Powered by Deep Web Technologies
Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electrical ship demand modeling for future generation warships  

E-Print Network [OSTI]

The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

Sievenpiper, Bartholomew J. (Bartholomew Jay)

2013-01-01T23:59:59.000Z

2

Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

2012-06-01T23:59:59.000Z

3

Abstract--Forecasting of future electricity demand is very important for decision making in power system operation and  

E-Print Network [OSTI]

Abstract--Forecasting of future electricity demand is very important for decision making in power industry, accurate forecasting of future electricity demand has become an important research area sector. This paper presents a novel approach for mid-term electricity load forecasting. It uses a hybrid

Ducatelle, Frederick

4

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

5

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities  

E-Print Network [OSTI]

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities By Chia

de Weck, Olivier L.

6

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

7

Projecting Electricity Demand in 2050  

SciTech Connect (OSTI)

This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

2014-07-01T23:59:59.000Z

8

Electricity demand-side management for an energy efficient future in China : technology options and policy priorities  

E-Print Network [OSTI]

The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

Cheng, Chia-Chin

2005-01-01T23:59:59.000Z

9

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study Renewable Electricity Generation and Storage Technologies for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable;Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

10

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 Gorin Principal Authors Lynn Marshall Project Manager Kae C. Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting

11

Electrical Demand Control  

E-Print Network [OSTI]

Almost every building owner or manager is interested in controlling electrical costs. Since the HVAC system is a large user of electricity, this article will discuss what can be done in the HVAC system to influence parts of the utility bill....

Eppelheimer, D. M.

1984-01-01T23:59:59.000Z

12

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

13

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

14

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

15

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

16

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

17

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

18

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

19

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

20

Transportation Energy: Supply, Demand and the Future  

E-Print Network [OSTI]

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

Saldin, Dilano

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

22

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

23

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

24

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

25

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

26

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

27

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

28

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

29

Renewable Electricity Futures Study. Executive Summary  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

2012-12-01T23:59:59.000Z

30

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

31

The Economics of Energy (and Electricity) Demand  

E-Print Network [OSTI]

home to charge up at night. 12 The Tesla Roadster is an electric sport car prototype manufactured by Tesla Motors (http://www.teslamotors.com/). 13 This is based on there being around 25 million homes... 25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k...

Platchkov, Laura M.; Pollitt, Michael G.

32

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

33

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

34

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

35

Demand Response and Electric Grid Reliability  

E-Print Network [OSTI]

Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

Wattles, P.

2012-01-01T23:59:59.000Z

36

Renewable Electricity Futures for the United States  

SciTech Connect (OSTI)

This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

2014-04-14T23:59:59.000Z

37

Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

2012-06-01T23:59:59.000Z

38

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network [OSTI]

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

39

Tool Improves Electricity Demand Predictions to Make More Room...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 -...

40

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast Summary............................................................................................................ 2 Sixth Power Plan Demand Forecast................................................................................................ 4 Demand Forecast Range

42

What is a High Electric Demand Day?  

Broader source: Energy.gov [DOE]

This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

43

California's Summer 2004 Electricity Supply and Demand Outlook  

E-Print Network [OSTI]

forecast for 2004 is higher to reflect increased demand from more robust economic growth. In this newCALIFORNIA ENERGY COMMISSION California's Summer 2004 Electricity Supply and Demand Outlook Supply and Demand Outlook The California Energy Commission staff's electricity supply and demand outlook

44

TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN  

E-Print Network [OSTI]

PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

California at Berkeley. University of

45

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

Levy, Roger

2014-01-01T23:59:59.000Z

46

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

Levy, Roger

2014-01-01T23:59:59.000Z

47

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

Levy, Roger

2014-01-01T23:59:59.000Z

48

Climate, extreme heat, and electricity demand in California  

SciTech Connect (OSTI)

Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

2008-04-01T23:59:59.000Z

49

HIERARCHY OF PRODUCTION DECISIONS Forecasts of future demand  

E-Print Network [OSTI]

HIERARCHY OF PRODUCTION DECISIONS Forecasts of future demand Aggregate plan Master production Planning and Forecast Bias · Forecast error seldom is normally distributed · There are few finite planning

Brock, David

50

Control Mechanisms for Residential Electricity Demand in SmartGrids  

E-Print Network [OSTI]

Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

Snyder, Larry

51

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis  

E-Print Network [OSTI]

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis CERTH, University) programs motivate home users through dynamic pricing to shift electricity consumption from peak demand periods. In this paper, we introduce a day ahead electricity market where the operator sets the prices

52

Patterns of crude demand: Future patterns of demand for crude oil as a func-  

E-Print Network [OSTI]

from the perspective of `peak oil', that is from the pers- pective of the supply of crude, and price#12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion is given on the problems within the value chain, with an explanation of the reasons why the price of oil

Langendoen, Koen

53

Electricity Demand Evolution Driven by Storm Motivated Population Movement  

SciTech Connect (OSTI)

Managing the risks posed by climate change to energy production and delivery is a challenge for communities worldwide. Sea Level rise and increased frequency and intensity of natural disasters due to sea surface temperature rise force populations to move locations, resulting in changing patterns of demand for infrastructure services. Thus, Infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Combining climate predictions and agent based population movement models shows promise for exploring the universe of these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these patterns. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. This work suggests that the importance of established evacuation routes that move large populations repeatedly through convergence points as an indicator may be under recognized.

Allen, Melissa R [ORNL; Fernandez, Steven J [ORNL; Fu, Joshua S [ORNL; Walker, Kimberly A [ORNL

2014-01-01T23:59:59.000Z

54

Electricity demand as frequency controlled reserves, ENS (Smart...  

Open Energy Info (EERE)

ENS (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ENS Country Denmark Coordinates 56.26392, 9.501785...

55

Benefits of Demand Response in Electricity Markets and Recommendations...  

Broader source: Energy.gov (indexed) [DOE]

Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act...

56

Electricity demand as frequency controlled reserves, ForskEL...  

Open Energy Info (EERE)

ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ForskEL Country Denmark Coordinates 56.26392,...

57

High-Performance with Solar Electric Reduced Peak Demand: Premier...  

Energy Savers [EERE]

energy systems with high-performance homes and showing how they align with utility peak-demand reduction interests. In addition to substantial energy savings, solar electric home...

58

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

59

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

2012-06-01T23:59:59.000Z

60

Price Responsive Demand in New York Wholesale Electricity Market using OpenADR  

E-Print Network [OSTI]

Advanced Metering, and Demand Response in Electricity2006. Benefits of Demand Response in Electricity Markets and2010. Open Automated Demand Response Technologies for

Kim, Joyce Jihyun

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Presentation to EAC: Renewable Electricity Futures Activities...  

Broader source: Energy.gov (indexed) [DOE]

Presentation to the Electricity Advisory Committee, October 29, 2010, on Renewable Electricity Futures Activities & Status. The presentation provides a high-level overview of the...

62

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand................................................................................................................................. 1 Demand Forecast Methodology.................................................................................................. 3 New Demand Forecasting Model for the Sixth Plan

63

Quantifying Changes in Building Electricity Use, with Application to Demand Response  

SciTech Connect (OSTI)

We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

2010-11-17T23:59:59.000Z

64

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

widely differing control technologies, notification options,Electric  Reliability   Technology,  LBNL,  Joseph  Eto  E. Availability F. Technology Proposed Residential Large

Levy, Roger

2014-01-01T23:59:59.000Z

65

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

management in the US electricity sector, Energy Policy, 23(deep reductions in electricity sector GHG emissions requireson the electricity sector. 19 Table 3.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

66

U.S. electric utility demand-side management 1995  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-01-01T23:59:59.000Z

67

The Impact of Climate Change on Electricity Demand in Thailand   

E-Print Network [OSTI]

Climate change is expected to lead to changes in ambient temperature, wind speed, humidity, precipitation and cloud cover. As electricity demand is closely influenced by these climatic variables, there is likely to be ...

