Powered by Deep Web Technologies
Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges  

SciTech Connect

This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M&O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M&O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report summarizes the results of the 2002 Reference SNF Discharge Projection.

B. McLeod

2002-02-28T23:59:59.000Z

2

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

3

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 2013 Prepared by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

4

SciTech Connect: Transportation Energy Futures Series: Projected...  

Office of Scientific and Technical Information (OSTI)

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures...

5

Biomass 2009: Fueling Our Future  

Energy.gov (U.S. Department of Energy (DOE))

We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success.

6

Algae: fuel of the future?  

Science Journals Connector (OSTI)

Algae: fuel of the future? ... Start-ups and oil giants are investing millions in the photosynthetic powers of algae. ... Start-ups and oil giants are investing millions in the photosynthetic powers of algae. ...

Amanda Leigh Mascarelli

2009-09-02T23:59:59.000Z

7

Future Prospects of Synthetic Fuels  

E-Print Network (OSTI)

It is important for the future of this nation to reach the goal of demonstrated definition and quantification of the parameters which influence the ability to use this country's vast resources of coal and oil shale for production of synthetic fuels...

Fryback, M. G.

1982-01-01T23:59:59.000Z

8

Projection of world fossil fuels by country  

Science Journals Connector (OSTI)

Abstract Detailed projections of world fossil fuel production including unconventional sources were created by country and fuel type to estimate possible future fossil fuel production. Four critical countries (China, USA, Canada and Australia) were examined in detail with projections made on the state/province level. Ultimately Recoverable Resources (URR) for fossil fuels were estimated for three scenarios: Low=48.4 ZJ, Best Guess (BG)=75.7 ZJ, High=121.5 ZJ. The scenarios were developed using Geologic Resources Supply-Demand Model (GeRS-DeMo). The Low and Best Guess (BG) scenarios suggest that world fossil fuel production may peak before 2025 and decline rapidly thereafter. The High scenario indicates that fossil fuels may have a strong growth till 2025 followed by a plateau lasting approximately 50years before declining. All three scenarios suggest that world coal production may peak before 2025 due to peaking Chinese production and that only natural gas could have strong growth in the future. In addition, by converting the fossil fuel projections to greenhouse gas emissions, the projections were compared to IPCC scenarios which indicated that based on current estimates of URR there are insufficient fossil fuels to deliver the higher emission IPCC scenarios \\{A1Fl\\} and RCP8.5.

S.H. Mohr; J. Wang; G. Ellem; J. Ward; D. Giurco

2015-01-01T23:59:59.000Z

9

New Fuel Cell Projects Meeting  

Energy.gov (U.S. Department of Energy (DOE))

On February 13-14, 2007, the U.S. Department of Energy (DOE) held a kick-off meeting for fuel cell projects awarded under a hydrogen R&D solicitation. Principal investigators presented project...

10

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

11

Chicago Area Alternative Fuels Deployment Project (CAAFDP) |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting arravt061tibingham2012o.pdf More Documents & Publications Chicago Area Alternative Fuels Deployment Project (CAAFDP) Chicago Area Alternative Fuels Deployment Project...

12

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

13

FutureGen Project Launched | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Project Launched FutureGen Project Launched FutureGen Project Launched December 6, 2005 - 4:29pm Addthis Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman today announced that the Department of Energy has signed an agreement with the FutureGen Industrial Alliance to build FutureGen, a prototype of the fossil-fueled power plant of the future. The nearly $1 billion government-industry project will produce electricity and hydrogen with zero-emissions, including carbon dioxide, a greenhouse gas. The initiative is a response to President Bush's directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. Today's announcement marks the official

14

NETL: News Release - Fuel Cell Projects Address Barriers to  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1, 2006 June 1, 2006 Fuel Cell Projects Address Barriers to Commercialization Six Projects Focus on Improvements to Materials, Key Components WASHINGTON, DC - The Department of Energy today announced the selection of six research and development (R&D) projects expected to further enhance solid-oxide fuel cell (SOFC) technology, moving it one step closer to commercialization. These projects, part of DOE's Solid State Energy Conversion Alliance (SECA), build upon earlier Phase I research to support the development of efficient, low-cost and near-zero emissions SOFC power systems. "The projects selected reflect yet another step forward in the President's Hydrogen and Climate Initiatives, which envision a key role for fuel cells," said Jeffrey Jarrett, Assistant Secretary for Fossil Energy. "These projects are expected to further push fuel cell technology toward the ultimate application of fuel cells in FutureGen, the zero-emissions coal-fired plant of the future."

15

Future Directions in Engines and Fuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conference Future Direction in Engines and Fuels Mobility industry Challenges - CARB GHG Scenario CARB Board hearing Dec. 2009 GHG 1 GHG 2 GHG 0 September 28, 2010 0 40 80...

16

Fuel Quality and Metering: Current Status and Future Needs |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Quality and Metering: Current Status and Future Needs Fuel Quality and Metering: Current Status and Future Needs These slides were presented at the Onboard Storage Tank...

17

Hydrogen, the Once and Future Fuel  

Science Journals Connector (OSTI)

Hydrogen, the Once and Future Fuel ... Assuming fossil fuels will be depleted or their use restricted by limits on greenhouse gas emissions, new sources of organic feedstocks will be required, and hydrogen will be needed as a chemical feed in the production process. ...

Catherine E. Gregoire-Padr

1998-01-12T23:59:59.000Z

18

Fuel Modification t Facilitate Future Combustion Regimes? | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modification t Facilitate Future Combustion Regimes? Fuel Modification t Facilitate Future Combustion Regimes? 2005 Diesel Engine Emissions Reduction (DEER) Conference...

19

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

20

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Project Assistance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

About About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Project Assistance to someone by E-mail Share Alternative Fuels Data Center: Project Assistance on Facebook Tweet about Alternative Fuels Data Center: Project Assistance on Twitter Bookmark Alternative Fuels Data Center: Project Assistance on Google Bookmark Alternative Fuels Data Center: Project Assistance on Delicious Rank Alternative Fuels Data Center: Project Assistance on Digg Find More places to share Alternative Fuels Data Center: Project Assistance on AddThis.com... More in this section... Project Assistance News & Features Spanish Resources Contacts Project Assistance Through a nationwide network of local coalitions, Clean Cities provides project assistance to help stakeholders in the public and private sectors

22

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

23

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...groundwater contamination. Nevertheless, innovative solutions have been found to many of...long project lead times, environmental remediation and the future oil price. Canadian...operations, being cheaper than mining; -innovative technology; -co-generation to reduce...

2014-01-01T23:59:59.000Z

24

Fuel Cell Applied Research Project  

SciTech Connect

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

25

Nuclear Fuel Storage and Transportation Planning Project Overview...  

Office of Environmental Management (EM)

Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project...

26

Fuel Cell Projects Kickoff Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Projects Kickoff Meeting Fuel Cell Projects Kickoff Meeting Presentation by Nancy Garland at a meeting on fuel cell projects on February 13 - 14, 2007....

27

NREL: Hydrogen and Fuel Cells Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery Hydrogen storage Manufacturing Market transformation...

28

Fueling Future with Algal Genomics  

SciTech Connect

Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

Grigoriev, Igor

2012-07-05T23:59:59.000Z

29

Future Fuels: Issues and Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels: Issues and Opportunities Future Fuels: Issues and Opportunities 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerbeard.pdf More...

30

Fuel Cells: Just a Dream - or Future Reality | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells: Just a Dream - or Future Reality Fuel Cells: Just a Dream - or Future Reality Presentation about tuning activity and stability of precious metal catalysts for the oxygen...

31

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Fuel Future Oil Demands Enhanced Oil Recovery to Fuel Future Oil Demands Trevor Kirsten 2013.10.02 I'm Trevor Kirsten and I lead a team of GE researchers that investigate a...

32

New Diesel Feedstocks and Future Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Diesel Feedstocks and Future Fuels New Diesel Feedstocks and Future Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's...

33

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

34

DOE/EA-1760 Final Environmental Assessment for FutureFuel Chemical Company  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Final Environmental Assessment for FutureFuel Chemical Company Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Batesville, AR August 2010 Prepared for: Department of Energy National Energy Technology Laboratory Electric Drive Vehicle Battery and DOE/EA-1760 Component Manufacturing Initiative Project Environmental Assessment FutureFuel Chemical Company, Batesville, AR August 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with FutureFuel Chemical Company (FutureFuel), to partially fund the design, installation and operations of a commercial-scale plant to produce intermediate anode material for high-performance lithium-ion (Li-ion) batteries. An existing FutureFuel

35

A new future for carbohydrate fuel cells  

Science Journals Connector (OSTI)

Abstract The development of renewable energy sources to reduce our dependence on limiting fossil fuel reserves continues to be a critical research initiative. Utilizing the abundant high energy content of carbohydrates contained in biomass (cellulose and hemicellulose) must be considered to be an important contribution to our overall energy budget. Carbohydrate-derived furan-based liquid fuels and especially ethanol are becoming important added components forming gasoline blends to lower overall fossil fuel use. Alternate renewable energy processes that more efficiently use the carbohydrate energy content are desirable and would lower the overall carbohydrate input requirement for energy production. Recently, new catalysts have shown the feasibility of efficiently transporting the 24 electrons in glucose to fuel cell electrodes making possible the direct conversion of the stored energy in carbohydrates into electricity with the benign formation of carbonate and water as products. The conversion of glycerol, a byproduct of biodiesel production, into three-carbon carbohydrates provides another opportunity to produce electricity from an abundant carbohydrate source. New developments in catalyst systems promise to make carbohydrate fuel cells an important part of future energy strategies.

G.D. Watt

2014-01-01T23:59:59.000Z

36

Kickoff Meeting for New Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Reg Tyler of the DOE Golden Field Office was given at a meeting on new fuel cell projects in February 2007.

37

2010 New Fuel Cell Projects Meeting  

Energy.gov (U.S. Department of Energy (DOE))

On September 28, 2010, the U.S. Department of Energy (DOE) held a kick-off meeting for new projects awarded under a fuel cell solicitation. Principal investigators presented project overviews,...

38

The Boeing Company Project Fuel Tank Design Project Recap  

E-Print Network (OSTI)

The Boeing Company Project Fuel Tank Design Project Recap The Boeing Company came. Using solid baffles helps to separate the tank into separate and smaller sub tanks which helps to distribute and minimize the force of the slosh on the fuel tank. The problem in using solid baffles

Demirel, Melik C.

39

NREL: Vehicles and Fuels Research - Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

40

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation to someone by E-mail Share Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Facebook Tweet about Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Twitter Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Google Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Delicious Rank Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Digg

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

Stephen P. Bergin

2003-04-23T23:59:59.000Z

42

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Office of Environmental Management (EM)

Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Presentation made by...

43

The Fuel Cell Mobile Light Project - A DOE Market Transformation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity Download the presentation slides...

44

DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOEBoeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia DOEBoeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Presentation by Lennie Klebanoff...

45

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt056gilbert2010p.pdf More Documents & Publications Midwest Region Alternative Fuels Project Midwest Region Alternative Fuels Project Chicago Area Alternative...

46

Financial Incentives for Hydrogen and Fuel Cell Projects | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Market Transformation Financial Incentives for Hydrogen and Fuel Cell Projects Financial Incentives for Hydrogen and Fuel Cell Projects Federal Incentives The Emergency Economic...

47

Spent Nuclear Fuel (SNF) Project Execution Plan  

SciTech Connect

The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

LEROY, P.G.

2000-11-03T23:59:59.000Z

48

Fuel Cells for a Sustainable Future? Jane Powell, Michael Peters,  

E-Print Network (OSTI)

. The development of fuel cells is considered to be an integral part of a sustainable `hydrogen economy', in whichFuel Cells for a Sustainable Future? Jane Powell, Michael Peters, Alan Ruddell and Jim Halliday March 2004 Tyndall Centre for Climate Change Research Working Paper 50 #12;Fuel Cells for a Sustainable

Watson, Andrew

49

Joint federal/state motor fuel tax compliance project. Fiscal year 1994 midyear report  

SciTech Connect

;Table of Contents: List of Exhibits; Executive Summary: History of the Joint Federal/State Motor Fuel Tax Compliance Project; Update on Motor Fuel Tax Procedures; Joint Project Results; Status of the Regional Task Forces; Future Program Activities; References; Glossary of Acronyms; List of Exhibits.

NONE

1994-11-02T23:59:59.000Z

50

Kick-Off Meeting for New Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

51

DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting Presentation by DOE's Patrick Davis at a meeting on new fuel...

52

Futures trading and fuel adjustment clauses  

Science Journals Connector (OSTI)

Despite many criticisms and potential problems, wide-spread and, in many cases, long-standing use of fuel adjustment clauses (FACs) continues. This paper ... permission to allow the utility to hedge its fuel price

Donald Lien; Lihong Liu

1996-03-01T23:59:59.000Z

53

Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1983, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 37 years and characteristics of these materials are also presented, consistent with the latest DOE/Energy Information Administration (EIA) or projection of US commercial nuclear power growth and expected defense-related and private industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. 48 figures, 107 tables.

Not Available

1984-09-01T23:59:59.000Z

54

Fuel Cell Projects Kickoff Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Kickoff Meeting Fuel Cell Projects Kickoff Meeting Agenda for the Fuel Cell Projects Kickoff Meeting on September 30 - October 1, 2009 fcagenda10-09.pdf More Documents &...

55

Fuel Station of the Future- Innovative Approach to Fuel Cell Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Station of the Future- Innovative Approach to Fuel Cell Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California September 15, 2011 - 5:51pm Addthis A customer fills up at a new Energy Department supported fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. A customer fills up at a new Energy Department supported fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program Imagine pulling-up to a fuel station that supplies your car with clean, renewable fuel. Now imagine that, while you're filling up, this same

56

Hydrogen: The fuel for the future  

SciTech Connect

This publication briefly reviews the benefits that would be derived from using hydrogen as a fuel source. The various methods of producing hydrogen are also briefly reviewed.

NONE

1995-03-01T23:59:59.000Z

57

Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania's Ethanol Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Google Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Delicious Rank Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on

58

Connecticut Clean Cities Future Fuels Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

signed with 31 of 31 * NEPA Documentation Submitted for 100% of vehicle purchases and conversions 100% of infrastructure locations * 100% of Vehicle NEPA's approved by DOE...

59

Connecticut Clean Cities Future Fuels Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accomplishments * NEPA Documentation Submitted for 100% of vehicle purchases and conversions and infrastructure locations * 100% of Vehicle NEPA's approved by DOE * 90% of...

60

Connecticut Clean Cities Future Fuels Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 * NEPA Documentation Submitted for 100% of vehicle purchases 100% of vehicle conversions 75% of infrastructure locations * 100% of Vehicle NEPA's approved by DOE *...

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative transport fuels for the future  

Science Journals Connector (OSTI)

Petroleum fuels, which are not sustainable and which contribute substantially to greenhouse gas emissions, power nearly all light-duty vehicles. We review the North American literature on alternative fuels such as natural gas, ethanol from corn and biomass, and hydrogen and electricity from renewable resources, as well as propulsion systems including internal combustion engines, electric motors, and fuel cells. Vehicle characteristics including emissions, safety and consumer attributes such as range and power are examined. Results for greenhouse gas emissions and energy use for the well-to-wheel (fuel production and vehicle operation) aspects of the life cycles of the fuel/vehicle combinations are evaluated. While fuel cells and batteries might some day be attractive, in the near term they cannot replace the internal combustion engine. We focus on ethanol and explore its potential to replace nearly all gasoline used in the United States and Canada. We conclude that ethanol produced from biomass is an attractive near/midterm fuel among those that are sustainable.

Heather L. MacLean; Lester B. Lave; W. Michael Griffin

2004-01-01T23:59:59.000Z

62

Safety Planning Guidance for Hydrogen and Fuel Cell Projects  

Fuel Cell Technologies Publication and Product Library (EERE)

This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

63

Diesel fueled ship propulsion fuel cell demonstration project  

SciTech Connect

The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

1996-12-31T23:59:59.000Z

64

FOOD SECURITY FUEL INDEPENDENCE These projects represent  

E-Print Network (OSTI)

FOOD SECURITY FUEL INDEPENDENCE These projects represent a huge effort to determine and improve pressing challenges. ASH 1% ASH 1% ASH 1% OTHERS 6% OTHERS 6% OTHERS 6% OIL 2% OIL 10% OIL 20% SUCROSE 45% LIPID CANE Produce and store oil in the stem in place of sugar During photosynthesis, sugarcane

Bashir, Rashid

65

Biomass 2008: Fueling Our Future Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy Samuel Bodman Thank you and good afternoon. It's good to be with you. I want to thank John Mizroch for introducing me, and to congratulate him and all the folks at the Energy Department's biomass office for pulling together what appears to be a very successful event. Our national energy policy centers around one key idea: we must diversify our energy sources, our energy suppliers, and our energy supply routes. President Bush challenged us to move toward diversification at an aggressive rate when he announced his Advanced Energy Initiative or AEI. AEI provides for the development of energy alternatives to fossil fuels

66

Scenario Projections for Future Market Potentials of Biobased Bulk Chemicals  

Science Journals Connector (OSTI)

Product values are production costs plus profits, and they include variable costs, fixed costs, taxes, insurance fees, plant overheads, allowance for marketing, administration, and R&D, as well as a so-called capital charge representing depreciation and profits. ... Future fossil fuel prices depend on (global) political developments, developments of reserves, exploitation of different fossil resources, and demand. ... This research was partly supported by the European Commission (Research Directorate General), 5th Framework European Network (GROWTH) Program by support of the project BREW with the full title Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources (Contract No. G5MA-CT-2002-00014). ...

Veronika Dornburg; Barbara G. Hermann; Martin K. Patel

2008-02-23T23:59:59.000Z

67

Fuel Cell Forklift Project Final Report  

SciTech Connect

This project addresses the DOEs priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freights Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freights previous field trial experience with a handful of Plug Powers GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

Cummings, Clifton C

2013-10-23T23:59:59.000Z

68

Future Fuels from Forests Institute Topics  

E-Print Network (OSTI)

conversion to ethanol ·MEECS Energy ResourcesMEECS Energy Resources unit ·Project Learning Tree's Forests of an ethanol-producing facility. · MEECS Energy Resources unit and Project Learning Tree's Forests of the World of forest based ethanol production: · Forest productivity · Biodiversity & conservation biology

69

Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation (Presentation)  

SciTech Connect

This presentation discusses analysis results for American Recovery and Reinvestment Act early market fuel cell deployments and describes the objective of the project and its relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; technical accomplishments including publication of a fourth set of composite data products; and collaborations and future work.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-06-01T23:59:59.000Z

70

Gas-phase thermal degradation behavior of future jet fuels  

SciTech Connect

This paper presents a quantitative methodology for the precise determination of the gas-phase thermal stability of two model endothermic fuels (methyl cyclohexane and trans-decalin) and their dehydrogenation products (toluene and naphthalene) under high-controlled experimental conditions. Tetrahydrodicyclopentadiene (JP-10), a naphthenic future jet fuel, has also been tested for comparison purposes. On the basis of the previous studies, these laboratory investigations have been performed in a gas-phase environment with less than 1 ppm oxygen present. Exposure temperature has been selected as the parameter to be varied with the mean residence time held constant. Although recent studies in this laboratory indicate that changes in residence time can also effect a fuels thermal stability, a mean residence time of 0.5 s has been chosen to best simulate the crucial transport time of an on-board fuel. Specific questions to be addressed by this study are: (1) how do the thermal stabilities of the model endothermic fuels compare with their dehydrogenation products; (2) how does the thermal stability of a highly naphthenic future aircraft fuel (JP-10) compare with the model endothermic fuels; (3) can the differences in relative thermal stability be related to fuel structure; (4) and, on the basis of these tests, which endothermic fuels has the highest heat-sink potential

Taylor, P.H.; Rubey, W.A. (Univ. of Dayton Research Institute, OH (USA))

1987-04-01T23:59:59.000Z

71

NREL: Energy Analysis - Transportation Energy Futures Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathways: An Examination of Timing and Investment Constraints Non-Light-Duty Vehicles Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector Fuels Alternative...

73

Awareness Program Fuels Energy Savings Projects  

E-Print Network (OSTI)

AWARENESS PROGRAM FUELS ENERGY SAVINGS PROJECTS ALEKS M. KLIDZEJS Senior Mechanical Engineer 3M Company Saint Paul, Minnesota ABSTRACT Energy awareness concepts were incorporated as part of a plant energy survey and played a major part... in the followup program. Plant manager support was received and multi-disciplinary task group was established to review and recommend energy saving potentials. Beyond instilling traditional benefits of an awareness program, capital expenditure energy savings...

Klidzejs, A. M.

74

Future Smart Energy -Fuel Cell and Hydrogen Summer School 2014, Aalborg, Denmark  

E-Print Network (OSTI)

Future Smart Energy - Fuel Cell and Hydrogen Technology Summer School 2014, Aalborg, Denmark August #12;31 Future Smart Energy - Fuel Cell and Hydrogen Technology Samuel Simon Araya Introduction to fuel cells History Why fuel cells? Fuel cell types Fuel and infrastructure Hydrogen production Hydrogen

Berning, Torsten

75

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...revolutionizing the energy outlook in...revolutionizing the energy outlook in...estimate what the price of oil will...terminals in the USA to meet projected...and its history is instructive...domestic oil prices that followed...and for the USA as a whole...are used. -Energy return on...geological history, which could...

2014-01-01T23:59:59.000Z

76

Alternative Fuels Data Center: Advanced Energy Research Project Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Energy Advanced Energy Research Project Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Energy Research Project Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Energy Research Project Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Google Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Delicious Rank Alternative Fuels Data Center: Advanced Energy Research Project Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Energy Research Project Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Energy Research Project Grants The Advanced Research Projects Agency - Energy (ARPA-E) was established

77

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Projects Funded for Fuel Cell Market Transformation Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable, and specialty vehicles. The Fuel Cell Technologies Office is collecting and analyzing data from these projects to show potential adopters the benefits and real-world performance of fuel cells. These data are aggregated across industries and sites as composite data products to provide relevant technology status results and fuel cell performance data without revealing proprietary information. These publicly available data products build the business case for fuel cells and help fuel cell developers understand the state of technologies while identifying ways to improve them.

78

Living a Sustainable Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Living a Sustainable Future Living a Sustainable Future August 1, 2013 Biomass to fuel project The Laboratory's biomass team is working to solve the energy crisis through...

79

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

80

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

energy and emissions intensity of unconventional production are at best a lower bound, and current projections of future

Coughlin, Katie

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Project Sponsors:National Fuel Cell Research Center  

E-Print Network (OSTI)

Project Sponsors:National Fuel Cell Research Center www.nfcrc.uci.edu RESULTS · PEM fuel cell the results of subjecting a hydrogen-anode, air-breathing cathode Proton Exchange Membrane (PEM) fuel cell., and Samuelsen, G. S. (2003). "Experimental Evaluation and Computer Simulation of an Air-Breathing PEM Fuel Cell

Mease, Kenneth D.

82

Atomic Hydrogen in Condensed Form Produced by a Catalytic Process:? A Future Energy-Rich Fuel?  

Science Journals Connector (OSTI)

Atomic Hydrogen in Condensed Form Produced by a Catalytic Process:? A Future Energy-Rich Fuel? ... Energy Fuels, 2005, 19 (6), ...

Shahriar Badiei; Leif Holmlid

2005-10-04T23:59:59.000Z

83

Microsoft PowerPoint - 6_Rowe-Future Challenges for Global Fuel...  

National Nuclear Security Administration (NNSA)

International Atomic Energy Agency (IAEA), Nuclear Fuel Cycle Information System (NFCIS) web site IAEA Safeguards Begins Here 4 Future Challenges for Global Fuel Cycle Material...

84

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

85

COLLOQUIUM: Future Projections of Climate Change: An Update from...  

