National Library of Energy BETA

Sample records for future energy projects

  1. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  2. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  3. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  4. Energy Workforce Training Future Need and Projections 

    E-Print Network [OSTI]

    Midturi, S.; Pidugu, S. B.

    2006-01-01

    , Whirlpool, Jacuzzi), electrical motors (Baldor, Emerson), energy services (Entergy, ARKLA, Arkansas Nuclear), aircraft products (Falcon Jet, Raytheon), defense missiles (Lockheed and Raytheon), machinery (CoorsTek, Timex, Snap On Tools, Hall, Orbit Valves...

  5. FutureGen Project Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project will produce electricity and hydrogen with zero-emissions, including carbon dioxide, a greenhouse gas. The initiative is a response to President Bush's directive...

  6. Attaining the Photometric Precision Required by Future Dark Energy Projects

    SciTech Connect (OSTI)

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  7. FutureGen Project Launched | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" | Department ofMotorsProcess

  8. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. FutureGen Project Report

    SciTech Connect (OSTI)

    Cabe, Jim; Elliott, Mike

    2010-09-30

    This report summarizes the comprehensive siting, permitting, engineering, design, and costing activities completed by the FutureGen Industrial Alliance, the Department of Energy, and associated supporting subcontractors to develop a first of a kind near zero emissions integrated gasification combined cycle power plant and carbon capture and storage project (IGCC-CCS). With the goal to design, build, and reliably operate the first IGCC-CCS facility, FutureGen would have been the lowest emitting pulverized coal power plant in the world, while providing a timely and relevant basis for coal combustion power plants deploying carbon capture in the future. The content of this report summarizes key findings and results of applicable project evaluations; modeling, design, and engineering assessments; cost estimate reports; and schedule and risk mitigation from initiation of the FutureGen project through final flow sheet analyses including capital and operating reports completed under DOE award DE-FE0000587. This project report necessarily builds upon previously completed siting, design, and development work executed under DOE award DE-FC26- 06NT4207 which included the siting process; environmental permitting, compliance, and mitigation under the National Environmental Policy Act; and development of conceptual and design basis documentation for the FutureGen plant. For completeness, the report includes as attachments the siting and design basis documents, as well as the source documentation for the following: • Site evaluation and selection process and environmental characterization • Underground Injection Control (UIC) Permit Application including well design and subsurface modeling • FutureGen IGCC-CCS Design Basis Document • Process evaluations and technology selection via Illinois Clean Coal Review Board Technical Report • Process flow diagrams and heat/material balance for slurry-fed gasifier configuration • Process flow diagrams and heat/material balance for dry-fed gasifier configuration • Full capital cost report and cost category analysis (CAPEX) • Full operating cost report and assumptions (OPEX) Comparative technology evaluations, value engineering exercises, and initial air permitting activities are also provided; the report concludes with schedule, risk, and cost mitigation activities as well as lessons learned such that the products of this report can be used to support future investments in utility scale gasification and carbon capture and sequestration. Collectively, the FutureGen project enabled the comprehensive site specific evaluation and determination of the economic viability of IGCC-CCS. The project report is bound at that determination when DOE formally proposed the FutureGen 2.0 project which focuses on repowering a pulverized coal power plant with oxy-combustion technology including CCS.

  10. Transportation Energy Futures

    E-Print Network [OSTI]

    Sperling, Daniel

    1989-01-01

    s values, forecasts of future energy prices and politicalYergin, D. , eds. 1979. Energy Future: Report of the Energy02, Sacramento, Calif. ENERGY FUTURES 103. Ullman, T. L. ,

  11. Alternative futures: Have EPA projects

    E-Print Network [OSTI]

    Jenny, Bernhard

    Alternative futures: Have EPA projects made a difference? Denis White, US EPA, Research Richard are alternative futures assessments? A process by which to evaluate potential changes to land and water use, where Two or more alternative landscape-scale scenarios are considered, The alternatives are represented

  12. High-Energy Physics Strategies and Future Large-Scale Projects

    E-Print Network [OSTI]

    Zimmermann, F

    2014-01-01

    We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e+e- collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.

  13. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE)

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  14. Economic valuation of energy storage coupled with photovoltaics : current technologies and future projections

    E-Print Network [OSTI]

    Mosher, Trannon

    2010-01-01

    A practical framework for the economic valuation of current energy storage systems coupled with photovoltaic (PV) systems is presented. The solar-with-storage system's operation is optimized for two different rate schedules: ...

  15. Energy futures-2

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants.

  16. Department of Energy Takes Another Step Forward on FutureGen Project in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof Energy Eleven sites to beMAY 2011

  17. Global Energy Futures: With International Futures (IFs)

    SciTech Connect (OSTI)

    Hughes, Barry

    2013-03-20

    Dr. Hughes presents and discusses the results of simulations on alternative energy futures composed in collaboration with SNL's Sustainability Innovation Foundry.

  18. Transportation Energy Futures Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  19. Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper

    E-Print Network [OSTI]

    Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Thrust Area 1 White Paper Electric Energy Challenges of the Future Project Team Gerald T. Heydt, Kory Hedman Arizona

  20. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  1. Toward an energy surety future.

    SciTech Connect (OSTI)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  2. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  3. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  4. Most Comprehensive Projections for West Antarctica's Future Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most Comprehensive Projections for West Antarctica's Future Revealed Ice Sheet Model Reveals Most Comprehensive Projections for West Antarctica's Future BISICLES Simulations Run at...

  5. ENERGY WHITE PAPER Our energy future -

    E-Print Network [OSTI]

    ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

  6. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    for Offshore Wind Farms. ” Journal of Solar Energyoffshore wind in UK waters – Understanding the past and projecting the future. London, UK: UK Energy

  7. Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability...

    Office of Environmental Management (EM)

    for future generations. The projects feature multiple energy efficiency and renewable energy technologies and are part of the Forest County Potawatomi Community's project...

  8. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Ito, Garrett

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  9. Carbon Capture and Storage FutureGen 2.0 Project Moves Forward...

    Energy Savers [EERE]

    of the first phase, the Energy Department today announced the beginning of Phase II of project development with a new cooperative agreement between the FutureGen Industrial...

  10. for Florida's Energy Future

    E-Print Network [OSTI]

    Jawitz, James W.

    Technology A.S. Degree with specializations in Alternative Energy Technology and Industrial Energy Efficiency - CCC in Alternative Energy Systems Specialist and Industrial Energy Efficiency Specialist - College alternative energy strategies, improving energy efficiencies and expanding economic development for the State

  11. The Future of Utility Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01

    P. Witte. 2011. Energy Efficiency resource Standards: Statee.g. , a national energy efficiency resource standard, cleanall cost-effective energy efficiency” resources; long-term

  12. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  13. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Evidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation EnergyCCST 2011a. California’s Energy Future - The View to 2050,

  14. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  15. for Florida's Energy Future

    E-Print Network [OSTI]

    Mazzotti, Frank

    Florida to deliver educational programs and fact sheets related to energy and resource-efficient community Technology A.S. Degree with specializations in Alternative Energy Technology and Industrial Energy Efficiency - CCC in Alternative Energy Systems Specialist and Industrial Energy Efficiency Specialist - College

  16. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    renewable case) alone almost exceed the target emissions. California’s Energy Future -renewable energy, i.e. the “median case. ” California’s Energy Future -

  17. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 to 100 times more energy than the amount of laser energy required to initiate the fusion reaction. The nuclear power plants in use around the world today use fission, or...

  18. California's Energy Future

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    will investigate the tradeoffs represented by reliance on different energy sources, including oil, natural gas gas emissions (including direct land use change associated with fossil energy), alternative Officer, 44 Energy Technologies, Inc. Vera Pardee, Senior Attorney, Center for Biological Diversity Sonia

  19. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...

    Energy Savers [EERE]

    Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable...

  20. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Summit on America’s Energy Future (2008), http://www.natural gas. California’s Energy Future - The View to 2050supply California’ s Energy Future - The View to 2050 and

  1. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  2. Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy

    E-Print Network [OSTI]

    Delaware, University of

    2004-01-01

    Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

  3. Futures for energy cooperatives

    SciTech Connect (OSTI)

    None

    1981-01-01

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  4. FUTURE POWER GRID INITIATIVE Modeling of Distributed Energy

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Modeling of Distributed Energy Resources in the Smart Grid OBJECTIVE can be used in the studies for the design, operation and control of the future smart grid. Our project National Laboratory (509) 375-2235 shuai.lu@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI

  5. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Ritschard, R.L.

    1977-01-01

    NEVADA: REQUIREMENTS FOR FUTURE ENERGY PRODUCTION STATE'SWATERREQUIREMENTS FOR FUTURE ENERGY PRODUCTIONIN ENERGYREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIA

  6. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    NEVADA: REQUIREMENTS FOR FUTURE ENERGY PRODUCTION STATE'SWATERREQUIREMENTS FOR FUTURE ENERGY PRODUCTIONIN ENERGYREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIA

  7. Global energy - assessing the future

    SciTech Connect (OSTI)

    Edmonds, J.; Reiley, J.M.

    1985-01-01

    This book applies various forecasts of energy use to the CO/sub 2/ problem. The effect of demographic factors and economic growth on energy consumption are considered and a model is proposed relating energy consumption and carbon dioxide; predictions are made up to the year 2050 and the uncertainties in these long-term energy projections considered. Energy forms taken into account include oil and gas (both conventional and unconventional), coal, nuclear energy, solar and wind power, hydroelectricity and ocean thermal energy conversion systems and biomass.

  8. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy StorageTricks Lead toJohnUnit Pre

  9. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    of meeting California’s transportation energy needs andEvidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation Energy

  10. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  11. Dark Energy Present and Future

    E-Print Network [OSTI]

    Paul H. Frampton

    2003-07-03

    By studying the present cosmological data, particularly on CMB, SNeIA and LSS, we find that the future fate of the universe, for simple linear models of the dark energy equation-of-state, can vary between the extremes of (I) a divergence of the scale factor in as little as 7 Gyr; (II) an infinite lifetime of the universe with dark energy dominant for all future time; (III) a disappearing dark energy where the universe asymptotes as $t \\to \\infty$ to $a(t) \\sim t^{2/3}$ {\\it i.e.} matter domination. Precision cosmological data hint that a dark energy with equation of state $w = P/\\rho 0$ to $\\Lambda = 0$ in a first-order phase transition. The critical radius is argued to be at least of galactic size and the corresponding nucleation rate glacial, thus underwriting the dark energy's stability and rendering remote any microscopic effect.

  12. THE FUTURE OF ENERGY Carlo Rubbia

    E-Print Network [OSTI]

    THE FUTURE OF ENERGY Carlo Rubbia ENEA Opening remarks at the 18th IAEA Fusion Energy Conference Sorrento, Italy, 4th October 2000 #12;2 TABLE OF CONTENT 1.-- Energy is necessary. ..................................................................................... 3 2.-- Energies for the future

  13. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  14. SEP Special Projects Report: Future Outlook and Appendix

    SciTech Connect (OSTI)

    None

    2000-07-01

    The Sharing Success appendix provides the future outlook for SEP as well as charts and graphs for grants and Special Projects.

  15. Winning the Future: Grand Ronde Solar Projects Reduce Pollution...

    Office of Environmental Management (EM)

    Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm Addthis PV panels...

  16. Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends

    Broader source: Energy.gov [DOE]

    Learn more about the DOE's Buildings of the Future Project. Buildings will no longer be passive objects that consume resources, but rather active participants engaged in the energy system and our community.

  17. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  18. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    E-Print Network [OSTI]

    Meyers, Stephen P.

    2008-01-01

    current DOE/EIA projections of future energy prices made inlatest DOE/EIA projections of future energy prices. The TSDprices to calculate realized savings. To estimate prospective impacts, we developed new projections

  19. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  20. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ï?· Create a Showcase Waste Heat Recovery Demonstration Project.

  1. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  2. California Energy Futures Study Working Committee

    E-Print Network [OSTI]

    California at Davis, University of

    #12;#12;#12;California Energy Futures Study Working Committee Robert Budnitz, LBNL Linda Cohen, UC Somerville, UC Berkeley H. Youngs ­ EBI, UC Berkeley California's Energy Future, Biofuels #12;Stress tests California's Energy Future, Biofuels #12;#12;#12;Reduced Fuel Demand Scenario H. Youngs ­ EBI, UC Berkeley

  3. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  4. Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation

    E-Print Network [OSTI]

    Kemner, Ken

    Batteries and electrochemical energy storage are central to any future alternative energy energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all electrochemical energy storage devices, these corrosive reactions are not always detrimental to the operation

  5. COLLOQUIUM: Future Projections of Climate Change: An Update from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 28, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Future Projections of Climate Change: An Update from IPCC AR5IPCC AR5 WG1 Report Dr. Claudia Tebaldi NCAR I will...

  6. Draft Environmental Impact Statement for FutureGen Project

    Broader source: Energy.gov (indexed) [DOE]

    gas.'' The FutureGen Project would be different because, after the gas exits the gasifier, the composition of the synthesis gas would then be ''shifted'' by the addition of...

  7. QUEST2 Energy Project 

    E-Print Network [OSTI]

    Clary, A. T.

    2007-01-01

    methodical process to identify primarily behavioral or procedural opportunities to improve energy efficiency. A key component of this process was to put control plans in place to maintain any gains that were achieved. The project resulting in finding...

