencing, finishing and analysis-including representatives from the industries that serve this specialized scientific community. The meeting focuses on laboratory methods and computational tools used to help sequence, assemble, and finish genomes, including new sequencing technologies, which promise high-throughput results by sequencing more base-pairs per run at longer read-lengths. In the past, companies have presented different techniques they have developed to achieve maximum balance for researchers.

287

Ideas for future liquid Argon detectors  

E-Print Network (OSTI)

We outline a strategy for future experiments on neutrino and astroparticle physics based on the use, at different detector mass scales (100 ton and 100 kton), of the liquid Argon Time Projection Chamber (LAr TPC) technique. The LAr TPC technology has great potentials for both cases with large degree of interplay between the two applications and a strong synergy. The ICARUS R&D programme has demonstrated that the technology is mature and that one can built a large ($\\sim$ 1 kton) LAr TPC. We believe that one can conceive and design a very large mass LAr TPC with a mass of 100 kton by employing a monolithic technology based on the use of industrial, large volume cryogenic tankers developed by the petro-chemical industry. We show a potential implementation of a large LAr TPC detector. Such a detector would be an ideal match for a Superbeam, Betabeam or Neutrino Factory, covering a broad physics program that could include the detection of atmospheric, solar and supernova neutrinos, and search for proton decays, in addition to the rich accelerator neutrino physics program. In parallel, physics is calling for another application of the LAr TPC technique at the level of 100 ton mass, for low energy neutrino physics and for use as a near station setup in future long baseline neutrino facilities. We present here the main physics objectives and outline the conceptual design of such a detector.

A. Ereditato; A. Rubbia

2004-09-13T23:59:59.000Z

288

Impacts of TMDLs on coal-fired power plants.  

SciTech Connect

The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power plants. If a state establishes a new or revised TMDL for one of these pollutants in a water body where a power plant is located, the next renewal of the power plant's National Pollution Discharge Elimination System (NPDES) permit is likely to include more restrictive limits. Power generators may need to modify existing operational and wastewater treatment technologies or employ new ones as TMDLs are revised or new ones are established. The extent to which coal-fired power plants may be impacted by revised and new TMDL development has not been well established. NETL asked Argonne to evaluate how current and potential future TMDLs might influence coal-fired power plant operations and discharges. This information can be used to inform future technology research funded by NETL. The scope of investigation was limited to several eastern U.S. river basins rather than providing a detailed national perspective.

Veil, J. A.; Environmental Science Division

2010-04-30T23:59:59.000Z

289

Percentage of Total Natural Gas Residential Deliveries included...  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices...

290

Recapitalizing EMSL: Meeting Future Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Recapitalizing EMSL: Recapitalizing EMSL: Meeting Future Science and Technology Challenges Environmental Molecular Sciences Laboratory 2008 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not

291

Superconductivity: Past, present, and future  

DOE Green Energy (OSTI)

This paper provides an overview of superconductor research and development activities, with emphasis on the potential of high-{Tc} materials for future applications. Superconductor applications are grouped under the following categories: electronics/instrumentation, bulk material/castings, research devices, industrial/commercial, electric power, and transportation/propulsion. Near-term applications are typically based on thin film and cast forms of high-{Tc} materials, while large-scale applications requiring long lengths of wire are considered intermediate to long term. As a major side benefit of high-{Tc} superconductor research, renewed interest is being focused on the use of low-{Tc} materials for large-scale applications.

Uherka, K.L.

1992-01-01T23:59:59.000Z

292

Superconductivity: Past, present, and future  

DOE Green Energy (OSTI)

This paper provides an overview of superconductor research and development activities, with emphasis on the potential of high-{Tc} materials for future applications. Superconductor applications are grouped under the following categories: electronics/instrumentation, bulk material/castings, research devices, industrial/commercial, electric power, and transportation/propulsion. Near-term applications are typically based on thin film and cast forms of high-{Tc} materials, while large-scale applications requiring long lengths of wire are considered intermediate to long term. As a major side benefit of high-{Tc} superconductor research, renewed interest is being focused on the use of low-{Tc} materials for large-scale applications.

Uherka, K.L.

1992-06-01T23:59:59.000Z

293

Building a Sustainable Energy Future  

E-Print Network (OSTI)

Board provides oversight for, and establishes the policies of, NSF within the framework of applicable national policies set forth by the President and the Congress. In this capacity, the Board identifies issues that are critical to NSF’s future, approves NSF’s strategic budget directions, approves annual budget submissions to the Office of Management and Budget, approves new programs and major awards, analyzes NSF’s budget to ensure progress and consistency along the strategic direction set for NSF, and ensures balance between initiatives and core programs. The Board also serves as an independent policy advisory body to the President

Barry C. Barish; Maxine Linde; Professor Physics; Emeritus Director; Camilla P. Benbow; Rodes Hart; Dean Education; Human Development

2009-01-01T23:59:59.000Z

294

Toward an acceptable nuclear future  

SciTech Connect

The nuclear option is in danger of being foreclosed. The trend toward antinuclearism may be reversed if concerns about low-level radiation insult can be shown ultimately to be without foundation; evidence for this speculation is presented. Nevertheless it is suggested that the nuclear enterprise itself must propose new initiatives to increase the acceptability of nuclear energy. A key element of an acceptable nuclear future is cluster siting of reactors. This siting plan might be achieved by confining new reactors essentially to existing sites.

Weinberg, A.M.

1977-11-01T23:59:59.000Z

295

Plant Process Computer Replacement to Support Distributed Process Control: Joint STPNOC-EPRI Distributed Plant Process Computer Syst em Project  

Science Conference Proceedings (OSTI)

Concerns exist that nuclear power plant process computer systems are becoming obsolete and do not have the infrastructure to support new processes such as digital process control upgrades. To address these concerns, a distributed plant process computer system was designed and implemented at the South Texas Project Nuclear Operating Company Units 1 and 2. Implementing this new system and its associated plant networks, if done correctly, will facilitate future control and information system upgrades that c...

2001-11-16T23:59:59.000Z

296

Feasibility and Risk Study of a Geothermal Power Plant at the Salton Sea KGRA  

DOE Green Energy (OSTI)

This report contains the results of a feasibility and risk study performed by Bechtel National, Inc. and the Ben Holt Company under contract to the San Diego Gas and Electric Company (SDG&E). The purpose of the study was to define the most technically feasible and lowest cost near-term energy conversion process for a 50 MWe geothermal power plant at the Salton Sea known Geothermal Resource Area (KGRA). Using the latest information from the Geothermal This report contains the results of a feasibility and risk study performed by Bechtel National, Inc. and the Ben Holt Company under contract to the San Diego Gas and Electric Company (SDG&E). The purpose of the study was to define the most technically feasible and lowest cost near-term energy conversion process for a 50 MWe geothermal power plant at the Salton Sea known Geothermal Resource Area (KGRA). Using the latest information from the Geothermal Loop Experimental Facility (GLEF), which is currently in operation at the Salton Sea KGRA, conceptual designs, capital cost estimates, and busbar energy production cost estimates were developed for power plants employing several versions of flashed steam and flash binary energy conversion processes. A power plant and well field risk analysis was also performed. The results show that while the flashed steam plant has the advantage of lower plant capital cost, the brine flow rate required by the binary plant is lower. This results in busbar energy production costs for the two plants that are the same. However, the risk analysis indicates that the technical risks are less for the flashed steam further work at the GLEF. The version of the flashed steam process with lowest energy production cost was the dual-flash process with three 50 percent capacity trains of flash tanks with unmodified brine. Thus, it was determined that GLEF testing in the immediate future should be directed primarily toward this process. A series of GLEP tests and further studies were defined for the purpose of alleviating or minimizing the major risks associated with the flash steam process. The most important risks were found to be those associated with brine handling. They include producing the brine, carrying it through the plant, and injecting it into the subsurface formation. The report includes details of costs of a binary plant and a flash plant. [DJE-2005

None

1978-05-10T23:59:59.000Z

297

Future neutrino oscillation facilities: physics priorities and open issues  

E-Print Network (OSTI)

The recent discovery that neutrinos have mass opens a wide new field of experimentation. Accelerator-made neutrinos are essential. Ideas for future facilities include superbeams beta-beams and neutrino factories, each associated with one or several options for detector systems. A summary of the perceived virtues and shortcomings of these options, and a number of open questions, are presented.