Parkpoom, Suchao Jake

2008-01-01T23:59:59.000Z

68

U.S. electric utility demand-side management 1993  

SciTech Connect (OSTI)

This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

NONE

1995-07-01T23:59:59.000Z

69

The residential demand for electricity in New England,  

E-Print Network [OSTI]

The residential demand for electricity, studied on the national level for many years, is here investigated on the regional level. A survey of the literature is first presented outlining past econometric work in the field ...

Levy, Paul F.

1973-01-01T23:59:59.000Z

70

KEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study  

E-Print Network [OSTI]

supply 8 Electricity consumption 9 Supply and demand projections 9 Electricity exports and importsKEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study #12;This project Electricity Association The Canadian Electricity Association (CEA), founded in 1891, is the national forum

71

Smart Metering and Electricity Demand: Technology, Economics and International Experience  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Smart Metering and Electricity Demand: Technology, Economics and International Experience EPRG Working Paper EPRG0903 Cambridge Working Paper in Economics 0905 Aoife... Brophy Haney, Tooraj Jamasb and Michael G. Pollitt In recent years smart metering of electricity demand has attracted attention around the world. A number of countries and regions have started deploying new metering systems; and many others have...

Brophy Haney, A; Jamasb, Tooraj; Pollitt, Michael G.

72

Electric Utility Demand-Side Evaluation Methodologies  

E-Print Network [OSTI]

, in the case of electric utilities society and the ratepayer. Commissio~ Substanti ve Rul es Sec. 23.22 stops short of specifying an evaluation methodology or requiring a benefit-cost analysis for each conservation program, but it does require that util... of view using a standard benefit-cost methodology. The methodology now in use by several. electric utilities and the Public Utility Commlsslon of Texas includes measures of efficiency and equity. The nonparticipant test as a measure of equity...

Treadway, N.

73

Electricity Demand Forecasting using Gaussian Processes Manuel Blum and Martin Riedmiller  

E-Print Network [OSTI]

Electricity Demand Forecasting using Gaussian Processes Manuel Blum and Martin Riedmiller Abstract We present an electricity demand forecasting algorithm based on Gaussian processes. By introducing. Introduction Electricity demand forecasting is an important aspect of the control and scheduling of power

Teschner, Matthias

74

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

problems, Electric Power Systems Research, 73(2): p. 169-problems, Electric Power Systems Research, 77(3-4): p. 212-decomposition, Electric Power Systems Research, 77(7): p.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

75

Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy  

E-Print Network [OSTI]

Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

Delaware, University of

76

Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response Introduction..................................................................................................................................... 1 Demand Response in the Council's Fifth Power Plan......................................................................................................................... 3 Estimate of Potential Demand Response

77

Reducing Electricity Demand Charge for Data Centers with Partial Execution  

E-Print Network [OSTI]

. INTRODUCTION Data centers are the powerhouse behind many Internet services today. A modern data centerReducing Electricity Demand Charge for Data Centers with Partial Execution Hong Xu Department@eecg.toronto.edu ABSTRACT Data centers consume a large amount of energy and incur substantial electricity cost

Li, Baochun

78

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

fuel carbon intensity. . 8a function of the lifecycle carbon intensity of electricityCarbon Intensity

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

79

Price-elastic demand in deregulated electricity markets  

SciTech Connect (OSTI)

The degree to which any deregulated market functions efficiently often depends on the ability of market agents to respond quickly to fluctuating conditions. Many restructured electricity markets, however, experience high prices caused by supply shortages and little demand-side response. We examine the implications for market operations when a risk-averse retailer's end-use consumers are allowed to perceive real-time variations in the electricity spot price. Using a market-equilibrium model, we find that price elasticity both increases the retailers revenue risk exposure and decreases the spot price. Since the latter induces the retailer to reduce forward electricity purchases, while the former has the opposite effect, the overall impact of price responsive demand on the relative magnitudes of its risk exposure and end-user price elasticity. Nevertheless, price elasticity decreases cumulative electricity consumption. By extending the analysis to allow for early settlement of demand, we find that forward stage end-user price responsiveness decreases the electricity forward price relative to the case with price-elastic demand only in real time. Moreover, we find that only if forward stage end-user demand is price elastic will the equilibrium electricity forward price be reduced.

Siddiqui, Afzal S.

2003-05-01T23:59:59.000Z

80

US electric utility demand-side management, 1994  

SciTech Connect (OSTI)

The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

NONE

1995-12-26T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. electric utility demand-side management 1996  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-12-01T23:59:59.000Z

82

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents [OSTI]

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2011-12-06T23:59:59.000Z

83

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents [OSTI]

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2006-12-12T23:59:59.000Z

84

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

System Operator. WECC (2006) Information Summary, Westernx SDG&E SMR SMUD TID v VMT WECC San Diego Gas & ElectricCoordinating Council (WECC) differ somewhat from the CEC and

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

85

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Palm Springs solar insolation, and California electricityConcentrating Solar Power in California, NREL/SR-550-39291,generation from wind and solar in California could be very

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

86

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

al Scott et al (2007) [97] EPRI and NRDC (2007) [6, StephanAir Resources Board. EPRI and NRDC (2007) Environmentalin the hydrogen-electric economy, EPRI. Lemoine, D.M. , D.M.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

87

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

103 Figure 52. Relative solar thermal generation foris obscured. Future solar thermal power plants may have theThe SEGS facility is a solar thermal facility that can be

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

88

Trends in Regional Electricity Demands 1995-2012  

E-Print Network [OSTI]

to Department of Energy in EIA form 861. Council staff takes annual reported retail sales by each utility. Street lighting sales are not metered but rather estimated . 10 #12;Losses are Defined as Energy LoadsTrends in Regional Electricity Demands 1995-2012 January 29, 2014 #12;In Today's Conversation

89

2012 Portland General Electric. All rights reserved. Planning for Demand  

E-Print Network [OSTI]

2/13/2013 1 © 2012 Portland General Electric. All rights reserved. Planning for Demand Response Balance: Energy #12;2/13/2013 2 3 PGE Load ­ Resource Balance: Winter Capacity 4 Traditional Role decade, access to a material portion of its legacy hydro resources. Meanwhile, PGE (and other IOU

90

THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND  

E-Print Network [OSTI]

LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

91

Perspectives on the future of the electric utility industry  

SciTech Connect (OSTI)

This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

92

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network [OSTI]

Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

Stadler, Michael

2011-01-01T23:59:59.000Z

93

SOLAR ENERGY AND OUR ELECTRICITY FUTURE  

E-Print Network [OSTI]

SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

94

Draft Fourth Northwest Conservation and Electric Power Plan, Appendix D ECONOMIC AND DEMAND FORECASTS  

E-Print Network [OSTI]

AND DEMAND FORECASTS INTRODUCTION AND SUMMARY Role of the Demand Forecast A demand forecast of at least 20 years is one of the explicit requirements of the Northwest Power Act. A demand forecast is, of course analysis. Because the future is inherently uncertain, the Council forecasts a range of future demand levels

95

Primer on electricity futures and other derivatives  

SciTech Connect (OSTI)

Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

1998-01-01T23:59:59.000Z

96

Concept for Management of the Future Electricity System (Smart...  

Open Energy Info (EERE)

Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System Country Denmark...

