National Library of Energy BETA

Sample records for future energy demand

  1. Drivers of Future Energy Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption Transportation

  2. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  3. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S.

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  4. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  5. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (This page intentionally left blank) National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy

  6. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West Executive Summary David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency &

  7. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy for the Future

  8. Expert Panel: Forecast Future Demand for Medical Isotopes | Department of

    Office of Environmental Management (EM)

    Energy Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and

  9. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Majumdar, Arun

    2010-01-08

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  10. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  11. Demand Response: Lessons Learned with an Eye to the Future |...

    Energy Savers [EERE]

    Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia ...

  12. Energy Demand | Open Energy Information

    Open Energy Info (EERE)

    affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the...

  13. The Future of U.S. Natural Gas: Supply, Demand & Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developments | Department of Energy The Future of U.S. Natural Gas: Supply, Demand & Infrastructure Developments The Future of U.S. Natural Gas: Supply, Demand & Infrastructure Developments This analysis forecasts natural gas supply, demand, and infrastructure developments through 2030 using an inventory and cell model. After introduction of methodology and market approach, the analysis describes expectations of production and supply and demand. This includes how production shifts in

  14. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  15. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's ...

  16. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  17. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Majumdar, Arun

    2011-04-28

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  18. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  19. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  20. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  1. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in ... More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review ...

  2. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  3. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest ...

  4. Global Energy Futures Model

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  5. Demand Response: Lessons Learned with an Eye to the Future | Department of

    Energy Savers [EERE]

    Energy Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability In today's world of limited resources and rising costs, everyone is looking for ways to use what they have more effectively while, at the same time, controlling - and ideally - reducing expenses. The electricity industry

  6. AVTA: PHEV Demand and Energy Cost Demonstration Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy PHEV Demand and Energy Cost Demonstration Report AVTA: PHEV Demand and Energy Cost Demonstration Report The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from a

  7. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  8. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid ...

  9. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  10. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary

    SciTech Connect (OSTI)

    Hurlbut, D. J.; McLaren, J.; Gelman, R.

    2013-08-01

    This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

  11. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of Energy

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy bills. The city partnered with CPS Energy, a municipally owned utility, to offer the CPS Energy Savers Program. Using $10 million in seed funding from the U.S.

  12. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  13. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  14. Demand for oil and energy in developing countries

    SciTech Connect (OSTI)

    Wolf, C. Jr.; Relles, D.A.; Navarro, J.

    1980-05-01

    How much of the world's oil and energy supply will the non-OPEC less-developed countries (NOLDCs) demand in the next decade. Will their requirements be small and thus fairly insignificant compared with world demand, or large and relatively important. How will world demand be affected by the economic growth of the NOLDCs. In this report, we try to develop some reasonable forecasts of NOLDC energy demands in the next 10 years. Our focus is mainly on the demand for oil, but we also give some attention to the total commercial energy requirements of these countries. We have tried to be explicit about the uncertainties associated with our forecasts, and with the income and price elasticities on which they are based. Finally, we consider the forecasts in terms of their implications for US policies concerning the NOLDCs and suggest areas of future research on NOLDC energy issues.

  15. Renewable Electricity Futures Study Volume 3: End-Use Electricity Demand

    Broader source: Energy.gov [DOE]

    This volume details the end-use electricity demand and efficiency assumptions. The projection of electricity demand is an important consideration in determining the extent to which a predominantly renewable electricity future is feasible. Any scenario regarding future electricity use must consider many factors, including technological, sociological, demographic, political, and economic changes (e.g., the introduction of new energy-using devices; gains in energy efficiency and process improvements; changes in energy prices, income, and user behavior; population growth; and the potential for carbon mitigation).

  16. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  17. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  18. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  19. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the fascinating things of my job is contemplating questions like: What will the future energy mix look like? This is difficult to predict but it is fair to argue that oil will...

  20. GDF Future Energies | Open Energy Information

    Open Energy Info (EERE)

    Future Energies Jump to: navigation, search Name: GDF Future Energies Place: France Product: Clean energy subsidiary of Gaz de France. References: GDF Future Energies1 This...

  1. Transportation Energy Futures Snapshot

    Broader source: Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  2. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  3. Demand Response Energy Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    Response Energy Consulting LLC Jump to: navigation, search Name: Demand Response & Energy Consulting LLC Place: Delanson, New York Zip: NY 12053 Sector: Efficiency Product:...

  4. Calculating Impacts of Energy Standards on Energy Demand in U...

    Office of Scientific and Technical Information (OSTI)

    Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings with Uncertainty in an Integrated Assessment Model Citation Details In-Document Search Title: Calculating ...

  5. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building Technologies Office's Program Peer Review PDF icon bldgcodes03_guttman_040213.pdf More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review Atmospheric Pressure Deposition for Electrochromic Windows Building America System Research

  6. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  7. Energy futures-2

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants.

  8. Agreement Template for Energy Conservation and Demand Side Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement ...

  9. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  10. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  11. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe      SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid Utilities need to balance the load on the grid for stability Business want lower their operating expenses. Business want remote control over their facilities How can bring these different users together to accomplish these goals Transformative Wave | 1012 Central Ave S Kent, WA 98032 |

  12. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  13. Future Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Future Energy Solutions Place: Didcot, United Kingdom Zip: OX11 0QR Product: Future Energy Solutions is a sustainable energy...

  14. Energy for our Future

    Office of Environmental Management (EM)

    for our Future Standards, Goals and Energy Planning Dave PM TCC Rural Energy Coordinator Dave.pm@tananachiefs.org "Stronger Together for the Next 100 Years" Tanana Chiefs Conference Tanana Chiefs Conference is a Tribal Consortium with 42 Members, representing 39 villages and 37 federally recognized tribes. MISSION: "Tanana Chiefs Conference provides a unified voice in advancing sovereign tribal governments through the promotion of physical and mental wellness, education,

  15. Hydrogen & Our Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery

  16. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    Demand Management Institute (DMI) Jump to: navigation, search Name: Demand Management Institute (DMI) Address: 35 Walnut Street Place: Wellesley, Massachusetts Zip: 02481 Region:...

  17. Chapter 3 Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    Demand-Side Resources Chapter 3 Demand-Side Resources Demand-side resources serve resource adequacy needs by reducing load, which reduces the need for additional generation. Typically, these resources result from one of two methods of reducing load: energy efficiency or demand response / load management. The energy efficiency method designs and deploys technologies and design practices that reduce energy use while delivering the same service. PDF icon Chapter 3 Demand-Side Resources More

  18. Reducing Energy Demand in Buildings Through State Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism

  19. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  20. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  1. Future Energy Assets LP | Open Energy Information

    Open Energy Info (EERE)

    Assets LP Jump to: navigation, search Name: Future Energy Assets LP Place: Austin, Texas Zip: 78701 Product: String representation "Future Energy A ... S and in China." is too...

  2. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  3. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  4. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  5. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  6. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jim Turnure, Director Office of Energy Consumption & Efficiency Analysis, EIA EIA Conference: Asian Energy Demand July 14, 2014 | Washington, DC International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China Dawn of new global oil market paradigm? 2 Jim Turnure, EIA Conference July 14, 2014 * Conventional wisdom has centered around $100-120/barrel oil and 110-115 million b/d global liquid fuel demand in the long term (2030-2040) * Demand in non-OECD may push

  7. Response to several FOIA requests - Renewable Energy. Demand for Fossil

    Energy Savers [EERE]

    Fuels | Department of Energy Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg_251_500.pdf. Demand for Fossil Fuels. Renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities

  8. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  9. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  10. Regulation Services with Demand Response - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created ...

  11. Agreement Template for Energy Conservation and Demand Side Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services | Department of Energy Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement between a federal agency and a utility company for the implementation of energy conservation measures and demand side management services. A detailed description of the template is also available below. PDF icon Template Agreement PDF icon Model Agreement Explanation More Documents

  12. Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless

    Energy Savers [EERE]

    Water Heaters | Department of Energy On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters. PDF icon serc_webinar_presentation_20111004.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot

  13. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called demand-side resources), some for more than two decades. According to one source, U.S. electric utilities spent $14.7 billion on demand-side programs between 1989 and 1999, an average of $1.3 billion per year. PDF icon Draft Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3: Demand-Side

  14. Behavioral Economics Applied to Energy Demand Analysis: A Foundation

    Gasoline and Diesel Fuel Update (EIA)

    Behavioral Economics Applied to Energy Demand Analysis: A Foundation October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Behavioral Economics Applied to Energy Demand Analysis i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  15. Assumption to the Annual Energy Outlook 2014 - Commercial Demand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    chosen to meet the projected service demands for the seven major end uses. Once technologies are chosen, the energy consumed by the equipment stock (both existing and purchased...

  16. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition to driving demand for energy upgrades with traditional marketing and incentive ... efficiency measures recommended by the online tool or through a professional, in-person ...

  17. ADB-Methods and Tools for Energy Demand Projection | Open Energy...

    Open Energy Info (EERE)

    ADB-Methods and Tools for Energy Demand Projection Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methods and Tools for Energy Demand Projection AgencyCompany...

  18. Future Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pty Ltd Jump to: navigation, search Name: Future Energy Pty Ltd Place: Victoria, Australia Zip: 3121 Sector: Wind energy Product: Victoria based community wind project developer....

  19. Indianapolis Offers a Lesson on Driving Demand | Department of Energy

    Energy Savers [EERE]

    Indianapolis Offers a Lesson on Driving Demand Indianapolis Offers a Lesson on Driving Demand The flier for EcoHouse, with the headline 'Save energy, save money, improve your home' and the text 'EcoHouse can help' below. U Successful program managers know that understanding the factors that drive homeowners to make upgrades is critical to the widespread adoption of energy efficiency. What better place to learn about driving demand for upgrades than in Indianapolis, America's most famous driving

  20. NREL Launches Interactive Tool for Developing a Cleaner Energy Future -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Launches Interactive Tool for Developing a Cleaner Energy Future January 9, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has created an energy analysis tool to help individuals and educators experiment with future energy use scenarios. The interactive Buildings, Industry, Transportation, Electricity, and Transportation Scenarios (BITES) allows users to explore how changes in energy demand and supply can impact carbon dioxide

  1. Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    : Demand-Side Resources Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called demand-side resources), some for more than two decades. According to one source, U.S. electric utilities spent $14.7 billion on DSM programs between 1989 and 1999, an average of $1.3 billion per year. PDF icon Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3 Demand-Side Resources Draft Chapt

  2. Tankless or Demand-Type Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a demand water heater at each hot water outlet. ENERGY STAR estimates that a typical family can save 100 or more per year with an ENERGY STAR qualified tankless water heater....

  3. Prompt-Month Energy Futures

    Gasoline and Diesel Fuel Update (EIA)

    Prompt-Month Energy Futures Prices and trading activity shown are for prompt-month (see definition below) futures contracts for the energy commodities listed in the table below. Note that trading for prompt-month futures contracts ends on different dates at the end of the month for the various commodities; therefore, some commodity prices may reference delivery for the next month sooner than other commodity prices. Product Description Listed With Crude Oil ($/barrel) West Texas Intermediate

  4. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 to 100 times more energy than the amount of laser energy required to initiate the fusion reaction. The nuclear power plants in use around the world today use fission, or...

  5. Bioenergy: America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy: America's Energy Future Bioenergy: America's Energy Future Addthis Description Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. Text Version Below is the text version for the Bioenergy:

  6. Growing America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growing America's Energy Future Growing America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensuring American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in

  7. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For EIA Conference July 15, 2014 | Washington, DC By Trisha Hutchins, Office of Energy Consumption and Efficiency Analysis Light-duty vehicle energy demand, demographics, and travel behavior Examining changes in light-duty vehicle travel trends 2 EIA Conference: Light-duty vehicle energy demand, demographics, and travel behavior July 15, 2014 * Recent data indicate possible structural shift in travel behavior, measured as vehicle miles traveled (VMT) - VMT per licensed driver, vehicles per

  8. Future Energy Yorkshire | Open Energy Information

    Open Energy Info (EERE)

    Yorkshire Jump to: navigation, search Name: Future Energy Yorkshire Place: Leeds, United Kingdom Zip: LS11 5AE Sector: Services Product: Leeds-based, wholly owned subsidiary of...

  9. Future Energy Enterprises | Open Energy Information

    Open Energy Info (EERE)

    Enterprises Jump to: navigation, search Name: Future Energy Enterprises Place: Wilmette, IL Website: futureenergyenterprises.biz References: Partnership for Advanced Residential...

  10. Solar in Demand | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the successes of the U.S. solar industry following a recent study released by the Solar Energy Industries Association and GTM Research: The U.S. market for solar panels is likely ...

  11. NREL: Energy Analysis - Transportation Energy Futures Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graphic_tef_icon Transportation Energy Futures Project The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany the U.S. Department of Energy Office of

  12. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-01-01

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  13. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rush Robinett Energy &Infrastructure Future Group Sandia National Laboratories rdrobin@sandia.gov Energy & Infrastructure Future Overview 2 Sandia's Core Purpose "Helping our Nation Secure a Peaceful and Free World through Technology" * National Security Laboratory * Broad mission in developing science and technology applications to meet our rapidly changing, complex national security challenges * Safety, security and reliability of our nation's nuclear weapon stockpile 3

  14. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...

    Office of Environmental Management (EM)

    Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable...

  15. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energys (DOEs) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  16. Energy, helium, and the future: II

    SciTech Connect (OSTI)

    Krupka, M.C.; Hammel, E.F.