Alain Blondel

2006-01-19T23:59:59.000Z

298

The Future of Buildings Research at LBNL  

NLE Websites -- All DOE Office Websites (Extended Search)

The Future of Buildings Research at LBNL An Interview with Mark Levine, Director of the Environmental Energy Technologies Division Mark Levine Mark Levine Mark Levine is the newly appointed Director of Berkeley Lab's Environmental Energy Technologies Division (formerly Energy & Environment). He was the head of the Energy Analysis Program from 1986 until his appointment in March. Levine received a B.S. in chemistry from Princeton, and a doctorate in chemistry from the University of California, Berkeley. Before joining Berkeley Lab in 1978, he was a staff scientist at the Ford Foundation Energy Project, and a senior energy policy analyst at SRI International in Menlo Park, Calif. His current research interests include energy efficiency in China and global energy-demand studies. Levine is on the boards of

299

Wyoming's Economic Future: Planning for Sustained Prosperity  

NLE Websites -- All DOE Office Websites (Extended Search)

Zunsheng Jiao Zunsheng Jiao Senior Geologist WSGS Future Work * Refine the geological framework required for 3-D rock fluid modeling of the Rock Springs Uplift (RSU). * Construct a 3-D numerical model of CO 2 injection into the RSU. * Build a Performance Assessment (PA) model that includes uncertainty and that can be utilized to construct a Probabilistic Risk Analysis (PRA) for CO 2 sequestration at the RSU. A SYSTEM MODEL FOR GEOLOGIC SEQUESTRATION OF CARBON DIOXIDE CO2_PENS, Los Alamos/Goldsim Rock Springs Uplift: an outstanding geological CO 2 sequestration site in southwestern Wyoming * Thick saline aquifer sequence overlain by thick sealing lithologies. * Doubly-plunging anticline characterized by more than 10,000 ft of closed structural relief. * Huge area (50 x 35 mile).

300

Tertiary Storage: Current Status and Future Trends  

E-Print Network (OSTI)

This report summarizes current state of the art in tertiary storage systems. We begin with a comprehensive discussion of magnetic tape and optical storage technologies. This is followed by a classification of commercial products based on their performance characteristics. Our analysis of product data indicates that in contrast to disk technology, tertiary storage products have significant variablility in terms of data transfer rates as well as other performance figures. We then summarize efforts in the areas of operating systems, databases and advanced applications to integrate tertiary storage. We point out that different assumptions about the underlying technology result in entirely different algorithms and system design. We conclude the report with a speculation of future trends. 1 Introduction With the recent improvements in network and processor speeds, several data intensive applications have become much more feasible than ever before. Examples of such applications include digit...

S. Prabhakar; D. Agrawal; A. El Abbadi; A. Singh; A. El; Abbadi A. Singh

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Considerations in the evaluation of concrete structures for continued service in aged Nuclear Power Plants (NPPs)  

SciTech Connect

Currently, there are /approximately/119 commercial nuclear power plants (NPPs) in the US either under construction, operating at low-to-full power, or awaiting an operating license. Together, these units have a net generating capacity of /approximately/110 GW(e). Assuming no life extension of present facilities, the operating licenses for these plants will start to expire in the middle of the next decade with Yankee Rowe being the first plant to attain this status. Where it is noted that with no life extension of facilities, a potential loss of electrical generating capacity in excess of 75 GW(e) could occur during the time period 2006 to 2020 when the operating licenses of 80 to 90 NPPs are scheduled to expire. A potential timely and cost-effective solution to meeting future electricity demand, which has worked well for non-nuclear generating plants, is to extend the service life (operating licenses) of existing NPPs. Since the concrete components in these plants provide a vital safety function, any continued service considerations must include an in-depth assessment of the safety-related concrete structures. 7 refs.

Naus, D.; Marchbanks, M.; Oland, B.; Arndt, G.; Brown, T.

1989-01-01T23:59:59.000Z

302

Low Temperature Waste Energy Recovery at Chemical Plants and Refineries  

E-Print Network (OSTI)

Technologies to economically recover low-temperature waste energy in chemical plants and refineries are the holy grail of industrial energy efficiency. Low temperature waste energy streams were defined by the Texas Industries of the Future Chemical and Refining Sectors Advisory Committee as streams with a temperature below 400 degrees F. Their waste energy streams were also characterized as to state, flow rate, heat content, source and temperature. These criteria were then used to identify potential candidates of waste heat recovery technologies that might have an application in these industries. Four technologies that met the criteria of the Advisory Committee included: organic rankine cycle (ORC), absorption refrigeration and chilling, Kalina cycle, and fuel cell technologies. This paper characterizes each of these technologies, technical specifications, limitations, potential costs/ payback and commercialization status as was discussed in the Technology Forum held in Houston, TX in May 2012 (TXIOF 2012).

Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

2013-01-01T23:59:59.000Z

303

Inventory of power plants in the United States, 1993  

SciTech Connect

The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

Not Available

1994-12-01T23:59:59.000Z

304

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

305

Optimal Scheduling of Cogeneration Plants  

E-Print Network (OSTI)

A cogeneration plant, feeding its output water into a district-heating grid, may include several types of energy producing units. The most important being the cogeneration unit, which produces both heat and electricity. Most plants also have a heat water storage. Finding the optimal production of both heat and electricity and the optimal use of the storage is a difficult optimization problem. This paper formulates a general approach for the mathematical modeling of a cogeneration plant. The model objective function is nonlinear, with nonlinear constraints. Internal plant temperatures, mass flows, storage losses, minimal up and down times and time depending start-up costs are considered. The unit commitment, i.e. the units on and off modes, is found with an algorithm based on Lagrangian relaxation. The dual search direction is given by the subgradient method and the step length by the Polyak rule II. The economic dispatch problem, i.e. the problem of determining the units production giv...

Erik Dotzauer; Kenneth Holmström

1997-01-01T23:59:59.000Z

306

Toward an energy surety future.  

SciTech Connect

Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

2005-10-01T23:59:59.000Z

307

Coal: Energy for the future  

SciTech Connect

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

1995-05-01T23:59:59.000Z

308

Natural Gas Deliveries to Commercial Consumers (Including Vehicle ...  

U.S. Energy Information Administration (EIA)

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Wisconsin (Million Cubic Feet)

309

Perspectives on the future of the electric utility industry  

SciTech Connect

This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

310

Engineering Education - A Future Management Of The Future  

E-Print Network (OSTI)

Processes and structures of current engineering praxis, as well as those of the present university engineering education, are closely related to progress and stasis of modern nation state, and modernity as such. In the current post-modern knowledge society, the engineering education needs to redefine its priorities and find a new footing. In the knowledge society, the higher education has become of supreme importance for the functioning of its structures rooted in learning. Structural rigidity of higher education based on the authority and financial resources of the nation state in stasis does not correspond to dynamics of present culture development. Institutions of higher education need to be de-nationalised, as they need freedom for employment of their resources in an effort to reach goals set by regional and global standards. Contemporary societies are characterised by self generated structures and the capacity to determine their own future. Knowledge is a fundamental organisational principle of the way we live. Generation, reproduction, distribution, and realisation of knowledge, i.e. education, represent corner stones of contemporary social order. This has been especially apparent since the violence and intimidation of the 11 September 2001 in the United States. An access to education per se does not guarantee that the education will be accomplished. Education is primarily a cultural phenomenon. The post-modern engineering education should aim at teaching a flexible, target oriented, and responsible individual who is able to distinguish in the chaos of data generated by the Net. Future oriented engineering education means not only the development of rational thinking, logical analysis, and action directed conclusion making but also facilitating of unders...

Borek Sousedik

2002-01-01T23:59:59.000Z

311

A PEEK into the Future  

Science Conference Proceedings (OSTI)

May 1, 2013 ... Current interest in the PEEK-like phthalonitrile includes aircraft, ship, automotive, and wind blade structural applications; battery casings; ...

312

climate legislation faces uncertain future  

Science Conference Proceedings (OSTI)

In addition, many senators will insist that the bill include incentives for nuclear energy as the cleanest alternative. Kerry has indicated that discussions on the ...

313

Process, including membrane separation, for separating hydrogen from hydrocarbons  

DOE Patents (OSTI)

Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2001-01-01T23:59:59.000Z

314

Noncommercial Trading in the Energy Futures Market  

Reports and Publications (EIA)

How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

Information Center

1996-05-01T23:59:59.000Z

315

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources,...

316

Results from Case Studies of Pumped-Storage Plants  

Science Conference Proceedings (OSTI)

Detailed plant performance analyses were conducted using unit and plant performance characteristics and 1-minute plant operational data from 2008, 2009, and 2010 for five pumped-storage plants. These five case studies encompass three markets (MISO, NYISO, and PJM) and one non-market region (Southeast area). Owners for the five plants include three investor-owned utilities, one state power authority, and one federal power corporation. This report describes results from detailed performance analyses ...

2012-09-14T23:59:59.000Z

317

Decommissioning Handbook for Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This handbook lays out the steps necessary to fully decommission a coal-fired power plant. The handbook includes ways to handle permitting, environmental cleanup, site dismantlement, and site remediation, and discusses overall decommissioning costs. It is based on three actual case studies of coal plants recently decommissioned: the Arkwright coal-fired plant of Georgia Power, the Watts Bar coal-fired plant of TVA, and the Port Washington coal-fired plant of Wisconsin Electric Power.

2004-11-04T23:59:59.000Z

318

4th International Plant Biomechanics Conference Proceedings (Abstracts)  

DOE Green Energy (OSTI)

The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.

