Sample records for future grid initiative

  1. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  2. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

  3. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

  4. FUTURE POWER GRID INITIATIVE Intelligent Networked Sensors

    E-Print Network [OSTI]

    , demand- response, and plug-in electric vehicles. It: » Lays the software platform groundwork and planning and ensure a more secure, efficient and reliable future grid. Building on the Electricity

  5. FUTURE POWER GRID INITIATIVE Real-time High-Performance

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Real-time High-Performance Computing Infrastructure for Next- Generation Power Grid Analysis OBJECTIVE » We are developing infrastructure, software, formal models for real Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNL) national electric

  6. FUTURE POWER GRID INITIATIVE Next Generation Network

    E-Print Network [OSTI]

    designed by PNNL and currently being deployed in the AEP gridSMART Demonstration Project, and » developed that will position PNNL as the leader in modeling and planning power grid data communication networks. External users scenarios and testing of communication requirements with smart grid investments. November 2012 PNNL-SA-90012

  7. FUTURE POWER GRID INITIATIVE A Statistical State Prediction

    E-Print Network [OSTI]

    and analytics capabilities for the power November 2012 PNNL-SA-90022 Ning Zhou Pacific Northwest National Laboratory (509) 372-6438 ning.zhou@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver Northwest National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance

  8. FUTURE POWER GRID INITIATIVE Actionable Visualization Tools for

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Actionable Visualization Tools for Power Grid Situation Awareness the fundamental need for greater SA through actionable visualization tools that: » increase the effectiveness to incorrect assumptions about events and even disastrous consequences. The tools developed in this project

  9. FUTURE POWER GRID INITIATIVE Decision Support for Future

    E-Print Network [OSTI]

    data to generate and share mission-critical analysis and insights. November 2012 PNNL-SA-90020 Gariann Gelston Pacific Northwest National Laboratory (509) 372-4480 gariann.gelston@pnnl.gov Angie Dalton Pacific Northwest National Laboratory (509) 371-6607 angela.dalton@pnnl.gov ABOUT FPGI The Future Power Grid

  10. FUTURE POWER GRID INITIATIVE Market Design Analysis Tool

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Market Design Analysis Tool OBJECTIVE Power market design plays to obtain the optimal set of market rules. IMPACT The Market Design Analysis Tool (MDAT) will be used to study the implications of market rules on market outcomes. With MDAT's tools of market design

  11. PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)

    SciTech Connect (OSTI)

    None

    2014-11-03T23:59:59.000Z

    The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data can’t be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.

  12. FUTURE POWER GRID INITIATIVE A Statistical State Prediction

    E-Print Network [OSTI]

    and analytics capabilities for the power November 2012 PNNL-SA-90022 Tim Ledbetter, FPGI Communications Specialist Pacific Northwest National Laboratory (509) 375-5953 tim.ledbetter@pnnl.gov ABOUT FPGI The Future Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNL) national electric

  13. FUTURE POWER GRID INITIATIVE A Multi-layer Data-Driven

    E-Print Network [OSTI]

    » Enhances the ability of control center personnel to anticipate and proactively address electric power grid on the Electricity Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNLFUTURE POWER GRID INITIATIVE A Multi-layer Data-Driven Advanced Reasoning Tool for Smart Grid

  14. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01T23:59:59.000Z

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  15. Computation and Information Hierarchy for a Future Grid

    E-Print Network [OSTI]

    Computation and Information Hierarchy for a Future Grid Future Grid Initiative White Paper Power;#12;Computation and Information Hierarchy for a Future Grid Prepared for the Project "The Future Grid to Enable This white paper was developed as one of nine white papers in the project "The Future Grid to Enable

  16. FUTURE POWER GRID INITIATIVE Future Power Grid

    E-Print Network [OSTI]

    and WECC model » Prototyping proposed control strategy utilizing high performance computing (HPC) APPROACH

  17. Technology Challenges in Designing the Future Grid to Enable

    E-Print Network [OSTI]

    Technology Challenges in Designing the Future Grid to Enable Sustainable Energy Systems Future Grid the Future Electric Energy System #12;Technology Challenges in Designing the Future Grid to Enable Summary This white paper synthesizes technology challenges for reaching a vision of the future grid that

  18. WISDOM: A Grid-Enabled Drug Discovery Initiative Against Malaria

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    14 WISDOM: A Grid-Enabled Drug Discovery Initiative Against Malaria Vincent Breton, Doman Kim ................................................................................ 354 14.2 Grid-Enabled Drug Discovery .................................................. 354 14.2.1 In Silico Drug Discovery: Requirements and Grid Added Value

  19. Modern Grid Initiative Distribution Taxonomy Final Report

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Chen, Yousu; Chassin, David P.; Pratt, Robert G.; Engel, David W.; Thompson, Sandra E.

    2008-11-01T23:59:59.000Z

    This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies is the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels. The distribution feeder models presented in this report are based on actual utility models but do not contain any proprietary or system specific information. As a result, the models discussed in this report can be openly distributed to industry, academia, or any interested entity, in order to facilitate the ability to evaluate smart grid technologies.

  20. The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond

    E-Print Network [OSTI]

    Hayden, Nancy J.

    The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond BURLINGTON SHERATON HOTEL & CONFERENCE CENTER MAY Laboratories 9:10-10:15 a.m. Opening Plenary: The Vermont-Sandia Smart Grid

  1. Prospects for Grid-Computing in Future Power Networks Prof. Malcolm Irving1

    E-Print Network [OSTI]

    Taylor, Gary

    Prospects for Grid-Computing in Future Power Networks Prof. Malcolm Irving1 , Dr. Gareth Taylor1 , Dr. Peter Hobson2 28 October 2003 1 Brunel Institute of Power Systems 2 SIRE Group Department to alert the power system community to the concept of Grid-computing and to initiate a discussion of its

  2. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25T23:59:59.000Z

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  3. FermiGrid - experience and future plans

    SciTech Connect (OSTI)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01T23:59:59.000Z

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  4. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loads Power Systems Integration Lab PV and Grid Simulators Energy Systems Integration Lab Fuel Cells, Electrolyzers Outdoor Test Area EVs, MV equipment Rooftop PV & Wind Energy...

  5. Past and future of grid shell structures

    E-Print Network [OSTI]

    Paoli, Céline (Céline Aude)

    2007-01-01T23:59:59.000Z

    Because of their original organic shape and the column free space that they provide, the design of grid shell structures challenges architects and structural engineers in more than one way. Very few grid shell building ...

  6. FUTURE POWER GRID INITIATIVE Scalable Sensor Data

    E-Print Network [OSTI]

    . Focus Area Leads: Bora Akyol (bora@pnnl. gov) and Harold Kirkham (harold. kirkham@pnnl.gov) November 2012 PNNL-SA-90010 Jian Yin Pacific Northwest National Laboratory (509) 371-6398 jian.yin@pnnl on the Electricity Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNL

  7. Rethinking the Future Grid: Integrated Nuclear Renewable Energy...

    Office of Scientific and Technical Information (OSTI)

    Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint Re-direct Destination: The U.S. DOE is supporting research and development that could lead to more...

  8. FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking,

    E-Print Network [OSTI]

    algorithms and software tools and techniques. Focus Area Leads: Bora Akyol (bora@pnnl. gov) and Harold Kirkham (harold. kirkham@pnnl.gov) November 2012 PNNL-SA-90031 Thomas Edgar Pacific Northwest National Laboratory (509) 372-6195 thomas.edgar@pnnl.gov David Manz Pacific Northwest National Laboratory (509) 372

  9. FutureGrid User Support Gregory Pike, Andrew Younge,

    E-Print Network [OSTI]

    FutureGrid User Support Gregory Pike, Andrew Younge, Gregor von Laszewski, Fugang Wang, Javier Diaz, Archit Kulshrestha, Geoffrey Fox Indiana University #12;Tiered Support Model Knowledge Base Manuals Documentation Knowledge Base, Manuals, Tutorials, Ticket System, Inca, GNOC status Tier 1: Support through

  10. Software-Based Challenges of Developing the Future Distribution Grid

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01T23:59:59.000Z

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future distribution grid modeling, and measured data sources are a key missing element . Modeling tools need to be calibrated based on measured grid data to validate their output in varied conditions such as high renewables penetration and rapidly changing topology. In addition, establishing a standardized data modeling format would enable users to transfer data among tools to take advantage of different analysis features. ?

  11. The Electricity Transmission System Future Vision & Grid Challenges

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology Performance April 7,U.Future Vision & Grid

  12. High-resolution population grids and future scenarios for Tanzania Philip J. Platts & Ruth D. Swetnam

    E-Print Network [OSTI]

    Marchant, Rob

    this grid and the LandScan grid to remove all persons from these protected areas (Single Map Algebra Tool1 High-resolution population grids and future scenarios for Tanzania Philip J. Platts & Ruth D, were obtained by hindcasting the LandScan grid on a ward-by-ward basis, such that ward totals matched

  13. Future Roles of Milli-, Micro-, and Nano- Grids

    SciTech Connect (OSTI)

    Marnay, Chris; Nordman, Bruce; Lai, Judy

    2011-07-01T23:59:59.000Z

    Although it has slowed considerably, consumption of electricity continues to grow in developed economies. Further, there are some unknowns which might accelerate this growth, such as electrification of vehicle fleets and geothermal heat pump space and water heating. Most analysts anticipate that distributed energy resources (DER) will provide a large share of the expanded generation capacity required to meet this seemingly inexorably increasing electricity demand. Further, given the urgency of tackling the climate change problem, most of the added assets must be carbonfree renewables or nuclear, end-use efficiency improvements, or highly efficient fossil-fired technologies. In developed economies worldwide, the current power delivery paradigm has been in place for more than a century, i.e. since the emergence of polyphase AC systems around the turn of the last century. A key feature of this structure is that, in principle, universal service is delivered at a consistent level of power quality and reliability (PQR) throughout large regions. This paper describes a future possible structure for the electricity generation and delivery system that leaves the existing high voltage meshed grid paradigm in place, but involves radical reorganization of parts of the distribution network and customer sites. Managing a much more diverse dispersed system poses major challenges to the current centralized grid paradigm, particularly since many of these assets are small to tiny by macrogrid standards and they may ultimately number in the millions. They are also not ones that centralized control can rely upon to function in traditionally dependable ways, e.g. renewable generation can be highly variable and changes in output of generators are not independent. Although most involved in the industry agree that a paradigm shift is both necessary and desirable to manage the new system, the nature of the future system remains quite unclear. In the possible structure described here, the traditional grid, or macrogrid, remains similar at the high voltage meshed level. Three new entities are added more locally: community grids or milligrids that operate a segment of the existing distribution system, microgrids which are akin to current customer sites but which have automonous control, and nanogrids, such as telecom or Ethernet networks that currently distribute power to many low-power devices. The latter exist currently in the local electrical systems but are not typically considered a part of the traditional electricity supply system. Because all these new entities exhibit some localized control, providing appropriate local heterogeneous PQR becomes a possibility. These new grid concepts enable a more"bottom-up" approach to electricity distribution, in contrast to the historic 'top-down' model. The future will almost certainly include a mix of the two, but the balance among them and the interface (if any) between them is unclear.

  14. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on

    E-Print Network [OSTI]

    LBNL-45272 Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on The Federal Role in Electric System R&D During a Time of Industry Transition: An Application of Scenario Berkeley National Laboratory CERTS Grid of the Future Project Team Carlos Martinez, Edison Technology

  15. PSERC Webinar Series: Issues in Designing the Future Grid - Transmissi...

    Office of Environmental Management (EM)

    Grid - Transmission Design at the National Level - January 24, 2012 PSERC is offering a free, public webinar series from January to May 2012 entitled "Issues in Designing the...

  16. FUTURE POWER GRID INITIATIVE Multi-Resolution Data Model

    E-Print Network [OSTI]

    the entire data set We are using R over Hadoop on the PNNL Institutional Computers to enable this analysis-scale power data. November 2012 PNNL-SA-90013 Kerstin Kleese van Dam Pacific Northwest National Laboratory (509) 371-7797 kerstin.kleesevandam@pnnl.gov Terence Critchlow Pacific Northwest National Laboratory

  17. FUTURE POWER GRID INITIATIVE Linear Algebra Solvers and

    E-Print Network [OSTI]

    for small-signal stability. With these methods and software, scientists at PNNL and other DOE facilities can the prototype computational tools for domain scientists at PNNL and other DOE facilities to determine mathematical models to conduct November 2012 PNNL-SA-90016 Barry Lee Pacific Northwest National Laboratory (509

  18. FUTURE POWER GRID INITIATIVE An Intelligent Agent Platform

    E-Print Network [OSTI]

    Sequencing For Managing Demand/Response IMPACT VOLTTRON fills the need for an independent language agnostic. This will allow customers, building owners, utilities, etc. to realize better energy efficiency and reliability the integrating platform for a DOE funded project combining multiple labs and vendors for building energy

  19. FUTURE POWER GRID INITIATIVE Modeling of Distributed Energy

    E-Print Network [OSTI]

    models by utility companies to support their demand response operations. APPROACH Development module) » modeling of the response scheme (control module) » modeling of the aggregated effects and detailed model and will be followed by a calibration procedure. Approaches to build aggregated models

  20. Software Based Barriers To Integration Of Renewables To The Future Distribution Grid

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila

    2014-06-01T23:59:59.000Z

    The future distribution grid has complex analysis needs, which may not be met with the existing processes and tools. In addition there is a growing number of measured and grid model data sources becoming available. For these sources to be useful they must be accurate, and interpreted correctly. Data accuracy is a key barrier to the growth of the future distribution grid. A key goal for California, and the United States, is increasing the renewable penetration on the distribution grid. To increase this penetration measured and modeled representations of generation must be accurate and validated, giving distribution planners and operators confidence in their performance. This study will review the current state of these software and modeling barriers and opportunities for the future distribution grid.

  1. PSERC Webinar Series: Issues in Designing the Future Grid - Cyber...

    Office of Environmental Management (EM)

    Cyber-Physical Systems Security for the Smart Grid - February 7, 2012 PSERC is offering a free, public webinar series from January to May 2012 entitled "Issues in Designing the...

  2. Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design

    E-Print Network [OSTI]

    Wong, Vincent

    meter. All smart meters are connected to not only the power grid but also a communication infrastructure. This allows two-way communication among smart meters and the utility company. We analytically model each user1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi

  3. Cyber-Physical Systems Security for Smart Grid

    E-Print Network [OSTI]

    Cyber-Physical Systems Security for Smart Grid Future Grid Initiative White Paper Power Systems-Physical Systems Security for Smart Grid Prepared for the Project "The Future Grid to Enable Sustainable Energy as one of nine white papers in the project "The Future Grid to Enable Sustainable Energy Systems

  4. Cyber-Physical Systems Security for Smart Grid

    E-Print Network [OSTI]

    Cyber-Physical Systems Security for Smart Grid Future Grid Initiative White Paper Power Systems-Physical Systems Security for Smart Grid Prepared for the Project "The Future Grid to Enable Sustainable Energy Acknowledgements This white paper was developed as one of nine white papers in the project "The Future Grid

  5. AUSTRIAN GRID AUSTRIAN GRID

    E-Print Network [OSTI]

    AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From Károly Bósa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

  6. Future Intelligent Power Grids: Analysis of the vision in the European Union and the United States

    SciTech Connect (OSTI)

    Coll-Mayor, Debora; Paget, Mia L.; Lightner, Eric M.

    2007-04-01T23:59:59.000Z

    The future of power grids is expected to involve an increasing level of intelligence and integration of new information and communication technologies in every aspect of the electricity system, from demand-side devices to wide-scale distributed generation to a variety of energy markets. This paper provides a general outlook of the definition of this future in the U.S. and the European Union and compares two approaches—GridWiseTM and SmartGrid. It describes the contexts in both the worlds, as they influence the two visions of the future intelligent power grid, and as they form foundations at each respective federal level for supporting research in this field. The similarities and complementarities of the two research programs are examined. Within the framework of a solid precedence for trans-Atlantic cooperation in energy research, the time would seem optimal to set in motion active collaboration and educational exchange on GridWise and SmartGrid research. This paper will help energy policy makers to better understand the key issues determining the two different approaches and the two different policies derived from them; as well as a comparison of the solution provided in each case. This work will also be useful for researchers and industry decision makers to be aware of trans-Atlantic approaches, opportunities, and resources looking toward future, more intelligent and interconnected power grids.

  7. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01T23:59:59.000Z

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  8. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

    2012-07-10T23:59:59.000Z

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  9. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01T23:59:59.000Z

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  10. Sandia Energy - New Jersey Transit FutureGrid MOU Signing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink GalleryNationalJersey Transit

  11. Standards-enabled Smart Grid for the Future Valeriy Vyatkin, Senior Member, IEEE, Gulnara Zhabelova, non-member,

    E-Print Network [OSTI]

    Ulieru, Mihaela

    1 Standards-enabled Smart Grid for the Future EnergyWeb Valeriy Vyatkin, Senior Member, IEEE for the Smart Grid is proposed which combines two recently developed industrial standards. The utility network that can be created using interoperable Smart Grid devices. Using Matlab-based simulation environment we

  12. Some characteristics of emerging distribution systems considering the smart grid initiative

    SciTech Connect (OSTI)

    Brown, Hilary E.; Suryanarayanan, Siddharth; Heydt, Gerald T.