97

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation between electricity consumption and generation. On the consumption side, electric demand ramps up

Pedram, Massoud

98

Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation  

SciTech Connect (OSTI)

Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

2013-01-17T23:59:59.000Z

99

Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response Summary of Key.............................................................................................................. 1 Demand Response in the Fifth Power Plan........................................................................................... 3 Demand Response in the Sixth Power Plan

100

Quantifying Changes in Building Electricity Use, with Application to Demand Response  

E-Print Network [OSTI]

building control strategies and techniques for demand response,”demand response systems,” in Proceedings of 16th National Conference on BuildingBuilding Electricity Use, with Application to Demand Response

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Influence of Air Conditioner Operation on Electricity Use and Peak Demand  

E-Print Network [OSTI]

Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual...

McGarity, A. E.; Feuermann, D.; Kempton, W.; Norford, L. K.

1987-01-01T23:59:59.000Z

102

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

In contrast to a hybrid vehicle whichcombines multipleor 180 mile hybrid electric vehicle. Natural gas vehicles (1994) "Demand Electric Vehicles in Hybrid for Households:

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

103

Electric Water Heater Modeling and Control Strategies for Demand Response  

SciTech Connect (OSTI)

Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

2012-07-22T23:59:59.000Z

104

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

SciTech Connect (OSTI)

The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

2009-05-18T23:59:59.000Z

105

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect (OSTI)

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

106

Demand responsive programs - an emerging resource for competitive electricity markets?  

SciTech Connect (OSTI)

The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

Heffner, Grayson C. Dr.; Goldman, Charles A.

2001-06-25T23:59:59.000Z

107

A comparison of univariate methods for forecasting electricity demand up to a day ahead  

E-Print Network [OSTI]

A comparison of univariate methods for forecasting electricity demand up to a day ahead James W methods for short-term electricity demand forecasting for lead times up to a day ahead. The very short of Forecasters. Published by Elsevier B.V. All rights reserved. Keywords: Electricity demand forecasting

McSharry, Patrick E.

108

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

109

ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water  

E-Print Network [OSTI]

Groundwater Management ActAct ·· Assured Water Supply ProgramAssured Water Supply Program #12;Arizona water ­­ 20002000 Residential & Business 16% Self-supplied 4% Irrigation 80% #12;Year 2006 Water UseYear 2006 Water/crystallizer systems Dry cooling plantsDry cooling plants Hybrid cooling systemsHybrid cooling systems Renewable

Keller, Arturo A.

110

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network [OSTI]

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

111

Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned  

E-Print Network [OSTI]

"To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component...

Skelton, J.

112

Demand Response in U.S. Electricity Markets: Empirical Evidence  

SciTech Connect (OSTI)

Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ~;;38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation.

Cappers, Peter; Goldman, Charles; Kathan, David

2009-06-01T23:59:59.000Z

113

A demand responsive bidding mechanism with price elasticity matrix in wholesale electricity pools  

E-Print Network [OSTI]

In the past several decades, many demand-side participation features have been applied in the electricity power systems. These features, such as distributed generation, on-site storage and demand response, add uncertainties ...

Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

114

On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch  

E-Print Network [OSTI]

On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic;On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch Abstract Information asymmetry in retail electricity markets is one of the largest sources of inef

Chen, Yiling

115

The behavioral response to voluntary provision of an environmental public good: Evidence from residential electricity demand  

E-Print Network [OSTI]

residential electricity demand Grant D. Jacobsen a,n , Matthew J. Kotchen b,c , Michael P. Vandenbergh d online 25 February 2012 JEL classification: H41 Q42 G54 Keywords: Green electricity Voluntary environmental protection Carbon offset Renewable energy Moral licensing Residential electricity demand a b s t r

Kotchen, Matthew J.

116

Climate, extreme heat, and electricity demand in California  

E-Print Network [OSTI]

demand responses to climate change: Methodology and application to the Commonwealth of Massachusetts.

Miller, N.L.

2008-01-01T23:59:59.000Z

117

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH  

E-Print Network [OSTI]

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH UC ....................................................................23 3 MARKET DEVELOPMENT OF ALTERNATIVE FUEL VEHICLES ............................ 26 3.1 SUPPLY OF ALTERNATIVE FUEL VEHICLES

Levinson, David M.

118

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

Letschert, Virginie

2010-01-01T23:59:59.000Z

119

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsbuilt for electric storage water heaters and heat pumps asthat electric storage tank water heaters will be replaced

Letschert, Virginie

2010-01-01T23:59:59.000Z

120

June 10, 2013 Canada's energy future meeting demand AND the climate change challenge  

E-Print Network [OSTI]

MEDIA TIP June 10, 2013 Canada's energy future ­meeting demand AND the climate change challenge Energy and business reporters are welcome to attend a high-level energy experts' presentation and panel on "Seeking Common Ground on Canada's Energy Future" during the Pacific Institute for Climate Solutions (PICS

Pedersen, Tom

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

California's Electricity Supply and Demand Balance Over the Next Five Years  

E-Print Network [OSTI]

the resources of the system. The Commission's 2003 Baseline Demand forecast assumes the following assumptions September October 1 CEC 2003 Baseline Demand Forecast (1-in-2 Weather)1, 2 31 California's Electricity Supply and Demand Balance Over the Next Five Years The Energy Commission

122

Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging  

E-Print Network [OSTI]

Member, IEEE Abstract--Consumer electricity consumption can be controlled through electricity prices and customers respond accordingly with their electricity consumption levels. In particular, the demands as a game [7]. Note that in reality, electricity retailers are significantly regulated by governments

Bahk, Saewoong

123

A Fresh Look at Weather Impact on Peak Electricity Demand and  

E-Print Network [OSTI]

LBNL-6280E A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data Road, Berkeley, CA 94720, USA 2 Green Energy and Environment Research Laboratories, Industrial

124

THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION  

E-Print Network [OSTI]

1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY, Iowa State University ABSTRACT There is a tremendous imbalance between engineering workforce demand and supply in the world in general, and in the US, in particular. The electric power and energy industry

125

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsfans, washing machines, water heaters and space heaters.and Space Heating Water heater intensities and electric

Letschert, Virginie

2010-01-01T23:59:59.000Z

126

Trends in electricity demand and supply in the developing countries, 1980--1990  

SciTech Connect (OSTI)

This report provides an overview of trends concerning electricity demand and supply in the developing countries in the 1980--1990 period, with special focus on 13 major countries for which we have assembled consistent data series. We describe the linkage between electricity demand and economic growth, the changing sectoral composition of electricity consumption, and changes in the mix of energy sources for electricity generation. We also cover trends in the efficiency of utility electricity supply with respect to power plant efficiency and own-use and delivery losses, and consider the trends in carbon dioxide emissions from electricity supply.

Meyers, S.; Campbell, C.

1992-11-01T23:59:59.000Z

127

Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M.; DeMeo, E.; Hostick, D.; Mai, T.; Schlosser, C. A.

2013-04-01T23:59:59.000Z

128

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

replaced with heat pump water heaters (efficiency of 250%).electric storage water heaters and heat pumps as shown infor Electric Water Heaters and Heat Pumps End Use Elec WH HP

Letschert, Virginie

2010-01-01T23:59:59.000Z

129

A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu  

E-Print Network [OSTI]

A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu , Anthony E. Brockwell, and Duane J. Seppi Abstract We introduce a new model for electricity prices, based on the principle in a study of Californian wholesale electricity prices over a three-year period including the crisis period

130

Testing The Effects Of Price Responsive Demand On Uniform Price And Soft-Cap Electricity Auctions  

E-Print Network [OSTI]

Testing The Effects Of Price Responsive Demand On Uniform Price And Soft-Cap Electricity Auctions R. The soft-cap market has not worked well. Spot prices for electricity in California remained consistently of different electric power markets with respect to price volatility and average market price. In particular

131

Effects of the drought on California electricity supply and demand  

E-Print Network [OSTI]

ELECTRICITY SUPPLY Hydroelectric Energy Supply Thermal-question. Data on PG&E's hydroelectric resources and Pacific27 Table 28 Table 29 Hydroelectric Supply in California Fuel

Benenson, P.