Frank W. Telewski; Lothar H. Koehler; Frank W. Ewers

2003-07-20T23:59:59.000Z

319

Long-range global warming impact of gaseous diffusion plant operation  

SciTech Connect

The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO{sub 2} emissions), and the consequent global temperature impacts of these scenarios.

Trowbridge, L.D.

1992-09-01T23:59:59.000Z

320

Digital control systems in nuclear power plants: Failure information, modeling concepts, and applications. Revision 1  

SciTech Connect

This report briefly describes some current applications of advanced computerized digital display and control systems at US commercial nuclear power plants and presents the results of a literature search that was made to gather information on the reliability of these systems. Both hardware and software reliability were addressed in this review. Only limited failure rate information was found, with the chemical process industry being the primary source of information on hardware failure rates and expert opinion the primary source for software failure rates. Safety-grade digital control systems are typically installed on a functional like-for-like basis, replacing older analog systems without substantially changing interactions with other plant systems. Future work includes performing a limited probabilistic risk assessment of a representative DCS to assess its risk significance.

Galyean, W.J.

1993-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optimal Instrumentation for Combined Cycle Plant Performance  

Science Conference Proceedings (OSTI)

Power plants today rely on distributed control systems (DCS) to operate their equipment. These control systems subsequently rely on process information provided by various instruments in the field. The accuracy and reliability of field instrumentation has a direct correlation to the ability of the control system to operate correctly, including the ability to control the plant in a safe and reliable manner.Beyond instrumentation relied on for control of the power plant, additional ...

2013-11-11T23:59:59.000Z

322

WATER REQUIREMENTS FOR A RADIOCHEMICAL PROCESSING PLANT  

SciTech Connect

A survey of the water requirements is presented for a hypothetical plant to process all the fuel from a 15,000Mwe nuclear economy. For each processing plant, specific requirements must be based on a detailed water survey which includes water quality, process requirements, and in-plant conservation plans. These considerations are discussed and the quantitative requirements are listed. (J.R.D.)

Harrington, F.E.

1962-05-28T23:59:59.000Z

323

U.S. and India Reach Historic Agreement on FutureGen Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reach Historic Agreement on FutureGen Project Reach Historic Agreement on FutureGen Project U.S. and India Reach Historic Agreement on FutureGen Project March 2, 2006 - 11:34am Addthis India becomes the first nation to accept U.S. invitation to participate in new clean coal project WASHINGTON, DC - President George W. Bush announced today that India will become the first country to participate on the government steering committee for the U.S. Department of Energy's FutureGen project - an initiative to build and operate the world's first coal-based power plant that removes and sequesters carbon dioxide (CO2) while it produces electricity and hydrogen. As a partner, the Indian government will contribute $10 million to the FutureGen Initiative and Indian companies will also be invited to participate in the private sector segment.

324

DOE/EA-1760 Final Environmental Assessment for FutureFuel Chemical Company  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Final Environmental Assessment for FutureFuel Chemical Company Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Batesville, AR August 2010 Prepared for: Department of Energy National Energy Technology Laboratory Electric Drive Vehicle Battery and DOE/EA-1760 Component Manufacturing Initiative Project Environmental Assessment FutureFuel Chemical Company, Batesville, AR August 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with FutureFuel Chemical Company (FutureFuel), to partially fund the design, installation and operations of a commercial-scale plant to produce intermediate anode material for high-performance lithium-ion (Li-ion) batteries. An existing FutureFuel

325

ENERGY WHITE PAPER Our energy future -  

E-Print Network (OSTI)

ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

326

Search for a bridge to the energy future: Proceedings  

DOE Green Energy (OSTI)

The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

Saluja, S.S. (ed.)

1986-01-01T23:59:59.000Z

327

Long-day plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-day plants Name: Ryan S Martin Status: NA Age: NA Location: NA Country: NA Date: NA Question: What are long-day plants? Replies: Long-day plants are those that require a...

328

CURRENT AND FUTURE IGCC TECHNOLOGIES:  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 16, 2008 DOE/NETL-2008/1337 A Pathway Study Focused on Non-Carbon Capture Advanced Power Systems R&D Using Bituminous Coal - Volume 1 Current and Future IGCC Technologies Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

329

Future Heating | Open Energy Information  

Open Energy Info (EERE)

Heating Heating Jump to: navigation, search Name Future Heating Place London, England, United Kingdom Sector Solar Product Designs and installs solar passive water heating systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Catalyzing a cleaner Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

11 11 Catalyzing a Cleaner Energy Future When asked about catalysts, most people probably remember a simple definition copied from the chalkboard in an early chemistry class: a substance that accelerates or modifies a chemical reaction without itself being affected. Or certain personalities may spring to mind; the term is routinely borrowed from chemistry to refer, in social and professional contexts, to a person or team whose energetic, efficient work quickly creates change in a given field. Or the first thought may be of the car in one's driveway and its catalytic converter, which chemically grabs some of the worst pollutants from exhaust and makes them harmless before they reach the tailpipe. In a way, continuing work by scientists at the Environmental Molecular

331

World electric power plants database  

SciTech Connect

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

332

Energetics of a Symmetric Circulation Including Momentum Constraints  

Science Conference Proceedings (OSTI)

A theory of available potential energy (APE) for symmetric circulations, which includes momentum constraints, is presented. The theory is a generalization of the classical theory of APE, which includes only thermal constraints on the circulation. ...

Sorin Codoban; Theodore G. Shepherd

2003-08-01T23:59:59.000Z

333

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Gasification Plant Databases Welcome to the U. S. Department of Energy, National Energy Technology Laboratory's Gasification Plant Databases Within these...

334

Scheduling optimization of a real flexible job shop including side ...  

E-Print Network (OSTI)

Aug 19, 2013 ... including side constraints regarding preventive maintenance, fixture availabil- ...... Engineering and Engineering Management, pp. 787–791.

335

Guam Refinery Thermal Cracking/Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

336

NREL: TroughNet - U.S. Parabolic Trough Power Plant Data  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Parabolic Trough Power Plant Data Here you'll find data on parabolic trough power plants in operation and under development in the United States. The data include plant type,...

337

Shaping Solutions FOR Florida's Future  

E-Print Network (OSTI)

, and wholesale/direct market development. Food system development also includes programs like Farm to School and process biofuel-producing crops without competing with food production. Florida Extension can provide

Florida, University of

338

ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water  

E-Print Network (OSTI)

;Estimated water use by plant typeEstimated water use by plant type 0 100 200 300 400 500 600 700 800 900nuclear pulverized coalw et integrated gasification C C w et com bined cycle w et integrated gasification

Keller, Arturo A.

339

Ninth International Workshop on Plant Membrane Biology  

SciTech Connect

This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

Not Available

1993-12-31T23:59:59.000Z

340

Lessons learned from existing biomass power plants  

DOE Green Energy (OSTI)

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gas turbines for the future  

SciTech Connect

Utility gas turbine technology has been advancing fairly rapidly, one reason being that it shares in the benefits of the research and development for aviation gas turbines. In general, turbine progress is characterized by large, incremental advances in performance. At intervals of approx. 15 yr, new-generation turbines are introduced, refined, and eventually installed in relatively large numbers. A new generation of turbines is being readied for the market that will have power ratings into the 130- to 150-MW range (simple cycle), significantly higher than the 70 to 100 MW now in service. When the new turbines are installed in combined-cycle plants, the efficiency levels are expected to rise from the present value of approx. 42% higher heating value to approx. 46%.

Cohn, A.

1987-01-01T23:59:59.000Z

342

Tritium Movement and Accumulation in the NGNP System Interface and Hydrogen Plant  

DOE Green Energy (OSTI)

Tritium movement and accumulation in a Next Generation Nuclear Plant with a hydrogen plant using a high temperature electrolysis process and a thermochemical water splitting sulfur iodine process are estimated by the numerical code THYTAN as a function of design, operational, and material parameters. Estimated tritium concentrations in the hydrogen product and in process chemicals in the hydrogen plant of the Next Generation Nuclear Plant using the high temperature electrolysis process are slightly higher than the drinking water limit defined by the U.S. Environmental Protection Agency and the limit in the effluent at the boundary of an unrestricted area of a nuclear plant as defined by the U.S. Nuclear Regulatory Commission. However, these concentrations can be reduced to within the limits through use of some designs and modified operations. Tritium concentrations in the Next Generation Nuclear Plant using the Sulfur-Iodine Process are significantly higher as calculated and are affected by parameters with large uncertainties (i.e., tritium permeability of the process heat exchanger, the hydrogen concentration in the heat transfer and process fluids, the equilibrium constant of the isotope exchange reaction between HT and H2SO4). These parameters, including tritium generation and the release rate in the reactor core, should be more accurately estimated in the near future to improve the calculations for the NGNP using the Sulfur-Iodine Process. Decreasing the tritium permeation through the heat exchanger between the primary and secondary circuits may be an an effective measure for decreasing tritium concentrations in the hydrogen product, the hydrogen plant, and the tertiary coolant.