  8. The Human Genome Project: Sequencing the Future

    E-Print Network [OSTI]

    genome programs--Genomes to Life, the Microbial Genome Program, and the Microbial Cell Project on fossil fuels. The new findings also have the potential to provide tools for enhanced biothreat agent detection and response and for using genetically engineered microbes to clean up toxic wastes in contaminat

  9. National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future nation but the world #12;National Renewable Energy Laboratory Innovation for Our Energy Future Campus facilities · Carbon neutral · Net zero energy · Living Laboratory #12;National Renewable Energy Laboratory

  10. The MSc Strategic Project Management prepares graduates to be future leaders in project-based

    E-Print Network [OSTI]

    Painter, Kevin

    Management Strategic Change Operations Management Leadership Project Economics and Finance Business ModelsAbout The MSc Strategic Project Management prepares graduates to be future leaders in project-based environments by developing knowledge and skills in both business strategy and project management

  11. Winning the Biofuel Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winning the Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a...

  12. Renewable Energy & Energy Efficiency Projects: Loan Guarantee...

    Broader source: Energy.gov (indexed) [DOE]

    Plenary III: Project Finance and Investment Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Valri Lightner, Assistant Director, Technical Division at...

  13. Renewable Energy & Energy Efficiency Projects Loan Guarantee...

    Broader source: Energy.gov (indexed) [DOE]

    26 Billion in Total Project Investment Commercial Banks: Bank of America BBVA Citi 12 Renewable Energy & Efficient Energy Projects Solicitation Supports as much as 4 billion...

  14. Energy, helium, and the future: II

    SciTech Connect (OSTI)

    Krupka, M.C.; Hammel, E.F.

    1980-01-01

    The importance of helium as a critical resource material has been recognized specifically by the scientific community and more generally by the 1960 Congressional mandate to institute a long-range conservation program. A major study mandated by the Energy Reorganization Act of 1974 resulted in the publication in 1975 of the document, The Energy-Related Applications of Helium, ERDA-13. This document contained a comprehensive review and analysis relating to helium resources and present and future supply/demand relationships with particular emphasis upon those helium-dependent energy-related technologies projected to be implemented in the post-2000 year time period, e.g., fusion. An updated overview of the helium situation as it exists today is presented. Since publication of ERDA-13, important changes in the data base underlying that document have occurred. The data have since been reexamined, revised, and new information included. Potential supplies of helium from both conventional and unconventional natural gas resources, projected supply/demand relationships to the year 2030 based upon a given power-generation scenario, projected helium demand for specific energy-related technologies, and the supply options (national and international) available to meet that demand are discussed. An updated review will be given of the energy requirements for the extraction of helium from natural gas as they relate to the concentration of helium. A discussion is given concerning the technical and economic feasibility of several methods available both now and conceptually possible, to extract helium from helium-lean natural gas, the atmosphere, and outer space. Finally, a brief review is given of the 1980 Congressional activities with respect to the introduction and possible passage of new helium conservation legislation.

  15. Planning For a New Energy & Climate Future

    E-Print Network [OSTI]

    New South Wales, University of

    Planning For a New Energy & Climate Future 10th International Urban Planning and Environment solar energy resources ­ Can an analysis of urban residential rooftops inform planning policy for carbonNicoleGurran,PeterPhibbsandSusanThompson www.upe10.org Page 1 #12;Planning For a New Energy & Climate Future FIRST PUBLISHED 2013 by ICMS PTY

  16. BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)

    E-Print Network [OSTI]

    BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

  17. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    aviation, marine and rail sectors. Energy use, broken out bysuch as aviation and marine. California’s Energy Future -and marine. We believe that the CEF transportation energy

  18. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Appendix A: References Annual Energy Outlook (AEO).2009. Annual Energy Outlook 2009 with Projections to 2030.March 2009. Annual Energy Outlook (AEO). 2011. Annual Energy

  19. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    CALIFORNIA WATER RESOURCES. Water Demand Energy Suppon future forecasts of of Water energy predicted energy aunder these PHASE II: WATER ENERGY REQUIREMENTS FOR FUTURE

  20. Building Our Energy Future: Teaching Students the Significance...

    Office of Environmental Management (EM)

    Building Our Energy Future: Teaching Students the Significance of Energy Efficiency Building Our Energy Future: Teaching Students the Significance of Energy Efficiency April 2,...

  1. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Deputy Project Director, Energy and Environmental Security,Security Principal Directorate, Lawrence Livermore National Lab California’s Energy

  2. SOLAR ENERGY AND OUR ELECTRICITY FUTURE

    E-Print Network [OSTI]

    SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

  3. The Future of Energy on Ea FFFFUUUUSSSSIIIIOOOONNNN

    E-Print Network [OSTI]

    Administration Assist. Sec., Defense Programs Energy Efficiency & Renewable Energy Office of Science (SC) Science of Basic Energy Sciences Associate Director Patricia M. Dehmer Office of Resource Management AssociateThe Future of Energy on Ea FFFFUUUUSSSSIIIIOOOONNNN is the Energy of the FFFFUUUUSSSSIIIIOOOONNNN

  4. Energy Implications of Alternative Water Futures

    E-Print Network [OSTI]

    Keller, Arturo A.

    Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

  5. RENEWABLE ENERGIES Innovations for the future

    E-Print Network [OSTI]

    Peinke, Joachim

    RENEWABLE ENERGIES Innovations for the future #12;Imprint Publisher: Federal Ministry Böhme BMU, Division KI I1 "General and Fundamental Aspects of Renewable Energies" Content: Dr. Martin in a seminal global market: with both renewable energy and energy efficiency. For a sustainable energy economy

  6. NREL: Energy Analysis - Transportation Energy Futures Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14Recent PublicationsNicholas DiOrioSadieThomas

  7. Energy Research and Development Division DRAFT PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division DRAFT PROJECT REPORT NATURAL GAS ENERGY EFFICIENCY, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives IN BUILDINGS Roadmap for Future Research Prepared for: California Energy Commission Prepared by

  8. DISTRIBUTED ENERGY PROJECTS SUPPLEMENTS TO RENEWABLE ENERGY AND...

    Energy Savers [EERE]

    SUPPLEMENTS TO RENEWABLE ENERGY AND EFFICIENCY ENERGY PROJECTS SOLICITATION DISTRIBUTED ENERGY PROJECTS SUPPLEMENTS TO RENEWABLE ENERGY AND EFFICIENCY ENERGY PROJECTS SOLICITATION...

  9. Baytown Energy Project 

    E-Print Network [OSTI]

    Porter, J.

    2006-01-01

    Mobil's Baytown Chemical Plant, the Baytown Energy Project (BEP) utilized this planning strategy to redeploy assets by changing the fractionation configuration of the plant. In the aromatics recovery plant, aromatics (benzene, toluene and xylenes... prefractionator followed by a set of integrated towers to separate the ternary product mixture of benzene toluene and xylenes from a toluene disproportionation unit. The towers also fractionated a concentrated benzene and toluene sidestream from the primary...

  10. The past and future of greenhouse gas offset projects

    SciTech Connect (OSTI)

    Trexler, M.C.; Kosloff, L.H. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    Researchers now have almost 10 years of experience with on-the-ground carbon offset projects for climate change mitigation purposes. The field is evolving from one driven primarily by public and governmental relations, to one driven by companies` perceived need to adapt to anticipated national and international regulation of greenhouse gas emissions. Offset project participants are seeking to identify offset opportunities, come up the regulatory and technical learning curves, and identify new market opportunities. Offset projects being implemented today can be evaluated through several lenses including offset performance and benefit quantification, cost-effectiveness, and political and environmental acceptability. Careful evaluation of existing offset experience is important in order to guide national and international policy development. This paper will review the history and trends of offset project development, use existing experience to identify advantages and disadvantages associated with different offsets, and identify lessons that can guide future project development. The lead author carried out the CO{sub 2} benefit analysis for the first offset project (AES Corp.`s CARE Guatemala reforestation project), and has developed and evaluated dozens of domestic and international offset projects and proposals. The authors` company is currently implementing more than a half-dozen offset projects and they are intimately involved in ongoing technical and policy development of the field.

  11. Fusion Energy: Visions of the Future

    E-Print Network [OSTI]

    energy conversion Direct energy conversion No $$$ turbines Why Is Aneutronic Fusion Cheap? #12;Dense Star Formation REPRODUCING NATURAL INSTABILITIES Solar Flares #12;Energy (X-rays, Ion Beams) CaptureFusion Energy: Visions of the Future Dec. 10-11, 2013 FOCUS FUSION Cheap, Clean, Safe & Unlimited

  12. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Appendix A: References Annual Energy Outlook (AEO).2009. Annual Energy Outlook 2009 with Projections to 2030.2009). March 2009. Annual Energy Outlook (AEO). 2011. Annual

  13. Project Funding | Department of Energy

    Office of Environmental Management (EM)

    Contracts ESPC ENABLE Process Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs. Read the FEMP project funding quick...

  14. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    drafting new rules for small wind farm projects. ” Xinhuaparticularly true for small wind power manufacturers, whichNDRC, the vast majority of small wind farm projects is not

  15. Future waste treatment and energy systems – examples of joint scenarios

    SciTech Connect (OSTI)

    Münster, M., E-mail: maem@dtu.dk [System Analysis Division, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Finnveden, G. [KTH Royal Institute of Technology, School of Architecture and the Built Environment, Department of Planning and Environment, Division of Environmental Strategies Research – fms, 100 44 Stockholm (Sweden); Wenzel, H. [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, 5230 Odense M (Denmark)

    2013-11-15

    Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.

  16. Present and future evidence for evolving dark energy

    E-Print Network [OSTI]

    Andrew R Liddle; Pia Mukherjee; David Parkinson; Yun Wang

    2006-12-04

    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, LambdaCDM is currently favoured as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.

  17. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    energy use. China’s Sustainable Energy Future Summary next31 -ii- China’s Sustainable Energy Future Executive Summarystudy, entitled China’s Sustainable Energy Future: Scenarios

  18. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    trends in China, India, Eastern Europe and other developing areas. China oil demand +104% by 2030, India 2000 2020 2040 2060 Supply demand Energy UWM-CUTS 14 U.S. DOE viewpoint, source:http://tonto.eia.doe.gov/FTPROOT/features/longterm.pdf#search='oilTransportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05

  19. Rural Energy Conference Project

    SciTech Connect (OSTI)

    Dennis Witmer; Shannon Watson

    2008-12-31

    Alaska remains, even at the beginning of the 21st century, a place with many widely scattered, small, remote communities, well beyond the end of both the road system and the power grid. These communities have the highest energy costs of any place in the United States, despite the best efforts of the utilities that service them. This is due to the widespread dependence on diesel electric generators, which require small capital investments, but recent increases in crude oil prices have resulted in dramatic increases in the cost of power. In the enabling legislation for the Arctic Energy Office in 2001, specific inclusion was made for the study of ways of reducing the cost of electrical power in these remote communities. As part of this mandate, the University of Alaska has, in conjunction with the US Department of Energy, the Denali Commission and the Alaska Energy Authority, organized a series of rural energy conferences, held approximately every 18 months. The goal of these meeting was to bring together rural utility operators, rural community leaders, government agency representatives, equipment suppliers, and researchers from universities and national laboratories to discuss the current state of the art in rural power generation, to discuss current projects, including successes as well as near successes. Many of the conference presenters were from industry and not accustomed to writing technical papers, so the typical method of organizing a conference by requesting abstracts and publishing proceedings was not considered viable. Instead, the organizing committee solicited presentations from appropriate individuals, and requested that (if they were comfortable with computers) prepare Power point presentations that were collected and posted on the web. This has become a repository of many presentations, and may be the best single source of information about current projects in the state of Alaska.

  20. Renewable Energy & Efficient Energy Projects Solicitation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Informational Materials Renewable Energy and Efficient Energy Projects Solicitation Solicitation and Supplements I through IV (December 4, 2015). Applicants should review the final...

  1. Renewable Energy & Efficient Energy Projects Solicitation FAQ...

    Broader source: Energy.gov (indexed) [DOE]

    the solicitation and how many rounds will there be? As with earlier solicitations, the Renewable Energy and Efficient Energy Projects Solicitation consists of a two-step process...

  2. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  3. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LIGHTING CALIFORNIA'S FUTURE Efficiency Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P in this report. #12;ACKNOWLEDGEMENTS The project team acknowledges the support of the California Energy

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    24. EROEIs and 2030 Installed Capacity by Alternative Energy75 Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  6. Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges

    SciTech Connect (OSTI)

    B. McLeod

    2002-02-28

    This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M&O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M&O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report summarizes the results of the 2002 Reference SNF Discharge Projection.

  7. The Future of Atomic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(active tab) 2016TheTheFuture is bright for

  8. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  9. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    total primary energy will be supplied by alternative energy by 2030 with the 2030 electricity supply

  10. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Use in California PEV Technology and Costs The mainEnergy Use in California Component HEV Battery Cost, $/kWhaccount the cost of delivery. California’s Energy Future -

  11. Tribal Renewable Energy Advanced Course: Project Development...

    Energy Savers [EERE]

    Process Tribal Renewable Energy Advanced Course: Project Development Process Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project...

  12. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    For example, MOST is funding research on solar thermal powerfunding for demonstration projects, including the 1.5 MW solar

  13. SEARCHING FOR SUSTAINABILITY: KENYA'S ENERGY PAST AND FUTURE, NOVEMBER 2006 SEARCHING FOR SUSTAINABILITY

    E-Print Network [OSTI]

    Jacobson, Arne

    , Kenya was the focus of numerous donor-driven projects in household energy, solar power, and other formsSEARCHING FOR SUSTAINABILITY: KENYA'S ENERGY PAST AND FUTURE, NOVEMBER 2006 1 SEARCHING FOR SUSTAINABILITY KENYA'S ENERGY PAST AND FUTURE BY ROB BAILIS, CHARLES KIRUBI AND ARNE JACOBSON SEARCHING

  14. Financing Energy Projects in Dow 

    E-Print Network [OSTI]

    Dingwall, D. C.

    1984-01-01

    in size, and authorized and financed as a part of Dow's regular capital program. Capital projects relating to the more efficient generation of energy generally refer to DOW'S large Gulf Coast combined cycle cogeneration projects, most of which came...