2010-01-01T23:59:59.000Z

132

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network [OSTI]

the second half of the wholesale electric market equation.response with Midwest ISO wholesale markets, report no.DR Programs in Wholesale Markets 18

Cappers, Peter

2009-01-01T23:59:59.000Z

133

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

SciTech Connect (OSTI)

This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV. We investigate the impact of a range of electricity market scenarios on retail electricity prices and rate structures, and the resulting effects on the value of bill savings from PV. The scenarios include various levels of renewable and solar energy deployment, high and low natural gas prices, the possible introduction of carbon pricing, and greater or lesser reliance on utility-scale storage and demand response. We examine the bill savings from PV with time-invariant, flat residential retail rates, as well as with time-varying retail rates, including time-of-use (TOU) rates and real-time pricing (RTP). In addition, we explore a flat rate with increasing-block pricing (IBP). We evaluate the bill savings from PV with net metering, as currently allowed in many states, as well as scenarios with hourly netting, a partial form of net metering. This scoping study is the first known effort to evaluate these types of interactions in a reasonably comprehensive fashion, though by no means have we considered every possible change to electricity market conditions, retail rate structures, or PV compensation mechanisms. It focuses solely on the private value of bill savings for residential PV and does not seek to quantify the broader social or economic cost or value of solar electricity. Our analysis applies assumptions based loosely on California’s electricity market in a future year (2030); however, it is neither intended to forecast California’s future market, nor are our conclusions intended to have implications specific only to the California market. That said, some of the findings are unique to our underlying assumptions, as described further within the main body of the report, along with other key limitations.

Darghouth, Naim; Barbose, Galen; Wiser, Ryan

2013-01-09T23:59:59.000Z

134

Implications for the Future of Treated Wood in Four U.S. Demand Sectors  

E-Print Network [OSTI]

Implications for the Future of Treated Wood in Four U.S. Demand Sectors Todd F. Shupe Associate extends the life span of lumber, but the Environmental Protection Agency says arsenic treated wood might arsenic-treated wood from Florida's public playgrounds failed to pass. "Wave of opponents kills Crow

135

Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design  

E-Print Network [OSTI]

meter. All smart meters are connected to not only the power grid but also a communication infrastructure. This allows two-way communication among smart meters and the utility company. We analytically model each user1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi

Wong, Vincent

136

Export demand response in the Ontario electricity market  

SciTech Connect (OSTI)

Export responses to unanticipated price shocks can be a key contributing factor to the rapid mean reversion of electricity prices. The authors use event analysis - a technique more familiar from financial applications - to demonstrate how hourly export transactions respond to negative supply shocks in the Ontario electricity market. (author)

Peerbocus, Nash; Melino, Angelo

2007-11-15T23:59:59.000Z

137

E-Print Network 3.0 - aggregate electricity demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: for electricity based on aggregate data may in fact reflect the exit of coal-intensive firms (e.g. manufacturers... of fuel demand based on aggregate data, and...

138

Electrical Energy Conservation and Peak Demand Reduction Potential for Buildings in Texas: Preliminary Results  

E-Print Network [OSTI]

This paper presents preliminary results of a study of electrical energy conservation and peak demand reduction potential for the building sector in Texas. Starting from 1980 building stocks and energy use characteristics, technical conservation...

Hunn, B. D.; Baughman, M. L.; Silver, S. C.; Rosenfeld, A. H.; Akbari, H.

1985-01-01T23:59:59.000Z

139

Electric power supply and demand for the contiguous United States, 1980-1989  

SciTech Connect (OSTI)

A limited review is presented of the outlook for the electric power supply and demand during the period 1980 to 1989. Only the adequacy and reliability aspects of bulk electric power supply in the contiguous US are considered. The economic, financial and environmental aspects of electric power system planning and the distribution of electricity (below the transmission level) are topics of prime importance, but they are outside the scope of this report.

None

1980-06-01T23:59:59.000Z

140

Electricity Distribution Networks: Investment and Regulation, and Uncertain Demand  

E-Print Network [OSTI]

Electricity distribution networks are capital intensive systems and timely investments are crucial for long-term reliability of their service. In coming years, in the UK, and elsewhere in Europe, many networks are in need of extensive investments...

Jamasb, Tooraj; Marantes, Cristiano

2011-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network [OSTI]

Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become...

Epstein, G. J.; Fuller, W. H.

142

Electric Demand Cost Versus Labor Cost: A Case Study  

E-Print Network [OSTI]

steel and glass. Pins, glass beads and headers are assembled manually and are put in a carbon tray. Carbon trays are put in furnaces (ovens) which are maintained at a constant temperature between 160Q-2000F and have an exothermic gas environment.... At this time, company registers its peak demand. Company keeps all furnaces on and keep them available for workers in case they will need it for their products. On average, no more than two furnaces will have same temperature and exothermic gas...

Agrawal, S.; Jensen, R.

143

Choosing an electrical energy future for the Pacific Northwest: an alternative scenario  

SciTech Connect (OSTI)

A strategy is presented for averting the short-term energy supply uncertainties that undermine prospects for stable economic development in the Pacific Northwest. This strategy is based on: an analysis of the present electric power consumption by various end-use sectors; comparison of incentives to promote energy conservation and lower demand growth; analysis of alternatives to current dependency on hydro power; and a study of the cost of planning and implementing future power supply programs. (LCL)

Beers, J.R.; Cavanagh, R.C.; Lash, T.R.; Mott, L.

1980-05-19T23:59:59.000Z

144

Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario  

SciTech Connect (OSTI)

An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

1980-08-01T23:59:59.000Z

145

Future Competitive Positioning of Electric Utilities and their Customers  

E-Print Network [OSTI]

This paper addresses the future competitive positioning of electric and gas utilities and their industrial customers. Each must respond to a dramatic reshaping of the utility industry while confronting aggressive environmental pressures and taking...

Schrock, D.; Parker, G.; Baechler, M.

146

The Future of Food Demand: Understanding Differences in Global Economic Models  

SciTech Connect (OSTI)

Understanding the capacity of agricultural systems to feed the world population under climate change requires a good prospective vision on the future development of food demand. This paper reviews modeling approaches from ten global economic models participating to the AgMIP project, in particular the demand function chosen and the set of parameters used. We compare food demand projections at the horizon 2050 for various regions and agricultural products under harmonized scenarios. Depending on models, we find for a business as usual scenario (SSP2) an increase in food demand of 59-98% by 2050, slightly higher than FAO projection (54%). The prospective for animal calories is particularly uncertain with a range of 61-144%, whereas FAO anticipates an increase by 76%. The projections reveal more sensitive to socio-economic assumptions than to climate change conditions or bioenergy development. When considering a higher population lower economic growth world (SSP3), consumption per capita drops by 9% for crops and 18% for livestock. Various assumptions on climate change in this exercise do not lead to world calorie losses greater than 6%. Divergences across models are however notable, due to differences in demand system, income elasticities specification, and response to price change in the baseline.