Hirofumi Ohashi; Steven R. Sherman

2007-06-01T23:59:59.000Z

343

Renewable Electricity Futures Study. Executive Summary  

Science Conference Proceedings (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

2012-12-01T23:59:59.000Z

344

The Future of Atomic Energy  

DOE R&D Accomplishments (OSTI)

There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

Fermi, E.

1946-05-27T23:59:59.000Z

345

Economics and regulation of petroleum futures markets  

SciTech Connect

Because the futures market in petroleum products is a relatively recent phenomenon, the implications of public policies formulated for that market have not yet been fully explored. To provide the Office of Competition of the Department of Energy (DOE) with sufficient information to assess policy alternatives, Resource Planning Associates, Inc. (RPA) was asked to analyze the development of the futures market in No. 2 oil, assess the potential for futures markets in other petroleum products, and identify policy alternatives available to DOE. To perform this analysis, the criteria for a viable futures market was established first. Then, the experience to date with the 18-month-old futures market in No. 2 oil was examined, and the potential for viable futures markets in No. 6 oil, gasoline, jet fuel, and crude oil was assessed. Finally, how existing DOE regulations and prospective actions might affect petroleum futures market development was investigated.

Not Available

1980-08-01T23:59:59.000Z

346

SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION  

SciTech Connect

Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

JOHN C WALKER

2011-11-01T23:59:59.000Z

347

Y-12 Plant Decontamination and Decommissioning Program. Surveillance and Maintenance Plan, FY 1992--2000  

Science Conference Proceedings (OSTI)

The Decontamination and Decommissioning (D and D) Program at the Oak Ridge Y-12 Plant is part of the Environmental Restoration (ER) and Waste Management (WM) Programs (ERWM). The objective of the ER Program is to provide Y-12 the capability to meet applicable environmental regulations through facility development activities and site remedial actions. The WM Program supports the ER program. The D and D Program provides collective management of sites within the Plant which are in need of decontamination and decommissioning efforts, prioritizes those areas in terms of health, safety, and environmental concerns, and implements the appropriate level of remedial action. The D and D Program provides support to identifiable facilities which formerly served one or more of the many Plant functions. Program activities include (1) surveillance and maintenance of facilities awaiting decommissioning; (2) planning safe and orderly facility decommissioning; and (3) implementing a program to accomplish facility disposition in a safe, cost effective, and timely manner. In order to achieve the first objective, a formal plan which documents the surveillance and maintenance needs for each facility has been prepared. This report provides this documentation for the Y-12 facilities currently included in the D and D Program, as well as those planned for future inclusion in the Program, and includes projected resource requirements for the planning period of FY 1993 through FY 2000.

Not Available

1992-01-01T23:59:59.000Z

348

CSSEF: Climate Science for a Sustainable Energy Future | Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

CSSEF: Climate Science for a Sustainable Energy Future CSSEF: Climate Science for a Sustainable Energy Future Simulation on Intrepid of Katrina-like hurricanes Simulation on Intrepid of Katrina-like hurricanes The Climate Science for a Sustainable Energy Future (CSSEF) project objectives are to: Accelerate incorporation of new knowledge, including process data and observations, into climate models; Develop new methods for rapid evaluation of improved models; and Develop novel approaches to exploit computing at the level of tens of petaflops in climate models. Success in this project will enable scientists to answer questions posed in the period after the publication of the IPCC 5th Assessment Report. The project comprises three components: data and testbeds, numerical methods and computational science, and uncertainty quantification. There are

349

Technology Analysis - Multi-Path Transportation Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses The Multi-Path Study began by defining the basic physical characteristics of future advanced midsize cars and midsize SUVs with drivetrain technologies ranging from advanced SI and CI (diesel) engine-based conventional drivetrains through hybrid drivetrains (including plug-ins), to fuel cell hybrids and plug-in hybrids, through pure-electric drivetrains. The study evaluates these vehiclesÂ’ fuel economy using ArgonneÂ’s PSAT simulation model, estimates their costs, and does detailed analyses of their cost-effectiveness, balancing first costs against fuel savings. The study uses a version of the National Energy Modeling System (developed by the Energy Information Administration in the U.S. Department of Energy) to evaluate several scenarios assuming different vehicle costs (one set based on a literature review, one based on DOE goals) and availability of purchase subsidies.

350

Future Technologies to Enhance Geothermal Energy Recovery  

DOE Green Energy (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

351

Power plant  

SciTech Connect

A two stroke internal combustion engine is described that has at least one cylinder within which a piston reciprocates. The engine is joined to a gearbox which includes a ring gear. A pair of gears having diameters half that of the ring gear move within the latter. At least one of the pair of gears is connected to a piston by a pin extending between the piston and the periphery of said gear. An additional pair of gears are fixed to respective ones of the first-mentioned gear pair and are operatively joined to a pinion to which a drive shaft is secured. A turbine and filter arrangement is positioned on the side of the engine opposite the gearbox whereby exhaust gases from the engine are directed to the turbine to develop power at an output drive shaft joined to the turbine and to filter pollutants from the gases.

Finn, H.I. Jr.

1978-10-24T23:59:59.000Z

352

Questions about how plants die leads to climate change answers  

NLE Websites -- All DOE Office Websites (Extended Search)

Questions about how plants die leads to climate change answers Questions about how plants die leads to climate change answers Questions about how plants die leads to climate change answers Understanding mechanisms of mortality will provide important input to future climate forecasts. March 12, 2012 Tree in the desert The scientists' goal is to provide basic insights into questions such as how plants die, especially during drought. While the question of plant mortality is easy to conceptualize, it is difficult to study because of the spatial and temporal variation of processes over the plant. Get Expertise Researcher Michelle Espy Applied Modern Physics Email Researcher Sanna Sevanto Earth System Observations Email While the question of plant mortality is easy to conceptualize, it is difficult to study because of the spatial and temporal variation of

353

Initial assessment of the operability of the VHTR-HTSE nuclear hydrogen plant.  

DOE Green Energy (OSTI)

The generation of hydrogen from nuclear power will need to compete on three fronts: production, operability, and safety to be viable in the energy marketplace of the future. This work addresses the operability of a coupled nuclear and hydrogen-generating plant while referring to other work for progress on production and safety. Operability is a measure of how well a plant can meet time-varying production demands while remaining within equipment limits. It can be characterized in terms of the physical processes that underlie operation of the plant. In this work these include the storage and transport of energy within components as represented by time constants and energy capacitances, the relationship of reactivity to temperature, and the coordination of heat generation and work production for a near-ideal gas working fluid. Criteria for assessing operability are developed and applied to the Very High Temperature Reactor coupled to the High Temperature Steam Electrolysis process, one of two DOE/INL reference plant concepts for hydrogen production. Results of preliminary plant control and stability studies are described. A combination of inventory control in the VHTR plant and flow control in the HTSE plant proved effective for maintaining hot-side temperatures near constant during quasi-static change in hydrogen production rate. Near constant electrolyzer outlet temperature is achieved by varying electrolyzer cell area to control cell joule heating. It was found that rates of temperature change in the HTSE plant for a step change in hydrogen production rate are largely determined by the thermal characteristics of the electrolyzer. It's comparatively large thermal mass and the presence of recuperative heat exchangers result in a tight thermal coupling of HTSE components to the electrolyzer. It was found that thermal transients arising in the chemical plant are strongly damped at the reactor resulting in a stable combined plant. The large Doppler reactivity component, three times greater than next reactivity component, per unit temperature, is mainly responsible. This is the case even when one of the conditions for out-of-phase oscillations between reactor inlet and outlet temperature, a large time for transport of process heat between the reactor and chemical plant, exists.

Vilim, R. B.; Nuclear Engineering Division

2007-11-01T23:59:59.000Z

354

Measuring wind plant capacity value  

DOE Green Energy (OSTI)

Electric utility planners and wind energy researchers pose a common question: What is the capacity value of a wind plant? Tentative answers, which can be phrased in a variety of ways, are based on widely varying definitions and methods of calculation. From the utility`s point of view, a resource that has no capacity value also has a reduced economic value. Utility planners must be able to quantify the capacity value of a wind plant so that investment in conventional generating capacity can be potentially offset by the capacity value of the wind plant. Utility operations personnel must schedule its conventional resources to ensure adequate generation to meet load. Given a choice between two resources, one that can be counted on and the other that can`t, the utility will avoid the risky resource. This choice will be reflected in the price that the utility will pay for the capacity: higher capacity credits result in higher payments. This issue is therefore also important to the other side of the power purchase transaction -- the wind plant developer. Both the utility and the developer must accurately assess the capacity value of wind. This article summarizes and evaluates some common methods of evaluating capacity credit. During the new era of utility deregulation in the United States, it is clear that many changes will occur in both utility planning and operations. However, it is my judgement that the evaluation of capacity credit for wind plants will continue to play an important part in renewable energy development in the future.

Milligan, M.R.