    2010-06-15T23:59:59.000Z

    Modernization of the electric power system in the United States is driven by the Smart Grid Initiative. Many changes are planned in the coming years to the distribution side of the U.S. electricity delivery infrastructure to embody the idea of ''smart distribution systems.'' However, no functional or technical definition of a smart distribution system has yet been accepted by all. (author)

  13. Ris-R-1529(EN) Initial results of local grid control using

    E-Print Network [OSTI]

    (max. 2000 char.): This report describes initial results with simulation of power system control using Preface 4 1 Introduction 5 2 Grid component models 6 2.1 Combined Heat and Power plant 6 2.2 Static load 9 9 3.2 Simulation examples 10 4 Active stall controlled wind turbines with HVDC/VSC transmission 17 4

  14. Abstract--This paper describes Nice Grid, a demonstration project part of the European initiative Grid4EU. The project

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Grid4EU. The project aims at developing a smart solar neighbourhood in the urban area of the city with forecasts of solar power production and load in a local energy management system. The paper, which demonstration projects on Smart Grid. Index Terms-- Energy storage, Forecasting, Photovoltaic systems, Smart

  15. Visions of Future Intelligent Power Grids: Synergies for Collaboration Between the European Union and the United States

    SciTech Connect (OSTI)

    Coll-Mayor, Debora; Paget, Mia L.; Lightner, Eric M.; Sanchez-Jimenez, Manuel

    2007-01-01T23:59:59.000Z

    The future of power grids is expected to involve an increasing level of intelligence and integration of new information and communication technologies in every aspect of the electricity system, from demand-side devices to wide-scale distributed generation to a variety of energy markets. The vision of this future in the United States and the European Union is known as GridWiseTM and SmartGrid, respectively. The results of the examination of similarities and complementarities of the two research programs are presented in this paper. Within the framework of a solid precedence for trans-Atlantic cooperation in energy research, the time would seem optimal to set in motion active collaboration and educational exchange on GridWise and SmartGrid research. This paper will provide energy professionals with a comparison of the solutions developed in each case, to be aware of trans-Atlantic approaches, opportunities, and resources looking toward future, more intelligent and interconnected power grids.

  16. THE SMART GRID Where We Are Today and What the Future Holds

    E-Print Network [OSTI]

    Edwards, Paul N.

    , protects, and automatically optimizes the operation of its interconnected elements..."5 , while the Federal-grid.html. Accessed April 2012 2 Troxell, Wade O. "Smart Grid: Transforming the US Power Grid." Powerpoint do we need it? The United States electrical grid, consisting of over 5,000 power plants, over 200

  17. The Modern Grid Initiative is a DOE-funded project managed by...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McAdams Theory of grid modernization. This is final in a series of discussions on how different mindsets look at grid modernization. With four generation "X" and "Y" children...

  18. An evolution of the state of affairs of grid computing : current and future projections

    E-Print Network [OSTI]

    Haque, Mesbah, 1972-

    2005-01-01T23:59:59.000Z

    Grid computing has a potential market opportunity of $12 billion by 2007 [6] and recent business strategy alignment to support Grid Computing by the major vendors like IBM, SUN, Oracle and others has resulted in high ...

  19. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01T23:59:59.000Z

    of a Smart Grid Smart Meters Intelligent Grid Expanded Energy Sources 3 Digital Meters Meter Data Management System Common Portal / Data Repository Home Area Network CNP?s smart grid journey A history of stakeholder commitment 1990s... Existing Consumer Education & Engagement ? Maximize consumer awareness of CNP?s smart grid program ? Develop consumer understanding of the new technology ? Facilitate active consumer engagement in smart energy management ? In Home Display Pilot...

  20. The Modern Grid Initiative is a DOE-funded project managed by...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at grid modernization. One of my past bosses used to share humorous theories of organizational change management from a college professor, McAdams, worthy of the great...

  1. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption 

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01T23:59:59.000Z

    % saved 52% on event days 13 What?s Next? Smart Meters Were Just The Beginning HAN Devices Smart Appliances Smart Meter Texas Portal Intelligent Grid Phase 1: Customer Insight Smart Meters Storage Electric vehicles Phase 2...: Customer Engagement Micro Grids Aggregated Demand Management Phase 3: Customer Co-Creator of Value 2010 2020 2014 2013 2012 2011 Price control / load control Advanced Grid 14 We can?t do it alone Per the DOE Grant Agreement,: ?If you...

  2. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    ScienceCinema (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-06-07T23:59:59.000Z

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  3. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    SciTech Connect (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-03-20T23:59:59.000Z

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  4. The Virtual Observatory and Grid in Spain

    E-Print Network [OSTI]

    J. D. Santander-Vela

    2008-07-08T23:59:59.000Z

    The Virtual Observatory (VO) is nearing maturity, and in Spain the Spanish VO (SVO) exists since June 2004. There have also been numerous attempts at providing more or less encompassing grid initiatives at the national level, and finally Spain has an official National Grid Initiative (NGI). In this article we will show the VO and Grid development status of nationally funded initiatives in Spain, and we will hint at potential joint VO-Grid use-cases to be developed in Spain in the near future.

  5. Initial Experiences with occampi Simulations of Blood Clotting on the Minimum Intrusion Grid

    E-Print Network [OSTI]

    Kent, University of

    automatically across a set of processing nodes. Index Terms---grid, simulation, occam­pi, blood­clot, nanite I Nanite Assemblers) [6]. Current models contain tens of thousands of concur­ rent processes; however, we properties of systems containing millions of interacting agents --- nanites or biological organelles (such

  6. PSERC Webinar Series on the Future Grid Initiative Begins January 22, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | DepartmentINLDepartment of Energy|

  7. PSERC Webinar Series on the Future Grid Initiative Begins January 22, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESS FACT SHEET On July 19 thDistributedAMI:|

  8. March & April 2013 PSERC Webinars on the Future Grid Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006)R&DPEM

  9. WHAT A SMART GRID MEANS TO OUR NATION'S FUTURE. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40%DepartmentBradleyWHAT A SMART GRID

  10. HOW THE SMART GRID PROMOTES A GREENER FUTURE. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1HAWAI'IHMAX ®:Active Energy

  11. The Feasibility of Moving PMU Data in the Future Power Grid

    SciTech Connect (OSTI)

    Gibson, Tara D.; Kulkarni, Anand V.; Kleese van Dam, Kerstin; Critchlow, Terence J.

    2011-09-07T23:59:59.000Z

    The power grid is a complex network connecting electricity providers with their consumers. With an increasing consumer base requiring more resources and the requirement to integrate significant renewable sources, maintaining the network requires new and innovative management solutions. To manage this complexity and provide precise, real-time views of the grid, Phasor Measurement Units (PMUs) are undergoing widespread deployment. These units provide measurements as often as 60 times per second, with an accurate time identifier attached to each reading, enabling real-time monitoring of the network. However, this new capability generates much more data than the current infrastructure is designed to handle. With the expectation that there will eventually be tens of thousands of PMUs monitoring the transmission lines, the power community is looking towards accumulating multiple terabytes of data per day - several orders of magnitude beyond current data acquisition rates. This has led to questions being raised in the power community about whether or not a significant research effort is required to effectively transfer the volume of information generated by these new data streams. This paper answers that question by comparing a worst-case data generation scenario with several alternative networking protocols and historical trends in protocol advancement. Based on this analysis we are able to conclude that transferring the information between the PMUs and the resulting data repositories is feasible. We recognize that there are issues beyond transferring the data that need to be addressed such as effective access to historical data, data transfer latency, cyber security, and data analysis. There is also an extensive engineering trade-off that the power companies will need to make to decide the best mix of networking protocols for their particular PMU deployments, since that requires significant assumptions about proprietary information including deployment cost, deployment schedules, PMU locations, and available resources.

  12. "Future of the Grid: Evolving to Meet America's Needs" Report Now

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage Presentation3| Department of

  13. GridOPTICS(TM) A Novel Software Framework for Integrating Power Grid Data Storage, Management and Analysis

    SciTech Connect (OSTI)

    Gorton, Ian; Yin, Jian; Akyol, Bora A.; Ciraci, Selim; Critchlow, Terence; Liu, Yan; Gibson, Tara D.; Purohit, Sumit; Sharma, Poorva; Vlachopoulou, Maria

    2013-01-09T23:59:59.000Z

    This paper describes the architecture and design of GridOPTICSTM, a novel software framework to integrate a collection of software tools developed by PNNL’s Future Power Grid Initiative (FPGI) into a coherent, powerful operations and planning tool for the power grid of the future. GridOPTICSTM enables plug-and-play of various analysis, modeling and visualization software tools for fast and accurate control of the power grid. To bridge the data access for different control purposes, GridOPTICSTM provides a scalable and thin layer of event processing that hides the complexity of data storage and management. The initial prototype of GridOPTICSTM was demonstrated with several use cases from PNNL’s FPGI.

  14. Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management »EnergyHubs |B - ProgramServicesFuture

  15. The Future of the Grid: Evolving to Meet America's Needs (December 2014)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentTheEnergy TheClean The Future ofResearch|

  16. Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism

    SciTech Connect (OSTI)

    Lin, Che-Jen [ORNL; Pongprueksa, Pruek [Lamar University; Lindberg, Steven Eric [ORNL; Jang, Carey [U.S. Environmental Protection Agency, Raleigh, North Carolina; Braverman, Thomas [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bullock, Russell O [NOAA; Ho, Thomas [ORNL; Chu, Hsing-Wei [Lamar University

    2008-03-01T23:59:59.000Z

    In this study, the model response in terms of simulated mercury concentration and deposition to boundary condition (BC), initial condition (IC), model grid resolution (12 km versus 36 km), and two alternative Hg(II) reduction mechanisms, was investigated. The model response to the change of gaseous elemental mercury (GEM) concentration from 0 to 2 ngm3 in IC/BC is found to be very linear (r240.99) based on the results of sensitivity simulations in July 2001. An increase of 1 ngm3 of GEM in BC resulted in an increase of 0.81 ngm3 in the monthly average of total mercury concentration, and 1270 ngm2 in the monthly total deposition. IC has similar but weaker effects compared to those of BC. An increase of 1 ngm3 of GEM in IC resulted in an increase of 0.14 ngm3 in the monthly average of total mercury concentration, and 250 ngm2 in the monthly total deposition. Varying reactive gaseous mercury (RGM) or particulate mercury (PHg) in BC/IC has much less significant impact. Simulation results at different grid resolutions show good agreement (slope 0.950 1.026, r 0.816 0.973) in mercury concentration, dry deposition, and total deposition. The agreement in wet deposition is somewhat weaker (slope 0.770 0.794, r 0.685 0.892) due to the difference in emission dilution and simulated precipitation that subsequently change reaction rates in the aqueous phase. Replacing the aqueous Hg(II)-HO2 reduction by either RGM reduction by CO (51018cm3 molecule1 s1) or photoreduction of RGM (1105 s1) gives significantly better model agreement with the wet deposition measured by Mercury Deposition Network (MDN). Possible ranges of the reduction rates are estimated based on model sensitivity results. The kinetic estimate requires further verification by laboratory studies.

  17. Power Systems and Communications Infrastructures for the future, Beijing, September 2002 AN INITIAL COMPLEX SYSTEMS ANALYSIS OF THE RISKS OF

    E-Print Network [OSTI]

    USA Introduction Electric power transmission systems are a key infrastructure and blackouts, electric power blackouts have cascading effects on other vital infrastructures. While it is usefulPower Systems and Communications Infrastructures for the future, Beijing, September 2002 AN INITIAL

  18. Review of the Structure of Bulk Power Markets Grid of the Future White Paper

    SciTech Connect (OSTI)

    Kirby, B.J.

    2000-05-02T23:59:59.000Z

    This paper is intended to provide an understanding of the needs of a restructured electricity market and some of the market methods and systems that have developed to address those needs. Chapter 2 discusses the historic market framework of vertically integrated utilities. Chapter 3 introduces the changes to the vertically integrated utility brought about by restructuring. It discusses generation and transmission planning, control and the regulatory process. It also summarizes reliability, security and adequacy. Chapter 4 discusses the basic structures of generation and transmission markets along with transmission-congestion contracts (TCCs) and transmission pricing principles. A discussion is given of the 12 ancillary services needed to reliably operate the power system. Chapter 4 also deals with the role of transmission in opening up markets to competition. In California increments (incs) and decrements (decs) are bid to overcome price differences in different zones caused by congestion. In PJM, any member can purchase Fixed Transmission Rights (FTRs) which allows the member to ''collect rent'' on congested lines and essentially obtain a hedge against congestion. There has been a worrisome slowdown in the growth of the transmission system in the United States since about the mid 70's. However, there are methods for providing incentives for construction of new transmission using tariffs. The California and PJM transmission planning processes are outlined. The Federal Energy Regulatory Commission (FERC) has recently issued a proposed rulemaking on Regional Transmission Organizations (RTOs) which stated that the traditional methods of grid management are showing signs of strain and may be inadequate to support efficient and reliable transmission operations. Chapter 5 provides examples of market implementations and a discussion of the price spikes seen in the Midwest in the summers of 1998 and 1999. An examination of six restructured market systems is performed in some detail. The systems are California, PJM (Pennsylvania, New Jersey, Maryland), New England, United Kingdom (UK), Alberta, and Australia. Finally, there is a discussion of the price spikes that occurred in the Midwest this summer from the viewpoint of market performance. Chapter 6 deals with the concept of load as a resource. This is a novel idea that holds tremendous promise as technological advances permit real time control of loads based on the user's economic criteria. The user may be willing to curtail operations for some period of time when the spot price reaches a certain level, or the user may be willing to sell ancillary services to the system. Chapter 7 outlines the research needs presented by a restructured industry and the vital federal role in meeting these needs. Without federal participation, research to advance the public good will not be performed by an industry now focused on profit. Chapter 8 provides a summary and concluding remarks.

  19. A Discussion Paper circulated by Brunel Institute of Power Systems 15/09/03 Prospects for Grid-Computing in Future Power Networks

    E-Print Network [OSTI]

    Taylor, Gary

    A Discussion Paper circulated by Brunel Institute of Power Systems 15/09/03 Prospects for Grid-Computing in Future Power Networks Prof. Malcolm Irving and Dr. Gareth Taylor 15 September 2003 Brunel Institute of Power Systems Department of Electronic and Computer Engineering Brunel University Uxbridge, Middlesex

  20. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  1. Grid Modernization Initiative

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber toSenate

  2. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect (OSTI)

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03T23:59:59.000Z

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNL’s Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  3. Convergence for the Smart Grid -On the technology opportunities for Future Cyber-Physical Energy Systems, invited paper at New Research Directions for Future Cyber-Physical Energy

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Angeles, CA. 90095 http://winmec.ucla.edu Email:smartgrid@winmec.ucla.edu Convergence for the Smart Grid School of Engineering and Applied Science Director UCLA WINSmartGrid Connection http://winmec.ucla.edu/smartgrid Director UCLA WINMEC http://winmec.ucla.edu smartgrid@wireless.ucla.edu April 20, 2009 National Priority

  4. Design of the FutureGrid Experiment Management Gregor von Laszewski, Geoffrey C. Fox, Fugang Wang, Andrew Younge, Archit Kulshrestha,

    E-Print Network [OSTI]

    , interface design and cybersecurity, to the optimization of Grid-enabled and cloud-enabled computational. Furthermore, with the advent of emerging cloud technologies, users have a newfound ability to define their own

  5. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Initiative GridWise Alliance GridWise Architecture Council European SmartGrid Technology Platform 19 MODERN GRID S T R A T E G Y Questions? Office of Electricity...

  6. Our Future. Energy Independence...It's Up To Us. Hawaii Clean Energy Initiative (HCEI) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Brochure for the Hawaii Clean Energy (HCEI) Initiative that estabishes the new HCEI brand and highlights two focus areas for achieving Hawaii's clean energy goals: conserve and convert.

  7. To Begin the World Anew: Smart Grids and the Need for a Comprehensive U.S. Energy Policy

    SciTech Connect (OSTI)

    Foster, Nikolas AF

    2011-12-01T23:59:59.000Z

    The United States is in the midst of a monumental transformation of its electric power grid. Advances in information and communication technologies and grid measurement and control devices have initiated the transition toward a more resilient, sustainable and efficient future power grid. Deployment of these technologies is being driven by policies encouraging the shift to a greener grid, incorporating clean and low carbon energy; as well as rising consumer demand for smarter ways to use existing resources.

  8. Grid Transformation Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-03-Grid-Transformation-Workshop Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  9. The Modern Grid Initiative is a DOE-funded project managed by the National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's Lower Mantle Print76GeRevisedMini

  10. The Modern Grid Initiative is a DOE-funded project managed by the National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's Lower Mantle Print76GeRevisedMiniRainsuit

  11. Sandia National Laboratories: smart-grid technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart-grid technologies New Jersey Transit FutureGrid MOU Signing On October 4, 2013, in Analysis, Energy Surety, Infrastructure Security, Microgrid, Modeling, Modeling & Analysis,...

  12. Open PhD position at EURECOM/INRIA (Sophia-Antipolis) Mathematical Tools for Smart Grids

    E-Print Network [OSTI]

    Gatti, Nicola

    the multiple initiatives from the US governments (see smartgrid.gov) and the EU Technology Platform for electricity networks of the Future, also called SmartGrids ETP. One study sponsored by the US Department

  13. Artificial Intelligence for the Smart Grid

    E-Print Network [OSTI]

    Artificial Intelligence for the Smart Grid NICTA is developing technology to automate costs. The Future · Cover more of Smart Grid control (diagnosis, reconfiguration, protection, voltage) products for the Smart Grid. Contact Details: Technical Jussi Rintanen Canberra Research Laboratory Tel

  14. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    SciTech Connect (OSTI)

    Snoj, L. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Sklenka, L.; Rataj, J. [Dept. of Nuclear Reactor, Czech Technical Univ. in Prague, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Boeck, H. [Vienna Univ. of Technology/Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2012-07-01T23:59:59.000Z

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

  15. LANL physicists discuss electrical grid in journal article

    E-Print Network [OSTI]

    - 1 - LANL physicists discuss electrical grid in journal article October 17, 2013 Electrical grids of distribution grids. Revolutionary changes to the electric grid will lead to grids that are more random that could make a major impact on the future grid: · probabilistic measures of electrical grid reliability

  16. Stability of elastic grid shells

    E-Print Network [OSTI]

    Mesnil, Romain, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The elastic grid shell is a solution that combines double curvature and ease of mounting. This structural system, based on the deformation of an initially at grid without shear stiffness was invented more than fifty years ...