NLE Websites -- All DOE Office Websites (Extended Search)

May 28, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Future Projections of Climate Change: An Update from IPCC AR5IPCC AR5 WG1 Report Dr. Claudia Tebaldi NCAR I will...

86

Quantifying Sources of Uncertainty in Projections of Future Climate  

Science Journals Connector (OSTI)

A simple statistical model is used to partition uncertainty from different sources, in projections of future climate from multimodel ensembles. Three major sources of uncertainty are considered: the choice of climate model, the choice of emissions ...

Paul J. Northrop; Richard E. Chandler

2014-12-01T23:59:59.000Z

87

The Fuel Cell Mobile Light Project - A DOE Market Transformation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Mobile Light Project -- A DOE Market Transformation Activity-- Lennie Klebanoff Sandia National Laboratories Chris Radley Altergy Systems Torsten Erbel Multiquip Inc. DOE...

88

Demonstration Project for Fuel Cell Bus Commercialisation in...  

Open Energy Info (EERE)

Commercialisation in China Jump to: navigation, search Name: Demonstration Project for Fuel Cell Bus Commercialisation in China Place: Beijing and Shanghai, China Sector:...

89

FY 2014 Solid Oxide Fuel Cell Project Selections | Department...  

Office of Environmental Management (EM)

Effects and Degradation in Solid Oxide Fuel Cells: Understanding Transport and Thermodynamics." The goals of this project are to: 1) understand the detailed mechanisms of...

90

Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts 2004 Diesel...

91

Shell Gas to Liquids in the context of a Future Fuel Strategy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing...

92

Future marine fuels - Prediction and alleviation of potential combustion and lubrication problems  

SciTech Connect

This paper reviews the current and future marine fuels market and future fuel quality. It also describes the development of a method of ranking fuels by ignition delay which has led to the concept of a Calculated Carbon Aromaticity Index derived from simple fuel inspection properties. It also shows how increased engine fouling and corrosive wear, which might be expected from future quality fuel, can be controlled by improvements in lubrication and due attention to engine temperatures.

Williams, R.E.; Belcher, P.R.; Hengeveld, J.; Newbery, P.J.

1984-02-01T23:59:59.000Z

93

ITC Role in U.S. Fuel Cell Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITC Case Study 1 ITC Role in US Fuel Cell Projects Case Study With a DOD Facility Samuel Logan February 19, 2009 MCB Camp Pendleton, CA ITC Case Study 2 Key Project Objectives *...

94

Shell Future Fuels and CO2 | Open Energy Information  

Open Energy Info (EERE)

Shell Future Fuels and CO2 Shell Future Fuels and CO2 Jump to: navigation, search Name Shell Future Fuels and CO2 Place Glasgow, Scotland, United Kingdom Zip G1 9BG Sector Hydro, Hydrogen Product UK-based division of Shell's Oil Products business active in the hydrogen & CCS sectors as a developer of technology. Coordinates 55.857809°, -4.242511° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.857809,"lon":-4.242511,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Oak Ridge Project Opens Possibilities for Future Mission Work, Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Opens Possibilities for Future Mission Work, Project Opens Possibilities for Future Mission Work, Development Oak Ridge Project Opens Possibilities for Future Mission Work, Development April 29, 2013 - 12:00pm Addthis Environmental sampling helps identify which reservation locations are not contaminated. Environmental sampling helps identify which reservation locations are not contaminated. OAK RIDGE, Tenn. - EM is refining the picture of uncontaminated areas within the 33,500-acre Oak Ridge Reservation through a review of historic documents and extensive sampling, analysis and characterization. The EM program has verified thousands of acres are not contaminated, or otherwise meet existing regulatory standards, and therefore do not require cleanup, creating possibilities for future mission work and economic development.

96

International project development -- Strategies for the future  

SciTech Connect

It seems everywhere one looks today the international power development markets look incredibly large. 150,000 MWs are needed in China, 50,000 MWs are needed in India, 15,000 MWs are needed in Indonesia, 25,000 MWs are needed in Brazil. The list goes on and on and according to current IPP ``mythology`` these markets offer potential projects providing ``huge`` internal rates of return on investment. Unfortunately, against this favorable market backdrop remain some irrefutable facts; (1) There is not enough fabrication capacity in the world to meet the current capacity addition requirements, (2) There is not enough debt capital in the world to finance all the required MWs, further portfolio considerations reduce this on a country-by-country basis. (3) There are not enough qualified development and operational personnel to develop, construct and manage all of these projects. This paper will attempt to cover the broad mosaic of issues relative to the international development market. The authors illuminate the risks that will help optimize development funds, and human resources as well as the issues surrounding construction and operations.

Gross, S.B.; Maynard, B.H. [Entergy Power Group, Little Rock, AR (United States)

1995-12-31T23:59:59.000Z

97

Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and  

E-Print Network (OSTI)

Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel will be technologies and fuels related to renewable hydrogen. The literature review will produce a set of hydrogen hydrogen or hydrogen produced with technologies or fuels not currently in the LCFS. The study will assess

California at Davis, University of

98

Project Sponsors:National Fuel Cell Research Center  

E-Print Network (OSTI)

Project Sponsors:National Fuel Cell Research Center www.nfcrc.uci.edu SOLID OXIDE SIEMENS WESTINGHOUSE: 25 KW TUBULAR SOLID OXIDE FUEL CELL FIRST SOFC PRE-COMMERCIAL PROTOTYPE AND RESEARCH PLATFORM data on the tubular Solid Oxide Fuel Cell (SOFC) design. · Test component designs including inverters

Mease, Kenneth D.

99

Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)  

SciTech Connect

This fact sheet describes the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

Not Available

2014-11-01T23:59:59.000Z

100

Nuclear Fuels Storage & Transportation Planning Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Storage & Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut Yankee (http://www.connyankee.com/html/fuel_storage.html). Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Partners in April 2010 * NEPAs Submitted - 100% of OEM Vehicles - 100% of Vehicle Conversions - 100% of Infrastructure * Detailed Project Plan Established for each Project...

102

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

103

Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures  

SciTech Connect

The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

Jacob J. Jacobson; Steven J. Piet; Gretchen E. Matthern; David E. Shropshire; Robert F. Jeffers; A. M. Yacout; Tyler Schweitzer

2010-11-01T23:59:59.000Z

104

Kick Off Meeting for New Fuel Cell Projects  

E-Print Network (OSTI)

) is EERE's Project Management Center (PMC) · GO serves as the "Project" office while the DC office (HQ for EERE Programs ­ Fuel Cell Technologies ­ Biomass ­ S lSolar ­ Wind/Water ­ Geothermal ­ Industrial Technologies ­ State EnergState Energy · GO provides technical field project management in support of EERE HQ

105

Project Information Form Project Title Assessment of Critical Barriers to Alternative and Renewable Fuel and  

E-Print Network (OSTI)

Project Information Form Project Title Assessment of Critical Barriers to Alternative and Renewable Fuel and Vehicle Deployment University UC Davis Principal Investigator Amy Jaffe Andrew Burke PI models are necessary to promote adequate investment in promising alternative vehicle technologies

California at Davis, University of

106

Argonne project turns methane to liquid fuel for hybrid fuel cells  

Science Journals Connector (OSTI)

Researchers from the US Department of Energy's Argonne National Laboratory in Illinois and the Illinois Institute of Technology (IIT) have been awarded $2 million from the Advanced Research Projects AgencyEnergy (ARPA-E), for a two-year project on hybrid fuel cells, specifically on converting methane to liquid fuel.

2014-01-01T23:59:59.000Z

107

PROJECTED EFFECTS OF FUTURE CLIMATES ON FRESHWATER FISHES  

E-Print Network (OSTI)

PROJECTED EFFECTS OF FUTURE CLIMATES ON FRESHWATER FISHES OF CALIFORNIA A White Paper from the California Energy Commission's California Climate Change Center JULY 2012 CEC5002012028 A methodology is presented that allows systematic evaluation of climate change impacts on freshwater fishes

108

Design and Optimization of Future Aircraft for Assessing the Fuel Burn Trends of Commercial  

E-Print Network (OSTI)

aircraft R1 Maximum payload at maximum range SFC Engine specific fuel consumption Sref Reference area STADesign and Optimization of Future Aircraft for Assessing the Fuel Burn Trends of Commercial Francisco, CA 94104, U.S.A. Accurately predicting the fuel burn performance and CO2 emissions of future

Alonso, Juan J.

109

Data Collection & Analysis for ARRA Fuel Cell Projects (Presentation)  

SciTech Connect

The data analysis objectives are: (1) Independent assessment of technology, focused on fuel cell system and hydrogen infrastructure:performance, operation, and safety; (2) Leverage data processing and analysis capabilities from the fuel cell vehicle Learning Demonstration project and DoD Forklift Demo; (3) Establish a baseline of real-world fuel cell operation and maintenance data and identify technical/market barriers; (4) Support market growth of fuel cell technologies by reporting on technology features relevant to the business case; and (5) Report on technology to fuel cell and hydrogen communities and stakeholders.

Kurtz, J.; Ramsden, T.; Wipke, K.; Sprik, S.

2009-08-21T23:59:59.000Z

110

Financing Alternatives for Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

Presentation prepared by Lee White of George K. Baum and Co. for the State and Regional Hydrogen and Fuel Cell Conference Call

111

Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels  

E-Print Network (OSTI)

or organization) US DOT $38,942 Total Project Cost $38,942 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Designing and Analyzing Policies for Renewable Fuels and End Dates September 1, 2014 to August 31, 2015 Brief Description of Research Project Federal and state

California at Davis, University of

112

Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels  

E-Print Network (OSTI)

or organization) US DOT $38,925 Total Project Cost $38,925 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Designing and Analyzing Policies for Renewable Fuels and End Dates September 1, 2014 to August 31, 2015 Brief Description of Research Project Federal and state

California at Davis, University of

113

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS  

E-Print Network (OSTI)

each agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract NumberProject Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy Project Currently trucks are viewed as any other vehicle in traffic management Currently trucks are viewed

California at Davis, University of

114

FY 2014 Solid Oxide Fuel Cell Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

In FY 2014, nine research projects focused on advancing the reliability, robustness, and endurance of solid oxide fuel cells (SOFC) have been selected for funding by Office of Fossil Energys...

115

NETL: News Release - SECA Fuel Cell Program Selects Two Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2008 9, 2008 SECA Fuel Cell Program Selects Two Projects Low-Cost Fuel Cell Systems to Address Energy Security, Climate and Water Challenges WASHINGTON, DC - The U.S. Department of Energy (DOE) has selected two projects for the Department's Solid State Energy Conversion Alliance (SECA) Program portfolio. The projects, focused on enhancing energy security through zero-emission applications, will be led by UTC Power, a United Technologies Corporation, in partnership with Delphi Corporation, and Rolls-Royce Fuel Cell Systems (U.S.) Inc. The Rolls-Royce project will include work at Ohio's Stark State College Fuel Cell Prototyping Center, which is also supported through a National Science Foundation grant. From an environmental perspective, fuel cells are one of the most attractive technologies for generating electricity. Solid oxide fuel cells operate by separating and transferring oxygen across a solid electrolyte membrane, where it reacts with a fuel - such as synthesis gas derived from coal, biofuels or natural gas - to produce steam and carbon dioxide (CO2). Condensing the steam results in a pure stream of CO2 gas; this can be readily captured for storage or other use in a central location. This feature, coupled with the well-known fact that fuel cell efficiency does not depend on high temperatures, results in near-zero emissions (e.g., NOx < 0.5ppm) at equivalent or reduced cost-of-electricity compared to today's power generation.

116

An empirical analysis of the price discovery function of Shanghai fuel oil futures market  

Science Journals Connector (OSTI)

This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such ... there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the fut...

Zhen Wang; Zhenhai Liu; Chao Chen

2007-08-01T23:59:59.000Z

117

DOE funds projects on hydrogen storage, fuel cell manufacturing  

Science Journals Connector (OSTI)

Three hydrogen and fuel cell projects in Colorado, California, and New Jersey are to receive funding from the US Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE). The projects are among the recently announced FY 2012 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 3 awards.

2013-01-01T23:59:59.000Z

118

Prospecting the Future for Hydrogen Fuel Cell Vehicle Markets  

E-Print Network (OSTI)

as those for hydrogen and fuel cell vehicles (FCVs). 1 Wein the market if hydrogen and fuel cells are the best energypaper we argue that hydrogen and fuel cells will effectively

Kurani, Kenneth S.; Turrentine, Thomas S.; Heffner, Reid R.; Congleton, Christopher

2003-01-01T23:59:59.000Z

119

Transportation Fuels: The Future is Today (6 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This teacher guide provides extensive background information on transportation fuels to help your students learn about conventional and alternative transportation fuels by evaluating their advantages and disadvantages.

120

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partners Patson-Exel-Diageo City of Chicago Richard M. Daley Mayor Vehicles -12 CNG conversions Infrastructure -1 new public CNG station Project Partners Peoples Gas ...

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

California Fleets and Workplace Alternative Fuels Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

information. 2014 DOE Vehicle Technologies Office Review Presentation Damian Breen Deputy Air Pollution Control Officer Bay Area Air Quality Management District Project ID: TI035...

122

DOE Hydrogen Program New Fuel Cell Projects  

E-Print Network (OSTI)

Development Building Weatherization & Intergovernmental Geothermal Hydrogen Wind & Hydropower #12;Integrated Production EERE is working to provide a prosperous future where energy is clean, abundant, reliable Davis - Safety, Codes/Standards Antonio Ruiz - Safety Engineer Hydrogen Technologies Program Patrick

123

Project Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel Vehicles for  

E-Print Network (OSTI)

agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract Number DTRT13-GProject Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel-UTC29 Start and End Dates May 16, 2014 to May 31, 2015 Brief Description of Research Project

California at Davis, University of

124

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network (OSTI)

each agency or organization) DOT $26,383.66 Total Project Cost $26,383.66 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand Project This white paper will summarize recent research findings pertaining to future passenger travel

California at Davis, University of

125

Spent fuel and radioactive waste inventories, projections, and characteristics. Revision 1  

SciTech Connect

Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1984, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions.

Not Available

1985-12-01T23:59:59.000Z

126

Clean Fuel Advanced Technology Awarded Projects Organization Project Descriptions  

E-Print Network (OSTI)

Mountains National Park Biodiesel (B50) Tanks1,3 $33,681 $13,204 $46,885 -16 18 110 11 Duke Energy 2 Hybrid 555 3634 332 2007 CFAT Projects(12 projects) City of Hickory 1 Natural Gas Vehicle - Honda Civic GX6 with Crankcase Filtration System2 $24,671 $6,168 $30,839 0 115 828 85 Holmes Oil Co. ** E85 infrastructure1,7 $42

127

Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Back to the Future": Flex-Fuel Vehicle Awareness "Back to the Future": Flex-Fuel Vehicle Awareness Driving "Back to the Future": Flex-Fuel Vehicle Awareness March 18, 2011 - 9:41am Addthis Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy The 1908 Model-T Ford was the first vehicle designed to run on ethanol-which Henry Ford termed "the fuel of the future." Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or gasoline blended with up to 85 percent ethanol (E85). By using E85, these flex fuel vehicles help to decrease our reliance on imported oil and reduce carbon pollution. The "Big Three" U.S. auto makers (Ford, General Motors, and Chrysler) recently announced that half of their entire 2012 vehicle line will be FFVs-including the

128

Microsoft PowerPoint - 6_Rowe-Future Challenges for Global Fuel Cycle Material Accounting Final_Updated.pptx  

National Nuclear Security Administration (NNSA)

Future Challenges Future Challenges for Global Fuel Cycle Material Accounting Nathan Rowe Chris Pickett Oak Ridge National Laboratory Nuclear Materials Management & Safeguards System Users Annual Training Meeting May 20-23, 2013 St. Louis, Missouri 2 Future Challenges for Global Fuel Cycle Material Accounting Introduction * Changing Nuclear Fuel Cycle Activities * Nuclear Security Challenges * How to Respond? - Additional Protocol - State-Level Concept - Continuity of Knowledge * Conclusion 3 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Fuel Cycle Source: International Atomic Energy Agency (IAEA), Nuclear Fuel Cycle Information System (NFCIS) web site IAEA Safeguards Begins Here 4 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Weapons Cycle Conversion

129

TMI defueling project fuel debris removal system  

SciTech Connect

The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

Burdge, B.

1992-01-01T23:59:59.000Z

130

TMI defueling project fuel debris removal system  

SciTech Connect

The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

Burdge, B.

1992-08-01T23:59:59.000Z

131

Fuel-Burn Impact of Re-Designing Future Aircraft with Changes in Mission Specifications  

E-Print Network (OSTI)

., with permission. AIAA SciTech #12;SA Single aisle aircraft SFC Engine specific fuel consumption Sref Reference.S.A. Over the past few years, pressure to reduce the overall fuel consumption of the commer- cial aircraftFuel-Burn Impact of Re-Designing Future Aircraft with Changes in Mission Specifications Anil

Alonso, Juan J.

132

Fuel cells for a sustainable future II: stakeholder attitudes to the barriers  

E-Print Network (OSTI)

. #12;3 1. Introduction Fuel cells coupled with the hydrogen economy have been identified as keyFuel cells for a sustainable future II: stakeholder attitudes to the barriers and opportunities for stationary fuel cell technologies in the UK Michael Peters and Jane Powell November 2004 Tyndall Centre

Watson, Andrew

133

SNF fuel retrieval sub project safety analysis document  

SciTech Connect

This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

BERGMANN, D.W.

1999-02-24T23:59:59.000Z

134

ITC Role in U.S. Fuel Cell Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

ITC Case Study ITC Case Study 1 ITC Role in US Fuel Cell Projects Case Study With a DOD Facility Samuel Logan February 19, 2009 MCB Camp Pendleton, CA ITC Case Study 2 Key Project Objectives * Turn-key fixed price contract * Furnish, install & integrate 750kW CHP MCFC system with customer facilities * Provide base load power and heat with environmental & energy security benefits * Demonstrate reliability & interoperability with built environment ITC Case Study 3 Project Background * Initial contract amount: $4,150,000 * Fuel cell manufacturer: FuelCell Energy Danbury, CT * Product: 3 DFC300MA 250kW MCFC power plants * Camp Pendleton contract award: 9/30/05 * Contracting agency: Naval Air Warfare Weapons Division, China Lake * Contract terms: 3 year O&M services, 1 year warranty, best efforts

135

Carbon Capture and Storage FutureGen 2.0 Project Moves Forward...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase February 4, 2013 - 7:25pm...

136

Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project  

SciTech Connect

The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

2009-11-14T23:59:59.000Z

137

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million Industry Partnership Projects to Increase 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and eventually lead to a day when our children and grandchildren will call the

138

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $14 Million Industry Partnership Projects to Increase DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and

139

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

140

Dual Fuel Conversion System for Diesel Engines: Inventions and Innovation Project Fact Sheet  

SciTech Connect

Project fact sheet written for the Inventions and Innovation Program about a new dual fuel conversion system allows diesel fuel switching with clean burning natural gas.

Wogsland, J.

2001-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Driving it home: choosing the right path for fueling North America's transportation future  

SciTech Connect

North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

2007-06-15T23:59:59.000Z

142

Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)  

SciTech Connect

This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

Not Available

2013-06-01T23:59:59.000Z

143

NREL Success Stories - SkyFuel Partnership Reflects Bright Future  

ScienceCinema (OSTI)

NREL Scientists and SkyFuel share a story about how their partnership has resulted in a revolutionary concentrating solar power technology ReflecTech Mirror Film.

Jorgensen, Gary; Gee, Randy

2013-05-29T23:59:59.000Z

144

Future Engine Fluids Technologies: Durable, Fuel-Efficient, and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Market Introducution in Europe Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel...

145

Final Environmental Impact Statement for the FutureGen Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Chapters 1-3, 8-12 Appendices NOVEMBER 2007 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy Title: Final Environmental Impact Statement for FutureGen Project (DOE/EIS-0394) Location: Mattoon, Illinois; Tuscola, Illinois; Jewett, Texas; and Odessa, Texas Contact: For further information about this Environmental Impact Statement, contact: For general information on the U.S. Department of Energy's process for implementing the National Environmental Policy Act, contact: Mark McKoy, Document Manager U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 (304) 285-4426 or fax (304) 285-4403 Carol Borgstrom, Director

146

Final Environmental Impact Statement for the FutureGen Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary NOVEMBER 2007 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy Title: Final Environmental Impact Statement for FutureGen Project (DOE/EIS-0394) Location: Mattoon, Illinois; Tuscola, Illinois; Jewett, Texas; and Odessa, Texas Contact: For further information about this Environmental Impact Statement, contact: For general information on the U.S. Department of Energy's process for implementing the National Environmental Policy Act, contact: Mark McKoy, Document Manager U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 (304) 285-4426 or fax (304) 285-4403 Carol Borgstrom, Director

147

Integrated Data Base for 1989: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1988. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, commercial reactor and fuel cycle facility decommissioning waste, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 45 figs., 119 tabs.

Not Available

1989-11-01T23:59:59.000Z

148

Integrated data base for 1990: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1989. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 22 refs., 48 figs., 109 tabs.

Not Available

1990-10-01T23:59:59.000Z

149

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network (OSTI)

each agency or organization) Caltrans $26,383 Total Project Cost $26,383 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand DTRT13-G-UTC29 Start and End Dates September 2014 to June 2015 Brief Description of Research Project

California at Davis, University of

150

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

151

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS?  

E-Print Network (OSTI)

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS? TAD as ethanol from corn. When this corn ethanol is burned as a gasoline additive or fuel, its use amounts that burn corn ethanol is halved. The wide- spread use of corn ethanol will cause manifold damage to air

Patzek, Tadeusz W.

152

New Feedstocks and Replacement Fuels- Future Energy for Mobility  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

153

Hydrogen and Fuel Cell Research for Future Markets  

Science Journals Connector (OSTI)

The hydrogen economy is regarded as a vector to increase energy and environmental security. Hydrogen and fuel cell technologies could be an ... in these technologies. A possible shift to hydrogen as an energy car...

Hanns-Joachim Neef

2008-01-01T23:59:59.000Z

154

The Future of Fuel and Refueling | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

of Fuel and Refueling Anna Lis Laursen 2012.07.18 Due to the large domestic Natural Gas reserves, the interest in developing new technology to allow profitable use of NG, has...

155

Spent nuclear fuel project - criteria document spent nuclear fuel final safety analysis report  

SciTech Connect

The criteria document provides the criteria and planning guidance for developing the Spent Nuclear Fuel (SNF) Final Safety Analysis Report (FSAR). This FSAR will support the US Department of Energy, Richland Operations Office decision to authorize the procurement, installation, installation acceptance testing, startup, and operation of the SNF Project facilities (K Basins, Cold Vacuum Drying Facility, and Canister Storage Building).

MORGAN, R.G.

1999-02-23T23:59:59.000Z

156

Record of Decision Issued for the FutureGen 2.0 Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy (DOE) has decided to provide financial assistance to the FutureGen Industrial Alliance (the Alliance) for the FutureGen 2.0 Project. DOE will provide approximately 1...

157

U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Fuel Cell Activities: U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions Total Energy USA Houston, Texas Dr. Sunita Satyapal 11/27/2012 Director, Office of Fuel Cell Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy Overview Fuel Cells - An Emerging Global Industry United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung, Toyota, UTC Power, Nissan, Ballard, Plug Power, Panasonic, Delphi Technologies Clean Energy Patent Growth Index Source: Clean Energy Patent Growth Index Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011.

158

Future projections of daily precipitation and its extremes in simulations of 21st century climate change.  

E-Print Network (OSTI)

??The current generation of climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is used to assess the future changes in daily precipitation (more)

Yin, Lei

2013-01-01T23:59:59.000Z

159

Integrated data base for 1986: spent fuel and radioactive waste inventories, projections, and characteristics. Revision 2  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US Department of Energy (DOE) radioactive wastes through December 31, 1985, based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. The materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or calculated isotopic compositions.