1996-01-01T23:59:59.000Z

355

Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06  

SciTech Connect

Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in-service inspection, and codes and standards. - 5. Plant Safety Assessment and Regulatory Issues Transient and accident performance including LOCA and non-LOCA, severe accident analysis, impact of risk informed changes, accident management, assessment and management of aging, degradation and damage, life extension lessons from plant operations, probabilistic safety assessment, plant safety analysis, reliability engineering, operating and future plants. - 6. Thermal Hydraulic Analysis and Testing Phenomena identification and ranking, computer code scaling applicability and uncertainty, containment thermal hydraulics, component and integral system tests, improved code development and qualification, single and two phase flow; advanced computational thermal hydraulic methods. - 7. Core and Fuel Cycle Concepts and Experiments Core physics, advances in computational reactor analysis, in-core fuel management, mixed-oxide fuel, thorium fuel cycle, low moderation cores, high conversion reactor designs, particle and pebble bed fuel design, testing and reliability; fuel cycle waste minimization, recycle, storage and disposal. - 8. Materials and Structural Issues Fuel, core, RPV and internals structures, advanced materials issues and fracture mechanics, concrete and steel containments, space structures, analysis, design and monitoring for seismic, dynamic and extreme accidents; irradiation issues and materials for new plants. - 9. Nuclear Energy and Sustainability including Hydrogen, Desalination and Other Applications Environmental impact of nuclear and alternative systems, spent fuel dispositions and transmutation systems, fully integrated fuel cycle and symbiotic nuclear power systems, application of advanced designs to non-power applications such as the production of hydrogen, sea water desalination, heating and other co-generation applications. - 10. Near Term Issues (New) Applies to plants that have a significa

NONE

2006-07-01T23:59:59.000Z

356

Great plains coal gasification plant: Technical lessons learned report  

SciTech Connect

In a first of a kind, grass roots plant of the complexity of the Great Plains Gasification Plant the lessons learned are numerous and encompass a wide range of items. This report documents the lessons learned from all phases of the project from preliminary design through the most recent operation of the plant. Based on these lessons learned, suggestions are made for changes and/or process improvements to future synfuel plants. In addition, recommendations are made for research and development in selected areas. 46 refs., 31 figs., 33 tabs.

Delaney, R.C.; Mako, P.F.

1988-11-01T23:59:59.000Z

357

Independent Oversight Inspection, Portsmouth Gaseous Diffusion Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Gaseous Diffusion Portsmouth Gaseous Diffusion Plant - November 2006 Independent Oversight Inspection, Portsmouth Gaseous Diffusion Plant - November 2006 November 2006 Inspection of Emergency Management at the Portsmouth Gaseous Diffusion Plant The Secretary of Energy's Office of Independent Oversight, within the Office of Security and Safety Performance Assurance, conducted an inspection of the emergency management program at the Portsmouth Gaseous Diffusion Plant (PORTS) in August and September 2006. The coordination of emergency plans and procedures among USEC and DOE contractor organizations has successfully integrated the emergency management programs into a single cohesive program for the PORTS site. Other strengths include accurate hazards surveys that identify applicable

358

Capital cost models for geothermal power plants  

SciTech Connect

A computer code, titled GEOCOST, has been developed at Battelle, Pacific Northwest Laboratories, to rapidly and systematically calculate the potential costs of geothermal power. A description of the cost models in GEOCOST for the geothermal power plants is given here. Plant cost models include the flashed steam and binary systems. The data sources are described, along with the cost data correlations, resulting equations, and uncertainties. Comparison among GEOCOST plant cost estimates and recent A-E estimates are presented. The models are intended to predict plant costs for second and third generation units, rather than the more expensive first-of-a-kind units.

Cohn, P.D.; Bloomster, C.H.

1976-07-01T23:59:59.000Z

359

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

pilot is successful. The CSP tower power plant consists of 100 curved heliostats which concentrate solar radiation

Zheng, Nina

2012-01-01T23:59:59.000Z

360

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

land area in California. Wind farms only directly displacewill be required: about 1 wind farm, 1 central solar plant,

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lab Game-Changers in Our Past and Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Game-Changers in Our Past and Future Game-Changers in Our Past and Future Lab Game-Changers in Our Past and Future March 20, 2012 - 1:17pm Addthis A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form scientific partnerships designed to hurdle an energy barrier with transformative technology. | Photo courtesy of Berkeley National Lab. A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form

362

Lab Game-Changers in Our Past and Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Game-Changers in Our Past and Future Lab Game-Changers in Our Past and Future Lab Game-Changers in Our Past and Future March 20, 2012 - 1:17pm Addthis A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form scientific partnerships designed to hurdle an energy barrier with transformative technology. | Photo courtesy of Berkeley National Lab. A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form

363

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

Not Available

1994-04-01T23:59:59.000Z

364

HTGR fuel refabrication pilot plant. Environmental statement  

SciTech Connect

The environmental effects of the construction and operation of the HTGR Fuel Refabrication Pilot Plant at Oak Ridge, Tenn. are examined. The descriptions include: the environment in the area including the history, geology, geography, hydrology, ecology, and land and water use; the facility and its effluents; impacts from construction and operation of the facility; alternatives to the proposed action; irreversible and irretrievable commitments of resources; and the benefits-cost analysis of the proposed plant operation. (LCL)

1974-01-01T23:59:59.000Z

365

Natural Gas Delivered to Consumers in California (Including ...  

U.S. Energy Information Administration (EIA)

Natural Gas Delivered to Consumers in California (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

366

Electrical machines and assemblies including a yokeless stator ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Electrical machines and assemblies including a yokeless stator with modular lamination ...

367

U.S. Refinery Thermal Cracking, Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

368

[Article 1 of 7: Motivates and Includes the Consumer  

NLE Websites -- All DOE Office Websites (Extended Search)

will be diverse and widespread, including renewables, distributed generation, and energy storage. And they will increase rapidly all along the value chain, from suppliers to...

369

FAQ 23-How much depleted uranium -- including depleted uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

is stored in the United States? How much depleted uranium -- including depleted uranium hexafluoride -- is stored in the United States? In addition to the depleted uranium stored...

370

PLOT: A UNIX PROGRAM FOR INCLUDING GRAPHICS IN DOCUMENTS  

E-Print Network (OSTI)

simple, easy-to-read graphics language designed specificallyPROGRAM FOR INCLUDING GRAPHICS IN DOCUMENTS Pavel Curtismeanings as in the GRAFPAC graphics system. Definl. ~ tions

Curtis, Pavel

2013-01-01T23:59:59.000Z

371

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial...

372

Stocks of Total Crude Oil and Petroleum Products (Including SPR)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

373

Including Retro-Commissioning in Federal Energy Savings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

11.2 Retro-Cx in Federal ESPCs Including Retro-Commissioning In Federal Energy Saving Performance Contracts Retro-commissioning generally reduces operating and maintenance costs,...

374

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in South Dakota (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers...

375

Natural Gas Delivered to Consumers in South Dakota (Including...  

Gasoline and Diesel Fuel Update (EIA)

History: Monthly Annual Download Data (XLS File) Natural Gas Delivered to Consumers in South Dakota (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to...

376

The Future of Geothermal Energy  

E-Print Network (OSTI)

by any electronic or mechanical means (including photocopying, recording, or information storage.8.3 Downhole pumps _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _5-9 5.8.4 High expansion of U.S. hydropower potential using existing dams and impoundments. But outside of a few pumped

Ito, Garrett

377

Thin films: Past, present, future  

DOE Green Energy (OSTI)

This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

Zweibel, K.

1995-04-01T23:59:59.000Z

378

Metal resistance sequences and transgenic plants  

DOE Patents (OSTI)

The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

1999-10-12T23:59:59.000Z

379

Cooling Requirements and Water Use Impacts of Advanced Coal-fired Power Plants with CO2 Capture and Storage  

Science Conference Proceedings (OSTI)

In addition to the large cost impact that comes with including CO2 capture in coal power plants, the consumption of water also increases. The increase in water consumption could represent a significant barrier to the implementation of CO2 capture. Although it is assumed that technology improvements might reduce the cost and power consumption of future CO2 capture systems, it might not be feasible to implement CO2 capture if additional water is not available at a site. In addition, because many regions of...

2011-12-20T23:59:59.000Z

380

Solar Energy Education. Reader, Part II. Sun story. [Includes glossary  

DOE Green Energy (OSTI)

Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

Not Available

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network (OSTI)

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st century new we focused on the case of un- conventional natural gas recovery from the Marcellus shale In addition

Walter, M.Todd

382

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network (OSTI)

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

Angenent, Lars T.

383

Solar Pilot Plant, Phase I: preliminary design report. Volume VII. Pilot plant cost, commercial plant cost and performance. CDRL item 2  

DOE Green Energy (OSTI)

Cost estimates are presented for the Solar Pilot Plant by cost breakdown structure element, with a commitment schedule and an expenditure schedule. Cost estimates are given for a Commercial Plant, including several point costs for plants with various solar multiples and storage times. Specific questions (ERDA) pertaining to commercial plant design and performance data are addressed. The cost estimates are supplemented by two books of vendor and subcontractor cost data.