  17. Keck Futures Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015JustKate BannanNational Academies Keck

  18. GridWise Alliance

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the GRIDWISE ALLIANCE including its mission, today and tomorrow's grid, membership, work groups, and key policy initiatives.

  19. Applications (Grid Tools)

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0 # * 1 PDB CDB Grid Fabric Hardware &+ '' + ) , '1 '1 ' % - * # ( Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0

  20. Initial Site-wide Groundwater remediation Strategy of the Hanford Site, WA: Its Application, Lessons Learned and Future Path forward

    SciTech Connect (OSTI)

    Goswami, D.; Hedges, J.; Whalen, C. [Nuclear Waste Program, Washington State Department of Ecology, WA (United States)

    2007-07-01T23:59:59.000Z

    In 1989, the Washington State Department of Ecology (Ecology), the U.S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE) formed an agreement to clean up the Hanford Site, located in the state of Washington. By 1995, the three parties developed an initial comprehensive site wide groundwater remediation strategy with a vision to address contaminated plumes of hazardous and radioactive waste. The Hanford Site has more than 170 square miles of contaminated groundwater. Almost half exceeds the state and federal drinking water standards. The plumes are often commingled. The remediation is challenged by limited technologies, poor understanding of conceptual models, and subsurface contaminant behavior. This paper briefly describes the basic principles of the initial strategy, its application, the results of the decade-long operation, and the future path forward. The initial strategy was based on a qualitative assessment to reduce immediate risk to human health and the environment; to support commonly held values of stakeholders, including tribal nations and the public; and to deploy available remediation technologies. Two different approaches were used for two distinct geographic, the river shore reactor areas and the central plateau few miles away. The strategy was to cleanup the major groundwater plumes in the reactor areas next to the Columbia River where chromium, strontium-90, and uranium already entering the river and to contain the plumes of chlorinated solvents and radionuclides in the central plateau. The strategy acknowledges the lack of cost-effective technologies to address the contaminants, and asked DOE to develop, test, and deploy cost-effective alternative technologies wherever applicable. After more than a decade, the results are mixed. While the pump and treat provided a meaningful approach to address certain contaminants, it was too small in scale. Efforts to scale up these operations enhance characterization, and to deployment innovative technologies are progressing; albeit slowly due to budget constraints. A number of innovative technologies were identified to address source control and groundwater remediation across the Hanford Site. In the 10 years since the initial strategy was developed, additional severe groundwater and vadose zone contaminations were discovered under the waste storage tanks on the central plateau and river corridor areas. These problems required changes to the strategy. Changes include complete integration of vadose zone and groundwater characterization and remediation activities and immediate needs for technologies to address the deep vadose zone source areas, as well as thick aquifer contamination - especially for chlorinated solvents and technetium-99. The successes of the initial strategy show that even a strategy based on incomplete information can make progress on difficult issues. The regulatory agencies identified these issues early and provided the needed direction to DOE to move forward with the overall mission of clean up. The cleanup of the Hanford site is a big challenge, not only for DOE, but also for the regulators, to ensure the tri-party agencies achieve the desired goals. (authors)

  1. Understanding The Smart Grid

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  2. 6. CONCLUSIONS AND FUTURE WORK The initial goal of this thesis was to provide a general technique for the control of complex,

    E-Print Network [OSTI]

    Toronto, University of

    96 6. CONCLUSIONS AND FUTURE WORK The initial goal of this thesis was to provide a general contribution of this thesis is to illustrate that control techniques can be successfully applied to animate this cost. Both are based on the reuse of previously computed models rather than blind reconstruction

  3. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  4. Grid Security

    E-Print Network [OSTI]

    Sinnott, R.O.

    Sinnott,R.O. National Centre for e-Social Science book, Grid Computing: Technology, Service and Application, CRC Press, November 2008.

  5. GRID Technologies => `Education' = `Distance Michalis Xenos

    E-Print Network [OSTI]

    Boyer, Edmond

    GRID Technologies => `Education' = `Distance Education' Michalis Xenos 1,2 , Bill Vassiliadis 1 possibilities that Grid technologies create in education, presents current learning paradigms and makes a prediction about the way in which Grid technologies may affect the future of education. The case

  6. PSERC Future Grid Initiative: A Research Program Sponsored by the Office of Electricity Delivery and Energy Reliability, U.S. DOE Probabilistic Simulation Methodology for

    E-Print Network [OSTI]

    Gross, George

    when the system actually needs the wind generation output [1], [2], [3]. Indeed, a frequent phenomenon in many regions with wind resources is the pronounced output of wind generation, due to the appropriate, during the peak-load periods. Such a misalignment of the wind generation and load patterns, coupled

  7. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01T23:59:59.000Z

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  8. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Environmental Management (EM)

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

  9. Grid Architecture

    Broader source: Energy.gov (indexed) [DOE]

    Integration of Distributed Generation", John McDonald, et.al. Electrical Transmission and Smart Grids, Springer, 2013. 4.25 Figure 4.17. Common Distribution Looping Arrangements In...

  10. Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission Grid: Vision and Framework

    E-Print Network [OSTI]

    Tennessee, University of

    Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission.2080328 3. A Reliability Perspective of the Smart Grid Moslehi, K. Kumar, R. Page(s): 57 - 64 Digital Object Consumption Scheduling for the Future Smart Grid Mohsenian-Rad, A. Wong, V.W.S. Jatskevich, J. Schober, R

  11. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON SMART GRID 1

    E-Print Network [OSTI]

    Danforth, Chris

    as presented, with the exception of pagination. IEEE TRANSACTIONS ON SMART GRID 1 Predicting Critical

  12. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    Meetings on Demand Response and Smart Grid, pp. 1-21, 2011.Consumption Scheduling for the Future Smart Grid,” IEEETransactions on Smart Grid, vol. 1, pp. 320–331, 2010. N.

  13. NATL Grid Map 50-Meter Grid

    E-Print Network [OSTI]

    Slatton, Clint

    NATL-east NATL Grid Map 50-Meter Grid Locations in NATL can be specified by reference to a grid intervals. Each gridline intersection ("grid point") is identified by its two gridlines (e.g., E5). Each 50x50-m block formed by the gridlines is identified by the grid point in its northwest corner (e

  14. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON SMART GRID 1

    E-Print Network [OSTI]

    Powell, Warren B.

    as presented, with the exception of pagination. IEEE TRANSACTIONS ON SMART GRID 1 A Robust Solution to the Load in smart grids is likely to be- come a more complex and demanding task in the next decades. In this paper, power distribution, power system management, power system modeling, smart grids. I. NOMENCLATURE Sets

  15. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON SMART GRID 1

    E-Print Network [OSTI]

    Thévenaz, Jacques

    as presented, with the exception of pagination. IEEE TRANSACTIONS ON SMART GRID 1 Primary Voltage Control of supercapacitor arrays and where the ADN uses the grid explicit congestion notification (GECN) for real to achieve spe- cific operation objectives (e.g., [1]­[7]). In particular, the grid ancillary services1

  16. From Access and Integration to Mining of Secure Genomic Data Sets across the Grid

    E-Print Network [OSTI]

    Sinnott, R.O.

    Sinnott,R.O. Future Generation of Computer Systems, Special Edition on Life Science Grids for Biomedicine and Bioinformatics

  17. Smart Grid Cybersecurity: Job Performance Model Report and Phase...

    Broader source: Energy.gov (indexed) [DOE]

    Security Examiners to develop a set of guidelines to enhance development of the smart grid cybersecurity workforce and provide a foundation for future certifications. The project...

  18. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A. [ComEd, Chicago, IL (United States)

    1996-11-01T23:59:59.000Z

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  19. Concept for Management of the Future Electricity System (Smart...

    Open Energy Info (EERE)

    Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System Country Denmark...

  20. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil's Impact onDepartmentDepartment of

  1. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Savers [EERE]

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

  2. IEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 645 Malicious Data Attacks on the Smart Grid

    E-Print Network [OSTI]

    Tong, Lang

    between users and suppliers. While such integration is essential for a future "smart" grid, it also makesIEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 645 Malicious Data Attacks on the Smart Grid Oliver Kosut, Member, IEEE, Liyan Jia, Robert J. Thomas, Life Fellow, IEEE, and Lang Tong

  3. Game Theoretic Methods for the Smart Grid

    E-Print Network [OSTI]

    Saad, Walid; Poor, H Vincent; Ba?ar, Tamer

    2012-01-01T23:59:59.000Z

    The future smart grid is envisioned as a large-scale cyber-physical system encompassing advanced power, communications, control, and computing technologies. In order to accommodate these technologies, it will have to build on solid mathematical tools that can ensure an efficient and robust operation of such heterogeneous and large-scale cyber-physical systems. In this context, this paper is an overview on the potential of applying game theory for addressing relevant and timely open problems in three emerging areas that pertain to the smart grid: micro-grid systems, demand-side management, and communications. In each area, the state-of-the-art contributions are gathered and a systematic treatment, using game theory, of some of the most relevant problems for future power systems is provided. Future opportunities for adopting game theoretic methodologies in the transition from legacy systems toward smart and intelligent grids are also discussed. In a nutshell, this article provides a comprehensive account of the...

  4. future grid | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZoloHome Dc'scloudgrid Homeuse

  5. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON SMART GRID 1

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Metering for Power Market Pricing in Smart Grid Husheng Li, Lifeng Lai, and Robert Caiming Qiu Abstract--Remote metering is a key task in smart grid to col- lect the power load information for the pricing in power market. A wireless communication infrastructure is assumed for the smart meter network. The dynamics

  6. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    for Modern Lighting Product Quality Assurance for Off-GridLighting Africa Product Quality Assurance Workshop AirlieLighting Initiative Quality Certification Institute United

  7. Smart Grid RFI: Addressing Policy and Logistical Challenges,...

    Broader source: Energy.gov (indexed) [DOE]

    ("DOE" or "Department") for information on a wide range of issues dealing with Smart Grid technology, applications, consumer interaction, policy initiatives and economic...

  8. A grid model for the design, coordination and dimensional optimization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A grid model for the design, coordination and dimensional optimization in architecture D.Léonard1 54000 Nancy, France INTRODUCTION Our article treats layout grids in architecture and their use. It initially proposes to define an architectural grid model as well as a set of operations to construct them

  9. Initial Comments of Honeywell, Inc. on Policy and Logistical...

    Office of Environmental Management (EM)

    Initial Comments of Honeywell, Inc. on Policy and Logistical Challenges in Implementing Smart Grid Solutions Initial Comments of Honeywell, Inc. on Policy and Logistical Challenges...

  10. Department of Energy Launches Initiative with Industry to Better...

    Office of Environmental Management (EM)

    of Energy Launches Initiative with Industry to Better Protect the Nation's Electric Grid from Cyber Threats Department of Energy Launches Initiative with Industry to Better...

  11. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect (OSTI)

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10T23:59:59.000Z

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  12. Security on the US Fusion Grid

    SciTech Connect (OSTI)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01T23:59:59.000Z

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  13. Data security on the national fusion grid

    SciTech Connect (OSTI)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01T23:59:59.000Z

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  14. NREL: Transmission Grid Integration - Grid Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchersGrid

  15. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14T23:59:59.000Z

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  16. Modeling Smart Grid using Generalized Stochastic Petri Net

    E-Print Network [OSTI]

    Dey, Amrita; Sanyal, Sugata

    2011-01-01T23:59:59.000Z

    Building smart grid for power system is a major challenge for safe, automated and energy efficient usage of electricity. The full implementation of the smart grid will evolve over time. However, before a new set of infrastructures are invested to build the smart grid, proper modeling and analysis is needed to avoid wastage of resources. Modeling also helps to identify and prioritize appropriate systems parameters. In this paper, an all comprehensive model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The model is used to analyze the constraints and deliverables of the smart power grid of future.

  17. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

  18. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  19. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

  20. Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation

    E-Print Network [OSTI]

    Kemner, Ken

    Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation sources are likely to be intermittent, requiring storage capacity energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all

  1. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  2. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  3. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  4. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  5. Grid Logging: Best Practices Guide

    E-Print Network [OSTI]

    Tierney, Brian L

    2008-01-01T23:59:59.000Z

    Revision date: March 1, 2008 Grid Logging: Best Practicesis to help developers of Grid middleware and applicationlog files that will be useful to Grid administrators, users,

  6. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  7. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Data Injection Attacks on Power Grids”, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

  8. Sandia National Laboratories: electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  9. Wireless Communications and Networking Technologies for Smart Grid: Paradigms and Challenges

    E-Print Network [OSTI]

    Fang, Xi; Xue, Guoliang

    2011-01-01T23:59:59.000Z

    Smart grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this work we present our vision on smart grid from the perspective of wireless communications and networking technologies. We present wireless communication and networking paradigms for four typical scenarios in the future smart grid and also point out the research challenges of the wireless communication and networking technologies used in smart grid

  10. Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    E-Print Network [OSTI]

    Fan, Zhong; Gormus, Sedat; Efthymiou, Costas; Kalogridis, Georgios; Sooriyabandara, Mahesh; Zhu, Ziming; Lambotharan, Sangarapillai; Chin, Woon Hau

    2011-01-01T23:59:59.000Z

    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.

  11. Smart Grid Overview

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Overview Ben Kroposki, PhD, PE Director, Energy Systems IntegraLon NaLonal Renewable Energy Laboratory What is t he S mart Grid? and DER Source: NISTEPRI Architecture...

  12. Fuel rod support grid

    DOE Patents [OSTI]

    Downs, Robert E. (Monroeville, PA); Schwallie, Ambrose L. (Greensburg, PA)

    1985-01-01T23:59:59.000Z

    A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

  13. The soft grid

    E-Print Network [OSTI]

    Kardasis, Ari (Ari David)

    2011-01-01T23:59:59.000Z

    The grid in architecture is a systematic organization of space. The means that architects use to organize space are, almost by definition, rigid and totalizing. The Cartesian grid, which will serve as the antagonist of the ...

  14. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  15. SmartGrid: Quarterly Data Summaries from the Data Hub and SmartGrid Project Information (from OpenEI and SmartGrid.gov)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Both OpenEI and SmartGrid.gov are DOE portals to a wealth of information about the federal initiatives that support the development of the technologies, policies and projects transforming the electric power industry. Projects funded through the U.S. Recovery Act are organized by type and pinned to an interactive map at http://en.openei.org/wiki/Gateway:Smart_Grid. Each project title links to more detailed information. The Quarterly Data Summaries from the Data Hub at SmartGrid.gov are also available on OpenEI at http://en.openei.org/datasets/node/928. In addition, the SmartGrid Information Center contains documents and reports that can be searched or browsed. Smart Grid Resources introduces international SmartGrid programs and sites, while OpenEI encourages users to add SmartGrid information to the repository.

  16. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRID TECHNICAL OPPORTUNITIES From

  17. North RTL grid scan'' studies

    SciTech Connect (OSTI)

    Emma, P.

    1990-10-17T23:59:59.000Z

    This study was made in response to screen measurements which indicated an emittance growth of nearly a factor of two within the North RTL or linac girder-1. Betatron oscillations are induced at the beginning of the North RTL to search for gross geometric aberrations arising within the RTL or sector-2 of the linac. The oscillations are induced horizontally and vertically with two X or two Y dipole correctors stepped in a nested loop fashion. In both cases the full set of RTL and first girder sector-2 linac beam position monitors (BPMs) are sampled in X and Y for each corrector setting. Horizontal (or vertical) data from pairs of BPMs are then transformed to phase space coordinates by the linear transformation constructed assuming the transport optics between the BPMs is known. A second transformation is then made to normalized phase space coordinates by using Twiss parameters consistent with the assumed transport optics. By careful choice of initial Twiss parameters the initial grid can be made square for convenience in graphical interpretation. A linear grid'' is then fitted to the transformed data points for each pair of BPMs. The area of each grid is calculated and linearity qualitatively evaluated. Furthermore, although not the focus of this study, the beta match at each BPM can be quantified. 6 figs.

  18. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  19. GreenIT Service Level Agreements IN SERVICE LEVEL AGREEMENTS IN GRIDS WORKSHOP COLOCATED WITH IEEE/ACM GRID

    E-Print Network [OSTI]

    GreenIT Service Level Agreements IN SERVICE LEVEL AGREEMENTS IN GRIDS WORKSHOP COLOCATED WITH IEEE towards the inclusion of Green IT metrics as part of service level agreements for future Grids and Clouds. As part of this effort we need to revisit Green IT metrics and proxies that we consider optimizing against

  20. Assessment of Future Vehicle Transportation Options and their...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional...

  1. action future functioning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and wide area situation awareness (SA) for all organizations in the power grid. This project addresses 8 Midbrain dopamine neurons encode decisions for future action Computer...