  15. Bright Future NW Energy Coalition

    E-Print Network [OSTI]

    as coal or natural-gas generation. Wind and biomass nearly twice as many. Solar PV job potential is huge on natural gas. Energy Efficiency 3¢/kWh Energy Efficiency 3¢/kWh RPS 2020 10¢/kWh RPS 2020 10¢/kWh New Natural Gas 10¢/kWh Repower Existing Coal Plants 6¢/kWh New Renewables 2020-2050 10¢/kWh Repower

  16. A Renewable Energy Future: Innovation and Beyond

    Broader source: Energy.gov [DOE]

    This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is needed to make it happen. The presentation also includes a discussion of the integration challenges that affect solar energy systems.

  17. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    AND FUTURE COST OF WIND ENERGY Eric Lantz & Maureen Hand National RenewableRenewable Energy Laboratory. Further improving our understanding of possible future

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    presented in a 2007 Geothermal Energy Association report (Solar Water Heater Geothermal energy Biomass Pellets mil m2an increasingly important geothermal energy user in the last

  19. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    3. Revised 2020 Alternative Energy Capacity Targets and 2011installed renewable energy capacity in 2009 (Pew, 2011).of 106% in renewable energy capacity from 2005 to 2010 (Pew,

  20. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    compared to other renewable energy policies illustrate thatExpansion Policy Drivers Renewable Energy Law of China TheRenewable Energy Law, other technology-specific policies

  1. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    ANL), 2011, “Offshore Wind Energy. ” Outer Continental Shelffocus on advancing offshore wind energy development. AfterOffshore Wind Development 27 3.5 Remaining Challenges for Wind Energy

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    ANL), 2011, “Offshore Wind Energy. ” Outer Continental Shelffull_report_2010.pdf British Wind Energy Association (BWEA),on advancing offshore wind energy development. After the

  3. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    average FFDR. If hydro and nuclear energy inputs and outputsAll Alt Energy Technologies Excluding Hydro & Nuclear It iswind, solar, hydro, nuclear and geothermal, renewable energy

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Outer Continental Shelf Alternative Energy and Alternate Usealternative non-fossil and alternative energy technologiesbe effectively addressed and alternative energy development

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    GW Other Renewable Energy Applications Solar Water Heatergrowth of renewable energy industries, particularly solar PVUnlike other renewable energy such as solar and wind, policy

  6. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizonaAugust 16,Security 40EnergyClean Energy andRush

  7. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Energy Pathways Program, Institute of Transportation Studies, University of California,feasible transportation and heat. California’s EnergyCalifornia Council on Science and Technology Roland Hwang, Transportation Program Director, Natural Resources Defense Council Nalu Kaahaaina, Deputy Project Director, Energy

  8. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    will shape China’s future energy system, and consequentlybeen conducted on future energy use and pollutant emissionscould influence China’s future energy consumption and carbon

  11. Hydrogen and OUr Energy Future

    SciTech Connect (OSTI)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  12. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    output by each alternative energy type from 2010 to 2030 isof each alternative energy technology type, an energy returntypes of PV power plants with CIS having the lowest water intensity of all alternative energy

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    energy in China. ” Renewable Energy 36 (5): 1374-1378. Chen,GoC/World Bank/GEF China Renewable Energy Scale-up Programwind power systems. ” Renewable Energy 35: 218-225. Lechon

  14. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Fuel Cycle Processes Thermal Energy Intensity Electricityprocess uses less energy than the dry kiln, and an average of reported thermal

  15. World Energy Projection System model documentation

    SciTech Connect (OSTI)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  16. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance a given location for the best technology, or a renewable energy technology for the best location, accurate

  17. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future 2008 SUSTAINABILITY REPORT and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. #12;1 NATIONAL RENEWABLE ENERGY LABORATORY The National Renewable Energy Laboratory (NREL) is the only federal laboratory dedicated

  18. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance two-way power flow with communication and control. Renewable Energy Grid Integration As the market

  19. Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information ResourcesHeat & Cool » Home

  20. THE FUTURE OF GEOTHERMAL ENERGY

    SciTech Connect (OSTI)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  1. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    cycle inventory for hydroelectric generation: a BrazilianChina currently has 15 hydroelectric projects of over 1 GWonly conventional large hydroelectric generation and does

  2. Developing Government Renewable Energy Projects

    SciTech Connect (OSTI)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  3. Danish Energy Authority Project Document

    E-Print Network [OSTI]

    for larger existing buildings subject to major renovation 4. Energy performance certification (energyDanish Energy Authority Project Document Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection

  4. Status of the Magma Energy Project

    SciTech Connect (OSTI)

    Dunn, J.C.

    1987-01-01

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the US resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described. 20 refs., 12 figs.

  5. Growth Rates of Global Energy Systems and Future Outlooks

    SciTech Connect (OSTI)

    Hoeoek, Mikael; Li, Junchen; Johansson, Kersti; Snowden, Simon

    2012-03-15

    The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

  6. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  7. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    technology in China. ” Energy 35: 4445-4450. Xinhua News,photovoltaic market in China. ” Energy Policy 39 (4): 2204-and X. Zhang, 2010, “Nuclear energy development in China: A

  8. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    for electricity. Energy and Emissions Impact of Solar WaterElectricity Production by Solarthermal Power Plants in Spain. ” Journal of Solar EnergySolar Water Heaters, 2010-2030 Share of Displaced Energy for Water Heating LPG Natural Gas Electricity

  9. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    wind and large hydro are the only two energy technologiesWind Energy Association (BWEA), 2005, “BWEA Briefing Sheet: Wind Turbine Technology. ”energy technologies through 2030, particularly for solar, wind,

  10. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    GW Solar Thermal GW Tidal Power GW Other Renewable Energys solar thermal power technology development. ” Energy 35:Energy EROEIs in Existing Literature Value in this study EROEI Concentrated Solar Thermal (

  11. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Expansion Policy Drivers Renewable Energy Law of ChinaThe 2005 Renewable Energy Law of China marked the beginningsin the 2005 Renewable Energy Law, a goal of raising the

  12. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    in overall renewable energy finance and investment, Chinarenewable energy fund set up under the Ministry of Financeenergy law by including a provision that allows the Ministry of Finance

  14. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  15. for a Sustainable Energy Future Sossina M. Haile

    E-Print Network [OSTI]

    Haile, Sossina M.

    Fuel Cells for a Sustainable Energy Future Sossina M. Haile Materials Science / Chemical Engineering California Institute of Technology #12;Towards a Sustainable Energy Future Contents · The Problem of Energy ­ Growing consumption ­ Consequences ­ Sustainable energy resources · Fuel Cell Technology

  16. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Goldman, Charles A.

    2013-01-01

    and end-use sector energy prices to projects using marketproject costs and energy prices across time to account forinvolve escalating future energy prices. Because practices

  17. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Energy Development 73 Table 34. Installed Capacity by Power Generation Technology and Scenario 83 i List

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    energy through ground source heat pumps and conventionalrapid expansion of ground source heat pump installation from

  19. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear,

  20. START Renewable Energy Project Development Technical Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    START Renewable Energy Project Development Technical Assistance START Renewable Energy Project Development Technical Assistance The U.S. Department of Energy (DOE) Office of Indian...

  1. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of Energy (DOE)...

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    into three main categories: off-grid remote solar PV and PV-of the investment for off-grid remote PV projects subsidizedused in China for rural, off-grid electricity generation

  3. Continuous Improvement Energy Projects Reduce Energy Consumption 

    E-Print Network [OSTI]

    Niemeyer, E.

    2014-01-01

    Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... of the paper “Continuous Improvement Energy Projects Reduce Energy Consumption” by Bruce Murray and Allison Myers ESL-IE-14-05-31 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Conroe, TX Facility ESL...

  4. Projections of Future Summertime Ozone over the U.S.

    SciTech Connect (OSTI)

    Pfister, G. G.; Walters, Stacy; Lamarque, J. F.; Fast, Jerome D.; Barth, Mary; Wong, John; Done, James; Holland, Greg; Bruyere, Cindy

    2014-05-05

    This study uses a regional fully coupled chemistry-transport model to assess changes in surface ozone over the summertime U.S. between present and a 2050 future time period at high spatial resolution (12 km grid spacing) under the SRES A2 climate and RCP8.5 anthropogenic pre-cursor emission scenario. The impact of predicted changes in climate and global background ozone is estimated to increase surface ozone over most of the U.S; the 5th - 95th percentile range for daily 8-hour maximum surface ozone increases from 31-79 ppbV to 30-87 ppbV between the present and future time periods. The analysis of a set of meteorological drivers suggests that these mostly will add to increasing ozone, but the set of simulations conducted does not allow to separate this effect from that through enhanced global background ozone. Statistically the most robust positive feedbacks are through increased temperature, biogenic emissions and solar radiation. Stringent emission controls can counteract these feedbacks and if considered, we estimate large reductions in surface ozone with the 5th-95th percentile reduced to 27-55 ppbV. A comparison of the high-resolution projections to global model projections shows that even though the global model is biased high in surface ozone compared to the regional model and compared to observations, both the global and the regional model predict similar changes in ozone between the present and future time periods. However, on smaller spatial scales, the regional predictions show more pronounced changes between urban and rural regimes that cannot be resolved at the coarse resolution of global model. In addition, the sign of the changes in overall ozone mixing ratios can be different between the global and the regional predictions in certain regions, such as the Western U.S. This study confirms the key role of emission control strategies in future air quality predictions and demonstrates the need for considering degradation of air quality with future climate change in emission policy making. It also illustrates the need for high resolution modeling when the objective is to address regional and local air quality or establish links to human health and society.

  5. Energy Demand Modelling Introduction to the PhD project

    E-Print Network [OSTI]

    Energy Demand Modelling Introduction to the PhD project Erika Zvingilaite Risø DTU System Analysis for optimization of energy systems Environmental effects Global externalities cost of CO2 Future scenarios for the Nordic energy systems 2010, 2020, 2030, 2040, 2050 (energy-production, consumption, emissions, net costs

  6. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    with the 2010 annual copper demand for alternative energySteel Copper Uranium Fuel Cycle Energy Demand Because therethe cumulative demand of 4.7 Mt copper exceeds the 2009

  7. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    a 2008 meta-review of nuclear LCA studies (Sovacool, 2008).LCA often underestimates total construction energy because nuclearLCA tends to overestimate total construction energy because components for nuclear

  8. Resources for the Future | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformationfor the Future Jump

  9. Powering the Future | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment ofofWednesday, April 29,Powering the Future

  10. Whistling Ridge Energy Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build, own and operate the wind project and their associated facilities. The Final Environmental Impact Statement (FEIS) has been issued for the proposed Whistling Ridge...

  11. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  12. Ris Energy Report 7 Future low carbon energy systems

    E-Print Network [OSTI]

    Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

  13. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory Report NREL/TP-620-38800 October 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden Efficiency and Renewable Energy by Midwest Research Institute · Battelle Contract No. DE-AC36-99-GO10337 #12

  14. Energy Efficiency of Future Networks Energy Efficient Transmission in

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Efficiency of Future Networks Part 1: Energy Efficient Transmission in Classical Wireless #12;Goals Energy Efficiency: What it meant last decade; what it means today From a communication network design perspective what should we care about for energy efficient design of cellular

  15. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Solar Water Heater Geothermal energy Biomass Pellets mil m2 Mtce Mt consumption Biogas and Biomass Gasification Liquid Biofuels Bioethanol Biodiesel mil rural households

  16. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Technology. ” London: Renewable UK. Available at: http://tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi." Renewable and Sustainable Energy

  17. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    stage of the cycle. Uranium Mining and Milling China hasissues surrounding uranium mining, the land intensity for40 Table 17. Uranium Ore Mining and Milling Energy Intensity

  18. Dark Energy and Life's Ultimate Future

    E-Print Network [OSTI]

    Ruediger Vaas

    2007-03-19

    The discovery of the present accelerated expansion of space changed everything regarding cosmology and life's ultimate prospects. Both the optimistic scenarios of an ever (but decelerated) expanding universe and of a collapsing universe seem to be no longer available. The final future looks deadly dark. However, the fate of the universe and intelligence depends crucially on the nature of the still mysterious dark energy which drives the accelerated expansion. Depending on its - perhaps time-dependent - equation of state, there is a confusing number of different models now, popularly called Big Rip, Big Whimper, Big Decay, Big Crunch, Big Brunch, Big Splat, etc. This paper briefly reviews possibilities and problems. It also argues that even if our universe is finally doomed, perhaps that doesn't matter ultimately because there might be some kind of eternal recurrence. - Key words: Cosmology, Universe, Dark Energy, Cosmological Constant, Quintessence, Phantom Energy, Inflation, Quantum Gravity, Far Future, Life, Intelligence

  19. DTT Energy Reduction Project 

    E-Print Network [OSTI]

    Heinrich, C.

    2004-01-01

    DuPont Titanium Technologies has developed a sustainable growth strategy that includes an initiative focused on improving energy efficiency. The energy efficiency initiative is a disciplined approach that began with creation of an Energy...

  20. GDF Future Energies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co Ltd JumpLatinoEngineering |Future

  1. Probing dark energy with future surveys

    E-Print Network [OSTI]

    Roberto Trotta

    2006-07-21

    I review the observational prospects to constrain the equation of state parameter of dark energy and I discuss the potential of future imaging and redshift surveys. Bayesian model selection is used to address the question of the level of accuracy on the equation of state parameter that is required before explanations alternative to a cosmological constant become very implausible. I discuss results in the prediction space of dark energy models. If no significant departure from w=-1 is detected, a precision on w of order 1% will translate into strong evidence against fluid-like dark energy, while decisive evidence will require a precision of order 10^-3.