Not Available

1986-09-01T23:59:59.000Z

160

Integrated data base for 1988: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1987. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reportd for miscellaneous, highly radioactive materials that may require geologic disposal. 89 refs., 46 figs., 104 tabs.

Not Available

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integrated data base for 1987: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1986. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 82 refs., 57 figs., 121 tabs.

Not Available

1987-09-01T23:59:59.000Z

162

Wood Fuel Future: The Potential Web Text December 2010  

E-Print Network (OSTI)

Wth for one family, with larger scale systems of 1 MWth heating 200 houses. Small scale wood fuel electricity provide electricity for up to 30,000 houses. Many electricity generating systems also produce heat and are called Combined Heat and Power systems. kWth = kilowatt thermal (i.e. heat) kWe = kilowatt electricity

163

Fuel Modelling at Extended Burnup: IAEA Coordinated Research Project FUMEX-II  

SciTech Connect

The International Atomic Energy Agency sponsored a Coordinated Research Project on Fuel Modelling at Extended Burnup (FUMEX-II). Eighteen fuel modelling groups participated with the intention of improving their capabilities to understand and predict the behaviour of water reactor fuel at high burnups. The exercise was carried out in coordination with the OECD/NEA. The participants used a mixture of data derived from actual irradiation histories of high burnup experimental fuel and commercial irradiations where post-irradiation examination measurements are available, combined with idealised power histories intended to represent possible future extended dwell commercial irradiations and test code capabilities at high burnup. All participants have been asked to model nine priority cases out of some 27 cases made available to them for the exercise from the IAEA/OECD International Fuel Performance Experimental Database. Calculations carried out by the participants, particularly for the idealised cases, have shown how varying modelling assumptions affect the high burnup predictions, and have led to an understanding of the requirements of future high burnup experimental data to help discriminate between modelling assumptions. This understanding is important in trying to model transient and fault behaviour at high burnup. It is important to recognise that the code predictions presented here should not be taken to indicate that some codes do not perform well. The codes have been designed for different applications and have differing assumptions and validation ranges; for example codes intended to predict Candu fuel operation with thin wall collapsible cladding do not need the clad creep and gap conductivity modelling found in PWR codes. Therefore, when a case is based on Candu technology or PWR technology, it is to be expected that the codes may not agree. However, it is the very differences in such behaviour that is useful in helping to understand the effects of such internal modelling. (authors)

Killeen, J.C. [International Atomic Energy Agency, Wagramerstrasse 5, PO Box 100, A-1400 Vienna (Austria); Turnbull, J.A. [Cherry-Lyn, Tockington, South Glos (United Kingdom); Sartori, E. [OECD/NEA, 12 Bd des Iles, 92130 Issy-les-Moulineaux (France)

2007-07-01T23:59:59.000Z

164

Secretary Chu Announces Agreement on FutureGen Project in Mattoon, Illinois  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agreement on FutureGen Project in Mattoon, Agreement on FutureGen Project in Mattoon, Illinois Secretary Chu Announces Agreement on FutureGen Project in Mattoon, Illinois June 12, 2009 - 1:00pm Addthis Washington, DC - U.S. Secretary of Energy Steven Chu today announced an agreement with the FutureGen Alliance that advances the construction of the first commercial scale, fully integrated, carbon capture and sequestration project in the country in Mattoon, Illinois. "This important step forward for FutureGen reflects this Administration's commitment to rapidly developing carbon capture and sequestration technology as part of a comprehensive plan to create jobs, develop clean energy and reduce climate change pollution." said Energy Secretary Steven Chu. "The FutureGen project holds great promise as a flagship facility to

165

Secretary Chu Announces Agreement on FutureGen Project in Mattoon, IL |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agreement on FutureGen Project in Mattoon, Agreement on FutureGen Project in Mattoon, IL Secretary Chu Announces Agreement on FutureGen Project in Mattoon, IL June 12, 2009 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced an agreement with the FutureGen Alliance that advances the construction of the first commercial scale, fully integrated, carbon capture and sequestration project in the country in Mattoon, Illinois. "This important step forward for FutureGen reflects this Administration's commitment to rapidly developing carbon capture and sequestration technology as part of a comprehensive plan to create jobs, develop clean energy and reduce climate change pollution." said Energy Secretary Steven Chu. "The FutureGen project holds great promise as a flagship facility to

166

U.S. and India Sign Historic Agreement on FutureGen Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sign Historic Agreement on FutureGen Project Sign Historic Agreement on FutureGen Project U.S. and India Sign Historic Agreement on FutureGen Project April 3, 2006 - 10:02am Addthis India to Participate in World's First Integrated CO2 Sequestration and Hydrogen Production Research Power Plant, FutureGen Initiative NEW DELHI, INDIA - The U.S. Department of Energy (DOE) announced the signing of an agreement with India that makes it the first country to join the U.S. on the government steering committee for the FutureGen Initiative. FutureGen is an initiative to build and operate the world's first coal-based power plant that removes and sequesters carbon dioxide (CO2) while producing electricity and hydrogen. "Adding India to our list of partners is an exciting step for the FutureGen project," Secretary of Energy Samuel W. Bodman said. "The success of

167

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

SciTech Connect

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

168

Analysis of possible future atmospheric retention of fossil fuel CO/sub 2/  

SciTech Connect

This report investigates the likely rates and the potential range of future CO/sub 2/ emissions, combined with knowledge of the global cycle of carbon, to estimate a possible range of future atmospheric CO/sub 2/ concentrations through the year 2075. Historic fossil fuel usage to the present, growing at a rate of 4.5% per year until 1973 and at a slower rate of 1.9% after 1973, was combined with three scenarios of projected emissions growth ranging from approximately 0.2 to 2.8% per year to provide annual CO/sub 2/ emissions data for two different carbon cycle models. The emissions scenarios were constructed using an energy-economic model and by varying key parameters within the bounds of currently expected future values. The extreme values for CO/sub 2/ emissions in the year 2075 are 6.8 x 10/sup 15/ and 91 x 10/sup 15/ g C year/sup -1/. Carbon cycle model simulations used a range of year - 1800 preindustrial atmospheric concentrations of 245 to 292 ppM CO/sub 2/ and three scenarios of bioshere conversion as additional atmospheric CO/sub 2/ source terms. These simulations yield a range of possible atmospheric CO/sub 2/ concentrations in year 2075 of approximately 500 to 1500 ppM, with a median of about 700 ppM. The time at which atmospheric CO/sub 2/ would potentially double from the preindustrial level ranges from year 2025 to >2075. The practical, programmatic value of this forecast exercise is that it forces quantitative definition of the assumptions, and the uncertainties therein, which form the basis of our understanding of the natural biogeochemical cycle of carbon and both historic and future human influences on the dynamics of the global cycle. Assumptions about the possible range of future atmospheric CO/sub 2/ levels provide a basis on which to evaluate the implications of these changes on climate and the biosphere. 44 references, 17 figures, 21 tables.

Edmonds, J.A.; Reilly, J.; Trabalka, J.R.; Reichle, D.E.

1984-09-01T23:59:59.000Z

169

Page 1 of 2 MECH461 2013 micro fuel cell project photos rev2.doc  

E-Print Network (OSTI)

applications for fuel cells (FCs) are being investigated all the time. Some see them replacing batteries battery-powered devices in which FCs could offer benefits. For example Fig. 1. Fuel cell powered MechPage 1 of 2 MECH461 2013 micro fuel cell project photos rev2.doc MECH 461 Project Proposal

Surgenor, Brian W.

170

Fuel economy goals for future powertrain and engine options  

Science Journals Connector (OSTI)

Efficiency goals represent one of the key factors governing powertrain choice. These goals are specified for three novel developments in automotive technology which would enable them to compete on this single basis with the conventional four-speed manual or automatic transmission (with torque converter lock-up) coupled with a fixed displacement spark-ignition engine. The fuel consumption figures of continuously variable ratio and infinitely variable ratio automobile transmissions are presented using a simulation model of a vehicle in both urban (EPA cycle) and constant-speed operation. A powertrain utilising a variable displacement engine is also simulated.

D.B. Gilmore

1988-01-01T23:59:59.000Z

171

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

annual generation by fuel type. .of total annual generation by fuel type. Other Renewablesof annual estimates of total generation by fuel type and

Coughlin, Katie

2013-01-01T23:59:59.000Z

172

State Level Incentives for Biogas-Fuel Cell Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

LEVEL INCENTIVES LEVEL INCENTIVES FOR BIOGAS-FUEL CELL PROJECTS Norma McDonald Vice Chair, American Biogas Council North American Sales Manager, Organic Waste Systems, Inc. www.americanbiogascouncil.org FIGURES * FOUNDED IN 1988 * SALES: $25-35 MILLION * 75 EMPLOYEES ACTIVITIES * BIOGAS CONSULTANCY & SUPPORT * BIODEGRADATION TESTING AND WASTE MANAGEMENT CONSULTANCY * DESIGN & CONSTRUCTION OF ANAEROBIC DIGESTION PLANTS FOR ORGANIC WASTE AND RESIDUALS * NO FORMAL STATE CHAPTERS - YET * MEMBER DRIVEN EFFORTS * LOCAL "TOUCH" IS ESSENTIAL * REAPPLY BEST PRACTICES/POLICIES * PROMOTE/ADVOCATE FOR POLICY PARITY FOR BIOGAS www.americanbiogascouncil.org DYNAMICS SHAPING STATE INCENTIVES * BUDGET WOES, ARRA FUNDS NOW RUNNING OUT

173

Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind-to-Hydrogen Cost Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Google Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Delicious Rank Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on

174

EIS-0460: FutureGen 2.0 Project, Morgan County, Illinois | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: FutureGen 2.0 Project, Morgan County, Illinois 60: FutureGen 2.0 Project, Morgan County, Illinois EIS-0460: FutureGen 2.0 Project, Morgan County, Illinois Summary This EIS evaluates the environmental impacts of a proposal to provide approximately $1 billion in Federal funding (most of it appropriated by the American Recovery and Reinvestment Act) for the FutureGen 2.0 project. Under the FutureGen 2.0 project, DOE would provide financial assistance for the repowering of an existing electricity generator with clean coal technologies integrated with a pipeline that would transport carbon dioxide to a sequestration site where it would be injected and stored in a deep geologic formation. Public Comment Opportunities None available at this time. Documents Available for Download January 15, 2014 EIS-0460: Record of Decision

175

Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase February 4, 2013 - 7:25pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Following the successful completion of the first phase, the Energy Department today announced the beginning of Phase II of project development with a new cooperative agreement between the FutureGen Industrial Alliance and the Department of Energy for an innovative carbon capture and storage (CCS) project in Illinois. "The Department of Energy is committed to the demonstration of carbon capture and storage technologies. We believe FutureGen 2.0 is an important step in making economic, commercial scale CCS a reality," said U.S.

176

U.S. and India Reach Historic Agreement on FutureGen Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reach Historic Agreement on FutureGen Project Reach Historic Agreement on FutureGen Project U.S. and India Reach Historic Agreement on FutureGen Project March 2, 2006 - 11:34am Addthis India becomes the first nation to accept U.S. invitation to participate in new clean coal project WASHINGTON, DC - President George W. Bush announced today that India will become the first country to participate on the government steering committee for the U.S. Department of Energy's FutureGen project - an initiative to build and operate the world's first coal-based power plant that removes and sequesters carbon dioxide (CO2) while it produces electricity and hydrogen. As a partner, the Indian government will contribute $10 million to the FutureGen Initiative and Indian companies will also be invited to participate in the private sector segment.

177

RESTRUCTURING OF THE JORDANIAN UTILITY SECTOR AND ITS ASSOCIATED GHG EMISSIONS: A FUTURE PROJECTION  

Science Journals Connector (OSTI)

As a small non?oil producing Middle Eastern country of a young and growing population and rapid urbanization Jordan like many countries all over the world was and is still facing the problem of meeting the rapidly increasing demand of electricity. The main objective of this study is to review many current aspects of the Jordanian electricity sector including electricity generation electricity consumption energy related emissions and future possibilities based on time series forecasting through the term of the Clean Development Mechanism (CDM) arrangement under the Kyoto Protocol in which the Hashemite Kingdom of Jordan had signed lately which allows industrialized countries with a greenhouse gas reduction commitment to invest in projects that reduce emissions in developing countries as an alternative to more expensive emission reductions in their own countries. Several scenarios are proposed in this study based on projected electricity consumption data until year 2028. Without attempting to replace the currently existing fossil?fuel based power plant technologies in Jordan by clean ones electricity consumption and associated GHG emissions are predicted to rise by 138% by year 2028; however if new clean technologies are adopted gradually over the same period electricity consumption as well as GHG emissions will ascend at a lower rate.

Rami Hikmat Fouad; Ahmed Al?Ghandoor; Mohammad Al?Khateeb; Hamada Bata

2008-01-01T23:59:59.000Z

178

Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deploy

179

The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification  

SciTech Connect

Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

Svendsen, R.L.

1996-12-31T23:59:59.000Z

180

SECA Fuel Cell Program Moves Two Key Projects Into Next Phase | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECA Fuel Cell Program Moves Two Key Projects Into Next Phase SECA Fuel Cell Program Moves Two Key Projects Into Next Phase SECA Fuel Cell Program Moves Two Key Projects Into Next Phase February 5, 2009 - 12:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. The projects--led by FuelCell Energy, in partnership with VersaPower Systems, and Siemens Energy--have successfully demonstrated solid oxide fuel cells (SOFCs) designed for aggregation and use in coal-fueled central power generation. Further development of these low-cost, near-zero emission fuel cell systems will substantially contribute to solving the Nation's energy security, climate, and water challenges.

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

> ExplorACES projects attract potential students > Bioenergy grant fuels excitement  

E-Print Network (OSTI)

Inside: > ExplorACES projects attract potential students > Bioenergy grant fuels excitement. Our current technical emphases are in the areas of agricultural automation, bio-energy and bio

Gilbert, Matthew

182

DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost Projections 2013  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about past, current, and projected costs for delivering and dispensing hydrogen.

183

Fuel Cell Project Selected for First Ever Technology-to-Market...  

Energy Savers (EERE)

cell electric vehicles to enable significant reductions in greenhouse gas emissions and air pollution. In addition to this technology-to-market award, two fuel cell projects were...

184

Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jennifer Kurtz (Primary Contact), Keith Wipke, Sam Sprik, Todd Ramsden, Genevieve Saur, and Chris Ainscough National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4061 Email: jennifer.kurtz@nrel.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Subcontractors: Pacific Northwest National Laboratory, Richland, WA Project Start Date: August 2009 Project End Date: December 2012, with future evaluations covered under DOE's Technology Validation sub-program Objectives Perform an independent assessment of technology in * real-world operation conditions, focusing on fuel cell

185

Draft Environmental Impact Statement for FutureGen Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EIS-0394D FUTUREGEN PROJECT EIS DOE/EIS-0394D FUTUREGEN PROJECT EIS DRAFT TABLE OF CONTENTS MAY 2007 i TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................ i LIST OF ACRONYMS ................................................................................... LIST OF ACRONYMS - 1 VOLUME I 1. PURPOSE AND NEED FOR AGENCY ACTION ......................................................................1-1 1.1 INTRODUCTION......................................................................................................................1-1 1.2 PROPOSED ACTION ...............................................................................................................1-1 1.3 PURPOSE AND NEED FOR AGENCY ACTION...................................................................1-2

186

Draft Environmental Impact Statement for FutureGen Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MAY 2007 i MAY 2007 i SUMMARY TABLE OF CONTENTS TABLE OF CONTENTS............................................................................................................................... i LIST OF ACRONYMS ................................................................................................................................ v SUMMARY.............................................................................................................................................. S-1 S.1 OVERVIEW ............................................................................................................................. S-1 S.1.1 Basis for U.S. Department of Energy Action.................................................................... S-1 S.1.2 Relationship between the U.S. Department of Energy and the FutureGen Alliance

187

Ground vibration measurements for Fermilab future collider projects  

Science Journals Connector (OSTI)

This article presents results of wideband seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, as well as in two deep tunnels in the Illinois dolomite, thought to be a possible geological environment of the Fermilab future accelerators.

B. Baklakov; T. Bolshakov; A. Chupyra; A. Erokhin; P. Lebedev; V. Parkhomchuk; Sh. Singatulin; J. Lach; V. Shiltsev

1998-07-13T23:59:59.000Z

188

Training implementation matrix, Spent Nuclear Fuel Project (SNFP)  

SciTech Connect

This Training Implementation Matrix (TIM) describes how the Spent Nuclear Fuel Project (SNFP) implements the requirements of DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for Reactor and Non-Reactor Nuclear Facilities. The TIM defines the application of the selection, qualification, and training requirements in DOE Order 5480.20A at the SNFP. The TIM also describes the organization, planning, and administration of the SNFP training and qualification program(s) for which DOE Order 5480.20A applies. Also included is suitable justification for exceptions taken to any requirements contained in DOE Order 5480.20A. The goal of the SNFP training and qualification program is to ensure employees are capable of performing their jobs safely and efficiently.

EATON, G.L.

2000-06-08T23:59:59.000Z

189

Novel Catalyst Support Materials for PEM Fuel Cells: Current Status and Future Prospects  

SciTech Connect

The catalyst supports exhibit great influence on the cost, performance, and durability of polymer electrolyte membrane (PEM) fuel cells. This review paper is to summarize several important kinds of novel support materials for PEM fuel cells (including direct methanol fuel cell, DMFC): nanostructured carbon materials (carbon nanotubes/carbon nanofibers, mesoporous carbon), conductive doped diamonds and nanodiamonds, conductive oxides (tin oxide/indium tin oxide, titanium oxide, tungsten oxide) and carbides (tungsten carbides). The advantages and disadvantages, the acting mechanism to promote electrocatalysis, and the strategies to improve present catalyst support materials and to search for new ones are discussed. This is expected to throw light on future development of catalyst support for PEM fuel cells.

Shao, Yuyan; Liu, Jun; Wang, Yong; Lin, Yuehe

2008-12-15T23:59:59.000Z

190

Recovery Act Projects Funded for Fuel Cell Market Transformation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SOFC technology by increasing net output power and fuel processing efficiency, decreasing heat loss and parasitic power loss, and establishing diesel fuel compatibility. The...

191

Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends  

Energy.gov (U.S. Department of Energy (DOE))

Learn more about the DOE's Buildings of the Future Project. Buildings will no longer be passive objects that consume resources, but rather active participants engaged in the energy system and our community.

192

Projected Future Changes in Vegetation in Western North America in the Twenty-First Century  

Science Journals Connector (OSTI)

Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water ...

Xiaoyan Jiang; Sara A. Rauscher; Todd D. Ringler; David M. Lawrence; A. Park Williams; Craig D. Allen; Allison L. Steiner; D. Michael Cai; Nate G. McDowell

2013-06-01T23:59:59.000Z

193

Modelling the economic and social consequences of drought under future projections of climate change  

E-Print Network (OSTI)

, China, Ethiopia, India, Spain/Portugal and the USA. Future projections of drought magnitude for 2003-2050 were modelled using the integrated assessment model CIAS (Community Integrated Assessment System), for a range of climate and emission scenarios...

Jenkins, Katie L.

2012-01-10T23:59:59.000Z

194

Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.  

SciTech Connect

Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

NONE

2004-05-27T23:59:59.000Z

195

Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project  

SciTech Connect

This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle.

Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

1998-10-16T23:59:59.000Z

196

Project Sponsors:National Fuel Cell Research Center  

E-Print Network (OSTI)

the 25 kW SOFC system are to: · Provide long-term operating data on the tubular Solid Oxide Fuel Cell landfill and digester gas. SOLID OXIDE INTEGRATED FUEL CELL SYSTEMS SolidOxide_IntegratedFuelCellSystems.ppt.pptx OVERVIEW The Siemens Westinghouse 25 kW Tubular Solid Oxide Fuel Cell (SOFC) is the first integrated SOFC

Mease, Kenneth D.

197

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect

The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

1993-05-01T23:59:59.000Z

198

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect

The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

1993-05-01T23:59:59.000Z

199

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

200

U.S. and South Korea Sign Agreement on FutureGen Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Korea Sign Agreement on FutureGen Project South Korea Sign Agreement on FutureGen Project U.S. and South Korea Sign Agreement on FutureGen Project June 26, 2006 - 2:34pm Addthis Korea to Participate in World's First Integrated Carbon Sequestration and Hydrogen Production Research Power Plant WASHINGTON, DC - U.S. Energy Secretary Samuel W. Bodman and South Korean Minister of Commerce, Industry & Energy, Chung Sye Kyun, today signed an agreement making South Korea the second country, after India, to join the United States in the FutureGen International Partnership. Korea has pledged $10 million to help build and operate the world's first zero-emissions coal-fired power plant and will sit on a government steering committee to oversee this initiative. Once operational, this plant will remove and sequester carbon dioxide while producing electricity and

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. [Contains glossary  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

202

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 7  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

203

Department of Energy Takes Another Step Forward on FutureGen Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes Another Step Forward on FutureGen Takes Another Step Forward on FutureGen Project in Mattoon, Illinois Department of Energy Takes Another Step Forward on FutureGen Project in Mattoon, Illinois July 14, 2009 - 1:00pm Addthis Washington, D.C. - The Department of Energy today issued a National Environmental Policy Act (NEPA) Record of Decision to move forward toward the first commercial scale, fully integrated, carbon capture and sequestration project in the country. The Department's decision is based on careful consideration of the proposed project's potential environmental impacts, as well as the program goals and objectives. "The carbon capture and sequestration technologies planned for this flagship facility are vitally important to America and the world," said Energy Secretary Steven Chu. "This step forward demonstrates the

204

Department of Energy Takes Another Step Forward on FutureGen Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Takes Another Step Forward on FutureGen Energy Takes Another Step Forward on FutureGen Project in Mattoon, IL Department of Energy Takes Another Step Forward on FutureGen Project in Mattoon, IL July 14, 2009 - 12:00am Addthis Washington, D.C. - The Department of Energy today issued a National Environmental Policy Act (NEPA) Record of Decision to move forward toward the first commercial scale, fully integrated, carbon capture and sequestration project in the country. The Department's decision is based on careful consideration of the proposed project's potential environmental impacts, as well as the program goals and objectives. "The carbon capture and sequestration technologies planned for this flagship facility are vitally important to America and the world," said Energy Secretary Steven Chu. "This step forward demonstrates the

205

State Level Incentives for Biogas-Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

State policy and legislative outlook for biogas and fuel cells. Presented by Norma McDonald, Organic Waste Systems, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

206

City of Tulare Renewable Biogas Fuel Cell Project  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Technology Transition Corporation and U.S. Department of Energy Fuel Cell Technologies Program Webinar: Go Local: Maximizing Your Local Renewable Resources With Fuel Cells, August 16, 2011.

207

Multi-Function Fuel-Fired Heat Pump Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy is currently conducting research into multi-function fuel-fired heat pumps. Multi-function fuel-fired heat pump technology has the potential for a significant impact...

