Powered by Deep Web Technologies
Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff  

E-Print Network (OSTI)

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff and Daniel T. Kaffine We thank@mines.edu.) 1 #12;Greenhouse gas emissions, waste and recycling policy Abstract This paper examines least-cost policies for waste reduction, incorporating upstream greenhouse gas externalities associated

2

Outlook for recycling large and small batteries in the future  

Science Conference Proceedings (OSTI)

Although there are many kinds and varieties of batteries, batteries can be subdivided into two basic types, large lead-acid batteries and small disposable batteries. Small cells contain different metals depending upon the configuration. These materials include iron, zinc, nickel, cadmium, manganese, mercury, silver, and potassium. Recycling these materials is not economically attractive. Most small batteries are thrown away and constitute a small fraction of municipal solid waste (perhaps 1/10%). There is no effective energy savings or economic incentive for recycling and, with the exception of Ni-Cad batteries, no significant environmental incentive. Any recycle scheme would require a significant reward (probably financial) to the consumer for returning the scrap battery. Without a reward, recovery is unlikely. Large batteries of the lead-acid type are composed of lead, acid, and plastic. There is an established recycle mechanism for lead-acid batteries which works quite well. The regulations written under the Hazardous and Solid Waste Disposal Amendments (1985) favor more recycling efforts by scrap metal operators. The reason for this is that recycled batteries are exempt from EPA regulation. If batteries are not recycled, any generator disposing of 6 or more batteries per month is required to have a special EPA license or premit. Currently, working against this incentive is a decreasing demand and low market price for lead which affects waste battery salvage.

Dodds, J.; Goldsberry, J.

1986-03-01T23:59:59.000Z

3

Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

recycling paths for various materials. Aerosol cans Asphalt Batteries Cardboard Concrete Light bulbs Metal Pallets Paper Tires Toner cartridges Vegetation Environmental...

4

Recycling end-of-life vehicles of the future. Final CRADA report.  

DOE Green Energy (OSTI)

Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling of automotive materials and obsolete vehicles through the development and commercialization of technologies for the separation and recovery of materials from end-of-life vehicles (ELVs). The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles.

Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E.; Energy Systems

2010-01-14T23:59:59.000Z

5

Global demographic trends and future carbon emissions  

E-Print Network (OSTI)

. Although such changes can affect energy use and greenhouse gas emissions, emissions scenario analyses have an energy­ economic growth model that accounts for a range of demographic dynamics, we show that slowing in particular world regions. climate change | energy | integrated assessment | population | households

6

Hanford recycling  

Science Conference Proceedings (OSTI)

This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall DOE recycling contract at the Hanford site and a central group to control the contract. 0 Using a BOA or MTS contract as a way to get proceeds from recycling back to site facilities to provide incentives for recycling. . Upgrading tracking mechanisms to track and recycle construction waste which is presently buried in onsite pits. . Establishing contract performance measures which hold each project accountable for specific waste reduction goals. * Recycling and reusing any material or equipment possible as buildings are dismantled.

Leonard, I.M.

1996-09-01T23:59:59.000Z

7

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

E-Print Network (OSTI)

and Carbon Emissions Outlook to 2050. Lawrence Berkeley2009. World Energy Outlook 2009. Paris: OECD Publishing.Future Energy and Emissions Outlook Nina Zheng, Nan Zhou and

Zheng, Nina

2010-01-01T23:59:59.000Z

8

Water reuse and recycle in the US steam-electric-generating industry - an assessment of current practice and potential for future applications  

Science Conference Proceedings (OSTI)

The study assesses the current and future potential for wastewater reuse and recycle by the steam-electric-generating industry in the United States. Fifty-three power plants employing one or more of the following reuse/recycle measures were identified by a literature search and interviews with reuse/recycle experts--cascading higher-quality wastewaters to lower-quality uses, recirculating ash sluice water, using cooling tower makeup or sidestream softening, treating and reclaiming wastewaters, using dry-cooling systems, and using municipal effluents as plant-intake water. Detailed case studies were performed on eight of the 53 plants surveyed.

Breitstein, L.; Tucker, R.C.

1986-01-01T23:59:59.000Z

9

Aircraft de-icer: Recycling can cut carbon emissions in half  

SciTech Connect

Flight-safety regulations in most countries require aircraft to be ice-free upon takeoff. In icy weather, this means that the aircraft usually must be de-iced (existing ice is removed) and sometimes anti-iced (to protect against ice-reformation). For both processes, aircraft typically are sprayed with an 'antifreeze' solution, consisting mainly of glycol diluted with water. This de/anti-icing creates an impact on the environment, of which environmental regulators have grown increasingly conscious. The US Environmental Protection Agency (EPA), for example, recently introduced stricter rules that require airports above minimum size to collect de-icing effluents and send them to wastewater treatment. De-icer collection and treatment is already done at most major airports, but a few have gone one step further: rather than putting the effluent to wastewater, they recycle it. This study examines the carbon savings that can be achieved by recycling de-icer. There are two key findings. One, recycling, as opposed to not recycling, cuts the footprint of aircraft de-icing by 40-50% - and even more, in regions where electricity-generation is cleaner. Two, recycling petrochemical-based de-icer generates a 15-30% lower footprint than using 'bio' de-icer without recycling. - Highlights: Black-Right-Pointing-Pointer Carbon footprint of aircraft de-icing can be measured. Black-Right-Pointing-Pointer Recycling aircraft de-icer cuts the footprint of aircraft de-icing by 40-50%. Black-Right-Pointing-Pointer Recycling 'fossil' de-icer is lower carbon than not recycling 'bio' de-icer.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-01-15T23:59:59.000Z

10

Recycle of scrap plutonium-238 oxide fuel to support future radioisotope applications  

SciTech Connect

The Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory has initiated a development program to recover and purify plutonium-238 oxide from impure feed sources in a glove box environment. A glove box line has been designed and a chemistry flowsheet developed to perform this recovery task at large scale. The initial demonstration effort focused on purification of {sup 238}PuO{sub 2} fuel by HNO{sub 3}/HF dissolution, followed by plutonium(III) oxalate precipitation and calcination to an oxide. Decontamination factors for most impurities of concern in the fuel were very good, producing {sup 238}PuO{sub 2} fuel significantly better in purity than specified by General Purpose Heat Source (GPHS) fuel powder specifications. The results are encouraging for recycle of relatively impure plutonium-238 oxide and scrap residue items into fuel for useful applications. A sufficient quantity of purified {sup 238}PuO{sub 2} fuel was recovered from the process to allow fabrication of a GPHS unit for testing. The high specific activity of plutonium-238 magnifies the consequences and concerns of radioactive waste generation. This work places an emphasis on development of waste minimization technologies to complement the aqueous processing operation. Results from experiments allowing more time for neutralized solutions of plutonium-238 to precipitate resulted in decontamination to about 1 millicurie/L. Combining ultrafiltration treatment with addition of a water-soluble polymer designed to coordinate Pu, allowed solutions to be decontaminated to about 1 microcurie/L. Efforts continue to develop a capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify {sup 238}PuO{sub 2} fuel.

Schulte, L.D.; Espinoza, J.M.; Ramsey, K.B.; Rinehart, G.H.; Silver, G.L.; Purdy, G.M.; Jarvinen, G.D.

1997-11-01T23:59:59.000Z

11

Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware  

DOE Green Energy (OSTI)

Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

Li, Sharon

2000-08-20T23:59:59.000Z

12

Refrigerator recycling and CFCs  

SciTech Connect

Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

Shepard, M.; Hawthorne, W.; Wilson, A.

1994-12-31T23:59:59.000Z

13

Future Emissions Impact On Off-Road Vehicles  

DOE Green Energy (OSTI)

Summaries of paper: Emission requirements dictate vehicle update cycles; Packaging, performance and cost impacted; Styling updates can be integrated; Opportunity to integrate features and performance; Non-uniform regulations challenge resources; and Customers won't expect to pay more or receive less.

Kirby Baumgard; Steve Ephraim

2001-04-18T23:59:59.000Z

14

Chipping Away at Emissions Toward a Green Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chipping Away at Emissions Toward a Green Future Chipping Away at Emissions Toward a Green Future Chipping Away at Emissions Toward a Green Future December 6, 2009 - 3:24pm Addthis Joshua DeLung What are the key facts? A CHP system allows facility to run independently from the grid, while improving efficiency by roughly 25 percent, reducing emissions by 5 percent annually and relieving an overburdened power grid in the Northeast region. A few months ago, the primary electric feed to the Frito-Lay facility in Killingly, Conn., went down. It was the first real-time test for the plant's combined heat and power "grid interconnect" system that had been installed and fully functional since March 2009. So despite the external electric grid failure, the company could keep making its popular snacks. "We were not connected to the grid at all, but we never went offline,"

15

Economic Feasibility of Recycling Photovoltaic Modules  

Science Conference Proceedings (OSTI)

The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

Choi, J.K.; Fthenakis, V.

2010-12-01T23:59:59.000Z

16

Biological Air Emissions Control for an Energy Efficient Forest Products Industry of the Future  

Science Conference Proceedings (OSTI)

The U.S. wood products industry is a leader in the production of innovative wood materials. New products are taking shape within a growth industry for fiberboard, plywood, particle board, and other natural material-based energy efficient building materials. However, at the same time, standards for clean air are becoming ever stricter. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) during production of wood products (including methanol, formaldehyde, acetylaldehyde, and mercaptans) must be tightly controlled. Conventional VOC and HAP emission control techniques such as regenerative thermal oxidation (RTO) and regenerative catalytic oxidation (RCO) require significant amounts of energy and generate secondary pollutants such as nitrogen oxides and spent carbon. Biological treatment of air emissions offers a cost-effective and sustainable control technology for industrial facilities facing increasingly stringent air emission standards. A novel biological treatment system that integrates two types of biofilter systems, promises significant energy and cost savings. This novel system uses microorganisms to degrade air toxins without the use of natural gas as fuel or the creation of secondary pollutants. The replacement of conventional thermal oxidizers with biofilters will yield natural gas savings alone in the range of $82,500 to $231,000 per year per unit. Widespread use of biofilters across the entire forest products industry could yield fuel savings up to 5.6 trillion Btu (British thermal units) per year and electricity savings of 2.1 trillion Btu per year. Biological treatment systems can also eliminate the production of NOx, SO2, and CO, and greatly reduce CO2 emissions, when compared to conventional thermal oxidizers. Use of biofilters for VOC and HAP emission control will provide not only the wood products industry but also the pulp and paper industry with a means to cost-effectively control air emissions. The goal of this project was to demonstrate a novel sequential treatment technology that integrates two types of biofilter systems – biotrickling filtration and biofiltration – for controlling forest product facility air emissions with a water-recycling feature for water conservation. This coupling design maximizes the conditions for microbial degradation of odor causing compounds at specific locations. Water entering the biotrickling filter is collected in a sump, treated, and recycled back to the biotrickling filter. The biofilter serves as a polishing step to remove more complex organic compounds (i.e., terpenes). The gaseous emissions from the hardboard mill presses at lumber plants such as that of the Stimson Lumber Company contain both volatile and condensable organic compounds (VOC and COC, respectively), as well as fine wood and other very small particulate material. In applying bio-oxidation technology to these emissions Texas A&M University-Kingsville (TAMUK) and Bio•Reaction (BRI) evaluated the potential of this equipment to resolve two (2) control issues which are critical to the industry: • First, the hazardous air pollutant (HAP) emissions (primarily methanol and formaldehyde) and • Second, the fine particulate and COC from the press exhaust which contribute to visual emissions (opacity) from the stack. In a field test in 2006, the biological treatment technology met the HAP and COC control project objectives and demonstrated significantly lower energy use (than regenerative thermal oxidizers (RTOs) or regenerative catalytic oxidizers (RCOs), lower water use (than conventional scrubbers) all the while being less costly than either for maintenance. The project was successfully continued into 2007-2008 to assist the commercial partner in reducing unit size and footprint and cost, through added optimization of water recycle and improved biofilm activity, and demonstration of opacity removal capabilities.

Jones, K; Boswell, J.

2009-05-28T23:59:59.000Z

17

An assessment of future energy use and carbon emissions from US residences  

SciTech Connect

This paper explores residential energy futures and their associated carbon emissions using an engineering-economic end-use model. The authors present detailed input assumptions and output results for twenty-four cases, each representing a different combination of electricity supply mix, demand-side policy case, and carbon tax. They describe current and projected future energy use by end-use and fuel, and assess which end-uses are growing most rapidly in importance over time.

Koomey, J.G.; Johnson, F.X.; McMahon, J.E.; Orland, M.C.; Levine, M.D.; Chan, P.; Krause, F.

1993-12-01T23:59:59.000Z

18

Effects of Future Climate and Biogenic Emissions Changes on Surface Ozone over the United States and China  

Science Conference Proceedings (OSTI)

Future projections of near-surface ozone concentrations depend on the climate/emissions scenario used to drive future simulations, the direct effects of the changing climate on the atmosphere, and the indirect effects of changing temperatures and ...

Jin-Tai Lin; Kenneth O. Patten; Katharine Hayhoe; Xin-Zhong Liang; Donald J. Wuebbles

2008-07-01T23:59:59.000Z

19

FutureGen: Pathway to Near-Zero Emissions and Sustainable Energy  

DOE Green Energy (OSTI)

This presentation will highlight the U.S. Department of Energy’s (DOE) FutureGen project ? a $1 billion government-industry partnership to design, build, and operate a near-zero emissions coal-fueled power plant. The lead organization for the FutureGen initiative is the National Energy Technology Laboratory (NETL), a multi-purpose laboratory operated by the U.S. DOE’s Office of Fossil Energy. NETL has a mission to conduct R&D from fundamental science to technology demonstration for resolving the environmental, supply, and reliability constraints of producing and using fossil energy resources. The commercial-scale FutureGen R&D facility is a pathway toward future fossil-energy power plants that will produce hydrogen and electricity while nearly eliminating emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. Low carbon emissions would be achieved by integrating CO2 capture and sequestration operations with the power plant.

Zitney, S.E.; Sarkus, T.A

2007-11-04T23:59:59.000Z

20

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

SciTech Connect

The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

Zheng, Nina; Zhou, Nan; Fridley, David

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals ...

22

Recycled roads  

SciTech Connect

This article examines the efforts of various states in the USA to recycle waste materials in highway construction as fill and pavements. The topics of the article include recycling used tires whole, ground, and shredded, cost of recycling, wood fiber chips as fill material in embankments, and mining wastes used to construct embankments and as coarse aggregates in asphalt pavement.

Tarricone, P.

1993-04-01T23:59:59.000Z

23

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

24

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

2013-03-01T23:59:59.000Z

25

Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?  

E-Print Network (OSTI)

Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions "drivers": population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c. The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty. Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production - or p times g - through a time-independent factor of 9.7 +/- 0.3 milliwatts per inflation-adjuste...

Garrett, Timothy J

2008-01-01T23:59:59.000Z

26

Nuclear Fuel Recycling Position Statement  

E-Print Network (OSTI)

The American Nuclear Society believes that if the world is to provide sufficient energy to meet the demands of a growing population and improved standards of living in the 21 st century, nuclear energy will play a substantial role. Nuclear energy is a proven technology that will be part of the mix of technologies used by future generations due to its enormous energy potential with near-zero emissions of greenhouse gases (see related Position Statement 44). Alternative energy sources by themselves will be insufficient to meet these needs during this period of rapidly increasing energy demand. Nuclear fuel recycling, which involves separating the uranium and plutonium from spent nuclear fuel for reuse in the fabrication of new fuel (see Position Statement 47), has the potential to reclaim most of the unused energy in spent fuel. It is a proven alternative to current U.S. policy of direct disposal of spent fuel in a geological repository, which throws away the fuel’s remaining energy content. Recycling of nuclear fuel in other countries with proper safeguards and material controls (see related Position Statement 55) under the auspices of the International Atomic Energy Agency (IAEA) has demonstrated the viability of high level waste volume reduction and energy resource conservation. Transitioning to a recycle policy in an era of expanded nuclear deployment will enhance resource utilization, radioactive waste management, and safeguards. Additional research and development 1 are needed to address the issue of cost and to further enhance the safeguards and safety of the various processes that are required. Such research is also needed to secure the U.S. position as a leader in nuclear technology and global nuclear materials stewardship. Therefore, the American Nuclear Society endorses the following: U.S. policy that allows an orderly transition to nuclear fuel recycling in parallel with the development of the high level waste repository, Yucca Mountain, in a manner that would enhance the repository’s efficiency; further research and development of recycle options to ensure a secure and sustainable energy future with reduced proliferation risks.

unknown authors

2007-01-01T23:59:59.000Z

27

Recycling 1  

Science Conference Proceedings (OSTI)

Jun 7, 2012 ... 6xxx Series Alloy Design Considerations Relating to Recycling: Malcolm ... Reuse of Al Dross as an Engineered Product: Chen Dai1; Diran ...

28

Recycling Trends  

Science Conference Proceedings (OSTI)

...countries with low energy costs, such as Canada, Venezuela, Brazil, and Australia Recycling will increase in importance. For the United States, and ultimately for the rest of the aluminum-consuming world, recycling and resource recovery will play an increasingly important strategic role in ensuring a...

29

The Future Trajectory of US CO2 Emissions: The Role of State vs. Aggregate Information  

E-Print Network (OSTI)

1998, World carbon dioxide emissions 1950 - 2050, Review ofof us greenhouse gas emissions and sinks:1990 - 2001, EPAper capita carbon dioxide emissions, Harvard Department of

Auffhammer, Maximilian; Steinhauser, Ralf

2006-01-01T23:59:59.000Z

30

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

energy use. China’s Sustainable Energy Future Summary next31 -ii- China’s Sustainable Energy Future Executive Summarystudy, entitled China’s Sustainable Energy Future: Scenarios

2004-01-01T23:59:59.000Z

31

Aluminum for Future Generations Sustainability Update 2005  

Science Conference Proceedings (OSTI)

Jun 30, 2008... workplace & community health, safety in the workplace, resource efficiency, climate change, reducing emissions, energy efficiency, recycling, ...

32

LIGHT METALS 2007 Volume 6: The Material Recycling Industry  

Science Conference Proceedings (OSTI)

Environmental Management of Airborne Metal Emissions in the Recycling Industry [pp. 1173-1190] Karen Hagelstein and John E Heinze. Improved UBC Melting ...

33

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

in total energy use. China’s Sustainable Energy Future31 -ii- China’s Sustainable Energy Future Executive SummaryC HINA ’ S E NERGY C HALLENGE China has ambitious goals for

2004-01-01T23:59:59.000Z

34

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Nuclear Power Gas-fired Hydro Power Coal-fired Ordinarynuclear power, non- China’s Sustainable Energy Future hydro

2004-01-01T23:59:59.000Z

35

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

availability of supplies of natural gas, China’s Sustainable Energy Future including the West to East Gas Transmission

2004-01-01T23:59:59.000Z

36

Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan  

E-Print Network (OSTI)

Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

Nishimura, Eriko

2011-01-01T23:59:59.000Z

37

Aluminum Association: Recycling  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This webpage provides some historical information on aluminum recycling and describes the processes done by various recyclers: used ...

38

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

DOE Green Energy (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

39

Future Changes in Biogenic Isoprene Emissions: How Might They Affect Regional and Global Atmospheric Chemistry?  

Science Conference Proceedings (OSTI)

Isoprene is emitted from vegetation to the atmosphere in significant quantities, and it plays an important role in the reactions that control tropospheric oxidant concentrations. As future climatic and land-cover changes occur, the spatial and ...

Christine Wiedinmyer; Xuexi Tie; Alex Guenther; Ron Neilson; Claire Granier

2006-01-01T23:59:59.000Z

40

The European Union Emissions Trading Scheme: Key Issues and Future Outlook  

Science Conference Proceedings (OSTI)

In November 2004, the Russian government ratified the Kyoto Protocol guaranteeing it will enter into force early in 2005. As a result, so-called Annex B countries that have ratified the Protocol, including the nations of the European Union, Canada, Japan and others, will face binding carbon dioxide (CO2) emissions constraints during the period 2008-12. The European Union (EU) has moved swiftly to develop the European Union Emissions Trading Scheme (EU ETS) as a mechanism to assist EU companies and Member...

2004-12-27T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

To Recycle or Not to Recycle: That Is the Question - Insights from Life-Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

MRS BULLETIN MRS BULLETIN * VOLUME 37 * APRIL 2012 * www.mrs.org/bulletin © 2012 Materials Research Society MANUFACTURING * RECYCLING Why recycle? The most commonly stated reason for recycling is to reduce burdens associated with the disposal of our never-ending stream of wastes. Waste disposal potentially causes air and water pollution and is costly; moreover, landfi lls compete with other land uses. In addition, recycling can extend our supply of materials to alleviate scarcity and to moderate rising prices of raw materials. Furthermore, recycling is often more environmentally benign than using virgin raw materials and can reduce energy use and emissions of greenhouse gases and other pollutants. Life-cycle analysis Despite these positive attributes, not all recycling processes

42

Future restrictions on diesel fuel combustion in California: Energy and emissions implications of four scenarios  

DOE Green Energy (OSTI)

The paper discusses alternatives to diesel displacement, describing several scenarios. It studies three basic cases: (1) cars and trucks; (2) urban buses; and (3) off-road vehicles. The discussion also includes changes in energy use and emissions expected from the production and combustion of alternative fuels.

Saricks, C.L.; Rote, D.M.; Stodolsky, F.; Eberhardt, J.J.

1999-10-26T23:59:59.000Z

43

Zero emission coal: a future source of clean electric power and hydrogen  

DOE Green Energy (OSTI)

The pairing of two novel technologies may permit coal energy to satisfy a dramatically increasing world energy demand for the next few hundred years. This can be done while virtually eliminating not only airborne SO{sub x}, NO{sub x}, mercury and particulate emissions, but also the main greenhouse gas, carbon dioxide (CO{sub 2}). The Zero Emission Coal Alliance, a collaboration of approximately 20 international industrial and government entities is investigating these concepts with the objective of completing the first pilot plant within 5 years. Paradoxically, climate change was not the overriding consideration that drove the development of these inventions. The more important consideration was that, if world carbon use continues to accelerate at rates even close to those in the last century, carbon from fossil fuels will overwhelm the natural CO{sub 2} sinks. In this view, the 'Kyoto' objectives are almost meaningless and misdirect enormous resources - both human and financial. If a world population of 10 billion reaches a standard of living comaprable, on the average, to that of the US in 2000 (with similar carbon use), then world yearly CO{sub 2} emissions will be ten times their current level. Carbon (in the form of coal) is our most important energy resource. The Challenge is to find sustainable ways of using it.

Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

44

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure), U.S. Department of Energy (DOE)  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPORTATION ENERGY FUTURES TRANSPORTATION ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is essential to our economy and quality of life, and currently accounts for 71% of the nation's total petroleum use and 33% of our total carbon emissions. Energy-efficient transportation strategies could reduce both oil consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an

45

Federal Recycling Program Printed on recycled paper.  

E-Print Network (OSTI)

#12;Federal Recycling Program Printed on recycled paper. The Forest Health Technology Enterprise. This book was pub- lished by FHTET as part of the technology transfer series. http.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis

Hoddle, Mark S.

46

Recycling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Recycling In support of the Department's goal of implementing environmental sustainability practices across the complex, all DOE employees and contractors should incorporate the three "R's" of wise resource use as a core principle of their daily activities: reduce, reuse, and recycle. The Department's recycling program at Headquarters earns monetary credits from the GSA which is then credited to the Sheila Jo Watkins Memorial Child Development Centers for tuition assistance and the purchase of furniture and equipment. What Can Be Recycled, And Where What you can recycle Where to recycle White office paper, printed with any color ink. Staples are acceptable but paperclips, binder clips, plastic flags, tabs and colored post-it notes must be removed. Receptacles for white office paper are located in office suites and next to copy machines. Blue collection bins for individual offices may be obtained from the Facilities Management Helpdesk at (202) 586-6100 or by e-mailing:

47

Recycling General Sessions  

Science Conference Proceedings (OSTI)

... and design based on recyclability; life-cycle analysis of materials; properties; and ... Al Recycling Batch Planning in a Constrained Secondary Material Market ... Mullites Bodies Produced From the Kaolin Residue Using Microwave Energy.

48

Mixed Waste Recycling Exemption  

Science Conference Proceedings (OSTI)

As part of an ongoing integrated mixed waste program, EPRI has documented the process for obtaining state approval to apply the Resource Conservation and Recovery Act (RCRA) recycling exemption. This report examines the regulatory basis for the recycling exemption and the strategy for designing and operating a recycling facility to meet that exemption. Specifically addressed is the process of submitting an actual recycling exemption request to an RCRA authorized state and potential roadblocks utilities m...

1998-11-30T23:59:59.000Z

49

Battery Recycling - Programmaster.org  

Science Conference Proceedings (OSTI)

The symposium will cover all aspects of battery recycling from legislation, collection, safety issues & transportation regulations and current recycling ...

50

Recycling steel from grinding swarf  

SciTech Connect

Two cleaning processes have been investigated for removing contaminants (cutting oil with phosphorus ester) from high speed steel (HSS) griding swarf. One process uses an aqueous surfactant washing technique, and the second process uses supercritical carbon dioxide (SCCO{sub 2}) extraction. Both technical and preliminary financial analysis are performed to have a better evaluation of these two competing cleaning technologies. Bench scale aqueous washings have shown that the required phosphorus removal is easily obtained, but a sufficient oil removal is more difficult. The experimental results also indicate a strong dependence of the aqueous washing efficiency on the choice of a suitable surfactant. SCCO{sub 2} extraction at 80 C and 340 atm shows that approximately 80% of the oil can be removed from swarf during a 60-minute process to produce a batch of recyclable steel, and that the phosphorus removal also reaches the required level. The cost of processing swarf using either aqueous surfactant washing or SCCO{sub 2} extraction in a 3,000,000 lbs per year plant is analyzed and the market forces impacting the feasibility of recycling on a commercial basis are reviewed. Commercial scale recycling is, in part, dependent upon resolution of regulatory uncertainty on the definition of swarf. States regulating swarf as hazardous provide a significant financial incentive to recycle. In states that regulate swarf as a solid waste, low disposal costs provide a disincentive that must be balanced with the possible hidden, future liabilities of landfill disposal.

Fu, H.; Matthews, M.A.; Warner, L.S. [Univ. of South Carolina, Columbia, SC (United States)

1998-12-31T23:59:59.000Z

51

Direct Solid-State Conversion of Recyclable Metals and Alloys  

Science Conference Proceedings (OSTI)

Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

Kiran Manchiraju

2012-03-27T23:59:59.000Z

52

Quality Improvement of Recycled Plastic Products Using Mixture Experiment  

Science Conference Proceedings (OSTI)

Recycling plastic has several advantages such as reducing consumption of energy, non-renewable fossil fuels use, and global emissions of carbon dioxide. In this study, the manufacturer would like to improve product quality and decrease cost of the products ... Keywords: recycled plastics, plastic properties, quality, mixture experiment, response surface methodology

Charnnarong Saikaew; Panita Sripaya

2009-12-01T23:59:59.000Z

53

Recycling and Disposal of Spent Selective Catalytic Reduction Catalyst  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) technology has become widespread within the utility industry as a means of controlling emissions of nitrogen oxides (NOx). The technology uses a solid catalyst that deactivates over time; and thus significant volumes of catalyst will need regeneration, recycle, or disposal. This study examined issues related to spent catalyst recycle and disposal.

2003-11-12T23:59:59.000Z

54

FSC-Watch: FSC undermines paper recycling, contributes to global warming FSC undermines paper recycling, contributes to global  

E-Print Network (OSTI)

's Pine Falls operations has helped destroy production of recycled paper. Manitoba is now left with a huge pile of collected paper, which can either be burned or landfilled, or shipped to more distant recycling facilities, all of which will increase greenhouse gas emissions. The pulp and paper industry is one

55

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

industry, encouraging widespread energy saving, emission reduction, increased steel scrap recycling rate,

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

56

Hydrogen recycling: fundamental processes  

DOE Green Energy (OSTI)

The recycling of hydrogen at the interior surfaces of plasma devices is an important and largely uncontrolled process at present. There remain important questions concerning the fundamental processes involved in recycling phenomena and the material dependence of these pocesses. A primary aim of the fundamental studies should be to develop sufficient understanding of the influence of materials properties on hydrogen recycling so that the materials and machine operating conditions can be selected to give maximum control of hydrogen recycling. In addition, realistic models of the wall behavior under recycling conditions need to be developed. Such modeling goes hand-in-hand with both fundamental process studies and in situ measurements, and may provide sufficient overall understanding of the influence of recycling on machine operation to impact design decisions effecting such important processes as impurity control, plasma, fueling, and pulse length.

Picraux, S.T.

1979-01-01T23:59:59.000Z

57

TRANSPARENCY RECYCLING PROGRAM PROCEDURES  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPARENCY RECYCLING Don't throw out your used overhead transparencies! RECYCLE them for REUSE. It's Easy! Follow these simple procedures: 1.) COLLECT used transparencies to be recycled. 2.) SEPARATE the transparencies from ringed binders, plastic or paper folders, envelopes, and/or files. 3.) PLACE the transparencies (only) into an intra-laboratory mail envelope. 4.) SEND the envelope to: Terri Schneider, Building 201, 1D-10. Terri will prepare a

58

Material Recovery and Recycling - Not an Option, But a Prerequisite ...  

Science Conference Proceedings (OSTI)

Inorganic materials are non-renewable; one would expect that appropriate design, ... (ii) designing recycling processes that are more energy efficient; (iii) develop ... Fuel Use Reduction and Lower Emissions Using Rugged, Verifiable, In-Situ ...

59

General Recycling Poster Session  

Science Conference Proceedings (OSTI)

Life Cycle Based Greenhouse Gas Footprints of Metal Production with Recycling .... The disposal of landfill sludge directly not only leads to the heavy metal ...

60

Recycling Electronic Waste - Website  

Science Conference Proceedings (OSTI)

Jun 18, 2010 ... Joined: 2/13/2007. Below is a link to a website that has articles on recycling electronic waste. http://www.scientificamerican....ectronic-waste- ...

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

62

Recycling Programs | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Programs Recycling Programs The Office of Administration manages many recycling activities at DOE Headquarters that significantly impact energy and the environment. The Department of Energy Headquarters has instituted several recycling programs, starting with standard, solid waste recycling in 1991, and has expanded to include batteries, toner cartridges, carpeting and cell phones. Follow this link for a detailed listing of the products that DOE Headquarters recycles, and where to recycle them. Waste Recycling In FY 2011, DOE Headquarters recycled 134 tons of waste which earned over $7,200 in GSA credits that were provided to the Sheila Jo Watkins Memorial Child Development Centers. Since the recycling program began in 1991 over 6,800 tons of waste have been recycled earning over $350,000 for the Child

63

Assuring the Continued Recycling of Light Metals in End-of ... - TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This article reviews issues and technologies in recycling, both current and future, with a focus on end-of-life vehicles (ELVs) and their ...

64

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

65

Production of Recycled Lead  

Science Conference Proceedings (OSTI)

...production of lead from recycled and mined (primary) sources for 1980 to 1988. At present, just under half of the total world lead production of 4.3 million metric tons (4.7 million tons) comes from recycling of scrap materials. As indicated in Table 4, there has been very little change in recent...

66

Recent trends in automobile recycling: An energy and economic assessment  

SciTech Connect

Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

1994-03-01T23:59:59.000Z

67

`Capture ready' regulation of fossil fuel power plants Betting the UK's carbon emissions on promises of future technology  

E-Print Network (OSTI)

preparation. In contrast, the Combined Heat and Power (CHP) plant in Seal Sands licensed in 2008 has not been CCGT Centrica Yes 05/02/09 Pembroke, South West Wales CCGT RWE npower Yes 28/08/08 Seal Sands, Teesside-leakage to boiler Design air ducts and fans for re-use for flue gas recycle FGD design that copes with different gas

Haszeldine, Stuart

68

School Recycling Program  

NLE Websites -- All DOE Office Websites (Extended Search)

100% Recyclable 100% Recyclable Presentation Page Project Summary Scenario Student Pages Index of Projects Title of Project/Unit: 100% Recyclable Subject: Social Studies, Science, Healthy, & Communications Grade Level: Middle School (7th Grade) Abstract: The unit begins in the fall and will last about six weeks. Students will rely on working in collaborative groups in order to share information and problem solve. Students will us the Internet and e-mail to communicate with as many other schools as possible across the country. This unit will be part of an interdisciplinary unit to combine: Science: the study of waste, recycling & ecology Social Studies: how communities and groups of people historically handled waste and waste products, how native Americans re-cycled, how we became a 'disposable' society.

69

Recycling - Nickel-based superalloys  

Science Conference Proceedings (OSTI)

A business and technology perspective on recycling, partiularly recycling of household waste, metals and plastics. 0, 563, Diana Grady, 7/2/2008 9:55 AM

70

Recovery, reuse, and recycle of industrial waste  

SciTech Connect

The major goal of this work is to produce a document useful in planning efforts aimed at elimination of industrial wastes through the application of recycle, recovery, and reuse technology. The pollutants considered in this study are basically organic and inorganic by-products from wastewater effluents, solid residue and gaseous emissions from industrial operations. The first section contains chapters on methodology currently available for recovery of industrial and hazardous waste, and developing technology for recycle, reuse and recovery. The second section contains chapters on 5 technical categories, used for recovery namely, sorption, molecular separation, phase transition, chemical modification, and physical dispersion and separation.

Noll, K.E.; Haas, C.N.; Schmidt, C.; Kodukula, P.

1983-11-01T23:59:59.000Z

71

Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge '92  

DOE Green Energy (OSTI)

The Natural Gas Vehicle Challenge '92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P.

1992-01-01T23:59:59.000Z

72

Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge `92  

DOE Green Energy (OSTI)

The Natural Gas Vehicle Challenge `92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P.

1992-09-01T23:59:59.000Z

73

Impacts of EV battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

Gaines, L.; Singh, M. [Argonne National Lab., IL (United States). Energy Systems Div.

1996-06-01T23:59:59.000Z

74

Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions  

Science Conference Proceedings (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

75

Tax-versus-trading and efficient revenue recycling as issues for greenhouse gas abatement  

E-Print Network (OSTI)

Tax-versus-trading and efficient revenue recycling as issues for greenhouse gas abatement Final, climate policy, global Abstract. We give empirical welfare results for global greenhouse gas emission recycling together. #12;1. Introduction Designing policy mechanisms for abating greenhouse gas emissions

Pezzey, Jack

76

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network (OSTI)

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Kelly, Scott David

77

Recycle/reuse: the right answer  

SciTech Connect

Typically, all costs associated with disposal of hazardous waste are eliminated when the material is sold for reuse/recycling. In the future, out-of-pocket disposal costs can be expected to increase, and the market value of many materials found in wastes should rise as finite cheap virgin material sources are depleted. The recognition that natural resources will become increasingly scarce (perhaps similar to oil) has prompted the major oil companies to acquire major non-ferrous metal companies. In order to determine whether a serious marketing effort for recycling is justifiable, an accurate characterization of the must be made. Innovation in developing new applications is essential unless the material is one that has been traditionally recycled. In the coming years, as both the value of our waste and its dispsal increase, much greater emphasis must be placed on the principle of non-waste technology.

Immerman, R.L.

1981-01-01T23:59:59.000Z

78

Recycle plastics into feedstocks  

Science Conference Proceedings (OSTI)

Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

Kastner, H.; Kaminsky, W. [Univ. of Hamburg (Germany)

1995-05-01T23:59:59.000Z

79

Recycling and Waste Minimization  

NLE Websites -- All DOE Office Websites (Extended Search)

and "Recycling Data by Site." For additional information regarding this page or feedback on its content, please contact: Jane Powers This page was last updated on March 25, 2013...

80

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.  

Science Conference Proceedings (OSTI)

Each year, more than 25 million vehicles reach the end of their service life throughout the world, and this number is rising rapidly because the number of vehicles on the roads is rapidly increasing. In the United States, more than 95% of the 10-15 million scrapped vehicles annually enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, over 75% of automotive materials, primarily the metals, are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobile hulks, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials - commonly called shredder residue - constitutes about 25% of the weight of the vehicle, and it is disposed of in landfills. This practice is not environmentally friendly, wastes valuable resources, and may become uneconomical. Therefore, it is not sustainable. Over the past 15-20 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles, including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has been focused on developing technology to separate and recover non-metallic materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lightweighting materials - primarily polymers, polymer composites, high-strength steels, and aluminum - will be used in manufacturing these vehicles. Many of these materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals that are recovered. In addition, the number of hybrid vehicles and electric vehicles on the road is rapidly increasing. This trend will also introduce new materials for disposal at the end of their useful lives, including batteries. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems. Argonne National Laboratory (Argonne), the Vehicle Recycling Partnership, LLC. (VRP) of the United States Council for Automotive Research, LLC. (USCAR), and the American Chemistry Council-Plastics Division (ACC-PD) are working to develop technology for recovering materials from end-of-life vehicles, including separating and recovering polymers and residual metals from shredder residue. Several other organizations worldwide are also working on developing technology for recycling materials from shredder residue. Without a commercially viable shredder industry, our nation and the world will most likely face greater environmental challenges and a decreased supply of quality scrap, and thereby be forced to turn to primary ores for the production of finished metals. This will result in increased energy consumption and increased damage to the environment, including increased greenhouse gas emissions. The recycling of polymers, other organics, and residual metals in shredder residue saves the equivalent of over 23 million barrels of oil annually. This results in a 12-million-ton reduction in greenhouse gas emissions. This document presents a review of the state-of-the-art in the recycling of automotive materials.

Jody, B. J.; Daniels, E. J.; Duranceau, C. M.; Pomykala, J. A.; Spangenberger, J. S. (Energy Systems)

2011-02-22T23:59:59.000Z

82

Tropospheric ozone and El Nio-Southern Oscillation: Influence of atmospheric dynamics, biomass burning emissions, and future climate  

E-Print Network (OSTI)

to a reduction in lightning NOx emissions. Using the same coupled model as used in this study (HadAM3-STOCHEM) we NOx emissions over these land regions (Figure 5c; see also Figure 7b). The reduction in the lightning a reduction in UT NOx over Indonesia) depict much more extensive changes that are similar to their ozone

83

Major issues associated with DOE commercial recycling initiatives  

SciTech Connect

Major initiatives are underway within DOE to recycle large volumes of scrap material generated during cleanup of the DOE Weapons Complex. These recycling initiatives are driven not only by the desire to conserve natural resources, but also by the recognition that shallow level burial is not a politically acceptable option. The Fernald facility is in the vanguard of a number of major DOE recycling efforts. These early efforts have brought issues to light that can have a major impact on the ability of Fernald and other major DOE sites to expand recycling efforts in the future. Some of these issues are; secondary waste deposition, title to material and radioactive contaminants, mixed waste generated during recycling, special nuclear material possession limits, cost benefit, transportation of waste to processing facilities, release criteria, and uses for beneficially reused products.

Motl, G.P.; Burns, D.D. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Rast, D.M. [USDOE Fernald Field Office, OH (United States)

1994-07-27T23:59:59.000Z

84

Response of the HadGEM2 Earth System Model to Future Greenhouse Gas Emissions Pathways to the Year 2300  

Science Conference Proceedings (OSTI)

A new ensemble of simulations from the Earth System configuration of the Hadley Centre Global Environmental Model, version 2 (HadGEM2-ES), is used to evaluate the response to historical and projected future greenhouse gas forcings that follow ...

John Caesar; Erika Palin; Spencer Liddicoat; Jason Lowe; Eleanor Burke; Anne Pardaens; Michael Sanderson; Ron Kahana

2013-05-01T23:59:59.000Z

85

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

86

Scrap tire recycling  

DOE Green Energy (OSTI)

As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

Lula, J.W.; Bohnert, G.W.

1997-03-01T23:59:59.000Z

87

Recycling of Advanced Batteries for Electric Vehicles  

DOE Green Energy (OSTI)

The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

JUNGST,RUDOLPH G.

1999-10-06T23:59:59.000Z

88

Recycling Automotive Scrap  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for reuse, but the remaining materials, called shredder residue, is creating new challenges for the vehicle recycling industry. Argonne National Laboratory is meeting these challenges head-on with innovative, award-winning solutions. With its on-site recycling pilot plant, Argonne is able to test actual materials, benchmark technologies, and demonstrate working

89

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

Science Conference Proceedings (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

90

Primary Production, Recycling, and Environment - TMS  

Science Conference Proceedings (OSTI)

ARTICLES: Selected Readings on Magnesium Production, Recycling and Environment Links to key papers on magnesium primary production, recycling and ...

91

Materials Sustainability: Digital Resource Center -- Recycling ...  

Science Conference Proceedings (OSTI)

Materials Recycling Research and Process Development Many reports by Argonne National Laboratory on recycling materials especially from vehicles.

92

Recycling and Material Price - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Recycling General Session. Presentation Title, Recycling and Material Price: ...

93

Recycling of Titanium  

Science Conference Proceedings (OSTI)

...as basic raw materials for pigments, paints, paper, and plastic. The titanium ores are the materials of choice to produce white pigmentation in those materials. At this time only 10% of the ores result in metal. Recycling takes place in metal only....

94

Specifications for Recycled Lead  

Science Conference Proceedings (OSTI)

...in lead are antimony, arsenic, bismuth, copper, nickel, silver, tin, and zinc. Recently, selenium and tellurium have been added as important impurities in the United States. Primary-lead companies generally produce the 99.99% Pb grade, whereas recyclers produce the 99.97% Pb grade. The major difference...

95

Recycling and Secondary Recovery  

Science Conference Proceedings (OSTI)

"Applying Ausmelt Technology to Recover Cu, Ni, and Co from Slags" .... " Enhancing Cobalt Recovery from Primary and Secondary Resources" .... " Modifying Alumina Red Mud to Support a Revegetation Cover" (Research .... " Recycling Used Automotive Oil Filters" (Research Summary), K.D. Peaslee, February 1994, pp.

96

REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.  

Science Conference Proceedings (OSTI)

Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

FTHENAKIS,V.

2001-01-29T23:59:59.000Z

97

Recycled Thermoplastic Composite Bridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

98

Recycled Thermoplastic Composite Bridge  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

99

Protecting the environment into the future  

NLE Websites -- All DOE Office Websites (Extended Search)

Protecting the Environment Into the Future Protecting the Environment Into the Future Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Protecting the environment into the future Last year, the Lab recycled 47 percent of its solid, non-hazardous waste by placing it in the recycling containers. February 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email The Lab's recycle rate of 47 percent compares favorably with the current national rate of 34 percent. Lab Employees Don't Treat Their Trash Like Garbage Last year, the Lab recycled 47 percent of its solid, non-hazardous waste (which translates to about 1,275 metric tons of paper, cardboard, plastic bottles, and aluminum cans) by placing it in the recycling containers that

100

Direction of CRT waste glass processing: Electronics recycling industry communication  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recycling Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

starting with standard, solid waste recycling in 1991, and has expanded to include batteries, toner cartridges, carpeting and cell phones. Follow this link for a detailed...

102

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

103

Argonne TTRDC - Experts - Vehicle Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

pollution control, solid waste recycling, greenhouse gases, advanced power systems and heat transfer Greg Krumdick, Electrical Engineer phone: 630252-3952, fax: 630252-1342,...

104

Recycled rubber roads  

SciTech Connect

The paper describes several innovative approaches for recycling old tires in the construction of roads. In one, 18 inches of shredded tire chips (2 X 2 inches) were used on top of 6-8 inches of small stone to construct a road across a sanitary landfill. No compacting or linders were needed. In another application, sidewall mats linked together with steel strapping were used as a sub-base for a road across a swampy area. A third application uses 1/2 inch bits of groundup rubber tires as a replacement for aggregate in an asphalt road base.

Not Available

1989-02-01T23:59:59.000Z

105

Recycling - Magnesium - TMS  

Science Conference Proceedings (OSTI)

Guidelines to assist in buying and selling of various types of Scrap. ... A cooperative effort between EPA and US magnesium industry to reduce emissions of SF6.

106

Recycling, Source Reduction,  

U.S. Energy Information Administration (EIA) Indexed Site

Type:" ,"Emission Reductions by Gas in U.S. Units:" ,"Year","Carbon Dioxide (CO2)",,"Methane (CH4)",,"Perfluoromethane (CF4)",,"Perfluoroethane (C2F6)" ,,"short...

107

Recycle Plastic Waste Recommended Action  

E-Print Network (OSTI)

AR No. 5 Recycle Plastic Waste Recommended Action Separate scrap plastic bag waste from solid waste stream and recycle. This can be accomplished by either arranging for no-cost pick-up of loose waste or by selling baled waste material. Assessment Recommendation Summary Recommended Waste Cost Implementation

Tullos, Desiree

108

Materials Sustainability: Digital Resource Center - Global Recycling ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... Global Recycling Network is an electronic information exchange that specializes in the trade of recyclables reclaimed in Municipal Solid Waste ...

109

Materials Sustainability: Digital Resource Center - Steel Recycling ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... The Steel Recycling Institute is an industry association that promotes the recycling of steel products. The association website includes pages on ...