  2. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  3. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Vladimir Shiltsev

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    s solar thermal power technology development. ” Energy 35:GW Solar Thermal GW Tidal Power GW Other Renewable Energyenergy development will likely remain solar photovoltaic (PV) and concentrated solar thermal

  5. Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Develops Student-Stakeholders ProjectBaseload

  6. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  7. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  8. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

  9. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert...

  10. Comprehensive Energy Projects (CEP) and Innovative Financing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comprehensive Energy Projects (CEP) and Innovative Financing Comprehensive Energy Projects (CEP) and Innovative Financing Presented at the Technology Transition Corporation and...

  11. HPI Future SOC Lab: Call for Projects The Hasso-Plattner-Institute (HPI) operates the "HPI Future SOC Lab" together

    E-Print Network [OSTI]

    Weske, Mathias

    by a number of smaller Intel systems as well as an NVIDIA Tesla GPU Computing system. SAP provides accessHPI Future SOC Lab: Call for Projects The Hasso-Plattner-Institute (HPI) operates the "HPI Future SOC Lab" together with its industrial partners EMC², Fujitsu, Hewlett-Packard, and SAP. EMC², Fujitsu

  12. HPI Future SOC Lab: Call for Projects The Hasso-Plattner-Institute (HPI) operates the "HPI Future SOC Lab" together

    E-Print Network [OSTI]

    Baer, Christian

    as an NVIDIA Tesla GPU Computing system. SAP provides access to its Platform as a Service offering, SAPHPI Future SOC Lab: Call for Projects The Hasso-Plattner-Institute (HPI) operates the "HPI Future SOC Lab" together with its industrial partners EMC², Fujitsu, Hewlett-Packard, and SAP. EMC², Fujitsu

  13. Transportation Energy Futures Series: Projected Biomass Utilization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of agricultural products. Goals for biopower policies include displacement of coal for environmental concerns and GHG reduction. In the past two decades, the U.S. Department of...

  14. Future Communications Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathyEnergydetailsof EnergyStandardFuture

  15. Growing America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial OpportunitiesDepartment of EnergyGrowing America's

  16. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  17. Tribal Renewable Energy Advanced Course: Project Development...

    Energy Savers [EERE]

    Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

  18. Microsoft Word - Renewable_Energy_Efficient_Energy_Projects_Loan...

    Broader source: Energy.gov (indexed) [DOE]

    SUPPLEMENT U.S. Department of Energy Loan Programs Office FEDERAL LOAN GUARANTEES FOR RENEWABLE ENERGY PROJECTS AND EFFICIENT ENERGY PROJECTS INCLUDED DOCUMENTS (UPDATED: April 22,...

  19. Future Energy Assets LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado:Georgia: EnergyGeothermal Field

  20. Future Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado:Georgia: EnergyGeothermal

  1. RP-5 Renewable Energy Efficiency Project

    SciTech Connect (OSTI)

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2004-01-29

    This is the sixth quarterly technical report for the RP-5 Renewable Energy Efficiency Project. The report summarizes the work progress, effort and activities that took place during the period from October 1, 2003 through December 31, 2003. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. In coordination with the DOE, IEUA has revised the original Cooperative Agreement to reflect the actual and current project scope of work. The original Agreement statement of work (SOW) included conceptual and preliminary equipment and systems, which were further evaluated for feasibility and suitability for the project. As a result, some of the equipment was taken out of the project scope. In response to questions from the DOE, IEUA has submitted a summary report on the Organic Rankine Cycle (ORC) secondary power generation units for availability and suitability for this project and associated safety concerns pointed out by the DOE. IEUA has awarded the consulting engineering contract to Parsons Water and Infrastructure, Inc. to provide the project's design and construction services. The project's pre-design kickoff meeting was held at IEUA's headquarters on December 11, 2003. IEUA has submitted a proposal for a grant offered by California Energy Commission (CEC) which if awarded to IEUA, will add value to this project. IEUA has finalized and signed the agreement with Stirling Energy Systems (SES) to host a 25 kW Stirling Engine at the RP-5 plant site for reliability and performance testing using digester and natural gas. As a result of further evaluation of the flexible microturbine system, IEUA has decided to take it out of the project's scope of work; however, it may be considered in future projects at other locations. IEUA has installed a 60 kW Photovoltaic (PV) power generation system on the roof of the new headquarters building. A matching funds update is also included in the Results and Discussion section. The update presents the work effort performed by CH2M Hill, the PIER Consultant, and the associated costs that serve as matching funds for the RP-5 Renewable Energy Efficiency Project during this report period.

  2. Tribal Energy Project Development Through ESCOs

    Broader source: Energy.gov [DOE]

    Download presentation slides below for the Tribal Energy Project Development through Energy Service Companies (ESCOs) webinar on April 21, 2010.

  3. Energy Department Announces Six Clean Energy Projects through...

    Energy Savers [EERE]

    "Renewable energy and energy efficiency improvements are essential to shaping our clean energy future," said U.S. Department of Energy Secretary Ernest Moniz. "This partnership...

  4. The Role Of IC Engines In Future Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of IC Engines In Future Energy Use The Role Of IC Engines In Future Energy Use Reviews future market trends and forecasts, and future engine challenges and research focus...

  5. Coal: the cornerstone of America's energy future

    SciTech Connect (OSTI)

    Beck, R.A. [National Coal Council (United Kingdom)

    2006-06-15

    In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

  6. RP-5 RENEWABLE ENERGY PROJECT

    SciTech Connect (OSTI)

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2003-01-30

    This is the second quarterly technical report for the RP-5 Renewable Energy Project. The report summarizes the work progress, effort and activities that took place during the period of October 1, 2002 to December 31, 2002. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. This technical report covers all meetings and discussions that were conducted in order to follow up on potential renewable energy technologies that were identified in the previous report; the technologies were analyzed for their feasibility, suitability and cost effectiveness for this project. This report covers the one-day conceptual design kickoff meeting that took place on November 4, 2002. The meeting was held to discuss the practicality and implementation of potential innovative technologies. Following the kickoff meeting, Inland Empire Utilities Agency (IEUA) and CH2M Hill, the Public Interest Energy Research (PIER) Consultant, held a meeting on December 2, 2002 to discuss the Conceptual Design Report outline and contents in order to clearly present each selected technology along with its evaluation, cost effectiveness and justification. A conference call also took place between the PIER Consultant and IEUA on December 13, 2002, to discuss the overall scope of work for this project. Major project activities in this period include expanded discussions on previous Energy Charrette decisions and recommendations, conceptual design kickoff meeting, conceptual design report, and deciding on the overall project scope of work.

  7. Guidelines for Home Energy Professionals Project Glossary

    Broader source: Energy.gov [DOE]

    This document contains key terms and definitions used in the Guidelines for Home Energy Professionals Project.

  8. U. S. Department of Energy project book

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This book covers representative projects in each program within the Department of Energy. The projects included were selected to provide an insight into the wide spectrum of projects authorized and under way in the Department. The projects described do not cover all projects authorized - they are merely representative. Descriptions, goals, and status are given for 29 energy projects, 4 scientific projects, and 5 defense projects. (RWR)

  9. Japanese Future Space Programs for High Energy Astrophysics KAZUHISA MITSUDA

    E-Print Network [OSTI]

    Mitsuda, Kazuhisa

    Japanese Future Space Programs for High Energy Astrophysics KAZUHISA MITSUDA Institute of space and astronautical science, Sagamihara 229-8510, Japan ABSTRACT. Japanese future space programs for high energy the Japanese future space high energy astrophysics missions in 2000's and early 2010's. The approved

  10. MACHINE DESIGN CONSIDERATIONS FOR THE FUTURE ENERGY CHALLENGE

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    MACHINE DESIGN CONSIDERATIONS FOR THE FUTURE ENERGY CHALLENGE Jonathan W. Kimball and Marco Amrhein. As part of the International Future Energy Challenge, student teams are endeavoring to improve the effi and finite- element results are shown. I. INTRODUCriON The International Future Energy Challenge (FEC

  11. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product

  12. The Solar Economy: Renewable Energy for a Sustainable Global Future

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2003-01-01

    Pakistan Hermann Scheer. The Solar Economy: Renewable EnergyRenewable Energy for a Sustainable Global Future By Hermann Scheer Reviewed by Umar Karim Mirza Pakistan

  13. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends and Future Outlook Nan Zhou, Michael A.2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , Washington

  14. Take Action Now: Empower a Secure Energy Future

    Broader source: Energy.gov [DOE]

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future campaign handout.

  15. Take Action Now: Empower a Secure Energy Future 2

    Broader source: Energy.gov [DOE]

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future 2 handout.

  16. Complementarity of Future Dark Energy Probes

    E-Print Network [OSTI]

    Jiayu Tang; Filipe B. Abdalla; Jochen Weller

    2008-07-20

    In recent years a plethora of future surveys have been suggested to constrain the nature of dark energy. In this paper we adapt a binning approach to the equation of state factor ``w'' and discuss how future weak lensing, galaxy cluster counts, Supernovae and baryon acoustic oscillation surveys constrain the equation of state at different redshifts. We analyse a few representative future surveys, namely DES, PS1, WFMOS, PS4, EUCLID, SNAP and SKA, and perform a principal component analysis for the ``w'' bins. We also employ a prior from Planck cosmic microwave background measurements on the remaining cosmological parameters. We study at which redshifts a particular survey constrains the equation of state best and how many principal components are significantly determined. We then point out which surveys would be sufficiently complementary. We find that weak lensing surveys, like EUCLID, would constrain the equation of state best and would be able to constrain of the order of three significant modes. Baryon acoustic oscillation surveys on the other hand provide a unique opportunity to probe the equation of state at relatively high redshifts.

  17. Future of the Department of Energy's uranium enrichment enterprise

    SciTech Connect (OSTI)

    Sewell, P.G.

    1991-11-01

    The national energy strategy (NES) developed at President Bush's direction provides a focus for the US Department of Energy (DOE) future policy and funding initiatives including those of the uranium enrichment enterprise. The NES identifies an important and continuing role for nuclear energy as part of a balanced array of energy sources for meeting US energy needs, especially the growing demand for electricity. For many years, growth in US electricity demand has exhibited a strong correlation with growth in gross national product. NEW projections indicate that the US will need between 190 and 275 GW of additional system capacity by 2010. In order to unable nuclear power to help meet this need, the NEW establishes basic objectives for nuclear power. These objectives are to have a first order of a new nuclear power plant by 1995 and to have such a plant operational by 2000. The expansion of nuclear power anticipated in the NEW affirms a continuing need for a strong domestic uranium enrichment services supply capability. In terms of the future outlook for uranium enrichment, the atomic vapor laser isotope separation (AVLIS) technology continues to hold great promise for commercial application. If AVLIS efforts are successful, significant financial benefits from the commercial use of AVLIS will be realized by customers and the AVLIS deployment entity by approximately the year 2000 and thereafter.

  18. Selling Energy Conservation Projects to Top Management 

    E-Print Network [OSTI]

    Jonsson, K. A.

    1983-01-01

    A guide to presenting proposals on Energy Conservation Projects by plant engineers to their top level management, in order to get approval for Energy Conservation Projects. Through the author's past experience he ascertained that many Energy...

  19. Portfolio Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnership forHydrogenandGuidance PolicyHeatProjects

  20. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  1. Lessons From the Past for Assessing Energy Technologies for the Future

    E-Print Network [OSTI]

    Lin, Albert

    2014-01-01

    a bridge fuel to a renewable energy future, there is littlebridge fuel to a renewable energy future, nations engaged inthe Future of Government Support for Renewable Energy, at

  2. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    term, sustainable energy future, and that these technologiesterm, sustainable energy future and that these technologiesLevel Sustainable Energy Futures Timothy E. Lipman Jennifer

  3. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    technologies to satisfy future energy demands. On anotheraffecting the choice of future energy technologies can noabout the character of future energy alternatives (Schwartz,

  4. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    ASSESSMENTS VI. ALTERNATIVE ENERGY FUTURES FOR CALIFORNIA--prospects for alternative energy futures based on renewablej CHAPTER VI ALTERNATIVE ENERGY FUTURES FOR CALIFORNIA--

  5. Panel 2, Renewable Energy & Energy Efficiency Projects: Draft...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the last 30 years: Vogtle LPO Has Financed Deployment of Groundbreaking Projects 4 Draft Renewable Energy & Efficient Energy Projects Solicitation 5 Draft Solicitation Can Provide...

  6. Energy Department Authorizes Corpus Christi Liquefaction Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Authorizes Corpus Christi Liquefaction Project to Export Liquefied Natural Gas Energy Department Authorizes Corpus Christi Liquefaction Project to Export Liquefied Natural Gas May...

  7. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  8. IT Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management IT Project Management Qualification, Engineering and Quality Assurance The purpose of the Department of Energy (DOE) IT Project Management, Engineering, and Quality...

  9. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Home Transportation Energy Hydrogen Market Transformation Maritime Hydrogen & SF-BREEZE Maritime Hydrogen Fuel Cell Project Maritime Hydrogen Fuel Cell...

  10. UWA Renewable Energy Vehicle Project Available Projects: 2nd

    E-Print Network [OSTI]

    1 UWA Renewable Energy Vehicle Project Available Projects: 2nd Semester 2005 Time commitment values materials and distribute 4) Educate team on marketing strategies 5) Contact potential sponsors, media

  11. Energy Options for the Future* John Sheffield,1

    E-Print Network [OSTI]

    Energy Options for the Future* John Sheffield,1 Stephen Obenschain,2,12 David Conover,3 Rita Bajura at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004, geo- thermal, and biomass energy sources and the effect of measures for energy conservation

  12. BLUEPRINT FOR A SECURE ENERGY FUTURE March 30, 2011

    E-Print Network [OSTI]

    Lotko, William

    , including renewables like wind and solar, as well as clean coal, natural gas, and nuclear power ­ keeping America on the cutting edge of clean energy technology so that we can build a 21st century clean energy. Innovate Our Way to a Clean Energy Future Harness America's Clean Energy Potential Win the future through

  13. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage...