208

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Adam R. 2008. Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. In

Coughlin, Katie

2013-01-01T23:59:59.000Z

209

The accuracy of financial report projections of future environmental capital expenditures: a research note  

Science Journals Connector (OSTI)

Financial report environmental disclosure has been widely criticized because the extent of disclosure both varies in response to exposures facing the firm and because it is not an accurate measure of firm environmental performance. This study suggests there are at least two potential problems that need to be addressed before this disclosure can be completely condemned as meaningless. A first potential problem is the earlier studies' focus on broad measures of environmental disclosure. Hidden within those broader measures may be pieces of meaningful information. Second, while the disclosure examined previously may not correspond well with past environmental performance, it, or at least parts of it, may still provide meaningful information for assessing future environmental action. This study attempts to address these shortcomings by examining one specific, but potentially useful, category of environmental disclosure: projections of future spending for pollution abatement and control equipment. Based on 355 sets of projected/actual spending drawn from 10K reports filed with the US's Security and Exchange Commission between 1993 and 2002, inclusive, results suggest that the projections may be more misleading than meaningful. Actual spending was lower than the projected amount for more than 75% of the observations, and the mean projection error (the difference adjusted for the size of the projection) was a negative 16.4%. Analysis of projection errors for a 2-year, rather than a 1-year window revealed a similar distribution. In contrast to the accuracy of the environmental capital expenditure projections, the actual/projection difference for total capital expenditures was very small, suggesting that it is not a difficulty in estimating future capital spending that is driving the error results. The projection errors also did not appear to be a function of changes in company revenues or profitability. Overall, therefore, it appears that, similar to broader measures of corporate environmental disclosure, projections of future spending on environmental control lack value.

Dennis M. Patten

2005-01-01T23:59:59.000Z

210

Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)  

SciTech Connect

This fact sheet describes opportunities for leading fuel cell industry partners from the United States and abroad to participate in an objective and credible fuel cell technology performance and durability analysis by sharing their raw fuel cell test data related to operations, maintenance, safety, and cost with the National Renewable Energy Laboratory via the Hydrogen Secure Data Center.

Not Available

2013-01-01T23:59:59.000Z

211

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

212

Final Environmental Impact Statement for the FutureGen Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RISK ASSESSMENT REPORT RISK ASSESSMENT REPORT REVISED OCTOBER 2007 5-2 Figure 5-1. Role of the Analog Site Database and Ancillary Databases in the Approach for Conducting the Risk Assessment FINAL RISK ASSESSMENT REPORT REVISED OCTOBER 2007 5-100 Figure 5-6. Area Within Which H 2 S Released from CO 2 Injection Wells Exceeds Chronic Toxicity Criteria (i.e., 0.0014 ppmv H 2 S) at the Tuscola (IL) Site DOE/EIS-0394 FUTUREGEN PROJECT EIS FINAL SUMMARY NOVEMBER 2007 S-10 Figure S-4. Proposed Mattoon Power Plant and Sequestration Site Figure S-5. Proposed Utility Corridors for the Mattoon Power Plant and Sequestration Site Mattoon Power Plant and Sequestration Site Coles County Shelby County Shelby County Moultrie County C a n a d i a n N a t i o n a l R a i l r o a d Lake Shelbyville Lake Paradise C a n a d i a n N a t

213

Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Projects to Diversify U.S. Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles November 19, 2012 - 2:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced 20 new projects to help states and local governments cut red tape and develop the infrastructure, training and regional planning needed to help meet the demand for alternative fuel cars and trucks, including vehicles that run on natural gas, electricity and propane. These projects build on the important steps the Obama Administration has taken to expand the transportation options available for businesses and communities and improve the fuel

214

Cheyenne Light, Fuel and Power Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Fuel and Power Company Smart Grid Project Light, Fuel and Power Company Smart Grid Project Jump to: navigation, search Project Lead Cheyenne Light, Fuel and Power Company Country United States Headquarters Location Cheyenne, Wyoming Recovery Act Funding $5,033,441.00 Total Project Value $10,066,882.00 Coverage Area Coverage Map: Cheyenne Light, Fuel and Power Company Smart Grid Project Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

215

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

Steve Bergin

2003-10-17T23:59:59.000Z

216

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Adam R. 2008. Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. Inunconventional (tar sands or shale oil) being more energy

Coughlin, Katie

2013-01-01T23:59:59.000Z

217

DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

relevance, approach, progress & tech transfer FreedomCAR & Fuel Partnership Includes automobile and energy companies Technical Teams provide input on technical milestones & system...

218

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

from Conventional Oil Production and Oil Sands. Environ.6 Forecasts of Canadian oil production published in 2006 andPetroleum Fuels The oil production chain is similar to

Coughlin, Katie

2013-01-01T23:59:59.000Z

219

Alternative Fuels Used in Transportation: Science Projects in...  

Energy Savers (EERE)

with a hydroxyl radical (OH). Methanol can be produced from natural gas, coal, residual oil, or biomass. Although vehicles can operate on pure methanol fuel (M100), methanol...

220

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt056tigilbert2011p...

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt056tigilbert2012o...

222

Fuel Cells (Project FC-041): DOE Hydrogen Program 2011 Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

approach for oxygen reduction reaction (ORR) catalysis is advantageous for both DMFC and hydrogen fuel cells. Question 1: Relevance to overall U.S. Department of Energy objectives...

223

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

function of the FFC energy intensity parameters. The FFCand c as the energy intensity of fuel production, defined asrepresenting the energy intensity and material losses at

Coughlin, Katie

2013-01-01T23:59:59.000Z

224

Blender Pump Fuel Survey: CRC Project E-95  

SciTech Connect

To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

Alleman, T. L.

2011-07-01T23:59:59.000Z

225

Present status and future prospect of Fast Ignition Realization Experiment (FIREX) Project at ILE, Osaka  

SciTech Connect

Thermonuclear ignition and subsequent burn are key physics for achieving laser fusion. In fast ignition, a highly compressed fusion fuel generated with multiple ns-laser beams is rapidly heated with a large energy, ps-laser pulse in prior to core disassembly. This scheme has a high potential to achieve ignition and burn since driver energy required for high fusion gain is predicted to be about one tenth of that needed for the central ignition scheme. In Japan, Fast Ignition Realization Experiment (FIREX) project has been started to clarify the physics of energy transport and deposition in the core plasma and to demonstrate fuel temperature of above 5 keV. After the success, FIREX-I will be followed by the second phase of the project (FIREX-II) to demonstrate ignition and burn. LFEX laser, designed to deliver a laser pulse of 10 kJ in 10 ps, are operational and the first phase of FIREX experiments has been stated. A new target is proposed to attain dense compression of fuel and improve laser-core coupling efficiency by adopting double-cone structure, a low-density inner liner, low-Z outer coating, and Br-doped fuel shell. In this paper, present status and near term prospects of the FIREX-I project will be reported together with activities on target designing, laser development, and plasma diagnostics.

Nishimura, H.; Azechi, H.; Mima, K.; Fujimoto, Y.; Fujioka, S.; Homma, H.; Jitsuno, T.; Johzaki, T.; Koga, M.; Kawanaka, J.; Kawasaki, T.; Miyanaga, N.; Murakami, H.; Murakami, M.; Nagatomo, H.; Morio, N.; Nagai, K.; Nakai, M.; Nakamura, T.; Nakazato, T. [Institute of Laser Engineering, Osaka Univ., 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2010-02-02T23:59:59.000Z

226

Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities  

SciTech Connect

This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

MITCHELL, R.M.

2000-09-28T23:59:59.000Z

227

Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project  

Energy.gov (U.S. Department of Energy (DOE))

Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

228

Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

229

Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

That Will Advance Solid Oxide Fuel Cell Research That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development July 27, 2012 - 1:00pm Addthis Washington, D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant fossil energy resources have been selected for further research by the Department of Energy (DOE). The projects, managed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL), are valued at a total of $4,391,570, with DOE contributing $3,499,250 and the remaining cost provided by the recipients. Four of the selected projects will pursue advances in cathode performance,

230

Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheets highlights fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). A total of $41.6 million in Recovery Act funding supported the deployment of over 1,000 fuel cell systems.

231

Current status and future development of coated fuel particles for high temperature gas-cooled reactors  

Science Journals Connector (OSTI)

The coated particles were first invented by Roy Huddle in Harwell 1957. Through five decades of development, the German UO2 coated particle and US LEU UCO coated particle represent the highly successful coated particle designs up to now. In this paper, current status as well as the failure mechanisms of coated particle so far is reviewed and discussed. The challenges associated with high temperatures for coated particles applied in future VHTR are evaluated. And future development prospects of advanced coated particle suited for higher temperatures are presented. According to the past coated fuel particle development experience, it is unwise to make multiple simultaneous changes in the coated particle design. Two advanced designs which are modifications of standard German UO2 coated particle (UO2? herein) and US UCO coated particle (TRIZO) are promising and feasible under the world-wide cooperations and efforts.

X.W. Zhou; C.H. Tang

2011-01-01T23:59:59.000Z

232

Blender Pump Fuel Survey: CRC Project E-95-2  

SciTech Connect

With the increasing fuel diversity in the marketplace, the Coordinating Research Council and the U.S. Department of Energy's National Renewable Energy Laboratory conducted a survey of mid-level ethanol blends (MLEBs) in the market. A total of 73 fuel samples were collected from 20 retail stations. To target Class 4 volatility, the fuel samples were collected primarily in the midwestern United States in the month of February. Samples included the gasoline (E0), Flex Fuel, and every MLEB that was offered from each of the 20 stations. Photographs of each station were taken at the time of sample collection, detailing the pump labeling and configuration. The style and labeling of the pump, hose, and dispenser nozzle are all important features to prevent misfueling events. The physical location of the MLEB product relative to the gasoline product can also be important to prevent misfueling. In general, there were many differences in the style and labeling of the blender pumps surveyed in this study. All samples were analyzed for volatility and ethanol content. For the MLEB samples collected, the fuels tended to be lower in ethanol content than their indicated amount; however, the samples were all within 10 vol% of their indicated blend level. One of the 20 Flex Fuel samples was outside of the allowable limits for ethanol content. Four of the 20 Flex Fuel samples had volatility below the minimum requirement for Class 4.

Williams, A.; Alleman, T. L.

2014-05-01T23:59:59.000Z

233

"FutureGen 2.0 Project Draft Environmental Impact Statement Summary"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SHEET SHEET Responsible Federal Agency: U.S. Department of Energy (DOE) Cooperating Agencies: None Title: Draft Environmental Impact Statement for the FutureGen 2.0 Project (DOE/EIS-0460D) Location: Morgan County, Illinois Contact: For further information about this Environmental Impact Statement, contact: For general information on the DOE process for implementing the National Environmental Policy Act,

234

"FutureGen 2.0 Project Final Environmental Impact Statement Summary"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COVER SHEET COVER SHEET Responsible Federal Agency: U.S. Department of Energy (DOE) Cooperating Agencies: None Title: Final Environmental Impact Statement for the FutureGen 2.0 Project (DOE/EIS-0460) Location: Morgan County, Illinois Contact: For further information about this Environmental Impact Statement, contact: For general information on the DOE process for implementing the National Environmental Policy Act,

235

Utility Goals for the Efficiency Resource: Impact of PUC Rulemaking Project No. 39674 on Future Programs  

E-Print Network (OSTI)

Utility Goals for the Efficiency Resource: Impact of PUC Rulemaking Project No. 39674 on Future Programs Amy Martin CATEE Conference October 10, 2012 Overview ? Frontier Associates ? EUMMOT ? Utility Program Overview and Results to Date... Pricing & Resource Planning ? Energy Efficiency & Renewable Energy Programs ? Market Research ? Regulatory Assistance ? Database Solutions ? EUMMOT Administrator Who is EUMMOT? Electric Utility Marketing Managers of Texas (EUMMOT...

Martin, A.

2012-01-01T23:59:59.000Z

236

Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014  

SciTech Connect

The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

Klingler, James J [GENCO Infrastructure Solutions, Inc.] [GENCO Infrastructure Solutions, Inc.

2014-05-06T23:59:59.000Z

237

NETL: News Release - DOE Selects 5 New Projects to Bolster Nation's Future  

NLE Websites -- All DOE Office Websites (Extended Search)

September 5, 2000 September 5, 2000 DOE Selects 5 New Projects to Bolster Nation's Future Natural Gas Supplies With "deeper and denser" likely to become the axiom for tomorrow's natural gas producers, the Department of Energy is adding five new projects to its natural gas research program. For three of the projects, the target is natural gas buried under extremely hard rock formations, trapped in gas hydrates on the ocean floor, and in remote regions of the Arctic. The other two explore ways to keep low-volume "stripper" gas wells flowing and to boost the amount of "working gas" stored in salt caverns. The projects are the latest to be selected from a broad-ranging competition conducted for the Energy Department's Office of Fossil Energy by the National Energy Technology Laboratory. The five projects have a total value approaching $7 million, $4.7 million of which will be the federal government's share.

238

BC Transit Fuel Cell Bus Project: Evaluation Results Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

energy: 47 kWh Accessories Electrical Fuel storage Eight roof mounted, Dynetek, type 3 tanks; 5,000 psi rated; 56 kg hydrogen (useful) Range 5 337-381 km (210-237 miles) Bus...

239

BC Transit Fuel Cell Bus Project Evaluation Results: Second Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

energy: 47 kWh Accessories Electrical Fuel storage Eight roof mounted, Dynetek, type 3 tanks; 5,000 psi rated; 56 kg hydrogen (useable) Range 7 337-381 km (210-237 miles) Bus...

240

Fuel cells for future transportation: The Department of Energy OTT/OUT partnership  

SciTech Connect

The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and integrated into the energy economy. This integration will enable the Program to reach its objectives of displacing 10 quads per year by 2030 in all end-use sectors, which will represent about a 10% penetration into the total US energy market.

Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies; Ohi, J. [National Renewable Energy Lab., Golden, CO (United States). Center for Transportation Technologies and Systems

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel Cell Research at DLR-Latest Results and current Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Research at DLR-Latest Results and current Projects Fuel Cell Research at DLR-Latest Results and current Projects Speaker(s): Werner Schnurnberger Date: March 27, 2008 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Galen Barbose Fuel cell R&D at the German Aerospace Center is focussing on both Membrane Fuel Cells (PEFC and DMFC) and high temperature Solid Oxide Fuel Cells (SOFC). The status of advanced DLR Manufacturing Technologies based on dry powder coating of membranes and plasma spray concepts for metal supported SOFC will be reported shortly. Fundamental research activities actually are focussed on in situ diagnostics using segmented cells and short stacks. Some latest results will be given for locally resolved current density distribution and temperature for both PEFC and SOFC. In addition,

242

NETL: News Release - SECA Fuel Cell Program Moves Two Key Projects Into  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 5, 2009 SECA Fuel Cell Program Moves Two Key Projects Into Next Phase Projects Continue Push for Low-Cost, Environmentally Friendly Coal Power Washington, DC-The U.S. Department of Energy (DOE) has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. The projects-led by FuelCell Energy, in partnership with VersaPower Systems, and Siemens Energy-have successfully demonstrated solid oxide fuel cells (SOFCs) designed for aggregation and use in coal-fueled central power generation. Further development of these low-cost, near-zero emission fuel cell systems will substantially contribute to solving the Nation's energy security, climate, and water challenges. The selections were based upon an assessment of demonstrated progress in developing high-performance, low-cost SOFC technology. FuelCell Energy is testing two ~10kilowatt SOFC stacks incorporating planar cells; each has surpassed 4,700 hours of operation to date. Similarly, Siemens is testing a ~10kilowatt SOFC stack incorporating its new higher power Delta cells, with 2,500 hours of operation to date. With the continuation, these projects will pursue cell materials and design development to further improve performance, reduce cost, and integrate the cells into larger stacks for evaluation and incorporation into larger demonstrations beginning in 2012.

243

Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights from U.S. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects specialty vehicle applications (i.e., lift trucks). This fund- ing has supported the deployment of over 1,000 fuel cell systems. These efforts are accelerating the potential of fuel cells to provide power in stationary, portable, and specialty vehicle applications; and to cut carbon emissions, create jobs, and broaden our nation's clean energy technology portfolio. Recovery Act and Market Transformation Activities DOE supported projects have spurred companies to order >3,000 fuel cell powered lift trucks with no DOE funding. Approximately 200 jobs were created or retained as a result of these Recovery Act projects.* *Includes supply chain and other indirect jobs. Recovery.gov reports that

244

Spent Nuclear Fuel (SNF) Project Acceptance Criteria for Light Water Reactor Spent Fuel Storage System [OCRWM PER REV2  

SciTech Connect

As part of the decommissioning of the 324 Building Radiochemical Engineering Cells there is a need to remove commercial Light Water Reactor (LWR) spent nuclear fuel (SNF) presently stored in these hot cells. To enable fuel removal from the hot cells, the commercial LWR SNF will be packaged and shipped to the 200 Area Interim Storage Area (ISA) in a manner that satisfies site requirements for SNF interim storage. This document identifies the criteria that the 324 Building Radiochemical Engineering Cell Clean-out Project must satisfy for acceptance of the LWR SNF by the SNF Project at the 200 Area ISA. In addition to the acceptance criteria identified herein, acceptance is contingent on adherence to applicable Project Hanford Management Contract requirements and procedures in place at the time of work execution.

JOHNSON, D.M.

2000-12-20T23:59:59.000Z

245

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network (OSTI)

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

246

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

SciTech Connect

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

247

The TMI defueling project fuel debris removal system  

SciTech Connect

The Three Mile Island (TMI) unit 2 pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems. A plethora of techniques, systems, and tools have been employed for the recovery and packaging of the postaccident configuration of the reactor core. Of particular difficulty was the removal of the fuel debris located beneath the lower core support structure. Fuel debris located beneath the lower core support structure was the result of rapid cooling of the previously molten UO{sub 2} and ZrO{sub 2}, causing formation of a ceramic like rubble. Approximately 19,100 kg of this rubble settled beneath the lower core support structure and onto the lower head of the reactor containment vessel. The development and implementation of a debris collection system based on the air lift principle proved to be an effective method for gathering the fuel debris from beneath the lower core support structure.

Burge, B. (EG and G Idaho, Inc., Idaho Falls (United States))

1992-01-01T23:59:59.000Z

248

Department of Energy Takes Another Step Forward on FutureGen Project in  

NLE Websites -- All DOE Office Websites (Extended Search)

July 14, 2009 July 14, 2009 Department of Energy Takes Another Step Forward on FutureGen Project in Mattoon, IL Record of Decision Issued for First US Commercial Scale Carbon Capture and Storage Project Washington, D.C. - The Department of Energy today issued a National Environmental Policy Act (NEPA) Record of Decision to move forward toward the first commercial scale, fully integrated, carbon capture and sequestration project in the country. The Department's decision is based on careful consideration of the proposed project's potential environmental impacts, as well as the program goals and objectives. MORE INFO Read the full Record of Decision. "The carbon capture and sequestration technologies planned for this flagship facility are vitally important to America and the world," said

249

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720� Hydrogen as a Vehicle Fuel into September 2005 � the Existing Natural Gas Vehicle � Fueling Infrastructure of the � Interstate Clean Transportation � Corridor Project � April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates � Santa Monica, California � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation

250

Development of custom fire behavior fuel models from FCCS fuelbeds for the Savannah River fuel assessment project.  

SciTech Connect

The purpose of this project is to create fire behavior fuel models that replicate the fire behavior characteristics (spread rate and fireline intensity) produced by 23 candidate FCCS fuelbeds developed for the Savannah River National Wildlife Refuge. These 23 fuelbeds were created by FERA staff in consultation with local fuel managers. The FCCS produces simulations of surface fire spread rate and flame length (and therefore fireline intensity) for each of these fuelbeds, but it does not produce maps of those fire behavior characteristics or simulate fire growththose tasks currently require the use of the FARSITE and/or FlamMap software systems. FARSITE and FlamMap do not directly use FCCS fuelbeds, but instead use standard or custom fire behavior fuel models to describe surface fuel characteristics for fire modeling. Therefore, replicating fire growth and fire behavior potential calculations using FCCS?simulated fire characteristics requires the development of custom fuel models that mimic, as closely as possible, the fire behavior characteristics produced by the FCCS for each fuelbed, over a range of fuel moisture and wind speeds.

Scott, Joe, H.

2009-07-23T23:59:59.000Z

251

SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project  

E-Print Network (OSTI)

In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

Betts, W. D.

1982-01-01T23:59:59.000Z

252

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

SciTech Connect

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30T23:59:59.000Z

253

"FutureGen 2.0 Project Final Environmental Impact Statement Volume II"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APPENDIX F APPENDIX F Cultural Surveys F1 - Phase I - Site Characterization Locale Survey F2 - Phase I - Meredosia Energy Center Survey F3 - Phase I - Bluff Area Pipeline Right-of-Way Segment Survey F4 - Phase I - Soil Gas Monitoring Locations Survey for the Final Environmental Impact Statement FutureGen 2.0 Project Meredosia, Illinois (Morgan County) Note: This appendix was updated for the Final EIS.

254

Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects  

SciTech Connect

To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

None

1981-08-07T23:59:59.000Z

255

Six Utah plants help fuel rise in geothermal projects | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States grew 20 percent since January. "These new projects will result in the infusion of roughly 15 billion in capital investment in the Western states and create 7,000...

256

Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL  

Office of Scientific and Technical Information (OSTI)

Project Report Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL Nuclear Engineering Education Research Program (grant # DE-FG07-99ID13767) Rodney C. Ewing (co-PI) Lumin Wang (co-PI) October 30,2002 For the Period of 07/01/1999 to 06/30/2002 Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 1 1. Background Excess actinides result from the dismantlement of nuclear weapons (239Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241Am, Cm and 237Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burn- up of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-

257

BC Transit Fuel Cell Bus Project: Evaluation Results Report  

SciTech Connect

This report evaluates a fuel cell electric bus demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. This evaluation report covers two years of revenue service data on the buses from April 2011 through March 2013.

Eudy, L.; Post, M.

2014-02-01T23:59:59.000Z

258

Project Information Form Project Title Accelerating Commercialization of Alternative and Renewable Fuels and  

E-Print Network (OSTI)

or organization) CEC $344,546 Total Project Cost $344,546 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Accelerating Commercialization of Alternative and Renewable and End Dates June 30, 2014 to June 30, 2016 Brief Description of Research Project Alternative

California at Davis, University of

259

Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project  

SciTech Connect

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

Steve Bergin

2005-10-14T23:59:59.000Z

260

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

SciTech Connect

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Application of the BISON Fuel Performance Code to the FUMEX-III Coordinated Research Project  

SciTech Connect

INL recently participated in FUMEX-III, an International Atomic Energy Agency sponsored fuel modeling Coordinated Research Project. A main purpose of FUMEX-III is to compare code predictions to reliable experimental data. During the same time period, the INL initiated development of a new multidimensional (2D and 3D) multiphysics nuclear fuel performance code called BISON. Interactions with international fuel modeling researchers via FUMEX-III played a significant and important role in the BISON evolution, particularly influencing the selection of material and behavioral models which are now included in the code. BISON's ability to model integral fuel rod behavior did not mature until 2011, thus the only FUMEX-III case considered was the Riso3-GE7 experiment, which includes measurements of rod outer diameter following pellet clad mechanical interaction (PCMI) resulting from a power ramp late in fuel life. BISON comparisons to the Riso3-GE7 final rod diameter measurements are quite reasonable. The INL is very interested in participation in the next Fuel Modeling Coordinated Research Project and would like to see the project initiated as soon as possible.

R. L. Williamson; S. R. Novascone

2012-04-01T23:59:59.000Z

262

Global Threat Reduction Initiative Fuel-Thermo-Physical Characterization Project Quality Assurance Plan  

SciTech Connect

The charter of the Fuel Thermo-Physical Characterization Project is to ready Pacific Northwest National Laboratory (PNNL) facilities and processes for the receipt of unirradiated and irradiated low enriched uranium (LEU) molybdenum (U-Mo) fuel element samples, and to perform analysis to support the Global Threat Reduction Initiative conversion program. PNNLs support for the program will include the establishment of post-irradiation examination processes, including thermo-physical properties, unique to the U.S. Department of Energy laboratories. These processes will ultimately support the submission of the base fuel qualification (BFQ) to the U.S. Nuclear Regulatory Commission (NRC) and revisions to High Performance Research Reactor Safety Analysis Reports to enable conversion from highly enriched uranium to LEU fuel. This quality assurance plan (QAP) provides the quality assurance requirements and processes that support the NRC BFQ. This QAP is designed to be used by project staff, and prescribes the required management control elements that are to be met and how they are implemented. Additional controls are captured in Fuel Thermo-Physical Characterization Project plans, existing procedures, and procedures to be developed that provide supplemental information on how work is conducted on the project.