Valin, Hugo; Sands, Ronald; van der Mensbrugghe, Dominique; Nelson, Gerald; Ahammad, Helal; Blanc, Elodie; Bodirsky, Benjamin; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Mason d'Croz, Daniel; Paltsev, S.; Rolinski, Susanne; Tabeau, Andrzej; van Meijl, Hans; von Lampe, Martin; Willenbockel, Dirk

2014-01-01T23:59:59.000Z

147

1Challenge the future Electricity Network of Today  

E-Print Network [OSTI]

materials · Design of HV components and HV asset management · Monitoring and diagnostics for (smart) grid applications · Medium Voltage and Low voltage DC systems · Smart cities and Electric mobility · Optimization / focus (PMVD) CASCADEAMIGO LESKER PROVAC #12;5Challenge the future Intelligent Electrical Power Grids

Kuzmanov, Georgi

148

Analysis of PG E's residential end-use metered data to improve electricity demand forecasts  

SciTech Connect (OSTI)

It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

Eto, J.H.; Moezzi, M.M.

1992-06-01T23:59:59.000Z

149

The impact of changes in electric transmission regulation on coal demand  

SciTech Connect (OSTI)

The likely impact of changes in regulation of electric transmission and the environmental impacts associated with those changes on the demand for coal by the electric utility industry are discussed. Since the electric utility industry is currently the largest user of coal (in 1992, 87% of coal consumed in the United States was used to generate electricity by electric utilities) any systematic change in the electric utility industry could ripple through the coal industry. What deregulation or changes in regulations in the electric industry is occurring or has occurred at the federal level and the expected impact on the demand for coal are discussed. From the point of view of the electric industry, at least, the primary variable driving demand for coal up or down is its price relative to alternate fuels, particularly natural gas. This is no surprise. Regardless of how the regulators increase or alter their scrutiny of the industry, fundamental economics will prevail. Indeed, with the changes in regulation moving toward more free and open competition, those forces will move even more to the forefront.

Finn, E.J.

1996-12-31T23:59:59.000Z

150

Proceedings of the Chinese-American symposium on energy markets and the future of energy demand  

SciTech Connect (OSTI)

The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

Meyers, S. (ed.)

1988-11-01T23:59:59.000Z

151

Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences  

E-Print Network [OSTI]

STATEWIDE ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE IMPLEMENTATION OF IECC CODE IN TEXAS: ANALYSIS FOR SINGLE?FAMILY RESIDENCES 11th International Conference for Enhanced Building Operations New York City, October 18 ? 20, 2011 Hyojin...&M University System Statewide Electricity and Demand Savings from the IECC Code in TX 11th ICEBO Conference Oct. 18 ? 20, 2011 2 Outline Introduction Methodology Base?Case Building Results Summary Statewide Electricity and Demand Savings from the IECC...

Kim, H.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Yazdani, B.

2011-01-01T23:59:59.000Z

152

Automated Demand Response: The Missing Link in the Electricity Value Chain  

SciTech Connect (OSTI)

In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

2009-08-01T23:59:59.000Z

153

Automated Demand Response: The Missing Link in the Electricity Value Chain  

SciTech Connect (OSTI)

In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

2008-08-01T23:59:59.000Z

154

Smart grid-demand side response model to mitigate prices and peak impact on the electrical system.  

E-Print Network [OSTI]

??The aims of this project is to develop demand side response model which assists electricity consumers who are exposed to the market price through aggregator… (more)

Marwan, Marwan

2013-01-01T23:59:59.000Z

155

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

156

ZONAL PRICING AND DEMAND-SIDE BIDDING IN THE NORWEGIAN ELECTRICITY MARKET  

E-Print Network [OSTI]

PWP-063 ZONAL PRICING AND DEMAND-SIDE BIDDING IN THE NORWEGIAN ELECTRICITY MARKET Tor Arnt Johnsen of the Program on Workable Energy Regulation (POWER). POWER is a program of the University of California Energy. University of California Energy Institute 2539 Channing Way Berkeley, California 94720-5180 www

California at Berkeley. University of

157

Battery Health-conscious Plug-in Hybrid Electric Vehicle Grid Demand Prediction Saeid Bashash  

E-Print Network [OSTI]

at an incipient stage. A market share of about 25% is projected in the United States by year 2020, resulting in nearly five million PHEV sales per year [2]. The energy requirements of PHEVs depend significantlyBattery Health-conscious Plug-in Hybrid Electric Vehicle Grid Demand Prediction Saeid Bashash

Krstic, Miroslav

158

Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets  

E-Print Network [OSTI]

As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. ...

Martin, Jean Mario Nations

2012-01-01T23:59:59.000Z

159

Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences  

E-Print Network [OSTI]

This paper presents estimates of the statewide electricity and electric demand savings achieved from the adoption of the International Energy Conservation Code (IECC) for single-family residences in Texas and includes the corresponding increase...

Kim, H.; Baltazar, J.C.; Haberl, J.

2011-01-01T23:59:59.000Z

160

Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand  

E-Print Network [OSTI]

INDUSTRIAL-LOAD-SHAPI1IG: TIlE PRACTICE OF AND PROSPECTS FOR UTILITY/INDUSTRY COOPERATION TO MAUGE PEAK ELECTRICITY DEMAND Donald J. BuIes and David E. Rubin Consultants, Pacific Gas and Electric Company San Francisco, California Michael F.... Maniates Energy and Resources Group, University of California Berkeley, California ABSTRACT Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a gf...

Bules, D. J.; Rubin, D. E.; Maniates, M. F.

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integrating Demand into the U.S. Electric Power System: Technical, Economic, and Regulatory Frameworks for Responsive Load  

E-Print Network [OSTI]

for Responsive/Adaptive Load by Jason W. Black Massachusetts Institute of Technology Submitted to the Engineering integration of demand response. Integrating demand into the US electricity system will allow the development, and market issues to determine a system structure that provides incentives for demand response. An integrated

de Weck, Olivier L.

162

Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a  

E-Print Network [OSTI]

The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

163

The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market  

SciTech Connect (OSTI)

This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

Baek, Young Sun [ORNL; Hadley, Stanton W [ORNL

2012-01-01T23:59:59.000Z

164

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation  

E-Print Network [OSTI]

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation Mark D. Cohen Physical fish consumption, and significant portions of the general population are believed to be consuming toxicologically significant levels of mercury (e.g., National Research Council, 2000). Historical discharges ­ e

165

Estimated winter 1980-1981 electric demand and supply, contiguous United States. Staff report  

SciTech Connect (OSTI)

This report summarizes the most recent data available concerning projected electrical peak demands and available power resouces for the 1980-1981 winter peak period, as reported by electric utilities in the contiguous United States. The data, grouped by Regional Reliability Council areas and by Electrical Regions within the Council areas, was obtained from the Form 12E-2 reports filed by utilities with the Department of Energy on October 15, 1980 (data as of September 30). In some instances the data were revised or verified by telephone. Considerations affecting reliability, arising from Nuclear Regulatory Commission actions based on lessons learned from the forced outage of Three Mile Island Nuclear Unit No. 2, were factored into the report. No widespread large-scale reliability problems are foreseen for electric power supply this winter, on the basis of the supply and demand projections furnished by the electric utilities. Reserve margins could drop in some electric regions to levels considered inadequate for reliable service, if historical forced-outage magnitudes recur.