    1980-01-01

    The importance of helium as a critical resource material has been recognized specifically by the scientific community and more generally by the 1960 Congressional mandate to institute a long-range conservation program. A major study mandated by the Energy Reorganization Act of 1974 resulted in the publication in 1975 of the document, The Energy-Related Applications of Helium, ERDA-13. This document contained a comprehensive review and analysis relating to helium resources and present and future supply/demand relationships with particular emphasis upon those helium-dependent energy-related technologies projected to be implemented in the post-2000 year time period, e.g., fusion. An updated overview of the helium situation as it exists today is presented. Since publication of ERDA-13, important changes in the data base underlying that document have occurred. The data have since been reexamined, revised, and new information included. Potential supplies of helium from both conventional and unconventional natural gas resources, projected supply/demand relationships to the year 2030 based upon a given power-generation scenario, projected helium demand for specific energy-related technologies, and the supply options (national and international) available to meet that demand are discussed. An updated review will be given of the energy requirements for the extraction of helium from natural gas as they relate to the concentration of helium. A discussion is given concerning the technical and economic feasibility of several methods available both now and conceptually possible, to extract helium from helium-lean natural gas, the atmosphere, and outer space. Finally, a brief review is given of the 1980 Congressional activities with respect to the introduction and possible passage of new helium conservation legislation.

  17. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also known as demand-type or instantaneous water heaters, provide hot water only as it is needed. They don't produce the standby energy losses associated with storage water heaters, which can save you money. Here you'll find basic information about how they work, whether a tankless water heater might be right for your home, and what

  18. Future Opportunities and Challenges with Using Demand Response as a Resource in Distribution System Operation and Planning Activities

    Broader source: Energy.gov [DOE]

    This scoping study focuses on identifying the ability for current and future demand response opportunities to contribute to distribution system management. To do so, this scoping study will...

  19. EnergySolve Demand Response | Open Energy Information

    Open Energy Info (EERE)

    Demand Response Place: Somerset, New Jersey Product: Somerset-based utility bill outsourcing company that provides electronic utility bill auditing, tariff analysis, late fee...

  20. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energys (DOEs) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentuckys most abundant indigenous resource and an important industry the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealths economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentuckys electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  1. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  2. Toward an energy surety future.

    SciTech Connect (OSTI)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  3. Using Community-Based Social Marketing to Drive Demand for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Slides presented in the ...

  4. The Future of Food Demand: Understanding Differences in Global Economic Models

    SciTech Connect (OSTI)

    Valin, Hugo; Sands, Ronald; van der Mensbrugghe, Dominique; Nelson, Gerald; Ahammad, Helal; Blanc, Elodie; Bodirsky, Benjamin; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Mason d'Croz, Daniel; Paltsev, S.; Rolinski, Susanne; Tabeau, Andrzej; van Meijl, Hans; von Lampe, Martin; Willenbockel, Dirk

    2014-01-01

    Understanding the capacity of agricultural systems to feed the world population under climate change requires a good prospective vision on the future development of food demand. This paper reviews modeling approaches from ten global economic models participating to the AgMIP project, in particular the demand function chosen and the set of parameters used. We compare food demand projections at the horizon 2050 for various regions and agricultural products under harmonized scenarios. Depending on models, we find for a business as usual scenario (SSP2) an increase in food demand of 59-98% by 2050, slightly higher than FAO projection (54%). The prospective for animal calories is particularly uncertain with a range of 61-144%, whereas FAO anticipates an increase by 76%. The projections reveal more sensitive to socio-economic assumptions than to climate change conditions or bioenergy development. When considering a higher population lower economic growth world (SSP3), consumption per capita drops by 9% for crops and 18% for livestock. Various assumptions on climate change in this exercise do not lead to world calorie losses greater than 6%. Divergences across models are however notable, due to differences in demand system, income elasticities specification, and response to price change in the baseline.

  5. Demand Response and Energy Storage Integration Study- Past Workshops

    Broader source: Energy.gov [DOE]

    The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project team.

  6. Behavioral Economics Applied to Energy Demand Analysis: A Foundation -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration Appendix A Behavioral Economics Applied to Energy Demand Analysis: A Foundation Release date: October 15, 2014 Neoclassical economics has shaped our understanding of human behavior for several decades. While still an important starting point for economic studies, neoclassical frameworks have generally imposed strong assumptions, for example regarding utility maximization, information, and foresight, while treating consumer preferences as given or external to

  7. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands March 23, 2015 Analysis and Sustainability Peer Review Drs. Indrajeet Chaubey and Ben Gramig Purdue University This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * Overall goal is to conduct a watershed-scale sustainability assessment of multiple energy crops and removal of crop residues * Assessment conducted in two watersheds representative of

  8. Transportation Energy Futures Series: Alternative Fuel Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel ... A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable ...

  9. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  10. NREL: Energy Analysis - Renewable Electricity Futures Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a dynamic map that is animated to display power flow in 2010 through 2050 The National Renewable Energy Laboratory's (NREL) Renewable Electricity Futures Study (RE Futures) is...

  11. Market and energy demand analysis of a US maglev system

    SciTech Connect (OSTI)

    Vyas, A.D.; Rote, D.M.

    1993-06-01

    High-speed magnetically levitated (maglev) vehicles can provide an alternative mode of transportation for intercity travel, particularly for short- and medium-distance trips between 100 to 600 mi (160 and 960 km). The patterns of growth and the underlying factors affecting that growth In the year 2010 are evaluated to determine the magnitude of US Intercity travel that would become the basis for maglev demand. A methodology that is sensitive to the travelers` socioeconomic attributes was developed to Forecast intercity travel. Travel between 78 major metropolitan areas by air and highway modes is projected, and 12 high-density travel corridors are Identified and selected. The potential for a maglev system to substitute for part or that travel is calculated by using a model that estimates the extent of diversion from highway and air to maglev. Energy demand is estimated on the basis of energy usage during acceleration and cruise phases for each corridor and corridor connections.

  12. Market and energy demand analysis of a US maglev system

    SciTech Connect (OSTI)

    Vyas, A.D.; Rote, D.M.

    1993-01-01

    High-speed magnetically levitated (maglev) vehicles can provide an alternative mode of transportation for intercity travel, particularly for short- and medium-distance trips between 100 to 600 mi (160 and 960 km). The patterns of growth and the underlying factors affecting that growth In the year 2010 are evaluated to determine the magnitude of US Intercity travel that would become the basis for maglev demand. A methodology that is sensitive to the travelers' socioeconomic attributes was developed to Forecast intercity travel. Travel between 78 major metropolitan areas by air and highway modes is projected, and 12 high-density travel corridors are Identified and selected. The potential for a maglev system to substitute for part or that travel is calculated by using a model that estimates the extent of diversion from highway and air to maglev. Energy demand is estimated on the basis of energy usage during acceleration and cruise phases for each corridor and corridor connections.

  13. Secure and Sustainable Energy Future Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  14. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  15. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  16. Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs

    U.S. Energy Information Administration (EIA) Indexed Site

    Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs EIA Office of Energy Consumption and Efficiency Analysis July 17, 2013 | Washington, DC Meeting Agenda Jim Turnure, Director, Office of Energy Consumption and Efficiency Analysis July 17, 2013 2 * EIA WELCOME AND INTRODUCTION (15 minutes) * ORIENTATION/PRESENTATION: OVERVIEW OF EIA RESIDENTIAL AND COMMERCIAL DEMAND MODELS AND CURRENT METHODS FOR INCORPORATING ENERGY EFFICIENCY/EFFICIENCY

  17. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    Reports and Publications (EIA)

    2015-01-01

    The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site energy consumption. Between 1990 and 2009, Canadian household energy consumption grew by less than 11%. Nonetheless, households contributed to 14.6% of total energy-related greenhouse gas emissions in Canada in 2009 (computed from NRCan 2012). This is the U.S. Energy Information Administrations second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in North America (mainly the United States and Canada) by using similar methodology for analyses in both countries.

  18. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

  19. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the worlds electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Associations data, the realization of Chinas deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  20. Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings

    Office of Scientific and Technical Information (OSTI)

    with Uncertainty in an Integrated Assessment Model (Journal Article) | SciTech Connect Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings with Uncertainty in an Integrated Assessment Model Citation Details In-Document Search Title: Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings with Uncertainty in an Integrated Assessment Model In this paper, an integrated assessment model (IAM) uses a newly-developed Monte Carlo analysis capability to

  1. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  2. The future of energy gases

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  3. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  4. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  5. Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Use Future Use Facility or infrastructure reuse could avoid costs associated with demolition and disposal. Facility or infrastructure reuse could avoid costs associated with demolition and disposal. PPPO works with GDP communities as they identify their future use vision. PPPO works with GDP communities as they identify their future use vision. Facility or infrastructure reuse could avoid costs associated with demolition and disposal. PPPO works with GDP communities as they identify their

  6. FutureWorld Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: FutureWorld Energy Inc Place: Florida Zip: 33701 Product: Florida-based marine energy project developer. References: FutureWorld Energy Inc1 This article is a...

  7. Demand Response - Policy: More Information | Department of Energy

    Office of Environmental Management (EM)

    Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the

  8. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future Water Power for a Clean Energy Future This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower and marine and hydrokinetic technologies. PDF icon Accomplishments Report: Water Power for a Clean Energy Future More Documents & Publications Water Power for a Clean Energy Future (Fact Sheet), Wind and Water

  9. Energy Demand in China (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Price, Lynn

    2011-06-08

    Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  10. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  11. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  12. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Environmental Management (EM)

    Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also...

  13. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  14. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy (EERE) | Department of Energy Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy. PDF icon 51111.pdf More Documents & Publications EERE Program Management Guide - Chapter 1 Office of the

  15. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  16. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Energy Savers [EERE]

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  17. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  18. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  19. 25 x 25 America s Energy Future | Open Energy Information

    Open Energy Info (EERE)

    x 25 America s Energy Future Jump to: navigation, search Name: 25 x '25 America's Energy Future Place: Maryland Zip: 21093 Website: www.25x25.org References: 25 x '25 America's...

  20. "The Future of Geothermal Energy" and Its Challenges | Open Energy...

    Open Energy Info (EERE)

    "The Future of Geothermal Energy" and Its Challenges Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: "The Future of Geothermal Energy" and Its...

  1. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  2. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007 PDF icon deer08_shore.pdf More Documents & Publications Before the Subcommittee on Energy and Power - Committee on Energy and Commerce Drop In Fuels: Where the Road Leads Before the House Energy and Commerce Subcommittee on Energy and Power

  3. Future Energy Zone Private Ltd FEZ | Open Energy Information

    Open Energy Info (EERE)

    Zone Private Ltd FEZ Jump to: navigation, search Name: Future Energy Zone Private Ltd (FEZ) Place: Chennai, Tamil Nadu, India Sector: Renewable Energy Product: Focused on building...

  4. Masdar Abu Dhabi Future Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Abu Dhabi- based subsidiary created to manage the implementation of renewable and alternative energy initiatives. References: Masdar Abu Dhabi Future Energy Company1 This...

  5. The Future of Atomic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The piles operated at Eanford for the synthesis of plutonium produce energy in amounts comparable to that of the largest hydro- electric plants. The energy that is produced in the ...

  6. A Cornerstone of Our Energy Future: Women | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Cornerstone of Our Energy Future: Women A Cornerstone of Our Energy Future: Women March 19, 2014 - 1:47pm Addthis Secretary of Energy Ernest Moniz with The Honorable Dot Harris, Director of the Energy Department's Office of Economic Impact and Diversity (far left), and Sandra Guzman, award winning multimedia journalist, at the Minorities in Energy launch event. | Photo by the Energy Department. Secretary of Energy Ernest Moniz with The Honorable Dot Harris, Director of the Energy Department's

  7. South Korea-ANL Distributed Energy Resources and Demand Side...

    Open Energy Info (EERE)

    is part of a team that assists the Korean government in analyzing the economic and environmental benefits of distributed resources and demand side management (DSM). DSM has...

  8. Hydrogen Demand and Resource Assessment Tool | Open Energy Information

    Open Energy Info (EERE)

    Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool AgencyCompany Organization: National Renewable...

  9. Experts Meeting: Behavioral Economics as Applied to Energy Demand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... from the Existing Economic Methodology used in the NEMS Demand Models - ... the UK?" Science and Technology Policy Research Unit (SPRU), Freeman Centre, University ...

  10. Network-Driven Demand Side Management Website | Open Energy Informatio...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentnetwork-driven-demand-side-management Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  11. Estimating Demand Response Market Potential | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentestimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  12. A Renewable Energy Future: Innovation and Beyond | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Renewable Energy Future: Innovation and Beyond A Renewable Energy Future: Innovation and Beyond This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is

  13. The Future of Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Geothermal Energy The Future of Geothermal Energy The Future of Geothermal Energy report is an evaluation of geothermal energy as a major supplier of energy in the United States. An 18-member assessment panel with broad experience and expertise was formed to conduct the study beginning in September 2005. The work evaluated three major areas of Enhanced Geothermal Systems (EGS): Magnitude and distribution of the EGS resource Status and remaining requirements of EGS technology needed

  14. IM Future | Open Energy Information

    Open Energy Info (EERE)

    Sector: Services, Wind energy Product: Spain-based firm that provides operation and maintenance services for wind farms owned by Babcock & Brown Wind Partners and FCC. References:...