  2. Control and Protection Paradigms of the Future

    E-Print Network [OSTI]

    a strong foundation of practice in system regulation and protective relaying on which to build; howeverControl and Protection Paradigms of the Future Future Grid Thrust Area 2 White Paper Power Systems White Paper Control and Protection Paradigms of the Future Project Team C.L. DeMarco, C.A. Baone, B

  3. Exploiting the Computational Grid Lecture 1 Globus and the Grid

    E-Print Network [OSTI]

    Exploiting the Computational Grid Lecture 1 ­ Globus and the Grid · The grid needs middleware to enable things such as logins etc · The toolkit model for the grid is to define a set of standards for the grid and then develop applications on top. The low level stuff is then hidden from the user · Globus

  4. Mapping Unstructured Grids to Structured Grids and Multigrid

    E-Print Network [OSTI]

    Chapter 4 Mapping Unstructured Grids to Structured Grids and Multigrid Many problems based solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence). We 65 #12; CHAPTER 4. MAPPING UNSTRUCTURED GRIDS 66 show that unless great care is taken

  5. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors ToDecisionDistribution Grid

  6. Dependability Analysis of Control Center Networks in Smart Grid using Stochastic Petri Nets

    E-Print Network [OSTI]

    Shen, Xuemin "Sherman"

    1 Dependability Analysis of Control Center Networks in Smart Grid using Stochastic Petri Nets: xshen@bbcr.uwaterloo.ca Abstract--As an indispensable infrastructure for the future life, smart grid is being implemented to save energy, reduce costs, and increase reliability. In smart grid, control center

  7. Modern Grid Strategy: Enhanced GridLAB-D Capabilities Final Report

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.; Tuffner, Francis K.; Chen, Yousu

    2009-09-09T23:59:59.000Z

    GridLAB-D is a software simulation environment that was initially developed by the US Department of Energy (DOE) Office of Electricity (OE) for the purpose of enabling the effective analysis of emerging smart grid technologies. In order to achieve this goal GridLAB-D was developed using an open source approach with the intent that numerous people and organizations would contribute to the ongoing development. Because of the breadth and complexity of the emerging smart grid technologies the inclusion of multiple groups of developers is essential in order to address the many aspects of the smart grid. As part of the continuing Modern Grid Strategy (MGS) the Pacific Northwest National Laboratory (PNNL) has been tasked with developing an advanced set of GridLAB-D capabilities. These capabilities were developed to enable the analysis of complex use case studies which will allow for multi-disciplinary analysis of smart grid operations. The advanced capabilities which were developed include the implementation of an unbalanced networked power flow algorithm, the implementation of an integrated transmission and distribution system solver, and a set of use cases demonstrating the capabilities of the new solvers.

  8. Resource Discovery Services for Grid Computing Training 

    E-Print Network [OSTI]

    Low, Boon; Fergusson, David; MacColl, John

    2007-03-20T23:59:59.000Z

    discovery services developed as part of an initiative to pilot e-learning and a shared digital library infrastructure for Grid Computing training projects in Europe. The development is also related to a project funded by the UK Joint Information Systems...

  9. North American SynchroPhasor Initiative (NASPI) Technical Report...

    Energy Savers [EERE]

    the North American SynchroPhasor Initiative, a collaboration between the North American electric industry (utilities, grid operators, vendors and consultants), the North American...

  10. 1154 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 4, JULY/AUGUST 2012 A Comparison of Smart Grid Technologies

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    of Smart Grid Technologies and Progresses in Europe and the U.S. Marcelo Godoy Simões, Senior Member, IEEE the electric power grid. The U.S. federal government has ratified the "smart grid initiative" as the official. This paper presents the development of smart grids and an analysis of the methodologies, milestones

  11. Grid Architecture William E. Johnston

    E-Print Network [OSTI]

    Grid Architecture William E. Johnston Lawrence Berkeley National Lab and NASA Ames Research Center wejohnston@lbl.gov (These slides are available at grid.lbl.gov/~wej/Grids) #12;Distributed Resources Condor Internet optical networks space-based networks Grid Communication Functions Communications BasicGrid

  12. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13T23:59:59.000Z

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  13. Automated Grid Disruption Response System: Robust Adaptive Topology Control (RATC)

    SciTech Connect (OSTI)

    None

    2012-03-01T23:59:59.000Z

    GENI Project: The RATC research team is using topology control as a mechanism to improve system operations and manage disruptions within the electric grid. The grid is subject to interruption from cascading faults caused by extreme operating conditions, malicious external attacks, and intermittent electricity generation from renewable energy sources. The RATC system is capable of detecting, classifying, and responding to grid disturbances by reconfiguring the grid in order to maintain economically efficient operations while guaranteeing reliability. The RATC system would help prevent future power outages, which account for roughly $80 billion in losses for businesses and consumers each year. Minimizing the time it takes for the grid to respond to expensive interruptions will also make it easier to integrate intermittent renewable energy sources into the grid.

  14. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Grid Modernization Renewable Energy Integration Smart Grid Tools and Technology Smart Grid Tools and TechnologyTara...

  15. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

  16. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,” to appear in IEEE

  17. Article on the Grid Tech Team's Strategic Plan for Grid Modernization Now Available

    Broader source: Energy.gov [DOE]

    A new article by OE’s Kerry Cheung, William Parks and Anjan Bose in IEEE’s Smart Grid newsletter describes the Department of Energy’s strategic plan to achieve a future electricity system that will be cost-effective, seamless from generation to end-use, and capable of meeting all clean energy demands and capacity requirements.

  18. Enterprise SRS Future Initiatives | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublicArticle Enterprise SRS Article Enterprise

  19. Enterprise SRS Future Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration | Department ofDecember 2014 |Reviews

  20. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meters, Conductor, Surge Protection Devices, Connectors, Lighting Controls, Grid-Scale Battery Storage, Grid-Scale Flywheel Energy for Frequency Regulation, Automation...

  1. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia finalized and submitted the updated "WECC Wind Power Plant...

  2. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEC 61400-26 Availability Standard On June 12, 2014, in Analysis, Distribution Grid Integration, Energy, Grid Integration, Infrastructure Security, News, News & Events,...

  3. Sandia National Laboratories: grid modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid modernization Renewables, Other Energy Issues To Be Focus of Enhanced Sandia-SINTEF Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy,...

  4. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

  5. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  6. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Specialists (PVSC) Conference On August 14, 2013, in DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

  7. Sandia National Laboratories: Grid Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InfrastructureEnergy AssuranceGrid Capabilities Grid Capabilities Goal: To develop and implement a comprehensive Sandia program to support the modernization of the U.S. electric...

  8. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu

    2012-07-06T23:59:59.000Z

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  9. Random array grid collimator

    DOE Patents [OSTI]

    Fenimore, E.E.

    1980-08-22T23:59:59.000Z

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  10. Cyber Security & Smart Grid

    E-Print Network [OSTI]

    Shapiro, J.

    2011-01-01T23:59:59.000Z

    of the impacts of long-term power shortages from the destruction of critical electric infrastructure. ? A Hitachi factory north of Tokyo that makes 60% of the world?s supply of airflow sensors was shut down. This caused General Motors to shut a plant... at The University of Texas at Dallas ? Next Generation Control Systems ? Trustworthy Cyber Infrastructure for the Power Grid ? Active Defense Systems ? System Vulnerability Assessments ? Grid Test Bed ? Integrated Risk Analysis ? Modeling and Simulation...

  11. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  12. Making use of the International Lattice Data Grid

    E-Print Network [OSTI]

    Tomoteru Yoshie

    2008-12-04T23:59:59.000Z

    The International Lattice Data Grid (ILDG) continues stable operation for about one year and has accumulated a lot of valuable configurations. After a brief review of the ILDG system, we highlight large physics projects, whose configurations are already available on the grid or will be open to the public in the near future. With such information, one can make better use of the ILDG. Statistics about the ILDG is also reported.

  13. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01T23:59:59.000Z

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  14. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home StationaryFAQs HomeProgramSCADASMART Grid

  15. Essential Grid Workflow Monitoring Elements

    SciTech Connect (OSTI)

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01T23:59:59.000Z

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  16. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15T23:59:59.000Z

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  17. Sandia National Laboratories: International Smart Grid Action...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Action Network Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration,...

  18. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

  19. Networked Loads in the Distribution Grid

    E-Print Network [OSTI]

    Wang, Zhifang; Li, Xiao; Muthukumar, Vishak; Scaglione, Anna; Peisert, Sean; McParland, Chuck

    2012-01-01T23:59:59.000Z

    Lu, and Deborah A. Frincke. Smart-Grid Security Issues. IEEELoads in the Distribution Grid Zhifang Wang ? , Xiao Li † ,Transformer   sensors   Grid   Cyber  system   Cooling    

  20. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    New England Outlook: Smart Grid is About Consumers,” Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

  1. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

  2. Lattice QCD Thermodynamics on the Grid

    E-Print Network [OSTI]

    Jakub T. Mo?cicki; Maciej Wo?; Massimo Lamanna; Philippe de Forcrand; Owe Philipsen

    2009-11-30T23:59:59.000Z

    We describe how we have used simultaneously ${\\cal O}(10^3)$ nodes of the EGEE Grid, accumulating ca. 300 CPU-years in 2-3 months, to determine an important property of Quantum Chromodynamics. We explain how Grid resources were exploited efficiently and with ease, using user-level overlay based on Ganga and DIANE tools above standard Grid software stack. Application-specific scheduling and resource selection based on simple but powerful heuristics allowed to improve efficiency of the processing to obtain desired scientific results by a specified deadline. This is also a demonstration of combined use of supercomputers, to calculate the initial state of the QCD system, and Grids, to perform the subsequent massively distributed simulations. The QCD simulation was performed on a $16^3\\times 4$ lattice. Keeping the strange quark mass at its physical value, we reduced the masses of the up and down quarks until, under an increase of temperature, the system underwent a second-order phase transition to a quark-gluon plasma. Then we measured the response of this system to an increase in the quark density. We find that the transition is smoothened rather than sharpened. If confirmed on a finer lattice, this finding makes it unlikely for ongoing experimental searches to find a QCD critical point at small chemical potential.

  3. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect (OSTI)

    None

    2012-02-08T23:59:59.000Z

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  4. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15T23:59:59.000Z

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

  5. GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid Level

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid, in this paper, we present a new Matlab toolbox (GridMat) to integrate the capabilities of domain-specific modeling & simulation tools from power system (GridLAB-D) and control (Matlab). The GridMat tool supports

  6. Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h and the

    E-Print Network [OSTI]

    John, Volker

    Chapter 4 Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h that there might be an iterative method for solving this system efficiently, which uses also coarser grids way between the grids. 2 4.1 The Coarse Grid System and the Residual Equa- tion Remark 4.2 Basic idea

  7. Reports on Initial Results of Smart Grid Investment Grant Projects...

    Energy Savers [EERE]

    and time-based rates; adding advanced voltage and volt-ampere reactive (VAR) optimization (VVO) technologies; and installing advanced metering infrastructure (AMI). For more...

  8. Reports on Initial Results of Smart Grid Investment Grant Projects

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department ofEM CommunicationsReportingReports and(December

  9. Vice President Biden Outlines Funding for Smart Grid Initiatives |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I ATheJune

  10. NIST Finalizes Initial Set of Smart Grid Cyber Security Guidelines |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3ServicesNEET FYNETLAwardNIF

  11. Reports on Initial Results of Smart Grid Investment Grant Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues CellsReport on(December 2012) | Department of

  12. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar

  13. Study of Security Attributes of Smart Grid Systems- Current Cyber Security Issues

    SciTech Connect (OSTI)

    Wayne F. Boyer; Scott A. McBride

    2009-04-01T23:59:59.000Z

    This document provides information for a report to congress on Smart Grid security as required by Section 1309 of Title XIII of the Energy Independence and Security Act of 2007. The security of any future Smart Grid is dependent on successfully addressing the cyber security issues associated with the nation’s current power grid. Smart Grid will utilize numerous legacy systems and technologies that are currently installed. Therefore, known vulnerabilities in these legacy systems must be remediated and associated risks mitigated in order to increase the security and success of the Smart Grid. The implementation of Smart Grid will include the deployment of many new technologies and multiple communication infrastructures. This report describes the main technologies that support Smart Grid and summarizes the status of implementation into the existing U.S. electrical infrastructure.

  14. A mean field game analysis of electric vehicles in the smart grid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A mean field game analysis of electric vehicles in the smart grid Romain Couillet1, Samir Medina electrical vehicles (EV) or electrical hybrid oil-electricity vehicles (PHEV) in the smart grid energy market It is widely recognized [1], [2], [3] that the future intense penetration of electrical vehicles (EV) and plug

  15. European Hydrogen Energy Conference, Maastricht, 18 -22 June 2007 Hydrogen for Grid Integration

    E-Print Network [OSTI]

    Heinemann, Detlev

    that an increasing need for balancing power will result from the advent of large offshore wind parks in the North Sea Integration HYDROGEN AS A MEANS TO CONTROL AND INTEGRATE WIND POWER INTO ELECTRICITY GRIDS Robert Steinberger of wind energy into electricity grids will pose future challenges as the levels of production rise, power

  16. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  17. An Electricity Trade Model for Microgrid Communities in Smart Grid

    E-Print Network [OSTI]

    Pedram, Massoud

    is the major trend of future smart grid, which contains various kinds of renewable power generation centers]. This distributed power generation center has made it easier to make use of all kinds of renewable energy sources as a "prosumer" (producer and consumer) [3]. It contains one or multiple kinds of renewable power generation

  18. Smart-grid Electricity Allocation via Strip Packing with Slicing

    E-Print Network [OSTI]

    Chan, Timothy M.

    ,biedl,tmchan,alubiw,keshav,vpathak}@uwaterloo.ca 2 Massachusetts Institute of Technology, Cambridge, USA elyot@mit.edu 3 University of Guelph, Guelph in Massachusetts was used less than 88 hours per year [7]. Reducing the infrastructure size is not practical since that future smart grids would obtain (at each substation) daily "demand schedules" for appliance use from

  19. 1Challenge the future Electricity Network of Today

    E-Print Network [OSTI]

    Kuzmanov, Georgi

    materials · Design of HV components and HV asset management · Monitoring and diagnostics for (smart) grid applications · Medium Voltage and Low voltage DC systems · Smart cities and Electric mobility · Optimization / focus (PMVD) CASCADEAMIGO LESKER PROVAC #12;5Challenge the future Intelligent Electrical Power Grids

  20. Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action Title: Sustainable Environment

  1. Software-Based Challenges of Developing the Future Distribution Grid

    E-Print Network [OSTI]

    Stewart, Emma

    2014-01-01T23:59:59.000Z

    Golden  CO:  National  Renewable  Energy  Laboratory  energy  resources.  IET   Renewable  Power  Generation,  Golden  CO:  National  Renewable  Energy  Laboratory  

  2. Software-Based Challenges of Developing the Future Distribution Grid

    E-Print Network [OSTI]

    Stewart, Emma

    2014-01-01T23:59:59.000Z

    at   http://www.nist.gov/smartgrid/upload/NIST_Framework_http://w3.usa.siemens.com/smartgrid/us/en/transmission-­?

  3. Future Roles of Milli-, Micro-, and Nano- Grids

    E-Print Network [OSTI]

    Marnay, Chris

    2012-01-01T23:59:59.000Z

    Integration of Renewable Resources: Operational Requirementsof Renewable and Distributed Energy Resources Theof Renewable and Distributed Energy Resources innovation is

  4. Software-Based Challenges of Developing the Future Distribution Grid

    E-Print Network [OSTI]

    Stewart, Emma

    2014-01-01T23:59:59.000Z

    for  each  inverter  or  equivalent  PV  system,  there  system  studies.     Currently  there  is  no  approved  PV  inverter  

  5. Future of the Grid Massoud Amin*, D.Sc.

    E-Print Network [OSTI]

    Amin, S. Massoud

    1986­1992 Electric Network Outages 1984­2000 101 100 10-1 10-2 1 10 100 1,000 10,000 Loss Per event of the amount of electric load lost (1991-2000) #12;7 Historical Analysis of U.S. outages in terms of Affected of Electrical & Computer Engineering Center for the Dev. of Technological leadership University of Minnesota

  6. FutureGrid 101 Part 2: Ge*ng Started

    E-Print Network [OSTI]

    Courtesy: Eucalyptus White Paper: Eucalyptus Open-Source Cloud Compu9ng Infrastructure is an open-source soiware plajorm that implements IaaS-style cloud compu9ng using the exis9ng Linux-based infrastructure ­IaaS Cloud Services providing atomic alloca9on

  7. WHAT A SMART GRID MEANS TO OUR NATION'S FUTURE.

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director of Transmission Planning -Thomas H.

  8. WHAT THE SMART GRID MEANS TO AMERICA'S FUTURE.

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director of Transmission Planning -Thomas

  9. PSERC Webinar Series: Issues in Designing the Future Grid - Transmission

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyofHSSPIAProperty Management Networked

  10. HOW THE SMART GRID PROMOTES A GREENER FUTURE.

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopmentHEADQUARTERS MEDIATION

  11. Vision of the Future Grid | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter-JapanEnergyNews14-88-LNGVideosVirtualAction

  12. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources Resources About one

  13. Concept for Management of the Future Electricity System (Smart Grid

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Open Energy InformationJersey Zip: NJ

  14. Data Management in the GridRPC GridRPC Data Management API

    E-Print Network [OSTI]

    Caniou, Yves

    Data Management in the GridRPC Issues Conclusion GridRPC Data Management API Implementations, Le Mahec, Nakada GridRPC DM API: Implem. and Interop. Issues (1/13) #12;Data Management in the GridRPC Issues Conclusion Goal GridRPC DM types: Reminder 1 Data Management in the GridRPC Goal GridRPC DM types

  15. Grid Interaction Tech Team, and International Smart Grid Collaboration

    Broader source: Energy.gov (indexed) [DOE]

    Provider BAHNHOF POTSDAMER PLATZ Home Area Network (HAN) Grid Operations Coal Natural Gas Nuclear Hydro Renewable Fuel Oil Misc Generation Energy Service Interface (ESI)...