None

1980-12-01T23:59:59.000Z

166

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network [OSTI]

each agency or organization) DOT $26,383.66 Total Project Cost $26,383.66 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand Project This white paper will summarize recent research findings pertaining to future passenger travel

California at Davis, University of

167

High Electric Demand Days: Clean Energy Strategies for Improving Air Quality  

Broader source: Energy.gov [DOE]

This presentation by Art Diem of the State and Local Capacity Building Branch in the U.S. Environmental Protection Agency was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

168

Future Electricity Supplies MIT ENGINEERING SYSTEMS SYMPOSIUM (31 Mar 04, pg. 1) FUTURE ELECTRICITY SUPPLIES  

E-Print Network [OSTI]

, ranging from the visual impacts of wind farms, to fossil power plants' greenhouse gases. Increasingly Analysis Group for Regional Electricity Alternatives (AGREA) suggests that the dynamics of power grid side. From a systems context, there is a third class of efficiency improvements: energy "integration

de Weck, Olivier L.

169

Dynamic Control of Electricity Cost with Power Demand Smoothing and Peak Shaving for Distributed Internet Data Centers  

E-Print Network [OSTI]

Dynamic Control of Electricity Cost with Power Demand Smoothing and Peak Shaving for Distributed a major part of their running costs. Modern electric power grid provides a feasible way to dynamically and efficiently manage the electricity cost of distributed IDCs based on the Locational Marginal Pricing (LMP

Rahman, A.K.M. Ashikur

170

SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin, Prashant Shenoy, and Jeannie Albrecht  

E-Print Network [OSTI]

SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin--Flattening household electricity demand reduces generation costs, since costs are disproportionately affected by peak demands. While the vast majority of household electrical loads are interactive and have little scheduling

Massachusetts at Amherst, University of

171

Integrating demand into the U.S. electric power system : technical, economic, and regulatory frameworks for responsive load  

E-Print Network [OSTI]

The electric power system in the US developed with the assumption of exogenous, inelastic demand. The resulting evolution of the power system reinforced this assumption as nearly all controls, monitors, and feedbacks were ...

Black, Jason W. (Jason Wayne)

2005-01-01T23:59:59.000Z

172

Measured electric hot water standby and demand loads from Pacific Northwest homes  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

173

Automated Demand Response: The Missing Link in the Electricity Value Chain  

E-Print Network [OSTI]

and Open Automated Demand Response. In Grid Interop Forum.Berkeley National Laboratory. Demand Response ResearchCenter, Demand Response Research Center PIER Team Briefing,

McKane, Aimee

2010-01-01T23:59:59.000Z

174

Automated Demand Response: The Missing Link in the Electricity Value Chain  

E-Print Network [OSTI]

Laboratory. Berkeley. Demand Response Research Center,and Automated Demand Response in Wastewater TreatmentLaboratory. Berkeley. Demand Response Research Center,

McKane, Aimee

2010-01-01T23:59:59.000Z

175

Load-side Demand Management in Buildings using Controlled Electric Springs  

E-Print Network [OSTI]

The concept of demand-side management for electricand simulation of demand-side management potential in urbanin smart grids, demand side management has been a keen topic

Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

2014-01-01T23:59:59.000Z

176

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network [OSTI]

each agency or organization) Caltrans $26,383 Total Project Cost $26,383 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand DTRT13-G-UTC29 Start and End Dates September 2014 to June 2015 Brief Description of Research Project

California at Davis, University of

177

Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets  

SciTech Connect (OSTI)

Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M. [Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Rijk, G. de [European Organization for Nuclear Research CERN, 1211 Geneva (Switzerland)

2014-01-27T23:59:59.000Z

178

Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model  

SciTech Connect (OSTI)

Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

2014-09-05T23:59:59.000Z

179

Statewide Electricity and Demand Capacity Savings from the International Energy Conservation Code (IECC) Adoption for Single-Family Residences in Texas (2002-2011)  

E-Print Network [OSTI]

This report is the continuation of the previous 2011 Statewide Electricity Savings report from code-compliant, single-family residences built between 2002 and 2009. Statewide electricity and electric demand savings achieved from the adoption...

Kim, H.; Baltazar, J. C.; Haberl, J. S.; Yazdani, B.

2013-01-01T23:59:59.000Z

180

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Price Responsive Demand in New York Wholesale Electricity Market using OpenADR  

E-Print Network [OSTI]

and provide demand response (DR) through building controland provide demand response (DR) through building controlDemand Response Automation Server (DRAS) in a 15-minute interval. This allows the continuous monitoring of the building's

Kim, Joyce Jihyun

2013-01-01T23:59:59.000Z

182

Reliability in future electricity mixes: the question of distributed and renewables sources  

E-Print Network [OSTI]

Reliability in future electricity mixes: the question of distributed and renewables sources of the electricity industry. In this paper, we are interested in the level of reliability of future electricity mixes and whether or not these changes will impact the level of reliability. Consequently, we propose a methodology

Paris-Sud XI, Université de

183

Introduction Electrical vehicle Problem Combinatorial approach Conclusions and future works A Combinatorial Optimization Approach for  

E-Print Network [OSTI]

Introduction Electrical vehicle Problem Combinatorial approach Conclusions and future works`emes, LAAS-CNRS February 18, 2013 1/23 #12;Introduction Electrical vehicle Problem Combinatorial approach Conclusions and future works 1 Introduction 2 Electrical vehicle Description of the energy system Input data 3

Ingrand, François

184

Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts  

SciTech Connect (OSTI)

It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

Eto, J.H.; Moezzi, M.M.

1992-06-01T23:59:59.000Z

185

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND Freight

186

Overview of current and future energy storage technologies for electric power applications  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519 6.2. Compressed air energy storageOverview of current and future energy storage technologies for electric power applications Ioannis September 2008 Keywords: Power generation Distributed generation Energy storage Electricity storage A B

Bahrami, Majid

187

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network [OSTI]

is fraction of total electricity consumption for commercialy) ! calculate total electricity consumption for the end-useis fraction of total electricity consumption for residential

Coughlin, Katie

2013-01-01T23:59:59.000Z

188

Price Responsive Demand in New York Wholesale Electricity Market using OpenADR  

E-Print Network [OSTI]

3. Price Variations of Wholesale Electricity Markets for NYC4. Price Variations of Wholesale Electricity Markets for NYCDemand in New York Wholesale Electricity Market using

Kim, Joyce Jihyun

2013-01-01T23:59:59.000Z

189

Load-side Demand Management in Buildings using Controlled Electric Springs  

E-Print Network [OSTI]

Load-side Demand Management in Buildings using Controlleddemand side management has been a keen topic of interest. Buildings,

Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

2014-01-01T23:59:59.000Z

190

Future Water Supply and Demand in the Okanagan Basin, British Columbia: A Scenario-Based Analysis  

E-Print Network [OSTI]

. An integrated water management model (Water Evaluation and Planning system, WEAP) was used to consider future . Reservoir management . Instream flows . Mountain Pine Beetle Water Resour Manage (2012) 26:667­689 DOI 10 misperception of an abundance of renewable freshwater has inhibited integrated planning for water management

191

California's Electricity System of the Future: Scenario Analysis in Support  

E-Print Network [OSTI]

in this report. #12;Preface The U.S. Electricity Grid Today The U.S. electric power system is in the midst, and technologies to protect and enhance the reliability of the U.S. electric power system and functioning Foundation's Power Systems Engineering Research Center, and Sandia National Laboratories. #12;LBNL-52047

192

Automated Demand Response: The Missing Link in the Electricity Value Chain  

E-Print Network [OSTI]

Missing Link in the Electricity Value Chain Aimee McKane,Missing Link in the Electricity Value Chain Aimee McKane,grid reliability and lower electricity use during periods of

McKane, Aimee

2010-01-01T23:59:59.000Z

193

Automated Demand Response: The Missing Link in the Electricity Value Chain  

E-Print Network [OSTI]