  15. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  16. A Global Sustainable Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Global Sustainable Energy Future A Global Sustainable Energy Future April 19, 2013 - 10:56am Addthis World energy leaders at the ribbon cutting for the CEM Innovation Showcase Pavilion, from L to R: Dr. Farooq Abdullah, Indian Minister of New & Renewable Energy; South African Energy Minister Dipuo Peters; U.S. Energy Secretary Steven Chu; Deputy Chairman of Indian Planning Commission Montek Singh Ahluwalia. World energy leaders at the ribbon cutting for the CEM Innovation Showcase

  17. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect (OSTI)

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible thatfuture economic growth may be supported by a relatively lower increase inenergy consumption. Over the past 20 years, energy intensity in China hasbeen reduced partly through technological and structural changes; currentannual emissions may be as much as 600 Mt-C lower than they would havebeen without intensity improvements. China must take into account itsunique circumstances in considering how to achieve a sustainabledevelopment path. This study considers the feasibility of such anachievement, while remaining open to exploring avenues of sustainabledevelopment that may be very different from existing models. Threescenarios were prepared to assist the Chinese Government to explore theissues, options and uncertainties that it confronts in shaping asustainable development path compatible with China's uniquecircumstances. The Promoting Sustainability scenario offers a systematicand complete interpretation of the social and economic goals proposed inthe Tenth Five-Year Plan. The possibility that environmentalsustainability would receive low priority is covered in the OrdinaryEffort scenario. Aggressive pursuit of sustainable development measuresalong with rapid economic expansion is featured in the Green Growthscenario. The scenarios differ in the degree to which a common set ofenergy supply and efficiency policies are implemented. In cons ultationwith technology and policy experts domestically and abroad, ERI developedstrategic scenarios and quantified them using an energy accounting model.The scenarios consider, in unprecedented detail, changes in energy demandstructure and technology, as well as energy supply, from 1998 to 2020.The scenarios in this study are an important step in estimating realistictargets for energy efficiency and energy supply development that are inline with a sustainable development strategy. The scenarios also helpanalyze and explore ways in which China might slow growth in greenhousegas emissions. The key results have important policy implications:Depending on how demand for energy services is met, China could quadrupleits gross domesti

  18. Driving Home to a Clean Energy Future | Department of Energy

    Office of Environmental Management (EM)

    Home to a Clean Energy Future Driving Home to a Clean Energy Future June 7, 2011 - 10:57am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Working here at the Department of Energy, I hear a lot about the latest efforts to design and build vehicles for a more energy-efficient future. The clean energy innovations in vehicle technologies that DOE and its partners are advancing will help American families save money at the pump-or even

  19. Tankless Demand Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold

  20. Investing in our Energy Future | Department of Energy

    Office of Environmental Management (EM)

    Investing in our Energy Future Investing in our Energy Future A report on the ways in which the recovery act is promoting a clean energy economy. PDF icon Investing in our Energy Future More Documents & Publications Microsoft PowerPoint - CHU_Grid Week 9-21-09 final.ppt WHAT THE SMART GRID MEANS TO AMERICANS Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2011 Update

  1. Response to several FOIA requests - Renewable Energy. Demand...

    Broader source: Energy.gov (indexed) [DOE]

    Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that ...

  2. Building Our Energy Future: Teaching Students the Significance of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Building Our Energy Future: Teaching Students the Significance of Energy Efficiency Building Our Energy Future: Teaching Students the Significance of Energy Efficiency April 2, 2015 - 4:39pm Addthis Students at St. Agnus Catholic School in Arlington, Va., measure weatherstripping to place around doors and windows Students at St. Agnus Catholic School in Arlington, Va., measure weatherstripping to place around doors and windows Holly Ravesloot Lead Energy

  3. Charting the Future of Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a market for energy storage technology. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As we continue to incorporate more renewable energy into the grid, energy storage technologies will be key to

  4. Hydrogen and OUr Energy Future

    SciTech Connect (OSTI)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  5. Growing Americas Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensur- ing American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in decreasing green- house gas emissions,

  6. NREL: Speeches - Nation's Energy Future at Risk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Future at Risk, National Lab Director Says For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Washington, D.C., July 27, 1999 — America must invest in its energy future now, Richard Truly, director of the U.S. Department of Energy's National Renewable Energy Laboratory said today. Otherwise, he said, the nation could face supply shortages and fall behind foreign competitors. Truly, speaking at the National Press Club's Newsmakers program, said that U.S.

  7. THE FUTURE OF GEOTHERMAL ENERGY

    SciTech Connect (OSTI)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  8. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  9. Future of the Department of Energy's uranium enrichment enterprise

    SciTech Connect (OSTI)

    Sewell, P.G.

    1991-11-01

    The national energy strategy (NES) developed at President Bush's direction provides a focus for the US Department of Energy (DOE) future policy and funding initiatives including those of the uranium enrichment enterprise. The NES identifies an important and continuing role for nuclear energy as part of a balanced array of energy sources for meeting US energy needs, especially the growing demand for electricity. For many years, growth in US electricity demand has exhibited a strong correlation with growth in gross national product. NEW projections indicate that the US will need between 190 and 275 GW of additional system capacity by 2010. In order to unable nuclear power to help meet this need, the NEW establishes basic objectives for nuclear power. These objectives are to have a first order of a new nuclear power plant by 1995 and to have such a plant operational by 2000. The expansion of nuclear power anticipated in the NEW affirms a continuing need for a strong domestic uranium enrichment services supply capability. In terms of the future outlook for uranium enrichment, the atomic vapor laser isotope separation (AVLIS) technology continues to hold great promise for commercial application. If AVLIS efforts are successful, significant financial benefits from the commercial use of AVLIS will be realized by customers and the AVLIS deployment entity by approximately the year 2000 and thereafter.

  10. Transportation Energy Futures: Project Overview and Findings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... include potential impact from demand-side measures such as VMT reduction and mode shifting. ... electrification and service demand management could lower transportation fuel demand ...

  11. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  12. Geothermal Energy in Hawaii: Present and Future | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy in Hawaii: Present and Future Abstract Discussed the development of...

  13. Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy

    Office of Environmental Management (EM)

    Fabricate-on-Demand Vacuum Insulating Glazings Fabricate-on-Demand Vacuum Insulating Glazings 1 of 3 PPG developed and commercialized the Intercept® Spacer System that revolutionized the manufacture of double-pane insulated glazing units (IGUs) 25 years ago. Over 125 PPG-licensed Intercept® Spacer System lines are in operation in the US. Currently in use in more than 600 million residential windows, the Intercept® Spacer System is the top-selling product of its kind in North America. Image:

  14. Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors (Transportation Energy Futures Series)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEMAND Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors TRANSPORTATION ENERGY FUTURES SERIES: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL

  15. Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

  16. Energy Upgrade California Drives Demand From Behind the Wheel

    Broader source: Energy.gov [DOE]

    With a goal of "energy efficiency or bust," the California Center for Sustainable Energy (CCSE) recently completed a statewide tour of its ongoing Energy Upgrade California Roadshow. The mobile...

  17. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  18. Residential Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2001,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  19. U.S. Energy Information Administration NEMS Residential Demand...

    Gasoline and Diesel Fuel Update (EIA)

    Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 200678,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Housing unit energy consumption by...

  20. Sustainable Energy Resources for Consumers (SERC) - On-Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) Idaho Highlight Sustainable ...

  1. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  2. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  3. Assisting Mexico in Developing Energy Supply and Demand Projections...

    Open Energy Info (EERE)

    AgencyCompany Organization Argonne National Laboratory Sector Energy Topics GHG inventory, Background analysis Resource Type Softwaremodeling tools Website http:...

  4. Transportation Energy Futures (TEF) Data and Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Futures (TEF) National Renewable Energy Laboratory Build 241 search keywords clear search show bibliography show instructions ^(sprawl|density|population density|census|ppsm|metro area|single-family|weighted density|population center|populations?|mix|american housing survey|schools?|population-serving|density gradient|metropolitan|msas?|psas?|urban|blocks?)$ ^(co2|emissions?|rates?|transient|smooth|driving|gallons per mile|g/mile|average speed|speeds?|moves|miles per

  5. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  6. Brainstorming Apps for a Clean Energy Future | Department of Energy

    Energy Savers [EERE]

    Brainstorming Apps for a Clean Energy Future Brainstorming Apps for a Clean Energy Future July 20, 2012 - 1:03pm Addthis Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Nick Sinai U.S. Deputy Chief Technology Officer, White House Office of Science and Technology Policy Ian Kalin Director of the Energy Data Initiative How can I participate? You can contribute ideas for new products,

  7. Energy Upgrade California Drives Demand From Behind the Wheel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a self-guided tour by interacting with custom-designed computer applications, learning about the home energy upgrade experiences of "neighbors" represented by life-sized...

  8. Assumption to the Annual Energy Outlook 2014 - Residential Demand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    oil, liquefied petroleum gas, natural gas, kerosene, electricity, wood, geothermal, and solar energy. The module's output includes number of households, equipment stock, average...

  9. Commercial Demand Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  10. Commercial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  11. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  12. New Demands on Heavy Duty Engine Management Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demands on Heavy Duty Engine Management Systems New Demands on Heavy Duty Engine Management Systems The purpose of this research was to investigate the potential of emissions-based process control to meet future heavy-duty emissions legislation by identifying suitable actuated variables and developing hardware and related controllers. PDF icon deer08_traver.pdf More Documents & Publications Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications Light-Duty Diesel EngineTechnology to

  13. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  14. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    SciTech Connect (OSTI)

    Santarius, Tilman

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may eat up parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential psychological rebound effects. It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough rule of thumb, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  15. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  16. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  17. A First Peek at Our Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    email updates, its RSS feeds, or follow it on Twitter. Addthis Related Articles Natural Gas Production and U.S. Oil Imports A First Peek at Our Energy Future EIA Report Estimates...

  18. Hydrogen & Our Energy Future | Department of Energy

    Energy Savers [EERE]

    & Our Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate PDF icon hydrogenenergyfuture_web.pdf More Documents & Publications Proceedings of the 2000 U.S. DOE Hydrogen Program Review Proceedings of the 1998 U.S. DOE Hydrogen Program Review: April 28-30, 1998 Alexandria, Virginia: Volume II Hydrogen Fuel Cell Engines and Related Technologies Course Manual

  19. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  20. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect (OSTI)

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  1. The impact of demand-controlled ventilation on energy use in buildings

    SciTech Connect (OSTI)

    Braun, J.E.; Brandemuehl, M.J.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

  2. Building Our Energy Future: Teaching Students the Significance...

    Office of Environmental Management (EM)

    Building Our Energy Future: Teaching Students the Significance of Energy Efficiency ... Energy The SunSmart Program has installed solar power systems at schools designated as ...

  3. Secretary Moniz Addresses Conference on the Caribbean's Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Secretary Moniz Addresses Conference on the Caribbean's Energy Future Secretary Moniz Addresses Conference on the Caribbean's Energy Future December 6, 2013 - 2:42pm Addthis Secretary Moniz Addresses Conference on the Caribbean’s Energy Future Secretary Moniz joined Inter-American Development Bank President Luis Alberto Moreno in welcoming a group of Caribbean ministers who convened to discuss the region's energy future, climate change, and the roles of energy

  4. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect (OSTI)

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon trading, giving benefits to low carbon footprint industries, while making higher emitting industries purchase carbon allowances. There have been an increasing number of countries and states adopting the trade and cap systems.

  5. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for

    Energy Savers [EERE]

    Global Environmental Quality, and for the Challenge of Global Climate Change | Department of Energy S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change December 5, 2008 - 4:58pm Addthis The U.S. is committed to working together with China to tackle current energy

  6. Water demands for electricity generation in the U.S.: Modeling different scenarios for the waterenergy nexus

    SciTech Connect (OSTI)

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.

  7. Future Communications Needs | Department of Energy

    Office of Environmental Management (EM)

    Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs PDF icon Future Communications Needs More Documents & Publications Current Communications Needs AT&T, Inc.'s Reply Comments Comments of Utilities Telecom Council

  8. The impact of demand-controlled and economizer ventilation strategies on energy use in buildings

    SciTech Connect (OSTI)

    Brandemuehl, M.J.; Braun, J.E.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

  9. Advanced Control Technologies and Strategies Linking DemandResponse and Energy Efficiency

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann

    2005-09-02

    This paper presents a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand shedding strategies are developed. Past research projects are presented to provide a context for the current projects. The economic case for implementing DR from a building owner perspective is also explored.

  10. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  11. Summary of Characteristics and Energy Efficiency Demand-side Management Programs in the Southeastern United States

    SciTech Connect (OSTI)

    Glatt, Sandy

    2010-04-01

    This report is the first in a series that seeks to characterize energy supply and industrial sector energy consumption, and summarize successful industrial demand-side management (DSM) programs within each of the eight North American Electric Reliability Corporation (NERC) regions.

  12. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment of Behind-The- Meter Energy Storage for Demand Charge Reduction J. Neubauer and M. Simpson Technical Report NREL/TP-5400-63162 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy

  13. Harvesting Solar Energy for the Future | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Harvesting Solar Energy for the Future Harvesting Solar Energy for the Future In this video, we detail the vision and goals of PARC's research in a broader context.

  14. Secretary Moniz: Biofuels Important to America's Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future August 1, 2013 - 5:54pm Addthis Watch the video of Secretary Moniz's remarks on the importance of biofuels to America's clean energy future. | Video by Matty Greene, the Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Today at the Energy Department's Biomass 2013 annual conference in Washington,

  15. Revolution Now: The Future Arrives for Four Clean Energy Technologies --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Update | Department of Energy Revolution Now: The Future Arrives for Four Clean Energy Technologies -- 2014 Update Revolution Now: The Future Arrives for Four Clean Energy Technologies -- 2014 Update For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technologies matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." In

  16. Transportation Energy Futures Series: Freight Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may make slow steaming a permanent feature of marine operations by integrating slower-design speeds into the construction of new vessels (Maersk Line 2011). - Freight Demand...