110

Impact of increased electric vehicle use on battery recycling infrastructure  

DOE Green Energy (OSTI)

State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

1996-12-01T23:59:59.000Z

111

Materials - Recycling - Dezincing  

NLE Websites -- All DOE Office Websites (Extended Search)

Dezincing Scrap Steel Dezincing Scrap Steel Electro winning cells for recovery of zinc from de-zincing process solutions. Electro winning cells for recovery of zinc from de-zincing process solutions. Steel is one of the most recycled resources in the U.S.; half of the steel produced is derived from scrap. Since 1980, automobile and appliance manufacturers have increased their use of galvanized steel almost five-fold, with a resulting increase in the amount of galvanized steel scrap returned to steel producers. Dezincing Challenges The steel galvanizing process involves the application of a zinc-coating, which provides corrosion resistance. When galvanized scrap is melted in a steelmaking furnace, the zinc that it contains volatizes. The costs of treating the resulting zinc-laden dust and sludge by-products are

112

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum consumption and producing useful products for American consumers. The world's first successful large-scale production of a polypropylene carbonate (PPC) polymer using waste carbon dioxide (CO2) as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy's Office of Fossil Energy.

113

Coal liquefaction with preasphaltene recycle  

SciTech Connect

A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

114

Plant Networks for Processing Recyclable Materials  

Science Conference Proceedings (OSTI)

We use a modified optimal market area model to examine how links between material recycling and other aspects of operations strategy can shape plant networks for the processing of recyclable materials. We characterize the complementarity of the recyclate ... Keywords: localization, material versatility, minimills, operations strategy, optimal market area, plant networks, recycling

Lieven Demeester, Mei Qi, Luk N. Van Wassenhove

2013-10-01T23:59:59.000Z

115

Applied ecotechnological issues for recycling cars  

Science Conference Proceedings (OSTI)

The paper shows the need for recycling cars. Recycling operation is particularly complicated because after dismantling and split a wide range of material resulting in a proportion different and difficult to separate. There are presented two recycling ... Keywords: end-of-life-vehicle recycling, hammer mill technology, shrreder technology

Gheorghe Amza; Zoia Apostolescu; Mihaiela Iliescu; Zlatko Garac; Sanda Paise; Maria Groza

2011-07-01T23:59:59.000Z

116

Recycling readiness of advanced batteries for electric vehicles  

SciTech Connect

Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

Jungst, R.G.

1997-09-01T23:59:59.000Z

117

Earth Day Electronics Recycling Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Day Electronics Recycling Collection The U.S. Department of Energy, Washington, DC in collaboration with UNICOR Federal Prison Industries C E L E B R A T E E A R T H D A Y A...

118

Hail Formation via Microphysical Recycling  

Science Conference Proceedings (OSTI)

It is suggested that alternation of low-density riming and wet growth processes play a role in hailstone formation. Such alternation of growth processes, which has been called microphysical recycling, is envisioned to operate in the following ...

John C. Pflaum

1980-01-01T23:59:59.000Z

119

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

120

Design analysis: understanding e-waste recycling by Generation Y  

Science Conference Proceedings (OSTI)

This paper aims to understand e-waste recycling behavior of Generation Y. It presents a pilot study that explores this generation's e-waste recycling practices, their attitudes towards e-waste recycling, and the barriers to e-waste recycling. The findings ... Keywords: attitude, design, e-waste, recycling, recycling action, recycling behavior

Xiao Zhang; Ron Wakkary

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Uncertainty in future global energy use and fossil fuel CO{sub 2} emissions 1975 to 2075: Appendices A--B  

Science Conference Proceedings (OSTI)

Appendix A contains the Monte Carlo Data Set. The data sheets give the distribution for input variables used in Monte Carlo analysis of the IEA/ORAU Global Energy, CO{sub 2} Model. The data sheets include a discussion of data sources, bibliographic sources, and other considerations used in developing the particular data format and values for distributions. As much detail as possible about how distributions are related to published estimates is given but in most cases it was necessary to make a significant leap from available data to the quantified distribution. The distributions are meant to be roughly accurate and to the degree that uncertainty exists about the form and value of distributions, the authors have tended to opt for wider bounds. Appendix B contains The IEA/ORAU Long-Term Global Energy-CO{sub 2} Model, Version A.84 -- Model Improvements. The model was originally developed in 1982 in support of work conducted for the US Department of Energy Carbon Dioxide Research Division in the area of future global fossil fuel related CO emissions research. The uncertainty analysis, documented in this report, made demands on the model that had not previously been made, and in the process of operating the model much was learned about areas in which simplification or elaboration was justified, or in which a different approach was warranted. As a consequence of these criticisms, demands, and learning numerous model modifications were undertaken. Since two versions of the model now exist, version specifications have been adopted. The 1984 version is designated A.84, while the version completed in 1982 is designated B.82. Model changes fall into three categories: those which affect the theoretical structure of the model, those which affect the computational processes of the model, and those which affect only the model by which model inputs are entered.

Edmonds, J.A. [Oak Ridge Associated Universities, Washington, DC (United States). Inst. for Energy Analysis; Reilly, J.M. [Pacific Northwest Labs., Washington, DC (United States); Gardner, R.H. [Oak Ridge National Lab., TN (United States); Brenkert, A. [Science Applications International Corp., Oak Ridge, TN (United States)

1985-12-01T23:59:59.000Z

122

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

GHG emissions of future transportation modes. These resultsVehicle Manufacturing Futures in Transportation Life-cycleVehicle Manufacturing Futures in Transportation Life-cycle

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

123

What can Recycling in Thermal Reactors Accomplish?  

SciTech Connect

Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

2007-09-01T23:59:59.000Z

124

Recycling came of age in 1994  

SciTech Connect

While metal and glass recycling have a long history, newer recycling efforts for paper and plastic have gone from a nascent business to maturing industry. After five years, sufficient infrastructure exists to support recycling as a full-fledged business. In the late 1980s, recycling was a business trying to get off the ground. Now it is recognized by many cities and states as a means of economic development and job creation. But recycling`s coming of age was not without growing pains. Many recyclers had to hang on while markets were poor and spotty. Gluts of plastic, waste paper, aluminum, and green glass often made it difficult for recyclers to turn a profit. Until early 1994, prices for most commodities were significantly low, and in some cases, these low prices forced recyclers and processors to close their doors, or at least curtail their operations.

Rabasca, L.

1995-04-01T23:59:59.000Z

125

CANMET CO2 Consortium - O2/CO2 Recycle Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

CANMET CO CANMET CO 2 Consortium - O 2 /CO 2 Recycle Combustion Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

126

Economic analysis of fuel recycle  

SciTech Connect

Economic analysis was performed at KAERI with the assistance of US DOE to compare single reactor fuel cycle costs for a once-through option and a thermal recycle option to operate 1 GWe of a PWR plant for its lifetime. A reference fuel cycle cost was first calculated for each option with best estimated reference input data. Then a sensitivity analysis was performed changing each single value of such fuel cycle component costs as yellow cake price, enrichment charges, spent fuel storage cost, reprocessing cost, spent fuel disposal cost and reprocessing waste disposal cost. Savings due to thermal recycle in requirements of uranium, conversion, and enrichment were examined using formulas suggested by US DOE, while MOX fabrication penalty was accounted for. As a result of the reference fuel cycle cost analysis, it is calculated that the thermal recycle option is marginally more economical than the once-through option. The major factors affecting the comparative costs between thermal recycle and once-through are the costs of reprocessing, spent fuel storage and the difference between spent fuel disposal and reprocessing waste disposal. However, considering the uncertainty in these cost parameters there seems no immediate economic incentive for thermal recycle at the present time.

Juhn, P.E.

1985-01-01T23:59:59.000Z

127

Materials - Recycling - ABS and HIPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Every day, obsolete appliances, consumer electronics, and cars make their way into landfills. These no-longer-wanted items contain something valuable--plastics that have the potential to be recycled. Although current technologies enable the separation of some plastics, they do not yet offer cost-effective purity and yields. Additionally, these methods do not effectively separate plastics that have the same density. Argonne and Appliance Recycling Centers of America (ARCA) undertook a project to develop a process to effectively separate and recover high-quality acrylonitrile butadiene styrene (ABS)--a plastic used to produce lightweight, tough, rigid products--from the mixed-plastics wastes generated in ARCA's appliance-recycling operation.

128

Ad Building demolition, recycling completed  

NLE Websites -- All DOE Office Websites (Extended Search)

Ad Building demolition, recycling completed Ad Building demolition, recycling completed Ad Building demolition, recycling completed Demolition of the Administration Building helps Los Alamos meet an NNSA directive to reduce its structural footprint, modernize its infrastructure, and provide workers with safe, energy-efficient facilities. October 11, 2011 Demolition of the administration building Demolition of the Administration Building Contact Steve Sandoval Communications Office (505) 665-9206 Email Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National Laboratory has completed demolition of its former Administration Building. Demolition of the 316,500-square-foot building that was home to seven Laboratory directors was completed five months ahead of the original schedule and

129

Materials - Recycling - Polymer Matrix Composites  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling of Polymer Matrix Composites Recycling of Polymer Matrix Composites Polymer matrix composites Carbon fibers recovered from a epoxy-based polymer matrix composite. Carbon fiber reinforced polymer matrix composites (PMCs) are materials with superior strength-to-weight ratios. Finding increased applications in the aerospace industry, PMCs are now being evaluated for possible use in automobile construction. The materialÂ’s high cost, however, along with concerns about whether the PMCs will be recyclable when the vehicles reach the end of their useful lives, are barriers to its widespread use. With funding provided by the U.S. Department of EnergyÂ’s Vehicle Technologies Program (formerly called the Office of Advanced Transportation Technologies), Argonne is developing an efficient and cost-effective

130

Sustainable Energy Through Recycling Used Nuclear Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Through Recycling Used Nuclear Fuel M.A. Williamson, A.V. Guelis, J.L. Willit, C. Pereira and A.J. Bakel Argonne National Laboratory Recycle of used nuclear fuel is central...

131

Automobile Recycling Policy: Findings and Recommendations  

E-Print Network (OSTI)

This report focuses on recycling. As an objective neutral party, MIT has compiled a knowledge base that examines the many complex issues relating to re-cycling. Although this report was prepared at the request of the ...

Field, Frank

132

Proceedings of the waste recycling workshop  

Science Conference Proceedings (OSTI)

Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)] [eds.; Ohio State Univ., Columbus, OH (United States)

1993-12-31T23:59:59.000Z

133

Environmentally Sound Design and Recycling of Future Wind Power Systems  

E-Print Network (OSTI)

national expenditure on wind power related research 6. Other renewable source of energy (other than hydro Energy Research Programme (EFP) #12;Foresight methodologies Conditions: · Low uncertainty · Short time + extrapolation (BTM's World Market Update) · Cost of energy Experience curves · Size of machines Extrapolation

134

Education: Digital Resource Center - WEB: What is Metals Recycling?  

Science Conference Proceedings (OSTI)

Oct 22, 2007 ... This British Metals Recycling Association (BMRA) website provides details concerning steel, aluminum, and copper recycling including ...

135

PITT RECYCLES! *Please empty cans!  

E-Print Network (OSTI)

(e.g. ­ Towers Lobby). White paper Most colored paper Notebook paper Copier paper Paperboard (Cereal printout paper Carbonless NCR paper Paper or manila folders Paper envelopes without windows Adding machine NOT Recyclable... Food waste Lunch bags Coffee cups Cellophane Tissues Paper towels Carbon paper Styrofoam Metals

Sibille, Etienne

136

Waste Toolkit A-Z Battery recycling  

E-Print Network (OSTI)

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must make their own arrangements through a registered hazardous waste carrier. Batteries must not be put

Melham, Tom

137

Integrated powertrain control to meet future CO2 and Euro-6 emissions targets for a diesel hybrid with SCR-deNOx system  

Science Conference Proceedings (OSTI)

A new concept is introduced to optimize the performance of the entire powertrain: Integrated Powertrain Control (IPC). In this concept, the synergy between engine, driveline and aftertreatment system is exploited by integrated energy and emission management. ...

Frank Willems; Darren Foster

2009-06-01T23:59:59.000Z

138

Sandia National Laboratories: Pollution Prevention: Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Sandia goes beyond basic recycling of common papers, plastics, and metals. We divert as many waste streams for recycling as feasible. The list of materials diverted grows every year. We regularly re-evaluate processes for efficiency and improved revenues as well. Revenue received from recycling goes back into the program to fund material streams that currently cost to process, and to improve and expand the waste reduction infrastructure. The state of New Mexico has a target to recycle 35% of its waste by 2018. The Department of Energy has a goal of 50% by 2015. Sandia/New Mexico is contributing toward both of these goals by recycling nearly 71% of its waste in FY12. Sandia/California is doing even better at 78%. compost pile Composting Sandia/New Mexico sends green waste in the form of branches to Kirtland Air

139

Safe recycling of used oil  

SciTech Connect

It`s not just recovery of used oil, but how you recover it, that ultimately determines the impact on the environment. No matter what recycling technology is employed, there are environmental/economic factors that come into play. One is the distance to the end user. Sending the used oil to a nearby plant (e.g. a local asphalt manufacturer as opposed to a distant refiner) both reduces hauling costs and the potential for a spill occurring during transport. Management practices of the used oil recycler, pollution control, insurance coverage and environmental compliance record are other factors in evaluating recovery options. Generators need to be careful about who is collecting their used oil, because they can be held liable for mismanagement.

Arner, R. [Northern Virginia Planning District Commission, Cincinnati, OH (United States)

1995-09-01T23:59:59.000Z

140

Analysis of nuclear proliferation resistance reprocessing and recycling technologies  

Science Conference Proceedings (OSTI)

The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance technical barriers, making plutonium diversion more difficult by not isolating plutonium or/and coexistence of fission products with plutonium.

Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Slag recycling of irradiated vanadium  

Science Conference Proceedings (OSTI)

An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

Gorman, P.K.

1995-04-05T23:59:59.000Z

142

Emissions & Emission Controls - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions and Emission Controls In conjunction with the research efforts at FEERC to improve fuel efficiency and reduce petroleum use, research on emissions is conducted with two...

143

Scrap tire recycling in Minnesota  

Science Conference Proceedings (OSTI)

The author discusses the problems associated with scrap tires. For example, surface storing of scrap tires poses a fire hazard and the rainwater trapped in the tire casings is an ideal breeding ground for mosquitoes. Use as a fuel for energy production is unattractive as long as oil retails at its present low price. Past reclamation processes have not met expectations. Legislation alone is not the answer, because scrap tires cannot be regulated out of existence. However, the Minnesota state legislature has come up with an approach that seems to be successful. It has passed the Waste Tire Act, which not only formulates regulations but also provides funding for research and development. Thus, it has established a tire disposal fund for financing construction costs of tire recycling facilities. One of the outcomes was the construction of the St. Louis county Waste Tire Recycling Facility. Through a leasing arrangement with Minneapolis-based Rubber Elastomerics, Inc. (RRE), construction costs financed by the tire disposal fund eventually will be repaid by RRE to the fund. The arrangement is described in detail. By a process also described, RRE produces a product that can be used in thermoset and in thermoplastic compounds. The user can incorporate between 50 percent and 85 percent of the recycled product into a rubber or plastic compound without significantly affecting the physical properties of the compound.

Not Available

1989-10-01T23:59:59.000Z

144

HALON & CFC DESTRUCTION, RECOVERY, RECYCLING ...  

Science Conference Proceedings (OSTI)

... Refrigeration and Air Conditioning .. Foam -- Aerosol and Sterilants ... EMERGING . - Low emissions and cost; commercial unit available for testing. ...

2011-09-27T23:59:59.000Z

145

Modeling of Future-Year Emissions Control Scenarios for the Lower Fraser Valley: Impacts of Natural Gas and Propane Vehicle Technologies  

Science Conference Proceedings (OSTI)

The MC2–CALGRID photochemical modeling system is used to simulate the impact of two fuel substitution scenarios on ozone levels for a future year in the Lower Fraser Valley of British Columbia, Canada. The relative impacts of selected natural gas ...

M. Hedley; W. Jiang; R. McLaren; D. L. Singleton

1998-10-01T23:59:59.000Z

146

INEEL Lead Recycling in a Moratorium Environment  

SciTech Connect

Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

2003-02-26T23:59:59.000Z

147

Recycling production designs : the value of coordination and flexibility in aluminum recycling operations  

E-Print Network (OSTI)

The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an ...

Brommer, Tracey H. (Tracey Helenius)

2013-01-01T23:59:59.000Z

148

Waste Processing and Recycling: Some Case Studies  

Science Conference Proceedings (OSTI)

Symposium, WASTE RECYCLING IN MINERAL AND METALLURGICAL ... Effect of Electricity Mix and Ore Grade on the Carbon Footprint of Chilean Cathodic ...

149

Materials Sustainability: Digital Resource Center - Steel Recycling ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... This video was created by the Steel Manufacturers Association to educate the public on the importance of recycling steel. Shredded cars ...

150

Materials Sustainability: Digital Resource Center - Recycling and ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... These proceedings include papers based on presentations prepared for the symposium "Recycling and Waste Processing" at the TMS 2007 ...

151

Recycling in America: A Reference Handbook  

E-Print Network (OSTI)

and academic libraries, the handbook presents a nontechnicalRecycling in America: A Reference Handbook Patricia Murphy Handbook (Contemporary World Issues

Murphy, Patricia

1994-01-01T23:59:59.000Z

152

Materials Sustainability: Digital Resource Center - Product Recycling  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This excerpt from the 2003 Fujitsu Group Sustainability Report provides an overview of the Fujitsu recycling system and describes their ...

153

Concrete & Asphalt Recycling into Reusable Products  

NLE Websites -- All DOE Office Websites (Extended Search)

SNLNM Pollution Prevention Concrete & Asphalt Recycling into Reusable Products (SNLNM Pollution Prevention Program) March 18, 2010 Doug Vetter, PE, LEED-AP Sandia is a...

154

Battery Recycling by Hydrometallurgy: Evaluation of Simultaneous ...  

Science Conference Proceedings (OSTI)

Presentation Title, Battery Recycling by Hydrometallurgy: Evaluation of ... of spent batteries using the same process, in order to overcome the high costs and ...

155

Howard Waste Recycling Ltd | Open Energy Information  

Open Energy Info (EERE)

Biomass Product London-based project developer and manufacturer of biomass feedstock for energy production. References Howard Waste Recycling Ltd1 LinkedIn Connections...

156

Fourth International Symposium on Recycling of Metals  

Science Conference Proceedings (OSTI)

Combining Lead-Zinc 2000 and Recycling of Metals and Engineered ... Andreas Sigmund, RSR Technologies, Inc. Secondary Copper, Nickel and Cobalt

157

Primary Production, Recycling, and Environment - TMS  

Science Conference Proceedings (OSTI)

Link directory to a variety of general information sources on magnesium production, 0 ... Links to key papers on magnesium primary production, recycling and ...

158

End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.  

Science Conference Proceedings (OSTI)

Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation with the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC), is working to develop technology for recycling materials from shredder residue. Several other organizations worldwide are also working on developing technology for recycling shredder residue. Without a commercially viable shredder industry, our nation may face greater environmental challenges and a decreased supply of quality scrap and be forced to turn to primary ores for the production of finished metals. This document presents a review of the state of the art in shredder residue recycling. Available technologies and emerging technologies for the recycling of materials from shredder residue are discussed.

Jody, B. J.; Daniels, E. J.; Energy Systems

2007-03-21T23:59:59.000Z

159

Sustained Recycle in Light Water and Sodium-Cooled Reactors  

Science Conference Proceedings (OSTI)

From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

2010-11-01T23:59:59.000Z

160

NETL: News Release - FutureGen Project Launched  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 FutureGen Project Launched Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced...

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EDI as a Treatment Module in Recycling Spent Rinse Waters  

SciTech Connect

Recycling of the spent rinse water discharged from the wet benches commonly used in semiconductor processing is one tactic for responding to the targets for water usage published in the 1997 National Technology Roadmap for Semiconductors (NTRS). Not only does the NTRS list a target that dramatically reduces total water usage/unit area of silicon manufactured by the industry in the future but for the years 2003 and beyond, the NTRS actually touts goals which would have semiconductor manufacturers drawing less water from a regional water supply per unit area of silicon manufactured than the quantity of ultrapure water (UPW) used in the production of that same silicon. Achieving this latter NTRS target strongly implies more widespread recycling of spent rinse waters at semiconductor manufacturing sites. In spite of the fact that, by most metrics, spent rinse waters are of much higher purity than incoming municipal waters, recycling of these spent rinse waters back into the UPW production plant is not a simple, straightforward task. The rub is that certain of the chemicals used in semiconductor manufacturing, and thus potentially present in trace concentrations (or more) in spent rinse waters, are not found in municipal water supplies and are not necessarily removed by the conventional UPW production sequence used by semiconductor manufacturers. Some of these contaminants, unique to spent rinse waters, may actually foul the resins and membranes of the UPW system, posing a threat to UPW production and potentially even causing a shutdown.

Donovan, Robert P.; Morrison, Dennis J.

1999-08-11T23:59:59.000Z

162

Uncertainty in emissions projections for climate models  

E-Print Network (OSTI)

Future global climate projections are subject to large uncertainties. Major sources of this uncertainty are projections of anthropogenic emissions. We evaluate the uncertainty in future anthropogenic emissions using a ...

Webster, Mort David.; Babiker, Mustafa H.M.; Mayer, Monika.; Reilly, John M.; Harnisch, Jochen.; Hyman, Robert C.; Sarofim, Marcus C.; Wang, Chien.

163

Economic Feasibility of Electrochemical Caustic Recycling at the Hanford Site  

SciTech Connect

This report contains a review of potential cost benefits of NaSICON Ceramic membranes for the separation of sodium from Hanford tank waste. The primary application is for caustic recycle to the Waste Treatment and Immobilization Plant (WTP) pretreatment leaching operation. The report includes a description of the waste, the benefits and costs for a caustic-recycle facility, and Monte Carlo results obtained from a model of these costs and benefits. The use of existing cost information has been limited to publicly available sources. This study is intended to be an initial evaluation of the economic feasibility of a caustic recycle facility based on NaSICON technology. The current pretreatment flowsheet indicates that approximately 6,500 metric tons (MT) of Na will be added to the tank waste, primarily for removing Al from the high-level waste (HLW) sludge (Kirkbride et al. 2007). An assessment (Alexander et al. 2004) of the pretreatment flowsheet, equilibrium chemistry, and laboratory results indicates that the quantity of Na required for sludge leaching will increase by 6,000 to 12,000 MT in order to dissolve sufficient Al from the tank-waste sludge material to maintain the number of HLW canisters produced at 9,400 canisters as defined in the Office of River Protection (ORP) System Plan (Certa 2003). This additional Na will significantly increase the volume of LAW glass and extend the processing time of the Waste Treatment and Immobilization Plant (WTP). Future estimates on sodium requirements for caustic leaching are expected to significantly exceed the 12,000-MT value and approach 40,000-MT of total sodium addition for leaching (Gilbert, 2007). The cost benefit for caustic recycling is assumed to consist of four major contributions: 1) the cost savings realized by not producing additional immobilized low-activity waste (ILAW) glass, 2) caustic recycle capital investment, 3) caustic recycle operating and maintenance costs, and 4) research and technology costs needed to deploy the technology. In estimating costs for each of these components, several parameters are used as inputs. Due to uncertainty in assuming a singular value for each of these parameters, a range of possible values is assumed. A Monte Carlo simulation is then performed where the range of these parameters is exercised, and the resulting range of cost benefits is determined.