  14. Energy Department to Help Tribes Advance Clean Energy Projects...

    Energy Savers [EERE]

    communities nationwide enhance their energy security and build a sustainable energy future, the U.S. Department of Energy today announced the third round of Strategic Technical...

  15. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  16. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  17. Energy and Reliability in Future NOC Interconnected CMPS 

    E-Print Network [OSTI]

    Kim, Hyungjun

    2013-08-01

    In this dissertation, I explore energy and reliability in future NoC (Network-on-Chip) interconnected CMPs (chip multiprocessors) as they have become a first-order constraint in future CMP design. In the first part, we ...

  18. Biomass 2008: Fueling Our Future Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy...

  19. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  20. EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV Documents...

  1. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  2. Sandia Energy - Reference Model Project (RMP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (RMP) Home Stationary Power Energy Conversion Efficiency Water Power Reference Model Project (RMP) Reference Model Project (RMP)Tara Camacho-Lopez2015-05-11T21:01:36+00:00...

  3. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    A; Simonot, E. (2011). The Cost of Wind Energy. Spanish Wind5. DRIVERS OF FUTURE WIND ENERGY COST REDUCTIONS A largeput upward pressure on wind energy costs, such as continued

  4. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn

    2001-01-01

    challenges for our future energy supply. The study describeswere an alternative to future energy taxation (Van Ginkel &2000. Scenarios for a Clean Energy Future. Lawrence Berkeley

  5. Project Management: Key to the future success of your office

    E-Print Network [OSTI]

    a case for project management in our offices Provide an easy entry point into project management Focus, Cost, Quality, HR, Communication, Risk, Procurement, and Stakeholder Management #12;Educational Opportunities HR classes 3rd party education companies New Horizons PMI Extensive professional development

  6. Noncommercial Trading in the Energy Futures Market

    Reports and Publications (EIA)

    1996-01-01

    How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

  7. Energy Strategic Planning & Sufficiency Project

    SciTech Connect (OSTI)

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  8. Successful Tribal Renewable Energy Projects Webinar | Department...

    Office of Environmental Management (EM)

    Successful Tribal Renewable Energy Projects Webinar Successful Tribal Renewable Energy Projects Webinar August 26, 2015 11:00AM to 12:30PM MDT In the past two years there have been...

  9. Getting to Know Nuclear Energy: The Past, Present & Future

    E-Print Network [OSTI]

    Kemner, Ken

    Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

  10. Culham Centre for Fusion Energy Fusion -A clean future

    E-Print Network [OSTI]

    Culham Centre for Fusion Energy Fusion - A clean future FUSION REACTION Research at Culham Centre that drives the sun ­ could play a big part in our sustainable energy future. Around the globe, scientists are divided over whether to include nuclear fission in their energy portfolios; and renewable sources

  11. THE FUTURE OF NUCLEAR ENERGY IN THE UK

    E-Print Network [OSTI]

    Birmingham, University of

    THE FUTURE OF NUCLEAR ENERGY IN THE UK Birmingham Policy Commission The Report July 2012 #12;2 The Future of Nuclear Energy in the UK Foreword by the Chair of the Commission It was a great honour to have security. Historically nuclear energy has had a significant role in the UK and could continue to do so

  12. The Future Energy and GHG Emissions Impact of Alternative Personal

    E-Print Network [OSTI]

    The Future Energy and GHG Emissions Impact of Alternative Personal Transportation Pathways in China://globalchange.mit.edu/ Printed on recycled paper #12;The Future Energy and GHG Emissions Impact of Alternative Personal Paul N. Kishimoto, Sergey Paltsev and Valerie J. Karplus Report No. 231 September 2012 China Energy

  13. for a Sustainable Energy Future Sossina M. Haile

    E-Print Network [OSTI]

    Subramanian, Venkat

    technically feasible 0.9 TW economically feasible 0.6 TW installed capacity 12 TW gross over land small Future Energy Solutions Solar 1.2 x 105 TW at Earth surface 600 TW practical Biomass 5-7 TW gross all Sustainable Energy Future Sustainable Energy Cycle Solar plant Biomass H2O H2Capture Storage Delivery

  14. Policy Forum Series "Beyond 33 Percent: California's Renewable Energy Future,

    E-Print Network [OSTI]

    California at Davis, University of

    Policy Forum Series "Beyond 33 Percent: California's Renewable Energy Future, From Near as it transitions to a renewable energy future. Featuring panelists from government, industry and academia the renewables portfolio standard (RPS) beyond 33 percent. "Beyond 33 Percent: California's Renewable Energy

  15. Magnesium Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.LeadershipLumiledsof Energy MONDAY:Department2Projects

  16. Project Reports | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget | DepartmentLogisticalProjectDepartment

  17. "Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy

    E-Print Network [OSTI]

    Dawson, Jeff W.

    "Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy GRADUATE PROGRAMS IN SUSTAINABLE ENERGY SHAPE YOUR FUTURE BASED ON YOUR RESEARCH INTERESTS Sustaining programs in sustainable energy address these crucial challenges in a unique interdisciplinary fashion

  18. Draft Environmental Impact Statement for FutureGen Project

    Broader source: Energy.gov (indexed) [DOE]

    Steam H 2 By-Product Quench Water Coal Prep Dry Pulverize Selexol Unit Water Quench Gasifier DOEEIS-0394D FUTUREGEN PROJECT EIS DRAFT SUMMARY MAY 2007 S-37 Planned research,...

  19. Comprehensive Energy Projects (CEP) and Innovative Financing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Comprehensive Energy Projects (CEP) and Innovative Financing Presented at the Technology Transition Corporation and U.S. Department of Energy Webinar: The Top 5 Fuel...

  20. Tribal Renewable Energy Advanced Course: Project Development...

    Office of Environmental Management (EM)

    Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

  1. PROJECT PROFILE: Vermont Energy Investment Corporation (Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Energy Investment Corporation (Solar Market Pathways) PROJECT PROFILE: Vermont Energy Investment Corporation (Solar Market Pathways) Title: Vermont Solar Development Plan...

  2. Energy futures: Trading opportunities for the 1990s

    SciTech Connect (OSTI)

    Treat, J.E.

    1990-01-01

    This volume contains an edited collection of views from practitioners in the rapidly growing area of energy futures and options trading, a major element of risk management. Four chapters are devoted to Trading Theories and Strategies. This section is aimed at the specialist in energy, rather than finance. The complexities of options trading are described in another chapter. The remaining sections of this book present a variety of topics in this field including Natural Gas Trading and Futures, Energy Futures and Options Trading, and Accounting, Taxation and Internal Control. The book is a good introduction and reference to the mechanics and institutions of energy futures contracts and trading.

  3. Advanced Energy Projects: FY 1993, Research summaries

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  4. Project Frog: Net Zero Energy Comparative Analysis

    E-Print Network [OSTI]

    Project Frog: Net Zero Energy Comparative Analysis Hawai`i Natural Energy Institute | School undertand how they perform. The net zero energy (NZE) platforms were installed as research prototypes, Kauai #12;Project Frog: Net Zero Energy Comparative Analysis Hawai`i Natural Energy Institute | School

  5. Life Cycle Cost Discount Rates and Energy Price Projections ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Cost Discount Rates and Energy Price Projections Life Cycle Cost Discount Rates and Energy Price Projections Text file containing energy price projections underlying the...

  6. Past and Future Cost of Wind Energy: Preprint

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  7. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  8. Final Risk Assessment Report for the FutureGen Project Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    (shown in Figure 2-4). At the core of the FutureGen Project will be an advanced coal gasifier. Although the specific type of gasifier has not yet been selected, there are several...

  9. DOE Office of Indian Energy Tribal Renewable Energy Project Developmen...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Project Development and Financing Essentials Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for...

  10. Forming the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future This feature article from the April 2014 edition of the Fabricating and Forming Journal (FFJournal) describes how Ford Motor Co.'s sheet metal freeforming technology...

  11. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    SciTech Connect (OSTI)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  12. AgFuture Energy LLC AFE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodynall Countries | OpenEnergy JumpAgFeAgFuture

  13. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  14. Advanced Nuclear Energy Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram Manager DirectoryofDOEAccomplishmentsAdv.Advanced Nuclear Energy Projects

  15. Geysers Project Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver Peak Area (DOEEnergyProject

  16. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

  17. Custom Renewable Energy Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEvery Thanksgiving,isjpgcurrentProjects<

  18. Funding & Financing for Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Funding & Financing for Energy Projects A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. A concentrating solar power...

  19. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    part of the Integrated Energy Policy Report (IEPR) shouldIEPR Integrated Energy Policy Report ISO Independent Systemand Policy and Director, Sustainable Transportation Energy

  20. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    PV installations. Geothermal energy may require water tobiomass, geothermal, hydro, and marine energy offshore. Asgeothermal and hydropower not included in this table The 2050 Energy

  1. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    combination of energy storage, smart grid, bio-electricity,resources such as energy storage, or smart grid-connectedincluding energy storage and smart grid solutions which

  2. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    efficiency, nuclear power, renewable energy, biofuels etc. )and storage (CCS) and renewable energy. We look at two wayspower, or CCS or renewable energy, without worrying about

  3. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    footprint of using biomass for energy is also important.and expansion of biomass for energy does not result into conceive of biomass derived energy without disastrous

  4. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    the portfolio of energy supply to meet these demands, andcases, the choice of energy supply technology changes theassociated with the energy supply technologies needed to

  5. START Renewable Energy Project Development Assistance

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is now accepting applications for the third round of the Strategic Technical Assistance Response Team (START) Renewable Energy Project Development Assistance Program to provide Tribes with technical assistance with furthering the development of community- and commercial-scale renewable energy projects.

  6. Concerns in Marine Renewable Energy Projects

    SciTech Connect (OSTI)

    Sharon Kramer, Mirko Previsic, Peter Nelson, Sheri Woo

    2010-06-17

    To accelerate the adoption of these emerging marine hydrokinetic technologies, navigational and environmental issues and concerns must be identified and addressed. As hydrokinetic projects move forward, various stakeholders will need to be engaged; one of the key issues that project proponents face as they engage stakeholders is that many conflicting uses and environmental issues are not well-understood. Much of this lack of understanding comes from a limited understanding of the technologies themselves. To address this issue, in September 2008, RE Vision consulting, LLC, was selected by the Department of Energy, under their market acceleration program, to apply a scenario-based assessment approach to the emerging hydrokinetic technology sector. The goal was to improve understanding of potential environmental and navigation impacts of these technologies and focus stakeholders on the critical issues. To meet this goal, the study established baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios captured variations in technical approaches and deployment scales and thus grounded the analysis in realistic constraints. The work conducted under this award provides an important foundation to other market acceleration activities carried out by the DoE and other stakeholders in this sector. The scenarios were then evaluated using a framework developed by H.T. Harvey & Associates to identify and characterize key environmental concerns and uncertainties. In collaboration with PCCI and the U.S. Coast Guard, navigation issues were assessed and guidelines developed to assure the safe operation of these systems. Finally, the work highlights “next steps” to take to continue development and adoption of marine hydrokinetic energy. Throughout the project, close collaboration with device developers, project developers and regulatory stakeholders was pursued to ensure that assumptions and constraints are realistic. Results concur with most of the permitting hurdles experienced by on-going projects in the U.S., and specific recommendations are provided for identifying and addressing them. While many areas of further research were identified, the study did not identify any major “show-stopper,” largely because these technologies have a relatively low environmental risk-profile if compared to other activities routinely permitted in the marine environment. The frameworks and representative scenarios developed provide an objective and transparent tool for stakeholders, regulators and developers to assist in the decision-making process for siting wave and tidal energy plants, and meet our goal of improving understanding between all stakeholders. The final product consists of three reports: Report 1 - Wave Energy Scenarios This report includes: - A technology characterization of four different wave energy technologies, including major technical specifications, device performance, and technical siting considerations - A site characterization of two potential deployment sites located in Hawaii and California - Outlines of device installation, O&M and decommissioning activities - Navigational demarcation requirements - Deployment Scenarios, identifying all the major life-cycle-related impacts Report 2 - Tidal Energy Scenarios This report includes: - A technology characterization of three tidal energy technologies, including major technical specifications, device performance, and technical siting considerations. - A site characterization of one potential deployment location in the Puget Sound, Washington - Outlines of device installation, O&M and decommissioning activities - Navigational demarcation requirements - Deployment Scenarios, identifying all the major life-cycle-related impacts Report 3 - Framework for Identifying Key Environmental Concerns This report describes frameworks for identifying key environmental effects and applies them to the wave and tidal energy deployment scenarios described in the first two reports. It highlights critical issues and recommendations for future research

  7. Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

  8. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  9. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    center for work on energy-efficient buildings (includingmore efficient buildings which, by 2040, use 80% less energy

  10. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Energy System Component Analysis Bin Wind Onshore, shallow offshorewind, solar, biomass, geothermal, hydro, and marine energy offshore.

  11. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  12. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    e.g. efficiency, nuclear power, renewable energy, biofuelsnuclear power, or CCS or renewable energy, without worrying about efficiency?

  13. USVI Energy Road Map: Charting the Course to a Clean Energy Future...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands...

  14. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    plug-in hybrid or all-electric vehicles. Projected advancesaverage. Including electric vehicle miles in the averagePlug-in Hybrid Electric Vehicles. 13 An important challenge

  15. Growing America's Energy Future: Bioenergy Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    made possible by 50 million in cost-shared DOE funding. Bioenergy Successes 2014 BIOENERGY TECHNOLOGIES OFFICE Completed Feedstock Logistics Projects Demonstrate...