  17. Regional Differences in the Price-Elasticity of Demand for Energy

    SciTech Connect (OSTI)

    Bernstein, M. A.; Griffin, J.

    2006-02-01

    At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

  18. Take Action Now: Empower a Secure Energy Future

    Broader source: Energy.gov [DOE]

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future campaign handout.

  19. Take Action Now: Empower a Secure Energy Future 2

    Broader source: Energy.gov [DOE]

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future 2 handout.

  20. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  1. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  2. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  3. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  4. Status and Future of TRANSCOM | Department of Energy

    Office of Environmental Management (EM)

    and Future of TRANSCOM Status and Future of TRANSCOM Current Program Status Upcoming Changes Glimpse at Future Options DOE Commitments PDF icon Status and Future of TRANSCOM More Documents & Publications Applying Risk Communication to the Transportation of Radioactive Materials Department of Energy Office of Science Transportation Overview NTSF Spring 2010 Final Agenda

  5. Model for Analysis of Energy Demand (MAED-2) | Open Energy Information

    Open Energy Info (EERE)

    demand based on medium- to long-term scenarios of socio-economic, technological and demographic developments. " References "MAED 2" Retrieved from "http:en.openei.orgw...

  6. Noncommercial Trading in the Energy Futures Market

    Reports and Publications (EIA)

    1996-01-01

    How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

  7. Keynote Address: Future Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Vision Keynote Address: Future Vision May 20, 2014 1:00PM to 1:30PM PDT Pacific Ballroom Tuesday's keynote address by Raffi Garabedian, Chief Technology Officer, First Solar

  8. Portsmouth Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Use Portsmouth Future Use Portsmouth Site current state Portsmouth Site current state Portsmouth Site future conceptual illustration Portsmouth Site future conceptual illustration Integrated Approach Through a multifaceted community outreach program at Portsmouth, DOE worked diligently with stakeholders to understand the community's end-state vision for the Portsmouth site. With the assistance of the PORTSFuture Project and interaction with the Portsmouth Site Specific Advisory Board,

  9. Accelerating Materials Development for a Clean Energy Future | Department

    Energy Savers [EERE]

    of Energy Materials Development for a Clean Energy Future Accelerating Materials Development for a Clean Energy Future February 24, 2016 - 2:30pm Addthis Accelerating Materials Development for a Clean Energy Future Reuben Sarkar Reuben Sarkar Deputy Assistant Secretary for Transportation Megan Brewster Senior Policy Advisor for Advanced Manufacturing at the White House Office of Science and Technology Policy Lloyd Whitman Assistant Director for Nanotechnology and Advanced Materials at the

  10. Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Future Bioeconomy Growing the Future Bioeconomy Breakout Session IA-Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Growing the Future Bioeconomy Joel Velasco, Senior Vice President, Amyris, Inc PDF icon velasco_biomass_2014 More Documents & Publications Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Sustainable Alternative Jet Fuels

  11. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  12. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547

  13. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  14. Capturing the Sun, Creating a Clean Energy Future (Brochure)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Capturing the Sun, Creating a Clean ...

  15. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  16. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oil consumers in the world for the foreseeable future. China is likely to experience very large growth rates for both its economy and energy consumption over the next two decades. ...

  17. Geothermal Power - the Future is Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power - the Future is Now Geothermal Power - the Future is Now September 25, 2012 - 1:11pm Addthis The United States Department of Energy is breaking the sound barrier, delivering...

  18. Biomass 2008: Fueling Our Future Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy...

  19. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  20. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  1. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  2. Forming the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forming the Future Forming the Future This feature article from the April 2014 edition of the Fabricating and Forming Journal (FFJournal) describes how Ford Motor Co.'s sheet metal freeforming technology accelerates prototyping, taking stamping tool costs and lead time out of the equation. Reprinted with permission of FFJournal PDF icon Forming the Future, FFJournal (April 2014) More Documents & Publications Rapid Freeform Sheet Metal Forming CX-010510: Categorical Exclusion Determination

  3. Innovation: Enabling a Sustainable Energy Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy's SunShot Initiative-to make large-scale solar energy systems cost- competitive with other energy sources by 2020. 3 Energy Market Dynamics Global...

  4. NYMEX Coal Futures - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    providing companies in the electric power industry with secure and reliable risk management tools by creating a series of electricity futures contracts fashioned to meet the...

  5. Buildings of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings of the Future Buildings of the Future Imagine buildings of the future. What will they look like and how will they interact with us-their occupants-to improve our lives and the Earth? Click to view the fact sheet. Click to view the fact sheet. Future Buildings: A Call for Collaboration, Vision Click to view the fact sheet. Lead Performer: Pacific Northwest National Laboratory - Richland, WA
 DOE Funding: $200,000 Project Term: 10/1/2014 - 9/30/2015 Project Website:

  6. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  7. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  8. The Future of Housing-Today | Department of Energy

    Energy Savers [EERE]

    The Future of Housing-Today The Future of Housing-Today Every Zero Energy Ready Home offers a cost-effective, high performance package of energy savings, comfort, health, and durability unparalleled in today's marketplace. PDF icon zero_energy_home_brochure_052014.pdf More Documents & Publications DOE Challenge Home: Zero Net-Energy Ready Training DOE ZERO ENERGY READY HOME NEWSLETTER DECEMBER 2015 ZERH Trainer Partnership Agreement

  9. Internships Help Future Energy Leaders Gain Hands-On Experience |

    Office of Environmental Management (EM)

    Department of Energy Internships Help Future Energy Leaders Gain Hands-On Experience Internships Help Future Energy Leaders Gain Hands-On Experience August 23, 2013 - 10:19am Addthis EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. Rebecca

  10. Revolution Now: The Future Arrives for Five Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies-2015 Update | Department of Energy Revolution Now: The Future Arrives for Five Clean Energy Technologies-2015 Update Revolution Now: The Future Arrives for Five Clean Energy Technologies-2015 Update An illustrated infographic showing the falling costs for clean energy technologies including wind, solar, buildings, and lightin For decades, America has anticipated the transformational impact of clean energy technologies. As the federal government and industry made long-term

  11. Energy futures: Trading opportunities for the 1990s

    SciTech Connect (OSTI)

    Treat, J.E.

    1990-01-01

    This volume contains an edited collection of views from practitioners in the rapidly growing area of energy futures and options trading, a major element of risk management. Four chapters are devoted to Trading Theories and Strategies. This section is aimed at the specialist in energy, rather than finance. The complexities of options trading are described in another chapter. The remaining sections of this book present a variety of topics in this field including Natural Gas Trading and Futures, Energy Futures and Options Trading, and Accounting, Taxation and Internal Control. The book is a good introduction and reference to the mechanics and institutions of energy futures contracts and trading.

  12. Energy Department Selects Global Laser Enrichment for Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site Pamela Thompson is retiring from her 37-year federal career. Retiring Procurement Official ...

  13. FutureGen 2.0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with a new cooperative agreement between the FutureGen Industrial Alliance and the Department of Energy for an innovative carbon capture and storage (CCS) project in Illinois. ...

  14. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  15. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  16. Future U.S. water consumption : The role of energy production.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  17. Dynamic Controls for Energy Efficiency and Demand Response:Framework Concepts and a New Construction Study Case in New York

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-06-20

    Many of today's advanced building control systems are designed to improve granularity of control for energy efficiency. Examples include direct digital controls for building heating, ventilation, and cooling systems (HVAC), and dimmable ballasts for continuous dimming for daylighting applications. This paper discusses recent research on the use of new and existing controls in commercial buildings for integrated energy efficiency and demand response (DR). The paper discusses the use of DR controls strategies in commercial buildings and provides specific details on DR control strategy design concepts for a new building in New York. We present preliminary results from EnergyPlus simulations of the DR strategies at the New York Times Headquarters building currently under construction. The DR strategies at the Times building involve unique state of the art systems with dimmable ballasts, movable shades on the glass facade, and underfloor air HVAC. The simulation efforts at this building are novel, with an innovative building owner considering DR and future DR program participation strategies during the design phase. This paper also discusses commissioning plans for the DR strategies. The trends in integration of various systems through the EMCS, master versus supervisory controls and dynamic operational modes concepts are presented and future research directions are outlined.

  18. Securing America's Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  19. Securing America's Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This letter-fold brochure provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  20. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  1. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  2. Revolution Now: The Future Arrives for Four Clean Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Critics often said a clean energy future would "always be five years away." In 2013, the DOE ... These technologies are changing the nature of our energy system. Solar and wind power ...

  3. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  4. Chu at COP-16: Building a Sustainable Energy Future

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Steven Chu addresses the U.S. Center in Cancun on the need to build a sustainable energy future as part of the United Nations Climate Change Conference, COP-16. In his...

  5. Rethinking the Future Grid: Integrated Nuclear Renewable Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems Preprint S.M. Bragg-Sitton ... In the 2011 State of the Union Address, President Obama set a clean energy goal ...

  6. State and Local Resources for a Clean Energy Future Brochure

    Broader source: Energy.gov [DOE]

    The State and Local Resources for a Clean Energy Future brochure explains how to best use state and local resources to meet your community's clean energy goals. View the infographic above or...

  7. Paducah Site Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Use Paducah Site Future Use Paducah C-333 Process Building Paducah C-333 Process Building DOE has been actively pursuing the environmental cleanup goals at the Paducah site since 1988. After environmental cleanup activities are completed, the sites will be available for reuse with a range of uses up to and including heavy industry. Mission & End State Today, DOE's site missions include environmental cleanup, waste disposition, depleted uranium conversion, decontamination and

  8. FutureGen Project Launched | Department of Energy

    Energy Savers [EERE]

    Project Launched FutureGen Project Launched December 6, 2005 - 4:29pm Addthis Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman today announced that the Department of Energy has signed an agreement with the FutureGen Industrial Alliance to build FutureGen, a prototype of the fossil-fueled power plant of the future. The nearly $1 billion government-industry project will produce electricity and hydrogen with

  9. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  10. Transportation Energy Futures Study Reveals Potential for Deep Cuts to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Use and Carbon Emissions - News Releases | NREL Transportation Energy Futures Study Reveals Potential for Deep Cuts to Petroleum Use and Carbon Emissions Collaborative NREL and ANL project reveals opportunities for 80% reductions by 2050 March 15, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Argonne National Laboratory (ANL) today announced the release of the Transportation Energy Futures (TEF) study, an assessment of avenues to reach

  11. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Energy Savers [EERE]

    Department of Energy You are here Home » About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S. Department of Energy's Bioenergy Technologies Office (BETO) establishes partnerships with key public and private stakeholders to develop and demonstrate technologies for producing cost-competitive advanced biofuels from non-food biomass resources, including cellulosic biomass, algae, and wet waste

  12. Supercomputers, Semi Trucks and America's Clean Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation,

  13. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S. Department of Energy's Bioenergy Technologies Office (BETO) establishes partnerships with key public and private stakeholders to develop and demonstrate technologies for producing cost-competitive advanced biofuels from non-food biomass resources, including cellulosic biomass, algae, and wet waste (e.g. biosolids).

  14. Industrial Assessment Centers Train Future Energy-Savvy Engineers |

    Office of Environmental Management (EM)

    Department of Energy Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility

  15. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  16. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  17. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  18. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  19. Revolution Now: The Future Arrives for Four Clean Energy Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Revolution Now: The Future Arrives for Four Clean Energy Technologies Revolution Now: The Future Arrives for Four Clean Energy Technologies Editor's note: This report was updated in October 2014. To read the most up-to-date version, visit the Revolution Now 2014 page. This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial

  20. Energy Department Selects Global Laser Enrichment for Future Operations at

    Energy Savers [EERE]

    Paducah Site | Department of Energy Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy announced today that it will open negotiations with Global

  1. Vehicle Education Efforts Fuel Our Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many

  2. Better Buildings Case Competition Helps Develop Future Clean Energy Leaders

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Case Competition Helps Develop Future Clean Energy Leaders Better Buildings Case Competition Helps Develop Future Clean Energy Leaders March 7, 2013 - 10:30am Addthis Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher Jones and

  3. Resources for the Future | Open Energy Information

    Open Energy Info (EERE)

    organization that conducts independent research - rooted primarily in economics and other social sciences - on environmental, energy, natural resource and public health issues....

  4. Chapter 10, Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols Frank Stern, Navigant Consulting Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 10 - 1 Chapter 10 - Table of Contents 1 Introduction .............................................................................................................................2 2 Purpose of Peak Demand and Time-differentiated Energy

  5. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  6. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

    2010-06-01

    We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

  7. Property:OpenEI/UtilityRate/DemandChargePeriod1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Pages using the property "OpenEIUtilityRateDemandChargePeriod1"...

  8. Property:OpenEI/UtilityRate/DemandRatchetPercentage | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Ratchet Percentage Pages using the property "OpenEIUtilityRateDemandRatchetPercentag...