Pereira, Mario M.; Slonecker, Bruce D.

2012-06-01T23:59:59.000Z

263

Spent Nuclear Fuel Project technical baseline document. Fiscal year 1995: Volume 1, Baseline description  

SciTech Connect

This document is a revision to WHC-SD-SNF-SD-002, and is issued to support the individual projects that make up the Spent Nuclear Fuel Project in the lower-tier functions, requirements, interfaces, and technical baseline items. It presents results of engineering analyses since Sept. 1994. The mission of the SNFP on the Hanford site is to provide safety, economic, environmentally sound management of Hanford SNF in a manner that stages it to final disposition. This particularly involves K Basin fuel, although other SNF is involved also.

Womack, J.C. [Westinghouse Hanford Co., Richland, WA (United States); Cramond, R. [TRW (United States); Paedon, R.J. [SAIC (United States)] [and others

1995-03-13T23:59:59.000Z

264

ONSI-FUEL CELL PROJECT ''AEB BIRSFELDEN/BASEL  

SciTech Connect

AEB Alternativ-Energie Birsfelden AG is supplying several buildings, a public indoor pool and one school with electrical and thermal energy from 5 Kaplan turbines, 2 heat-pumps and conventional boilers. The hating station is called ''Heizzentrale Kirchmatt''. The total heat demand is 3.8 MW peak and 5.5 GWh/a. The Department of Energy of Switzerland supports this project. The FC combined heat and power plant is part of this project with priority in supply of domestic heat. The ONSI PC25C was installed by AEB on a school yard in Birsfelden a district of the Swiss city Basel.

Dipl.-Ing. Irina Reese; Dipl.-Ing. Andreas Bode

2002-04-01T23:59:59.000Z

265

BC Transit Fuel Cell Bus Project Evaluation Results: Second Report  

SciTech Connect

Second report evaluating a fuel cell electric bus (FCEB) demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. NREL published its first report on the demonstration in February 2014. This report is an update to the previous report; it covers 3 full years of revenue service data on the buses from April 2011 through March 2014 and focuses on the final experiences and lessons learned.

Eudy, L.; Post, M.

2014-09-01T23:59:59.000Z

266

Final Technical Report for the Martin County Hydrogen Fuel Cell Development Project  

SciTech Connect

In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processes must be enhanced to meet the extrusion lines speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energys goal of fuel cell commercialization.

Eshraghi, Ray

2011-03-09T23:59:59.000Z

267

COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE  

SciTech Connect

Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to evaluate the three methods to project future baseline carbon emissions. Extrapolation from Landsat change detection uses the observed rate of change to estimate change in the near future. Geomod is a software program that models the geographic distribution of change using a defined rate of change. FRCA is an integrated spatial analysis of forest inventory, biodiversity, and remote sensing that produces estimates of forest biodiversity and forest carbon density, spatial data layers of future probabilities of reforestation and deforestation, and a projection of future baseline forest carbon sequestration and emissions for an ecologically-defined area of analysis. For the period 1999-2012, extrapolation from Landsat change detection estimated a loss of 5000 ha and 520,000 t carbon from closed natural forest; Geomod modeled a loss of 2500 ha and 250 000 t; FRCA projected a loss of 4700 {+-} 100 ha and 480,000 t (maximum 760,000 t, minimum 220,000 t). Concerning labor time, extrapolation for Landsat required 90 actual days or 120 days normalized to Bachelor degree level wages; Geomod required 240 actual days or 310 normalized days; FRCA required 110 actual days or 170 normalized days. Users experienced difficulties with an MS-DOS version of Geomod before turning to the Idrisi version. For organizations with limited time and financing, extrapolation from Landsat change provides a cost-effective method. Organizations with more time and financing could use FRCA, the only method where that calculates the deforestation rate as a dependent variable rather than assuming a deforestation rate as an independent variable. This research indicates that best practices for the projection of baseline carbon emissions include integration of forest inventory and remote sensing tasks from the beginning of the analysis, definition of an analysis area using ecological characteristics, use of standard and widely used geographic information systems (GIS) software applications, and the use of species-specific allometric equations and wood densities developed for local species.

Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

2005-07-14T23:59:59.000Z

268

DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia  

NLE Websites -- All DOE Office Websites (Extended Search)

Boeing Sponsored Projects in Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Lennie Klebanoff and Joe Pratt Sandia National Laboratories Livermore CA 94551 September 30, 2010 "Exceptional Service in the National Interest" DOE-DOD Workshop on Uses of Fuel Cells in Aviation * ~ 8,300 employees * ~ 1,500 PhDs; ~2800 MS/MA * ~ 700 on-site contractors Sandia National Laboratories Sandia is a government-owned/contractor operated (GOCO) facility. Sandia Corporation, a Lockheed Martin company, manages Sandia for the U.S. Department of Energy's National Nuclear Security Administration. Website: www.sandia.gov Annual Budget ~ $2.2 Billion ($1.3 Billion DOE, $0.9 Billion work for others) 3 Origin: Boeing Interested in Bringing Fuel Cell Technology to Ground Support Equipment (GSE)

269

Assessment of Drought due to Historic Climate Variability and Projected Future Climate Change in the Midwestern United States  

Science Journals Connector (OSTI)

Understanding the occurrence and variability of drought events in historic and projected future climate is essential to managing natural resources and setting policy. The Midwest region is a key contributor in corn and soybean production, and the ...

Vimal Mishra; Keith A. Cherkauer; Shraddhanand Shukla

2010-02-01T23:59:59.000Z

270

Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider  

E-Print Network (OSTI)

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

Lebrun, Philippe

2010-01-01T23:59:59.000Z

271

Status and Future Perspectives of the HIE-Isolde Project at CERN  

E-Print Network (OSTI)

The High Intensity and Energy (HIE)-ISOLDE project aims at several important upgrades of the present ISOLDE radioactive beam facility at CERN. The main focus lies in the energy upgrade of the post-accelerated radionuclide beams from 3 MeV/u up to 10 MeV/u through the addition of superconducting cavities. This will open the possibility of many new types of experiments including transfer reactions throughout the nuclear chart. The first stage of this upgrade involves the design, construction, installation and commissioning of two high-? cryomodules downstream of REX-ISOLDE, the existing post-accelerator. Each cryomodule houses five high-? superconducting cavities and one superconducting solenoid. Prototypes of the Nb-sputtered Quarter Wave Resonators (QWRs) cavities for the new superconducting linear accelerator have been manufactured and are undergoing RF cold tests. The project also includes a design study of improved production targets to accommodate to the future increase of proton intensity delivered by ...

Kadi, Y; Blumenfeld, Y; Calatroni, S; Catherall, R; Fraser, M A; Goddard, B; Parchet, D; Siesling, E; Venturini Delsolaro, W; Voulot, D; Williams, L R

2012-01-01T23:59:59.000Z

272

Modelling the impacts of projected future climate change on water resources in north-west England Hydrol. Earth Syst. Sci., 11(3), 11151126, 2007  

E-Print Network (OSTI)

Modelling the impacts of projected future climate change on water resources in north-west England of projected future climate change on water resources in north-west England H.J. Fowler1 , C.G. Kilsby1 and J (Fowler and Kilsby, 2002) and future projections from Global Climate Models (GCMs) suggest that winters

Paris-Sud XI, Université de

273

Research projects for 2014 Natural Products Chemistry / Sustainable Chemicals for the Future Prof. Chris Rayner Prof. Chris Rayner  

E-Print Network (OSTI)

of the original textiles. We are also developing a range of natural dyes as new platform chemicals, where we canResearch projects for 2014 ­ Natural Products Chemistry / Sustainable Chemicals for the Future Prof://www.chem.leeds.ac.uk/People/Rayner.html Natural Products Chemistry / Sustainable Chemicals for the Future The large majority of chemically derived

Rzepa, Henry S.

274

MANAGEMENT OF SPENT NUCLEAR FUEL IN FINLAND: POLICY, PAST AND PRESENT PRACTICES, PLANS FOR THE FUTURE  

Science Journals Connector (OSTI)

In Finland, about 1700 tU of spent nuclear fuel has arisen from the operation of the four nuclear power units which were commissioned in late ... 1980s. Initially the spent fuel management policy was based on se...

E. RUOKOLA

2006-01-01T23:59:59.000Z

275

Durability of Foam Insulation for LH2 Fuel Tanks of Future Subsonic Transports  

Science Journals Connector (OSTI)

The potential short-supply of petroleum-based fuels has led to activities by NASA to establish technical characteristics of air transportation systems that would use hydrogen-fueled aircraft. These activities ...

E. L. Sharpe; R. G. Helenbrook

1979-01-01T23:59:59.000Z

276

Carbon capture technology: future fossil fuel use and mitigating climate change  

E-Print Network (OSTI)

sources for countries heavily reliant on imported fuels4 . Why CCS is not just a synonym for `clean coal

277

Introduction to Hydrogen and Fuel Cell Technologies and Their Contribution to a Sustainable Energy Future  

Science Journals Connector (OSTI)

The first fuel cell vehicles date from the 1960s with the ... of General Motors (1966) being the first hydrogen fuel cell car on record. It was powered by a 5kW Union Carbide fuel cell, and the vehicle had a ran...

Deborah J. Jones

2013-01-01T23:59:59.000Z

278

International Atomic Energy Agency support of research reactor highly enriched uranium to low enriched uranium fuel conversion projects  

SciTech Connect

The IAEA has been involved for more than twenty years in supporting international nuclear non- proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly assisted efforts to convert research reactors from HEU to LEU fuel. HEU to LEU fuel conversion projects differ significantly depending on several factors including the design of the reactor and fuel, technical needs of the member state, local nuclear infrastructure, and available resources. To support such diverse endeavours, the IAEA tailors each project to address the relevant constraints. This paper presents the different approaches taken by the IAEA to address the diverse challenges involved in research reactor HEU to LEU fuel conversion projects. Examples of conversion related projects in different Member States are fully detailed. (author)

Bradley, E.; Adelfang, P.; Goldman, I.N. [Research Reactors Unit, Division of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)

2008-07-15T23:59:59.000Z

279

California Hydrogen Infrastructure Project - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Edward C. Heydorn Air Products and Chemicals, Inc. 7201 Hamilton Boulevard Allentown, PA 18195 Phone: (610) 481-7099 Email: heydorec@airproducts.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Jim Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: DE-FC36-05GO85026 Working Partners/Subcontractors: * University of California Irvine (UCI), Irvine, CA * National Fuel Cell Research Center (NFCRC), Irvine, CA Project Start Date: August 1, 2005 Project End Date: December 31, 2011 Fiscal Year (FY) 2012 Objectives Demonstrate a cost-effective infrastructure model in

280

U.S. DEPARTMENT OF ENERGY SOLID OXIDE FUEL CELLS PROGRAM | 2013 PROJECT PORTFOLIO  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPARTMENT OF ENERGY DEPARTMENT OF ENERGY SOLID OXIDE FUEL CELLS PROGRAM | 2013 PROJECT PORTFOLIO 2 THIS PAGE INTENTIONALLY LEFT BLANK OFFICE OF FOSSIL ENERGY SOLID OXIDE FUEL CELLS PROGRAM | 2013 PROJECT PORTFOLIO 3 Disclaimer DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not neces-

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Spent Nuclear Fuel Project document control and Records Management Program Description  

SciTech Connect

The Spent Nuclear Fuel (SNF) Project document control and records management program, as defined within this document, is based on a broad spectrum of regulatory requirements, Department of Energy (DOE) and Project Hanford and SNF Project-specific direction and guidance. The SNF Project Execution Plan, HNF-3552, requires the control of documents and management of records under the auspices of configuration control, conduct of operations, training, quality assurance, work control, records management, data management, engineering and design control, operational readiness review, and project management and turnover. Implementation of the controls, systems, and processes necessary to ensure compliance with applicable requirements is facilitated through plans, directives, and procedures within the Project Hanford Management System (PHMS) and the SNF Project internal technical and administrative procedures systems. The documents cited within this document are those which directly establish or define the SNF Project document control and records management program. There are many peripheral documents that establish requirements and provide direction pertinent to managing specific types of documents that, for the sake of brevity and clarity, are not cited within this document.

MARTIN, B.M.

2000-05-18T23:59:59.000Z

282

MA3T Model Application at ORNL Assesses the Future of Fuel Cell...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

has developed a model for simulating the market potential of fuel cell electric vehicles (FCEV) and challenges to achieving success over time, including competition with...

283

Fuels of the Future for Cars and Trucks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Final Report - Hydrogen Delivery Infrastructure Options Analysis Cost Analysis of Hydrogen Storage Systems FreedomCAR and Fuel Partnership 2009 Highlights of Technical...

284

Spent Nuclear Fuel (SNF) Storage Project Fuel Basket Handling Grapple Design Development Test Report  

SciTech Connect

Acceptance testing of the SNF Fuel Basket Lift Grapple was accomplished to verify the design adequacy. This report shows the results affirming the design. The test was successful in demonstrating the adequacy of the grapple assembly's inconel actuator shaft and engagement balls for in loads excess of design basis loads (3200 pounds), 3X design basis loads (9600 pounds), and 5X design basis loads (16,000 pounds). The test data showed that no appreciable yielding for the inconel actuator shaft and engagement balls at loads in excess of 5X Design Basis loads. The test data also showed the grapple assembly and components to be fully functional after loads in excess of 5X Design Basis were applied and maintained for over 10 minutes. Following testing, each actuator shaft (Item 7) was liquid penetrant inspected per ASME Section 111, Division 1 1989 and accepted per requirements of NF-5350. This examination was performed to insure that no cracking had occurred. The test indicated that no cracking had occurred. The examination reports are included as Appendix C to this document. From this test, it is concluded that the design configuration meets or exceeds the requirements specified in ANSI N 14 6 for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More.

CHENAULT, D.M.

2000-01-06T23:59:59.000Z

285

Status of hydrogen fuel cell electric buses worldwide  

Science Journals Connector (OSTI)

Abstract This review summarizes the background and recent status of the fuel cell electric bus (FCEB) demonstration projects in North America and Europe. Key performance metrics include accumulated miles, availability, fuel economy, fuel cost, roadcalls, and hydrogen fueling. The state-of-the-art technology used in today's fuel cell bus is highlighted. Existing hydrogen infrastructure for refueling is described. The article also presents the challenges encountered in these projects, the experiences learned, as well as current and future performance targets.

Thanh Hua; Rajesh Ahluwalia; Leslie Eudy; Gregg Singer; Boris Jermer; Nick Asselin-Miller; Silvia Wessel; Timothy Patterson; Jason Marcinkoski

2014-01-01T23:59:59.000Z

286

Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

287

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems Projected Performance and Cost Parameters  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

288

Task 27 -- Alaskan low-rank coal-water fuel demonstration project  

SciTech Connect

Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

NONE

1995-10-01T23:59:59.000Z

289

Fuel Cell Technology Status - Voltage Degradation (Presentation)  

SciTech Connect

This presentation describes an independent assessment of fuel cell durability status and discusses the project's relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; the FY12 technical accomplishments including the fourth annual publication of results; and project collaborations and future work.

Kurtz, J.; Wipke,; Sprik, S.; Saur, G.

2012-06-01T23:59:59.000Z

290

Drop In Fuels: Where the Road Leads  

Energy.gov (U.S. Department of Energy (DOE))

Reviews key fuel industry drivers, renewable fuel mandates and projected impact on hydrocarbon fuels

291

Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Not Available

1992-10-01T23:59:59.000Z

292

The economics of liquid transportation fuels from coal: Past, present and future  

SciTech Connect

This paper reviews the technologies for producing liquid transportation fuels from coal and traces their evolution. Estimates of how their economics have changed with continuing research and development are also given.

Gray, D.; Tomlinson, G.; ElSawy, A. [Mitre Corp., McLean, VA (United States)

1993-08-01T23:59:59.000Z

293

Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report  

SciTech Connect

This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation CalvinBensonBassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

Sinskey, Anthony J. [MIT] [MIT; Worden, Robert Mark [Michigan State University MSU] [Michigan State University MSU; Brigham, Christopher [MIT] [MIT; Lu, Jingnan [MIT] [MIT; Quimby, John Westlake [MIT] [MIT; Gai, Claudia [MIT] [MIT; Speth, Daan [MIT] [MIT; Elliott, Sean [Boston University] [Boston University; Fei, John Qiang [MIT] [MIT; Bernardi, Amanda [MIT] [MIT; Li, Sophia [MIT] [MIT; Grunwald, Stephan [MIT] [MIT; Grousseau, Estelle [MIT] [MIT; Maiti, Soumen [MSU] [MSU; Liu, Chole [MSU] [MSU

2013-12-16T23:59:59.000Z

294

Tropical coasts are highly vulnerable to climatic pressures, the future impacts of which are projected to propagate  

E-Print Network (OSTI)

Tropical coasts are highly vulnerable to climatic pressures, the future impacts of which are projected to propagate through the natural and human components of coastal systems. One single event (e the resilience of the whole system. Risks related to climate change are frequently examined in isolation through

Boyer, Edmond

295

Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc.  

E-Print Network (OSTI)

Nanometer Structures for Fuel Cells and Displays, etc. Qingtechnologies (solar and fuel cells, lithium batteries). Intechnologies (solar and fuel cells, lithium batteries), and

Ji, Qing

2012-01-01T23:59:59.000Z

296

General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-05-01T23:59:59.000Z

297

The Euratom Fast Collar (EFC): A Safeguards Instrument Design to Address Future Fuel Measurement Challenges  

SciTech Connect

Summary of this presentation: (1) EFC instrument design for {sup 235}U verification measurements issued to EURATOM to issue a call for commercial tender; (2) Achieved a fast (Cd mode) measurement with less than 2% relative uncertainty in the doubles neutron counting rate in 10 minutes using a standard source strength; (3) Assay time in fast mode consistent with the needs of an inspector; (4) Extended to realistic calibration range for modern fuel designs - Relatively insensitive to gadolinia content for fuel designs with up to 32 burnable poison rods and 15 wt % gadolinia concentration, which is a realistic maximum for modern PWR fuel; (5) Improved performance over the standard thermal neutron collar with greater than twice the efficiency of the original design; (6) Novel tube pattern to reduce the impact of accidental pile-up; and (7) Joint test of prototype unit - EURATOM-LANL.

Evans, Louise [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Browne, Michael C. [Los Alamos National Laboratory

2012-08-13T23:59:59.000Z

298

A practical strategy for reducing the future security risk of United States spent nuclear fuel  

SciTech Connect

Depletion calculations show that advanced oxide (AOX) fuels can be used in existing light water reactors (LWRs) to achieve and maintain virtually any desired level of US (US) reactor-grade plutonium (R-Pu) inventory. AOX fuels are composed of a neutronically inert matrix loaded with R-Pu and erbium. A 1/2 core load of 100% nonfertile, 7w% R-Pu AOX and 3.9 w% UO{sub 2} has a net total plutonium ({sup TOT}Pu) destruction rate of 310 kg/yr. The 20% residual {sup TOT}Pu in discharged AOX contains > 55% {sup 242}Pu making it unattractive for nuclear explosive use. A three-phase fuel-cycle development program sequentially loading 60 LWRs with 100% mixed oxide, 50% AOX with a nonfertile component displacing only some of the {sup 238}U, and 50% AOX, which is 100% nonfertile, could reduce the US plutonium inventory to near zero by 2050.

Chodak, P. III; Buksa, J.J. [Los Alamos National Lab., NM (United States). Nuclear Systems Design and Analysis Group

1997-06-01T23:59:59.000Z

299

Modeling the Impacts of Future Climate Change on Irrigation over China: Sensitivity to Adjusted Projections  

Science Journals Connector (OSTI)

Because of the limitations of coarse-resolution general circulation models (GCMs), delta change (DC) methods are generally used to derive scenarios of future climate as inputs into impact models. In this paper, the impact of future climate change ...

Guoyong Leng; Qiuhong Tang

2014-10-01T23:59:59.000Z

300

Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas  

E-Print Network (OSTI)

characteristics. Using projected ocean condition changes from three different Earth System Models, we simulated

Pauly, Daniel

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ICEPT Working Paper Comparison of Fuel Cell and Combustion Micro-CHP under Future Residential  

E-Print Network (OSTI)

emissions by 2050 [6]. Action to reduce greenhouse gas emissions are important considering recent reports substantial greenhouse gas emissions savings. This creates a tension between desirable demand-side energy efficiency and supply-side energy conversion efficiency, which both serve to reduce fuel consumption

302

Fuel Cells: Thermodynamic Engine to a Sustainable Energy Future Richard T. Carlin  

E-Print Network (OSTI)

sustainable, reliable electrical grids and micro-grids. Integration of fuel cell systems with renewable penetration; enhances grid and micro-grid power management; provides efficient electrical power generation from biomass; provides easily scalable micro-grid energy storage; and enables long

Levi, Anthony F. J.

303

The Fuel Cell Mobile Light Project- A DOE Market Transformation Activity  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the Fuel Cell Technologies Program webinar, Fuel Cell Mobile Lighting, held on November 13, 2012.

304

General-purpose heat source project and space nuclear safety and fuels program. Progress report  

SciTech Connect

Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

Maraman, W.J.

1980-02-01T23:59:59.000Z

305

Chapter 30 - Biofuel Economics and Policy: The Renewable Fuel Standard, the Blend Wall, and Future Uncertainties  

Science Journals Connector (OSTI)

Abstract Biofuels are currently in a state of flux. The main operative policy for biofuels in the United States is the Renewable Fuel Standard (RFS). It specifies a minimum quantity of four different types of biofuels that must be blended each year in the United States through 2022. However, the United States also faces what is called the blend wall, which is a physical limit on blending given that the United States blends at a 10% rate. The blend wall upper limit is now below the RFS lower limit for corn ethanol, and that is causing problems with the administration of the RFS. This chapter explains how the RFS functions and then examines alternatives to the current administration of the RFS. The RFS is critical for cellulosic biofuels and biodiesel, and its elimination would likely end use of those fuels. Corn ethanol, however, is now much less expensive than gasoline and would continue.

Wallace E. Tyner

2015-01-01T23:59:59.000Z

306

Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs  

E-Print Network (OSTI)

An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

Matthews, Isaac A

2010-01-01T23:59:59.000Z

307

Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report Project A.5 and A.6  

SciTech Connect

This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01.

ARD, K.E.

2000-04-19T23:59:59.000Z

308

SciTech Connect: DOE Project 18546, AOP Task 1.1, Fuel Effects...  

Office of Scientific and Technical Information (OSTI)

Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP,...

309

Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility  

NLE Websites -- All DOE Office Websites (Extended Search)

3-0501 3-0501 Unlimited Release Printed February 2013 Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Joseph W. Pratt and Aaron P. Harris Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. 2 Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the

310

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

SciTech Connect

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

none,

1992-07-01T23:59:59.000Z

311

The thermionic fuel element verification program: Technical progress and future plans  

SciTech Connect

The goal of the Thermionic Fuel Element Verification Program (TFEVP) is to demonstrate the technological readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor having an electric power output in the 0.5- to 5-MWe range and a full-power life of seven years. The TFEVP has made significant progress in developing components capable of withstanding the required neutron fluence (4[times]10[sup 22] n/cm[sup 2], E[gt]0.1 MeV) and the required burnup (5.3%). Technology developed under the TFEVP also supports the 5- to 40-kWe thermionic systems currently of interest to the Strategic Defense Initiative Organization and the United States Air Force. The fast-neutron flux in certain 5- to 40-kWe systems is up to a factor of five less than that in 0.5- to 5-MWe system. Component technology that has been developed for 0.5- to 5-MWe systems will thus be suitable for use in long-life, high-performance, 5- to 40-kWe systems. Components that are being developed by the TFEVP include insulator seals, sheath insulators, fueled emitters, cesium reservoirs, and interconnective TFE components. In addition, the TFEVP has created a preliminary 2-MWe-system design and is presently evaluating converter performance under various conditions. Prototypic TFEs are also being tested. The TFEVP has encountered and surmounted problems in developing and testing long-life TFEs. The emphasis of the US thermionic reactor development effort is shifting to the development of a 40-kWe thermionic space nuclear power supply. The TFEVP will be closed out by the end of fiscal year 1994, with the close-out optimized for yielding the maximum overall program benefit-to-cost ratio. Information gained during the close-out will be very useful to the development of the 40-kWe thermionic system.