  16. Energy Efficient Electronics Cooling Project

    SciTech Connect (OSTI)

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  17. RP-5 Renewable Energy Efficiency Project

    SciTech Connect (OSTI)

    Neil Clifton; Dave Wall; Jamal Zughbi

    2007-06-30

    This is the final technical report for the RP-5 Renewable Energy Efficiency Project (REEP). The report summarizes, in a comprehensive manner, all the work performed during the award period extending between July 12, 2002 and June 30, 2007. This report has been prepared in accordance with the Department of Energy (DOE) Guidelines and summarizes all of the activities that occurred during the award period. The RP-5 Renewable Energy Efficiency Project, under development by the Inland Empire Utilities Agency (IEUA), is comprised of a series of full-scale demonstration projects that will showcase innovative combinations of primary and secondary generation systems using methane gas derived from local processing of biosolids, dairy manure and other organic material. The goal of the project is to create renewable energy-based generation systems with energy efficiencies 65% or more. The project was constructed at the 15 MGD Regional Wastewater Treatment Plant No. 5 located in the City of Chino in California where the Agency has constructed its new energy-efficient (platinum-LEED rating) headquarters building. Technologies that were featured in the project include internal combustion engines (ICE), absorption chillers, treatment plant secondary effluent cooling systems, heat recovery systems, thermal energy storage (TES), Organic Rankine Cycle (ORC) secondary power generation system, the integration of a future fuel cell system, gas cleaning requirements, and other state-of-the-art design combinations. The RP-5 REEP biogas source is coming from three manure digesters which are located within the RP-5 Complex and are joined with the RP-5 REEP through gas conveyance pipelines. Food waste is being injected into the manure digesters for digester gas production enhancement. The RP-5 REEP clearly demonstrates the biogas production and power generation viability, specifically when dealing with renewable and variable heating value (Btu) fuel. The RP-5 REEP was challenged with meeting stringent utility, gas, power, and air quality rules and regulations. Coordination with the Southern California Gas Company (SCGC), Southern California Edison (SCE), and South Coast Air Quality Management District (SCAQMD) was continuous and extensive. The interconnecting agreement and the permit to construct and operate were major obstacles despite the early start and coordination with the utility companies and regulatory agencies. The RP-5 REEP is part of a unique RP-5 Complex approach where several facilities are tied and connected with each other; where energy and gas can be transferred from one facility to another (see attached RP-5 Complex Ultimate Energy Balance Diagram). The REEP also incorporated new technologies, such as TES and ORC, along with using heat recovery for the platinum-LEED headquarter buildings heating and cooling via efficient absorption chillers. Through the conceptual design phase, numerous innovative technologies were researched and evaluated, with the most proven and efficient selected to be part of the RP-5 REEP.

  18. Energy Efficiency Projects: Overcoming Internal Barriers to Implementa...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Projects: Overcoming Internal Barriers to Implementation Energy Efficiency Projects: Overcoming Internal Barriers to Implementation This presentation discusses...

  19. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    2014-06-12

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  20. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  1. SI Engine Trends: A Historical Analysis with Future Projections

    SciTech Connect (OSTI)

    Pawlowski, Alexander; Splitter, Derek A

    2015-01-01

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.

  2. Searchlight Wind Energy Project FEIS Appendix F

    Office of Environmental Management (EM)

    F Page | F 22B Appendix F: Literature Review of Socioeconomic Effects of Wind Project and Transmission Lines Searchlight Wind Energy Project FEIS Appendix F Page | 1 Prepared for"...

  3. Creating A Greener Energy Future For the Commonwealth Massachusetts Alternative

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Creating A Greener Energy Future For the Commonwealth Massachusetts Alternative Portfolio Standard For the Commonwealth Overview of MA Portfolio Standard Programs Renewable Energy Portfolio Standard (RPS) Alternative to acquire Renewable Energy Certificates (RECs) and Alternate Energy Credits (AECs) equal to a set

  4. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  5. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect (OSTI)

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible thatfuture economic growth may be supported by a relatively lower increase inenergy consumption. Over the past 20 years, energy intensity in China hasbeen reduced partly through technological and structural changes; currentannual emissions may be as much as 600 Mt-C lower than they would havebeen without intensity improvements. China must take into account itsunique circumstances in considering how to achieve a sustainabledevelopment path. This study considers the feasibility of such anachievement, while remaining open to exploring avenues of sustainabledevelopment that may be very different from existing models. Threescenarios were prepared to assist the Chinese Government to explore theissues, options and uncertainties that it confronts in shaping asustainable development path compatible with China's uniquecircumstances. The Promoting Sustainability scenario offers a systematicand complete interpretation of the social and economic goals proposed inthe Tenth Five-Year Plan. The possibility that environmentalsustainability would receive low priority is covered in the OrdinaryEffort scenario. Aggressive pursuit of sustainable development measuresalong with rapid economic expansion is featured in the Green Growthscenario. The scenarios differ in the degree to which a common set ofenergy supply and efficiency policies are implemented. In cons ultationwith technology and policy experts domestically and abroad, ERI developedstrategic scenarios and quantified them using an energy accounting model.The scenarios consider, in unprecedented detail, changes in energy demandstructure and technology, as well as energy supply, from 1998 to 2020.The scenarios in this study are an important step in estimating realistictargets for energy efficiency and energy supply development that are inline with a sustainable development strategy. The scenarios also helpanalyze and explore ways in which China might slow growth in greenhousegas emissions. The key results have important policy implications:Depending on how demand for energy services is met, China could quadrupleits gross domesti

  6. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    that best fit efficient conversion to the needed energy mix.energy processes and technologies to find systems that could bestbest use of available biomass. Reducing the carbon footprint of using biomass for energy

  7. Future United States Energy Security Concerns

    E-Print Network [OSTI]

    Deutch, John M.

    Without energy, the economy can neither function nor grow. However, for at least the next half-century, the U.S. will not have an inexhaustible supply of inexpensive, clean energy. Dependence on energy imports, vulnerability ...

  8. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    The renewables case is 100% renewable energy. The additionalthat all cases have at least 33% renewable energy in the33% renewable energy, i.e. the “median case. ” California’s

  9. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    View to 2050 Laser Fusion Energy a Potential Game Changerworld leader in laser fusion energy—a potential game changera Laser Inertial Fusion Energy (LIFE) power plant would be

  10. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    National Laboratory (LBNL) conduct valuable research on energyResearch Facility, Sandia National Laboratories James McMahon, Department Head, EnergyNational Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory

  11. Sustainable Energy Future in China's Building Sector 

    E-Print Network [OSTI]

    Li, J.

    2007-01-01

    This article investigates the potentials of energy-saving and mitigation of green-house gas (GHG) emission offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy...

  12. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    fuels. Large quantities of bio-energy could reduce emissionsor having zero emission bio-energy would then finish the jobemission load balancing or bio-energy with zero emissions,

  13. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    compete with grid power. Wind energy in areas of good winda large build out of wind energy may include adverse impactsfor 2050. Energy System Component Analysis Bin Wind Onshore,

  14. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    compete with grid power. Wind energy in areas of good winda large build out of wind energy may include adverse impactsgigawatt-days of energy if, for example, the wind does not

  15. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    biomass, geothermal, hydro, and marine energy offshore. Asincluding pumped hydro, compressed air energy storage (Energy System Component Analysis Bin Wind Onshore, shallow offshore tur- bines Concentrated Solar Power (CSP) Solar Photovoltaic (PV) Geothermal Hydro and

  16. Miller Sheppard, TSII-201: Visualizing Urban Futures 1 1. PROJECT TEAM

    E-Print Network [OSTI]

    British Columbia, University of

    ) urban energy demand, renewable energy potential, and GHG emissions reductions. While considerable), multi-criteria analysis methods (Feick, Sheppard), and urban energy and GHG modeling (Wright, Kellett and Progress to Date 2.a.1 Project Motivation and Objectives The motivation for this project begins

  17. Clean Energy for America's Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  18. Securing America's Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This letter-fold brochure provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  19. Securing America's Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  20. Energy Monitoring of Software project-team

    E-Print Network [OSTI]

    Lefèvre, Laurent

    Energy Monitoring of Software Systems project-team Romain Rouvoy Aurélien Bourdon Adel Noureddine % Number of Invocations Top 10 > 50% (of 726, 1.3%) #12;Energy Monitoring of Software Systems projectMeter EnergyChecker PowerTop pTop Development is over Not easy to support platform interoperability No reusable

  1. Third Party Financing of Alternate Energy Projects 

    E-Print Network [OSTI]

    Jones, A. C.

    1983-01-01

    of financing alternate energy projects. By the term 'alternate energy' most financial people mean a project which will sell at least part of its total energy output to an electric utility, taking advantage of the rules of PURPA already outlines for you by Marty...

  2. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    renewable case) alone almost exceed the target emissions. California’s Energy Future -renewable energy, i.e. the “median case. ” California’s Energy Future -

  3. Renewable Energy Policy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecentCenter JumpProject Jump to:

  4. Wales Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairexVertVillageVitexWaco,Wales Wind Energy Project

  5. FEMP Offers Training on Distributed-Scale Renewable Energy Projects...

    Energy Savers [EERE]

    Training on Distributed-Scale Renewable Energy Projects: From Planning to Project Closeout FEMP Offers Training on Distributed-Scale Renewable Energy Projects: From Planning to...

  6. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

  7. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  8. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-12-31

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LIFECYCLE ENERGY, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives this project contributes to Energy Research and Development Division's EnergyRelated Environmental Research

  10. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...

    Open Energy Info (EERE)

    Page Edit History Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgw...

  11. Renewable Energy Project Development: Advanced Concept Topics

    Broader source: Energy.gov (indexed) [DOE]

    Concept Topics An Introduction to Risk, Tribal Roles, and Support Policies in the Renewable Energy Project Development Process Course Outline What we will cover... About the...

  12. Identifying Renewable Energy Projects for Federal Agencies |...

    Broader source: Energy.gov (indexed) [DOE]

    projects that can help federal agencies meet their 30% renewable electricity by 2025 target. This research is summarized on this page. Renewable Energy Markets The size of the...

  13. DLA Energy Contracting Renewable Projects Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUPPORT AGENCY WARFIGHTER SUPPORT STEWARDSHIP EXCELLENCE WORKFORCE DEVELOPMENT DLA Energy Contracting Renewable Projects Lessons Learned Andrea L. Kincaid Division Chief and...

  14. Renewable Energy Project Development and Financing: Community...

    Broader source: Energy.gov (indexed) [DOE]

    Community Course Outline What we will cover... About the DOE Office of Indian Energy Education Initiative Community-Scale Process: Hypothetical Example - Project...

  15. Future U.S. water consumption : The role of energy production.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  16. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  17. Clean energy investments in an uncertain future

    E-Print Network [OSTI]

    Harrison, Jessica (Jessica Kit)

    2005-01-01

    The energy sector faces a multitude of challenges related to climate change and energy security. These challenges will likely prompt considerable changes in the coming decades, including significant investment and new ...

  18. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    energy to do the same work (efficiency), and we shift the box to the right (rights. ACKNOWLEDGEMENTS We would also like to thank the Stephen Bechtel Fund and the California Energy

  19. Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects

    E-Print Network [OSTI]

    2001-01-01

    industrial energy- efficiency and electric power projects.of Industrial Energy-Efficiency and Electric Power Projectsof Industrial Energy-Efficiency and Electric Power Projects

  20. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    TSINGHUA - MIT China Energy & Climate Project The energy and CO2 emissions impact of renewable and CO2 emissions impact of renewable energy development in China Tianyu Qi a , Xiliang Zhang a energy development in China* Tianyu Qi, Xiliang Zhang and Valerie Karplus *Reprinted from Energy Policy

  1. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    time-of-use storage (CAES), battery technologies (Na/S,air energy storage (CAES), 25 flywheels and various battery

  2. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    tidal and river tur- bines Enhanced geothermal systems (EGS) Table 4B. Summary of technology readiness for renewable energy

  3. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    electric load balancing, including some combination of energy storage, smart grid, bio-electricity, load-following fossil generation

  4. INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE

    E-Print Network [OSTI]

    INDUSTRIAL ENERGY DATA COLLECTION IN CANADA: EXISTING SYSTEM AND PROPOSED FUTURE DEVELOPMENT. Parminder S. Sandhu Paul Willis October 1994 #12;Industrial Energy Data Collection in Canada: Existing. INTRODUCTION 1 3. NEED FOR INDUSTRIAL ENERGY DATA COLLECTION 2 PART 1 EVALUATION OF EXISTING DATA COLLECTION

  5. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  6. Possible future projection of Indian Summer Monsoon Rainfall (ISMR) with the evaluation of model performance in Coupled

    E-Print Network [OSTI]

    Phipps, Steven J.

    Possible future projection of Indian Summer Monsoon Rainfall (ISMR) with the evaluation of model assessment of future projected rainfall will be important for policy framework. Evaluation of models performance in Coupled Model Inter-comparison Project Phase 5 (CMIP5) P. Parth Sarthi , Soumik Ghosh, Praveen

  7. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Analysis Bin Wind Onshore, shallow offshore tur- bineswind, solar, biomass, geothermal, hydro, and marine energy offshore.offshore tur- bines ”Third generation” PV High-altitude wind

  8. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    capacity factor of 37% is assumed, annual installed renewable energynameplate capacity the entire time. Energy System Componentenergy, the state will need to build about 110 GW of capacity (

  9. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    generation or advanced nuclear technology. 17 “Nuclear Powerour energy needs. Bin Nuclear Technology Coal or Natural Gas4A. Summary of technology readiness for nuclear and CCS. The

  10. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    air energy storage (CAES), 25 flywheels and various batterythat value. Pumped hydro and CAES are more competitive, butreliability. 25 Technically, CAES is not a zero-emission

  11. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    an energy commodity, ancillary impacts on food, water anduncertainty about supply and ancillary impacts on food,scaling up? 3. What are the ancillary impacts? For nuclear

  12. Energy Efficiency Measures to Incorporate into Remodeling Projects

    SciTech Connect (OSTI)

    Liaukus, C.