  9. U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Introduction Coal production in the United States in 2010 increased to a level of 1,085.3 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), an increase of 1.0 percent, or 10.4 million short tons above the 2009 level of 1,074.9 million short tons (Table 1). In 2010 U.S. coal consumption increased in all

  10. Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings with Uncertainty in an Integrated Assessment Model

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2015-10-01

    In this paper, an integrated assessment model (IAM) uses a newly-developed Monte Carlo analysis capability to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The paper finds that aggressive building-energy codes and equipment standards are an effective, cost-saving way to reduce energy consumption in buildings and greenhouse gas emissions in U.S. states. This conclusion is robust to significant uncertainties in population, economic activity, climate, carbon prices, and technology performance and costs.

  11. Innovation: Enabling a Sustainable Energy Future

    Broader source: Energy.gov [DOE]

    These slides correspond to a presentation given by National Renewable Energy Laboratory (NREL) Director Dr. Dan Arvizu at the 2014 SunShot Grand Challenge Summit and Peer Review in Anaheim, CA....

  12. Rising to the Challenge: Innovating toward our Clean Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rising to the Challenge: Innovating toward our Clean Energy Future Rising to the Challenge: Innovating toward our Clean Energy Future February 9, 2011 - 9:52am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What does this mean for me? Hundreds of companies around the country are figuring ways to power our economy -- like 1366, which is helping make solar power 50% cheaper. The Chinese are on pace to get nearly 20% of

  13. Energy Department Releases New Wind Report, Examines Future of Industry |

    Energy Savers [EERE]

    Department of Energy Wind Report, Examines Future of Industry Energy Department Releases New Wind Report, Examines Future of Industry March 12, 2015 - 11:51am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov Present Day to 2050, Report Quantifies the Economic and Social Benefits of Robust Wind Energy Growth WASHINGTON - In support of the President's all-of-the-above energy strategy to diversify our nation's power supplies, the Energy Department today released a new report looking

  14. USVI Energy Road Map: Charting the Course to a Clean Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands | Department of Energy USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the

  15. CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future-as an: Environmental Solution (significantly reducing CO2 emissions through greater energy efficiency),

  16. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Events » Conferences » Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports

  17. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Securing America's Clean Energy Future The Office of Energy Efficiency and Renewable Energy (EERE) invests in clean energy technologies that strengthen the economy, reduce dependence on foreign oil, and protect the environment. EERE leverages partnerships with the private sector, state and local governments, DOE national laboratories, and universities to transform the nation's economic engine to one powered by clean energy. EERE Programs 2011 Budget (in $ millions) EERE operates with $1.8

  18. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  19. Water Power For a Clean Energy Future Cover Photo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a Clean Energy Future Cover Photo Water Power For a Clean Energy Future Cover Photo Image icon Water Power For a Clean Energy Future Cover.JPG More Documents & Publications 2014 Water Power Peer Review Report Cover NOWEGIS Report Cover 2013 Wind Technologies Market Report Cover

  20. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  1. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola dEnginyeria dIgualada (EEI), Universitat Politcnica de Catalunya (UPC), Plaa del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comer Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola dEnginyeria dIgualada (EEI), Universitat Politcnica de Catalunya (UPC), Plaa del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comer Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15

    Highlights: We developed a methodology useful to environmentally compare industrial waste management options. The methodology uses a Net Energy Demand indicator which is life cycle based. The method was simplified to be widely used, thus avoiding cost driven decisions. This methodology is useful for governments to promote the best environmental options. This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  2. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  3. New Feedstocks and Replacement Fuels - Future Energy for Mobility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Future Energy for Mobility Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  4. The Road to a Sustainable Energy Future | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2015, 9:30am to 11:00am Science On Saturday MBG Auditorium The Road to a Sustainable Energy Future Professor Emily Carter, Department of Engineering; Director of the Andlinger...

  5. USVI Energy Road Map: Charting the Course to a Clean Energy Future...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. ...

  6. Transportation Energy Futures Series: Projected Biomass Utilization for

    Office of Scientific and Technical Information (OSTI)

    Fuels and Power in a Mature Market (Technical Report) | SciTech Connect Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this

  7. New Feedstocks and Replacement Fuels - Future Energy for Mobility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuels - Future Energy for Mobility New Feedstocks and Replacement Fuels - Future Energy for Mobility Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_simnick.pdf More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Cross-cutting Technologies for Advanced Biofuels Well-to-Wheels Analysis of

  8. Investing in Our Energy Future: The Story of General Compression |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Investing in Our Energy Future: The Story of General Compression Investing in Our Energy Future: The Story of General Compression February 29, 2012 - 9:23am Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does government funding mean to a small clean energy startup? In the case of many ARPA-E awardees and small businesses across the country, it means being able to secure the private capital necessary to bring their

  9. Biomass 2014: Growing the Future Bioeconomy Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014: Growing the Future Bioeconomy Agenda Biomass 2014: Growing the Future Bioeconomy Agenda Tuesday, July 29, 2014 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:20 a.m. Welcome and Introduction Jonathan Male, Director, Bioenergy Technologies Office, U.S. Department of Energy 8:20 a.m.-9:00 a.m. Morning Keynotes David Danielson, Assistant Secretary for Energy Efficiency & Renewable Energy, U.S. Department of Energy Byron Paez, Deputy Director for Deputy Assistant

  10. Fossil fuels in a sustainable energy future

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  11. Could Building Energy Codes Mandate Rooftop Solar in the Future?

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

    2012-08-01

    This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

  12. ONLY HERE...Will You Define the Future of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ONLY HERE...Will You Define the Future of Energy Application deadline: December 21, 2015 The Mickey Leland Energy Fellowship (MLEF) Program provides college students with an opportunity to gain and develop research skills with the Department of Energy's Office of Fossil Energy. The program was created in 1995 with the goal of improving opportunities for under-represented students in the STEM fields. All eligible candidates are encouraged to apply. For 10 weeks over the summer, participants will:

  13. Armstrong Teasdale Future Energy Group | Open Energy Information

    Open Energy Info (EERE)

    St. Louis, Missouri Zip: 63105 Sector: Bioenergy, Biofuels, Biomass, Buildings, Carbon, Efficiency, Geothermal energy, Hydro, Hydrogen, Renewable energy, Services, Solar,...

  14. Residential-energy-demand modeling and the NIECS data base: an evaluation

    SciTech Connect (OSTI)

    Cowing, T.G.; Dubin, J.A.; McFadden, D.

    1982-01-01

    The purpose of this report is to evaluate the 1978-1979 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance choice and utilization decisions. The NIECS contains detailed energy usage information at the household level for 4081 households during the April 1978 to March 1979 period. Among the data included are information on the structural and thermal characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics, and actual energy consumption. The survey covers the four primary residential fuels-electricity, natural gas, fuel oil, and liquefied petroleum gas - and includes detailed information on recent household conservation and retrofit activities. Section II contains brief descriptions of the major components of the NIECS data set. Discussions are included on the sample frame and the imputation procedures used in NIECS. There are also two extensive tables, giving detailed statistical and other information on most of the non-vehicle NIECS variables. Section III contains an assessment of the NIECS data, focusing on four areas: measurement error, sample design, imputation problems, and additional data needed to estimate appliance choice/use models. Section IV summarizes and concludes the report.

  15. Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings under Uncertainty with an Integrated Assessment Model: Technical Background Data

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2014-12-06

    This report presents data and assumptions employed in an application of PNNLs Global Change Assessment Model with a newly-developed Monte Carlo analysis capability. The model is used to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The report provides a summary of how residential and commercial buildings are modeled, together with assumptions made for the distributions of statelevel population, Gross Domestic Product (GDP) per worker, efficiency and cost of residential and commercial energy equipment by end use, and efficiency and cost of residential and commercial building shells. The cost and performance of equipment and of building shells are reported separately for current building and equipment efficiency standards and for more aggressive standards. The report also details assumptions concerning future improvements brought about by projected trends in technology.

  16. TRANSPORTATION ENERGY FUTURES - Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    SciTech Connect (OSTI)

    Anya Breitenbach

    2013-03-15

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use.

  17. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped

  18. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the

  19. Kutscher Elected Future Chair of American Solar Energy Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kutscher Elected Future Chair of American Solar Energy Society For more information contact: e:mail: Public Affairs Golden, Colo., Jan. 14, 1998 — Dr. Chuck Kutscher of the National Renewable Energy Laboratory (NREL) was elected future chair of the American Solar Energy Society. Starting this month, he will serve as vice-chair/chair-elect for two years and then serve a two-year term as chair beginning January 2000. "I'm excited to have the opportunity to be chair at the turn of the

  20. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  1. Biomass 2008: Fueling Our Future Conference | Department of Energy

    Energy Savers [EERE]

    2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy Samuel Bodman Thank you and good afternoon. It's good to be with you. I want to thank John Mizroch for introducing me, and to congratulate him and all the folks at the Energy Department's biomass office for pulling together what appears to be a very successful event. Our national energy policy centers around one key idea: we must

  2. Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 1 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth1"...

  3. Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy...

    Open Energy Info (EERE)

    1 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 11 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth11" Showing 2...

  4. Property:OpenEI/UtilityRate/FixedDemandChargeMonth2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 2 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth2"...

  5. Property:OpenEI/UtilityRate/FixedDemandChargeMonth3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 3 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth3"...

  6. Property:OpenEI/UtilityRate/FixedDemandChargeMonth6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 6 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth6"...

  7. Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 8 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth8"...

  8. Property:OpenEI/UtilityRate/FixedDemandChargeMonth7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 7 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth7"...

  9. Property:OpenEI/UtilityRate/FixedDemandChargeMonth9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 9 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth9"...

  10. Property:OpenEI/UtilityRate/FixedDemandChargeMonth5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 5 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth5"...

  11. Property:OpenEI/UtilityRate/FixedDemandChargeMonth4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 4 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth4"...

  12. Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy...

    Open Energy Info (EERE)

    2 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 12 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth12" Showing 2...

  13. Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy...

    Open Energy Info (EERE)

    0 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 10 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth10" Showing 2...

  14. New Research Facility Holds Promise For Nation's Energy Future - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL New Research Facility Holds Promise For Nation's Energy Future Leaders Praise Innovative Design For NREL's First Major Expansion In Decade July 27, 2004 Golden, Colo. - Ground was broken today on a new facility at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), designed to increase collaboration among researchers and speed the time it takes for new technologies to move from the laboratory bench to commercial manufacturing. Speaking at a

  15. Demand Response

    Office of Environmental Management (EM)

    Demand Response Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE

  16. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% − 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  17. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy July 14, 2014 - 11:16am Addthis Leslie Ovard Bioenergy Policy Specialist, Bioenergy Technologies Office Bioenergy has the potential to be a major source of renewable energy for the nation, powering homes, businesses, vehicles, and planes using diverse and sustainable fuels such as algae and agricultural waste. To grow America's bioenergy economy and reduce our dependence on oil imports, industry, academia,

  18. Metals at Albany: Past, Present, and Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metals at Albany: Past, Present, and Future Metals at Albany: Past, Present, and Future January 4, 2016 - 2:31pm Addthis Specialty Metals Exhibit at the Albany Regional Museum in Albany, OR. Specialty Metals Exhibit at the Albany Regional Museum in Albany, OR. Reactive metals, rare metals, specialty metals - all these terms refer to a set of elements that include titanium, hafnium, niobium, and zirconium. The processing of these metals has a very close link with the Office of Fossil Energy's

  19. A Safe, Secure Nuclear Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Safe, Secure Nuclear Future A Safe, Secure Nuclear Future June 8, 2011 - 12:00pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy I am in Russia meeting with business, government and scientific leaders about opportunities for partnership between our two countries. One of the most important areas where we need to work together is on nuclear power and nuclear security. In a speech I delivered earlier today, I mentioned a letter that Albert Einstein wrote to President Roosevelt in

  20. Using Maps to Predict Solar Futures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Maps to Predict Solar Futures Using Maps to Predict Solar Futures June 19, 2015 - 1:43pm Addthis Using Maps to Predict Solar Futures Dr. Lidija Sekaric Dr. Lidija Sekaric Acting Director for the SunShot Technology to Market Program When first exploring the possibility of going solar, many consumers have questions: How many panels will I need for my rooftop? What is this going to cost me? How much will I save on my electricity bills? Awardees of the Energy Department's SunShot Initiative

  1. The Role Of IC Engines In Future Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of IC Engines In Future Energy Use The Role Of IC Engines In Future Energy Use Reviews future market trends and forecasts, and future engine challenges and research focus PDF icon deer11_blaxill.pdf More Documents & Publications Next-generation Ultra-Lean Burn Powertrain Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain

  2. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  3. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    SciTech Connect (OSTI)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  4. Optimization of Ventilation Energy Demands and Indoor Air Quality in the ZEBRAlliance Homes

    SciTech Connect (OSTI)

    Hun, D.; Jackson, M.; Shrestha, S.

    2013-09-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. In this project, Oak Ridge National Laboratory researchers attempted to bridge these two areas by conducting tests in research houses located in Oak Ridge, TN, that were less than 2 years old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built, unoccupied, and unfurnished. The team identified air pollutants of concern in the test homes that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern from initial air sampling surveys. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74°F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused minimal to modest increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  5. AgFuture Energy LLC AFE | Open Energy Information

    Open Energy Info (EERE)

    Energy LLC (AFE) Place: Texas Product: The Texas A&M University System has formed a joint venture with a Pennsylvania-based advisory firm to commercialise energy research...