Poloski, Adam P.; Kurath, Dean E.; Holton, Langdon K.; Sevigny, Gary J.; Fountain, Matthew S.

2009-03-01T23:59:59.000Z

164

Membrane Purification Cell for Aluminum Recycling  

Science Conference Proceedings (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

165

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

166

FutureGen_factsheet.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gasification plant and the receiving geologic formation. Sequester at least 90 percent of CO2 emissions from the plant with the future potential to capture and sequester nearly 100...

167

Zero Waste Program 2011 Recycling Benefits  

E-Print Network (OSTI)

of the following homes per month: 10,343 286 tons of plastic 95 tons of aluminum 0 KW-Hrs of Electricity from Waste-to-Energy: This provides enough energy to heat and cool at a Waste-to-Energy (WTE) the following homes per month: 10Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company

Delgado, Mauricio

168

Waste Reduction and Recycling Rina Parikh  

E-Print Network (OSTI)

Waste Reduction and Recycling Rina Parikh Jimmy Zimmerman Brooke Evans Lacey Johnston #12;The with ideas to reduce waste. Many students have researched possibilities in exploring other aspects of waste that is accumulating in areas of food service and increasing the number of people who recycle. We

Peterson, Blake R.

169

Preconceptual Design Description for Caustic Recycle Facility  

SciTech Connect

The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

2008-04-12T23:59:59.000Z

170

The Second Symposium on the Recycling of Electronic Wastes  

Science Conference Proceedings (OSTI)

Life cycle and economic analysis for the recycling of E-Wastes. Abstracts Due ... Prospective Scenario of E-Waste Recycling in India · Recovery of Copper from ...

171

Recycling Magnesium Alloy Housings for Notebook Computers - TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This article from Fujitsu Laboratories describes two recycling processes for magnesium alloy housings: one for recycling the excess material ...

172

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

SAN DIEGO Recycling of Wasted Energy : Thermal to ElectricalRecycling of Wasted Energy : Thermal to Electrical Energyenergy, geothermal energy, wasted heat from a nuclear

Lim, Hyuck

2011-01-01T23:59:59.000Z

173

The 10 Obstacles to a Successful Battery Recycling Program  

Science Conference Proceedings (OSTI)

Abstract Scope, Battery recycling in North America has reached adolescence. Retailers are demanding ... Role of Recycling in the Life Cycle of Batteries.

174

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

175

Energy and environmental impacts of electric vehicle battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle.

Gaines, L.; Singh, M.

1995-12-31T23:59:59.000Z

176

Fuzzy Assessment of Material Recyclability and Its Applications  

Science Conference Proceedings (OSTI)

A method to assess material recyclability using fuzzy logic is presented. Recyclability of materials is defined as a function of several variables, called basic indicators, which influence the technology and economics of the recycling processes, policies ... Keywords: Monotonic fuzzy systems, Recyclability

Yannis A. Phillis; Vassilis S. Kouikoglou; Xiaomin Zhu

2009-06-01T23:59:59.000Z

177

Nuclear fuel recycling in 4 minutes | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel recycling in 4 minutes Share Topic Energy Energy sources Nuclear energy Nuclear fuel cycle Reactors...

178

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Executive Summary This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities 1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and demonstrate safety in an effective and efficient manner.

179

RecycleBank | Open Energy Information  

Open Energy Info (EERE)

RecycleBank RecycleBank Jump to: navigation, search Logo: RecycleBank Name RecycleBank Address 95 Morton Street Place New York, New York Sector Efficiency Number of employees 51-200 Website http://www.recyclebank.com/ Coordinates 40.731373°, -74.008584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.731373,"lon":-74.008584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Design and Optimization of Photovoltaics Recycling Infrastructure  

Science Conference Proceedings (OSTI)

With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

Choi, J.K.; Fthenakis, V.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

182

Brickyard Recycling Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Recycling Biomass Facility Recycling Biomass Facility Jump to: navigation, search Name Brickyard Recycling Biomass Facility Facility Brickyard Recycling Sector Biomass Facility Type Landfill Gas Location Vermilion County, Illinois Coordinates 40.122469°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.122469,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Bayshore Recycling Solar Project | Open Energy Information  

Open Energy Info (EERE)

Bayshore Recycling Solar Project Bayshore Recycling Solar Project Jump to: navigation, search Name Bayshore Recycling Solar Project Facility Bayshore Recycling Solar Project Sector Solar Facility Type Roof-mount Owner EnXco Developer EnXco Location Keasbey, New Jersey Coordinates 40.51667°, -74.30556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.51667,"lon":-74.30556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Materials Sustainability: Digital Resource Center - Recycler's World  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... Recycler's World promotes the trade of scrap materials. Users can post a listing for the type of scrap material they wish to buy or sell. Source: ...

185

Materials Sustainability: Digital Resource Center - Recycling ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This 1997 report provides some basic information on recycling of Al, Be, Ca, Cr, Co, Cu, Ga, Au, In, Fe, steel, Pb, Mg, Mn, Hg, Mo, Ni, Pt-group ...

186

Materials Sustainability: Digital Resource Center - Recycling - Metals  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... This 1997 report provides some basic information on recycling of Al, Be, Ca, Cr, Co, Cu, Ga, Au, In, Fe, steel, Pb, Mg, Mn, Hg, Mo, Ni, Pt-group ...

187

Loveland Water & Power- Refrigerator Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Loveland Water & Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

188

BWR Assembly Optimization for Minor Actinide Recycling  

Science Conference Proceedings (OSTI)

The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

2010-03-22T23:59:59.000Z

189

Hydrogen recycle modeling in transport codes  

DOE Green Energy (OSTI)

The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes.

Howe, H.C.

1979-01-01T23:59:59.000Z

190

Evaluation of radioactive scrap metal recycling  

SciTech Connect

This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1995-12-01T23:59:59.000Z

191

Agony and ecstasy of tire recycling  

SciTech Connect

This article discusses the problem of used tires and the recycling of them. Shredded tires have a multitude of uses-new rubber, road construction, mulch, fuel, in composting and home insulation.

Logsdon, G.

1990-07-01T23:59:59.000Z

192

Innovative Vacuum Distillation for Magnesium Recycling  

Science Conference Proceedings (OSTI)

Feb 1, 2001 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description Magnesium recycling ...

193

Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Review of the different e-waste collection systems and recycling processes. Black-Right-Pointing-Pointer We present the e-waste collection systems used in Europe and in the US. Black-Right-Pointing-Pointer We present e-waste collection systems used in Asia and Latin America. Black-Right-Pointing-Pointer E-waste management between developed and developing countries is very different. Black-Right-Pointing-Pointer We made a comparison of the world situation to the current Brazilian reality. - Abstract: Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Over the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles.

Reis de Oliveira, Camila, E-mail: Camilareis.oliveira@hotmail.com [Instituto de Quimica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Moura Bernardes, Andrea, E-mail: amb@ufrgs.br [Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais (PPGE3M) and Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Gerbase, Annelise Engel, E-mail: agerbase@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil)

2012-08-15T23:59:59.000Z

194

Waste tire recycling by pyrolysis  

DOE Green Energy (OSTI)

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

195

Future Perfect Partnering with Portuguese Environmental Protection Agency  

Open Energy Info (EERE)

Future Perfect Partnering with Portuguese Environmental Protection Agency Future Perfect Partnering with Portuguese Environmental Protection Agency (EPA). Aviation Sector EU Emissions Trading Scheme Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Future Perfect Partnering with Portuguese Environmental Protection Agency (EPA). Aviation Sector EU Emissions Trading Scheme Agency/Company /Organization: Future Perfect Sector: Climate Focus Area: GHG Inventory Development, Greenhouse Gas Topics: GHG inventory, Low emission development planning, -LEDS Resource Type: Case studies/examples, Training materials Website: www.gpstrategiesltd.com/divisions/future-perfect/ Language: English References: Future Perfect Partnering with Portuguese Environmental Protection Agency (EPA). Aviation Sector EU Emissions Trading Scheme[1]

196

Waste tire recycling by pyrolysis  

DOE Green Energy (OSTI)

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

197

Status of LLNL Hot-Recycled-Solid oil shale retort  

SciTech Connect

We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

198

Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 11, 1: October 11, 2004 Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on AddThis.com... Fact #341: October 11, 2004 Tire Recycling In 2001, the United States generated 281 million scrap tires. Nearly 78% of those scrap tires were reused, recycled, or recovered; that is a dramatic

199

INEL metal recycle annual report, FY-94  

SciTech Connect

In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business.

Bechtold, T.E. [ed.

1994-09-01T23:59:59.000Z

200

Energy implications of glass-container recycling  

SciTech Connect

This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

Gaines, L.L.; Mintz, M.M. [Argonne National Lab., IL (United States)

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Progress in recycling of automobile shredder residue  

DOE Green Energy (OSTI)

At Argonne National Laboratory, we have been developing a potentially economical process to recycle automobile shredder residue (ASR). We identified three potentially marketable materials that can be recovered from ASR and developed technologies to recover and upgrade these materials. We build and tested a field-demonstration plant for recycling polyurethane foam and produced about 2000 lb of recycled foam. Several 300-lb samples were sent for evaluation and were found to be of marketable quality. We are also preparing for a large-scale test in which about 200 tons of ASR-derived fines will be used as a raw material in cement making. A major cement company has evaluated small samples of fines prepared in the laboratory and found that they meet its requirements as a substitute for iron ore or mill scale. We also produced about 50 lb of recycled acrylonitrile butadiene styrene (ABS) from obsolete automobiles and found that it has properties that could be readily upgraded to meet the specifications of the automotive industry. In this paper, we briefly discuss the process as a whole and summarize the results obtained from the field work on foam and fines recycling.

Jody, B.J.; Daniels, E.J.; Pomykala, J.A. Jr.

1996-03-01T23:59:59.000Z

202

Future Healthcare  

E-Print Network (OSTI)

Patients want answers, not numbers. Evidence-based medicine must have numbers to generate answers. Therefore, analysis of numbers to provide answers is the Holy Grail of healthcare professionals and its future systems. ...

Datta, Shoumen

2010-12-15T23:59:59.000Z

203

Future tense  

Science Conference Proceedings (OSTI)

Future Tense, one of the revolving features on this page, presents stories and essays from the intersection of computational science and technological speculation, their boundaries limited only by our ability to imagine what will and could be.

Rudy Rucker

2011-07-01T23:59:59.000Z

204

Recycled Energy Development | Open Energy Information  

Open Energy Info (EERE)

Recycled Energy Development Recycled Energy Development Jump to: navigation, search Name Recycled Energy Development Place Westmont, Illinois Zip 60559 Product RED acquires industrial utility plants and then builds and installs waste energy capture and combined heat and power systems. Coordinates 40.316095°, -78.956753° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.316095,"lon":-78.956753,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Chemical and mechanical recycling of shredder fluff  

SciTech Connect

Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

1992-01-01T23:59:59.000Z

206

Chemical and mechanical recycling of shredder fluff  

SciTech Connect

Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

1992-12-01T23:59:59.000Z

207

Artificial neural network in gaseous emissions prediction with bioreactor usage  

Science Conference Proceedings (OSTI)

The artificial neural network is used more and more often for prediction of processes related with the biowaste management. In this area, composting is one of the most important process of biowaste recycling. However, the gaseous emissions from the composted ... Keywords: composting, data acquisition, emissions, multilayer perceptron, neural modeling, prediction

Piotr Boniecki; Jacek Dach; Krzysztof Pilarski; Aleksander J?dru?; Krzysztof Nowakowski; Hanna Piekarska-Boniecka; Jacek Przyby?

2012-05-01T23:59:59.000Z

208

The Energy and CO2 Emissions Impact of  

E-Print Network (OSTI)

The Energy and CO2 Emissions Impact of Renewable Energy Development in China Xiliang Zhang, Tianyu Qi, and Valerie J. Karplus Report No. 242 April 2013 China Energy & Climate Project TSINGHUA - MIT://globalchange.mit.edu/ Printed on recycled paper #12;1 The Energy and CO2 Emissions Impact of Renewable Energy Development

209

Recycle of radiologically contaminated austenitic stainless steels  

Science Conference Proceedings (OSTI)

The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides.

Imrich, K.J.; Leader, D.R.; Iyer, N.C.; Louthan, M.R. Jr.

1995-02-01T23:59:59.000Z

210

The value of recycling on water conservation.  

SciTech Connect

Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

Ludi-Herrera, Katlyn D.

2013-07-01T23:59:59.000Z

211

Methanation process utilizing split cold gas recycle  

DOE Patents (OSTI)

In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

Tajbl, Daniel G. (Evanston, IL); Lee, Bernard S. (Lincolnwood, IL); Schora, Jr., Frank C. (Palatine, IL); Lam, Henry W. (Rye, NY)

1976-07-06T23:59:59.000Z

212

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomers thermoplastic pellets incorporate waste CO2 into a...

213

Study of recycling impurity retention in Alcator C-mod  

E-Print Network (OSTI)

This work was aimed at reproducing experimental results in impurity compression of Ar, as well as the screening of recycling and non-recycling impurities from reaching the core plasma. As part of the study the code was ...

Chung, Taekyun

2004-01-01T23:59:59.000Z

214

A comparison of public policies for lead recycling  

E-Print Network (OSTI)

Policies that encourage recycling may be used to reduce environmental costs from waste disposal when direct restrictions on disposal are difficult to enforce. Four recycling policies have been advanced: (i) taxes on the ...

Sigman, Hilary

1992-01-01T23:59:59.000Z

215

Impact of hybrid and electric vehicles on automobile recycling infrastructure  

Science Conference Proceedings (OSTI)

The recycling infrastructure for end-of-use vehicles in the United States is driven by profitability due to the absence of regulations. Typically, the recycling consists of removing reusable components for resale and shredding and separating remaining ...

Deogratias Kibira; Sanjay Jain

2011-12-01T23:59:59.000Z

216

emissions | OpenEI  

Open Energy Info (EERE)

emissions emissions Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for emissions. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (4 years ago) Keywords emissions New Zealand projections Data application/vnd.ms-excel icon 2010 New Zealand emissions outlook (xls, 1.2 MiB)

217

Silicon Production, Purification and Recycling for Photovoltaic Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Silicon Production, Purification and Recycling for Photovoltaic Cells.

218

Fourth International Symposium on Recycling of Metals: Table Top ...  

Science Conference Proceedings (OSTI)

TMS Logo. Fourth International Symposium on Recycling of Metals: Table Top Exhibit. 2000 TMS FALL EXTRACTION AND PROCESS METALLURGY ...

219

Fourth International Symposium on Recycling of Metals and ...  

Science Conference Proceedings (OSTI)

Recycling - A Fan of the Can. X B. Steverson ................................................................. ............................................... 923. Development of New Filter for Removal of ...

220

Evaluation of Environmental Tradeoffs in Portable Battery Recycling  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Evaluation of Environmental Tradeoffs in ...

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Impacts of the Manufacturing and Recycling Stages on Battery Life ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Impacts of the Manufacturing and ...

222

Recovery, recycle and reuse of industrial wastes  

Science Conference Proceedings (OSTI)

This book discusses the elimination of industrial wastes through the application of recycle, recovery and reuse technology. An overview is provided of how various processes can recover potential contaminants for eventual reuse. Chapters include resource recovery from hazardous waste, sorption, molecular separation, phase transition, chemical modifications, physical dispersion and separation.

Noll, K.E.; Haas, C.N.; Schmidt, C.; Kodukula, P.

1985-01-01T23:59:59.000Z

223

Correction magnets for the Fermilab Recycler Ring  

SciTech Connect

In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

James T Volk et al.

2003-05-27T23:59:59.000Z

224

Selective purge for hydrogenation reactor recycle loop  

SciTech Connect

Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

2001-01-01T23:59:59.000Z

225

Recycling of Thermoset-Matrix Composites  

Science Conference Proceedings (OSTI)

Table 1   Thermoset composites recycling processes...Ref 14 ) Polyurethane foams, ASR Gas, oil, solid waste Hydrolysis ( Ref 10 , 11 ) Foams, RIM resin, and elastomers Monomers of the input material Fluidized bed combustion ( Ref 14 ) RIM Energy recovery, solid and gaseous wastes Rotary kiln combustion ( Ref 13 ) RIM Energy recovery, solid and gaseous...

226

WINCO Metal Recycle annual report, FY 1993  

Science Conference Proceedings (OSTI)

This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

Bechtold, T.E. [ed.

1993-12-01T23:59:59.000Z

227

Overview of China's Vehicle Emission Control Program: Past Successes...  

Open Energy Info (EERE)

Vehicle Emission Control Program: Past Successes and Future Prospects Focus Area: Propane Topics: Socio-Economic Website: theicct.orgsitesdefaultfilespublications...

228

Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes  

DOE Green Energy (OSTI)

Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

Moskowitz, P.D.; Zweibel, K. (eds.)

1992-01-01T23:59:59.000Z

229

Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes. A workshop report  

DOE Green Energy (OSTI)

Since the development of the first silicon based photovoltaic cell in the 1950`s, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

Moskowitz, P.D.; Zweibel, K. [eds.

1992-10-01T23:59:59.000Z

230

Driving the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

the Future the Future A r g o n n e ' s v e h i c l e s ys t e m s r e s e A r c h 3 2 v e h i c l e s y s t e m s r e s e a r c h At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help reduce our nation's petroleum consumption and greenhouse gas emissions. Our Vehicle Systems research focuses on maximizing vehicle performance and efficiency through in-depth studies of the interactions and integration of components and controls in a large, complex vehicle system. Working with the U.S. Department of Energy (DOE) and the automotive industry, we investigate the potential of vehicle technologies ranging from alternative fuels to advanced powertrains, such as plug-in hybrids and electric vehicles. Funding

231

Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa  

Science Conference Proceedings (OSTI)

The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2011-07-15T23:59:59.000Z

232

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

233

Model institutional infrastructures for recycling of photovoltaic modules  

DOE Green Energy (OSTI)

How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

1996-01-01T23:59:59.000Z

234

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

235

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choctaw Nation Recycling Center Posts Quick Results Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

236

Technology Analysis - Battery Recycling and Life Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

237

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

238

A Ceramic membrane to Recycle Caustic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Ceramic Membrane to Recycle Caustic in Low-Activity Waste Stream Processing The Office of Waste Processing is sponsoring an R&D project with Ceramatec, Inc. to develop a ceramic membrane capable of separating sodium from the Hanford Low Activity Waste (LAW) stream. The Hanford High-Level Waste (HLW) tanks must be maintained in a caustic environment to inhibit corrosion. Consequently, they contain large quantities of NaOH. Ultimately the HLW will be retrieved, separated into HLW and LAW streams, with both streams being vitrified at the Waste Treatment Plant (WTP). Prior to processing, additional NaOH will be added to the LAW stream to solubilize the alumina, preventing alumina precipitation, but further increasing the NaOH quantity. This project's goal is to separate the sodium from the LAW stream prior to vitrification which will allow the NaOH to be recycled and further

239

Recovery of recyclable materials from shredder residue  

SciTech Connect

Each year, about 11 million tons of metals (ferrous and nonferrous) are recovered in the US from about 10 million discarded automobiles. The recovered metals account for about 75% of the total weight of the discarded vehicles. The balance of the material or shredder residue, which amounts to about 3 million tons annually, is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This paper discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two-stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. Status of the technology is discussed and process economics reviewed.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Brockmeier, N.F.

1994-01-01T23:59:59.000Z

240

Absorptive Recycle of Distillation Waste Heat  

E-Print Network (OSTI)

When the heat source available to a distillation process is at a significantly higher temperature than the reboiler temperature, there is unused availability (ability to perform work) in the heat supplied to the reboiler. Similarly, if the reflux condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence, conserve) up to 50% of the required distillation energy. In contrast to compressor driven heat pumps, this savings is accomplished without need for a separate substantial input of mechanical power. A different AHP configuration is used depending on whether the excess availability is in the source heat or reject heat. In the excessive source temperature case, the higher temperature source heat is applied to the AHP, which then supplies the total reboiler requirement and recycles half the reject heat, with the remainder being rejected conventionally. In the excessive reject temperature case, all the reject heat is supplied to a reverse absorption heat pump (HAHP) which recycles half to reboiler temperature while reducing the remainder to ambient temperature.

Erickson, D. C.; Lutz, E. J., Jr.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electron Beam Melting and Recycling of Hafnium  

Science Conference Proceedings (OSTI)

... Boosted Suction (DDBS) System Doubles Pot Suction, Reduces Roof Emission ... Phase Change Materials in Thermal Energy Storage for Concentrating Solar ...

242

TREATMENT OF GASEOUS EFFLUENTS ISSUED FROM RECYCLING – A REVIEW OF THE CURRENT PRACTICES AND PROSPECTIVE IMPROVEMENTS  

Science Conference Proceedings (OSTI)

The objectives of gaseous waste management for the recycling of nuclear used fuel is to reduce by best practical means (ALARA) and below regulatory limits, the quantity of activity discharged to the environment. The industrial PUREX process recovers the fissile material U(VI) and Pu(IV) to re-use them for the fabrication of new fuel elements e.g. recycling plutonium as a Mixed Oxide (MOX) fuel or recycling uranium for new enrichment for Pressurized Water Reactor (PWR). Meanwhile the separation of the waste (activation and fission product) is performed as a function of their pollution in order to store and avoid any potential danger and release towards the biosphere. Raffinate, that remains after the extraction step and which contains mostly all fission products and minor actinides is vitrified, the glass package being stored temporarily at the recycling plant site. Hulls and end pieces coming from PWR recycled fuel are compacted by means of a press leading to a volume reduced to 1/5th of initial volume. An organic waste treatment step will recycle the solvent, mainly tri-butyl phosphate (TBP) and some of its hydrolysis and radiolytic degradation products such as dibutyl phosphate (HDPB) and monobutyl phosphate (H2MBP). Although most scientific and technological development work focused on high level waste streams, a considerable effort is still under way in the area of intermediate and low level waste management. Current industrial practices for the treatment of gaseous effluents focusing essentially on Iodine-129 and Krypton-85 will be reviewed along with the development of novel technologies to extract, condition, and store these fission products. As an example, the current industrial practice is to discharge Kr-85, a radioactive gas, entirely to the atmosphere after dilution, but for the large recycling facilities envisioned in the near future, several techniques such as 1) cryogenic distillation and selective absorption in solvents, 2) adsorption on activated charcoal, 3) selective sorption on chemical modified zeolites, or 4) diffusion through membranes with selective permeability are potential technologies to retain the gas.