  16. Grid Computing in the Collider Detector at Fermilab (CDF) scientific experiment

    E-Print Network [OSTI]

    Douglas P. Benjamin

    2008-10-20T23:59:59.000Z

    The computing model for the Collider Detector at Fermilab (CDF) scientific experiment has evolved since the beginning of the experiment. Initially CDF computing was comprised of dedicated resources located in computer farms around the world. With the wide spread acceptance of grid computing in High Energy Physics, CDF computing has migrated to using grid computing extensively. CDF uses computing grids around the world. Each computing grid has required different solutions. The use of portals as interfaces to the collaboration computing resources has proven to be an extremely useful technique allowing the CDF physicists transparently migrate from using dedicated computer farm to using computing located in grid farms often away from Fermilab. Grid computing at CDF continues to evolve as the grid standards and practices change.

  17. Sandia Energy - Grid Modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal HomeGrid

  18. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGrid

  19. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite ReactorGregGrid-Connected

  20. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the StageCanon! Shared Solar:Sharing

  1. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon CaptureBiofuels

  2. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon

  3. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbonEnergy Sandia

  4. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar HomeEnergy

  5. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733

  6. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733141

  7. NERSC Grid Certificates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014 NERSCFranklinGrid

  8. High-value energy storage for the grid: a multi-dimensional look

    SciTech Connect (OSTI)

    Culver, Walter J.

    2010-12-15T23:59:59.000Z

    The conceptual attractiveness of energy storage in the electrical power grid has grown in recent years with Smart Grid initiatives. But cost is a problem, interwoven with the complexity of quantifying the benefits of energy storage. This analysis builds toward a multi-dimensional picture of storage that is offered as a step toward identifying and removing the gaps and ''friction'' that permeate the delivery chain from research laboratory to grid deployment. (author)

  9. Grid Integration of Robotic Telescopes

    E-Print Network [OSTI]

    F. Breitling; T. Granzer; H. Enke

    2009-03-23T23:59:59.000Z

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  10. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15T23:59:59.000Z

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  11. LED Lighting Off the Grid

    Energy Savers [EERE]

    D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

  12. 2014 Modern Power Grid Video

    SciTech Connect (OSTI)

    None

    2014-06-02T23:59:59.000Z

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  13. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  14. Buildings to Grid Integration & Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings to Grid Integration & Interoperability Joe Hagerman, Senior Advisor DOE Building Technologies Office March 11, 2013 EERE: Office of Energy Efficiency and Renewable Energy...

  15. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Against Data Injection Attacks on Power Grids”, IEEER. Thomas, and L. Tong, “Malicious Data Attacks on SmartState Estimation: Attack Strategies and Countermeasures,”

  16. National Grid Energy Efficiency Plans

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency plans and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  17. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid Integration, Modeling & Analysis,...

  18. National Grid Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency programs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  19. Environmental Impacts of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a substantial number of pollutants. This paper focuses on the particulate and gaseous emission pollutants that are byproducts of electricity generation, and on how the Smart Grid...

  20. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability, efficiency, flexibility, and cost effectiveness. Smart-grid features include demand-response capabilities, advanced controls, DER integration, increased situational...

  1. 2014 Modern Power Grid Video

    ScienceCinema (OSTI)

    None

    2014-07-22T23:59:59.000Z

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  2. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29T23:59:59.000Z

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  3. Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative

    SciTech Connect (OSTI)

    Rick Meeker; L. Baldwin; Steinar Dale; Alexander Domijan; Davild Larbalestier; Hui Li; Peter McLaren; Sastry Pamidi; Horatio Rodrigo; Michael Steurer

    2010-03-31T23:59:59.000Z

    Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintaining system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and outreach mission to provide future energy workforce talent and support the electric system stakeholder community. Building upon and extending portions of that research effort, this project has been focused in the following areas: (1) Building high-fidelity integrated power and controls hardware-in-the-loop research and development testbed capabilities (Figure 1). (2) Distributed Energy Resources Integration - (a) Testing Requirements and Methods for Fault Current Limiters, (b) Contributions to the Development of IEEE 1547.7, (c) Analysis of a STATCOM Application for Wind Resource Integration, (d) Development of a Grid-Interactive Inverter with Energy Storage Elements, (e) Simulation-Assisted Advancement of Microgrid Understanding and Applications; (3) Availability of High-Fidelity Dynamic Simulation Tools for Grid Disturbance Investigations; (4) HTS Material Characterization - (a) AC Loss Studies on High Temperature Superconductors, (b) Local Identification of Current-Limiting Mechanisms in Coated Conductors; (5) Cryogenic Dielectric Research; and (6) Workshops, education, and outreach.

  4. Sensor Grid: Integration of Wireless Sensor Networks and the Grid

    E-Print Network [OSTI]

    Teo, Yong-Meng

    Sensor Grid: Integration of Wireless Sensor Networks and the Grid Hock Beng Lim1 , Yong Meng Teo1 Microsystems, Inc. E-mail: [limhb, teoym]@comp.nus.edu.sg Abstract Wireless sensor networks have emerged to the sharing of sensor resources in wireless sensor networks. There are several issues and challenges

  5. Future directions for QCD

    SciTech Connect (OSTI)

    Bjorken, J.D.

    1996-10-01T23:59:59.000Z

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  6. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    None

    2012-12-31T23:59:59.000Z

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  7. Power Grid Defense Against Malicious Cascading Failure

    E-Print Network [OSTI]

    Shakarian, Paulo; Lindelauf, Roy

    2014-01-01T23:59:59.000Z

    An adversary looking to disrupt a power grid may look to target certain substations and sources of power generation to initiate a cascading failure that maximizes the number of customers without electricity. This is particularly an important concern when the enemy has the capability to launch cyber-attacks as practical concerns (i.e. avoiding disruption of service, presence of legacy systems, etc.) may hinder security. Hence, a defender can harden the security posture at certain power stations but may lack the time and resources to do this for the entire power grid. We model a power grid as a graph and introduce the cascading failure game in which both the defender and attacker choose a subset of power stations such as to minimize (maximize) the number of consumers having access to producers of power. We formalize problems for identifying both mixed and deterministic strategies for both players, prove complexity results under a variety of different scenarios, identify tractable cases, and develop algorithms f...

  8. Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional Grids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    University of Liverpool L.A.Gasieniec@liverpool.ac.uk Abstract. Two anonymous mobile agents (robots) moving that the grid is embedded in a -dimensional Euclidean space and that each agent knows the Cartesian coordinates of its own initial position (but not the one of the other agent). We design an algorithm permitting

  9. Enhancing Power Grid Stability through Analytics

    E-Print Network [OSTI]

    Lakoba, Taras I.

    the "Smart" Grid? · Premise #1: the grid has long been pretty smart (Edison, Tesla, Steinmetz et al were of Vermont Seminar October 23, 2013 3 What Drives the "Smart" Grid? · Premise #2: As well operated as grid of Vermont Seminar October 23, 2013 4 What Drives the "Smart" Grid? · Premise #3: new technology is providing

  10. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31T23:59:59.000Z

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

  11. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Environmental Management (EM)

    Challenges More Documents & Publications QER - Comment of GridWise Alliance 1 SmartGrid Consortium: Smart Grid Roadmap for the State of New York Smart Grid: Enabler of the...

  12. Grid Integration and the Carrying Capacity of the U.S. Grid to...

    Energy Savers [EERE]

    Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate...

  13. SCB initiator

    DOE Patents [OSTI]

    Bickes Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-11-01T23:59:59.000Z

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  14. SCB initiator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Renlund, Anita M. (Albuquerque, NM); Stanton, Philip L. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  15. From the Grid to the Smart Grid, Topologically

    E-Print Network [OSTI]

    Pagani, Giuliano Andrea

    2013-01-01T23:59:59.000Z

    The Smart Grid is not just about the digitalization of the Power Grid. In its more visionary acceptation, it is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the Smart Grid a reality will the Distribution Grid have to be updated? We assume a positive answer to the question and we consider the lower layers of Medium and Low Voltage to be the most affected by the change. In our previous work, we have analyzed samples of the Dutch Distribution Grid in our previous work and we have considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains in another previous work. In this paper, we take an extra important further step by defining a methodology for evolving any existing physical Power Grid to a good Smart Grid model th...

  16. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can I participate? Send us your questions about how the grid works using GridWeek on Facebook, Twitter and Google+. Join the GridWeek Twitter chat on Thursday, November 20 at 2PM...

  17. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    Life Cycle Assessment of Off-Grid Lighting Applications:Testing for Emerging Off-grid White-LED Illumination SystemsBudget: The Economics of Off-Grid Lighting for Small

  18. Parametrization-independent elliptic surface grid generation

    E-Print Network [OSTI]

    Rasmussen, Britt Bille

    2009-01-01T23:59:59.000Z

    The generation of computational grids on surfaces of three-dimensional configurations is an important component of many areas of computational research, both as a boundary grid for volume grid generation or to perform ...

  19. Considering Prefabulous and Almost Off the Grid

    E-Print Network [OSTI]

    Grenier, Lotus; Beba, Zoe; Gray, Art

    2013-01-01T23:59:59.000Z

    Prefabulous and Almost Off the Grid Introduction Two recentPrefabulous and Almost Off the Grid by Sheri Koones In herand Almost O?fz‘/Je Grid (Abrams, 2012), Sheri Koones pro?

  20. Initial Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News linkThermal PhenomenaInitial

  1. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01T23:59:59.000Z

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  2. NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

  3. Secure Interoperable Open Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Magee, Thoman

    2014-12-31T23:59:59.000Z

    The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.

  4. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13T23:59:59.000Z

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  5. Eastern Seaboard Electric Grid Fragility Maps Supporting Persistent Availability

    SciTech Connect (OSTI)

    Walker, Kimberly A [ORNL; Weigand, Gilbert G [ORNL; Fernandez, Steven J [ORNL

    2012-11-01T23:59:59.000Z

    Persistently available power transmission can be disrupted by weather causing power outages with economic and social consequences. This research investigated the effects on the national power grid from a specific weather event, Hurricane Irene, that caused approximately 5.7 million customer power outages along the Eastern Seaboard in August of 2011. The objective was to describe the geographic differences in the grid s vulnerability to these events. Individual factors, such as wind speed or precipitation, were correlated with the number of outages to determine the greatest mechanism of power failure in hopes of strengthening the future power grid. The resulting fragility maps not only depicted 18 counties that were less robust than the design-standard robustness model and three counties that were more robust, but also drew new damage contours with correlated wind speeds and county features.

  6. A Grid of FASTWIND NLTE Model Atmospheres of Massive Stars

    E-Print Network [OSTI]

    K. Lefever; J. Puls; C. Aerts

    2006-09-22T23:59:59.000Z

    In the last few years our knowledge of the physics of massive stars has improved tremendously. However, further investigations are still needed, especially regarding accurate calibrations of their fundamental parameters. To this end, we have constructed a comprehensive grid of NLTE model atmospheres and corresponding synthetic spectra in the massive star domain. The grid covers the complete B type spectral range, extended to late O on the hot side and early A on the cool side, from supergiants to dwarfs and from weak stellar winds to very strong ones. It has been calculated with the latest version of the FASTWIND code. The analysis of an extensive sample of OB stars in the framework of the COROT space mission will lead to accurate calibrations of effective temperatures, gravities, mass loss rates etc. This paper contains a detailed description of the grid, which has been baptised as BSTAR06 and which will be available for further research in the near future.

  7. Sandia Energy - Grid Cyber Vulnerability & Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences and Impacts It's important to recognize that adopting these advanced grid-control technologies doesn't just have the potential to increase power grid reliability...

  8. Protecting Intelligent Distributed Power Grids Against Cyber...

    Broader source: Energy.gov (indexed) [DOE]

    will help protect intelligent distributed power grids from cyber attacks. Intelligent power grids are interdependent energy management systems-encompassing generation,...

  9. Sandia National Laboratories: energy resilient smart grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resilient smart grid Hoboken Hopes To Reduce Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems,...

  10. Conference Proceedings Available - The Smart Grid Experience...

    Energy Savers [EERE]

    the Grid Through Integration Conservation and Optimization via VoltVar Control Systems Driving the Integrated Grid - Including DMS, DA, DERMS, DRMS Communications and Cyber...

  11. Sandia National Laboratories: Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Wind Generator Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security,...

  12. Tribal Renewable Energy Foundational Course: Electricity Grid...

    Office of Environmental Management (EM)

    Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar...

  13. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self heals - acts as the grid's "immune system" Supports grid reliability, security, and power quality Today Tomorrow Protects assets following disruption (e.g. trip relay)...

  14. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modern Grid Wisconsin Public Utility Institute and UW Energy Institute Joe Miller, Steve Pullins, Steve Bossart - Modern Grid Team April 29, 2008 1 Conducted by the National Energy...

  15. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure...

  16. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Its Phase 1 Operational Demonstration in Late January On April 5, 2013, in Distribution Grid Integration, Energy Assurance, Energy Assurance, Energy Surety, Grid Integration,...

  17. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration,...

  18. National Grid (Gas)- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    National Grid’s Commercial Energy Efficiency Program provides support services and incentives to commercial customers who install energy efficient natural gas related measures. Prescriptive...

  19. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  20. Framtidens lantbruk / Future Agriculture Future Agriculture

    E-Print Network [OSTI]

    Framtidens lantbruk / Future Agriculture Future Agriculture ­ Livestock, Crops and Land Use Report from a multidisciplinary research platform. Phase I (2009 ­ 2012) #12;Future Agriculture ­ Livestock Waldenström Utgivningsår: 2012, Uppsala Utgivare: SLU, Framtidens lantbruk/Future Agriculture Layout: Pelle

  1. Smart Grid | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid Smart Grid Smart

  2. Evaluating Utility Executives' Perceptions of Smart Grid Costs, Benefits and Adoption Plans To Assess Impacts on Building Design and Construction

    E-Print Network [OSTI]

    Rao, Ameya Vinayak

    2011-10-21T23:59:59.000Z

    to be implemented in various magnitudes across utilities in the near future. To accommodate these technologies significant changes will have to be incorporated in building design construction and planning. This research paper attempts to evaluate public utility... for implementing a comprehensive smart grid system are extensive. Smart grid hardware and software technologies are in the evolving stage and returns on smart grid investments are uncertain. 1.2 NEED FOR RESEARCH The transformation of the electric system...

  3. Energy recovery in SUDS towards smart water grids: A case study Helena M. Ramos a,n

    E-Print Network [OSTI]

    Diggavi, Suhas

    Energy recovery in SUDS towards smart water grids: A case study Helena M. Ramos a,n , Charlotte and energy nexus for sustainable operation towards future smart cities. a r t i c l e i n f o Article history: Received 9 January 2013 Accepted 2 August 2013 Keywords: Energy recovery SUDS Smart water grids. a b s t r

  4. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 311 Optimizing Electric Vehicle Charging With Energy

    E-Print Network [OSTI]

    Tang, Jian "Neil"

    With Energy Storage in the Electricity Market Chenrui Jin, Member, IEEE, Jian Tang, Member, IEEE, and Prasanta) that are currently under development for future smart grid systems can enable load aggregators to have bidirectional commu- nications with both the grid and Electric Vehicles (EVs) to obtain real-time price and load

  5. Introduction to FireGrid 

    E-Print Network [OSTI]

    Welch, Stephen; Usmani, Asif; Upadhyay, Rochan; Berry, Dave; Potter, Stephen; Torero, Jose L

    2007-11-14T23:59:59.000Z

    FireGrid is an ambitious and innovative project, seeking to develop the technology to support a new way of managing emergency response in the modern built environment. Specific novel aspects include the integration of ...

  6. Grid Pricing of Fed Cattle

    E-Print Network [OSTI]

    Schroeder, Ted C.; Hogan, Robert J.; Anderson, David P.

    2009-03-02T23:59:59.000Z

    There are several value-based fed cattle pricing systems, including formula pricing, price grids and alliances. This publication describes the different cattle pricing methods and helps you decide which is best for you....

  7. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid relies on power transmission from the production source-be it a coal-fired plant, solar array, or wind farm-to the consumer. Long-distance transmission results in sizeable...

  8. Protecting Intelligent Distributed Power Grids against Cyber Attacks

    SciTech Connect (OSTI)

    Dong Wei; Yan Lu; Mohsen Jafari; Paul Skare; Kenneth Rohde

    2010-12-31T23:59:59.000Z

    Like other industrial sectors, the electrical power industry is facing challenges involved with the increasing demand for interconnected operations and control. The electrical industry has largely been restructured due to deregulation of the electrical market and the trend of the Smart Grid. This moves new automation systems from being proprietary and closed to the current state of Information Technology (IT) being highly interconnected and open. However, while gaining all of the scale and performance benefits of IT, existing IT security challenges are acquired as well. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were not originally designed for the general IT environment. In this paper, we propose a conceptual layered framework for protecting power grid automation systems against cyber attacks. The following factors are taken into account: (1) integration with existing, legacy systems in a non-intrusive fashion; (2) desirable performance in terms of modularity, scalability, extendibility, and manageability; (3) alignment to the 'Roadmap to Secure Control Systems in the Energy Sector' and the future smart grid. The on-site system test of the developed prototype security system is briefly presented as well.