  6. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  7. Growth Rates of Global Energy Systems and Future Outlooks

    SciTech Connect (OSTI)

    Hoeoek, Mikael; Li, Junchen; Johansson, Kersti; Snowden, Simon

    2012-03-15

    The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

  8. Secretary Moniz Speaks on Future of Fossil Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moniz Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy July 30, 2013 - 1:17pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Yesterday, Energy Secretary Ernest Moniz toured the National Energy Technology Laboratory (NETL) West Virginia campus and spoke with employees about their work developing the cleaner and more efficient energy technology that's helping power the nation. He was also on hand to dedicate the

  9. Bright Young Minds for a Clean Energy Future | Department of Energy

    Energy Savers [EERE]

    Young Minds for a Clean Energy Future Bright Young Minds for a Clean Energy Future August 16, 2011 - 12:11pm Addthis Bright Young Minds for a Clean Energy Future Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy How can I participate? Registration begins August 15 and ends on October 7, 2011. Students are encouraged to register with their teachers by September 30, 2011 to take advantage of the full energy savings period. It's that time again: Back to school

  10. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Boolean. Name: Enable Demand Charge Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  11. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  12. Property:OpenEI/UtilityRate/DemandChargePeriod3FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  13. Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  14. Property:OpenEI/UtilityRate/DemandChargePeriod4FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  15. Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  16. Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  17. Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  18. Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  19. Property:OpenEI/UtilityRate/DemandChargePeriod1FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  20. Property:OpenEI/UtilityRate/DemandChargePeriod3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  1. Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  2. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandWindow&oldid680274...

  3. Property:OpenEI/UtilityRate/DemandWeekdaySchedule | Open Energy...

    Open Energy Info (EERE)

    search This is a property of type Text. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandWeekdaySchedule&oldid539760" Feedback...

  4. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    SciTech Connect (OSTI)

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  5. Water Power for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable...

  6. Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Future Print Information about the future expansion of research fields for synchrotrons and the growing number of light sources, including free electron lasers (FELs) will be posted here shortly.

  7. Future Lighting Systems: The Path to Optimized Energy Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Northwest National Laboratory Future Lighting Systems: The Path to Optimized Energy Performance Lightfair May 5-7, 2015 2 SSL technology is re-defining the role of lighting devices * SSL is the most energy efficient, flexible, controllable lighting technology in history - Spectral power distribution, light output (e.g. luminous flux, intensity, distribution), color characteristics (e.g. CCT, CRI, Duv) - System architecture, partitioning, and power conversion * SSL is blurring the

  8. Renewable Energy in Indian Country Handbook: Past, Present and Future

    Energy Savers [EERE]

    In Indian Country The Handbook: Past, Present and Future Douglas C. MacCourt, Ater Wynne LLP Chair Member and Former Chair Indian Law Group Executive Committee Ater Wynne LLP Indian Law Section dcm@aterwynne.com Oregon State Bar Association Tribal Energy Program United States Department of Energy Annual Program Review May 4-7, 2015 Denver, Colorado Overview of Presentation * Overview of the Handbook - Origins - Goals - Details * Trends * Blueprint for a New Handbook Origins * In 2007, TEP

  9. Innovating a Sustainable Energy Future (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Little, Mark (GE Global Research)

    2012-03-14

    The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  10. Energy Department Charting New Future for Wastewater Treatment

    Broader source: Energy.gov [DOE]

    It will cost about $600 billion over the next 20 years to continue reliably transporting and treating wastewater, according to the Environmental Protection Agency (EPA). Find out how the Department of Energy collaborated with the National Science Foundation and EPA to explore a smarter future for water treatment.

  11. The Energy Challenge: The Current and Future Role of Solar Energy

    SciTech Connect (OSTI)

    Darling, Seth

    2011-08-10

    This talk begins by framing the outlook for global energy supply and demand over the next 40 years, examining the potential energy mix from a feasibility and sustainability perspective. In this context, the promise and challenges of solar energy utilization are discussed. An overview of solar energy research programs at Argonne is provided, and focuses specifically on research in Seth Darling's group in the areas of organic and hybrid organic/inorganic photovoltaics.

  12. Assessing the state-level consequences of global warming: Socio-economic and energy demand impacts

    SciTech Connect (OSTI)

    Rubin, B.M. Gailmard, S.; Marsh, D.; Septoff, A.

    1996-12-31

    The large body of research on climate change has begun to recognize a significant deficiency: the lack of analysis of the impact of climate change at a spatial level consistent with the anticipated occurrence of climate change. Climate change is likely to vary by region, while impact analysis has focused on much larger political units. Clearly, adaptation/mitigation strategies must be developed at a level consistent with political and policy-making processes. This paper specifically addresses this deficiency by identifying the potential socio-economic and energy demand consequences of climate change for subnational regions. This is accomplished via the development and application of a regional simultaneous equation, econometric simulation model that focuses on five states (Illinois, Indiana, Michigan, Ohio, and Wisconsin) in the Great Lakes region of the US. This paper presents a process for obtaining state-specific assessments of the consequences of climate change for the socio-economic system. As such, it provides an indication of which economic sectors are most sensitive to climate change for a specific state (Indiana), a set of initial mitigation/adaptation strategies for this state, and the results of testing these strategies in the policy analysis framework enabled by the model. In addition, the research demonstrates an effective methodology for assessing impacts and policy implications of climate change at a level consistent with policy making authority.

  13. Research for the Energy System of the Future | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increasing demand is one of the grand challenges of our society. Rising concerns about air pollution and man made climate change with not exactly predictable consequences demand...

  14. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  15. Energy technologies at Sandia National Laboratories: Past, Present, Future

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  16. Smart Federal Partnerships Build Our Biofuels Future | Department of Energy

    Energy Savers [EERE]

    Smart Federal Partnerships Build Our Biofuels Future Smart Federal Partnerships Build Our Biofuels Future April 13, 2015 - 10:30am Addthis The Energy Department’s Bioenergy Technologies Office engages with the U.S. Department of Agriculture on many projects, including guidance on the proper removal of corn stover (non-edible corn husks, stalks, and leaves) from the field when it is used for cellulosic ethanol and other advanced biofuel production. A corn stover bale is pictured here. The

  17. Impact of Temperature Trends on Short-Term Energy Demand, The (Released in the STEO September 1999)

    Reports and Publications (EIA)

    1999-01-01

    The past few years have witnessed unusually warm weather, as evidenced by both mild winters and hot summers. The analysis shows that the 30-year norms--the basis of weather-related energy demand projections--do not reflect the warming trend or its regional and seasonal patterns.

  18. Impact of the Demand-Side Management (DSM) Program structure on the cost-effectiveness of energy efficiency projects

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.; Dixon, D.R.; Elliott, D.B.

    1994-12-01

    Pacific Northwest Laboratory (PNL) analyzed the cost-effective energy efficiency potential of Fort Drum, a customer of the Niagara Mohawk Power Corporation (NMPC) in Watertown, New York. Significant cost-effective investments were identified, even without any demand-side management (DSM) incentives from NMPC. Three NMPC DSM programs were then examined to determine the impact of participation on the cost-effective efficiency potential at the Fort. The following three utility programs were analyzed: (1) utility rebates to be paid back through surcharges, (2) a demand reduction program offered in conjunction with an energy services company, and (3) utility financing. Ultimately, utility rebates and financing were found to be the best programs for the Fort. This paper examines the influence that specific characteristics of the DSM programs had on the decision-making process of one customer. Fort Drum represents a significant demand-side resource, whose decisions regarding energy efficiency investments are based on life-cycle cost analysis subject to stringent capital constraints. The structures of the DSM programs offered by NMPC affect the cost-effectiveness of potential efficiency investments and the ability of the Fort to obtain sufficient capital to implement the projects. This paper compares the magnitude of the cost-effective resource available under each program, and the resulting level of energy and demand savings. The results of this analysis can be used to examine how DSM program structures impact the decision-making process of federal and large commercial customers.

  19. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  20. Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  1. Property:OpenEI/UtilityRate/DemandChargePeriod9FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  2. Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  3. Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  4. Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  5. Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  6. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Broader source: Energy.gov [DOE]

    This presentation, presented in July 2008, addressed greenhouse gas reduction goals on high electric demand days. Presenter was Art Diem of the State and Local Capacity Building Branch at the U.S. Environmental Protection Agency.

  7. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  8. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  9. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  10. Open Data for a Clean, Secure Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Open Data for a Clean, Secure Energy Future Open Data for a Clean, Secure Energy Future July 12, 2012 - 2:35pm Addthis Notes from the May 25th Energy Data Jam in Stanford California | Credit: Openei.org Notes from the May 25th Energy Data Jam in Stanford California | Credit: Openei.org Todd Park U.S. Chief Technology Officer and Assistant to the President David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable Energy Richard Kauffman Richard Kauffman Senior

  11. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM's Project LIBERTY cellulosic ethanol biorefinery in Emmetsburg, Iowa, was made possible with $100 million in BETO cost-shared funding. Photo courtesy POET-DSM. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 The Bioenergy Technologies Office (BETO) forms cost-share public-private partnerships to help sustainably develop cost- competitive biofuels and bioproducts in the United States from non-food biomass resources. The potential exists to sustainably

  12. Seneca Nation of Indians - Strategic Energy Resource Plan: Energy Framework for the Future

    Energy Savers [EERE]

    "Strategic Energy Resource Plan" Energy Framework for the Future Gina Paradis October 18, 2005 Denver, Colorado SNI Energy Plan Project Location Project Overview Project Participants Objectives Outcomes Future Plans Project Location Seneca Nation Overview Seneca Nation is one of the original Five Nations of the Haudenosaunee, aka Iroquois Confederacy Approximately 7800 enrolled members Four Main Territories in WNY Allegany - 31,000 acres; City Of Salamanca leases 10,000 acres; 7350

  13. Video: Training Clean Energy Leaders of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Clean Energy Leaders of the Future Video: Training Clean Energy Leaders of the Future October 22, 2013 - 10:26am Addthis Watch our latest video for highlights from this year's Solar Decathlon and insights into how the competition is shaping the careers of the students involved and making sustainable home design popular. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene

  14. Search for a bridge to the energy future: Proceedings

    SciTech Connect (OSTI)

    Saluja, S.S.

    1986-01-01

    The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

  15. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect (OSTI)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  16. ECIS-Princeton Power Systems, Inc.: Demand Response Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Power Systems, Inc.: Demand Response Inverter - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  17. The Future of Energy at the ARPA-E Summit | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    future blogs by email. Subscribe to all future posts Who Todd Wetzel What Energy Aero-Thermal & Mechanical Systems Employee Events Thermal Sciences Why Powering Subscribe...

  18. U.S. Department of Energy Fuel Cell Activities: Progress and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Directions: Total Energy USA 2012 | Department of Energy S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 Presentation by Sunita Satyapal at Total Energy USA 2012 in Houston, Texas, on November 27, 2012. PDF icon U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions More Documents & Publications National Fuel

  19. The Future is Here - Smart Home Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Here - Smart Home Technology The Future is Here - Smart Home Technology Better Buildings Residential Network Peer Exchange Call Series: The Future is Here - Smart...

  20. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    DOE R&D Accomplishments [OSTI]

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  1. What Is the Right Rate? Loan Rates and Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Neighborhood Program Financing Peer Exchange Call: "What is the Right Rate?" call slides and discussion summary, December 1, 2011. PDF icon Call Slides and Discussion Summary More Documents & Publications Structuring Rebate and Incentive Programs for Sustainable Demand Peer Exchange Call on Financing and Revenue: Bond Funding Financing Small Business Upgrades

  2. New Science for a Secure and Sustainable Energy Future

    SciTech Connect (OSTI)

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  3. EERE Demonstration for Advanced Retro-commissioning Technology: Predictive Energy Optimization (PEO) and Automated Demand Response for Commercial Building HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Demonstration for Advanced Retro-commissioning Technology: Predictive Energy Optimization (PEO) and Automated Demand Response for Commercial Building HVAC 2015 Building Technologies Office Peer Review Michael Nark, michaeln@buildingiq.com BuildingIQ, Inc. Project Summary Timeline: Start date: October 1, 2014 Planned end date: September 30, 2017 Key Milestones 1. Stage 1 Site Qualification; 2/28/15 2. Stage 2 Site Qualification; 4/15/15 3. Stage 1 Sites Deployment; 6/30/15 Budget: Total DOE

  4. Chu at COP-16: Building a Sustainable Energy Future | Department of Energy

    Energy Savers [EERE]

    at COP-16: Building a Sustainable Energy Future Chu at COP-16: Building a Sustainable Energy Future December 7, 2010 - 11:16pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday, Secretary Chu addressed the U.S. Center in Cancun, Mexico, as part of the United Nations Climate Change Conference (COP-16) that has been taking place there over the past week. His speech focused the essential role that international collaborations must play in finding

  5. Supercomputing Our Way to a Clean Energy Future | Department of Energy

    Energy Savers [EERE]

    Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future August 6, 2012 - 2:34pm Addthis Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck

  6. Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) | Department of Energy Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies

  7. Hydrogen Infrastructure Expansion: Consumer Demand and Cost-Reduction Potential (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Expansion: Consumer Demand and Cost-Reduction Potential Hydrogen Infrastructure Investment Forum- Palo Alto, California Dr. Marc Melaina Senior Engineer April 16, 2014 NREL/PR-5400-61966 2 Presentation Overview * How much do consumers value hydrogen station availability? * How much will station costs decline with volume? * What kind of market growth is needed to ensure station cost reductions (and adequate return on investment, or ROI)? How much do consumers value hydrogen station

  8. DOE/Sandia Tribal Energy Internship Program: Immersion of Future Leaders into Renewable Energy

    Office of Environmental Management (EM)

    Fall 2011 Sandra Begay-Campbell skbegay@sandia.gov DOE / SANDIA TRIBAL ENERGY - INTERNSHIP PROGRAM Immersion of future leaders into renewable energy 2 | Tribal Energy Program eere.energy.gov/tribalenergy Intern Gathering at Southwest RE Conference, Flagstaff, AZ Pictured: Suzanne Singer, Gepetta Billie, Sandra Begay- Campbell, Carson Pete, Terry Battiest, Prestene Garnenez Overview: 2002 - 2010 Statistics Type of Work for Past Interns Tribal related work Non-tribal Engr/ Science work Seeking

  9. DOE/Sandia Tribal Energy Internship Program: Immersion of Future Leaders into Renewable Energy

    Office of Environmental Management (EM)

    2 Update Sandra Begay-Campbell skbegay@sandia.gov DOE / SANDIA TRIBAL ENERGY - INTERNSHIP PROGRAM Immersion of future leaders into renewable energy 2 | Tribal Energy Program eere.energy.gov/tribalenergy Intern Gathering at Southwest RE Conference, Flagstaff, AZ Pictured: Suzanne Singer, Gepetta Billie, Sandra Begay- Campbell, Carson Pete, Terry Battiest, Prestene Garnenez Overview: 2002 - 2012 Statistics Type of Work for Former Interns Tribal related work Non-tribal Engr/ Science work Seeking

  10. Roadmap for the Future of Commercial Energy Codes

    SciTech Connect (OSTI)

    Rosenberg, Michael I.; Hart, Philip R.; Zhang, Jian; Athalye, Rahul A.