Patricia Paviet-Hartmann; William Kerlin; Steven Bakhtiar

2010-11-01T23:59:59.000Z

243

Charlotte Green Supply Chain: Reduce, Reuse, Recycle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle July 30, 2010 - 10:59am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Three years ago at Sacred Heart grade school in Norfolk, Neb., efforts to recycle were grim. "When I got here, we had no paper recycling program," says Troy Berryman, who is entering his sixth year as principal at Sacred Heart. "A couple years prior, we had a guy park a semi-truck in the parking lot for people to recycle paper." But Berryman says this system did not work out well, as the truck was often locked and papers would be left to blow around in the wind or get wet with rain. Knowing that something must be done, he began to look into the local

244

Recycling Energy Yields Super Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings April 23, 2010 - 4:34pm Addthis Joshua DeLung Recycling has been part of going green for a long time, but one company is going a step further by actually recycling energy that has already been used to power manufacturing plants. How do they do it? Recycled Energy Development implements proven technologies that help capture wasted heat and increase their energy efficiency. Dick Munson, senior vice president for public affairs at RED, says facilities that undertake such projects are generally able to cut their energy expenses by up to 20 percent. West Virginia Alloys, in Alloy, W.Va., is a silicon manufacturing plant that makes materials that end up in products such as solar cells and computer chips. In 2013, with help from

245

Validation of the RESRAD-RECYCLE computer code.  

SciTech Connect

The RESRAD-RECYCLE computer code was developed by Argonne National Laboratory under the sponsorship of the U.S. Department of Energy. It was designed to analyze potential radiation exposures resulting from the reuse and recycling of radioactively contaminated scrap metal and equipment. It was one of two codes selected in an international model validation study concerning recycling of radioactively contaminated metals. In the validation study, dose measurements at various stages of melting a spent nuclear fuel rack at Studsvik RadWaste AB, Sweden, were collected and compared with modeling results. The comparison shows that the RESRAD-RECYCLE results agree fairly well with the measurement data. Among the scenarios considered, dose results and measurement data agree within a factor of 6. Discrepancies may be explained by the geometrical limitation of the RESRAD-RECYCLE's external exposure model, the dynamic nature of the recycling activities, and inaccuracy in the input parameter values used in dose calculations.

Cheng, J.-J.; Yu, C.; Williams, W. A.; Murphie, W.

2002-02-01T23:59:59.000Z

246

Loveland Water and Power - Refrigerator Recycling Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refrigerator Recycling Program Refrigerator Recycling Program Loveland Water and Power - Refrigerator Recycling Program < Back Eligibility Residential Savings Category Appliances & Electronics Maximum Rebate Limit one rebate per account per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Refrigerator and Freezer Recycling: $35 Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator. The old refrigerator should be brought outside but remain plugged in so the utility can make it is in working condition. the utility will then take the refrigerator to a recycling facility and issue a $35 bill credit. Other Information

247

The Energy Impact of Industrial Recycling and Waste Exchange  

E-Print Network (OSTI)

Recycling and waste exchange, particularly in the industrial sector, has a substantial positive energy impact and one that can often be accomplished at little or no expense. Recycling saves energy because the secondary materials being recycled are "pre-processed", and this requires less manufacturing operations than creating products from virgin materials. Process energy reduction possible by recycling is estimated to be as high is 95% for aluminum and 88% for plastics. Industrial waste exchange is facilitated by having an independent agency to publicize and coordinate materials availability and exchange. The North Carolina Energy Division is a co-sponsor of one such agency, the Southeast Waste Exchange in Charlotte, and has funded workshops on the recycling-energy connection and waste minimization. Although the paper, plastic and glass familiar to residential recyclers are also exchanged at the industrial level, in addition, industrial waste exchange deals extensively with solvents, oils, acids and alkalis and other specialty substances.

Phillips, W. C.

1992-04-01T23:59:59.000Z

248

Role of Recycling in the Life Cycle of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

249

Strategies for recycling CdTe photovoltaic modules  

DOE Green Energy (OSTI)

Recycling end-of-life cadmium telluride (CdTe) photovoltaic (PV) modules may enhance the competitive advantage of CdTe PV in the marketplace, but the experiences of industries with comparable Environmental, Health and Safety (EH&S) challenges suggest that collection and recycling costs can impose significant economic burdens. Customer cooperation and pending changes to US Federal law may improve recycling economics.

Eberspacher, C.; Gay, C.F. [UNISUN, Newbury Park, CA. (United States); Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States)

1994-12-31T23:59:59.000Z

250

Selective Catalytic Reduction Catalyst Recycle and Re-Use Options  

Science Conference Proceedings (OSTI)

Given the widespread implementation of selective catalytic reduction (SCR) technology, there is a great deal of interest in finding viable recycle/re-use routes for spent catalyst as an alternative to landfilling. The current effort has focused on detailed evaluation of several recycle/re-use processes that were identified in previous EPRI studies. These recycle/re-use technologies include mineral filler applications, incorporation into wet-bottom boiler slag, cement kiln co-processing, and use in iron/s...

2010-12-21T23:59:59.000Z

251

A Goldilocks Catalyst: Nanocluster 'just right' for Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Goldilocks Catalyst A Goldilocks Catalyst Nanocluster 'just right' for recycling carbon dioxide February 21, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John...

252

ISASMELT™ for Recycling of Valuable Elements Contributing to a ...  

Science Conference Proceedings (OSTI)

Metals recycling is essential if we are to build a more sustainable society. ISASMELT™ Top Submerged Lance (TSL) technology can enable plant operators to ...

253

Development of Efficient Recycling System for Steel Alloying ...  

Science Conference Proceedings (OSTI)

ISASMELT™ for Recycling of Valuable Elements Contributing to a More Sustainable Society · Leaching of Uranium and Vanadium from Korean Domestic Ore.

254

PGM Recycling from Catalysts in a Closed Hydrometallurgical Loop ...  

Science Conference Proceedings (OSTI)

ISASMELT™ for Recycling of Valuable Elements Contributing to a More Sustainable Society · Leaching of Uranium and Vanadium from Korean Domestic Ore.

255

European Recycling Platform – Experiences from a New Venture  

Science Conference Proceedings (OSTI)

Materialization of Manganese by Selective Precipitation from Used Battery · Materials ... The Challenge of Allocation in LCA: The Case of Open-Loop Recycling.

256

Production, Refining and Recycling of Rare Earth Metals  

Science Conference Proceedings (OSTI)

This symposium is targeting on overview of the current state of the art for production, refining and recycling of the rare earth metals. In addition the symposium is ...

257

Production, Recovery and Recycling of Rare Earth Metals  

Science Conference Proceedings (OSTI)

This symposium is targeting on overview of the current state of the art for production, recovery and recycling of the rare earth. In addition the symposium is  ...

258

Decentralized Decision-making and Protocol Design for Recycled ...  

E-Print Network (OSTI)

Nov 14, 2006 ... Optimization Online. Decentralized Decision-making and Protocol Design for Recycled Material Flows. I-Hsuan Hong (ihong ***at*** ...

259

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

260

Discussions@TMS - What are the recycling trends between urban ...  

Science Conference Proceedings (OSTI)

Oct 4, 2007 ... Topic Title: What are the recycling trends between urban and rural areas and are there any specific infrastructure needs? Topic Summary: ...

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by industry for recycling facilities 2 , is a systematic analysis to identify facility and external hazards and their potential for initiating accident sequences, the...

262

Section 7.2 Operational Waste Reduction and Recycling: Greening...  

NLE Websites -- All DOE Office Websites (Extended Search)

organizations for reuse or can be recycled, depending on its age and quality. Compost: Organic matter generated from food services and landscaping operations should be...

263

REWAS 2008: Global Symposium on Recycling, Waste Treatment ...  

Science Conference Proceedings (OSTI)

Oct 20, 2008 ... REWAS 2008: Global Symposium on Recycling, Waste Treatment and ... on the Recovery of Materials and Energy for Resource Efficiency.

264

Promotion of Recycling Business by Combination of a Pre ...  

Science Conference Proceedings (OSTI)

... friendly system for recycling valuable metals in the waste which used to be sent to a landfill. ... Waste Heat Recovery from Industrial Smelting Exhaust Gas ...

265

A Comparison of Li-Ion Battery Recycling Options  

NLE Websites -- All DOE Office Websites (Extended Search)

1 A Comparison of Li-Ion Battery Recycling Options Linda Gaines and Jennifer Dunn Center for Transportation Research Argonne National Laboratory SAE World Congress April 2012 PAPER...

266

Lithium-Ion Batteries: Examining Material Demand and Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

ISSUES Linda Gaines and Paul Nelson Argonne National Laboratory, Argonne, IL Keywords: battery materials, lithium, recycling Abstract Use of vehicles with electric drive, which...

267

China Recycling Energy Corp CREG | Open Energy Information  

Open Energy Info (EERE)

Energy Corp CREG Jump to: navigation, search Name China Recycling Energy Corp (CREG) Place Reno, Nevada Zip 89511 Product A US-incorporated company that develops recovered energy...

268

2011 Vittorio de Nora Award Winner: Recycling of Contaminated ...  

Science Conference Proceedings (OSTI)

Removal of contaminants such as the coat and organic materials- applied for protection and appearance- are the tail that wags the recycling dog. Successful ...

269

Renewable and Recycled Energy Objective (North Dakota) | Open...  

Open Energy Info (EERE)

There are special conditions regarding RECs associated with hydropower facilities. Electricity generation applied to the renewable energy and recycled energy objective, as well...

270

Waste Home Appliances Recycling in Some European and ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... The recycling of waste home appliances has been an eminent issue globally. In European Communities, the directive on waste electrical and ...

271

Webcast “Enhancing the Value Proposition Through Metals Recycling  

Science Conference Proceedings (OSTI)

Presenter: Joseph Fiksel, Center for Resilience, The Ohio State University; “The ... “Understanding and Enhancing Aluminum Can Recycling Rate-a Kentucky ...

272

Microbial Fuel Cells for Recycle of Process Water from ...  

Large amounts of water are used in the processing of cellulosic biomass materials, so it is highly desirable to recycle used process water at the end ...

273

Mechanical Recycling of Electronic Wastes for Materials Recovery  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP · Mechanical Recycling of Electronic Wastes for Materials Recovery.

274

Prospective Scenario of E-Waste Recycling in India  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP · Mechanical Recycling of Electronic Wastes for Materials Recovery.

275

Willingness to Recycle Electronic Waste: Results from a National ...  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP · Mechanical Recycling of Electronic Wastes for Materials Recovery.

276

WEEE: Obsolete Mobile Phones Characterization Aiming at Recycling  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP · Mechanical Recycling of Electronic Wastes for Materials Recovery.

277

Wastewater reuse and recycle in petroleum refineries  

SciTech Connect

The objectives of this study were to identify feasible reuse and recycle techniques that can be successful in reducing wastewater discharge and to estimate their associated costs. Wastewater reduction is a fundamental aspect of the US EPA's proposed regulations for the petroleum refining industry. EPA undertook this study to confirm the cost estimates used in the proposed guidelines, to identify specific technologies, and to accurately assess their costs. Fifteen refineries were chosen to represent the range of refinery characteristics including crude capacity, process employed, and wastewater generation. Significant wastewater reductions were found possible at 12 refineries studied.

Langer, B.S.

1983-05-01T23:59:59.000Z

278

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

279

Future nuclear fuel cycles: prospects and challenges  

Science Conference Proceedings (OSTI)

Solvent extraction has played, from the early steps, a major role in the development of nuclear fuel cycle technologies, both in the front end and back end. Today's stakes in the field of energy enhance further than before the need for a sustainable management of nuclear materials. Recycling actinides appears as a main guideline, as much for saving resources as for minimizing the final waste impact, and many options can be considered. Strengthened by the important and outstanding performance of recent PUREX processing plants, solvent-extraction processes seem a privileged route to meet the new and challenging requirements of sustainable future nuclear systems. (author)

Boullis, Bernard [Commissariat a l'Energie Atomique, Direction de l'Energie Nucleaire, Centre de Saclay, 91191, Gif-sur-Yvette cedex (France)

2008-07-01T23:59:59.000Z

280

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal  

SciTech Connect

Experimental tests are reported for the detection of the heavy metal shielding of orphan sources hidden inside scrap metal by using a recently developed muon tomography system. Shielded sources do not trigger alarm in radiation portal commonly employed at the entrance of steel industry using scrap metal. Future systems integrating radiation portals with muon tomography inspection gates will substantially reduce the possibility of accidental melting of radioactive sources securing the use of recycled metal.

Pesente, S.; Benettoni, M.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Vanini, S.; Viesti, G.; Zumerle, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Bonomi, G.; Zenoni, A. [University of Brescia, via Branze 38, 25123 Brescia and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Calvini, P.; Squarcia, S. [University of Genova and INFN Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy)

2010-08-04T23:59:59.000Z

282

Analysis of the cost of recycling compliance for the automobile industry  

E-Print Network (OSTI)

Cars are one of the most recycled commercial products. Currently, approximately 75% of the total vehicle weight is recycled. The EU directives on End-of-life vehicles try to push the recycling process further: it fixed the ...

Dantec, Delphine

2005-01-01T23:59:59.000Z

283

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1986-01-01T23:59:59.000Z

284

Progress in Recycling of Retired Cadmium-Telluride Photovoltaic Modules  

E-Print Network (OSTI)

Progress in Recycling of Retired Cadmium- Telluride Photovoltaic Modules Postdoctoral: Wenming Wang-Talk Program July 21, 2005 #12;Recycling Retired Photovoltaic Modules to Valuable Products, Where Are We, ppm Cu, ppm Column I Column II H2SO4 Tank CdSO4 Electrolytic Cell Cadmium Metal Cd Solution H2SO4

285

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

Garg, D.; Givens, E.N.; Schweighardt, F.K.

1986-12-09T23:59:59.000Z

286

Potential GTCC LLW sealed radiation source recycle initiatives  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

287

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato |  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Existing experiments indicate that low recycling of exhausted particles can improve the energy confinement in tokamaks, very likely by preventing the cooling of the plasma edge and thereby causing a reduction in the level of plasma turbulence. This can reduce the size of a tokamak fusion reactor, making the latter a more viable source of energy. The necessary conditions for low recycling can be achieved with the use of a new magnetic divertor, where the exhausted particles are injected through a narrow aperture into a large chamber. Exhausting the particles into a large chamber prevents their return to the plasma, resulting in a reduction in plasma recycling to a level where existing experiments have shown a large enhancement in plasma

288

Safeguards and nonproliferation aspects of a dry fuel recycling technology  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities.

Pillay, K.K.S.

1993-05-01T23:59:59.000Z

289

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

290

Texas Industries of the Future  

E-Print Network (OSTI)

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. The bottom line for Texas industry is savings in energy and materials, cost-effective environmental compliance, increased productivity, reduced waste, and enhanced product quality. The state program leverages the programs and tools of the federal Department of Energy's Industries of the Future. At the federal level, there are nine Industries of the Future: refining, chemicals, aluminum, steel, metal casting, glass, mining, agriculture, and forest products. These industries were selected nationally because they supply over 90% of the U.S. economy's material needs and account for 75% of all energy use by U.S. industry. In Texas, three IOF sectors, chemicals, refining and forest products, account for 86% of the energy used by industry in this state.

Ferland, K.

2002-04-01T23:59:59.000Z

291

Treatment or Recycling End-Of-Life (H)EV Battery Packs  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Treatment or Recycling End-Of-Life ...

292

Recycling of Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

293

Recycling technologies and market opportunities: Proceedings  

SciTech Connect

These proceedings are the result of our collective effort to meet that challenge. They reflect the dedication and commitment of many people in government, academia, the private sector and national laboratories to finding practical solutions to one of the most pressing problems of our time -- how to deal effectively with the growing waste s that is the product of our affluent industrial society. The Conference was successful in providing a clear picture of the scope of the problem and of the great potential that recycling holds for enhancing economic development while at the same time, having a significant positive impact on the waste management problem. That success was due in large measure to the enthusiastic response of our panelists to our invitation to participate and share their expertise with us.

Goland, A.N.; Petrakis, L. [eds.

1993-09-20T23:59:59.000Z

294

CO2 Sequestration and Recycle by Photosynthesis  

DOE Green Energy (OSTI)

Visible light-photocatalysis could provide a cost-effective route to recycle CO2 to useful chemicals or fuels. Research is planned to study the reactivity of adsorbates, their role in the photosynthesis reaction, and their relation to the nature of surface sites during photosynthesis of methanol and hydrocarbons from CO{sub 2}/H{sub 2}O. The year two research focus catalyst screening and IR studies. Key research results show Pd/TiO2 exhibits the highest activity for hydrocarbon synthesis from photocatalytic reactions. The in situ IR could successfully monitor the adsorbate hydrocarbon species on Cu/TiO2. Year III research will focus on developing a better understanding of the key factors which control the catalyst activity.

Steven S.C. Chuang

2004-02-01T23:59:59.000Z

295

Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 1: Assessment of recycling technology. Final report  

SciTech Connect

Approximately ten different candidate EV battery technologies were examined based on their performance and recyclability, and were ranked based on these examinations. The batteries evaluated were lead-acid (all types), nickel-cadmium, nickel-iron, nickel-metal hydride, sodium-sulfur, sodium-nickel chloride, lithium-iron disulfide, lithium-ion, lithium polymer, and zinc (zinc-air and zinc-bromine). Locations of present recycling facilities were identified. Markets for recycled products were assessed: the value of recycled materials were found too unstable to fully support recycling efforts. All these batteries exhibit the characteristic of hazardous waste in California, and are therefore subject to strict regulations (finalization of the new EPA Universal Waste Rule could change this).

Unnasch, S.; Montano, M.; Franklin, P.; Nowell, G.; Martin, C.

1995-03-01T23:59:59.000Z

296

Low Emissions Aftertreatment and Diesel Emissions Reduction  

Science Conference Proceedings (OSTI)

Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.

None

2005-05-27T23:59:59.000Z

297

Energy Return on Investment - Fuel Recycle  

SciTech Connect

This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

2012-06-06T23:59:59.000Z

298

EIA - AEO2010 - Emissions projections  

Gasoline and Diesel Fuel Update (EIA)

Emissions Projections Emissions Projections Annual Energy Outlook 2010 with Projections to 2035 Emissions Projections Figure 93. Carbon dioxide emissions by sector and fuel, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 94. Sulfur dioxide emissions from electricity generation, 2000-2035 Click to enlarge » Figure source and data excel logo Figure 95. Nitrogen oxide emissions from electricity generation, 2000-2035 Click to enlarge » Figure source and data excel logo Growth of carbon dioxide emissions slows in the projections Federal and State energy policies recently enacted will stimulate increased use of renewable technologies and efficiency improvements in the future, slowing the growth of energy-related CO2 emissions through 2035. In the Reference case, emissions do not exceed pre-recession 2007 levels until 2025. In 2035, energy-related CO2 emissions total 6,320 million metric tons, about 6 percent higher than in 2007 and 9 percent higher than in 2008 (Figure 93). On average, emissions in the Reference case grow by 0.3 percent per year from 2008 to 2035, compared with 0.7 percent per year from 1980 to 2008.

299

Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction  

SciTech Connect

Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF cladding are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.

Collins, Emory D [ORNL; DelCul, Guillermo D [ORNL; Terekhov, Dmitri [ORNL; Emmanuel, N. V. [Chemical Vapor Metal Refining, Inc.

2011-01-01T23:59:59.000Z

300

Formulating a VET roadmap for the waste and recycling sector: A case study from Queensland, Australia  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Existing qualifications do not meet the needs of the sector in Queensland. Black-Right-Pointing-Pointer Businesses may not be best positioned to identify training needs. Black-Right-Pointing-Pointer Companies are developing training internally to meet their own specific needs. Black-Right-Pointing-Pointer Smaller companies lack the resources to develop internal training are disadvantaged. Black-Right-Pointing-Pointer There is industry support for an entry-level, minimum industry qualification. - Abstract: Vocational Education and Training (VET) is an essential tool for providing waste management and recycling workers with the necessary skills and knowledge needed to beneficially influence their own employment and career development; and to also ensure productivity and safe working conditions within the organisations in which they are employed. Current training opportunities within Queensland for the sector are limited and not widely communicated or marketed; with other States, particularly Victoria and New South Wales, realising higher numbers of VET enrollments for waste management courses. This paper presents current VET opportunities and trends for the Queensland waste management sector. Results from a facilitated workshop to identify workforce requirements and future training needs organised by the Waste Contractors and Recyclers Association of Queensland (WCRAQ) are also presented and discussion follows on the future training needs of the industry within Queensland.

Davis, G., E-mail: gudavis@cytanet.com.cy [Dr Georgina Davis, ABN 12 744 598 837, Banksia Beach, Brisbane, QLD 4507 (Australia)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Model institutional infrastructures for recycling of photovoltaic modules  

DOE Green Energy (OSTI)

This paper describes model approaches to designing an institutional infrastructure for the recycling of decommissioned photovoltaic modules; more detailed discussion of the information presented in this paper is contained in Reaven et al., (1996)[1]. The alternative approaches are based on experiences in other industries, with other products and materials. In the aluminum, scrap iron, and container glass industries, where recycling is a long-standing, even venerable practice, predominantly private, fully articulated institutional infrastructures exist. Nevertheless, even in these industries, arrangements are constantly evolving in response to regulatory changes, competition, and new technological developments. Institutional infrastructures are less settled for younger large- scale recycling industries that target components of the municipal solid waste (MSW) stream, such as cardboard and newspaper, polyethylene terephthalate (PET) and high-density polyethylene (HDPE) plastics, and textiles. In these industries the economics, markets, and technologies are rapidly changing. Finally, many other industries are developing projects to ensure that their products are recycled (and recyclable) e.g., computers, non-automotive batteries, communications equipment, motor and lubrication oil and oil filters, fluorescent lighting fixtures, automotive plastics and shredder residues, and bulk industrial chemical wastes. The lack of an an adequate recycling infrastructure, attractive end-markets, and clear the economic incentives, can be formidable impediments to a self- sustaining recycling system.

Moscowitz, P.D.; Reaven, J.; Fthenakis, V.M.