  9. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  10. Smart Wire Grid: Resisting Expectations

    ScienceCinema (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  11. Smart Wire Grid: Resisting Expectations

    SciTech Connect (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  12. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  13. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers use

  14. NREL: Transmission Grid Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The following news

  15. NREL: Transmission Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The

  16. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews ThePublications

  17. NREL: Transmission Grid Integration - Webinars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and Analysis

  18. NREL: Transmission Grid Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and AnalysisWebmaster

  19. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect (OSTI)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Networks, smart grids: new model for synchronization

    E-Print Network [OSTI]

    - 1 - Networks, smart grids: new model for synchronization May 21, 2013 Networks of individual scenarios and in smart grid applications. "Smart grid" refers to technology to modernize utility electricity in a volatile smart grid scenario that included fluctuating loads with random power demand, renewable energy

  1. Benchmarking Grid Information Systems Laurence Field1

    E-Print Network [OSTI]

    Sakellariou, Rizos

    Benchmarking Grid Information Systems Laurence Field1 and Rizos Sakellariou2 1 CERN, Geneva. Grid information systems play a central role in today's pro- duction Grid infrastructures, enabling the discovery of a range of in- formation about the Grid services that exist in an infrastructure. As the number

  2. Grid Architecture Release 2.3

    E-Print Network [OSTI]

    Draft Grid Architecture Release 2.3 November 2014 Draft #12;Grid Architecture Release 2.3 November..................................................................................................... 2.1 3.0 Brief Introduction to Grid Architecture........................................................................................ 3.2 3.1 How Grid Architecture Can Be Used

  3. Evidential Grids Information Management in Dynamic Environments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Compiègne CNRS Heudiasyc UMR 7253, France Email: surname.name@utc.fr Abstract--An occupancy grid map conditions. The perception strategy involves map and scan grids [9], [10]. Indeed, an instantaneous scan grid-detections. The map grid acts as a filter that accumulate information and allows to detect moving objects. In dynamic

  4. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including...

  5. An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation

    SciTech Connect (OSTI)

    Chen, Yousu; Huang, Zhenyu; Zhou, Ning

    2011-10-17T23:59:59.000Z

    With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallel state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.

  6. Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper

    E-Print Network [OSTI]

    . 2012 Arizona State University. All rights reserved. #12;i Acknowledgements The support for research technologies in a power engineering context Reduction of dependence on foreign oil The implementation DC (including expansion of existing facilities, rout- ing of circuits in Mexico, multi-terminal DC

  7. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL

    2006-11-01T23:59:59.000Z

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  8. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12T23:59:59.000Z

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  9. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31T23:59:59.000Z

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  10. Smart Grid Information Security (IS) Functional Requirement

    E-Print Network [OSTI]

    Ling, Amy Poh Ai

    2011-01-01T23:59:59.000Z

    It is important to implement safe smart grid environment to enhance people's lives and livelihoods. This paper provides information on smart grid IS functional requirement by illustrating some discussion points to the sixteen identified requirements. This paper introduces the smart grid potential hazards that can be referred as a triggering factor to improve the system and security of the entire grid. The background of smart information infrastructure and the needs for smart grid IS is described with the adoption of hermeneutic circle as methodology. Grid information technology and security-s session discusses that grid provides the chance of a simple and transparent access to different information sources. In addition, the transformation between traditional versus smart grid networking trend and the IS importance on the communication field reflects the criticality of grid IS functional requirement identification is introduces. The smart grid IS functional requirements described in this paper are general and ...

  11. The house of the future

    SciTech Connect (OSTI)

    2010-05-13T23:59:59.000Z

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  12. The house of the future

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  13. EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy

    E-Print Network [OSTI]

    EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy EconoGrid is a detailed simulation model, implemented in SLX1 , of a grid compute economy that implements selected of users. In a grid compute economy, computing resources are sold to users in a market where price

  14. A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos

    E-Print Network [OSTI]

    Pallis, George

    A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos Department of Computer, we propose a Core Grid Ontology (CGO) that defines fundamental Grid-specific concepts, and the re- lationships between them. One of the key goals is to make this Core Grid Ontology general enough and easily

  15. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter

    E-Print Network [OSTI]

    Bak, Claus Leth

    Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid impedance can

  16. What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9

    E-Print Network [OSTI]

    What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9 (http://www.gridtoday.com/02/0812/020812.html) I would like to provide perspective on the question of what is a Grid - a perspective derived from several years of building production Grids. For a significant segment of the Grid community, most

  17. Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M. Barros

    E-Print Network [OSTI]

    Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M-090 S~ao Paulo, Brazil Abstract Numerical grid imprinting errors have often been observed in global atmospheric models on icosahedral grids. In this paper we analyse the sources of grid imprinting error related

  18. Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1

    E-Print Network [OSTI]

    Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1 , Gabriele Michalke2 Abstract The fault ride-through and grid support capabilities of the doubly fed induction generator (DFIG and their contribution to support the grid, i.e. to the voltage control in the power system, during grid faults

  19. International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions

    E-Print Network [OSTI]

    Aloul, Fadi

    to be able to communicate with smart meters via a Home Area Network (HAN) facilitating efficient powerInternational Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid

  20. GRID-Launcher v.1.0

    E-Print Network [OSTI]

    N. Deniskina; M. Brescia; S. Cavuoti; G. d'Angelo; O. Laurino; G. Longo

    2008-06-06T23:59:59.000Z

    GRID-launcher-1.0 was built within the VO-Tech framework, as a software interface between the UK-ASTROGRID and a generic GRID infrastructures in order to allow any ASTROGRID user to launch on the GRID computing intensive tasks from the ASTROGRID Workbench or Desktop. Even though of general application, so far the Grid-Launcher has been tested on a few selected softwares (VONeural-MLP, VONeural-SVM, Sextractor and SWARP) and on the SCOPE-GRID.

  1. City of Tallahassee Innovative Energy Initiatives

    SciTech Connect (OSTI)

    Wilder, Todd; Moragne, Corliss L.

    2014-06-25T23:59:59.000Z

    The City of Tallahassee's Innovative Energy Initiatives program sought, first, to evaluate customer response and acceptance to in-home Smart Meter-enabled technologies that allow customers intelligent control of their energy usage. Additionally, this project is in furtherance of the City of Tallahassee's ongoing efforts to expand and enhance the City's Smart Grid capacity and give consumers more tools with which to effectively manage their energy consumption. This enhancement would become possible by establishing an "operations or command center" environment that would be designed as a dual use facility for the City's employees - field and network staff - and systems responsible for a Smart Grid network. A command center would also support the City's Office of Electric Delivery and Energy Reliability's objective to overcome barriers to the deployment of new technologies that will ensure a truly modern and robust grid capable of meeting the demands of the 2151 century.

  2. Smart Grid Information Clearinghouse (SGIC)

    SciTech Connect (OSTI)

    Rahman, Saifur

    2014-08-31T23:59:59.000Z

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.

  3. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect (OSTI)

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30T23:59:59.000Z

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  4. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    E-Print Network [OSTI]

    Cary, J.R.

    2008-01-01T23:59:59.000Z

    a broad computational accelerator physics initiative † J Rbroad computational accelerator physics initiative J R Caryand future to the accelerator physics community of the

  5. SunEdison Photovoltaic Grid Integration Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-302

    SciTech Connect (OSTI)

    Kroposki, B.

    2012-09-01T23:59:59.000Z

    Under this Agreement, NREL will work with SunEdison to monitor and analyze the performance of photovoltaic (PV) systems as they relate to grid integration. Initially this project will examine the performance of PV systems with respect to evaluating the benefits and impacts on the electric power grid.

  6. Triangle geometry processing for surface modeling and cartesian grid generation

    DOE Patents [OSTI]

    Aftosmis, Michael J. (San Mateo, CA) [San Mateo, CA; Melton, John E. (Hollister, CA) [Hollister, CA; Berger, Marsha J. (New York, NY) [New York, NY

    2002-09-03T23:59:59.000Z

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  7. GENI: Grid Hardware and Software

    SciTech Connect (OSTI)

    None

    2012-01-09T23:59:59.000Z

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  8. Convectively cooled electrical grid structure

    DOE Patents [OSTI]

    Paterson, J.A.; Koehler, G.W.

    1980-11-10T23:59:59.000Z

    Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

  9. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-DimensionalTransmission Grid

  10. Sandia Energy - Grid Modernization Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGridGrid

  11. Smart Grid Newsletter ? The Regulators Role in Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: "The Regulator's Role in Grid Modernization" Sponsor: The Modern Grid Strategy is a DOE-funded project conducted by the National Energy Technology Laboratory Leadership from...

  12. DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity

    E-Print Network [OSTI]

    DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid Interoperability Panel ­ Smart Grid Cybersecurity Committee #12;DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid

  13. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  14. Present and Future Computing Requirements for PETSc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARD ACCOUNTINGQuantitativeComputationaland Future

  15. Grid Applications Dr Gabrielle Allen

    E-Print Network [OSTI]

    Allen, Gabrielle

    of chemistry and other codes (www.gridchem.org) ! Petroleum Engineering " UCoMS: Grid-enabling reservoir ! Requires incredible mix of technologies & expertise! ! Many scientific/engineering components " Physics? Finite elements? " Elliptic equations: multigrid, Krylov subspace,... " Mesh refinement ! Many different

  16. ELECTRIC GRID PROTECTION THE INTERNATIONAL

    E-Print Network [OSTI]

    Schrijver, Karel

    interference, Electromagnetic Pulse (EMP), or Intentional Electromagnetic Interference (IEMI). See below the status of national electric grid evaluation and protection against electromagnetic threats in 11 counties sensitivity to the full range of electromagnetic threats1 . This historic and ongoing situation has resulted

  17. Grid Logging: Best Practices Guide

    SciTech Connect (OSTI)

    Tierney, Brian L; Tierney, Brian L; Gunter, Dan

    2008-04-01T23:59:59.000Z

    The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

  18. High-Performance Computing for Real-Time Grid Analysis and Operation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel

    2013-10-31T23:59:59.000Z

    Power grids worldwide are undergoing an unprecedented transition as a result of grid evolution meeting information revolution. The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed generation provide opportunities to generate energy from green sources and to manage energy use for better system efficiency. With utility companies actively deploying these technologies, a high level of penetration of these new technologies is expected in the next 5-10 years, bringing in a level of intermittency, uncertainties, and complexity that the grid did not see nor design for. On the other hand, the information infrastructure in the power grid is being revolutionized with large-scale deployment of sensors and meters in both the transmission and distribution networks. The future grid will have two-way flows of both electrons and information. The challenge is how to take advantage of the information revolution: pull the large amount of data in, process it in real time, and put information out to manage grid evolution. Without addressing this challenge, the opportunities in grid evolution will remain unfulfilled. This transition poses grand challenges in grid modeling, simulation, and information presentation. The computational complexity of underlying power grid modeling and simulation will significantly increase in the next decade due to an increased model size and a decreased time window allowed to compute model solutions. High-performance computing is essential to enable this transition. The essential technical barrier is to vastly increase the computational speed so operation response time can be reduced from minutes to seconds and sub-seconds. The speed at which key functions such as state estimation and contingency analysis are conducted (typically every 3-5 minutes) needs to be dramatically increased so that the analysis of contingencies is both comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Today’s online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

  19. EV-Smart Grid Research & Interoperability Activities 2014 DOE...

    Broader source: Energy.gov (indexed) [DOE]

    - Codes & Standards Support, Grid Connectivity R&D, International Cooperation and EV-Smart Grid Interoperability Center (funding began in FY 2013) Grid Integration * PEV J1772...

  20. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    services in many off-grid applications, come with first costassurance for off- grid applications in developing countriesand design for off-grid applications. • Train laboratory

  1. alloy battery grid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power supply challenges Adverse trends associated with the grid- Costs, reliability, peak loads, asset underutilization, TLRs, grid divorce The benefits of a modernized grid...

  2. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    data  integration  for  Smart  Grid”,  B 2010  3rd  IEEE simulation  integration,  the  next generation smart grid the Smart Grid vision requires the efficient integration of 

  3. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Savers [EERE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

  4. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

  5. Guam Initial Technical Assessment Report

    SciTech Connect (OSTI)

    Baring-Gould, I.; Conrad, M.; Haase, S.; Hotchkiss, E.; McNutt, P.

    2011-04-01T23:59:59.000Z

    Under an interagency agreement, funded by the Department of Interior's (DOI) Office of Insular Affairs (OIA), the National Renewable Energy Laboratory (NREL) was tasked to deliver technical assistance to the island of Guam by conducting an island initial technical assessment that would lay out energy consumption and production data and establish a baseline. This assessment will be used to conduct future analysis and studies by NREL that will estimate energy efficiency and renewable energy potential for the island of Guam.

  6. Articles about Grid Integration and Transmission | Department...

    Broader source: Energy.gov (indexed) [DOE]

    grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program. May 18, 2015 New Report Says Western Grid Can Weather Disturbances with High Wind,...

  7. Structural Vulnerability Assessment of Electric Power Grids

    E-Print Network [OSTI]

    Koç, Yakup; Kooij, Robert E; Brazier, Frances M T

    2013-01-01T23:59:59.000Z

    Cascading failures are the typical reasons of black- outs in power grids. The grid topology plays an important role in determining the dynamics of cascading failures in power grids. Measures for vulnerability analysis are crucial to assure a higher level of robustness of power grids. Metrics from Complex Networks are widely used to investigate the grid vulnerability. Yet, these purely topological metrics fail to capture the real behaviour of power grids. This paper proposes a metric, the effective graph resistance, as a vulnerability measure to de- termine the critical components in a power grid. Differently than the existing purely topological measures, the effective graph resistance accounts for the electrical properties of power grids such as power flow allocation according to Kirchoff laws. To demonstrate the applicability of the effective graph resistance, a quantitative vulnerability assessment of the IEEE 118 buses power system is performed. The simulation results verify the effectiveness of the effect...

  8. Cybersecurity and the Smarter Grid (2014)

    Broader source: Energy.gov [DOE]

    An article by OE’s Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure.

  9. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self heals - acts as the grid's "immune system" Supports grid reliability, security, and power quality The blackout of August 2003 took hours to build up. Once it breached the...

  10. Assistant Secretary Hoffman Discusses Grid Modernization with...

    Broader source: Energy.gov (indexed) [DOE]

    Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E TV Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E...

  11. Vids4Grids- Controls, Connectors & Surge Protectors

    Broader source: Energy.gov [DOE]

    Modernizing our grid means exciting new devices in the power sector. Find out how new lighting controls, connectors and surge protection will bring out electric grid to the next level.

  12. Future Generation Computer Systems 23 (2007) 774775 www.elsevier.com/locate/fgcs

    E-Print Network [OSTI]

    Xiao, Bin

    2007-01-01T23:59:59.000Z

    attention. To achieve a secured distributed system in future networks and applications, the cyber-security is to show new and emerging frameworks, protocols and systems for grid and Corresponding address: DATSI

  13. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

  14. Articles about Grid Integration and Transmission

    Broader source: Energy.gov [DOE]

    Stories about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program.

  15. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    Planning . 102 vi Transmission Line Maintenance Scheduling 103 Just-in-time Transmission 103 Flexible Transmission in the Smart Grid

  16. Grid Connectivity Research, Development & Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  17. Delocalization of Phase Fluctuations and the Stability of AC Electricity Grids

    E-Print Network [OSTI]

    S. Kettemann

    2015-04-21T23:59:59.000Z

    The energy transition towards an increased supply of renewable energy raises concerns that existing electricity grids, built to connect few centralized large power plants with consumers, may become more difficult to control and stabilized with a rising number of decentralized small scale generators. Here, we aim to study therefore, how local phase fluctuations affect the AC grid stability. To this end, we start from a model of nonlinear dynamic power balance equations. We map them to complex linear wave equations and find stationary solutions for the distribution of phases $\\varphi_i$ at the generator and consumer sites $i$. Next, we derive differential equations for deviations from these stationary solutions. Next, we derive differential equations for deviations from these stationary solutions. Starting with an initially localized phase perturbation, it is found to spread in a periodic grid diffusively throughout the grid. We derive the parametric dependence of diffusion constant $D$. We apply the same solution strategy to general grid topologies and analyse their stability against local fluctuations. The fluctuation remains either localized or becomes delocalized, depending on grid topology and distribution of consumers and generators $P_i$. Delocalization is found to increase the lifetime of phase fluctuations and thereby their influence on grid stability, while localization results in an exponentially fast decay of phase fluctuations at all grid sites.

  18. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.; O'Keefe, M.

    2010-12-01T23:59:59.000Z

    Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

  19. POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS

    SciTech Connect (OSTI)

    Ray, C.; Huang, Z.

    2007-01-01T23:59:59.000Z

    Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

  20. Statistical analysis of cascading failures in power grids

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Pfitzner, Rene [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory

    2010-12-01T23:59:59.000Z

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systems consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.

  1. Criticality of the European Electricity Grid Network

    E-Print Network [OSTI]

    Arrowsmith, David

    1 Criticality of the European Electricity Grid Network MANMADE EU NEST FUNDING D.K. Arrowsmith (catastrophic failure of network components), functional (electricity grid blackouts, supply chain), volatility the qualitative characteristics of power disruptions from a large synchronously-connected electricity grid

  2. Cyber Security in Smart Grid Substations

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Cyber Security in Smart Grid Substations Thijs Baars Lucas van den Bemd Michail Theuns Robin van.089 3508 TB Utrecht The Netherlands #12;CYBER SECURITY IN SMART GRID SUBSTATIONS Thijs Baars T.Brinkkemper@uu.nl Abstract. This report describes the state of smart grid security in Europe, specifically the Netherlands

  3. Power Grid Vulnerability to Geographically Correlated Failures

    E-Print Network [OSTI]

    Shepard, Kenneth

    Power Grid Vulnerability to Geographically Correlated Failures ­ Analysis and Control Implications such as telecommunications networks [14]. The power grid is vulnerable to natural disasters, such as earthquakes, hurricanes [17], [34]. Thus, we focus on the vulnerability of the power grid to an outage of several lines

  4. "Reliability, Resiliency, and Restoration for Smarter Grid

    E-Print Network [OSTI]

    Ohta, Shigemi

    "Reliability, Resiliency, and Restoration for Smarter Grid Workshop" Save the Date April 3 and 4 at mohlsen@bnl.gov "The Resilient Smart Grid" to be held at Brookhaven National Laboratory Upton, Long Island://www.bnl.gov/maps/. This is the 5th workshop that BNL is hosting on the Smart Grid. This Workshop will build on the previous

  5. Grid adaptation for multiscale plasma simulations

    E-Print Network [OSTI]

    Ito, Atsushi

    Grid adaptation for multiscale plasma simulations Gian Luca Delzanno Los Alamos National Laboratory In collaboration with L. Chacon and J.M. Finn #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid tests · New directions · Conclusions #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid

  6. Distributing MCell Simulations on the Grid

    E-Print Network [OSTI]

    Sejnowski, Terrence J.