    2015-01-26

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. For commercial building energy codes to continue to progress as they have over the last 40 years, the next generation of building codes will need to provide a path that is led by energy performance, ensuring a measurable trajectory toward net zero energy buildings. This report outlines a vision to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building-specific prescriptive packages that are designed both to be cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target, as demonstrated by whole building energy modeling, or by choosing one of the prescriptive packages. This review of the possible code formats (further described in Section 2.1) arrives at the following conclusions: • Predictive performance with energy use index (EUI) targets falls short as a code mechanism, since it is difficult to match individual building use to broad EUI targets. • Outcome-based codes–while an essential approach that should be applied to all buildings–are not a substitute for design and construction energy codes that focus on compliance at occupancy. • For a design and construction code, a differential predictive performance method with a stable and independent baseline provides the best accuracy and potential for a highly automated approach that could eventually be applied to most buildings. • Current performance codes that have a dependent and time-variable baseline should be replaced by a differential predictive performance method with a stable and independent baseline. • At some point in the future, tools that demonstrate predictive performance compliance may become so simple that there will no longer be a need for any prescriptive path. • As a bridge, prescriptive packages can provide a transition from the current component prescriptive approach to a performance only code, while providing flexibility and improved energy equivalency.

  11. The great ``retail wheeling`` illusion, and more productive energy futures

    SciTech Connect (OSTI)

    Cavanagh, R.

    1994-12-31

    This paper sets out the reasons why many environmental and public interest organizations oppose retail wheeling. Cavanagh argues that retail wheeling would destroy incentives for energy efficiency improvements and renewable energy generation--benefits that reduce long-term energy service costs to society as a whole. The current debate over the competitive restructuring of the electric power industry is critical from both economic and environmental perspectives. All attempts to introduce broad-scale retail wheeling in the United States have failed; instead, state regulators are choosing a path that emphasizes competition and choice, but acknowledges fundamental differences between wholesale and retail markets. Given the physical laws governing the movement of power over centrally controlled grids, the choice offered to customers through retail wheeling of electricity is a fiction -- a re-allocation of costs is all that is really possible. Everyone wants to be able to claim the cheapest electricity on the system; unfortunately, there is not enough to go around. By endorsing the fiction of retail wheeling for certain types of customers, regulators would be recasting the retail electricity business as a kind of commodity exchange. That would reward suppliers who could minimize near-term unit costs of electricity while simultaneously destroying incentives for many investments, including cost-effective energy efficiency improvements and renewable energy generation, that reduce long-term energy service costs to society as a whole. This result, which has been analogized unpersuasively to trends in telecommunications and natural gas regulation, is neither desirable nor inevitable. States should go on saying no to retail wheeling in order to be able to create something better: regulatory reforms that align utility and societal interests in pursuing a least-cost energy future. An appendix contains notes on some recent Retail Wheeling Campaigns.

  12. PARC: Harvesting Solar Energy for the Future (Other) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Other: PARC: Harvesting Solar Energy for the Future Citation Details In-Document Search Title: PARC: Harvesting Solar Energy for the Future You are accessing a document from the...

  13. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Energy Savers [EERE]

    for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This fact sheet ...

  14. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact...

    Office of Scientific and Technical Information (OSTI)

    Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Citation Details In-Document Search Title: Prospects for Future Very High-Energy Gamma-Ray Sky Survey:...

  15. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  16. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  17. Sun Rises on Tribal Energy Future in Nevada | Department of Energy

    Energy Savers [EERE]

    Sun Rises on Tribal Energy Future in Nevada Sun Rises on Tribal Energy Future in Nevada March 24, 2014 - 3:04pm Addthis 1 of 4 On March 21, 2014, tribal leaders and community members of the Moapa Band of Paiute in Nevada celebrated the groundbreaking of the 250-megawatt Moapa Southern Paiute Solar Project, making it the first utility-scale solar project on tribal land. Tribal leaders balanced the tribe's high energy costs with preserving the Moapa land and cultural heritage. Image: Jim Laurie. 2

  18. FutureGen Industrial Alliance Inc | Open Energy Information

    Open Energy Info (EERE)

    FutureGen Industrial Alliance Inc Jump to: navigation, search Name: FutureGen Industrial Alliance Inc Place: Washington, Washington, DC Zip: 20006 Product: The FutureGen Industrial...

  19. Revolution Now: The Future Arrives for Five Clean EnergyTechnologies...

    Office of Environmental Management (EM)

    Revolution Now: The Future Arrives for Five Clean Energy Technologies-2015 Update Revolution Now: The ... energy technologies including wind, solar, buildings, and lightin For decades, ...

  20. Science for Our Nation's Energy Future | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements ...

  1. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  2. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  3. Department of Energy and FutureGen Alliance Discuss Next Steps for

    Energy Savers [EERE]

    FutureGen 2.0 in Illinois | Department of Energy FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 19, 2010 - 12:00am Addthis Washington, DC - At a meeting today in Chicago, officials from the Department of Energy, the state of Illinois, Ameren, Babcock & Wilcox, American Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture

  4. Department of Energy and FutureGen Alliance Discuss Next Steps for

    Office of Environmental Management (EM)

    FutureGen 2.0 in Illinois | Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 20, 2010 - 1:00pm Addthis Washington, DC - Officials from the Department of Energy, the state of Illinois, Ameren, Babcock & Wilcox, American Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture and storage project in

  5. Future Home Tech: 8 Energy-Saving Solutions on the Horizon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Home Tech: 8 Energy-Saving Solutions on the Horizon Future Home Tech: 8 Energy-Saving Solutions on the Horizon December 18, 2015 - 12:37pm Addthis Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan explains how efficiency standards and advances in technology are helping consumers save energy and previews the energy-saving home technologies of tomorrow. | Video by Jeremy Kahn, Office of Energy Efficiency and Renewable Energy. Paul Lester Paul Lester Digital

  6. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand Dispatch-Intelligent Demand for a More Efficient Grid 10 August 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

  7. Science for Our Nation's Energy Future | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 11.18.10 Science for Our Nation's Energy Future Print Text Size: A A A Subscribe FeedbackShare Page May 25-27, 2011 :: Science for Our Nation's Energy Future, the inaugural Energy Frontier Research Centers Summit and Forum on May 25 - 27, 2011 at the Renaissance Penn Quarter

  8. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  9. Kodak: Optimizing the Pumping System Saves Energy and Reduces Demand Charges at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2005-06-01

    This two-page performance spotlight describes how, in 2003, Kodak's facilities in Rochester, New York, significantly improved the energy efficiency of its two lake-water pumping stations to save more than $100,000 annually in energy and maintenance costs. The project reduced energy use by more than 1 million kilowatt-hours per year and allowed fewer pumps to operate at any one time, while maintaining previous pumping performance levels. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial system assessment that resulted in this project.

  10. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of Chinas total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  11. On the Inclusion of Energy-Shifting Demand Response in Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a case study of aggregated supermarket refrigeration systems providing balancing energy reserves in real-time markets at different levels of variable generation (VG). This DR...

  12. Vision of the Future Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid The GTT developed a draft vision (below) which describes a future electricity system and lists several key attributes of that system. In its current form, this vision incorporates comments made by stakeholders during meetings organized by the GTT. The vision will continue to evolve and be refined as the GTT engages with the broader stakeholder community. Vision of the Future Grid A seamless, cost-effective electricity

  13. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  14. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-11-01

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

  15. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Hydrogen and the materials of a sustainable energy future

    SciTech Connect (OSTI)

    Zalbowitz, M.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  18. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    Reports and Publications (EIA)

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  19. Using Community-Based Social Marketing to Drive Demand for Energy Efficiency

    Broader source: Energy.gov [DOE]

    Slides presented in the "What’s Working in Residential Energy Efficiency Upgrade Programs Conference - Promising Approaches and Lessons Learned" on May 20, 2011 in Washington, D.C.

  20. Shell Future Fuels and CO2 | Open Energy Information

    Open Energy Info (EERE)

    Shell Future Fuels and CO2 Jump to: navigation, search Name: Shell Future Fuels and CO2 Place: Glasgow, Scotland, United Kingdom Zip: G1 9BG Sector: Hydro, Hydrogen Product:...

  1. Impacts of High Resolution Extreme Events on U.S. Energy Demand and CO{sub 2} Emissions in the 21st Century

    SciTech Connect (OSTI)

    Diffenbaugh, Noah

    2013-06-21

    Progress is reported in these areas: Validation of temperature and precipitation extremes; Time of emergence of severe heat stress in the United States; Quantifying the effects of temperature extremes on energy demand and carbon dioxide emissions.

  2. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  3. Biomass 2009: Fueling Our Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09: Fueling Our Future Biomass 2009: Fueling Our Future We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success. Biomass 2009: Fueling Our Future was held on March 17 and 18, 2009, at the Gaylord National Harbor in National Harbor, Maryland. More than 600 participants from industry, finance, government, and academia were in attendance, including several large and

  4. Making a Difference: Hydropower and Our Clean Energy Future | Department of

    Office of Environmental Management (EM)

    Energy Hydropower and Our Clean Energy Future Making a Difference: Hydropower and Our Clean Energy Future November 5, 2015 - 9:52am Addthis Making a Difference: Hydropower and Our Clean Energy Future Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Not much beats stepping outside and taking a deep breath of fresh air. Guess what-you can thank hydropower for contributing to that! Since hydropower is fueled by water, it is a climate-friendly

  5. International Oil Supplies and Demands. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  6. Better Buildings for a Brighter Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings for a Brighter Future Better Buildings for a Brighter Future This program fact sheet provides an overview of the Better Buildings Neighborhood Program,and the program's accomplishments/progress to date. PDF icon Better Buildings for a Brighter Future More Documents & Publications The BetterBuildings View BetterBuildings for Michigan: Residential Program The Better Buildings Neighborhood View - September 2012

  7. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The vision of the VW group for the future of diesel engines and future fuels is presented. PDF icon deer10_sjohnson.pdf More Documents & Publications The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts EPA's Recent Advance Notice on Greenhouse Gases

  8. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2009 for the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2009-06-01

    This report outlines the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  9. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2010 for the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2011-12-01

    This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  10. #WomenInSTEM: Making a Cleaner Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #WomenInSTEM: Making a Cleaner Future #WomenInSTEM: Making a Cleaner Future Addthis Duration 1:44 Topic Energy Sector Jobs Solar Wind Science Education

  11. Transportation Energy Futures- Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  12. Idaho Save Energy Now Industries of the Future

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Idaho.

  13. STATE AND LOCAL RESOURCES FOR A CLEAN ENERGY FUTURE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For more information on these efforts, visit http:energy.goveereslscespc BENCHMARKING ... Benchmarking building energy use is the foundation of smart energy management and a best ...

  14. Powertrain Trends and Future Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Trends and Future Potential Powertrain Trends and Future Potential Gasoline and clean diesel engines have the potential to reduce CO2 further as technology for both types of engines continues to evolve PDF icon deer09_rueger.pdf More Documents & Publications SCR Technologies for NOx Reduction Injection System and Engine Strategies for Advanced Emission Standards Advanced Diesel Common Rail Injection System for Future Emission Legislation

  15. Biodiesel ASTM Update and Future Technical Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel ASTM Update and Future Technical Needs Biodiesel ASTM Update and Future Technical Needs Latest ASTM fuel specifications on biodiesel blends are summarized as well as future needs for improved fuel quality, process quality controls, and new performance testing procedures. PDF icon deer08_howell.pdf More Documents & Publications Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel Recent Research to Address Technical Barriers to Increased Use of Biodiesel Biodiesel

  16. Stewards of Affordable Housing for the Future | Department of Energy

    Energy Savers [EERE]

    Stewards of Affordable Housing for the Future Stewards of Affordable Housing for the Future Better Buildings Multifamily Peer Exchange Call Featuring: Stewards of Affordable Housing for the Future, call slides and discussion summary, April 7, 2011. PDF icon Call Slides and Discussion Summary More Documents & Publications Finance Peer Exchange Kickoff Call Better Buildings Working with Utilities Peer Exchange Call: Kick-off Shared Space vs. In-Unit Upgrades in Multifamily Buildings

  17. The Future of Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Home Heating The Future of Home Heating Huber presentation on May 8, 2012 at the Pyrolysis Oil Workshop on the future of home heating PDF icon pyrolysis_huber.pdf More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England Performance of Biofuels and Biofuel Blends Biofuels Report Final

  18. Better Buildings for a Brighter Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    program fact sheet provides an overview of the Better Buildings Neighborhood Program,and the program's accomplishmentsprogress to date. Better Buildings for a Brighter Future More...