Missing Link in the Electricity Value Chain Aimee McKane*,Missing Link in the Electricity Value Chain Aimee McKane,grid reliability and lower electricity use during periods of

McKane, Aimee

2010-01-01T23:59:59.000Z

194

Preparing the U.S. Foundation for Future Electric Energy Systems  

E-Print Network [OSTI]

Preparing the U.S. Foundation for Future Electric Energy Systems: A Strong Power and Energy large-scale penetration of Renewable and Alternative Energy technologies Maintain U.S. Electric Power Vehicles to reduce oil consumption, reduce carbon emissions, and store energy for support of the electric

195

Futures pricing in electricity markets based on stable CARMA spot models  

E-Print Network [OSTI]

Futures pricing in electricity markets based on stable CARMA spot models Gernot M¨uller Vortrag im years, electricity markets throughout the world have undergone massive changes due to deregulations risk but also against price movements. Consequently, statistical modeling and estimation of electricity

Gerkmann, Ralf

196

A Vision of Demand Response - 2016  

SciTech Connect (OSTI)

Envision a journey about 10 years into a future where demand response is actually integrated into the policies, standards, and operating practices of electric utilities. Here's a bottom-up view of how demand response actually works, as seen through the eyes of typical customers, system operators, utilities, and regulators. (author)

Levy, Roger

2006-10-15T23:59:59.000Z

197

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future Energy Mix Click to email this

198

FUTURE POWER GRID INITIATIVE Intelligent Networked Sensors  

E-Print Network [OSTI]

, demand- response, and plug-in electric vehicles. It: » Lays the software platform groundwork and planning and ensure a more secure, efficient and reliable future grid. Building on the Electricity

199

Power Systems Engineering Research Center Renewable Electricity Futures  

E-Print Network [OSTI]

levels of renewable electricity, including variable wind and solar generation. The study also identifies Laboratory. His particular interest is in capacity expansion and dispatch modeling of the electric- ity earned his PhD in theoretical physics from the University of California Santa Cruz. Speaker Contact

Van Veen, Barry D.

200

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network [OSTI]

travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The future of electric two-wheelers and electric vehicles in China  

E-Print Network [OSTI]

2001. Life cycle assessment of electric bike application inSystems. Cherry, C. , 2007. Electric Two-Wheelers in China:2007. 2006 Analysis of Electric Bike Market (2006 China

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

202

Does Nova Scotia have an electric future? Response to  

E-Print Network [OSTI]

it comes to energy security and that electricity is one of these challenges. Hydro etc Wind Bioenergy Coal and radical changes in energy markets (IEA, 2007a; NPC, 2007). The cost and availability of crude oil

Hughes, Larry

203

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

SciTech Connect (OSTI)

In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

2013-06-02T23:59:59.000Z

204

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network [OSTI]

for DR and demand side management, along with operationalresponse), DSM (demand side management), DR strategy, air

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

205

1 18 May 2003 Ris International Energy Conference Analysis of a future liberalised Lithuanian/Baltic Electricity  

E-Print Network [OSTI]

/Baltic Electricity market Analysis of a future liberalised Lithuanian/Baltic Electricity market Risø International · Model used for the analyses · Results of analyses ­ Production patterns ­ Market prices on electricity of analyses ­ Production patterns ­ Market prices on electricity ­ Future situation for power plants ­ Welfare

206

Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)  

SciTech Connect (OSTI)

This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

2010-06-01T23:59:59.000Z

207

Floating offshore wind farms : demand planning & logistical challenges of electricity generation .  

E-Print Network [OSTI]

??Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind… (more)

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

208

Converting 15-Minute Interval Electricity Load Data into Reduced Demand, Energy Reduction and Cash Flow  

E-Print Network [OSTI]

, store managers are intimidated. 5 So what are the solutions? • A data acquisition system. • Pro-active with alarming and demand-response. Is there staff to maintain and ensure a response? • Passive. Acquire the data and then evaluate and assess... is not required, this will prevent the requirement for additional costs of installing an OAT sensor at the building and potentially adding costs to the datalogger hardware or configuration. If possible, it is best to use and on-site OAT sensor. If a demand-response...

Herrin, D. G.

209

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

SciTech Connect (OSTI)

With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

Letschert, Virginie; McNeil, Michael A.

2008-05-13T23:59:59.000Z

210

Analysis of Michigan's demand-side electricity resources in the residential sector: Volume 3, End-use studies: Revised final report  

SciTech Connect (OSTI)

This volume of the ''Analysis of Michigan's Demand-Side Electricity Resources in the Residential Sector'' contains end-use studies on various household appliances including: refrigerators, freezers, lighting systems, water heaters, air conditioners, space heaters, and heat pumps. (JEF)

Krause, F.; Brown, J.; Connell, D.; DuPont, P.; Greely, K.; Meal, M.; Meier, A.; Mills, E.; Nordman, B.

1988-04-01T23:59:59.000Z

211

The future of electric two-wheelers and electric vehicles in China  

E-Print Network [OSTI]

SAE Hybrid Vehicle Symposium, San Diego CA, 13–14 February.emissions from a plug-in hybrid vehicle (PHEV) in China has2008. Nissan’s Electric and Hybrid Electric Vehicle Program.

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

212

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

213

Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

214

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network [OSTI]

Research Director, PIER Demand Response Research CenterAssessment of Demand Response & Advanced Metering, staffPower Shortages: Demand Response and its Applications in Air

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

215

Electric Demand Reduction for the U.S. Navy Public Works Center San Diego, California  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory investigated the profitability of operating a Navy ship's generators (in San Diego) during high electricity price periods rather than the ships hooking up to the Base electrical system for power. Profitability is predicated on the trade-off between the operating and maintenance cost incurred by the Navy for operating the ship generators and the net profit associated with the sale of the electric power on the spot market. In addition, PNNL assessed the use of the ship's generators as a means to achieve predicted load curtailments, which can then be marketed to the California Independent System Operator.

Kintner-Meyer, Michael CW

2000-09-30T23:59:59.000Z

216

Quantifying Changes in Building Electricity Use, with Application to Demand Response  

E-Print Network [OSTI]

electric loads to deliver load following and regu- lation,6], and regulation/load following [7]), and as DR is used toload as a function of time-of-week and outdoor air temperature. Following

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

217

Floating offshore wind farms : demand planning & logistical challenges of electricity generation  

E-Print Network [OSTI]

Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

218

Dynamic pricing and stabilization of supply and demand in modern electric power grids  

E-Print Network [OSTI]

The paper proposes a mechanism for real-time pricing of electricity in smart power grids, with price stability as the primary concern. In previous publications the authors argued that relaying the real-time wholesale market ...

Roozbehani, Mardavij

219

The Electricity Transmission System Future Vision & Grid Challenges  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram (Alabama)Technology forto lead those involved in theThereFuture

220

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

E-Print Network [OSTI]

schemes on power prices: The case of wind electricity inand Wind Penetration. IEEE Transactions on Power Systems 27,of wind (50%), PV (35%), and concentrating solar power (CSP,

Darghouth, Naim

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

E-Print Network [OSTI]

Rate and Cost Issues with Renewable Development Workshop,and Issues. Interstate Renewable Energy Council, Latham, NY.of Energy Storage with Renewable Electricity Generation (

Darghouth, Naim

2014-01-01T23:59:59.000Z

222

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absenceof data on actual sales,EV, then we expect 16 to 18% annual of of light-duty vehicle salesEV experiments indicate there is still more than adequatepotential marketsfor electric vehicles to have , exceededthe former 1998CARB mandatefor sales

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

223

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network [OSTI]

. Solar One used water as a working fluid to generate the steam required to drive a conven- tional turbine steam, and electricity is produced by a conventional steam turbine. After the molten salt has cooled with the U.S. Department of Energy (DOE). Technical Achievement Solar Two represents a major technical

Laughlin, Robert B.