Houts, M.G. (Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States)); Wharton, W.R. Jr. (Department of Energy, Office of Defence Energy Projects NE-52, MS B-435, Germantown, Maryland 20874 (United States)); Begg, L.L. (General Atomics, P.O. Box 85608, San Diego, California 92138-5608 (United States)); Lawrence, L.A. (Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States))

1993-01-20T23:59:59.000Z

312

Stochastic Modeling of Future Highway Maintenance Costs for Flexible Type Highway Pavement Construction Projects  

E-Print Network (OSTI)

that affect pavement performances; 2) develop a stochastic model that predicts future maintenance costs of flexible-type pavement in Texas. The study data were gathered through the Pavement Management Information System (PMIS) containing more than 190...

Kim, Yoo Hyun

2012-07-16T23:59:59.000Z

313

Alternative Fuels Data Center: Provision for Alternative Fuels Corridor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Provision for Provision for Alternative Fuels Corridor Pilot Projects to someone by E-mail Share Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Facebook Tweet about Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Twitter Bookmark Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Google Bookmark Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Delicious Rank Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Digg Find More places to share Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on AddThis.com... More in this section... Federal

314

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

315

SBIR/STTR Phase I Release 1 Award Winners Announced, Includes Four Hydrogen and Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 award winners, including four hydrogen and fuel cell projects in Arizona, Massachusetts, and South Carolina.

316

SBIR/STTR Phase II Release 1 Award Winners Announced, Includes Two Hydrogen and Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase II Release 1 award winners, including two hydrogen and fuel cell projects in Colorado and New Jersey.

317

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems … Projected Performance and Cost Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010 Title: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters Originators: Robert C. Bowman and Ned Stetson Approved by: Sunita Satyapal Date: August 10, 2010 This record summarizes the current technical assessments of hydrogen (H 2 ) storage system capacities and projected manufacturing costs for the scenario of high-volume production (i.e., 500,000 units/year) for various types of "on-board" vehicular storage systems. These analyses were performed within the Hydrogen Storage sub-program of the DOE Fuel Cell Technologies (FCT) program of the Office of Energy Efficiency and Renewable Energy. Item: It is important to note that all system capacities are "net useable capacities" able to be delivered to the

318

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet.  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOEs Advanced Vehicle Testing Activity.

319

Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of the  

E-Print Network (OSTI)

- covered foothills in the background. (Photograph by Benjamin M. Sleeter.) #12;Baseline and Projected LaPoint, Patrick Miles, Ronald Piva, Jeffery Turner, and Brad Smith of the USDA Forest Service

Fleskes, Joe

320

Background, status and future of the Transmission Electron Aberration-corrected Microscope project  

Science Journals Connector (OSTI)

...Microscope project Recent advances in aberration-correcting...DOEs) Office of Science to jointly design...great interest for aerospace and cryogenic applications...be possible to advance to a new level...heart of materials science. At this level...

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

322

Photosynthesis: Research for Food, Fuel and Future--15th International Conference on Photosynthesis768 Effects of Salt Stress on Photosystem II Efficiency and CO2 Assimilation  

E-Print Network (OSTI)

Photosynthesis: Research for Food, Fuel and Future--15th International Conference on Photosynthesis facing us. Keywords: Barley; Chlorophyll fluorescence; Photosynthesis; Photosystem II Introduction Barley on photosynthesis (see e.g., Kalaji and Nalborczyk, 1991; Strasser et al., 2000; Fricke and Peters, 2002; Kalaji

Govindjee

323

Drawing from past experience to improve the management of future underground projects  

SciTech Connect

The high-energy physics community is currently developing plans to build underground facilities as part of its continuing investigation into the fundamental nature of matter. The tunnels and caverns are being designed to house a new generation of particle accelerators and detectors. For these projects, the cost of constructing the underground facility will constitute a major portion of the told capital cost and project viability can be greatly enhanced by paying careful attention to design and construction practices. A review of recently completed underground physics facilities and related literature has been undertaken to identify some management principles that have proven successful in underground practice. Projects reviewed were constructed in the United States of America and Europe using both Design-Build and more traditional Engineer-Procure-Construct contract formats. Although the physics projects reviewed tend to place relatively strict tolerances on alignment, stability and dryness, their overall requirements are similar to those of other tunnels and it is hoped that some of the principles promoted in this paper will be of value to the owner of any underground project.

Laughton, Christopher; /Fermilab

2004-01-01T23:59:59.000Z

324

Department of Energy Takes Another Step Forward on FutureGen Project in  

NLE Websites -- All DOE Office Websites (Extended Search)

August 5, 2009 August 5, 2009 President Obama Announces $2.4 Billion in Grants to Accelerate the Manufacturing and Deployment of the Next Generation of U.S. Batteries and Electric Vehicles Recovery Act will fund 48 new advanced battery and electric drive components manufacturing and electric drive vehicle deployment projects in over 20 states Elkhart, Indiana - Further accelerating the manufacturing and deployment of electric vehicles, batteries, and components here in America, and creating tens of thousands of new jobs, President Obama today announced 48 new advanced battery and electric drive projects that will receive $2.4 billion in funding under the American Recovery and Reinvestment Act. These projects, selected through a highly competitive process by the Department of Energy, will accelerate the development of U.S. manufacturing capacity for batteries and electric drive components as well as the deployment of electric drive vehicles, helping to establish American leadership in creating the next generation of advanced vehicles.

325

Future Changes in the Western North Pacific Tropical Cyclone Activity Projected by a Multidecadal Simulation with a 16-km Global Atmospheric GCM  

Science Journals Connector (OSTI)

How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast ...

Julia V. Manganello; Kevin I. Hodges; Brandt Dirmeyer; James L. Kinter III; Benjamin A. Cash; Lawrence Marx; Thomas Jung; Deepthi Achuthavarier; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Peter Towers; Nils Wedi

2014-10-01T23:59:59.000Z

326

The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system  

SciTech Connect

In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

Mittelstadt, W.A. [USDOE Bonneville Power Administration, Portland, OR (United States); Krause, P.E.; Wilson, R.E. [USDOE Western Area Power Administration, Golden, CO (United States); Overholt, P.N. [USDOE, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

327

Dimensions of global population projections: what do we know about future population trends and structures?  

Science Journals Connector (OSTI)

...categories have become the standard) as well as by mean...International statistical review (Lutz Goldstein 2004...example, if there is a plan to build a new primary...definitions given as a standard for all the driver reviews. These projections...

2010-01-01T23:59:59.000Z

328

Vehicle Technologies Office Merit Review 2014: Central Texas Fuel Independence Project  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by City of Austin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Central Texas Fuel...

329

EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

330

DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

331

DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

332

Soil remediation demonstration project: Biodegradation of heavy fuel oils. Special report  

SciTech Connect

Treatment of oil-contaminated soils is necessary to protect water supplies, human health, and environmental quality; but because of limited funds, cleanup costs are often prohibitive. High costs are exacerbated in cold regions such as Alaska, where spills are often in areas inaccessible to heavy equipment and where there is limited infrastructure. Owing to the lack of infrastructure, widespread fuel distribution systems, and the need for heating in the cold climate, there are numerous small-scale oil spills. Low-cost treatments applicable to small-scale spills are needed. The object of this CPAR project was to examine using cost-effective, on-site bioremediation techniques for heavy-oil-contaminated soil in cold regions. Both heavy-oil and diesel-contaminated soils were used to compare landfarming, a low-intensity treatment, to pile bioventing, a costlier treatment. For each soil-contaminant combination, we compared nutrient additions to a control with no nutrient additions. Under the conditions of this study, landfarming with nutrient additions was as effective for treating diesel-contaminated soil as was bioventing with nutrient additions. For heavy oils, landfarming with nutrients resulted in lower soil concentrations after one year, but differences among treatments were not statistically significant. Because landfarming does not require pumps, electricity, or plumbing, all costs are less than for bioventing. The minimal requirements for infrastructure also make landfarming attractive in remote sites typical of cold regions.

Reynolds, C.M.; Bhunia, P.; Koenen, B.A.

1997-08-01T23:59:59.000Z

333

The DOE Wide Area Measurement System (WAMS) Project -- Demonstration of dynamic information technology for the future power system  

SciTech Connect

In 1989 the Bonneville Power Administration (BPA) and the Western Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands in an environment characterized by increased competition, a wider range of services and vendors, and much narrower operating margins. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI).

Mittelstadt, W.A. [Bonneville Power Administration (United States); Hauer, J.F. [Pacific Northwest Lab., Richland, WA (United States); Krause, P.E.; Wilson, R.E. [Western Power Administration (United States); Overholt, P.N. [USDOE (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

334

Future prospects for compression ignition fuel in California : fuel-related implications of possible pathways to mitigation of public health threats.  

SciTech Connect

This paper documents methods and results of an investigation of the options for and year 2010 consequences of possible new limitations on the use of diesel fuel in California, USA. California's Air Resources Board will undertake a risk management process to determine steps necessary to protect the health and safety of the public from carcinogenic species resident on diesel combustion exhaust particles. Environmental activist groups continue to call for the elimination of diesel fuel in California and other populous states. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Thus, two ''mid-course'' strategies now appear feasible: (1) Increased penetration of natural gas, LPG, and possibly lower alcohols into the transportation fuels market, to the extent that some Cl applications would revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on more detailed investigation of exhaust products of individual diesel fuel constituents.

Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

1999-04-08T23:59:59.000Z

335

Estimating the effect of future oil prices on petroleum engineering project investment yardsticks.  

E-Print Network (OSTI)

did not reflect the true volatility in crude oil prices. The name posted oil price was derived from a sheet that was posted in a producing field. The WTI price data were collected from Energy Information Administration (EIA) website25. EIA... projects; we correlated historical expenses data with oil price. Figs. 3.3 and 3.4 are graphs of the production and drilling costs correlations with oil price. The historical oilfield drilling and production data was taken from EIA website and the Energy...

Mendjoge, Ashish V

2004-09-30T23:59:59.000Z

336

Projection of world fossil fuel production with supply and demand interactions.  

E-Print Network (OSTI)

??Research Doctorate - Doctor of Philosophy (PhD) Historically, fossil fuels have been vital for our global energy needs. However climate change is prompting renewed interest (more)

Mohr, Steve

2010-01-01T23:59:59.000Z

337

Joint federal/state motor fuel tax compliance project. Fiscal year 1993 status report. Final report  

SciTech Connect

This report is the next in a series of reports that describe motor fuel tax enforcement activities funded under this program.

NONE

1994-02-07T23:59:59.000Z

338

ITC Role in U.S. Fuel Cell Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cell Technical Advisory Committee in February 2009. It was posted on this Web site with permission from the author. mtloganhtacpresentation.pdf More Documents &...

339

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

SciTech Connect

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

340

Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

Not Available

1994-12-01T23:59:59.000Z

342

Fuel Cell Demonstration Program  

SciTech Connect

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

343

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

344

Project Description Advanced Fuel Cycle Initiative AFC-2A and AFC-2B Experiments  

SciTech Connect

The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the AFC-1 fuel test series currently in progress in the ATR. This document discusses the experiments and the planned activities that will take place.

AFCI AFC-2A and AFC-2B Experiments Project Executi

2007-03-01T23:59:59.000Z

345

Vehicle Technologies Office Merit Review 2014: California Fleets and Workplace Alternative Fuels Project  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

346

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

347

General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-04-01T23:59:59.000Z

348

NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project  

NLE Websites -- All DOE Office Websites (Extended Search)

with Xcel Energy, NREL's wind-to-hydrogen (Wind2H2) demonstration project links wind turbines and photovoltaic (PV) arrays to electrolyzer stacks, which pass the generated...

349

Synthetic Fuel from Biomass: The AVSA Dual Fluid Bed Combustor Gasifier Project  

Science Journals Connector (OSTI)

The AVSA project covers completely the generation of synthesis gas from wood waste: feed collection, sizing, drying and transportation as well as gasifier design.

A. Bary; H. A. Masson; P. Debaud

1982-01-01T23:59:59.000Z

350

Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.  

SciTech Connect

A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

Pratt, Joseph William; Harris, Aaron P

2013-01-01T23:59:59.000Z

351

Libraries of the Future (LOFT): Executive Summary CSU LA Basin Pilot Project For Developing Cost-Effective Library Services and Resources for  

E-Print Network (OSTI)

: · Print collection analysis and management strategies · Re- Design of library facilities and space space for new library services and learning areas, and can reduce overall library expenditures. CourantPage 1 Libraries of the Future (LOFT): Executive Summary CSU LA Basin Pilot Project For Developing

Su, Xiao

352

Future Climate Engineering Solutions  

E-Print Network (OSTI)

Engineering Associations from around the world are part of the project `Future Climate - Engineering Solu- tions'. Within the project the participating associations have been developing national climate plansFuture Climate Engineering Solutions Joint report 13 engineering participating engeneering

353

Status of LMFBR development project in Japan  

SciTech Connect

Initiation of the LMFBR development project in Japan was decided by the Atomic Energy Commission of Japan in 1966. In 1967, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established to realize the project as a part of its tasks of a wide scope covering all the research and development activities concerning fuel cycle. In the present paper the status of experimental fast reactor (Joyo), which is the first milestone of the LMFBR project, prototype fast reactor (Monju) and R and D activities supporting the project including that for larger LMFBRs in the future is described.

Nagane, G.; Akebi, M.

1988-01-01T23:59:59.000Z

354

Experience from the Short Course on Introduction to Nuclear Chemistry and Fuel Cycle Separations and Future Educational Opportunities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Short Course - Short Course - Overview & Lessons Learned David Kosson, Vanderbilt & CRESP Introduction to Nuclear Chemistry and Fuel Cycle Separations December 16-18, 2008 Vanderbilt University Vanderbilt University Dept. of Civil and Environmental Engineering safety performance cleanup closure M E Environmental Management Environmental Management 1 Course Objective To provide an introduction to the chemistry and p y separations processes of importance to entire nuclear fuel cycle. Targeted Audience: * Professionals in management, oversight and regulation of nuclear processes and facilities. * Graduate students in engineering and sciences planning a career focused on nuclear processes. focused on nuclear processes. * As an introduction for professionals that will be engaged in nuclear

355

Fuel Retrieval Sub (FRS) Project Decapping Station Performance Test Data Report  

SciTech Connect

This document is to provide the test data report for Decapping Station Performance Testing. These performance tests were full scale and viewed as a continuation of development testing performed earlier (SNF-2710). A prototype decapping station confinement box was tested, along with some special tools required for the process, providing assurance that the fuel handling equipment will operate as designed, allowing for release of the FRS equipment for installation.

THIELGES, J.R.

2000-01-13T23:59:59.000Z

356

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; information...

357

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Eligible projects include powertrains and energy storageconversion devices (e.g., fuel cells and batteries), and implementation of clean fuels (e.g., natural gas, propane, and...

358

Coal for the future. Proceedings of the 33rd international technical conference on coal utilization and fuel systems  

SciTech Connect

Topics covered include oxy-fuel technology, modelling and simulations, low NOx technology, gasification technology, pre-utilization beneficiation of coal, advanced energy conversion systems, mercury emissions control, improving power plant efficiency and reducing emissions, biomass and wastes, coal to liquids, post-combustion CO{sub 2} capture, multi emission controls, advanced materials, advanced controls, and international highlights.

Sakkestad, B.A. (ed.)

2008-07-01T23:59:59.000Z

359

Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations  

SciTech Connect

The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

KLEM, M.J.

2000-05-11T23:59:59.000Z

360

Spent Nuclear Fuel (SNF) Project Multi Canister Overpack (MCO) Process Flow Diagram Mass Balance Calculations  

SciTech Connect

The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference.

KLEM, M.J.

2000-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of pyro-processing technology at CRIEPI for carving out the future of nuclear fuel cycle  

SciTech Connect

Pyro-processing has been attracting increasing attention as a promising candidate as an advanced nuclear fuel cycle technology. It provides economic advantage as well as reduction in proliferation risk and burden of long live radioactive waste, especially when it is combined with advanced fuels such as metallic or nitride fuel which gives excellent burning efficiency of minor actinides (MA). CRIEPI has been developing pyro-processing technology since late eighties with both domestic and international collaborations. In the early stage, electrochemical and thermodynamic properties in LiCl-KCl eutectic melt, and fundamental feasibility of core technology like electrorefining were chiefly investigated. Currently, stress in the process chemistry development is also placed on supporting technologies, such as treatment of anode residue and high temperature distillation for cathode product from electrorefining, and so on. Waste treatment process development, such as studies on adsorption behavior of various FP elements into zeolite and conditions for the fabrication of glass-bonded sodalite waste form, are steadily improved as well. In parallel, dedicated pyro-processing equipment such as zeolite column for treatment of spent electro-refiner salt is currently in progress. Recently, an integrated engineering-scale fuel cycle tests were performed funded by Japanese government (MEXT) as an important step before proceeding to large scale hot demonstration of pyro-processing. Oxide fuels can be readily introduced into the pyro-processing by reducing them to metals by adoption of electrochemical reduction technique. Making use of this advantage, the pyro-processing is currently under preliminary evaluation for its applicability to the treatment of the corium, mainly consisting of (U,Zr)O{sub 2}, formed in different composition during the accident of the Fukushima Daiichi nuclear power plant. (authors)

Iizuka, M.; Koyama, T.; Sakamura, Y.; Uozumi, K.; Fujihata, K.; Kato, T.; Murakami, T.; Tsukada, T. [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements (Germany)

2013-07-01T23:59:59.000Z

362

Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge '92  

SciTech Connect

The Natural Gas Vehicle Challenge '92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P.

1992-01-01T23:59:59.000Z

363

Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge `92  

SciTech Connect

The Natural Gas Vehicle Challenge `92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P.

1992-09-01T23:59:59.000Z

364

A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting  

Science Journals Connector (OSTI)

In existing researches, the investigations of oil price volatility are always performed based on daily data and squared daily return is always taken as the proxy of actual volatility. However, it is widely accepted that the popular realized volatility (RV) based on high frequency data is a more robust measure of actual volatility than squared return. Due to this motivation, we investigate dynamics of daily volatility of Shanghai fuel oil futures prices employing 5-minute high frequency data. First, using a nonparametric method, we find that RV displays strong long-range dependence and recent financial crisis can cause a lower degree of long-range dependence. Second, we model daily volatility using RV models and GARCH-class models. Our results indicate that RV models for intraday data overwhelmingly outperform GARCH-class models for daily data in forecasting fuel oil price volatility, regardless the proxy of actual volatility. Finally, we investigate the major source of such volatile prices and found that trader activity has major contribution to fierce variations of fuel oil prices.

Li Liu; Jieqiu Wan

2012-01-01T23:59:59.000Z

365

Spent fuel storage requirements 1993--2040  

SciTech Connect

Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

Not Available

1994-09-01T23:59:59.000Z

366

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

367

DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

3013 Date: September 26, 2013 3013 Date: September 26, 2013 Title: H 2 Delivery Cost Projections - 2013 Originator: E. Sutherland, A. Elgowainy and S. Dillich Approved by: R. Farmer and S. Satyapal Date: December 18, 2013 Item: Reported herein are past 2005 and 2011 estimates, current 2013 estimates, 2020 projected cost estimates and the 2015 and 2020 target costs for delivering and dispensing (untaxed) H 2 to 10%- 15% of vehicles within a city population of 1.2M from a centralized H 2 production plant located 100 km from the city gate. The 2011 volume cost estimates are based on the H2A Hydrogen Delivery Scenario Analysis Model (HDSAM) V2.3 projections and are employed as the basis for defining the cost and technical targets of delivery components in Table 3.2.4 in the 2012 Delivery

368

Projecting full build-out environmental impacts and roll-out strategies associated with viable hydrogen fueling  

E-Print Network (OSTI)

2 August 2011 Available online 15 September 2011 Keywords: Hydrogen Infrastructure Fuel cell gasoline internal combustion engine vehicles to hydrogen fuel cell electric vehicles (FCEVs) is likely include hydrogen in fuel cell pow- e

Dabdub, Donald

369

Technical Cross-Cutting Issues for the Next Generation Safeguards Initiative's Spent Fuel Nondestructive Assay Project  

SciTech Connect

Ever since there has been spent fuel (SF), researchers have made nondestructive assay (NDA) measurements of that fuel to learn about its content. In general these measurements have focused on the simplest signatures (passive photon and total neutron emission) and the analysis has often focused on diversion detection and on determining properties such as burnup (BU) and cooling time (CT). Because of shortcomings in current analysis methods, inspectorates and policy makers are interested in improving the state-of-the-art in SF NDA. For this reason the U.S. Department of Energy, through the Next Generation Safeguards Initiative (NGSI), targeted the determination of elemental Pu mass in SF as a technical goal. As part of this research effort, 14 nondestructive assay techniques were studied . This wide range of techniques was selected to allow flexibility for the various needs of the safeguards inspectorates and to prepare for the likely integration of one or more techniques having complementary features. In the course of researching this broad range of NDA techniques, several cross-cutting issues were. This paper will describe some common issues and insights. In particular we will describe the following: (1) the role of neutron absorbers with emphasis on how these absorbers vary in SF as a function of initial enrichment, BU and CT; (2) the need to partition the measured signal among different isotopic sources; and (3) the importance of the first generation concept which indicates the spatial location from which the signal originates as well as the isotopic origins.

Tobin, S. J.; Menlove, H. O.; Swinhoe, Martyn T.; Blanc, P.; Burr, T.; Evans, L. G.; Favalli, A.; Fensin, M. L.; Freeman, C. R.; Galloway, J.; Gerhart, J.; Rajasingam, A.; Rauch, E.; Sandoval, N. P.; Trellue, H.; Ulrich, T. J.; Conlin, J. L.; Croft, S.; Hendricks, John; Henzl, V.; Henzlova, D.; Eigenbrodt, J. M.; Koehler, W. E.; Lee, D. W.; Lee, T. H.; Lafleur, A. M.; Schear, M. A.; Humphrey, M. A.; Smith, Leon E.; Anderson, Kevin K.; Campbell, Luke W.; Casella, Andrew M.; Gesh, Christopher J.; Shaver, Mark W.; Misner, Alex C.; Amber, S. D.; Ludewigt, Bernhard A.; Quiter, B.; Solodov, Alexander; Charlton, W.; Stafford, A.; Romano, C.; Cheatham, J.; Ehinger, Michael; Thompson, S. J.; Chichester, David; Sterbentz, James; Hu, Jianwei; Hunt, A.; Mozin, Vladimir V.; Richard, J. G.

2012-03-01T23:59:59.000Z

370

Sandia National Laboratories: fuel cell vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell vehicle ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy...

371

Sandia National Laboratories: Automotive Fuel Cell Cooperation  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive Fuel Cell Cooperation ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy,...

372

A study of the future water requirements of the state of Texas and the projected plan to meet them as presented by the United States Study Commission - Texas  

E-Print Network (OSTI)

that my education could be continued. G. W. August, 1963 111 CONTENTS Page List of Tables List of Plates Chapter vi I. Introduction II. Water Resources I II. Water Requirements IV. The Water Development Plan 15 31 34 V. Views and Comments... University in partial fulfillment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION Sanuary, 1964 Major Subject Business Adzninistration A STUDY OF THE FUTURE WATER REQUIREMENTS. OF THE STATE OF TEXAS AND THE PROJECTED PLAN TO MEET...