1996-07-01T23:59:59.000Z

302

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

303

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

304

Alabama Land Recycling And Economic Redevelopment Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Recycling And Economic Redevelopment Act (Alabama) Land Recycling And Economic Redevelopment Act (Alabama) Alabama Land Recycling And Economic Redevelopment Act (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Provider Department of Environmental Management This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and redevelopment of environmentally contaminated properties. The article states criteria for applicant participation and property qualification in the voluntary cleanup

305

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

306

Hydrogen: Fueling the Future  

DOE Green Energy (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

307

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 15, 2011 August 15, 2011 Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity PIKETON, Ohio - Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and Reinvestment Act. Proceeds from recycling that metal through the unique program will add to the more than $2.8 million already generated from recycling more than 5.2 million pounds of material from site demolition efforts. "This metal represents economic opportunity for the surround- ing community, as proceeds from this material will create local jobs, utilize surrounding area facilities and generate money to be reinvested back into the community," said Pete Mingus, who

308

Considerations in the recycling of urban parking garages  

E-Print Network (OSTI)

Because of the decreasing use of private automobiles in city centers and because of usual development pressures, some urban parking garages will become available for replacement or recycling. The choice between replacement ...

Paul, Michael Johannes

1981-01-01T23:59:59.000Z

309

Impact of Atmospheric Moisture Storage on Precipitation Recycling  

Science Conference Proceedings (OSTI)

Computations of precipitation recycling using analytical models are generally performed under the assumption of negligible change in moisture storage in the atmospheric column. Because the moisture storage term is nonnegligible at smaller time ...

Francina Dominguez; Praveen Kumar; Xin-Zhong Liang; Mingfang Ting

2006-04-01T23:59:59.000Z

310

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycles Millions of Pounds of Metal Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

311

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

312

Renewable and Recycled Energy Objective | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info State North Dakota Program Type Renewables Portfolio Standard Provider North Dakota Public Service Commission In March 2007, the North Dakota enacted legislation (H.B. 1506) establishing an ''objective'' that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled energy by 2015. The objective must be measured by qualifying megawatt-hours (MWh) delivered at retail, or by credits purchased and retired to offset non-qualifying

313

High-grade paper recycling: A program management perspective  

Science Conference Proceedings (OSTI)

Recycling of high-grade paper is one method of reducing the use of natural resources and the amount of waste being emitted into the environment, both in the process of manufacturing and in the disposal of unneeded documents. The Air Force Materiel Command (AFMC) is a significant user of high-grade paper, thus recycling represents a potential saving to society in the form of lessened negative impact on the environment as the result of AFMC operations. The possibility also exists for AFMC to reduce operating costs. The purpose of this study is to explore means of reducing high-grade paper disposal by AFMC, examine program management of high-grade paper recycling by AFMC, and apply effective program management processes to the AFMC high-grade paper recycling program.

Carter, R.L.

1999-03-01T23:59:59.000Z

314

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network (OSTI)

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

315

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

316

Applications of industrial ecology : manufacturing, recycling, and efficiency  

E-Print Network (OSTI)

This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

2007-01-01T23:59:59.000Z

317

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE))

Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

318

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network (OSTI)

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

319

Precipitation Recycling: Moisture Sources over Europe using ERA-40 Data  

Science Conference Proceedings (OSTI)

Atmospheric moisture within a region is supplied by both local evaporation and advected from external sources. The contribution of local evaporation in a region to the precipitation in the same region is defined as “precipitation recycling.” ...

B. Bisselink; A. J. Dolman

2008-10-01T23:59:59.000Z

320

Renewable, Recycled and Conserved Energy Objective (South Dakota...  

Open Energy Info (EERE)

(HB 1123) establishing an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015. In March 2009, this policy was...

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Use of recycled materials in highway construction. Final report  

SciTech Connect

The major objectives of this study were to examine: (1) the types of recycled materials that are appropriate and feasible as alternative paving materials, such as glass and tires; and (2) the types of recycled materials, such as mixed-plastics and compost, that can be utilized in all types of transportation applications other than pavements. Seven key products are investigated: (1) tires, (2) glass, (3) asphalt concrete, (4) fly ash, (5) compost, (6) mixed plastics, and (7) aluminum sign stock. Performance and cost data for rubber-asphalt pavements is documented for both in-state and nationwide applications. The national experience with the use of waste glass as an additive to asphalt concrete and its use in unbound base materials is also highlighted. Programs for experimental use of recycled materials are outlined. Recommendations for staffing and program changes to deal with recycling issues are also discussed.

Swearingen, D.L.; Jackson, N.C.; Anderson, K.W.

1992-02-01T23:59:59.000Z

322

Recycling and Energy Recovery Pilot Project: Project Report and Future Efforts  

DOE Green Energy (OSTI)

A novel bioprocessing technology was developed that efficiently converts negative-value organic waste, including domestic refuse, animal manures, industrial wastes, food processing wastes, and municipal sewage sludge into saleable products, including fuel gas and compost. This technology is known as high solids anaerobic digestion and was developed at NREL from fundamental research to laboratory- and intermediate-scale system evaluations.

Rivard, C.

1999-05-19T23:59:59.000Z

323

Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

4: July 24, 2006 4: July 24, 2006 Scrap Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on AddThis.com... Fact #434: July 24, 2006 Scrap Tire Recycling The recycling of scrap tires has come a long way in the last decade. In 1990, only 11% of the tires that were scrapped were recycled or reused, but

324

Method of recycling lithium borate to lithium borohydride through diborane  

DOE Patents (OSTI)

This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

Filby, Evan E. (Rigby, ID)

1976-01-01T23:59:59.000Z

325

Automobile shredder residue: Process developments for recovery of recyclable constituents  

SciTech Connect

The objectives of this paper are threefold: (1) to briefly outline the structure of the automobile shredder industry as a supplier of ferrous scrap, (2) to review the previous research that has been conducted for recycling automobile shredder residue (ASR), and (3) to present the results and implications of the research being conducted at ANL on the development of a process for the selective recovery and recycling of the thermoplastics content of ASR. 15 refs., 5 figs.

Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.; Shoemaker, E.L.

1990-01-01T23:59:59.000Z

326

Duality and Recycling Computing in Quantum Computers  

E-Print Network (OSTI)

Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer passing through a double-slit. A duality computer offers the capability to perform separate operations on the sub-waves coming out of the different slits, in the so-called duality parallelism. Here we show that an $n$-dubit duality computer can be modeled by an $(n+1)$-qubit quantum computer. In a duality mode, computing operations are not necessarily unitary. A $n$-qubit quantum computer can be used as an $n$-bit reversible classical computer and is energy efficient. Our result further enables a $(n+1)$-qubit quantum computer to run classical algorithms in a $O(2^n)$-bit classical computer. The duality mode provides a natural link between classical computing and quantum computing. Here we also propose a recycling computing mode in which a quantum computer will continue to compute until the result is obtained. These two modes provide new tool for algorithm design. A search algorithm for the unsorted database search problem is designed.

Gui Lu Long; Yang Liu

2007-08-15T23:59:59.000Z

327

Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy  

Science Conference Proceedings (OSTI)

Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are compared and assessed. The analysis shows that only high temperature gas cooled reactor (HTGR) and sodium fast breed reactor might be available in China in 2020 for hydrogen production. Further development of very high temperature gas cooled reactor (VHTR) and gas-cooled fast reactor (GCFR) is necessary to ensure China's future capability of hydrogen production with nuclear energy as the primary energy. It is obvious that hydrogen production with high efficient nuclear energy will be a suitable strategic technology road, through which future clean vehicles burning hydrogen fuel cells will become dominant in future Chinese transportation industry and will play sound role in ensuring future energy security of China and the sustainable prosperity of Chinese people. (author)

Zhiwei Zhou [Tsinghua University, Beijing, 100084 (China)

2006-07-01T23:59:59.000Z

328

Sustainable recycling of municipal solid waste in developing countries  

SciTech Connect

This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors.

Troschinetz, Alexis M. [Department of Civil and Environmental Engineering, Sustainable Futures Institute, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931 (United States)], E-mail: alexis_troschinetz@yahoo.com; Mihelcic, James R. [Department of Civil and Environmental Engineering, Sustainable Futures Institute, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931 (United States)

2009-02-15T23:59:59.000Z

329

Update on CO2 emissions  

Science Conference Proceedings (OSTI)

Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

Friedingstein, P. [University of Exeter, Devon, England; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Marland, Gregg [ORNL; Hackler, J. [Woods Hole Research Center, Woods Hole, MA; Boden, Thomas A [ORNL; Conway, T.J. [NOAA, Boulder, CO; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Raupach, Mike [GCP, Canberra, Australia; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom

2010-12-01T23:59:59.000Z

330

Aluminum: Industry of the future  

SciTech Connect

For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

1998-11-01T23:59:59.000Z

331

Energy Implications of Alternative Water Futures  

E-Print Network (OSTI)

Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

Keller, Arturo A.

332

FutureGen Project Launched | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Project Launched FutureGen Project Launched FutureGen Project Launched December 6, 2005 - 4:29pm Addthis Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman today announced that the Department of Energy has signed an agreement with the FutureGen Industrial Alliance to build FutureGen, a prototype of the fossil-fueled power plant of the future. The nearly $1 billion government-industry project will produce electricity and hydrogen with zero-emissions, including carbon dioxide, a greenhouse gas. The initiative is a response to President Bush's directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. Today's announcement marks the official

333

Status of LLNL Hot-Recycled-Solid oil shale retort, January 1991--September 30, 1993  

Science Conference Proceedings (OSTI)

Our objective, together with our CRADA partners, is to demonstrate advanced technology that could lead to an economic and environmentally acceptable commercialization of oil shale. We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Cena, R.J.

1993-11-01T23:59:59.000Z

334

Positron Computed Tomography: Current State, Clinical Results and Future Trends  

DOE R&D Accomplishments (OSTI)

An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

1980-09-00T23:59:59.000Z

335

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network (OSTI)

2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

336

Code qualification of structural materials for AFCI advanced recycling reactors.  

Science Conference Proceedings (OSTI)

This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

2012-05-31T23:59:59.000Z

337

Mound Laboratory's Reclamation and Recycling Program  

SciTech Connect

In keeping with Mound Laboratory's tradition for innovation and forward-looking action, several studies were recently conducted to seek out alternatives to incineration and landfill of all nonradioactive solid waste. Efforts were directed towards reclamation, reuse, and recycling of solid wastes. These efforts resulted in a reclamation and recycling program which is being implemented in three separate phases: 1. Phase I provides for reclamation and recycling of IBM cards, printouts, and white paper. 2. Phase II is designed for reclamation, recycling, or off-site disposal of all wastes generated in buildings and areas where radioactive or explosive wastes are not contained. 3. Phase III provides for reclamation, recycling, or off-site disposal of the remaining wastes not included in Phases I and II. Implementatin would follow successful operation of Phases I and II and would only be implemented after a complete analysis of monitoring and segregation techniques have been established to assure against any possibility of off-site contamination.

Garbe, Yvonne M.

1974-10-01T23:59:59.000Z

338

Global emissions inventories  

SciTech Connect

Atmospheric chemistry determines the concentrations of most of the important greenhouse gases except for carbon dioxide. The rate of removal of the greenhouse gases from the atmosphere is also controlled by atmospheric chemistry. The indirect effects of chemical forcing resulting from the chemical interactions of other species can also affect the concentrations of radiatively important gases such as ozone. In order to establish the contribution of any possible climatic change attributable to individual greenhouse gases, spatially and temporally resolved estimates of their emissions need to be established. Unfortunately, for most of the radiatively important species the global magnitudes of their individual fluxes are not known to better than a factor of two and their spatial distributions are even more poorly characterized. Efforts to estimate future projections of potential impacts and to monitor international agreements will require continued research to narrow the uncertainties of magnitude and geographical distribution of emissions.

Dignon, J.

1995-07-01T23:59:59.000Z

339

CO2 Sequestration and Recycle by Photosynthesis  

Science Conference Proceedings (OSTI)

Visible light-photocatalysis could provide a cost-effective route to recycle CO{sub 2} to useful chemicals or fuels. Research is planned to study the reactivity of adsorbates, their role in the photosynthesis reaction, and their relation to the nature of surface sites during photosynthesis of methanol and hydrocarbons from CO{sub 2}/H{sub 2}O over four types of MCM-41/Al{sub 2}O{sub 3}-supported TiO{sub 2} and CdS catalysts: (1) ion-exchanged metal cations, (2) highly dispersed cations, (3) monolayer sites, and (4) modified monolayer catalysts. TiO{sub 2} was selected since it has exhibited higher activity than other oxide catalysts; CdS was selected for its photocatalytic activity in the visible light region. Al{sub 2}O{sub 3} provides excellent hydrothermal stability. MCM-41 offers high surface area (more than 800 m{sup 2}/g), providing a platform for preparing and depositing a large number of active sites per gram catalyst. The unique structure of these ion exchange cations, highly dispersed cations, and monolayer sites provides an opportunity to tailor their chemical/coordination environments for enhancing visible-light photocatalytic activity and deactivation resistance. The year one research tasks include (1) setting up experimental system, (2) preparing ion-exchanged metal cations, highly dispersed cations, monolayer sites of TiO{sub 2} and CdS, and (3) determination of the dependence of methanol activity/selectivity on the catalyst preparation techniques and their relation to adsorbate reactivity. During the first quarter, we have purchased a Gas Chromatography and all the necessary components for building 3 reactor systems, set up the light source apparatus, and calibrated the light intensity. In addition, monolayer TiO{sub 2}/MCM-41 and TiO{sub 2}/Al{sub 2}O{sub 3} catalyst were prepared. TiO{sub 2}/Al{sub 2}O{sub 3} was found to exhibit high activity for methanol synthesis. Repeated runs was planned to insure the reproducibility of the data.

Steven S.C. Chuang

2003-02-01T23:59:59.000Z

340

Spectroscopic diagnostics of tritium recycling in TFTR  

DOE Green Energy (OSTI)

The authors present the first spectroscopic measurements of tritium Balmer-alpha (T{sub {alpha}}) emission from a fusion plasma. A Fabry-Perot interferometer is used to measure the H{sub {alpha}}, D{sub {alpha}}, T{sub {alpha}} spectrum in the current D-T a experimental campaign on TFTR and the contributions of H, D and T are separated by spectral analysis. The T{sub {alpha}} line was measurable at concentrations T{sub {alpha}}/(H{sub {alpha}} + D{sub {alpha}} + T{sub {alpha}}) down to 2%.

Skinner, C.H.; Stotler, D.P.; Adler, H.; Ramsey, A.T.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Positron Emission Tomography (PET)  

DOE R&D Accomplishments (OSTI)

Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

Welch, M. J.

1990-01-00T23:59:59.000Z

342

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

343

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

344

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

345

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

346

NETL: Emissions Characterization - Adv. Low-NOx Burner Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Low-NOx Burner Emissions Characterization Advanced Low-NOx Burner Emissions Characterization The goal of this work is to develop a comprehensive, high-quality database characterizing PM2.5 emissions from utility plants firing high sulfur coals. The specific objectives are to: 1) develop and test an ultra low-NOx pulverized coal burner for plug-in retrofit applications without boiler wall tube modifications, 2) assess the impact of low-NOx PC burner operation on NOx and PM2.5 emissions, and 3) provide high-quality data to ensure that future PM2.5 regulations are based on good scientific information. The work will be performed in the Clean Environment Development Facility (CEDF), a 100 million Btu/hr near-full-scale facility located at the Alliance Research Center. Related Papers and Publications:

347

Future Electronics in CNST  

Science Conference Proceedings (OSTI)

... Electronic Transport in Nanoscale Organic/Inorganic Devices. ... for graphene, nanophotonic, nanoplasmonic, spintronic, and other future electronics. ...

2013-05-02T23:59:59.000Z

348

Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel  

SciTech Connect

The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

Clark, E.A.

1995-04-03T23:59:59.000Z

349

Radiological control criteria for materials considered for recycle and reuse  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. Preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping.

Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L. [Pacific Northwest Lab., Richland, WA (United States); Wallo, A. III [USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance

1994-11-01T23:59:59.000Z

350

Polymers go full circle in new plastics recycling process  

Science Conference Proceedings (OSTI)

Recycling waste, especially post-consumer plastic packaging waste, is a growing issue. Pressure to find alternatives to landfilling and conserve resources has prompted governments to limit the amount of material that can be disposed in traditional ways. One approach, chemical recycling of mixed plastics back to the feedstock for virgin plastic products, is receiving increased attention. British-based BP Chemicals, in collaboration with other polymer producers, is pioneering this alternative. The process involves cracking polymers to a hydrocarbon intermediate suitable for feeding to existing petrochemical plants, such as the steam crackers that produce the basic building blocks for plastics. BP's recycled product already can be used with four leading steam-cracking processes.

Lock, J.

1994-08-01T23:59:59.000Z

351

'Recycling' Grid Energy with Flywheel Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology September 30, 2010 - 5:03pm Addthis Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power’s energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE

352

Performance of a Treatment Loop for Recycling Spent Rinse Waters  

Science Conference Proceedings (OSTI)

This paper summarizes an evaluation of a treatment loop designed to upgrade the quality of spent rinse waters discharged from 10 wet benches located in the fab at Sandia's Microelectronics Development Laboratory (MDL). The goal of the treatment loop is to make these waters, presently being discharged to the fab's acid waste neutralization (AWN) station, suitable for recycling as feed water back into the fab's ultrapure water (UPW) plant. The MDL typically operates 2 shifts per day, 5 days per week. Without any treatment, the properties of the spent rinse waters now being collected have been shown to be compatible with recycling about 30% (50/168) of the time (weekends primarily, when the fab is idling) which corresponds to about 12% of the present water discharged from the fab to the AWN. The primary goal of adding a treatment loop is to increase the percentage of recyclable water from these 10 wet benches to near 100%, increasing the percentage of total recyclable water to near 40% of the total present fab discharge to the AWN. A second goal is to demonstrate compatibility with recycling this treated spent rinse water to the present R/O product water tank, reducing both the present volume of R/O reject water and the present load on the R/O. The approach taken to demonstrate achieving these goals is to compare all the common metrics of water quality for the treated spent rinse waters with those of the present R/O product water. Showing that the treated rinse water is equal or superior in quality to the water presently stored in the R/O tank by every metric all the time is assumed to be sufficient argument for proceeding with plans to incorporate recycling of these spent rinse waters back into MDL's R/O tank.

DONOVAN,ROBERT PATRICK; TIMON,ROBERT P.; DEBUSK,MICHAEL JOHN; JONES,RONALD V.; ROGERS,DARELL M.

2000-11-15T23:59:59.000Z

353

Auto shredder residue recycling: Mechanical separation and pyrolysis  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

Santini, Alessandro [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Vassura, Ivano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Serrano, David; Dufour, Javier [Department of Chemical and Energy Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Instituto IMDEA Energy, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Morselli, Luciano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy)

2012-05-15T23:59:59.000Z

354

Sludge recycle and reuse in acid mine drainage treatment  

Science Conference Proceedings (OSTI)

Neutralization of acid mine drainage produces vast quantities of iron-rich sludge, and large quantities of unused lime remain in the sludge after treatment. In a study in which sludge was recycled to increase lime utilization, sludge was mixed with raw acid mine drainage and settled out in an intermediate clarifier. The clarifier supernatant was then treated by lime addition, aeration and sedimentation. The low-pH sludge was withdrawn from the intermediate clarifier. The iron was recovered by acidification and used as wastewater coagulant. The recycle scheme resulted in a 30% decrease in lime requirements, and the resultant coagulant performed well when compared with stock iron coagulant solutions.

Keefer, G.B.; Sack, W.A.

1983-03-01T23:59:59.000Z

355

Recycling tires. (Latest citations from Pollution Abstracts). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-12-01T23:59:59.000Z

356

Summary of Fermilab's Recycler Electron Cooler Operation and Studies  

SciTech Connect

Fermilab's Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8 GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy, 4.3 MV combined with 0.1-0.5 A DC beam current, a weak continuous longitudinal magnetic field in the cooling section, 100 G, and lumped focusing elsewhere. With the termination of the Tevatron collider operation, so did the cooler. In this article, we summarize the experience of running this unique machine.

Prost, L.R.; Shemyakin, A.; /Fermilab

2012-05-15T23:59:59.000Z

357

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

358

Energy Return on Investment from Recycling Nuclear Fuel  

SciTech Connect

This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

2011-08-17T23:59:59.000Z

359

Process design and solvent recycle for the supercritical Fischer-Tropsch synthesis  

Science Conference Proceedings (OSTI)

A recycle reactor system for supercritical Fischer-Tropsch synthesis was successfully designed and tested. The new reactor system has these characteristics: (1) integration of supercritical Fischer-Tropsch reactions, natural separation of produced wax from liquid phase, and recycle of the solvent and (2) natural recycle of solvent driven by self-gravity. A 20% Co/SiO{sub 2} catalyst and n-hexane were used as a catalyst and supercritical fluid, respectively. The results show that the average CO conversion at the steady state was 45% with recycle and 58% without recycle. The lumped hydrocarbon products distribution did not have any obvious difference between with and without recycle operation; however, {alpha}-olefin content of products with recycle was lower than that without recycle. The XRD result indicates that most of the reduced cobalt remains in the metallic state during the Fischer-Tropsch reactions for both cases. 22 refs., 3 figs., 1 tab.

Wensheng Linghu; Xiaohong Li; Kenji Asami; Kaoru Fujimoto [University of Kitakyushu, Fukuoka (Japan). Department of Chemical Processes and Environments, Faculty of Environmental Engineering

2006-02-01T23:59:59.000Z

360

Future Perfect Partnering with California Air Resources Board (CARB) | Open  

Open Energy Info (EERE)

Future Perfect Partnering with California Air Resources Board (CARB) Future Perfect Partnering with California Air Resources Board (CARB) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Future Perfect Partnering with California Air Resources Board (CARB) Agency/Company /Organization: Future Perfect Sector: Climate Focus Area: GHG Inventory Development, Greenhouse Gas Topics: GHG inventory, Low emission development planning, -LEDS Resource Type: Case studies/examples, Training materials Complexity/Ease of Use: Advanced Website: www.gpstrategiesltd.com/divisions/future-perfect/ Language: English References: Future Perfect Partnering with California Air Resources Board (CARB)[1] Logo: Future Perfect Partnering with California Air Resources Board (CARB) In the winter of 2008, Future Perfect (FP) began collaborating with the

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Transportation Energy Futures  

E-Print Network (OSTI)

for compressed natural gas (CNG)storage, additional fueldensity storage performanceof adsorptents for natural gas,natural vs. gas vehicles: a comparisonof resource supply, performance, emissions, fuel storage,

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

362

FutureGen Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

a transportation fuel. The main challenge is to use coal - the nation's most abundant fossil fuel - cost-effectively in ways that produce essentially zero emissions, which...

363

Development of asphalts and pavements using recycled tire rubber. Phase 1: technical feasibility. Final report  

Science Conference Proceedings (OSTI)

This report documents the technical progress made on the development of asphalts and pavements using recycled tire rubber.

Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

1998-01-01T23:59:59.000Z

364

A Research Needs Assessment for waste plastics recycling: Volume 2, Project report. Final report  

Science Conference Proceedings (OSTI)

This second volume contains detailed information on a number of specific topics relevant to the recovery/recycling of plastics.