    Distributing MCell Simulations on the Grid Henri Casanova casanova@cs.ucsd.edu Tom Bartol The Computational Grid [21] is a promising platform for the deployment of large-scale scientific and engineering that structure, PSAs are particularly well suited to the Grid infrastructure and can be deployed on very large

  7. Programming, Composing, Deploying for the Grid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Programming, Composing, Deploying for the Grid Laurent Baduel, Fran¸coise Baude, Denis Caromel FirstName.LastName@sophia.inria.fr Abstract. Grids raise new challenges in the following way: heterogene objects and components. We especially target Grid computing, but our approach also applies to application

  8. Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs

    E-Print Network [OSTI]

    Peraire, Jaime

    Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs David A. Venditti and David L Anisotropic grid­adaptive strategies are presented for viscous flow simulations in which the accurate estimation and Hessian-based anisotropic grid adaptation. Airfoil test cases are presented to demonstrate

  9. Multiprocessor computer overset grid method and apparatus

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM); Ober, Curtis C. (Los Lunas, NM)

    2003-01-01T23:59:59.000Z

    A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

  10. Algorithms in grid classes Ruth Hoffmann

    E-Print Network [OSTI]

    St Andrews, University of

    signs c1, . . . , cs and row signs, r1, . . . , rt and let = {(k, ) : Mk, = 0}. The map : GridAlgorithms in grid classes Ruth Hoffmann University of St Andrews, School of Computer Science Permutation Patterns 2013 Universit´e Paris Diderot 2nd July 2013 Ruth Hoffmann Algorithms in grid classes 1

  11. Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand

    E-Print Network [OSTI]

    Hickman, Mark

    May 2013 1 Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand Dr Allan Miller. Introduction The term `smart grid' is used extensively today, even though there are diverse opinions on what to some extent, and the key questions should not be about what constitutes a `smart grid', but what

  12. EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems

    E-Print Network [OSTI]

    EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Associate Program Manager: Dean Prochaska, Smart Grid and Cyber- Physical Systems Program [updated August 23, 2013] Summary: This program develops and demonstrates smart grid measurement science

  13. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  14. Honeywell Parallon Grid-connect Tests Honeywell Grid-connect Tests

    E-Print Network [OSTI]

    Appendix C Honeywell Parallon Grid-connect Tests 12/20/2000 #12;Honeywell Grid-connect Tests 12 power Engine Speed Figure C-1: Ramp Down Tests ­ Power and Shaft Speed ­ 15 kW Steps #12;Honeywell Grid Figure C-2: Ramp Down Tests ­ Power and Turbine Exit Temperature ­ 15 kW Steps #12;Honeywell Grid

  15. The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition

    E-Print Network [OSTI]

    Gray, Jeffrey G.

    The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition Tarif Haque1 of grid-based cursor control systems using speech recognition have been developed. These systems typically overlay a numbered 3x3 grid on the screen and allow the user to recursively drill the cursor down

  16. Information GRID in the Corporate World Information GRID in the Corporate World

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Information GRID in the Corporate World Information GRID in the Corporate World .Bogonikolos Zeus Ontology Grid) project, an EU project funded under the Information Society Technologies programme and EAI Tools is discussed. The COG (Corporate Ontology Grid) project addresses the problem of accessing

  17. GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing and Integration

    E-Print Network [OSTI]

    Buyya, Rajkumar

    GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing Australia Nedlands, Western Australia, 6009 barmouta@csse.uwa.edu.au Rajkumar Buyya Grid Computing and Distributed Systems (GRIDS) Lab Dept. of Computer Science and Software Engineering The University of Melbourne

  18. GRID superscalar and SAGA: forming a high-level and platform-independent Grid

    E-Print Network [OSTI]

    Kielmann, Thilo

    GRID superscalar and SAGA: forming a high-level and platform-independent Grid programming Universiteit, Amsterdam, The Netherlands {merzky|kielmann}@cs.vu.nl Abstract. The Simple API for Grid Applications (SAGA), as currently standardized within GGF, aims to provide a simple yet powerful Grid API; its

  19. A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid

    E-Print Network [OSTI]

    Jameson, Antony

    A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid of an adaptive multi-solver approach for CFD sim- ulation of viscous flows. Curvilinear grids are used near solid bodies to capture boundary layers, and stuctured adaptive Cartesian grids are used away from the body

  20. Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker

    E-Print Network [OSTI]

    Melbourne, University of

    1 Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker Thamarai Chromepet, Chennai ­ 600044, India Email : stselvi@annauniv.edu 2 Grid Computing and Distributed Systems :mohanram@cdacb.ernet.in Abstract: This paper addresses the need of semantic component in the grid

  1. Using the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed

    E-Print Network [OSTI]

    Melbourne, University of

    with (Grid-enabled) resources or their agents using middleware services, map tasks to resources (schedulingUsing the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed Gippsland School: Grid Simulation; Education; Scheduling; Resource Management. Abstract Numerous research groups

  2. Grid Technology Overview and Status Geoffrey Fox1,2

    E-Print Network [OSTI]

    Grid Technology Overview and Status Geoffrey Fox1,2 , Alex Ho2 , Marlon Pierce1 1 Community Grids...................................................................................................................... 1 2 What is a Grid? ................................................................................................................ 1 3 Grid Technologies and Capabilities

  3. Solar America Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Capacity (MW) 0.1494 20 Baseline (2006) 0.3181 1 0.069 150 2009-2010 2014-2015 BP Solar International Inc. Reaching Grid Parity Using BP Solar Crystalline Silicon Technology...

  4. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31T23:59:59.000Z

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  5. Transdisciplinary electric power grid science

    E-Print Network [OSTI]

    Brummitt, Charles D; Dobson, Ian; Moore, Cristopher; D'Souza, Raissa M

    2013-01-01T23:59:59.000Z

    The 20th-century engineering feat that most improved the quality of human life, the electric power system, now faces discipline-spanning challenges that threaten that distinction. So multilayered and complex that they resemble ecosystems, power grids face risks from their interdependent cyber, physical, social and economic layers. Only with a holistic understanding of the dynamics of electricity infrastructure and human operators, automatic controls, electricity markets, weather, climate and policy can we fortify worldwide access to electricity.

  6. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB.

  7. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewables

  8. Sandia Energy » Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergy &EC,Team

  9. Sandia Energy » SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategicThird AnnualSandia

  10. Building the International Lattice Data Grid

    E-Print Network [OSTI]

    G. Beckett; B. Joo; C. M. Maynard; D. Pleiter; O. Tatebe; T. Yoshie

    2009-10-09T23:59:59.000Z

    We present the International Lattice Data Grid (ILDG), a loosely federated grid of grids for sharing data from Lattice Quantum Chromodynamics (LQCD) simulations. The ILDG comprises of metadata, file format and web-service standards, which can be used to wrap regional data-grid interfaces, allowing seamless access to catalogues and data in a diverse set of collaborating regional grids. We discuss the technological underpinnings of the ILDG, primarily the metadata and the middleware, and offer a critique of its various aspects with the hindsight of the design work and the first full year of production.

  11. Spacer grid assembly and locking mechanism

    DOE Patents [OSTI]

    Snyder, Jr., Harold J. (Rancho Santa Fe, CA); Veca, Anthony R. (San Diego, CA); Donck, Harry A. (San Diego, CA)

    1982-01-01T23:59:59.000Z

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  12. Fact Sheet: Protecting Intelligent Distributed Power Grids Against...

    Office of Environmental Management (EM)

    and hierarchical security layer specific to intelligent grid design Intelligent power grids are interdependent energy management systems- encompassing generation,...

  13. Deploying Systems Interoperability and Customer Choice within Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    twiki- sggrid/bin/view/SmartGrid/PriorityActionPlanssggrid/bin/view/SmartGrid/TTMeetingOnPriceCommunications The

  14. Integration of Computing and Information on Grids Geoffrey Fox

    E-Print Network [OSTI]

    by Fran Berman, Tony Hey and myself. (http://www.grid2002.org/ ) · Grids support e-Science representing

  15. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Environmental Management (EM)

    New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

  16. Smart Grid Interoperability Maturity Model

    SciTech Connect (OSTI)

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28T23:59:59.000Z

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  17. The CMS integration grid testbed

    SciTech Connect (OSTI)

    Graham, Gregory E.

    2004-08-26T23:59:59.000Z

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  18. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    SciTech Connect (OSTI)

    Kim, Dong Sik [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Lee, Sanggyun [R and D Center, DRTECH Co., Gyeonggi-do 463-782 (Korea, Republic of)

    2013-06-15T23:59:59.000Z

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.

  19. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01T23:59:59.000Z

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  20. Solving Partial Differential Equations on Overlapping Grids

    SciTech Connect (OSTI)

    Henshaw, W D

    2008-09-22T23:59:59.000Z

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  1. FutureGen -- A Sequestration and Hydrogen Research Initiative | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof6 *Fuels: Issuesof Energy

  2. Reaching Underground Sources (from MIT Energy Initiative's Energy Futures,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery,AssistanceRareRavi CheemaRaymond

  3. Micro-grid State Estimation Using Belief Propagation on Factor Graphs

    E-Print Network [OSTI]

    Kavcic, Aleksandar

    to environmental and energy sustainability concerns, variable pricing, sophisticated communication and sensing energy resources and enable a future self-dispatch and self- healing grid. This would first require, renewable energy generation become more prevalent (with intermittent sources such as wind and solar) due

  4. Energy Department to Host SunShot Initiative Summit and Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Summit and Technology Forum. The SunShot Initiative seeks to achieve grid-parity solar energy within the decade. Through the Grand Challenge series, the Energy Department is...

  5. 2012 Smart Grid Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy19.xlsx2EnergySmart Grid Peer Review 2012

  6. Power Grid Network Evolutions for Local Energy Trading

    E-Print Network [OSTI]

    Pagani, Giuliano Andrea

    2012-01-01T23:59:59.000Z

    The shift towards a energy Grid dominated by prosumers (consumers and producers of energy) will inevitably have repercussions on the distribution infrastructure. Today it is a hierarchical one designed to deliver energy from large scale facilities to end-users. Tomorrow it will be a capillary infrastructure at the medium and Low Voltage levels that will support local energy trading among prosumers. In our previous work, we analyzed the Dutch Power Grid and made an initial analysis of the economic impact topological properties have on decentralized energy trading. In this paper, we go one step further and investigate how different networks topologies and growth models facilitate the emergence of a decentralized market. In particular, we show how the connectivity plays an important role in improving the properties of reliability and path-cost reduction. From the economic point of view, we estimate how the topological evolutions facilitate local electricity distribution, taking into account the main cost ingredi...

  7. Smart Grid Week: Working to Modernize the Nation's Electric Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI PublicDepartmentDepartment

  8. Smart Grid Primer (Smart Grid Books) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »SmallNew

  9. EcoGrid EU (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:EauEcoFactor Inc Jump(Smart Grid

  10. Grid Interaction Tech Team, and International Smart Grid Collaboration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity of the

  11. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOESmartthe 1 Smart Grid

  12. A numerical study of geometry dependent errors in velocity, temperature, and density measurements from single grid planar retarding potential analyzers

    SciTech Connect (OSTI)

    Davidson, R. L.; Earle, G. D.; Heelis, R. A. [William B. Hanson Center for Space Sciences, University of Texas at Dallas, 800 W. Campbell Road, WT15, Richardson, Texas 75080 (United States); Klenzing, J. H. [Space Weather Laboratory/Code 674, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2010-08-15T23:59:59.000Z

    Planar retarding potential analyzers (RPAs) have been utilized numerous times on high profile missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellite Program to measure plasma composition, temperature, density, and the velocity component perpendicular to the plane of the instrument aperture. These instruments use biased grids to approximate ideal biased planes. These grids introduce perturbations in the electric potential distribution inside the instrument and when unaccounted for cause errors in the measured plasma parameters. Traditionally, the grids utilized in RPAs have been made of fine wires woven into a mesh. Previous studies on the errors caused by grids in RPAs have approximated woven grids with a truly flat grid. Using a commercial ion optics software package, errors in inferred parameters caused by both woven and flat grids are examined. A flat grid geometry shows the smallest temperature and density errors, while the double thick flat grid displays minimal errors for velocities over the temperature and velocity range used. Wire thickness along the dominant flow direction is found to be a critical design parameter in regard to errors in all three inferred plasma parameters. The results shown for each case provide valuable design guidelines for future RPA development.

  13. Energy System Development inAfrica: The case of grid and off-grid power inKenya

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Energy System Development inAfrica: The case of grid and off-grid power inKenya By Katherine Deaton Development inAfrica: The case of grid and off-grid power inKenya Energy System Development inAfrica: The case of grid and off-grid power in Kenya by Katherine Steel Submitted to the Engineering Systems Division

  14. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance two-way power flow with communication and control. Renewable Energy Grid Integration As the market

  15. FutureGen Project Report

    SciTech Connect (OSTI)

    Cabe, Jim; Elliott, Mike

    2010-09-30T23:59:59.000Z

    This report summarizes the comprehensive siting, permitting, engineering, design, and costing activities completed by the FutureGen Industrial Alliance, the Department of Energy, and associated supporting subcontractors to develop a first of a kind near zero emissions integrated gasification combined cycle power plant and carbon capture and storage project (IGCC-CCS). With the goal to design, build, and reliably operate the first IGCC-CCS facility, FutureGen would have been the lowest emitting pulverized coal power plant in the world, while providing a timely and relevant basis for coal combustion power plants deploying carbon capture in the future. The content of this report summarizes key findings and results of applicable project evaluations; modeling, design, and engineering assessments; cost estimate reports; and schedule and risk mitigation from initiation of the FutureGen project through final flow sheet analyses including capital and operating reports completed under DOE award DE-FE0000587. This project report necessarily builds upon previously completed siting, design, and development work executed under DOE award DE-FC26- 06NT4207 which included the siting process; environmental permitting, compliance, and mitigation under the National Environmental Policy Act; and development of conceptual and design basis documentation for the FutureGen plant. For completeness, the report includes as attachments the siting and design basis documents, as well as the source documentation for the following: • Site evaluation and selection process and environmental characterization • Underground Injection Control (UIC) Permit Application including well design and subsurface modeling • FutureGen IGCC-CCS Design Basis Document • Process evaluations and technology selection via Illinois Clean Coal Review Board Technical Report • Process flow diagrams and heat/material balance for slurry-fed gasifier configuration • Process flow diagrams and heat/material balance for dry-fed gasifier configuration • Full capital cost report and cost category analysis (CAPEX) • Full operating cost report and assumptions (OPEX) Comparative technology evaluations, value engineering exercises, and initial air permitting activities are also provided; the report concludes with schedule, risk, and cost mitigation activities as well as lessons learned such that the products of this report can be used to support future investments in utility scale gasification and carbon capture and sequestration. Collectively, the FutureGen project enabled the comprehensive site specific evaluation and determination of the economic viability of IGCC-CCS. The project report is bound at that determination when DOE formally proposed the FutureGen 2.0 project which focuses on repowering a pulverized coal power plant with oxy-combustion technology including CCS.

  16. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the...

  17. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solve the energy crisis through biological methods, including genetically engineering algae and cyanobacteria. Create a Sustainable Future: Living Living a Sustainable Future How...

  18. Insightful Workflow For Grid Computing

    SciTech Connect (OSTI)

    Dr. Charles Earl

    2008-10-09T23:59:59.000Z

    We developed a workflow adaptation and scheduling system for Grid workflow. The system currently interfaces with and uses the Karajan workflow system. We developed machine learning agents that provide the planner/scheduler with information needed to make decisions about when and how to replan. The Kubrick restructures workflow at runtime, making it unique among workflow scheduling systems. The existing Kubrick system provides a platform on which to integrate additional quality of service constraints and in which to explore the use of an ensemble of scheduling and planning algorithms. This will be the principle thrust of our Phase II work.

  19. Mapping on the HEALPix grid

    E-Print Network [OSTI]

    M. R. Calabretta

    2004-12-23T23:59:59.000Z

    The natural spherical projection associated with the Hierarchical Equal Area and isoLatitude Pixelisation, HEALPix, is described and shown to be one of an infinite class not previously documented in the cartographic literature. Projection equations are derived for the class in general and it is shown that the HEALPix projection suggests a simple method (a) of storing, and (b) visualising data sampled on the grid of the HEALPix pixelisation, and also suggests an extension of the pixelisation that is better suited for these purposes. Potentially useful properties of other members of the class are described. Finally, the formalism is defined for representing any member of the class in the FITS data format.