  19. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect (OSTI)

    Shipley, Ms. Anna; Hampson, Anne; Hedman, Mr. Bruce; Garland, Patricia W; Bautista, Paul

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure modernization. The energy efficiency benefits of CHP offer significant, realistic solutions to near- and long-term energy issues facing the Nation. With growing demand for energy, tight supply options, and increasing environmental constraints, extracting the maximum output from primary fuel sources through efficiency is critical to sustained economic development and environmental stewardship. Investment in CHP would stimulate the creation of new 'green-collar' jobs, modernize aging energy infrastructure, and protect and enhance the competitiveness of US manufacturing industries. The complementary roles of energy efficiency, renewable energy, and responsible use of traditional energy supplies must be recognized. CHP's proven performance and potential for wider use are evidence of its near-term applicability and, with technological improvements and further elimination of market barriers, of its longer term promise to address the country's most important energy and environmental needs. A strategic approach is needed to encourage CHP where it can be applied today and address the regulatory and technical challenges preventing its long-term viability. Experience in the United States and other countries shows that a balanced set of policies, incentives, business models, and investments can stimulate sustained CHP growth and allow all stakeholders to reap its many well-documented benefits.

  20. Ensuring the Resiliency of Our Future Water and Energy Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy the Resiliency of Our Future Water and Energy Systems Ensuring the Resiliency of Our Future Water and Energy Systems June 18, 2014 - 12:00pm Addthis Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Infographic by Sarah Gerrity, Energy Department. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Learn More Read the full Water-Energy Nexus report. Visit the Water-Energy Tech Team website to learn more about the water-energy nexus.

  1. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  2. Past and Future Cost of Wind Energy: Preprint

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  3. Future Fuels: Issues and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels: Issues and Opportunities Future Fuels: Issues and Opportunities 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_beard.pdf More Documents & Publications New Diesel Feedstocks and Future Fuels Effect of GTL Diesel Fuels on Emissions and Engine Performance Application of Synthetic Diesel Fuels

  4. The Future of Bioenergy Feedstock Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Bioenergy Feedstock Production The Future of Bioenergy Feedstock Production This presentation was given by John Ferrell at the Symbiosis Conference PDF icon symbiosis_conference_ferrell.pdf More Documents & Publications 2015 Peer Review Presentations-Terrestrial Feedstocks Symbiosis: Addressing Biomass Production Challenges and Climate Change Bioenergy Technologies Office Overview

  5. Joint DOE/NRCan Study of North American Transportation Energy Futures: Phase 2 Results

    SciTech Connect (OSTI)

    None

    2009-01-18

    Joint DOE/NRCan Study of North American Transportation Energy Futures: Discussion of the Study, Presentation of Phase 2 Results - April 30, 2003

  6. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  7. On the Inclusion of Energy-Shifting Demand Response in Production Cost Models: Methodology and a Case Study

    SciTech Connect (OSTI)

    O'Connell, Niamh; Hale, Elaine; Doebber, Ian; Jorgenson, Jennie

    2015-07-20

    In the context of future power system requirements for additional flexibility, demand response (DR) is an attractive potential resource. Its proponents widely laud its prospective benefits, which include enabling higher penetrations of variable renewable generation at lower cost than alternative storage technologies, and improving economic efficiency. In practice, DR from the commercial and residential sectors is largely an emerging, not a mature, resource, and its actual costs and benefits need to be studied to determine promising combinations of physical DR resource, enabling controls and communications, power system characteristics, regulatory environments, market structures, and business models. The work described in this report focuses on the enablement of such analysis from the production cost modeling perspective. In particular, we contribute a bottom-up methodology for modeling load-shifting DR in production cost models. The resulting model is sufficiently detailed to reflect the physical characteristics and constraints of the underlying flexible load, and includes the possibility of capturing diurnal and seasonal variations in the resource. Nonetheless, the model is of low complexity and thus suitable for inclusion in conventional unit commitment and market clearing algorithms. The ability to simulate DR as an operational resource on a power system over a year facilitates an assessment of its time-varying value to the power system.

  8. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry; Carroll, Sean; Ooguri, Hirosi; Gukov, Sergei; Preskill, John; Hitlin, David G.; Porter, Frank C.; Patterson, Ryan B.; Newman, Harvey B.; Spiropulu, Maria; Golwala, Sunil; Zhu, Ren-Yuan

    2014-08-26

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research interests of Mark Wise span particle physics, cosmology and nuclear physics. His recent work has centered on extensions of the standard model where baryon number and lepton number are gauged and extensions of the standard model that have novel sources of baryon number violation and new sources of charged lepton flavor violation

  9. Multi-Path Transportation Futures Study- Lessons for the Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

  10. Moving Toward a Peaceful Nuclear Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future July 10, 2013 - 10:50am Addthis President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear

  11. New Diesel Feedstocks and Future Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks and Future Fuels New Diesel Feedstocks and Future Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_beard.pdf More Documents & Publications Renewable Diesel Renewable Diesel Fuels: Status of Technology and R&D Needs Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard

  12. BATT Program- Summary and Future Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BATT Program- Summary and Future Plans BATT Program- Summary and Future Plans 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_42_srinivasan.pdf More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Development of Electrolytes for Lithium-ion Batteries Development of Electrolytes for Lithium-ion Batteries

  13. Moving Toward a Peaceful Nuclear Future | Department of Energy

    Office of Environmental Management (EM)

    Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future July 10, 2013 - 10:50am Addthis President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear

  14. Moving Towards a More Reliable Clean Energy Future in the Pacific Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Moving Towards a More Reliable Clean Energy Future in the Pacific Northwest Moving Towards a More Reliable Clean Energy Future in the Pacific Northwest September 10, 2015 - 12:41pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability One of the nation's largest and most comprehensive smart grid demonstration projects recently concluded, offering up valuable results and lessons learned. The

  15. California's Clean Energy Future - Where do we go from here? | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Clean Energy Future - Where do we go from here? California's Clean Energy Future - Where do we go from here? Slides presented as part of the Joint Plenary session of the 2011 Annual Merit Review. PDF icon pl001_eggert_joint_plenary_2011_o.pdf More Documents & Publications Microsoft Word - GSP_Charter.doc Solar Energy Development in the Southwest QER - Comment of Canadian Hydropower Association

  16. Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation

    Office of Environmental Management (EM)

    Collaboration Following Russian Delegation Visit to the United States | Department of Energy Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States December 10, 2013 - 2:30pm Addthis News Media Contact (202) 586-4940 U.S. Secretary of Energy Ernest Moniz and

  17. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)

    Broader source: Energy.gov (indexed) [DOE]

    Water Power for a Clean Energy Future Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most

  18. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (WWPP) | Department of Energy Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities. PDF icon 51315.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet 47688.pdf Before the House Science and Technology

  19. Goal, Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China National Energy Research Center of Liquid Bio-fuel National Energy R&D Center for Biomass Huiyong Zhuang Research Professor National Energy Research Center of Liquid Biofuel National Energy R&D Center for Biomass Energy Research Center of the Investment Association of China National Bio Energy Group 2014.7.29-30 Washington Content 1.Background and goal 2.Exploration and experience

  20. RevolutionƒNow The Future Arrives for Five Clean Energy Technologies…2015 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY Revolution...Now The Future Arrives for Five Clean Energy Technologies - 2015 Update November 2015 ii Contributors Luke Bassett, DOE Office of Energy Policy & Systems Analysis and Office of Energy Efficiency & Renewable Energy James Brodrick, DOE Building Technologies Office Steve Capanna, DOE Office of Energy Efficiency & Renewable Energy Jonathan Castellano, DOE Vehicle Technologies Office Christy Cooper, DOE Vehicle Technologies Office Paul Donohoo-Vallett,

  1. Photo of the Week: Alaska's Future in Renewable Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alaska's Future in Renewable Energy Photo of the Week: Alaska's Future in Renewable Energy August 13, 2013 - 12:53pm Addthis In Alaska's rural villages, many families struggle with the impact of high energy costs -- often times, almost half of a family's income is spent on fuel to power a home. To face this, the Department of Energy's Office of Indian Energy works closely with tribal nations, state government, NGOs and the private sector to help tribes develop the energy resources

  2. Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles

    SciTech Connect (OSTI)

    Berry, G; Daily III, W

    2004-06-03

    This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing 100 billion kilograms of hydrogen fuel annually (10.7 quads/yr) from a balanced blend of primary energy sources will likely require 16.2 quads of primary energy input, with an additional 0.96 Quads of electricity for hydrogen storage. These energy flows are comparable to or smaller than projected growth in individual primary energy sources over the 2005-2050 timeframe except perhaps the case of windpower.

  3. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  4. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  5. Transportation Energy Futures Study: The Key Results and Conclusions...

    Open Energy Info (EERE)

    activities related to renewable energy and energy efficiency technologies. Austin Brown, Ph.D., is a senior analyst in the Washington, D.C. office of the National Renewable...

  6. Critical Materials for a Clean Energy Future | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For this purpose, "criticality" was a measure that combined importance to the clean energy economy and the risk of supply disruption. With the world on the cusp of a clean energy ...

  7. The Future is Now for Advanced Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Now for Advanced Vehicles The Future is Now for Advanced Vehicles January 23, 2015 - 10:56am Addthis Moniz Delivers Keynote Remarks 1 of 10 Moniz Delivers Keynote Remarks Secretary Moniz touted the Department's investments in advanced vehicle technologies, infrastructure and manufacturing. Photo by Sarah Gerrity Date taken: 2015-01-22 04:33 Secretary Moniz Announces More than $55M in Fuel-Efficient Vehicle Funding 2 of 10 Secretary Moniz Announces More than $55M in Fuel-Efficient

  8. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  9. Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California

    SciTech Connect (OSTI)

    Hong, Tianzhen; Fisk, William

    2010-01-01

    A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

  10. Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint

    SciTech Connect (OSTI)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-08-01

    An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

  11. The Drive for Energy Independence and Fuels of the Future | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Independence and Fuels of the Future The Drive for Energy Independence and Fuels of the Future Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_warnecke.pdf More Documents & Publications The Drive for Energy Independence and Fuels of the Future Automotive Fuels - The

  12. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future directions in engines and fuels, powertrains and vehicle system review. PDF icon deer10_tatur.pdf More Documents & Publications A View from the Bridge Boosting Small Engines to High Performance - Boosting Systems and Combustion Development Methodology Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV

  13. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  14. #WomenInSTEM: Advancing Our Energy Future with STEM Mentorships |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advancing Our Energy Future with STEM Mentorships #WomenInSTEM: Advancing Our Energy Future with STEM Mentorships October 17, 2014 - 1:23pm Addthis Watch the video above to meet Karen Lefkowitz, the the latest profile in Energy.gov's #WomenInSTEM video series. | Video by Matty Greene, Energy Department. Dr. Elizabeth Sherwood-Randall Dr. Elizabeth Sherwood-Randall Deputy Secretary of Energy Matty Greene Matty Greene Former Videographer #WomenInSTEM Our #WomenInSTEM video

  15. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  16. NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Thermal Solar Thermal Return to Search NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date SkyFuel Inc. CO License Cooperative Research (CRADA) August 3, 2009 Video NREL Success Stories - SkyFuel Partnership Reflects Bright Future Summary Huge parabolic mirrors catching the sun's rays could crisscross America's deserts soon, thanks to a

  17. DOE Science Showcase - Energy Plants of the Future | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information DOE Science Showcase - Energy Plants of the Future Advanced Integrated Gasification Combined Cycle Power Plants Advanced IGCC is a flexible technology for generating low-cost electricity while meeting all future environment requirements Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC Technology DOE Press Release DOE-Sponsored IGCC Project in Texas Takes Important Step Forward, Fossil Energy Techline Gasification

  18. The Role of the Internal Combustion Engine in our Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Internal Combustion Engine in our Energy Future The Role of the Internal Combustion Engine in our Energy Future Reviews heavy-duty vehicle market, alternatives to internal combustion engines, and pathways to increasing diesel engine efficiency PDF icon deer11_greszler.pdf More Documents & Publications High Fuel Economy Heavy-Duty Truck Engine View from the Bridge: Commercial Vehicle Perspective Impact of Vehicle Efficiency Improvements on Powertrain Design

  19. Department of Energy Takes Another Step Forward on FutureGen Project in

    Office of Environmental Management (EM)

    Mattoon, Illinois | Department of Energy Takes Another Step Forward on FutureGen Project in Mattoon, Illinois Department of Energy Takes Another Step Forward on FutureGen Project in Mattoon, Illinois July 14, 2009 - 1:00pm Addthis Washington, D.C. - The Department of Energy today issued a National Environmental Policy Act (NEPA) Record of Decision to move forward toward the first commercial scale, fully integrated, carbon capture and sequestration project in the country. The Department's

  20. Technology: How to build a low-energy future

    Broader source: Energy.gov [DOE]

    Advanced construction technologies promise huge energy savings, says Philip Farese. Investment is needed to bring them to market and to encourage their use.