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of the households in our nation compared to more piecemeal remodeling efforts. Even when programs like the Weatherization Assistance Program and Home Performance with ENERGY STAR are considered, homes that have had a comprehensive energy makeover still represent a small fraction of the 111.1 million households. In this report, the U.S Department of Energy Building America Retrofit Alliance research team looks at the improvement of a home's energy performance in an opportunistic way: it examines what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for the possibility for people who would not normally pursue energy efficiency but will remodel their kitchen or re-side their home to improve their home's performance at the same time. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home's energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  13. The Path to Transforming Knowledge into Energy Projects: DOE...

    Office of Environmental Management (EM)

    The Path to Transforming Knowledge into Energy Projects: DOE Tribal Renewable Energy Webinar Series 2015 The Path to Transforming Knowledge into Energy Projects: DOE Tribal...

  14. Federal Renewable Energy Project Assistance and Resources | Department...

    Energy Savers [EERE]

    Assistance and Resources Federal Renewable Energy Project Assistance and Resources Federal agencies can get renewable energy project assistance from the U.S. Department of Energy's...

  15. Tribal Renewable Energy Advanced Course: Facility Scale Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

  16. HAN Attack Surface and the Open Smart Energy Gateway Project

    E-Print Network [OSTI]

    Searle, Justin

    2014-01-01

    Surface  and  the  Open  Smart   Energy  Gateway  Project  Surface  and  the  Open  Smart   Energy  Gateway  Project  home.       The  Open  Smart  Energy  Gateway  (OpenSEG)  

  17. EERE Project Management Center Database PIA, The Office of Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy Efficiency...

  18. Key Energy-Saving Projects for Smaller Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Energy-Saving Projects for Smaller Facilities Key Energy-Saving Projects for Smaller Facilities This presentation discusses how smaller industrial facilities can save energy...

  19. Property:FuturePlans | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeType JumpFuturePlans Jump to: navigation,

  20. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF LARVAL, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's Energy

  1. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SMUD OFFPEAK this project contributes to Energy Research and Development Division's Renewable Energy Program For more OVERCOOLING PROJECT DECEMBER 2007 CEC5002013066 Prepared for: California Energy Commission Prepared by

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF STEAM research, development, and demonstration (RD&D) projects to benefit California. The Energy Research of California. The information from this project contributes to Energy Research and Development Energy

  3. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SMART GRID ROADMAP, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives: California Energy Commission Dave Michel Project Manager Mike Gravely Office Manager Energy Efficiency

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT EMISSIONS REDUCTIONS, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's Energy

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Developing research, development, and demonstration (RD&D) projects to benefit California. The Energy Research from this project contributes to Energy Research and Development Division's Energy

  6. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    The promise of a clean and sustainable energy future lies infor State-Level Sustainable Energy Futures Timothy E. Lipmanfor State-Level Sustainable Energy Futures Timothy E. Lipman

  7. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01

    the Firm . States of the Future and Energy Sources PercentTable XV-l States of the Future and Energy Sources o ,j ;jto assume that a future energy source, not yet available for

  8. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    5 MW) Innovation for Our Energy Future Conclusions 1. It isthink. Innovation for Our Energy Future Questions Eric LantzPotential Sources of Future Wind Energy Cost Reductions R&D/

  9. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Summit on America’s Energy Future (2008), http://www.natural gas. California’s Energy Future - The View to 2050supply California’ s Energy Future - The View to 2050 and

  10. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    well as to understand future energy in the building sector.well as to understand future energy in the building sector.reduction otherwise. 4.3 Future Energy Outlook Growth in

  11. Winning the Biofuel Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.Energy Thefull swing, andWindEnergy Carlton Brown

  12. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    implies a growth rate for wind power of about 7.5% per year,resources from solar and wind power based on the directionto compete with grid power. Wind energy in areas of good

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY AND ENVIRONMENTAL PERFORMANCE this project contributes to Energy Research and Development Division's Renewable Energy Technologies Program Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  14. Paducah Site Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsomProgressPaducah SiteBackground

  15. Portsmouth Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSite Background »

  16. Could Building Energy Codes Mandate Rooftop Solar in the Future?

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

    2012-08-01

    This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

  17. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    SciTech Connect (OSTI)

    NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

    2012-03-26

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

  18. Energy Savings Performance Contracts for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    An energy savings performance contract (ESPC) is a partnership between a Federal agency and an energy service company (ESCO) that enables the agency to achieve energy savings projects with no up...

  19. Linear response functions to project contributions to future Ricarda Winkelmann Anders Levermann

    E-Print Network [OSTI]

    Levermann, Anders

    Linear response functions to project contributions to future sea level Ricarda Winkelmann · Anders linear response functions to separately estimate the sea-level contributions of thermal expansion to sea- level rise considered here, we will restrict the approach to linear response functions

  20. Department of Energy and FutureGen Alliance Discuss Next Steps...

    Energy Savers [EERE]

    Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture and storage project in Illinois. The project remains on track for obligation...

  1. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Energy Efficiency and Renewable Energy. Office of VehicleEnergy Efficiency and Renewable Energy. U.S. Department ofReport. National Renewable Energy Laboratory (NREL)

  2. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Efficiency and Renewable Energy. Office of Vehicleof Energy Efficiency and Renewable Energy. U.S. DepartmentDemonstration Report. National Renewable Energy Laboratory (

  3. Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |Project Management Project ManagementProject

  4. The Role of the Internal Combustion Engine in our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Internal Combustion Engine in our Energy Future The Role of the Internal Combustion Engine in our Energy Future Reviews heavy-duty vehicle market, alternatives to internal...

  5. Wind Energy Education and Outreach Project

    SciTech Connect (OSTI)

    David G. Loomis

    2011-04-15

    The purpose of Illinois State Universityâ??s wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

  6. Forming the Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report toDepartment of EnergycontractorsThefeature article

  7. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  8. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect (OSTI)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  9. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect (OSTI)

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

  10. Energy, Environment, and the Future of Mankind

    E-Print Network [OSTI]

    Cohen, Ronald C.

    is overdeveloped in terms of the excessive consumption of natural resources and the damage done to our ecosystem or wasteful consumption of natural resources cannot be the ideal models of development. 6 #12;CO2 Emissions, and natural gas in 80-100 years. 2. Before we are halfway through this century, the gap between energy demand

  11. Energy Efficiency Measures to Incorporate into Remodeling Projects

    SciTech Connect (OSTI)

    Liaukus, C.

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of U.S. households compared to piecemeal remodeling efforts. In this report, the U.S Department of Energy Building America Retrofit Alliance research team examines the improvement of a home’s energy performance in an opportunistic way by examining what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for energy efficiency upgrades to occur at the same time as remodeling proejcts. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home’s energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  12. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn

    2001-01-01

    2000. Scenarios for a Clean Energy Future. Lawrence BerkeleyIndustry: Results from the Clean Energy Futures Study ErnstABSTRACT Scenarios for a Clean Energy Future (CEF) studied

  13. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect (OSTI)

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  14. Growing Americas Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting Oversight Committee on HomelandBusiness

  15. Energy Department Announces Project Selections for Enhanced Geothermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS)...

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    37 Energy Usage Realisticfor reducing transportation energy usage and resulting GHGtotal light-duty fuel energy usage is approximately 49%

  17. NYMEX Coal Futures - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYearEnergyPresentations &LycominglongMidwestern1BackgroundNYMEX Coal

  18. Enterprise SRS Future Initiatives | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing Facility Construction Quality480Enterprise

  19. Growing the Future Bioeconomy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping STD-1128-2013 April< BackGovernmenttheof 2014

  20. GreenFuture Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL SolarGate SolarGijeonWind Energy formerly

  1. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    TSINGHUA - MIT China Energy & Climate Project An Integrated Assessment of China's Wind Energy;1 An Integrated Assessment of China's Wind Energy Potential Da Zhang* , Michael Davidson§ , Bhaskar Gunturu production cost functions for wind at the provincial level for both onshore and offshore, incorporating

  2. Renewable Energy Project Development Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  3. Combined Opportunities in Energy & Water Conservation Projects

    E-Print Network [OSTI]

    Keller, Arturo A.

    Combined Opportunities in Energy & Water Conservation Projects A.Keller, S. Hughes, S. Bennett, M Irrigation, Diswashers Composting Toilets Policy Recommendations The Energy-Water Nexus Modeling Co saturation in the water district In the arid western US, securing beneficial and cost-effective energy

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT RESEARCH ROADMAP, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives: California Energy Commission Cathy Turner Contract Manager Guido Franco Project Managers Linda Spiegel Office

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ONSITE AEROBIC research, development, and demonstration (RD&D) projects to benefit California. The Energy Research. The information from this project contributes to Energy Research and Development Division's Transportation

  6. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT WIND STORAGE Commission's Public Interest Energy Research (PIER) Program. During the two years of the project research, development, and demonstration (RD&D) projects to benefit California. The Energy Research

  7. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT. The information from this project contributes to Energy Research and Development Division's Renewable for: California Energy Commission Zhiqin Zhang Golam Kibrya Project Managers Linda Spiegel Office

  8. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT&D) projects to benefit California. The Energy Research and Development Division strives to conduct the most Program. The information from this project contributes to Energy Research and Development Division

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT HYBRID SOLAR LIGHTING, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives National Laboratory. The information from this project contributes to Energy Research and Development

  10. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT PROJECT NEGATHERM.S. Project Manager Linda Spiegel Office Manager Energy Generation Research Laurie ten Hope Deputy Director Energy Research and Development Robert Oglesby Executive Director DISCLAIMER This report was prepared

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT TECHNICAL BRIEFS, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's Buildings End

  12. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ADVANCED EPI TOOLS, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Materials Incorporated. The information from this project contributes to Energy Research and Development

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Demonstration, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Institute. The information from this project contributes to Energy Research and Development Division

  14. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Integrated CHP Research, Development, and Demonstration (RD&D) projects to benefit California. The Energy Research. The information from this project contributes to Energy Research and Development Division's Advanced Generation

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PROBABILISTIC TRANSMISSION CONGESTION, development, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Institute. The information from this project contributes to Energy Research and Development Division

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT INTEGRATING BIOENERGETICS, SPACIAL. The information from this project contributes to Energy Research and Development Division's Energy Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH

  17. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PLANNING ALTERNATIVE this project contributes to Energy Research and Development Division's EnergyRelated Environmental Research Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  18. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT FLEXIBLE: California Energy Commission Bernard Treanton Project Manager Mike Gravely Office Manager Energy Systems Renewable Energy Laboratory and the California Energy Commission for their support of this research

  19. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT HUMBOLDT COUNTY: Public Interest Energy Research (PIER) California Energy Commission Michael Sokol Project Manager Linda: California Energy Commission Prepared by: Schatz Energy Research Center #12; Prepared by: Primary

  20. Reference Projections Energy and Emissions

    E-Print Network [OSTI]

    are decreasing. Oil and coal consumption increase, renewable energy grows rapidly but plays a modest role. Energy consumption continues to increase Compared to the last decade, the increase in energy consumption, energy consumption increases less rapidly The relatively mild winters of the last 15 years have led

  1. Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |Project Management Project Management Workers

  2. Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |Project Management Project Management

  3. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S. (ed.)

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  4. Department of Energy Paves Way for Additional Clean Energy Projects...

    Energy Savers [EERE]

    manufacturing sector, which is part of the Administration's long-term plan to create new green energy jobs. The solicitation will seek applications for projects that manufacture...

  5. For the MTS (Marine Transportation System Research & Technology) Conference The CCOM Chart-of-the-Future Project

    E-Print Network [OSTI]

    Ware, Colin

    For the MTS (Marine Transportation System Research & Technology) Conference The CCOM Chart-of-the-Future Project: Maximizing Mariner Effectiveness through Fusion of Marine & Visualization Technologies Matthew D-of-the-Future Project is to develop a marine decision support system that takes full advantage of existing and emerging

  6. What influence will future solar activity changes over the 21st century have on projected global near-surface

    E-Print Network [OSTI]

    Lockwood, Mike

    What influence will future solar activity changes over the 21st century have on projected global underestimate the response to solar variations, then there is a potential for a reduction in solar activity will future solar activity changes over the 21st century have on projected global near-surface temperature

  7. ACT2 Project: Measuring Energy Savings 

    E-Print Network [OSTI]

    Krieg, B. L.; Baker, M.

    1992-01-01

    Pacific Gas and Electric Company has initiated a major demonstration project to test the hypothesis that substantial energy efficiency improvements can be achieved in customer facilities at costs competitive with supply. This paper describes...

  8. Model Ordinance for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Oregon Department of Energy issued guidance to local governments to address wind, solar, geothermal, biomass, and co-generation project planning needs at the city and county level in July 2005...

  9. Why Energy Projects Do Not Get Approved 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1986-01-01

    We have all struggled to convince management to pursue energy conservation alternatives using economic arguments such as internal rates of return, project payback, and net present value. Some have tried life cycle ...

  10. www.kostic.niu.edu Global Energy and Future:Global Energy and Future

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Conservation andImportance of Energy Conservation and Renewable and Alternative Energy ResourcesRenewable and Alternative Energy Resources Prof. M. KosticProf. M. Kostic Mechanical Engineering NORTHERN ILLINOIS of Energy Conservation andImportance of Energy Conservation and Renewable and Alternative Energy Resources

  11. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    Gas-Fired Distributed Energy Resource Characterizations”,Energy Reliability, Distributed Energy Program of the U.S.Microgrids for a Distributed Energy Future in Portugal

  12. 2014 Commercial-Scale Renewable Energy Project Development and...

    Energy Savers [EERE]

    2014 Commercial-Scale Renewable Energy Project Development and Finance Workshop Agenda and Presentations 2014 Commercial-Scale Renewable Energy Project Development and Finance...