  20. Grid Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,Glen WattmanInvestigationsandGrid Integration The

  1. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB.DETL Permalink

  2. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier MitigationSmart

  3. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-Dimensional

  4. Smart Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125EnergyIdaho | Department of Energy SmallSmart Grid

  5. Methods of integrating a high penetration photovoltaic power plant into a micro grid.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Johnson, Lars (SunPower Corporation, Richmond, CA); Nelson, Lauren (SunPower Corporation, Richmond, CA); Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Robert. (SunPower Corporation, Richmond, CA)

    2010-06-01T23:59:59.000Z

    The island of Lanai is currently one of the highest penetration PV micro grids in the world, with the 1.2 MWAC La Ola Solar Farm operating on a grid with a peak net load of 4.7 MW. This facility interconnects to one of Lanai's three 12.47 kV distribution circuits. An initial interconnection requirements study (IRS) determined that several control and performance features are necessary to ensure safe and reliable operation of the island grid. These include power curtailment, power factor control, over/under voltage and frequency ride through, and power ramp rate limiting. While deemed necessary for stable grid operation, many of these features contradict the current IEEE 1547 interconnection requirements governing distributed generators. These controls have been successfully implemented, tested, and operated since January 2009. Currently, the system is producing power in a curtailed mode according to the requirements of a power purchase agreement (PPA).

  6. ARPA-E: Advancing the Electric Grid

    ScienceCinema (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-03-13T23:59:59.000Z

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  7. ARPA-E: Advancing the Electric Grid

    SciTech Connect (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24T23:59:59.000Z

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  8. Real Time Grid Reliability Management 2005

    SciTech Connect (OSTI)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07T23:59:59.000Z

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  9. FINAL REPORT - CENTER FOR GRID MODERNIZATION

    SciTech Connect (OSTI)

    Markiewicz, Daniel R

    2008-06-30T23:59:59.000Z

    The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp™ Consortium utility members.

  10. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  11. What is the Smart Grid Anyway

    Broader source: Energy.gov [DOE]

    Presentation covers what is the smart grid at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  12. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Time of Use Rates Customer Information System IT upgrades Customer Education Demand Response CE empowers the customer and supports grid operations Office of...

  13. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time of Use Rates Customer Information System IT upgrades and SOA Customer Education Demand Response and DER CE empowers the customer and supports grid operations Office of...

  14. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y AMI Demand Response Distribution Management Systems Advanced OMS Distribution Automation...

  15. Platform for a modern grid: customer engagement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stories engaging the customer when deploying new technologies in the nation's largest smart grid demonstration. Related Articles (by tag) Energy Smart Industrial: five years of...

  16. Value of a Smart Grid System

    Broader source: Energy.gov (indexed) [DOE]

    2 - Section 1: Smart Grid Opportunities Remarkable things happen when economic forces and new technology converge. Consider how the the Internet -- combined with new, affordable...

  17. The Quest for Sustainable Smart Grids

    E-Print Network [OSTI]

    Nardelli, Pedro H J; Cardieri, Paulo; Latva-aho, Matti

    2013-01-01T23:59:59.000Z

    This paper is a reply to the opinion paper: Transdisciplinary electric power grid science (PNAS), 2013 [arXiv:1307.7305].

  18. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

  19. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  20. Spherical Harmonic Decomposition on a Cubic Grid

    E-Print Network [OSTI]

    Charles W. Misner

    1999-10-12T23:59:59.000Z

    A method is described by which a function defined on a cubic grid (as from a finite difference solution of a partial differential equation) can be resolved into spherical harmonic components at some fixed radius. This has applications to the treatment of boundary conditions imposed at radii larger than the size of the grid, following Abrahams, Rezzola, Rupright et al.(gr-qc/9709082}. In the method described here, the interpolation of the grid data to the integration 2-sphere is combined in the same step as the integrations to extract the spherical harmonic amplitudes, which become sums over grid points. Coordinates adapted to the integration sphere are not needed.

  1. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some Technical Challenges Symposium on Modeling & Control of Alternative Energy Systems Joe Miller - Modern Grid Team Lead April 2, 2009 1 Conducted by the National Energy...

  2. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Viability and Business Case of Alternative Smart Grid Scenarios 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of...

  3. Microsoft Word - Smart Grid Economic Impact Report

    Office of Environmental Management (EM)

    benefits include real estate, wholesale trade, financial services, restaurants, and health care. Smart Grid ARRA investments also supported employment in personal service...

  4. Effects of grids in drift tubes

    SciTech Connect (OSTI)

    Okamura M.; Yamauchi, H.

    2012-05-20T23:59:59.000Z

    In 2011, we upgraded a 201 MHz buncher in the proton injector for the alternating gradient synchrotron (AGS) - relativistic heavy ion collider (RHIC) complex. In the buncher we installed four grids made of tungsten to improve the transit time factor. The grid installed drift tubes have 32 mm of inner diameter and the each grid consists of four quadrants. The quadrants were cut out precisely from 1mm thick tungsten plates by a computerized numerically controlled (CNC) wire cutting electrical discharge machining (EDM). The 3D electric field of the grid was simulated.

  5. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Second Annual Electric Power Research InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy,...

  6. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an essential component of the modern grid: IC creates a dynamic, interactive "mega-infrastructure" for real-time information and power exchange IC allows the various...

  7. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  8. Sandia National Laboratories: Distributed Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Grid Integration Federal Electric Regulatory Commission Revised Its Small Generator Interconnection Procedure and Small Generator Interconnection Agreement On March 4,...

  9. Sandia National Laboratories: electric grid resilience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  10. Sandia National Laboratories: electric grid stabilization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  11. Sandia National Laboratories: modernize the electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  12. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  13. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently asked questions about the Smart Grid Demonstration and Energy Storage Funding Opportunity Announcement released as part of the American Recovery and Reinvestment Act,...

  14. Optimization Online - Compressed Sensing Off the Grid

    E-Print Network [OSTI]

    Gongguo Tang

    2012-09-13T23:59:59.000Z

    Sep 13, 2012 ... Compressed Sensing Off the Grid. Gongguo Tang(gtang5 ***at*** wisc.edu) Badri Narayan Bhaskar(bnbhaskar ***at*** wisc.edu) Parikshit ...

  15. What will the Smart Grid Look Like?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and education they need to effectively utilize the new options provided by the Smart Grid. CE includes solutions such as Advanced Metering Infrastructure (AMI), home...

  16. Smart Grid Publications Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 2009 The Smart Grid Stakeholder Roundtable Group Perspectives (September 2009) Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A...

  17. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  18. file://P:\\Smart Grid\\Smart Grid RFI Policy and Logistical Comme

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status: Tracking No. Comments Due: Submission Type: Page 1 of 2 1182010 file:P:Smart GridSmart Grid RFI Policy and Logistical CommentsDraft Comments for DOE-H... I...

  19. Quantifying the Impact of Adverse Events on the Electricity Grid as a Function of Grid Topology

    SciTech Connect (OSTI)

    Coles, Garill A.; Sadovsky, Artyom; Du, Pengwei

    2011-11-30T23:59:59.000Z

    Abstract--Traditional approaches to the study of grid vulnerability have taken an asset based approach, which seeks to identify those assets most likely to result in grid-wide failures or disruptions in the event that they are compromised. We propose an alternative approach to the study of grid vulnerability, one based on the topological structure of the entire grid. We propose a method that will identify topological parameters most closely related to the ability of the grid to withstand an adverse event. We compare these topological parameters in terms of their impact on the vulnerability metric we have defined, referred to as the grid’s “survivability”. Our approach is motivated by Paul Baran’s work on communications networks, which also studied vulnerability in terms of network-wide parameters. Our approach is useful both as a planning model for evaluating proposed changes to a grid and as a risk assessment tool.

  20. An Ontology for Scientific Information in a Grid Environment: the Earth System Grid.

    E-Print Network [OSTI]

    Chervenak, Ann

    An Ontology for Scientific Information in a Grid Environment: the Earth System Grid. Line Pouchard.S. Department of Energy Scientific Discovery through Advanced Computing (SciDAC) program. The Earth System Grid, 5 Carl Kesselman,5 Arie Shoshani, 6 Alex Sim6 [1] Oak Ridge National Laboratory, [2] Argonne

  1. SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1

    E-Print Network [OSTI]

    Melbourne, University of

    SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1 and Rajkumar Buyya2 Keywords: Sensors, Sensor Networks, Grid computing, SensorML, SensorWeb. 1. Introduction Recent advances in electronic circuit miniaturization and micro-electromechanical systems (MEMS) have led to the creation

  2. Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

    E-Print Network [OSTI]

    customers to choose to control their energy usage ­ Smart meters ­ Home/building/industrial energy controls and displays · Automated home energy use 4 #12;The End-user is the Centerpiece of the Smart Grid 5Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

  3. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    SciTech Connect (OSTI)

    Sabine, Christopher [NOAA Pacific Marine Environmental Laboratory; Hankin, S. [Pacific Northwest National Laboratory (PNNL); Koyuk, H [Joint Institute for the Study of the Atmosphere and Ocean, University of Washington; Bakker, D C E [School of Environmental Sciences, University of East Anglia, Norwich, UK; Pfeil, B [Geophysical Institute, University of Bergen; Uni Research AS, Bergen, Norway; Olsen, A [Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway; Metzl, N [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Kozyr, Alexander [ORNL; Fassbender, A [School of Oceanography, University of Washington, Seattle, WA; Manke, A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Malczyk, J [Jetz Laboratory, Department of Ecology and Evolutionary Biology, Yale University; Akl, J [CSIRO Wealth from Oceans Flagship, Hobart, Tasmania, Australia; Alin, S R [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Bellerby, R G J [Geophysical Institute, University of Bergen, Bergen, Norway; Borges, A [University of Liege, Chemical Oceanography Unit, Institut de Physique, Liege, Belgium; Boutin, J [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Brown, P J [School of Environmental Sciences, University of East Anglia, Norwich, UK; Cai, W-J [Department of Marine Sciences, University of Georgia; Chavez, F P [Monterey Bay Aquarium Research Institute, Moss Landing, CA; Chen, A [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Cosa, C [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Feely, R A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Gonzalez-Davila, M [Universidad de Las Palmas de Gran Canaria, Facultad de Ciencias del Mar, Las Palmas de Gran Canaria,; Goyet, C [Institut de Modélisation et d'Analyse en Géo-Environnement et Santé, Université de Perpignan; Hardman-Mountford, N [CSIRO, Marine and Atmospheric Research, Wembley, Western Australia, Australia; Heinze, C [Geophysical Institute, University of Bergen, Bergen, Norway; Hoppema, M [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; Hunt, C W [Ocean Process Analysis Lab, University of New Hampshire, Durham, New Hampshire; Hydes, D [National Oceanography Centre, Southampton, UK; Ishii, M [Japan Meteorological Agency, Meteorological Research Institute, Tsukuba, Japan; Johannessen, T [Geophysical Institute, University of Bergen, Bergen, Norway; Key, R M [Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey; Kortzinger, A [GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany; Landschutzer, P [School of Environmental Sciences, University of East Anglia, Norwich, UK; Lauvset, S K [Geophysical Institute, University of Bergen, Bergen, Norway; Lefevre, N [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Lenton, A [Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia; Lourantou, A [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Merlivat, L [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Midorikawa, T [Nagasaki Marine Observatory, Nagasaki, Japan; Mintrop, L [MARIANDA, Kiel, Germany; Miyazaki, C [Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan; Murata, A [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakadate, A [Marine Division, Global Environment and Marine Department, Japan Meteorological Agency, Tokyo, Japan; Nakano, Y [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakaoka, S [National Institute for Environmental Studies (NIES), Tsukuba, Japan; Nojiri, Y [National Institute for Environmental Studies, Tsukuba, Japan; et al.

    2013-01-01T23:59:59.000Z

    A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

  4. Green Energy Workshop Student Posters Semantic Complex Event Processing for Smart Grid Information

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    for Smart Grid Information Integration and Demand Management Qunzhi Zhou, Yogesh of the power grid to a Smart Grid. The benefits of Smart Grid include demand Grid Demonstration Project. We define an ontology model for Smart Grid

  5. Experimental Evaluation of Electric Power Grid Visualization Tools in the EIOC

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin; Dalton, Angela C.

    2009-12-01T23:59:59.000Z

    The present study follows an initial human factors evaluation of four electric power grid visualization tools and reports on an empirical evaluation of two of the four tools: Graphical Contingency Analysis, and Phasor State Estimator. The evaluation was conducted within specific experimental studies designed to measure the impact on decision making performance.

  6. Hyper: A Framework for Peer-to-Peer Data Integration on Grids

    E-Print Network [OSTI]

    De Giacomo, Giuseppe

    Giacomo2 , Maurizio Lenzerini2 , Riccardo Rosati2 , and Guido Vetere3 1 Faculty of Computer Science, Free`a di Roma "La Sapienza", lastname @dis.uniroma1.it 3 IBM Italia gvetere@it.ibm.com Abstract. Data Grids Hyper, a joint research initiative of Universit`a di Roma "La Sapienza" and IBM Italia, which aims

  7. Grid Simulator for Testing MW-Scale Wind Turbines at NREL (Poster)

    SciTech Connect (OSTI)

    Gevorgian, V.; McDade, M.; Wallen, R.; Mendoza, I.; Shirazi, M.

    2011-05-01T23:59:59.000Z

    As described, an initiative by NREL to design and construct a 9-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

  8. Grid-independent Issue in Numerical Heat Transfer

    E-Print Network [OSTI]

    Yao Wei; Wang Jian; Liao Guangxuan

    2006-09-26T23:59:59.000Z

    Grid independent is associated with the accuracy or even rationality of numerical results. This paper takes two-dimensional steady heat transfer for example to reveal the effect of grid resolution on numerical results. The law of grid dependence is obtained and a simple mathematical formula is presented. The production acquired here can be used as the guidance in choosing grid density in numerical simulation and get exact grid independent value without using infinite fine grid. Through analyzing grid independent, we can find the minimum number of grid cells that is needed to get grid-independent results. Such strategy can save computational resource while ensure a rational computational result.

  9. National Nanotechnology Initiative's Signature Initiative Sustainable Nanomanufacturing: Creating the Industries of the Future

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by National Nanotechnology Coordination Office held on June 26, 2012

  10. National Nanotechnology Initiative's Signature Initiative Sustainable Nanomanufacturing: Creating the Industries of the Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |Energy November

  11. Towards a Grid Information Knowledge Base , Marios D. Dikaiakos1

    E-Print Network [OSTI]

    Pallis, George

    Towards a Grid Information Knowledge Base Wei Xing1 , Marios D. Dikaiakos1 , and Rizos Sakellariou2 present our work on building a Grid infor- mation knowledge base, which is a key component of a semantic Grid information system. A Core Grid Ontology (CGO) is developed for build- ing a Grid knowledge base

  12. A CHARACTERIZATION OF MAPPING UNSTRUCTURED GRIDS ONTO STRUCTURED

    E-Print Network [OSTI]

    Douglas, Craig C.

    BIT 1997 A CHARACTERIZATION OF MAPPING UNSTRUCTURED GRIDS ONTO STRUCTURED GRIDS AND USING MULTIGRID solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence 06520-8285, USA. email: schultz-martin@cs.yale.edu Abstract. Many problems based on unstructured grids

  13. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  14. Stretched-Grid Model Intercomparison Project

    E-Print Network [OSTI]

    Gruner, Daniel S.

    - Land-sea differences - Surface parameters Applications (besides regional climate variability and change, Russia #12;OUTLINE 1. INTRODUCTION: Exploring the variable- resolution stretched-grid approach (for grid- point models: Staniforth and Mitchell 1978, and for spectral models: Schmidt 1977) to regional climate

  15. SMART WATER GRID PLAN B TECHNICAL REPORT

    E-Print Network [OSTI]

    Julien, Pierre Y.

    SMART WATER GRID PLAN B TECHNICAL REPORT FALL 2014 PREPARED BY: OLGA MARTYUSHEVA IN PARTIAL of water resources is currently under stress due to climatic changes, and continuous increase in water demand linked to the global population increase. A Smart Water Grid (SWG) is a two-way real time network

  16. Brookhaven National Laboratory Smarter Grid Centers

    E-Print Network [OSTI]

    Homes, Christopher C.

    1. Sustainable Chemical Conversion 2. Electric Grid Infrastructure · De-carbonized Generation Distribution Infrastructure - How does Smarter Electric Grid Research, Innovation, Development, Demonstration ­ SGRID3 SGRID3 Goals · Lower the cost of electric power by 5-10% · Improve the quality and reliability

  17. Decentralized Grid Scheduling with Evolutionary Fuzzy Systems

    E-Print Network [OSTI]

    Feitelson, Dror

    - increasing demand for computing power and storage space. While well-established approaches such as the EGEEDecentralized Grid Scheduling with Evolutionary Fuzzy Systems Alexander F¨olling, Christian Grimme of finding workload exchange policies for decentralized Computational Grids using an Evo- lutionary Fuzzy

  18. Grid Security: Expecting the Mingchao Ma

    E-Print Network [OSTI]

    University College London

    of a communications line; Power failure; Internet connection failure; Mis-configuration; · Security incidents ­ SystemGrid Security: Expecting the Unexpected Mingchao Ma STFC ­ Rutherford Appleton Laboratory, UK #12;Slide 2 Overview · Security Service Challenges (SSC) Review · Grid Security Incident ­ What had happened

  19. Algorithmic Decision Theory and the Smart Grid

    E-Print Network [OSTI]

    1 Algorithmic Decision Theory and the Smart Grid Fred Roberts Rutgers University #12;2 Algorithmic Conference on ADT ­ probably Belgium in Fall 2013. #12;9 ADT and Smart Grid ·Many of the following ideas and planning dating at least to World War II. ·But: algorithms to speed up and improve real-time decision

  20. Polish grid infrastructure for science and research

    E-Print Network [OSTI]

    Ryszard Gokieli; Krzysztof Nawrocki; Adam Padee; Dorota Stojda; Karol Wawrzyniak; Wojciech Wislicki

    2007-10-07T23:59:59.000Z

    Structure, functionality, parameters and organization of the computing Grid in Poland is described, mainly from the perspective of high-energy particle physics community, currently its largest consumer and developer. It represents distributed Tier-2 in the worldwide Grid infrastructure. It also provides services and resources for data-intensive applications in other sciences.