Wortham, Gene Rye

1964-01-01T23:59:59.000Z

373

Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description  

SciTech Connect

This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1998-11-30T23:59:59.000Z

374

Biodiesel ASTM Update and Future Technical Needs  

Energy.gov (U.S. Department of Energy (DOE))

Latest ASTM fuel specifications on biodiesel blends are summarized as well as future needs for improved fuel quality, process quality controls, and new performance testing procedures.

375

Complex Hydrides - A New Frontier for Future Energy Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Vitalij K. Pecharsky, 1 Marek Pruski, 2 L. Scott Chumbley, 3 Duane D. Johnson, 4 Takeshi Kobayashi 5 1 FWP Leader: Ames Laboratory, 253 Spedding Hall, Ames, IA 50011, Email: vitkp@ameslab.gov, Phone: (515) 294-8220 2 PI: Ames Laboratory, 230 Spedding Hall, Ames, IA 50011, Email: mpruski@iastate.edu, Phone: (515) 294-2017 3 PI: Ames Laboratory, 214 Wilhelm Hall, Ames, IA 50011, Email: chumbley@iastate.edu, Tel.: 515-2947903; 4 PI: Ames Laboratory, 311 TASF, Ames, IA 50011, Email: ddj@ameslab.gov, Phone: (515) 2949649 5 Ames Laboratory, 229 Spedding Hall, Ames, IA 50011, Email: takeshi@iastate.edu, Phone: (515)-294-6823 DOE Program Officer: Dr. Refik Kortan

376

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

377

PNNL Advances Hydrogen-Fueled Vehicle Technologies  

Energy.gov (U.S. Department of Energy (DOE))

EERE-funded PNNL projects are improving performance and decreasing production costs of hydrogen fuel and fuel cell technologies.

378

Spent nuclear fuel project cold vacuum drying facility safety equipment list  

SciTech Connect

This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

IRWIN, J.J.

1999-02-24T23:59:59.000Z

379

Water: The Futures Fuel  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 444. UC Journal of Engineering for Gas Turbines and Power, 203. [4

Benavente, Carlos

2014-01-01T23:59:59.000Z

380

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

SciTech Connect

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Future Air Pollution in Europe from a Multi-physics Ensemble of Climate Change-Air Quality Projections  

Science Journals Connector (OSTI)

This work conducts a multi-physics ensemble of air quality projections in order to elucidate the spreads and uncertainties behind the election of the physical parameterizations in the regional climate models. ...

Pedro Jimnez-Guerrero; Sonia Jerez

2014-01-01T23:59:59.000Z

382

Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies  

E-Print Network (OSTI)

al. 2005 Impact of SciDAC on accelerator projects across the171; Spentzouris P 2006 Accelerator modeling under SciDAC:of next-generation accelerator design, analysis, and

Spentzouris, Panagiotis

2008-01-01T23:59:59.000Z

383

Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations  

Science Journals Connector (OSTI)

Abstract This study examined shifts in climate regimes over the global land area using the KppenTrewartha (KT) climate classification by analyzing observations during 19002010, and simulations during 19002100 from twenty global climate models participating in Phase 5 of the Coupled Model Inter-comparison Project (CMIP5). Under the Intergovernmental Panel on Climate Change Representative Concentration Pathways 8.5 (RCP8.5) scenario, the models projected a 310C warming in annual temperature over the global land area by the end of the twenty-first century, with strong (moderate) warming in the high (middle) latitudes of the Northern Hemisphere and weaker warming in the tropics and the Southern Hemisphere. The projected changes in precipitation vary considerably in space and present greater uncertainties among the models. Overall, the models are consistent in projecting increasing precipitation over the high-latitude of the Northern Hemisphere, and reduced precipitation in the Mediterranean, southwestern North America, northern and southern Africa and Australia. Based on the projected changes in temperature and precipitation, the KT climate types would shift toward warmer and drier climate types from the current climate distribution. Regions of temperate, tropical and dry climate types are projected to expand, while regions of polar, sub-polar and subtropical climate types are projected to contract. The magnitudes of the projected changes are stronger in the RCP8.5 scenario than the low emission scenario RCP4.5. On average, the climate types in 31.4% and 46.3% of the global land area are projected to change by the end of the twenty-first century under RCP4.5 and RCP8.5 scenarios, respectively. Further analysis suggests that changes in precipitation played a slightly more important role in causing shifts of climate type during the twentieth century. However, the projected changes in temperature play an increasingly important role and dominate shifts in climate type when the warming becomes more pronounced in the twenty-first century.

Song Feng; Qi Hu; Wei Huang; Chang-Hoi Ho; Ruopu Li; Zhenghong Tang

2014-01-01T23:59:59.000Z

384

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

385

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

386

Earth'future climate  

Science Journals Connector (OSTI)

...their visions of the future I. Astronomy and Earth sciences compiled by J. M. T. Thompson Earth'future climate Mark A. Saunders 1 1 Benfield...provide informed scientific projections for Earth's climate into the next millennium. This...

1999-01-01T23:59:59.000Z

387

Technical assessment of community solar future scenarios  

SciTech Connect

The Kent Solar Project goal is to develop energy future scenarios for the community based upon the input of a cross-section of the population. It has been primarily a non-technical development in an attempt to gain community commitment. Social/political/economic issues have been identified as the key obstacles in fulfilling the future scenarios. To communicate the feasibility of solar energy in Kent, Ohio an analysis of the economic potential for solar energy was developed. The Solar Project calls for 25 per cent reduction of present fossil fuel quantities in 1990, achievable by conservation measures, and a 50 per cent reduction in 2000, which necessitates solar technology implementation. The technical analysis is demonstrating the future scenarios to be both feasible and economically wise. The technical assessment requires an in-depth data base of existing comsumption which is not easily identifiable.

Kremers, J.A.

1980-01-01T23:59:59.000Z

388

Project 143  

NLE Websites -- All DOE Office Websites (Extended Search)

George Rizeq George Rizeq Principal Investigator GE Global Research 18A Mason Irvine, CA 92618 949-330-8973 rizeq@research.ge.com FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF HYDROGEN AND SEQUESTRATION-READY CARBON DIOXIDE Description Projections of increased demands for energy worldwide, coupled with increasing environmental concerns have given rise to the need for new and innovative technologies for coal-based energy plants. Incremental improvements in existing plants will likely fall short of meeting future capacity and environmental needs economically. Thus, the implementation of new technologies at large scale is vital. In order to prepare for this inevitable paradigm shift, it is necessary to have viable alternatives that have been proven both theoretically and experimentally

389

FutureGen_factsheet.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vision Vision for Tomorrow's Clean Energy FutureGen - A Sequestration and Hydrogen Research Initiative Responding to the President's Initiatives The Technology The Integrated Sequestration and Hydrogen Research Initiative is a $1 billion government/ industry partnership to design, build and operate a nearly emission-free, coal-fired electric and hydrogen production plant. The 275-megawatt prototype plant will serve as a large scale engineering laboratory for testing new clean power, carbon capture, and coal-to-hydrogen technologies. It will be the cleanest fossil fuel-fired power plant in the world. The project is a direct response to the President's Climate Change and Hydrogen Fuels Initiatives. President Bush emphasized the importance of technology in stabilizing greenhouse gas concentrations in the atmosphere with two major policy announcements: the National Climate

390

Development of Solid Oxide Fuel Cells Utilizing Alternative Fuels.  

E-Print Network (OSTI)

??This dissertation is a summary of four solid oxide fuel cell (SOFC) research projects which addressed a number of SOFC technologies to use alternative fuels (more)

Labarbera, Mark

2012-01-01T23:59:59.000Z

391

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

392

The Integrated Data Base program: An executive-level data base of spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) is the official US Department of Energy (DOE) data base for spent fuel and radioactive waste inventories and projections. As such, it should be as convenient to utilize as is practical. Examples of summary-level tables and figures are presented, as well as more-detailed graphics describing waste-form distribution by site and line charts illustrating historical and projected volume (or mass) changes. This information is readily accessible through the annual IDB publication. Other presentation formats are also available to the DOE community through a simple request to the IDB Program.

Klein, J.A.

1987-01-01T23:59:59.000Z

393

Projecting the range of potential future climate change as an aid in the assessment of the effectiveness of the Hanford Site Permanent Isolation Barrier  

SciTech Connect

The Hanford Site Permanent Isolation Barrier Development Program was organized to develop an in-place disposal capability for low-level nuclear waste for the US Department of Energy at the Hanford Site in south-eastern Washington. Layered earthen and engineered barriers are being developed by Westinghouse Hanford Company and the Pacific Northwest Laboratory that will function in what is presently a semiarid environment (annual precipitation 150 mm) for at least 1,000 yr by limiting the infiltration of water through the waste. The Long-Term Climate Change Task is one of several key barrier tasks. Based on the recommendation of a panel of internationally recognized climate and modeling experts, climatic data for this task is being acquired in a step-wise and multi-disciplinary manner. The specific research strategy includes literature review and specialized studies to obtain pollen-derived climatic reconstruction, documented historic weather patterns, and Global Circulation Model output of potential future climate changes related to both the greenhouse effect and the cycling into the next ice age. The specific goals of the task are to: (1) obtain defensible probabilistic projections of the long-term climate variability in the Hanford Site region at many different time scales into the future, (2) develop several test case climate scenarios that bracket the range of potential future climate, and (3) use the climate scenarios both to test and to model protective barrier performance.

Petersen, K.L.

1993-10-01T23:59:59.000Z

394

Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes  

SciTech Connect

We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

2013-08-20T23:59:59.000Z

395

SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

396

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

Energy.gov (U.S. Department of Energy (DOE))

To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

397

Nuclear carrier business volume projections, 1980-2000  

SciTech Connect

The expected number of shipments of commodities in the nuclear fuel cycle are projected for the years 1980 thru 2000. Projections are made for: yellowcake (U/sub 3/O/sub 8/); natural, enriched and reprocessed uranium hexafluoride (UF/sub 6/); uranium dioxide powder (UO/sub 2/); plutonium dioxide powder (PuO/sub 2/); fresh UO/sub 2/ and mixed oxide (MOX) fuel; spent UO/sub 2/ fuel; low-level waste (LLW); transuranic (TRU) waste; high-activity TRU waste; high-level waste (HLW), and cladding hulls. Projections are also made for non-fuel cycle commodities such as defense TRU wastes and institutional wastes, since they also are shipped by the commercial transportation industry. Projections of waste shipments from LWRs are based on the continuation of current volume reduction and solidification techniques now used by the utility industry. Projections are also made based on a 5% per year reduction in LWR waste volume shipped which is assumed to occur as a result of increased implementation of currently available volume reduction systems. This assumption results in a net 64% decrease in the total waste shipped by the year 2000. LWR waste shipment projections, and essentially all other projections for fuel cycle commodities covered in this report, are normalized to BWR and PWR generating capacity projections set forth by the Department of Energy (DOE) in their low-growth projection of April, 1979. Therefore these commodity shipment projections may be altered to comply with future changes in generating capacity projections. Projected shipments of waste from the reprocessing of spent UO/sub 2/ fuel are based on waste generation rates proposed by Nuclear Fuels Services, Allied-General Nuclear Services, Exxon Nuclear, and the DOE. Reprocessing is assumed to begin again in 1990, with mixed oxide fresh fuel available for shipment by 1991.

Lebo, R.G.; McKeown, M.S.; Rhyne, W.R.

1980-05-01T23:59:59.000Z

398

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

399

The ASTRI Project: prototype status and future plans for a Cherenkov dual-mirror small-telescope array  

E-Print Network (OSTI)

ASTRI ("Astrofisica con Specchi a Tecnologia Replicante Italiana") is a flagship project of the Italian Ministry of Education, University and Research. Within this framework, INAF is currently developing a wide field of view (9.6 degrees in diameter) end-to-end prototype of the CTA small-size telescope (SST), devoted to the investigation of the energy range from a fraction of TeV up to tens of TeVs, and scheduled to start data acquisition in 2014. For the first time, a dual-mirror Schwarzschild-Couder optical design will be adopted on a Cherenkov telescope, in order to obtain a compact optical configuration. A second challenging, but innovative technical solution consists of a modular focal surface camera based on Silicon photo-multipliers with a logical pixel size of 6.2mm x 6.2mm. Here we describe the current status of the project, the expected performance, and its possible evolution in terms of an SST mini-array. This CTA-SST precursor, composed of a few SSTs and developed in collaboration with CTA interna...

Vercellone, S; Maccarone, M C; Di Pierro, F; Vallania, P; Bonnoli, G; Canestrari, R; Pareschi, G; Tosti, G

2013-01-01T23:59:59.000Z

400

The ASTRI project: Prototype status and future plans for a Cherenkov dual-mirror small-telescope array  

Science Journals Connector (OSTI)

ASTRI ("Astrofisica con Specchi a Tecnologia Replicante Italiana") is a flagship project of the Italian Ministry of Education University and Research. Within this framework INAF is currently developing a wide field of view (9.6 in diameter) end-to-end prototype of the CTA smallsize telescope (SST) devoted to the investigation of the energy range from a fraction of TeV up to (possibly) hundreds of TeV and scheduled to start data acquisition in 2014. For the first time a dualmirror Schwarzschild-Couder optical design will be adopted on a Cherenkov telescope in order to obtain a compact (F? = 0.5) optical configuration. A second challenging but innovative technical solution consists of a focal plane camera based on Silicon photo-multipliers with a logical pixel size of 0.17 (6.2mm 6.2mm). We will describe the current status of the project the results obtained so far the expected performance and its possible evolution in terms of a SST mini-array (composed of 5-7 SSTs and developed in collaboration with CTA international partners) which could peruse not only the adopted technological solutions but also address a few scientific test cases.

S. Vercellone; ASTRI Collaboration

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: Vehicles and Fuels Research - Fuels Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. Facilities NREL conducts...

402

NREL: Vehicles and Fuels Research - Fuels Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

403

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

NONE

1995-06-30T23:59:59.000Z

404

Automotive Fuels - The Challenge for Sustainable Mobility | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Automotive Fuels - The Challenge for Sustainable Mobility Automotive Fuels - The Challenge for Sustainable Mobility Overview of challenges and future fuel options...

405

International Stationary Fuel Cell Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

STATIONARY FUEL CELL DEMONSTRATION STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to differ materially from those projected. The forward-looking statements speak only as of the date of this presentation. The company expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in the company's expectations or any change in

406

Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

2011-11-14T23:59:59.000Z

407

Microbial fuels for the future  

Science Journals Connector (OSTI)

... made from cellulose by fermentation. According to Ann Wilkie, most biomass sources can produce biomethane after limited preparation, such as drying or shredding. Certain microbes can convert acetic acid ...

Bruce Logan

2008-08-20T23:59:59.000Z

408

Vegetable oil fuel  

SciTech Connect

In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

Bartholomew, D.

1981-04-01T23:59:59.000Z

409

The design, results and future development of the National Energy Strategy Environmental Analysis Model (NESEAM)  

SciTech Connect

The National Energy Strategy Environmental Model (NESEAM) has been developed to project emissions for the National Energy Strategy (NES). Two scenarios were evaluated for the NES, a Current Policy Base Case and a NES Action Case. The results from the NES Actions Case project much lower emissions than the Current Policy Base Case. Future enhancements to NESEAM will focus on fuel cycle analysis, including future technologies and additional pollutants to model. NESEAM's flexibility will allow it to model other future legislative issues. 7 refs., 4 figs., 2 tabs.

Fisher, R.E.; Boyd, G.A. (Argonne National Lab., IL (United States)); Breed, W.S. (USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Analysis)

1991-01-01T23:59:59.000Z

410

IMGA [Irradiated Microsphere Gamma Analyzer] examination of the Set No. 4 fuel under project work statement FD-20  

SciTech Connect

Results of an examination of over 10,800 unbonded fuel particles from three irradiated spherical fuel elements by the Irradiated Microsphere Gamma Analyzer system are reported. The investigation was initiated to assess fission product behavior in LEU UO{sub 2} TRISO-coated fuel particles at elevated temperatures. Of the three spheres considered, one was reserved as a control and the other two were subjected to simulated accident-condition temperatures of 1600{degree}C and 1800{degree}C, respectively. For the control sphere and the sphere tested at 1600{degree}C, no statistical evidence of fission product release (cesium) from individual particles was observed. At fuel temperatures of 1800{degree}C, however, fission product release (cesium) from individual particles was significant and there was large particles-to-particle variation. At 1800{degree}C, individual particle release (cesium) was on average ten times the Kernforschungsanlage-measured integral spherical fuel element release value. Particle release data from the sphere tested at 1800{degree}C indicate that there may be two distinct modes of failure at fuel temperatures of 1800{degree}C and above. 5 refs., 9 figs., 9 tabs.

Baldwin, C.A.; Kania, M.J.

1990-03-01T23:59:59.000Z

411

Increasing Distillate Production at U.S. Refineries … Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

412

Advanced Fuel Cycles Activities in IAEA  

SciTech Connect

Considerable scientific and technical progress in many areas of Partitioning and Transmutation (P and T) has been recognized as probable answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. These recent global developments such as Russian initiative on Global Nuclear Infrastructure-International Fuel Centre and the US initiative on Global Nuclear Energy Partnership (GNEP) have made advanced fuel cycles as one of the decisive influencing factor for the future growth of nuclear energy. International Atomic Energy Agency has initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) with overall objective of bringing together technology holders and technology users to consider jointly the international and national actions required achieving desired innovations in nuclear reactors and fuel cycles. One of the interesting common features of these initiatives (INPRO, GNEP and GNI-IFC) is closed fast reactor fuel cycles and proliferation resistance. Any fuel cycle that integrate P and T into it is also known as 'Advanced Fuel Cycle' (AFC) that could achieve reduction of plutonium and Minor Actinide (MA) elements (namely Am, Np, Cm, etc.). In this regard, some Member States are also evaluating alternative concepts involving the use of thorium fuel cycle, inert-matrix fuel or coated particle fuel. Development of 'fast reactors with closed fuel cycles' would be the most essential step for implementation of P and T. The scale of realization of any AFC depends on the maturity of the development of all these elemental technologies such as recycling MA, Pu as well as reprocessed uranium. In accordance with the objectives of the Agency, the programme B entitled 'Nuclear Fuel cycle technologies and materials' initiated several activities aiming to strengthen the capabilities of interested Member States for policy making, strategic planning, technology development and implementation of safe, reliable, economically efficient, proliferation resistant, environmentally sound and secure nuclear fuel cycle programmes. The paper describes some on-going IAEA activities in the area of: MA-fuel and target, thorium fuel cycle, coated particle fuel, MA-property database, inert matrix fuels, liquid metal cooled fast reactor fuels and fuel cycles, management of reprocessed uranium and proliferation resistance in fuel cycle. (authors)

Nawada, H.P.; Ganguly, C. [Nuclear Fuel Cycle and Materials Section, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna (Austria)

2007-07-01T23:59:59.000Z

413

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

414

Sandia National Laboratories: fuel cell membrane  

NLE Websites -- All DOE Office Websites (Extended Search)

membrane ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy Efficiency,...

415

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

here. The interest in hydrogen and fuel cell technologies atof new and improved hydrogen and fuel cell technologies.policy drivers for hydrogen and fuel cells include the

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

416

future science group 5ISSN 1759-726910.4155/BFS.12.76 2013 Future Science Ltd Special FocuS: advanced FeedStockS For advanced bioFuelS  

E-Print Network (OSTI)

S: advanced FeedStockS For advanced bioFuelS An overview of lignocellulosic biomass feedstock harvest per truck, to transport 3 million tons of biomass feedstock from harvest sites to bioconversion plant

417

Materials towards carbon-free, emission-free and oil-free mobility: hydrogen fuel-cell vehiclesnow and in the future  

Science Journals Connector (OSTI)

...of private cars becomes the...generated by the fuel cell, with the...stored in the hydrogen tank. Although...For the hydrogen-storage-material...mobility and car. Figure 3...vehicle; FCHV, fuel-cell hybrid vehicle...Figure 6. Hydrogen vision. HV...

2010-01-01T23:59:59.000Z

418

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

as a fuel in solid oxide fuel cells, J. Power Sources 118:in Electricity in Solid Oxide Fuel Cells, Proceedings ofthe 6th European Solid Oxide Fuel Cell Forum, Lucerne,

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

419

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

improve fuel efficiency. Eligible projects include installation of idle reduction or aerodynamic technology and diesel vehicle replacement. Funding is not available for this...

420

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jobs Program offers state tax incentives to business projects for the production of biomass or alternative fuels. Incentives may include an investment tax credit equal to a...

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microfluidic fuel cells.  

E-Print Network (OSTI)

??Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the (more)

Kjeang, Erik

2007-01-01T23:59:59.000Z

422

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Development and Deployment Grants The Pennsylvania Energy Development Authority (PEDA) provides grants of up to 1,000,000 for alternative energy projects and...

423

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants The New Mexico Energy, Minerals, and Natural Resources Department administers the Clean Energy Grants Program, which provides grants for projects...

424

Use of RDF as a kiln fuel. Final report  

SciTech Connect

Refuse derived fuel (RDF) has been experimented with and/or proposed for use in kilns for the production of portland cement, lime, and expanded shale (a form of lightweight aggregate). Technological issues affecting the use of RDF in kilns are reviewed as are the results of trials in which RDF has been used as a kiln fuel. Three future research/demonstration projects for addressing the major unresolved issues are discussed. These projects are: a lime plant trial; a trial in a pre-calcining furnace; and an extended trial in a cement kiln.

None

1980-10-01T23:59:59.000Z

425

Multi-Material Lightweight Vehicle Hurdles Into the Future  

Energy.gov (U.S. Department of Energy (DOE))

While crashing a car isn't usually considered a good thing, running through a crash test was a major milestone for Ford and Magna's Multimaterial Lightweight Vehicle. This unique concept car, supported by a project funded by the Energy Department's Vehicle Technologies Office, is 25 percent lighter than the 2013 Ford Fusion, a similar midsized sedan. As reducing a vehicle's weight by 10 percent can increase its fuel economy by 6 to 8 percent, the lightweight materials in this vehicle have the potential to save consumers fuel and money in the future.

426

Fuel Cell Kickoff Meeting Agenda | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Kickoff Meeting Agenda Fuel Cell Kickoff Meeting Agenda This agenda provides information about the fuel cell projects meeting in February 2007. newfcagenda0207.pdf...

427

Integrated gasification fuel cell (IGFC) demonstration test  

SciTech Connect

As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

2000-07-01T23:59:59.000Z

428

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

429

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

430

Concept for Management of the Future Electricity System (Smart...  

Open Energy Info (EERE)

Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System Country Denmark...