NONE

1994-12-01T23:59:59.000Z

365

Kent SeaTech Increases Fish Farm Yield and Recycles Water ...  

Science Conference Proceedings (OSTI)

Kent SeaTech Increases Fish Farm Yield and Recycles Water for Neighboring Agricultural Irrigation. Partnering Organization ...

2011-10-19T23:59:59.000Z

366

NETL: IEP - Coal Utilization By-Products: Consortium Byproducts Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Byproducts Recycling Consortium (CBRC) Combustion Byproducts Recycling Consortium (CBRC) The mission of the Combustion Byproducts Recycling Consortium (CBRC) is to promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing. The overall goals of CBRC are to: Increase the overall national rate of byproduct use by to ~ 50 % by 2010 Increase the number of “allowable” byproduct uses under state regulations by ~ 25% Double of the current rate of FGD byproduct use CBRC is a unique partnership that integrates the electric power industry, State and Federal regulatory agencies, and academia to form a strong, cohesive consortium to guide the national and regional research priorities of the CBRC. CBRC is managed by the West Virginia Water Research Institute at West Virginia University and is administered by regional centers at the University of Kentucky (Eastern Region), Southern Illinois University (Midwest Region) and the University of North Dakota (Western Region). Primary funding for CBRC is provided by the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL).

367

Recycling policy making of organic waste using analytical network process  

Science Conference Proceedings (OSTI)

The Analytic Hierarchy Process (AHP) has been used widely in multicriteria selection problems. However, AHP can deal with only a simple hierarchy of elements. On the other hand, the Analytical Network Process (ANP) can deal with more complex structures ... Keywords: analytical network process (ANP), group discussion, multicriteria selection, organic waste recycling policy making

Kazuei Ishii; Toru Furuichi

2008-11-01T23:59:59.000Z

368

Assessment of recycling or disposal alternatives for radioactive scrap metal  

Science Conference Proceedings (OSTI)

The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A {open_quotes}tiered{close_quotes} concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

Murphie, W.E.; Lilly, M.J. III [US Dept. of Energy, Oak Ridge, TN (United States); Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States)

1993-11-01T23:59:59.000Z

369

Process for gasifying carbonaceous material from a recycled condensate slurry  

DOE Patents (OSTI)

Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

370

Innovative technologies for recycling contaminated concrete and scrap metal  

SciTech Connect

Decontamination and decommissioning of US DOE`s surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019.

Bossart, S.J. [USDOE Morgantown Energy Technology Center, WV (United States); Moore, J. [USDOE Oak Ridge Operations Office, TN (United States)

1993-09-01T23:59:59.000Z

371

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE))

This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

372

Methods for differentiating recycled cooking oil needed in China  

Science Conference Proceedings (OSTI)

Researchers from the West China School of Public Health at Sichuan University in Chengdu, China, explain why the reuse of recycled cooking oil, or “gutter oil,” is such a difficult problem for government and public health officials to address. Methods for

373

The recycling of the coal fly ash in glass production  

Science Conference Proceedings (OSTI)

The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-09-15T23:59:59.000Z

374

The construction of a collaborative-design platform to support waste electrical and electronic equipment recycling  

Science Conference Proceedings (OSTI)

Recycling of waste electrical and electronic equipment (WEEE) is a very important subject not only from the viewpoint of waste treatment but also from the viewpoint of recovery of valuable materials. In the past, some obstacles make recycling challenging ... Keywords: Collaborative design, Green supply chain management, Life-cycle management, Recycling, Waste electrical and electronic equipment

Tsai Chi Kuo

2010-02-01T23:59:59.000Z

375

Automation of waste recycling using hyperspectral image analysis Artzai Picon1  

E-Print Network (OSTI)

is approximately 100 Euro per tonne, whereas the estimated cost to recycle a tonne of electronic equipment is six into the cost of the recycling process, the financial demand to recycle cars or washing machines times larger. However, besides processing costs (which are crucially important in any efficient

Whelan, Paul F.

376

Why should I recycle? The average American generates 4.5 pounds of waste daily.  

E-Print Network (OSTI)

Why should I recycle? The average American generates 4.5 pounds of waste daily. Instead of throwing throughout campus.These guidelines will help you recycle more and waste less. What's recyclable? · Mixed and plastic-coated papers · Tissue and paper towels · Paper or containers soiled by food or organic waste

Tsien, Roger Y.

377

WASTE TREATMENT TECHNOLOGY PROCESS DEVELOPMENT PLAN FOR HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE RECYCLE  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242- A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evalua

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

378

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network (OSTI)

landfills, we developed reference projections of waste generation, recycling and landfill-gas captureSardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard

Columbia University

379

FutureGen_factsheet.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vision Vision for Tomorrow's Clean Energy FutureGen - A Sequestration and Hydrogen Research Initiative Responding to the President's Initiatives The Technology The Integrated Sequestration and Hydrogen Research Initiative is a $1 billion government/ industry partnership to design, build and operate a nearly emission-free, coal-fired electric and hydrogen production plant. The 275-megawatt prototype plant will serve as a large scale engineering laboratory for testing new clean power, carbon capture, and coal-to-hydrogen technologies. It will be the cleanest fossil fuel-fired power plant in the world. The project is a direct response to the President's Climate Change and Hydrogen Fuels Initiatives. President Bush emphasized the importance of technology in stabilizing greenhouse gas concentrations in the atmosphere with two major policy announcements: the National Climate

380

Weekly NYMEX Coal Futures  

Reports and Publications (EIA)

The New York Mercantile Exchange (NYMEX) Report provides settlement price data for Central Appalachian (CAPP), Western Powder River Basin (PRB), and Eastern CSX Transportation (CSX) coal futures.

Information Center

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Resolution in Support of the Responsible Electronics Recycling Act (HR2284/S1270) By Wisconsin Council on Recycling  

E-Print Network (OSTI)

WHEREAS the US EPA reported that over 2.3 million tons of e-waste i were generated in the US in 2009; WHEREAS Wisconsin recognized the need to actively and responsibly recycle electronic waste (e-waste) by passing 2009 Wisconsin Act 50 ii, now known as “E-Cycle Wisconsin”; WHEREAS a major goal of this statewide legislation is to divert as much e-waste from land disposal to responsible recovery and recycling; WHEREAS investigative reports by 60 Minutes iii, Frontline iv, Business Week v, National Geographic vi and other respected news organizations traced e-waste claimed to be responsibly recycled in the US to China and Africa where primitive processing technologies and methods were employed to recover metals from electronics while hazardous materials were burned off or disposed in open dumps- this practice offshores recycling jobs, poisons communities in developing countries, and threatens national security; WHEREAS the US General Accountability Office vii led a review of the e-waste industry in 2008 and determined that “current U.S. regulatory controls do little to stem the export of potentially hazardous used electronics”; WHEREAS the E-Cycle Wisconsin program does not have the jurisdiction to restrict the export of

unknown authors

2011-01-01T23:59:59.000Z

382

HFC Emissions Estinating  

Science Conference Proceedings (OSTI)

... Dioxide Emissions Reporting Year: January – December, 200x Agent Type GWP Total Emission by Agent Type, kg Equivalent CO2 Emission by ...

2011-10-13T23:59:59.000Z

383

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

384

CO2 Emissions - Gibraltar  

NLE Websites -- All DOE Office Websites (Extended Search)

Gibraltar CO2 Emissions from Gibraltar Data graphic Data CO2 Emissions from Gibraltar image Per capita CO2 Emission Estimates for Gibraltar...

385

CO2 Emissions - Mozambique  

NLE Websites -- All DOE Office Websites (Extended Search)

Mozambique Graphics CO2 Emissions from Mozambique Data graphic Data CO2 Emissions from Mozambique image Per capita CO2 Emission Estimates for Mozambique...

386

CO2 Emissions - Macau  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Macau CO2 Emissions from Macau Data graphic Data CO2 Emissions from Macau image Per capita CO2 Emission Estimates for Macau...

387

CO2 Emissions - Guadeloupe  

NLE Websites -- All DOE Office Websites (Extended Search)

Guadeloupe Graphics CO2 Emissions from Guadeloupe Data graphic Data CO2 Emissions from Guadeloupe image Per capita CO2 Emission Estimates for Guadeloupe...

388

CO2 Emissions - Ghana  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Ghana Graphics CO2 Emissions from Ghana Data graphic Data CO2 Emissions from Ghana image Per capita CO2 Emission Estimates for Ghana...

389

CO2 Emissions - Ireland  

NLE Websites -- All DOE Office Websites (Extended Search)

Ireland CO2 Emissions from Ireland Data graphic Data CO2 Emissions from Ireland image Per capita CO2 Emission Estimates for Ireland...

390

CO2 Emissions - Malta  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Malta CO2 Emissions from Malta Data graphic Data CO2 Emissions from Malta image Per capita CO2 Emission Estimates for Malta...

391

CO2 Emissions - Kyrgyzstan  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Kyrgyzstan CO2 Emissions from Kyrgyzstan Data graphic Data CO2 Emissions from Kyrgyzstan image Per capita CO2 Emission Estimates for Kyrgyzstan...

392

CO2 Emissions - Mali  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mali Graphics CO2 Emissions from Mali Data graphic Data CO2 Emissions from Mali image Per capita CO2 Emission Estimates for Mali...

393

CO2 Emissions - Portugal  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Portugal CO2 Emissions from Portugal Data graphic Data CO2 Emissions from Portugal image Per capita CO2 Emission Estimates for Portugal...

394

CO2 Emissions - Paraguay  

NLE Websites -- All DOE Office Websites (Extended Search)

Paraguay Graphics CO2 Emissions from Paraguay Data graphic Data CO2 Emissions from Paraguay image Per capita CO2 Emission Estimates for Paraguay...

395

CO2 Emissions - Macedonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Macedonia CO2 Emissions from Macedonia Data graphic Data CO2 Emissions from Macedonia image Per capita CO2 Emission Estimates for Macedonia...

396

CO2 Emissions - Malawi  

NLE Websites -- All DOE Office Websites (Extended Search)

Malawi Graphics CO2 Emissions from Malawi Data graphic Data CO2 Emissions from Malawi image Per capita CO2 Emission Estimates for Malawi...

397

CO2 Emissions - Gabon  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Gabon Graphics CO2 Emissions from Gabon Data graphic Data CO2 Emissions from Gabon image Per capita CO2 Emission Estimates for Gabon...

398

CO2 Emissions - Grenada  

NLE Websites -- All DOE Office Websites (Extended Search)

Grenada Graphics CO2 Emissions from Grenada Data graphic Data CO2 Emissions from Grenada image Per capita CO2 Emission Estimates for Grenada...

399

CO2 Emissions - Kiribati  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Kiribati Graphics CO2 Emissions from Kiribati Data graphic Data CO2 Emissions from Kiribati image Per capita CO2 Emission Estimates for Kiribati...

400

CO2 Emissions - Israel  

NLE Websites -- All DOE Office Websites (Extended Search)

Israel Graphics CO2 Emissions from Israel Data graphic Data CO2 Emissions from Israel image Per capita CO2 Emission Estimates for Israel...

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CO2 Emissions - Phillippines  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Phillippines CO2 Emissions from Phillippines Data graphic Data CO2 Emissions from Phillippines image Per capita CO2 Emission Estimates for Phillippines...

402

CO2 Emissions - Niger  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Niger Graphics CO2 Emissions from Niger Data graphic Data CO2 Emissions from Niger image Per capita CO2 Emission Estimates for Niger...

403

CO2 Emissions - Mauritius  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mauritius Graphics CO2 Emissions from Mauritius Data graphic Data CO2 Emissions from Mauritius image Per capita CO2 Emission Estimates for Mauritius...

404

CO2 Emissions - Malaysia  

NLE Websites -- All DOE Office Websites (Extended Search)

Malaysia CO2 Emissions from Malaysia Data graphic Data CO2 Emissions from Malaysia image Per capita CO2 Emission Estimates for Malaysia...

405

CO2 Emissions - Reunion  

NLE Websites -- All DOE Office Websites (Extended Search)

Reunion Graphics CO2 Emissions from Reunion Data graphic Data CO2 Emissions from Reunion image Per capita CO2 Emission Estimates for Reunion...

406

CO2 Emissions - Guatemala  

NLE Websites -- All DOE Office Websites (Extended Search)

Guatemala Graphics CO2 Emissions from Guatemala Data graphic Data CO2 Emissions from Guatemala image Per capita CO2 Emission Estimates for Guatemala...

407

CO2 Emissions - Iceland  

NLE Websites -- All DOE Office Websites (Extended Search)

Iceland CO2 Emissions from Iceland Data graphic Data CO2 Emissions from Iceland image Per capita CO2 Emission Estimates for Iceland...

408

CO2 Emissions - Mongolia  

NLE Websites -- All DOE Office Websites (Extended Search)

Asia Mongolia CO2 Emissions from Mongolia Data graphic Data CO2 Emissions from Mongolia image Per capita CO2 Emission Estimates for Mongolia...

409

CO2 Emissions - Romania  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Romania CO2 Emissions from Romania Data graphic Data CO2 Emissions from Romania image Per capita CO2 Emission Estimates for Romania...

410

CO2 Emissions - Panama  

NLE Websites -- All DOE Office Websites (Extended Search)

Panama Graphics CO2 Emissions from Panama Data graphic Data CO2 Emissions from Panama image Per capita CO2 Emission Estimates for Panama...

411

CO2 Emissions - Madagascar  

NLE Websites -- All DOE Office Websites (Extended Search)

Madagascar Graphics CO2 Emissions from Madagascar Data graphic Data CO2 Emissions from Madagascar image Per capita CO2 Emission Estimates for Madagascar...

412

CO2 Emissions - Netherlands  

NLE Websites -- All DOE Office Websites (Extended Search)

Netherlands CO2 Emissions from Netherlands Data graphic Data CO2 Emissions from Netherlands image Per capita CO2 Emission Estimates for Netherlands...

413

CO2 Emissions - Greenland  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenland Graphics CO2 Emissions from Greenland Data graphic Data CO2 Emissions from Greenland image Per capita CO2 Emission Estimates for Greenland...

414

CO2 Emissions - Norway  

NLE Websites -- All DOE Office Websites (Extended Search)

Norway CO2 Emissions from Norway Data graphic Data CO2 Emissions from Norway image Per capita CO2 Emission Estimates for Norway...

415

CO2 Emissions - Guyana  

NLE Websites -- All DOE Office Websites (Extended Search)

Guyana Graphics CO2 Emissions from Guyana Data graphic Data CO2 Emissions from Guyana image Per capita CO2 Emission Estimates for Guyana...

416

CO2 Emissions - Mauritania  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mauritania Graphics CO2 Emissions from Mauritania Data graphic Data CO2 Emissions from Mauritania image Per capita CO2 Emission Estimates for Mauritania...

417

CO2 Emissions - Lithuania  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Lithuania CO2 Emissions from Lithuania Data graphic Data CO2 Emissions from Lithuania image Per capita CO2 Emission Estimates for Lithuania...

418

CO2 Emissions - Kenya  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Kenya Graphics CO2 Emissions from Kenya Data graphic Data CO2 Emissions from Kenya image Per capita CO2 Emission Estimates for Kenya...

419

CO2 Emissions - Latvia  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Latvia CO2 Emissions from Latvia Data graphic Data CO2 Emissions from Latvia image Per capita CO2 Emission Estimates for Latvia...

420

CO2 Emissions - Georgia  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Georgia CO2 Emissions from Georgia Data graphic Data CO2 Emissions from Georgia image Per capita CO2 Emission Estimates for Georgia...

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CO2 Emissions - Gambia  

NLE Websites -- All DOE Office Websites (Extended Search)

Gambia Graphics CO2 Emissions from Gambia Data graphic Data CO2 Emissions from Gambia image Per capita CO2 Emission Estimates for Gambia...

422

CO2 Emissions - Montenegro  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Montenegro CO2 Emissions from Montenegro Data graphic Data CO2 Emissions from Montenegro image Per capita CO2 Emission Estimates for Montenegro...

423

CO2 Emissions - Oman  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Oman Graphics CO2 Emissions from Oman Data graphic Data CO2 Emissions from Oman image Per capita CO2 Emission Estimates for Oman...

424

CO2 Emissions - Kuwait  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Kuwait Graphics CO2 Emissions from Kuwait Data graphic Data CO2 Emissions from Kuwait image Per capita CO2 Emission Estimates for Kuwait...

425

CO2 Emissions - Lebanon  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Lebanon Graphics CO2 Emissions from Lebanon Data graphic Data CO2 Emissions from Lebanon image Per capita CO2 Emission Estimates for Lebanon...

426

CO2 Emissions - Nigeria  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Nigeria Graphics CO2 Emissions from Nigeria Data graphic Data CO2 Emissions from Nigeria image Per capita CO2 Emission Estimates for Nigeria...

427

CO2 Emissions - Maldives  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Maldives CO2 Emissions from Maldives Data graphic Data CO2 Emissions from Maldives image Per capita CO2 Emission Estimates for Maldives...

428

CO2 Emissions - Morocco  

NLE Websites -- All DOE Office Websites (Extended Search)

Morocco Graphics CO2 Emissions from Morocco Data graphic Data CO2 Emissions from Morocco image Per capita CO2 Emission Estimates for Morocco...

429

CO2 Emissions - Pakistan  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Pakistan CO2 Emissions from Pakistan Data graphic Data CO2 Emissions from Pakistan image Per capita CO2 Emission Estimates for Pakistan...

430

CO2 Emissions - Palau  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Palau CO2 Emissions from Palau Data graphic Data CO2 Emissions from Palau image Per capita CO2 Emission Estimates for Palau...

431

CO2 Emissions - Qatar  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Qatar Graphics CO2 Emissions from Qatar Data graphic Data CO2 Emissions from Qatar image Per capita CO2 Emission Estimates for Qatar...

432

CO2 Emissions - Guam  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Guam Graphics CO2 Emissions from Guam Data graphic Data CO2 Emissions from Guam image Per capita CO2 Emission Estimates for Guam...

433

CO2 Emissions - Rwanda  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Rwanda Graphics CO2 Emissions from Rwanda Data graphic Data CO2 Emissions from Rwanda image Per capita CO2 Emission Estimates for Rwanda...

434

CO2 Emissions - Guinea  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Guinea Graphics CO2 Emissions from Guinea Data graphic Data CO2 Emissions from Guinea image Per capita CO2 Emission Estimates for Guinea...

435

CO2 Emissions - Luxembourg  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Luxembourg CO2 Emissions from Luxembourg Data graphic Data CO2 Emissions from Luxembourg image Per capita CO2 Emission Estimates for Luxembourg...

436

CO2 Emissions - Liberia  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Liberia Graphics CO2 Emissions from Liberia Data graphic Data CO2 Emissions from Liberia image Per capita CO2 Emission Estimates for Liberia...

437

CO2 Emissions - Haiti  

NLE Websites -- All DOE Office Websites (Extended Search)

Haiti Graphics CO2 Emissions from Haiti Data graphic Data CO2 Emissions from Haiti image Per capita CO2 Emission Estimates for Haiti...

438

CO2 Emissions - Iraq  

NLE Websites -- All DOE Office Websites (Extended Search)

Iraq Graphics CO2 Emissions from Iraq Data graphic Data CO2 Emissions from Iraq image Per capita CO2 Emission Estimates for Iraq...

439

CO2 Emissions - Hungary  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Hungary CO2 Emissions from Hungary Data graphic Data CO2 Emissions from Hungary image Per capita CO2 Emission Estimates for Hungary...

440

CO2 Emissions - Nepal  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Nepal CO2 Emissions from Nepal Data graphic Data CO2 Emissions from Nepal image Per capita CO2 Emission Estimates for Nepal...

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CO2 Emissions - Nauru  

NLE Websites -- All DOE Office Websites (Extended Search)

Nauru Graphics CO2 Emissions from Nauru Data graphic Data CO2 Emissions from Nauru image Per capita CO2 Emission Estimates for Nauru...

442

CO2 Emissions - Myanmar  

NLE Websites -- All DOE Office Websites (Extended Search)

Myanmar CO2 Emissions from Myanmar Data graphic Data CO2 Emissions from Myanmar image Per capita CO2 Emission Estimates for Myanmar...

443

Glossary Term - Neutron Emission  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Previous Term (Neutron) Glossary Main Index Next Term (Niobe) Niobe Neutron Emission After neutron emission, an atom contains one less neutron. Neutron emission is one...

444

Glossary Term - Proton Emission  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Previous Term (Proton) Glossary Main Index Next Term (Quark) Quark Proton Emission After proton emission, an atom contains one less proton. Proton emission is one process...

445

CO2 Emissions - Jordan  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Jordan Graphics CO2 Emissions from Jordan Data graphic Data CO2 Emissions from Jordan image Per capita CO2 Emission Estimates for Jordan...

446

CO2 Emissions - Greece  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Greece CO2 Emissions from Greece Data graphic Data CO2 Emissions from Greece image Per capita CO2 Emission Estimates for Greece...

447

RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment.  

Science Conference Proceedings (OSTI)

RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data.

Cheng, J. J.; Kassas, B.; Yu, C.; Arnish, J. J.; LePoire, D.; Chen, S.-Y.; Williams, W. A.; Wallo, A.; Peterson, H.; Environmental Assessment; DOE; Univ. of Texas

2004-11-01T23:59:59.000Z

448

Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes  

Science Conference Proceedings (OSTI)

Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluat

Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

2012-12-03T23:59:59.000Z

449

The Future of LAB  

Science Conference Proceedings (OSTI)

The global linear alkylbenzene (LAB) industry has experienced depressed margins and feedstock shortages during the past few years. The following is an analysis of the industry’s current state and its most likely future. The Future of LAB inform Ma

450

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

451

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

452

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

453

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

454

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

455

Fermilab | Plan for the Future | Fermilab's Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab's Future Fermilab's Future 2013-2015 Next Fermilab's research program for 2015 and beyond New facilities at Fermilab, the nation's dedicated particle physics laboratory, would provide thousands of scientists from across the United States and around the world with world-class scientific opportunities. In collaboration with the Department of Energy and the particle physics community, Fermilab is pursuing a strategic plan that addresses fundamental questions about the physical laws that govern matter, energy, space and time. Fermilab is advancing plans for the best facilities in the world for the exploration of neutrinos and rare subatomic processes, far beyond current global capabilities. The proposed construction of a two-megawatt high-intensity proton accelerator, Project X, would enable a comprehensive

456

Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers  

SciTech Connect

Highlights: > This paper presents new and important data on characterization of wastes of electric and electronic equipments. > Copper concentration is increasing in mobile phones and remaining constant in personal computers. > Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers.