None

1977-06-01T23:59:59.000Z

384

What To Include In The Whistleblower Complaint? | National Nuclear Security  

National Nuclear Security Administration (NNSA)

To Include In The Whistleblower Complaint? | National Nuclear Security To Include In The Whistleblower Complaint? | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog What To Include In The Whistleblower Complaint? Home > About Us > Our Operations > Management and Budget > Whistleblower Program > What To Include In The Whistleblower Complaint? What To Include In The Whistleblower Complaint?

385

Nuclear power plant construction activity 1987  

SciTech Connect

This annual report published by the Energy Information Administration (EIA) presents data on nuclear power plant construction activity. The previous report, Nuclear Power Plant Construction Activity 1986, included data for units that, as of December 31, 1986, were (1) in the construction pipeline, (2) canceled, or (3) commercial operation as of December 31, 1986. The data in this report, which were collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction,'' update the data in the previous report to be current as of December 31, 1987. Three types of information are included: plant characteristics and ownership; construction costs; and construction schedules and milestone dates.

1988-06-09T23:59:59.000Z

386

Greenhouse warming potential of candidate gaseous diffusion plant coolants  

SciTech Connect

A preliminary estimate has been made of the greenhouse warming potential (GWP) of coolants under consideration as substitutes for CFC-114 in the gaseous diffusion plants. Coolants are not at present regulated on the basis of GWP, but may well be in the future. Use of c-C{sub 4}F{sub 8} or n-C{sub 4}F{sub 10} is estimated to have three to four times the greenhouse impact of an equivalent use of CFC-114. Neither of the substitutes, of course, would cause any ozone depletion. HCFC-124 (a probable commercial substitute for CFC-114, but not presently under serious consideration due to its relatively high UF{sub 6} reactivity) would have much less greenhouse and ozone depletion impact than CFC-114. The GWP estimates derive from a simple model that approximately reproduces literature values for similar compounds. The major uncertainty in these estimates lies in the atmospheric lifetime, especially of the perfluorocarbon compounds, for which little reliable information exists. In addition to GWP estimates for coolants, the overall greenhouse impact of the gaseous diffusion plants is calculated, including indirect power-related CO{sub 2} emissions. This result is used to compare greenhouse impacts of nuclear- and coal-produced electricity. 11 refs., 2 figs., 5 tabs.

Trowbridge, L.D.

1991-03-01T23:59:59.000Z

387

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

GHG emissions of future transportation modes. These resultsVehicle Manufacturing Futures in Transportation Life-cycleVehicle Manufacturing Futures in Transportation Life-cycle

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

388

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

California’s Energy Future - Transportation Energy Use inCalifornia’s Energy Future - Transportation Energy Use inCalifornia’s Energy Future - Transportation Energy Use in

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

389

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels," UCB-Press plc THE TRANSPORTATION FUTURE? FUEL OF THE DANIELPurdue University, "Transportation Energy Futures; Paths of

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

390

Probing Higgs Boson Interactions At Future Colliders.  

E-Print Network (OSTI)

??We present in this thesis a detailed analysis of Higgs boson interactions at future colliders. In particular we examine, in a model independent way, the… (more)

Biswal, Sudhansu Sekhar

2009-01-01T23:59:59.000Z

391

Advanced Materials for Our Energy Future - TMS  

Science Conference Proceedings (OSTI)

May 21, 2010 ... TMS has joined forces with four other materials societies to develop “Advanced Materials for Our Energy Future,” a publication that underscores ...

392

Moving Towards a More Secure Energy Future  

Nuclear Energy Wind Solar Energy Clean Coal BES related basic research activities. The President’s Advanced Energy Initiative Accelerating Future ...

393

Time Series Prediction Forecasting the Future and ...  

Science Conference Proceedings (OSTI)

Time Series Prediction Forecasting the Future and Understanding the Past Santa Fe Institute Proceedings on the Studies in the Sciences of ...

2012-10-01T23:59:59.000Z

394

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pledge? Conversation on the Future of the Wind Industry Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela Bill Gates and Deputy Secretary Poneman Discuss the...

395

Future Energy Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Pty Ltd Jump to: navigation, search Name Future Energy Pty Ltd Place Victoria, Australia Zip 3121 Sector Wind energy Product Victoria based community wind project developer....

396

Fueling the Future with Fungal Genomics  

E-Print Network (OSTI)

Saccharomyces cerevisiae. Biofuels. 108:147-177. Harman GE,or future hydrocarbon biofuels, fungi are involved. Researchtopic areas that impact biofuels production. In this review,

Grigoriev, Igor V.

2011-01-01T23:59:59.000Z

397

The Future of Food in Suburbia.  

E-Print Network (OSTI)

??This thesis addresses resilience for the future of Canadian suburbs, through the lens of buildings and food, particularly against the backdrop of peak oil and… (more)

Khalid, Sarah

2012-01-01T23:59:59.000Z

398

Is nanoelectronics the future of microelectronics?  

Science Conference Proceedings (OSTI)

We examine current research in nanoelectronics and discuss the role it may play in future electronic systems. Keywords: Moore's Law, molecular electronics, nanoelectronics

Mark Lundstrom

2002-08-01T23:59:59.000Z

399

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

block ELECPOWER Calculator Electrical power needed forto calculate the required electrical power needed for thethe plant which includes electrical power to operate the

Luc, Wesley Wai

400

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

including: assessment of the availability and proximity of impaired waters at twelve power plant locations spanning the major geographic regions of the continental 48 states;...

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

Alternative Fuels. Includes ... decline during summer and winter as power plants burn through stocks to meet peak electricity demand for heating and cooling, ...

402

EA-1887: Renewable Fuel Heat Plant Improvements at the National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of...

403

PL FINAL DESIGN REPORT. VOLUME II. PLANT DRAWINGS  

SciTech Connect

Plant drawings for the final design for the Army Reactor (PL-2) are presented. Two hundred and twenty-eight figures are included. (M.C.G.)

Combustion Engineering, Inc. Nuclear Div., Windsor, Conn.

1961-06-30T23:59:59.000Z

404

[Article 1 of 7: Motivates and Includes the Consumer]  

NLE Websites -- All DOE Office Websites (Extended Search)

4 of 7]: Research on the Characteristics of a Modern Grid by the NETL 4 of 7]: Research on the Characteristics of a Modern Grid by the NETL Modern Grid Strategy team Optimizes Asset Utilization and Operates Efficiently Last month we presented the third principal characteristic of a Smart Grid, "Enables New Products, Services, and Markets." This month we present the fourth characteristic, "Optimizes Asset Utilization and Operates Efficiently." This characteristic is aimed at improving the overall efficiency of the grid by getting more out of its existing assets, reducing losses, and optimizing the value of the investments that will be needed to support future growth. This characteristic, along with the other six, define a Smart Grid that will power the 21 st Century economy. For a more detailed discussion on "Optimizes Asset Utilization and Operates Efficiently, please see:

405

Comparative analysis of automotive powertrain choices for the near to mid-term future  

E-Print Network (OSTI)

This thesis attempts a technological assessment of automotive powertrain technologies for the near to mid term future. The powertrain types to be assessed include naturally aspirated gasoline engines, turbocharged gasoline ...

Kasseris, Emmanuel P

2006-01-01T23:59:59.000Z

406

Could Building Energy Codes Mandate Rooftop Solar in the Future?  

Science Conference Proceedings (OSTI)

This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

2012-08-01T23:59:59.000Z

407

FrameNet, current collaborations and future goals  

Science Conference Proceedings (OSTI)

This paper will focus on recent and near-term future developments at FrameNet (FN) and the interoperability issues they raise. We begin by discussing the current state of the Berkeley FN database including major changes in the data format for the latest ... Keywords: Corpus, Crowdsourcing, Frame semantics, FrameNet, Lexical resource, Lexical semantics interoperability, Lexicon, Semantic role, Thematic role, WordNet

Collin F. Baker

2012-06-01T23:59:59.000Z

408

World energy: Building a sustainable future  

SciTech Connect

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

409

World energy: Building a sustainable future  

SciTech Connect

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

410

World energy: Building a sustainable future  

SciTech Connect

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

411

Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.  

Science Conference Proceedings (OSTI)

Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

Elcock, D. (Environmental Science Division)

2011-05-09T23:59:59.000Z

412

Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.  

SciTech Connect

Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

Elcock, D. (Environmental Science Division)

2011-05-09T23:59:59.000Z

413

Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area  

SciTech Connect

This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

Amerine, D.B.

1982-09-01T23:59:59.000Z

414

PL FINAL DESIGN REPORT. VOLUME I. PLANT DESIGN  

SciTech Connect

The plant design for PL-2, a 1000-kw net electric direct cycle boiling water nuclear power plant, is presented. The design includes all buildings, foundations, and structures required for the installation of the plant in a snow tunnel. (M.C.G.)