431

Societal lifecycle costs of cars with alternative fuels/engines  

Science Journals Connector (OSTI)

Effectively addressing concerns about air pollution (especially health impacts of small-particle air pollution), climate change, and oil supply insecurity will probably require radical changes in automotive engine/fuel technologies in directions that offer both the potential for achieving near-zero emissions of air pollutants and greenhouse gases and a diversification of the transport fuel system away from its present exclusive dependence on petroleum. The basis for comparing alternative automotive engine/fuel options in evolving toward these goals in the present analysis is the societal lifecycle cost of transportation, including the vehicle first cost (assuming large-scale mass production), fuel costs (assuming a fully developed fuel infrastructure), externality costs for oil supply security, and damage costs for emissions of air pollutants and greenhouse gases calculated over the full fuel cycle. Several engine/fuel options are consideredincluding current gasoline internal combustion engines and a variety of advanced lightweight vehicles: internal combustion engine vehicles fueled with gasoline or hydrogen; internal combustion engine/hybrid electric vehicles fueled with gasoline, compressed natural gas, Diesel, FischerTropsch liquids or hydrogen; and fuel cell vehicles fueled with gasoline, methanol or hydrogen (from natural gas, coal or wind power). To account for large uncertainties inherent in the analysis (for example in environmental damage costs, in oil supply security costs and in projected mass-produced costs of future vehicles), lifecycle costs are estimated for a range of possible future conditions. Under base-case conditions, several advanced options have roughly comparable lifecycle costs that are lower than for today's conventional gasoline internal combustion engine cars, when environmental and oil supply insecurity externalities are countedincluding advanced gasoline internal combustion engine cars, internal combustion engine/hybrid electric cars fueled with gasoline, Diesel, FischerTropsch liquids or compressed natural gas, and hydrogen fuel cell cars. The hydrogen fuel cell car stands out as having the lowest externality costs of any option and, when mass produced and with high valuations of externalities, the least projected lifecycle cost. Particular attention is given to strategies that would enhance the prospects that the hydrogen fuel cell car would eventually become the Car of the Future, while pursuing innovations relating to options based on internal combustion engines that would both assist a transition to hydrogen fuel cell cars and provide significant reductions of externality costs in the near term.

Joan M Ogden; Robert H Williams; Eric D Larson

2004-01-01T23:59:59.000Z

432

Fuel Cell Demonstration Program - Central and Remote Sites 2003  

SciTech Connect

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies, the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 25 Lorax 4.5 units operated under this Award from April 2003 to December 2004. In parallel with the operation of the Farm, LIPA recruited government, commercial, and residential customers to demonstrate fuel cells as on-site distributed generation. The deployment of the 20 Lorax 4.5 units for the Remote Sites phase of the project began in October 2004. To date, 10 fuel cells have completed their demonstrations while 10 fuel cells are currently being monitored at various customer sites throughout Long Island. As of June 30, 2006 the 45 fuel cells operating under this Award produced a total of 1,585,093 kWh. As fuel cell technology became more mature, performance improvements included increases in system efficiency and availability. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

433

Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections  

Science Journals Connector (OSTI)

Abstract Rice is one of most important crops in China, accounting for approximately 18% of total cultivated area. Rice productivity is significantly affected by undergoing climate change and vulnerable with water stress. Therefore, investigating the responses of rice growth and water resources utilization to more pronounced climate change is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and ensuring the food security. In this study, the changes of rice yield, water consumption (ET), irrigation water requirement (IWR), water use efficiency (WUE) and irrigation water use efficiency (IWUE) from 1961 to 2010 in three typical sites (Kunshan and Nanjing in the Yangtze River Basin, and Kaifeng in the Yellow River Basin) in rice plantation region of China were evaluated by means of validated rice crop model ORYZA2000. Their responses to future climate scenarios of 21 century were investigated by driving ORYZA2000 with downscaling climatic data from HadCM3 (Hadley Centre Coupled Model version 3) under A2 and B2 emission scenarios with the help of a statistical downscaling method (SDSM). The results exhibit a significant decline in rice yield was identified by 49.3kgha?1, 32.0kgha?1 and 45.8kgha?1 for Kunshan station, Nanjing station and Kaifeng station, respectively, in the past 50 years due to obviously shortened rice growth duration (0.20daya?1, 0.15daya?1 and 0.27daya?1, respectively). While changes of ET and IWE were different for three stations representing by significant increase of ET and IWE in Kunshan, non-significant increase in Nanjing and significant decrease in Kaifeng. Whereas accompanying production reduction, simulated WUE and IWUE for three stations all presented significant deceasing trends ranging from 0.06kgha?1mm?1 to 0.16kgha?1mm?1. The future projection results under IPCC SRES A2 and B2 emission scenarios indicated the generally negative effect of climate warming to rice yield (maximum by ?18.9% decline in 2090s in Kunshan) during the 21 century due to remarkable shortened growth period, resulting in generally depressed WUE and IWUE, although there would be the distinct response of the ET and IWR to future climate change for the three stations. Meanwhile, the increase of CO2 concentration under future climate is beneficial to raise the rice yield, alleviate crop water consumption and irrigation water requirements and improve the water use efficiencies of rice in a certain degree. Further works should be carried out to capture simulation uncertainties in climate change impact assessment with consideration of interactions among anthropogenic activities, environmental and biological factors.

Weiguang Wang; Zhongbo Yu; Wei Zhang; Quanxi Shao; Yiwei Zhang; Yufeng Luo; Xiyun Jiao; Junzeng Xu

2014-01-01T23:59:59.000Z

434

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

435

2012 CERTS R&M Peer Review - Summary: Mapping Energy Futures - Bill Schulze  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mapping Energy Futures: The SuperOPF Planning Tool Mapping Energy Futures: The SuperOPF Planning Tool Project Lead: Bill Schulze Co-investigators: Dick Schuler, Ray Zimmerman, Dan Shawhan 1. Project objective: Given that the electric power system is central to the US energy future, the project objective is to develop an open source planning tool that can demonstrate the impact of various policies and regulations on electricity prices, emissions, fuel use, renewable energy use, etc. This tool currently optimizes investment in generation and uses a model of the US electricity network that includes all high voltage lines. 2. Major technical accomplishments that have been completed this year: The model has been successfully run for both the Eastern Interconnection and ERCOT to examine the impact of high and low future natural gas prices and with and without

436

Durable, Low Cost, Improved Fuel Cell Membranes  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, which focuses on fuel cell membranes, was given by Michel Foure of Arkema at a meeting on new fuel cell projects in February 2007.

437

AltAir Fuels | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: AltAir Fuels Place: Seattle, Washington Sector: Renewable Energy Product: Seattle-based developer of projects for the production of jet fuel from...

438

Sandia National Laboratories: Widespread Hydrogen Fueling Infrastructu...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECResearch & CapabilitiesCapabilitiesWidespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Widespread Hydrogen Fueling Infrastructure Is the Goal of...

439

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

SciTech Connect

Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

Gladstein, Neandross and Associates

2005-09-01T23:59:59.000Z

440

Alternative Fuels Data Center: About the Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

About About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center: About the Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center: About the Alternative Fuels Data Center on AddThis.com... More in this section... Project Assistance News & Features

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Materials Modeling and Simulation for Nuclear Fuels (MMSNF) Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerial photo of Argonne National Laboratory Argonne National Laboratory University of Chicago Chicago Photography courtesy Thomas F Ewing Privacy and Security Notice The MMSNF Workshops The goal of the Materials Modeling and Simulation for Nuclear Fuels (MMSNF) workshops is to stimulate research and discussions on modeling and simulations of nuclear fuels, to assist the design of improved fuels and the evaluation of fuel performance. In addition to research focused on existing or improved types of LWR reactors, recent modeling programs, networks, and links have been created to develop innovative nuclear fuels and materials for future generations of nuclear reactors. Examples can be found in Europe (e.g. F-BRIDGE project and ACTINET network and SAMANTHA cooperative network), in the USA (e.g. CASL, NEAMS, CESAR and CMSN network

442

Saft Factory of the Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future Principal Investigator - Peter Denoncourt Presentors - Karen Conner Saft America Inc. June 11, 2011 Project ID: ARRAVT007 This presentation does not contain any proprietary,...

443

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop: Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 11, 2009 John Garbak, Todd Ramsden Keith Wipke, Sam Sprik, Jennifer Kurtz Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National Renewable Energy Laboratory 2 Innovation for Our Energy Future Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets * Objectives - Validate H 2 FC Vehicles and Infrastructure in Parallel - Identify Current Status and Evolution of the Technology - Objectively Assess Progress Toward Technology Readiness - Provide Feedback to H 2 Research and Development Photo: NREL Solar Electrolysis Station, Sacramento, CA Performance Measure

444

Human capital needs - teaching, training and coordination for nuclear fuel cycle  

SciTech Connect

Human capital is the accumulation of competencies, knowledge, social and creativity skills and personality attributes, which are necessary to perform work so as to produce economic value. In the frame of the nuclear fuel cycle, this is of paramount importance that the right human capital exists and in Europe this is fostered by a series of integrated or directed projects. The teaching, training and coordination will be discussed in the frame of University curricula with examples from several programs, like e.g. the Master of Nuclear Engineering at Chalmers University, Sweden and two FP7 EURATOM Projects: CINCH - a project for cooperation in nuclear chemistry - and ASGARD - a research project on advanced or novel nuclear fuels and their reprocessing issues for generation IV reactors. The integration of the university curricula in the market needs but also the anchoring in the research and future fuel cycles will be also discussed, with examples from the ASGARD project. (authors)

Retegan, T.; Ekberg, C. [Department of Chemistry and Biological Engineering, Nuclear Chemistry, Chalmers University of Technology, Kemivaegen 4, 41296 Gothenburg (Sweden); John, J. [Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Prague 1 (Czech Republic); Nordlund, A. [Nuclear Engineering, Chalmers University of Technology, Kemivaegen 4, 41296 Gothenburg (Sweden)

2013-07-01T23:59:59.000Z

445

EV Community Readiness projects: Clean Energy Coalition (MI)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Coalition (MI); Clean Fuels Ohio EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

446

advanced-fuels-synthesis-index | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations The Advanced Fuels Synthesis Key Technology is focused on...

447

Application of the office of civilian radioactive waste management QA requirements to the hanford spent nuclear fuel project  

SciTech Connect

This document identifies, at a high-level, the Hanford SNF Project systems, structures, and components and activities that must implement to some degree the OCRWM QARD requirements to ensure compliance with RL direction. This document will also be used to support development of a QARD requirements matrix for the implementation of QARD requirements.

MCCORMACK, R.L.

1999-05-12T23:59:59.000Z

448

Growing America's Energy Future | Department of Energy  

Office of Environmental Management (EM)

and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future,...

449

U.S. Department of Energy Fuel Cell Activities: Progress and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions:...

450

Laser Inertial Fusion-based Energy (LIFE) - Developing Manufacturing Technology for low cost and high volume fusion fuel is critical to our future energy needs  

Science Journals Connector (OSTI)

At the heart of the LIFE power plant is a fuel capsule containing a tiny amount of solid deuterium-tritium (DT) which is compressed to high density by lasers, and then a short-pulse laser beam delivers energy to ...

K. Carlisle; R. R. Miles

2010-01-01T23:59:59.000Z

451

Drops, Slugs, and FloodingDrops, Slugs, and Flooding in PEM Fuel Cellsin PEM Fuel Cells  

E-Print Network (OSTI)

Drops, Slugs, and FloodingDrops, Slugs, and Flooding in PEM Fuel Cellsin PEM Fuel Cells A Study Fuel CellBackground: PEM Fuel Cell Graphic by Marc Marshall, Schatz Energy Research Center http ProjectDrag Project SetupSetup MFC (H2, N2 Inputs) Bubbler Current Humidity Sensor Modified PEM Fuel Cell

Petta, Jason

452

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania Incentives and Laws Pennsylvania Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Project Grants Archived: 11/30/2013 Pennsylvania Energy Harvest Grant seeks to deploy cleaner energy sources by providing funding for alternative energy projects, including those involving clean, alternative fuels for transportation. Projects must address both energy and environmental concerns; projects that are primarily education, outreach, feasibility, assessment, planning, or research and development are not eligible. Eligible applicants include an incorporated 501(c)(3) non-profit organizations that is also registered with the

453

The Environmental Protection Agency's Safety Standards for Disposal of Spent Nuclear Fuel: Potential Path Forward in Response to the Report of the Blue Ribbon Commission on America's Nuclear Future - 13388  

SciTech Connect

Following the decision to withdraw the Yucca Mountain license application, the Department of Energy created a Blue Ribbon Commission (BRC) on America's Nuclear Future, tasked with recommending a national strategy to manage the back end of the nuclear fuel cycle. The BRC issued its final report in January 2012, with recommendations covering transportation, storage and disposal of spent nuclear fuel (SNF); potential reprocessing; and supporting institutional measures. The BRC recommendations on disposal of SNF and high-level waste (HLW) are relevant to the U.S. Environmental Protection Agency (EPA), which shares regulatory responsibility with the Nuclear Regulatory Commission (NRC): EPA issues 'generally applicable' performance standards for disposal repositories, which are then implemented in licensing. For disposal, the BRC endorses developing one or more geological repositories, with siting based on an approach that is adaptive, staged and consent-based. The BRC recommends that EPA and NRC work cooperatively to issue generic disposal standards-applying equally to all sites-early in any siting process. EPA previously issued generic disposal standards that apply to all sites other than Yucca Mountain. However, the BRC concluded that the existing regulations should be revisited and revised. The BRC proposes a number of general principles to guide the development of future regulations. EPA continues to review the BRC report and to assess the implications for Agency action, including potential regulatory issues and considerations if EPA develops new or revised generic disposal standards. This review also involves preparatory activities to define potential process and public engagement approaches. (authors)

Forinash, Betsy; Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Radiation Protection Division (United States)] [U.S. Environmental Protection Agency, Radiation Protection Division (United States)

2013-07-01T23:59:59.000Z

454

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

455

Portable Power Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Portable Power, Auxiliary Power Units, and R&D for Off-Road Fuel Cell Applications Research Projects Awarded April 2004

456

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network (OSTI)

Emissions Comparisons from Alternative Fuel Buses and DieselEmissions Comparisons from Alternative Fuel Buses and Dieselof Biodiesel as an Alternative Fuel for Current and Future

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

457

Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs  

SciTech Connect

The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

Jean Ragusa; Karen Vierow

2011-09-01T23:59:59.000Z

458

This document was prepared as part of the Alternative Fuel Implementation Team project, sponsored by the U.S. Department of Energy's Clean Cities program. The U.S. Government nor any agency thereof, assumes any legal liability or responsibility for the us  

E-Print Network (OSTI)

.S. Department of Energy's Alternative Fuel Data Center (AFDC). Clean Cities coordinators in each of the profiledThis document was prepared as part of the Alternative Fuel Implementation Team project, sponsored of Alternative Fuel and Advanced Vehicle Technology Incentives, Policies, & Programs in Georgia, Kentucky, North

459

Current and future industrial energy service characterizations  

SciTech Connect

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

460

The World Energy Projection System April 2001  

Gasoline and Diesel Fuel Update (EIA)

The World Energy Projection System April 2001 The World Energy Projection System April 2001 Gasoline and Diesel Fuel Updates April 20, 2001 (Next Release: April, 2002) Related Links To Forecasting Home Page EIA Homepage Printer Friendly Version Continuing with this release, annual updates to the model will be available. Check this space for scheduled future releases. Note: If you are familiar with the model and just wish to download the latest version, click HERE. The World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures,

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effects of Fuel and Air Impurities on PEM Fuel Cell Performance  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, which focuses on PEM fuel cell performance, was given by Fernando Garzon of LANL at a February 2007 meeting on new fuel cell projects.

462

Advanced Fuels Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

463

Low Cost PEM Fuel Cell Metal Bipolar Plates  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

464

Engineered Nano-scale Ceramic Supports for PEM Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

465

The Effect of Airborne Contaminants on Fuel Cell Performance & Durability  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

466

Wire Wrapped Hexagonal Pin Arrays for Hydride Fueled PWRs  

E-Print Network (OSTI)

This work contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT

Diller, Peter

467

2004 Office of Fossil Energy Fuel Cell Program Annual Report  

SciTech Connect

Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

NETL

2004-11-01T23:59:59.000Z

468

Fuel-Cell Fundamentals at Low and Subzero Temperatures  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

469

Novel Materials for High Efficiency Direct Methanol Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

470

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

471

Durable Catalysts for Fuel Cell Protection during Transient Conditions  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

472

Nuclear Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

473

Large-scale Demonstration and Deployment Project for D&D of Fuel Storage Canals and Associated Facilities at INEEL  

SciTech Connect

The Department of Energy (DOE) Office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA), sponsored a Large Scale Demonstration and Deployment Project (LSDDP) at the Idaho National Engineering and Environmental Laboratory (INEEL) under management of the DOE National Energy Technology Laboratory (NETL). The INEEL LSDDP is one of several LSDDPs sponsored by DOE. The LSDDP process integrates field demonstrations into actual decontamination and decommissioning (D&D) operations by comparing new or improved technologies against existing baseline technologies using a side-by-side comparison. The goals are (a) to identify technologies that are cheaper, safer, faster, and cleaner (produce less waste), and (b) to incorporate those technologies into D&D baseline operations. The INEEL LSDDP reviewed more than 300 technologies, screened 141, and demonstrated 17. These 17 technologies have been deployed a total of 70 times at facilities other than those where the technology was demonstrated, and 10 have become baseline at the INEEL. Fifteen INEEL D&D needs have been modified or removed from the Needs Management System as a direct result of using these new technologies. Conservatively, the ten-year projected cost savings at the INEEL resulting from use of the technologies demonstrated in this INEEL LSDDP exceeds $39 million dollars.

Whitmill, Larry Joseph

2001-12-01T23:59:59.000Z

474

NETL: Solid Oxide Fuel Cells Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cells Publications Operating Principles AEC Development Atmospheric Pressure Systems Pressurized Systems Program Plan Project Portfolio Project Information Systems...

475

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network (OSTI)

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

476

Mathematical modeling of polymer exchange membrane fuel cells.  

E-Print Network (OSTI)

??Fuel cells are predicted to be the power delivery devices of the future. They have many advantages such as the wide fuel selection, high energy (more)

Spiegel, Colleen

2008-01-01T23:59:59.000Z

477

NREL: Energy Analysis - Vehicles and Fuels Research Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

exhaust emissions, and more. Transportation Data and Statistics Tools Alternative Fuels Data Center EERE Energy Analysis Publications Fuel Economy Guide Future U.S. Highway...

478

Used Fuel Disposition Campaign Disposal Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

479

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D: Project Evaluation Form Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix D: Project Evaluation Form Appendix D: Project...

480

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Education Printable Version 2004 Annual Progress Report VII. Education Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Education Sub-Program Review, Christy Cooper, DOE (PDF 283 KB) Determine Baseline Knowledge of Hydrogen and Fuel Cells, Tykey Truett , ORNL (PDF 262 KB) Fuel Cell Demonstration with On-site Generation of Hydrogen, Tim Turner, NC State University (PDF 212 KB) Washington State Fuel Cell Education and Demonstration Program, Mira Vowles, Central Washington Univ. (PDF 315 KB) Lansing Community College Alternative Energy Initiative, Ruth Borger, Lansing Community College (PDF 214 KB) Shared Technology Transfer Project, John Griffin, Nicholls State University (PDF 228 KB) Montana Hydrogen Futures Project, Paul Williamson, U. of Montana

Note: This page contains sample records for the topic "future fuels project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)  

ScienceCinema (OSTI)

The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.

Chu, Steven

2011-04-28T23:59:59.000Z

482

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine 1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine Vincent McDonell Project Dates: 10/1/2008 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this comprehensive research is to evaluate methods for characterizing fuel profiles of coal syngas and high hydrogen content (HHC) fuels and the level of mixing, and apply these methods to provide detailed fuel concentration profile data for various premixer system configurations relevant for turbine applications. The specific project objectives include: (1) Establish and apply reliable, accurate measurement methods to establish instantaneous and time averaged fuel

483

FCT Technology Validation: Integrated Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Projects to Integrated Projects to someone by E-mail Share FCT Technology Validation: Integrated Projects on Facebook Tweet about FCT Technology Validation: Integrated Projects on Twitter Bookmark FCT Technology Validation: Integrated Projects on Google Bookmark FCT Technology Validation: Integrated Projects on Delicious Rank FCT Technology Validation: Integrated Projects on Digg Find More places to share FCT Technology Validation: Integrated Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects Integrated Projects DOE Projects Non-DOE Projects Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Manufacturing Codes & Standards Education Systems Analysis Contacts Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize

484

American Recovery & Reinvestment Act, ARRA, clean energy projects, energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Recovery & Reinvestment Act, ARRA, clean energy projects, American Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the District of Columbia reflect a broad range of clean energy projects, from energy efficiency and the smart grid to renewable energy and advanced battery manufacturing. Through these investments, the District of Columbia's businesses, non-profits, and local governments are creating quality jobs today and positioning the District of Columbia to

485

Applicant Location Requested DOE Funds Project Summary Feasibility Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requested Requested DOE Funds Project Summary Feasibility Studies Confederated Salish and Kootenai Tribes Pablo, MT $850,000 This project will evaluate the technical and economic viability of a co-generation biomass fuel power plant. The plant would use fuels from tribal forest management activities to provide between 2.5 to 20 megawatts (MW) of electricity to heat tribal buildings or sell on the wholesale market. Standing Rock Sioux Tribe Fort Yates, ND $430,982 This project will perform a feasibility study over the course of two years on three tribal sites to support the future development of 50 to 100 MW of wind power. Navajo Hopi Land Commission (NHLCO), Navajo Nation Window Rock, AZ $347,090 This project will conduct a feasibility study to explore potential

486

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

487

THE PROJECT-X INJECTOR EXPERIMENT: A NOVEL HIGH PERFORMANCE FRONT-END FOR A FUTURE HIGH POWER PROTON FACILITY AT FERMILAB  

SciTech Connect

A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are carrying out a program of research and development aimed at integrated systems testing of critical components comprising the front end of Project X. This program, known as the Project X Injector Experiment (PXIE), is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. PXIE is currently under construction at Fermilab and will be completed over the period FY12-17. PXIE will include an H* ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X.

Nagaitsev, S.; et al,

2013-09-25T23:59:59.000Z

488

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

489

Microfluidics for fuel cell applications.  

E-Print Network (OSTI)

??In this work, a microfluidics approach is applied to two fuel cell related projects; the study of deformation and contact angle hysteresis on water invasion (more)

Stewart, Ian

2011-01-01T23:59:59.000Z

490

NREL: Transportation Research - Fuels Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

491

Desulfurization of Liquid Fuel via Fractional Evaporation and Subsequent Hydrodesulfurization Upstream a Fuel Cell System  

Science Journals Connector (OSTI)

The polymer electrolyte membrane fuel cell (PEMFC) and the solid oxide fuel cell (SOFC) are favored for application in the foreseeable future. ... For fuel cells to be fuelled with liquid fuels as per Figure 1, an upstream desulfurization step is mandatory. ... fuel?recovered ...

Markus Brune; Rainer Reimert

2005-08-17T23:59:59.000Z

492

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

493

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

494

MASTER OF SCIENCE Enterprise Project  

E-Print Network (OSTI)

MASTER OF SCIENCE Enterprise Project Management PROJECT YOUR FUTURE #12;Stevens Project Management Legacy Master of Science in Enterprise Project Management At Stevens, we understand the value of project in project management, Stevens was the third university worldwide to receive global project management

Yang, Eui-Hyeok

495

Current and future perspectives on energy use and environmental impact  

Science Journals Connector (OSTI)

Energy consumption throughout the world contributes to pollution, environmental deterioration, and greenhouse gas emissions. Increases in energy consumption are usually driven by population growth and economic development that tends to increase energy use per capita. Thus, the projected increase in population in the near future, and the economic development that is likely in many countries, have serious implications for the environment. Since the early 1980s the relationship between energy use and environmental impact has received attention, and a number of activities have focused on this topic. In this paper, four important areas related to current and future patterns of environmental impact are introduced and discussed in detail: environmental impact, energy consumption, energy efficiency and conservation, and fuel substitution. We conclude that further political, economic and institutional changes from the standpoint of environmental impact appear to be necessary for future energy policies. To this end, energy efficiency improvements and renewable energy resources can play important roles in controlling and reducing environmental impact.

Ibrahim Dincer; Marc A. Rosen

1998-01-01T23:59:59.000Z

496

Multiproject baselines for evaluation of electric power projects  

E-Print Network (OSTI)

Natural gas Fuel Type Capacity Annual generation EmissionsFuel Coal a Hydroelectric Capacity (MW) Type Baseload Load-Following Annual generation (Fuel/Project Natural gas Coal Wind Project Type Capacity Annual generation

2003-01-01T23:59:59.000Z

497

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

199