  13. Treasury, Energy Departments Release New Advanced Coal Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit...

  14. Tribal Renewable Energy Webinar on Project Implementation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Renewable Energy Webinar on Project Implementation and Operations & Maintenance on Aug. 8 Tribal Renewable Energy Webinar on Project Implementation and Operations &...

  15. MANHATTAN PROJECT NATIONAL HISTORICAL PARK | Department of Energy

    Energy Savers [EERE]

    Secretaries of Energy A Brief History of the Energy Department Historical Resources DOE History Timeline Manhattan Project Manhattan Project National Historical Park The...

  16. UNEP-GEF Renewable Energy Project Financial Risk Management in...

    Open Energy Info (EERE)

    UNEP-GEF Renewable Energy Project Financial Risk Management in Developing Countries Jump to: navigation, search Name UNEP-GEF Renewable Energy Project Financial Risk Management in...

  17. Diversifying Project Portfolios for Utility Energy Service Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Service Contracts Diversifying Project Portfolios for Utility Energy Service Contracts Building a diversified project portfolio enhances utility energy service contracts (UESCs)...

  18. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Broader source: Energy.gov (indexed) [DOE]

    25, 2014 EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final General Conformity Determination, June 23, 2014 December 21,...

  19. Tribal Renewable Energy Advanced Course: Commercial Scale Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course...

  20. DOE Supports Renewable Energy Deployment Projects for Forest...

    Energy Savers [EERE]

    DOE Supports Renewable Energy Deployment Projects for Forest County Potawatomi Community DOE Supports Renewable Energy Deployment Projects for Forest County Potawatomi Community...

  1. Community- and Facility-Scale Tribal Renewable Energy Project...

    Energy Savers [EERE]

    Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop: Colorado Community- and Facility-Scale Tribal Renewable Energy Project Development...

  2. DOE to Host Three Alaska Native Village Renewable Energy Project...

    Office of Environmental Management (EM)

    Three Alaska Native Village Renewable Energy Project Development Workshops in March DOE to Host Three Alaska Native Village Renewable Energy Project Development Workshops in March...

  3. Tribal Renewable Energy Advanced Course: Community Scale Project...

    Energy Savers [EERE]

    Tribal Renewable Energy Advanced Course: Community Scale Project Development Tribal Renewable Energy Advanced Course: Community Scale Project Development Watch the DOE Office of...

  4. DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Renewable Energy Projects, Renewable Natural Gas for Vehicles, and More DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable Natural Gas for Vehicles, and...

  5. Project Funding Catalog of Services | Department of Energy

    Office of Environmental Management (EM)

    services it offers for federal agencies that want to use project funding mechanisms to finance energy efficiency and renewable energy projects. projectfundingcatalogofservic...

  6. Energy Department Announces Projects to Advance Cost-Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar...

  7. Energy Department Projects Focus on Sustainable Natural Gas Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Projects Focus on Sustainable Natural Gas Development Energy Department Projects Focus on Sustainable Natural Gas Development January 10, 2013 - 1:00pm Addthis...

  8. Executive Order 13212 - Actions To Expedite Energy-Related Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expedite Energy-Related Projects: Federal Register Notice Volume 66, No. 99 - May 18, 2001 Executive Order 13212 - Actions To Expedite Energy-Related Projects: Federal Register...

  9. Energy Efficiency Measures to Incorporate into Remodeling Projects...

    Office of Scientific and Technical Information (OSTI)

    Energy Efficiency Measures to Incorporate into Remodeling Projects Citation Details In-Document Search Title: Energy Efficiency Measures to Incorporate into Remodeling Projects...

  10. Large-Scale Federal Renewable Energy Projects | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable energy projects larger than 10 megawatts (MW), also known as utility-scale projects, are complex and typically require private-sector financing. The Federal Energy...

  11. The Uniform Methods Project: Methods for Determining Energy Efficiency...

    Energy Savers [EERE]

    The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures (April 2013) The Uniform Methods Project: Methods for Determining Energy...

  12. The Uniform Methods Project: Methods for Determining Energy Efficiency...

    Office of Environmental Management (EM)

    The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures The Uniform Methods Project: Methods for Determining Energy Efficiency Savings...

  13. 2013 Commercial-Scale Tribal Renewable Energy Project Development...

    Energy Savers [EERE]

    2013 Commercial-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Commercial-Scale Tribal Renewable Energy Project Development...

  14. Generating Energy Efficiency Project Leads and Allocating Leads...

    Energy Savers [EERE]

    Generating Energy Efficiency Project Leads and Allocating Leads to Contractors Generating Energy Efficiency Project Leads and Allocating Leads to Contractors Better Buildings...

  15. Renewable Energy Project Bond Program

    Broader source: Energy.gov [DOE]

    For the purposes of this program, renewable energy is defined as "a source of energy that occurs naturally, is regenerated naturally or uses as a fuel source, a waste product or byproduct from a...

  16. Global Climate and Energy Project

    Broader source: Energy.gov [DOE]

    2003 DEER Conference Presentation: U.S. Department of Energy FreedomCAR and Vehicle Technologies Program

  17. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    policy implications.   Energy Policy.   2009. 37 (12). ppin Southern California”, Energy Policy, 39 (2011) 1923–1938.and Policy and Director, Sustainable Transportation Energy

  18. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    commodity and energy prices, and alternative advancedany alternative fuel system, gravimetric energy density (MJ/and hydrogen as alternative fuels is in energy storage. The

  19. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    the use of petroleum, use a decarbonized energy carrier andfrom petroleum or biofuels) because of fuel energy densityfrom petroleum or biofuels) because of fuel energy density

  20. Project Based Energy Conservation vs. Management Based Energy Conservation 

    E-Print Network [OSTI]

    Judy, K.; O'Brien, S.

    2009-01-01

    Basic American Foods (BAF) is the largest potato dehydrator worldwide. This paper will trace the shift from a Project Based to Management Based energy conservation program. Second only to raw material, energy is one of the highest expenses at BAF...

  1. Department of Energy ITER Project

    E-Print Network [OSTI]

    possible, the construction and technical management assumptions. The mission of ITER is to demonstrate of operation to meet demand, and manageable waste. Currently, the ITER project is at the stage where the final for proceeding with ITER construction, and they are assessing candidate construction sites at Cadarache, France

  2. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    SciTech Connect (OSTI)

    Annamalai, H

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical western Pacific. On the training of post-doctoral scientists: the PI spent considerable amount of time and efforts in introducing the post-docs into climate modeling and designing the numerical experiments. With training provided and knowledge gained, post-docs worked in the project obtained long term positions elsewhere. The PI also enjoyed the experience in managing the works and educating work ethics to the younger generation. Based on the research achievements and publications, the PI gave invited talks in major international monsoon conferences/workshops, and gave lectures in various research organizations in the last six years. Finally, during the project period, the PI attended all the DOE organized PIs meeting and presented the major results. Some of the major implications of the project include: (i) Sustained observational efforts are necessary to monitor the three-dimensional moisture distribution over the Asian monsoon region that would aid in better understanding, modeling and predicting severe monsoons well in advance and (ii) process-based diagnostics lead pathways for model improvements.

  3. MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHK ProjectsHawaiiInformationIsland

  4. Vineyard Energy Project Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho) JumpWinside, Nebraska (Utility Company)Project

  5. MHK Projects/Penobscot Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos BayOyster 800 Project <

  6. MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoosSlough BendVidalWoodland Light Project

  7. Past Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnership for Energy Sector ClimateFinancialPast

  8. Ris Energy Report 8 The intelligent energy system infrastructure for the future

    E-Print Network [OSTI]

    Risø Energy Report 8 The intelligent energy system infrastructure for the future Reprint Petersen #12;Risø Energy Report 5 Renewable energy for power and transport Global energy policy today is dominated by three concerns: security of supply, climate change, and energy for development and poverty

  9. The Hidden Future Shock in Current Energy Economics 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1981-01-01

    for implementation are either being imposed by EPA, used for public relations tokenism or as trial balloon efforts. The result can be a patchwork, house-of-cards, compendium of energy conservation 'fixes' which reduce plant availability or limit future process...

  10. Evaluation of Future Energy Technology Deployment Scenarios for

    E-Print Network [OSTI]

    Electric Light Company (HELCO) Integrated Resource Plan-31 . Three different electricity infrastructureEvaluation of Future Energy Technology Deployment Scenarios for the Big Island Prepared for the U. Following receipt of the draft report, an extensive review was conducted by Hawaii Electric Light Company

  11. Hydro, Solar, Wind The Future of Renewable Energy

    E-Print Network [OSTI]

    Lavaei, Javad

    Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical the turbine speed constant. The available hydro power is calculated using the height difference between source has become popular and has many immediate benefits to communities that opt to build a hydro

  12. DataHub project (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa: EnergyDarkEnergy2007)DataHub project (Smart

  13. Guidelines for Home Energy Professionals Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    The Guidelines for Home Energy Professionals is a collaboration between the U.S. Department of Energy (DOE) and a wide range of home energy performance industry professionals. The Guidelines project, managed by the National Renewable Energy Laboratory (NREL) for DOE, addresses the need for a highly-skilled weatherization workforce equipped to complete consistent, high-quality home energy upgrades for single-family homes, multifamily homes, and manufactured housing. In doing so, it helps increase energy efficiency in housing, which can mitigate climate change, one of the major challenges of the 21st century.

  14. Innovating a Sustainable Energy Future (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Little, Mark (GE Global Research)

    2012-03-14

    The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT AN ASSESSMENT, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ADVANCED CHARACTERIZATION OF WIND from this project contributes to Energy Research and Development Division's Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research and Development Division Robert P

  17. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT. The information from this project contributes to Energy Research and Development Division's Industrial Virginia Lew Office Manager Energy Efficiency Research Office Laurie ten Hope Deputy Director ENERGY

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT CALIFORNIA AUTONOMOUS UNMANNED AERIAL, development, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  19. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT. The information from this project contributes to Energy Research and Development Division's Industrial Energy Efficiency Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  20. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT RWE SCHOTT SOLAR: California Energy Commission Hassan Mohammed Project Manager Linda Spiegel Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P. Oglesby

  1. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT ENERGY Mohney Contract Manager Kiel Pratt Leah Mohney Project Managers Virginia Lew Office Manager Energy Efficiency Research Office Laurie ten Hope Deputy Director Energy Research and Development Division Robert P

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT AIRQUALITY IMPACTS OF HEAT Inc. The information from this project contributes to Energy Research and Development Division Franco Program Area Lead Energy-Related Environmental Research Linda Spiegel Office Manager Energy

  3. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT ADVANCED DISTRIBUTED SENSOR David Chambers Contract Manager David Chambers Project Manager Mike Gravely Office Manager Energy in this report. #12;PREFACE The California Energy Commission Public Interest Energy Research (PIER) Program

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY INNOVATIONS University Research Foundation. The information from this project contributes to Energy Research: California Energy Commission Prepared by: San Diego State Research Foundation #12; Prepared by: Primary

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ADVANCED POWER ELECTRONICS INTERFACE, development, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Office Manager Energy Systems Research Office Laurie ten Hope Deputy Director Energy Research

  6. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT AUTOMATED ROOFTOP. The information from this project contributes to Energy Research and Development Division's Buildings End Energy Commission Brad Meister Contract Manager Virginia Lew Office Manager Energy Efficiency Research

  7. Advanced energy projects FY 1994 research summaries

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  8. Status and Future of TRANSCOM | Department of Energy

    Office of Environmental Management (EM)

    and Future of TRANSCOM Status and Future of TRANSCOM Current Program Status Upcoming Changes Glimpse at Future Options DOE Commitments Status and Future of TRANSCOM More Documents...

  9. SERC Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard Rutland County DataBuilding |the Wind |March 16,

  10. Project Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices | DepartmentProductManagementProject Benefits

  11. Funding Federal Energy and Water Projects (Fact Sheets)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Overview of alternative financing mechanisms available to Federal agencies to fund renewable energy and energy efficiency projects.

  12. Alternative Financing for Federal Energy and Water Projects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    Overview of alternative financing mechanisms avaiable to Federal agencies to fund renewable energy and energy efficiency projects.

  13. Microsoft Word - Advanced_Nuclear_Energy_Projects_Loan_Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 45 Loan Guarantee Solicitation Announcement Advanced Nuclear Energy Projects 1 UNITED STATES DEPARTMENT OF ENERGY FULL ANNOUNCMENT Loan Guarantee...

  14. Short-term energy outlook quarterly projections. Third quarter 1997

    SciTech Connect (OSTI)

    1997-07-01

    This document presents the 1997 third quarter short term energy projections. Information is presented for fossil fuels and renewable energy.

  15. Past Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLICof EnergyParagonFuel CellsPastPast

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    the demand for energy from the supply. Vehicle efficiency isreductions in energy demand, rather than the supply of low-supply of low-carbon biofuels available for use in the transportation sector and other sectors of the energy

  17. Innovative Energy Projects in Ontario 

    E-Print Network [OSTI]

    Samson, P.

    1984-01-01

    A new control system that enables heat to be reclaimed from gas-fired-boilers' flue gases down to temperatures approaching their acid dew point, without fear of corrosion, is described. Valuable energy savings achieved each summer at the University...

  18. Minneapolis, Minnesota: Energy Pathways Project

    Broader source: Energy.gov [DOE]

    This presentation features Brian Ross, a consultant for the City of Minneapolis, Minnesota with CR Planning. Ross provides an overview of how Minneapolis created a local energy vision for its...

  19. Humbolt Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: Energy Resources

  20. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT WIND STORAGEENHANCED TRANSMISSION RESEARCH AND DEVELOPMENT PROJECT Prepared for: California Energy Commission: Electric Power Research Institute (EPRI) Project Manager: Robert Schainker Primary Author(s): Robert