1961-06-30T23:59:59.000Z

415

U-182: Microsoft Windows Includes Some Invalid Certificates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82: Microsoft Windows Includes Some Invalid Certificates 82: Microsoft Windows Includes Some Invalid Certificates U-182: Microsoft Windows Includes Some Invalid Certificates June 4, 2012 - 7:00am Addthis PROBLEM: A vulnerability was reported in Microsoft Windows. A remote user may be able to spoof code signing signatures. PLATFORM: Version(s): XP SP3, 2003 SP2, Vista SP2, 2008 SP2, 7 SP1, 2008 R2 SP1; and prior service packs ABSTRACT: The operating system includes some invalid intermediate certificates. The vulnerability is due to the certificate authorities and not the operating system itself. Reference Links: Security tracker ID 1027114 GENERIC-MAP-NOMATCH Vendor Advisory IMPACT ASSESSMENT: High Discussion: The invalid certificates and their thumbprints are: Microsoft Enforced Licensing Intermediate PCA: 2a 83 e9 02 05 91 a5 5f c6

416

Free Energy Efficiency Kit includes CFL light bulbs,  

E-Print Network (OSTI)

Free Energy Efficiency Kit Kit includes CFL light bulbs, spray foam, low-flow shower head, and more i ci e n cy On Thursday, March 31st New River Light & Power will sponsor a seminar that is designed

Rose, Annkatrin

417

Removal of mineral matter including pyrite from coal  

SciTech Connect

Mineral matter, including pyrite, is removed from coal by treatment of the coal with aqueous alkali at a temperature of about 175.degree. to 350.degree. C, followed by acidification with strong acid.

Reggel, Leslie (Pittsburgh, PA); Raymond, Raphael (Bethel Park, PA); Blaustein, Bernard D. (Pittsburgh, PA)

1976-11-23T23:59:59.000Z

418

Characterizations of Aircraft Icing Environments that Include Supercooled Large Drops  

Science Conference Proceedings (OSTI)

Measurements of aircraft icing environments that include supercooled large drops (SLD) greater than 50 ?m in diameter have been made during 38 research flights. These flights were conducted during the First and Third Canadian Freezing Drizzle ...

Stewart G. Cober; George A. Isaac; J. Walter Strapp

2001-11-01T23:59:59.000Z

419

Including costs of supply chain risk in strategic sourcing decisions  

E-Print Network (OSTI)

Cost evaluations do not always include the costs associated with risks when organizations make strategic sourcing decisions. This research was conducted to establish and quantify the impact of risks and risk-related costs ...

Jain, Avani

2009-01-01T23:59:59.000Z

420

Including Atmospheric Layers in Vegetation and Urban Offline Surface Schemes  

Science Conference Proceedings (OSTI)

A formulation to include prognostic atmospheric layers in offline surface schemes is derived from atmospheric equations. Whereas multilayer schemes developed previously need a complex coupling between atmospheric-model levels and surface-scheme ...

Valéry Masson; Yann Seity

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Issues Final Environmental Impact Statement for the FutureGen 2.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Final Environmental Impact Statement for the FutureGen Issues Final Environmental Impact Statement for the FutureGen 2.0 Project, Morgan County, Illinois DOE Issues Final Environmental Impact Statement for the FutureGen 2.0 Project, Morgan County, Illinois October 25, 2013 - 2:48pm Addthis The U.S. Department of Energy has issued the Final Environmental Impact Statement (EIS) for the FutureGen 2.0 Project. The EIS evaluates the potential impacts associated with DOE's proposed action to provide financial assistance to the FutureGen Industrial Alliance (the Alliance) for the FutureGen 2.0 Project, including the direct and indirect environmental impacts from construction and operation of the proposed project. DOE's proposed action would provide approximately $1 billion of funding (primarily under the American Recovery and Reinvestment Act) to

422

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

Hossein Ghezel-Ayagh

2003-05-23T23:59:59.000Z

423

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 63.3 59.3 57.9 57.0 57.4 61.3 1983-2013 Alabama 71.7 71.0 68.5 68.2 68.4 66.7 1989-2013 Alaska 94.1 91.6 91.1 91.0 92.3 92.6 1989-2013 Arizona 84.0 83.0 81.6 80.3 82.8 82.7 1989-2013 Arkansas 37.8 28.3 28.1 28.6 26.7 28.0 1989-2013

424

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

425

Optimal site selection and sizing of distributed utility-scale wind power plants  

DOE Green Energy (OSTI)

As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)] [Minnesota Dept. of Public Service, St. Paul, MN (United States)

1998-04-01T23:59:59.000Z

426

Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

2010-06-01T23:59:59.000Z

427

Manufacturing Plants Incorporate Energy Efficiency into Business Model |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Plants Incorporate Energy Efficiency into Business Manufacturing Plants Incorporate Energy Efficiency into Business Model Manufacturing Plants Incorporate Energy Efficiency into Business Model April 27, 2011 - 12:15pm Addthis Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Four Texas-based manufacturing plants are adopting robust energy efficiency standards as part of an energy management certification program led by the Department of Energy's Industrial Technologies Program. The certification program, called Superior Energy Performance, provides a

428

Manufacturing Plants Incorporate Energy Efficiency into Business Model |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Plants Incorporate Energy Efficiency into Business Manufacturing Plants Incorporate Energy Efficiency into Business Model Manufacturing Plants Incorporate Energy Efficiency into Business Model April 27, 2011 - 12:15pm Addthis Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Four Texas-based manufacturing plants are adopting robust energy efficiency standards as part of an energy management certification program led by the Department of Energy's Industrial Technologies Program. The certification program, called Superior Energy Performance, provides a

429

ChronoSeeker: Future Opinion Extraction  

Science Conference Proceedings (OSTI)

In this paper, we will propose a novel technique for Future Opinion Extraction, a new task of Information Extraction. The system we built can extract automatically future opinions, building automatic queries for the Search API. We obtained an F-Measure ... Keywords: Data Mining, Information Extraction, Machine Learning

Pierre Brun; Hideki Kawai; Kazuo Kunieda; Keiji Yamada

2009-09-01T23:59:59.000Z

430

Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE  

E-Print Network (OSTI)

Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER. For the Smart Light emitting Diode Lighting in Residential Fans Project, the California Lighting Technology

431

Future Contracts and Options Commodity markets  

E-Print Network (OSTI)

the concurrent use of both cash and futures markets · Consider the case of a flour mill which has made heavy forward sales of flour, that requires more uncommitted wheat that the mill owns. ­ to hedge these flour sales, the mill needs to secure more wheat contracts in future when there is enough resources from

Boisvert, Jeff

432

A Once and Future Gulf of Mexico  

E-Print Network (OSTI)

A Once and Future Gulf of Mexico Ecosystem Restoration Recommendations of an Expert Working Group. Washington, DC. 112 pp. #12;A Once and Future Gulf of Mexico Ecosystem Restoration Recommendations Introduction 9 Precedents and Principles for Restoring the Gulf of Mexico Ecosystem 15 Acute and Chronic

Florida, University of

433

A Once and Future Gulf of Mexico  

E-Print Network (OSTI)

A Once and Future Gulf of Mexico Ecosystem Restoration Recommendations of an Expert Working Group, Stanley Senner, John M. Teal and Ping Wang #12;1 A Once and Future Gulf of Mexico Ecosystem, Executive deep-sea and shoreline habitats and closing economically valuable fisheries in the Gulf of Mexico

Osenberg, Craig W.

434

Pinellas Plant annual site environmental report for calendar year 1993  

Science Conference Proceedings (OSTI)

Martin Marietta Specialty Components, Inc., and the US Department of Energy are committed to successfully administering a high quality Environmental Management Program at the Pinellas Plant in Pinellas County, Florida. Part of this commitment includes accurately documenting and communicating to the Pinellas Plant stakeholder the results of their environmental compliance and monitoring activities. The Annual Site Environmental Report presents a comprehensive summary of the results of the environmental monitoring, waste management, and environmental restoration programs at the Pinellas Plant for 1993. This report also includes the plant`s performance in the areas of compliance with applicable regulatory requirements and standards and identifies major environmental management program initiatives and accomplishments for 1993.

Not Available

1994-06-10T23:59:59.000Z

435

Fusion Power: A Strategic Choice for the Future Energy Provision. Why is So Much Time Wasted for Decision Making?  

Science Conference Proceedings (OSTI)

From a general analysis of the world energy issue, it is argued that an affordable, clean and reliable energy supply will have to consist of a portfolio of primary energy sources, a large fraction of which will be converted to a secondary carrier in large baseload plants. Because of all future uncertainties, it would be irresponsible not to include thermonuclear fusion as one of the future possibilities for electricity generation.The author tries to understand why nuclear-fusion research is not considered of strategic importance by the major world powers. The fusion programs of the USA and Europe are taken as prime examples to illustrate the 'hesitation'. Europe is now advocating a socalled 'fast-track' approach, thereby seemingly abandoning the 'classic' time frame towards fusion that it has projected for many years. The US 'oscillatory' attitude towards ITER in relation to its domestic program is a second case study that is looked at.From the real history of the ITER design and the 'siting' issue, one can try to understand how important fusion is considered by these world powers. Not words are important, but deeds. Fast tracks are nice to talk about, but timely decisions need to be taken and sufficient money is to be provided. More fundamental understanding of fusion plasma physics is important, but in the end, real hardware devices must be constructed to move along the path of power plant implementation.The author tries to make a balance of where fusion power research is at this moment, and where, according to his views, it should be going.