Yamane, Luciana Harue, E-mail: lucianayamane@uol.com.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil); Tavares de Moraes, Viviane, E-mail: tavares.vivi@gmail.com [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil); Crocce Romano Espinosa, Denise, E-mail: espinosa@usp.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil); Soares Tenorio, Jorge Alberto, E-mail: jtenorio@usp.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil)

2011-12-15T23:59:59.000Z

457

Future Change of Western North Pacific Typhoons: Projections by a 20-km-Mesh Global Atmospheric Model  

Science Conference Proceedings (OSTI)

Projected future changes in tropical cyclone (TC) activity over the western North Pacific (WNP) under the Special Report on Emissions Scenarios (SRES) A1B emission scenario were investigated using a 20-km-mesh, very-high-resolution Meteorological ...

Hiroyuki Murakami; Bin Wang; Akio Kitoh

2011-02-01T23:59:59.000Z

458

Vehicle trends and future gasoline needs  

Science Conference Proceedings (OSTI)

The passenger car continues to change at a rapid pace, responding both to customers' preferences and to regulations. Vehicle trends place demands on the powertrain for high specific output, efficiency and reliability. Engine design and calibration must be optimized to utilize available fuel octane fully since low speed knock remains a significant constraint. Emerging capabilities for engine control provide flexible, adaptive approaches for fuel/engine matching. Recent, substantial increases in fuel volatility raise concerns for both driveability and emissions. Expanded use of fuel injection will be helpful for future vehicles, but new problems have appeared, and tighter definition of gasoline properties will be needed. The high sensitivity of fuel systems and emission controls to fuel quality is demonstrated by injector deposits and plugged catalysts. Dependable gasoline quality is essential. High standards of quality and reliability are necessary for fuel and lubricant products. The precision offered by current emission control systems can only be achieved with fuels that are properly prepared and marketed.

Baker, R.E.; Chui, G.K.

1986-06-01T23:59:59.000Z

459

Cleaning Out? Don't Forget to Recycle! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleaning Out? Don't Forget to Recycle! Cleaning Out? Don't Forget to Recycle! Cleaning Out? Don't Forget to Recycle! January 24, 2013 - 5:30pm Addthis Recycling your old electronics is easy and good for the environment. | Photo by Nicki Johnson, NREL 15669. Recycling your old electronics is easy and good for the environment. | Photo by Nicki Johnson, NREL 15669. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs How can I participate? Next time you need to get rid of old electronics or lighting, find out about recycling opportunities in your area. We all know recycling isn't necessarily a new idea for being energy conscious, but it's important to remember just how useful and easy it actually is. We explore a myriad of different energy saving tips every day

460

NO emission during oxy-fuel combustion of lignite  

SciTech Connect

This work presents experimental results and modeling of the combustion chemistry of the oxy-fuel (O{sub 2}/CO{sub 2} recycle) combustion process with a focus on the difference in NO formation between oxy-fired and air-fired conditions. Measurements were carried out in a 100 kW test unit, designed for oxy-fuel combustion with flue gas recycling. Gas concentration and temperature profiles in the furnace were measured during combustion of lignite. The tests comprise a reference test in air and three oxy-fuel cases with different oxygen fractions in the recycled feed gas. With the burner settings used, lignite oxy-combustion with a global oxygen fraction of 25 vol % in the feed gas results in flame temperatures close to those of air-firing. Similar to previous work, the NO emission (mg/MJ) during oxy-fuel operation is reduced to less than 30% of that of air-firing. Modeling shows that this reduction is caused by increased destruction of formed and recycled NO. The reverse Zeldovich mechanism was investigated by detailed modeling and was shown to significantly reduce NO at high temperature, given that the nitrogen content is low (low air leakage) and that the residence time is sufficient.

Andersson, K.; Normann, F.; Johnsson, F.; Leckner, B. [Chalmers, Gothenburg (Sweden). Division of Energy Technology

2008-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CO2 Emissions - Namibia  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Africa Namibia CO2 Emissions from Namibia Data graphic Data CO2 Emissions from Namibia image Per capita CO2 Emission Estimates for...

462

The Future of Public Transport In Pursuit of Zero Emissions  

E-Print Network (OSTI)

% reduction with solar or wind hydrogen) 4 #12;3rd Generation Design · 5,000 lbs. Lighter · Better Batteries.Scalable 5.Integration with Existing Inline Diesel Fueling 9 #12;Contact Information http

463

Current Status and Future Direction of Low-emission Integrated ...  

Science Conference Proceedings (OSTI)

Author(s), Sharif Jahanshahi, Alex Deev, Nawshad Haque, Liming Lu, John ... sourced from sustainable sources such as plantations of biomass species. Another ... Oxidation of Flash Reduced Iron Particles in Various Gas Mixtures under the ...

464

Future Synthetic Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

- 12:00pm Location: Bldg. 90 During this presentation, we will give some background on Gas To Liquids - the synthetic fuel used in transport- its beneficial emission properties...

465

Biomass Energy in a Carbon Constrained Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,

466

Future Communications Needs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs Future Communications Needs More Documents & Publications...

467

RECYCLING GALVANIZED STEEL: OPERATING EXPERIENCE AND BENEFrI'S  

Office of Scientific and Technical Information (OSTI)

RECYCLING RECYCLING GALVANIZED STEEL: OPERATING EXPERIENCE AND BENEFrI'S Frederick J. Dudek Edward J. Daniels Argonne National Laboratory 9700 S. Cass Avenue Argonne, Illinois 60439, USA William A. Morgan 415 E. 151st Street Metal Recovery Industries U.S., Inc. East Chicago, Indiana 46312, USA DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise

468

Recycling of LiFePO4 Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

8-11, 2011 8-11, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of LiFePO 4 Batteries 7th International Symposium on Inorganic Phosphate Materials Phosphate Materials for Energy Storage We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 Battery materials could get used multiple times Initial Use Automotive power Secondary Use Utility storage Residential storage Power at remote location Refurbishment Rejuvenate (change electrolyte) Switch out bad module

469

The Source of Airborne Lead: Recycling Pb-Contaminated Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

The Source of Airborne Lead: Recycling The Source of Airborne Lead: Recycling Pb-Contaminated Soils Starting in the 1970s, federal regulatory control and eventual elimination of lead-based "anti-knock" additives in gasoline decreased the level of airborne Pb in the USA by two orders-of-magnitude [1]. Blood lead levels of the USA figure 1 Figure 1. The good, the bad, and the ugly. Ambient airborne particulate matter captured on filters of woven silica fiber (large strips) and TeflonTM (round). Clean fiber filter at bottom for comparison. Take a deep breath? population decreased correspondingly [2,3]. Despite this dramatic improvement in both exposure risk and body burden of Pb, the sources and health threat of the low levels of lead in our "unleaded" air remain topics

470

Development of international exemption principles for recycle and reuse  

SciTech Connect

The International Atomic Energy Agency (IAEA) has been investigating the possibility of exempting certain radiation sources and practices from regulatory control as an extension of its earlier work in the area of de minimis. Because of the potential value of scrap materials recovered during decommissioning of commercial reactors, and because of national and international efforts to minimize radioactive wastes, exemption criteria for recycle and reuse have gained attention. The IAEA has established basic principles for exemption that limit the radiation dose that individuals or population groups may receive from exempted practices or sources. This paper discusses the recent IAEA Advisory Group's recommendations on principles for radiation practices and sources in the recycling of retired components and materials from nuclear facilities. The background of the Advisory Group's work is discussed, then its methods and preliminary recommendations are summarized. Finally, a similar effort sponsored by the Commission of the European Communities is summarized and compared to the IAEA approach. 8 refs., 3 tabs.

Kennedy, W.E. Jr. (Pacific Northwest Lab., Richland, WA (USA))

1989-09-01T23:59:59.000Z

471

A Novel Charge Recycling Approach to Low-Power  

SciTech Connect

A novel charge-recycling scheme has been designed and implemented to demonstrate the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital logic. The proposed scheme uses capacitors to efficiently recover the ground-bound charge and to subsequently boost the capacitor voltage to power up the source circuit. This recycling methodology has been implemented on a 12-bit Gray-code counter within a 12-bit multichannel Wilkinson ADC. The circuit has been designed in 0.5 m BiCMOS and in 90nm CMOS processes. SPICE simulation results reveal a 46 53% average reduction in the energy consumption of the counter. The total energy savings including the control generation aggregates to an average of 26 34%.

Ulaganathan, Chandradevi [University of Tennessee, Knoxville (UTK); Britton Jr, Charles L [ORNL; Holleman, Jeremy [University of Tennessee, Knoxville (UTK); Blalock, Benjamin [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

472

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

473

Future fuels from Montana  

SciTech Connect

To make America less dependent on foreign oil, Montana Governor Brain Schweitzer pushes for investment in synfuel technology. He advocates coal as the 'new fuel' for cars and believes synfuels from coal can bridge the gap between the petroleum economy of the past and the hydrogen economy of the future. He is pushing for a 'Future Fuels' project to form a public-private partnership to build 20 coal conversion, synfuel manufacturing plants. This could contribute to making the USA energy self-sufficient, more quickly than the FutureGen project, he believes.

Buchsbaum, L.

2006-04-15T23:59:59.000Z

474

Recycle of iodine-loaded silver mordenite by hydrogen reduction  

SciTech Connect

In 1977 and 1978, workers at Idaho National Engineering Laboratory (INEL) developed and tested a process for the regeneration and reuse of silver mordenite, AgZ, used to trap iodine from the dissolver off-gas stream of a nuclear fuel reprocessing plant. We were requested by the Airborne Waste Management Program Office of the Department of Energy to perform a confirmatory recycle study using repeated loadings at about 150/sup 0/C with elemental iodine, each followed by a drying step at 300/sup 0/C, then by iodine removal using elemental hydrogen at 500/sup 0/C. The results of our study show that AgZ can be recycled. There was considerable difficulty in stripping the iodine at 500/sup 0/C.; however, this step went reasonably well at 550/sup 0/C or slightly higher, with no apparent loss in the iodine-loading capacity of the AgZ. Large releases of elemental iodine occurred during the drying stage and the early part of the stripping stage. Lead zeolite, which was employed in the original design to trap the HI produced, is ineffective in removal of I/sub 2/. The process needs modification to handle the iodine. Severe corrosion of the stainless steel components of the system resulted from the HI-I/sub 2/-H/sub 2/O mixture. Monel or other halogen-resistant materials need to be examined for this application. Because of difficulty with the stripping stage and with corrosion, the experiments were terminated after 12 cycles. Thus, the maximum lifetime (cycles) of recycle AgZ has not been determined. Mechanistic studies of iodine retention by silver zeolites and of the behavior of silver atoms on the reduction stage would be of assistance in optimizing silver mordenite recycle.

Burger, L.L.; Scheele, R.D.

1982-11-01T23:59:59.000Z

475

Linear lattice modeling of the recycler ring at Fermilab  

SciTech Connect

Substantial differences are found in tunes and beta functions between the existing linear model and the real storage ring. They result in difficulties when tuning the machine to new lattice conditions. We are trying to correct the errors by matching the model into the real machine using Orbit Response Matrix (ORM) Fit method. The challenges with ORM particularly in the Recycler ring and the results are presented in this paper.

Xiao, Meiqin; Valishev, Alexander; Nagaslaev, Vladimir P.; /Fermilab; Sajaev, Vadim; /Argonne

2006-06-01T23:59:59.000Z

476

Anaerobic Digestion of Food Waste?recycling Wastewater  

Science Conference Proceedings (OSTI)

Food waste?recycling (FWR) wastewater was evaluated as feedstock for two?stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two?stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 10–25 days. In the acidogenic reactor

Gyuseong Han; Seung Gu Shin; Juntaek Lim; Minho Jo; Seokhwan Hwang

2010-01-01T23:59:59.000Z

477

Recycling and surface erosion processes in contemporary tokamaks  

DOE Green Energy (OSTI)

A number of global models have recently had considerable success in describing recycling. These are briefly reviewed. It is shown that large gas concentrations can build up in the walls and that these concentrations are seriously affected by erosion and deposition processes and by deliberate gettering with titanium. Finally, the measurement of the concentration of hydrogen in probes is discussed as a means of measuring plasma edge characteristics.

McCracken, G.M.

1979-03-01T23:59:59.000Z

478

Clean Critical Experiment Benchmarks for Plutonium Recycle in LWRs  

Science Conference Proceedings (OSTI)

Government laboratories and private industry in the U.S. and in other countries have carried out or initiated programs to study and evaluate the technical and economic feasibility of recycling plutonium. The experimental measurements program provides benchmark neutronics data for use in assessing the accuracy of neutronics analysis methods for slightly enriched uranium lattices and for mixed oxide lattices. The lattice pitches were selected to provide configurations that were undermoderated, near optimum...

1978-09-01T23:59:59.000Z

479

Mineral processing techniques for recycling investment casting shell  

Science Conference Proceedings (OSTI)

The Albany Research Center of the U.S. Department of Energy used materials characterization and minerals beneficiation methods to separate and beneficially modify spent investment-mold components to identify recycling opportunities and minimize environmentally sensitive wastes. The physical and chemical characteristics of the shell materials were determined and used to guide bench-scale research to separate reusable components by mineral-beneficiation techniques. Successfully concentrated shell materials were evaluated for possible use in new markets.

Dahlin, Cheryl L.; Nilsen, David N.; Dahlin, David C.; Hunt, Alton H.; Collins, W. Keith

2002-01-01T23:59:59.000Z

480

A physics-based emissions model for aircraft gas turbine combustors  

E-Print Network (OSTI)

In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

Allaire, Douglas L

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future emissions recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen recycle modeling and measurements in tokamaks and EBT  

DOE Green Energy (OSTI)

A model for hydrogen recycling developed for use in a Tokamak transport code is described and compared with measurements on ISXB and DITE. The model includes kinetic reflection of charge-exchange neutrals from the wall and deposition, thermal diffusion and desorption processes in the wall. In a Tokamak with a limiter, the inferred recycle coefficient of 0.9 to 1.0 is due primarily to reflection (0.8 to 0.9) with the remainder (0.1 to 0.2) being due to desorption. Laboratory experiments supply much of the data for the model and several areas are discussed where additional data are needed, such as reflection from hydrogen-loaded walls at low (approx. 100 eV) energy. Simulation of ISXB shows that the recently observed density decrease with neutral beam injection may be partially due to a decrease in recycling caused by hardening of the charge-exchange flux incident on the wall from the plasma. Modeling of isotopic exchange in DITE indicates the need for an ion-induced desorption process which responds on a timescale shorter than the wall thermal diffusion time.

Howe, H.C.

1980-01-01T23:59:59.000Z

482

AISI waste oxide recycling program. Final technical report  

SciTech Connect

In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

Aukrust, E.; Downing, K.B.; Sarma, B.

1995-08-01T23:59:59.000Z

483

Control of surface composition and hydrogen recycling by plasma conditioning  

DOE Green Energy (OSTI)

Data from a laboratory simulator, TEXTOR, JET, and other tokamaks are used to show that oxygen and carbon surface impurities on the walls of plasma chambers are interrelated and can be manipulated by controlling the composition of the gas used for plasma surface conditioning. Not only can oxygen be reduced to low levels but carbon (and other elements) can be either removed or deposited and reacted with the substrate. In the case of carbon deposits, a thin metal-carbide layer can be formed or thicker deposits of elemental carbon can be made. Surface compositions can be reproduced easily and reversibly in a controlled way. Furthermore, these composition changes can alter the hydrogen recycling speed and plasma impurity levels by an order of magnitude or more. In the simulator we have related gas composition to surface composition changes and resulting recycling behavior. Surface oxygen levels can be reduced from 30 to less than 3 at. % in less than 45 min of discharge cleaning. Carbon and oxygen levels as well as those of other surface active impurities are interrelated. Examples are shown and discussed. Comparisons are made to show the changes in the hydrogen recycling behavior caused by various surface preparations (compositions).

Clausing, R.E.; Heatherly, L.

1984-05-29T23:59:59.000Z

484

More recycling raises average energy content of waste used to ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

485

Recycling of Rare Earth Elements for the Synthesis of Permanent ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

486

Hydrogen & Our Energy Future  

Fuel Cell Technologies Publication and Product Library (EERE)

Hydrogen & Our Energy Future (40 pages) expands on DOE's series of one-page fact sheets to provide an in-depth look at hydrogen and fuel cell technologies. It provides additional information on the sc

487

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

488

Waste collection systems for recyclables: An environmental and economic assessment for the municipality of Aarhus (Denmark)  

Science Conference Proceedings (OSTI)

Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables at recycling centres was not recommendable because the recycling rate would decrease to 20%. In general, the results showed that enhancing recycling and avoiding incineration was recommendable because the environmental performance was improved in several impact categories. The municipal costs for collection and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought.

Larsen, A.W., E-mail: awl@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Merrild, H.; Moller, J.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2010-05-15T23:59:59.000Z

489

Future land use plan  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

NONE

1995-08-31T23:59:59.000Z

490

Design and analysis of recycled content sign blanks  

E-Print Network (OSTI)

This report documents a study of the feasibility of using sign blanks constructed of reclaimed materials instead of conventional high-grade plywood and aluminum. This study presents the engineering techniques necessary for judicious use of recycled materials in roadside sign applications. Various types of recycled materials were solicited from commercial manufacturers and subjected to an array of laboratory tests and numerical simulations. Materials that were received were manufactured from a variety of materials including high density polyethylene (HDPE), polycarbonate, polyvinyl chloride, and calcium carbonate. This study encompasses analysis, performance, and properties of tested materials. A total of seven recycled materials were tested in flexure, uni-axial tension, creep, free vibration, and exposure to ultraviolet radiation. Corollaries of this study are development of performance-based specifications and a new design procedure for sign blanks. A preliminary design procedure is developed for two-pole supported and tee-pole supported sign substrates. The procedure is based on simple mechanics of materials bending formulae for a variety of deflection criteria. Design environmental loads are determined using ASCE 7-95 Minimum Design Loadsfor Buildings and Other Structures. A design example for a two-pole sign is performed for one of the recycled materials collected during the study. Adequacy of the preliminary design is checked using a finite element model of the structure in conjunction with a set of performance-based specifications. In addition, a combined laboratory and numerical procedure for duplicating wind induced vibrations is developed using a frequency domain-based method. Numerical simulation of a wind loading is carried out using two dynamic wind events. The response of several locations on the sign are recorded and converted to the frequency domain using fast Fourier transform. Simultaneously, a full-scale laboratory model is constructed and an electromechanical actuator is connected to the supporting structure. The laboratory structure is struck at the actuator connection with the same impact hammer used to analyze the field model. From a complex frequency response function an actuator time history is produced that elicits a structural response at a particular node that closely approximates the response obtained by finite element analysis. This procedure is capable of modeling dynamic response in the substrate to nearly any dynamic wind event, including impulse events caused by large highway vehicles. A brief listing of estimated cost for some of the recycled materials that were tested in the laboratory is included for quantities varying by order of magnitude from 1,000 to 1,000,000 sheets.

Harrison, Ben Frank

1996-01-01T23:59:59.000Z

491

Development of Recycling Compatible Pressure-Sensitive Adhesives and Coatings  

SciTech Connect

The objective of this project was the design of new water-based pressure-sensitive adhesive (PSA) products and coatings engineered for enhanced removal during the processing of recycled fiber. Research included the formulation, characterization, and performance measurements of new screenable coatings, testing of modified paper and board substrates and the design of test methods to characterize the inhibition of adhesive and coating fragmentation and relative removal efficiencies of developed formulations. This project was operated under the requirements that included commercially viable approaches be the focus, that findings be published in the open literature and that new strategies could not require changes in the methods and equipment used to produce PSA and PS labels or in the recycling process. The industrial partners benefited through the building of expertise in their company that they would not, and likely could not, have pursued if it had not been for the partnership. Results of research on water-based PSAs clearly identifies which PSA and paper facestock properties govern the fragmentation of the adhesive and provide multiple strategies for making (pressure-sensitive) PS labels for which the PSA is removed at very high efficiencies from recycling operations. The application of these results has led to the identification of several commercial products in Franklin International’s (industrial partner) product line that are recycling compatible. Several new formulations were also designed and are currently being scaled-up. Work on recycling compatible barrier coatings for corrugated containers examined the reinforcement of coatings using a small amount of exfoliated organically modified montmorillonite (OMMT). These OMMT/paraffin wax nanocomposites demonstrated significantly improved mechanical properties. Paraffin waxes containing clay were found to have significantly higher Young’s moduli and yield stress relative to the wax matrix, but the most impressive finding was the impact of the clay on the elongation at break; a nearly 400% increase was observed for a clay concentration of 0.5 wt.%. These coatings also demonstrate a number of other property enhancements, which make them a good candidate for continued research. Another approach explored in this research was the use of structured and self-cleaning surfaces. If the amount of coating utilized can be significantly reduced, the environmental impact is diminished.

Steven J. Severtson

2010-02-15T23:59:59.000Z

492

Metal recycling experience at Los Alamos National Laboratory. Reuse, release, and recycle of metals from radiological control areas``  

Science Conference Proceedings (OSTI)

Approximately 15% of the Low-Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and the modification of existing facilities. To reduce this waste stream, Department of Energy Headquarters, EM-77 Office, sponsored the Reuse, Recycle, and Release of Metals from Radiological Control Areas High Return on Investment (ROI) Project to implement recycle, reuse, and release of scrap metal at the laboratory. The goal of this project was to develop cost effective alternatives to LLW disposal of scrap metal and to avoid the disposal of 2,400 m{sup 3} of scrap metal. The ROI for this project was estimated at 948%. The ROI project was funded in March 1996 and is scheduled for completion by October 1997. At completion, a total of 2,400 m{sup 3} of LLW avoidance will have been accomplished and a facility to continue recycling activities will be operational. This paper will present the approach used to develop effective alternatives for scrap metal at Los Alamos and then discuss the tasks identified in the approach in detail. Current scrap metal inventory, waste projections, alternatives to LLW disposal, regulatory guidance, and efforts to institutionalize the alternatives to LLW disposal will be discussed in detail.

Gogol, S.

1997-11-01T23:59:59.000Z

493

FutureGen 2.0 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal » Major Demonstrations » Clean Coal » Major Demonstrations » FutureGen 2.0 FutureGen 2.0 On August 5, 2010, U.S. Energy Secretary Steven Chu announced the awarding of $1 billion in Recovery Act funding to the FutureGen Alliance, Ameren Energy Resources, Babcock & Wilcox, and Air Liquide Process & Construction, Inc. to build FutureGen 2.0, a clean coal repowering program and carbon dioxide (CO2) storage network. The project partners will repower Ameren's 200 megawatt Unit 4 in Meredosia, Illinois with advanced oxy-combustion technology to capture approximately 1.3 million tonnes of CO2 each year - more than 90 percent of the plant's carbon emissions. Other emissions will be reduced to near zero levels. Oxy-combustion burns coal with a mixture of oxygen and CO2 instead of air