D'haeseleer, William D

2005-04-15T23:59:59.000Z

436

Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations  

Science Conference Proceedings (OSTI)

This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

1980-03-01T23:59:59.000Z

437

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

Science Conference Proceedings (OSTI)

The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

Samuel S. Tam

2002-05-01T23:59:59.000Z

438

Plant Phenotype Characterization System  

DOE Green Energy (OSTI)

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

439

Nuclear plant cancellations: causes, costs, and consequences  

Science Conference Proceedings (OSTI)

This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

Not Available

1983-04-01T23:59:59.000Z

440

Superconducting RF cavity R&D for future accelerators  

E-Print Network (OSTI)

High-beta superconducting radiofrequency (SRF) elliptical cavities are being developed for several accelerator projects including Project X, the European XFEL, and the International Linear Collider (ILC). Fermilab has recently established an extensive infrastructure for SRF cavity R&D for future accelerators, including cavity surface processing and testing and cavity assembly into cryomodules. Some highlights of the global effort in SRF R&D toward improving cavity performance, and Fermilab SRF cavity R&D in the context of global projects are reviewed.

C. M. Ginsburg

2009-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "future include plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

U. S. Fusion Energy Future  

SciTech Connect

Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

2000-10-12T23:59:59.000Z

442

Tools for Assessing Building Energy Use in Industrial Plants  

E-Print Network (OSTI)

This presentation will cover a brief history of building energy measures savings potential for industrial plants and briefly characterize building energy measures and their savings identified over approximately the past 15 years in energy audits. The nature and extent of building energy assessment tools will then be profiled, and the beneficial use of an appropriate subset of these tools for assessing energy savings in buildings at industrial plants will be described. Possible future tools that may be useful will also be mentioned.

Martin, M.; MacDonald, M.

2007-01-01T23:59:59.000Z

443

Stephen Potter: Exploring rail futures using scenarios EXPLORING RAIL FUTURES USING SCENARIOS: EXPERIENCE AND POTENTIAL  

E-Print Network (OSTI)

and other research outputs Exploring rail futures using scenarios: experience and potential Conference Item How to cite:

Stephen Potter

2007-01-01T23:59:59.000Z

444

Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case  

Open Energy Info (EERE)

Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Focus Area: Solar Topics: Market Analysis Website: www.leonardo-energy.org/webinar-introduction-small-scale-photovoltaic- Equivalent URI: cleanenergysolutions.org/content/introduction-small-scale-photovoltaic Language: English Policies: Deployment Programs DeploymentPrograms: Project Development This video teaches the viewer about photovoltaic arrays and RETscreen's photovoltaic module, which can be used to project the cost and production of an array. An example case study was

445

DOE Revises its NEPA Regulations, Including Categorical Exclusions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revises its NEPA Regulations, Including Categorical Exclusions Revises its NEPA Regulations, Including Categorical Exclusions DOE Revises its NEPA Regulations, Including Categorical Exclusions September 30, 2011 - 2:30pm Addthis On September 27, 2011, the Department of Energy (DOE) approved revisions to its National Environmental Policy Act (NEPA) regulations, and on September 28th, submitted the revisions to the Federal Register. The final regulations, which become effective 30 days after publication in the Federal Register, are the culmination of a 2-year process to review and update DOE's NEPA implementing procedures. This process involved internal evaluation, public participation, and Council on Environmental Quality (CEQ) review. The revisions are designed to focus Departmental resources on projects with the potential for significant environmental impact, to better

446

Productivity Improvement for Fossil Steam Power Plants, 2008  

Science Conference Proceedings (OSTI)

EPRI's Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products successfully applied and tested. Many of these have been described in the other EPRI publications: Productivity Improvement for Fossil Steam Power Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fossil Steam Power Plants, 2006, (1014598), and Productivity Improvement for Fossil Steam Power Plants, 2007 (10154...

2008-12-24T23:59:59.000Z

447

Productivity Improvement for Fossil Steam Power Plants, 2010  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fosiil Steam Power Plants 2006, (101459), Productivity Improvement for Fossil Steam Power Plants 2007 (1015445), Productivity Impro...

2011-01-31T23:59:59.000Z

448

Productivity Improvement for Fossil Steam Power Plants: Industry Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants," now in its third edition, has included many descriptions of successfully applied advanced techniques and products. In the last few years, an increasingly diverse set of plant case studies have been described in some detail on the website of the Productivity Improvement User Group. This report assembles more than sixty of these case studies on subjects spanning the power plant from the boiler and the steam turbine, through plant auxiliaries ...

2003-11-17T23:59:59.000Z

449

Constructive episodic simulation: temporal distance and detail of past and future events modulate hippocampal engagement  

E-Print Network (OSTI)

ABSTRACT: Behavioral, lesion and neuroimaging evidence show striking commonalities between remembering past events and imagining future events. In a recent event-related fMRI study, we instructed participants to construct a past or future event in response to a cue. Once an event was in mind, participants made a button press, then generated details (elaboration) and rated them. The elaboration of past and future events recruited a common neural network. However, regions within this network may respond differentially to event characteristics, such as the amount of detail generated and temporal distance, depending on whether the event is in the past or future. To investigate this further, we conducted parametric modulation analyses, with temporal distance and detail as covariates, and focused on the medial temporal lobes and frontopolar cortex. The analysis of detail (independent of temporal distance) showed that the left posterior hippocampus was responsive to the amount of detail comprising both past and future events. In contrast, the left anterior hippocampus responded differentially to the amount of detail comprising future events, possibly reflecting the recombination of details into a novel future event. The analysis of temporal distance revealed that the increasing recency of past events correlated with activity in the right parahippocampus gyrus (Brodmann area (BA) 35/36), while activity in the bilateral hippocampus was significantly correlated with the increasing remoteness of future events. We propose that the hippocampal response to the distance of future events reflects the increasing disparateness of details likely included in remote future events, and the intensive relational processing required for integrating such details into a coherent episodic simulation of the future. These findings provide further support for the constructive episodic simulation hypothesis (Schacter and Addis (2007) Philos Trans R Soc Lond B Biol Sci 362:773–786) and highlight the involvement of the hippocampus in relational processing during elaboration of future events. VC 2007 Wiley-Liss, Inc. KEY WORDS: episodic; autobiographical memory; future; fMRI; parametric modulation

Donna Rose Addis; Daniel L. Schacter

2008-01-01T23:59:59.000Z

450

Embrittlement of Power Plant Steels  

Science Conference Proceedings (OSTI)

Plant operators seek to adopt approaches that can minimize costs, prevent forced outages, and maximize safety and reliability. Rigorous life assessment methodologies have been developed over the years and are commonly employed to determine component integrity and life. Such assessments examine key operational characteristics including: elevated temperature exposure, cycling operation, loading, environmental exposure, etc., to determine remaining life. Many of these characteristics can have a ...

2013-12-19T23:59:59.000Z

451

Solar Energy Education. Renewable energy: a background text. [Includes glossary  

SciTech Connect

Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

1985-01-01T23:59:59.000Z

452

Thin film solar cell including a spatially modulated intrinsic layer  

SciTech Connect

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

453

Solar Energy Education. Renewable energy: a background text. [Includes glossary  

DOE Green Energy (OSTI)

Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

Not Available

1985-01-01T23:59:59.000Z

454

Plants producing DHA  

Science Conference Proceedings (OSTI)

CSIRO researchers published results in November 2012 showing that the long-chain n-3 fatty acid docosahexaenoic acid (DHA) can be produced in land plants in commercially valuable quantities. Plants producing DHA inform Magazine algae algal AOCS bi

455

Oil and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil and Plants Name: Matt Location: NA Country: NA Date: NA Question: If you could please tell me exactly what motor oil (unused) does to plants, and the effects. Does it...

456

PLANT BIOLOGY DEPARTMENT HANDBOOK  

E-Print Network (OSTI)

PLANT BIOLOGY DEPARTMENT HANDBOOK 2012-2013 University of Georgia Athens, GA 30602 Updated: 9/5/12 #12;Plant Biology Handbook Table of Contents General Information and Operating Procedures 1

Arnold, Jonathan

457

Plants and Dirt Compaction  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirt Compaction Name: Conor Location: NA Country: NA Date: NA Question: When growing corn and soybean plants does the compaction of dirt effect the growth of the plant? Replies:...

458

Chlorine and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine and Plants Name: Paul Location: NA Country: NA Date: NA Question: Is too Much chlorine going to kill or harm plants? I couldn't find information anywhere but I found...