224

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

E-Print Network [OSTI]

including geothermal, small hydro, and biogas, as well as noby biomass, 1.5% by small hydro, and 0.3% by PV. The pricebiomass, geothermal, and small hydro electricity generation

Darghouth, Naim

2014-01-01T23:59:59.000Z

225

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network [OSTI]

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

226

Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.  

SciTech Connect (OSTI)

This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. (Decision and Information Sciences); ( ES); (ED); (Kyungwon Univ.)

2011-07-01T23:59:59.000Z

227

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network [OSTI]

of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements chains and emission factors for the generation, transmission and distribution portions of the electricity, for electricity and for particular products, results show environmental impacts split up by generation type

228

Peak-Coincident Demand Savings from Behavior-Based Programs: Evidence from PPL Electric's Behavior and Education Program  

E-Print Network [OSTI]

A Review. Energy Policy 38 PPL Electric. 2012. First AnnualBased Programs: Evidence from PPL Electric’s Behavior andreports on the effects of PPL Electric’s behavior-based

Stewart, James

2013-01-01T23:59:59.000Z

229

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network [OSTI]

Demand Response Research Center Staff Scientist, Lawrence Berkeley National Laboratory 1 Cyclotron, Building

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

230

Abstract--This paper formulates and develops a peak demand control tool for electric systems within the framework of direct  

E-Print Network [OSTI]

techniques. Index Terms--Demand Side Management, direct load control, peak demand control, genetic algorithms in order to evaluate the suitability of the decision chosen. The Demand Side Management (DSM) plans attempt for central air conditioning systems in commercial buildings, hence allowing a measured control of peak demand

Catholic University of Chile (Universidad CatĂłlica de Chile)

231

Abstract--This paper formulates and develops a peak demand control tool for electric systems within the framework of direct  

E-Print Network [OSTI]

techniques. Index Terms--Demand Side Management, direct load control, peak demand control, genetic algorithms in order to evaluate the suitability of the decision chosen. Demand Side Management (DSM) plans attempt for central air conditioning systems in commercial buildings, hence allowing a measured control of peak demand

Catholic University of Chile (Universidad CatĂłlica de Chile)

232

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

233

Can anything better come along? Reflections on the deep future of hydrogen-electricity systems  

SciTech Connect (OSTI)

Sometimes, for some things, we can project the deep future better than tomorrow. This is particularly relevant to our energy system where, if we focus on energy currencies, looking further out allows us to leap the tangles of today's conventional wisdom, vested mantras and ill-found hopes. We will first recall the rationale that sets out why - by the time the 22. century rolls around - hydrogen and electricity will have become civilizations staple energy currencies. Building on this dual-currency inevitability we'll then evoke the wisdom that, while we never know everything about the future we always know something. For future energy systems that 'something' is the role and nature of the energy currencies. From this understanding, our appreciation of the deep future can take shape - at least for infrastructures, energy sources and some imbedded technologies - but not service-delivery widgets. The long view provides more than mere entertainment. It should form the basis of strategies for today that, in turn, will avoid setbacks and blind alleys on our journey to tomorrow. Some people accept that hydrogen and electricity will be our future, but only 'until something better comes along.' The talk will conclude with logic that explains the response: 'No{exclamation_point} Nothing better will ever come along.'. (authors)

Scott, D. S. [International Association for Hydrogen Energy (United States); Inst. for Integrated Energy Systems, U. of Victoria (Canada); Environmentalists for Nuclear Energy (Canada)

2006-07-01T23:59:59.000Z

234

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

E-Print Network [OSTI]

B. Atanasiu (2006). Electricity Consumption and Efficiencywill see their electricity consumption rise significantly.the bulk of household electricity consumption in developing

Letschert, Virginie

2010-01-01T23:59:59.000Z

235

Assessing the Impact of Economically Dispatchable Wind Resources on the New England Wholesale Electricity Market.  

E-Print Network [OSTI]

??Among renewable energy resources, wind power is poised to contribute most significantly to meeting future wholesale electricity demand. However, the intermittent nature of wind power… (more)

Goggins, Andrew

2013-01-01T23:59:59.000Z

236

Historical Costs of Coal-Fired Electricity and Implications for the Future James McNerney,a,b  

E-Print Network [OSTI]

and comparing different electricity generation technologies using total costs, rather than costs of single A Change decomposition 15 1. Introduction Coal generates two-fifths of the world's electricity [1Historical Costs of Coal-Fired Electricity and Implications for the Future James Mc

237

A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing  

E-Print Network [OSTI]

1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real bills. Our focus is on a subset of this work that carries out demand response (DR) by modulating

Urgaonkar, Bhuvan

238

A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing  

E-Print Network [OSTI]

1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real for optimizing their utility bills. Our focus is on a subset of this work that carries out demand response (DR

Urgaonkar, Bhuvan

239

Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India  

SciTech Connect (OSTI)

The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

McNeil, Michael A.; Iyer, Maithili

2009-05-30T23:59:59.000Z

240

Electrical Demand Management  

E-Print Network [OSTI]

bination of a 2200 ton, the 1200 ton and the 800 ton units or by two 2200 ton units. We sought to di sp 1ace the 1200 ton or part of a 2200 ton unit with two steam turbi ne chill ers duri ng peak hours at a total reduced cost for supplying all building...

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid  

SciTech Connect (OSTI)

Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

242

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsby products 5 , and water heaters. Appliance diffusion isor endorsement levels. Water Heaters The share of electric

Letschert, Virginie

2010-01-01T23:59:59.000Z

243

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

244

An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion  

SciTech Connect (OSTI)

This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nuclear fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should remain in the 30-50 mils/kWh (1999 dollars) range of today in carbon sequestration is not needed, 30-60 mils/kWh if sequestration is required, or as high as 75 mils/kWh for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 70-100 nmils/kWh for 1- to 1.3-GW(e) scale power plants. Fusion costs will have to be reduced and/or alternative concepts derived before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal.

Delene, J.G.; Hadley, S.; Reid, R.L.; Sheffield, J.; Williams, K.A.

1999-09-01T23:59:59.000Z

245

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product estimates. Margaret Sheridan provided the residential forecast. Mitch Tian prepared the peak demand

246

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

247

Planning for electric utility solar applications: the effects on reliability and production cost estimates of the variability in demand  

SciTech Connect (OSTI)

Previous studies have shown the necessity of the consideration of hourly variability in the output from the intermittent generation source. However, the studies did not take into account the variability in the demand. A result is presented which shows that under general conditions the variability due to randomness can be ignored except in the neighborhood of the peak and minimum demands.

Fegan, G.R.; Percival, C.D.

1980-01-01T23:59:59.000Z

248

Conversations about electricity and the future: Findings of an international seminar and lessons from a year of surprises  

SciTech Connect (OSTI)

In January 1990 thirty-two experts from twelve countries convened for a five-day working Seminar on the Berkeley Campus of the University of California to discuss electricity supply and demand. The participants brought with them deep and diverse backgrounds in energy issues. A major concern of the First 1990 Group on Electricity was the potential impact of electricity shortages on the environment, just at a time of growing awareness of environmental deterioration. These concerns extend from local problems to nations, regions and global impacts. Indeed, because of the importance of electricity in our lives, potential electric power shortages already foreseeable in this decade could overwhelm public concern for the environment, unless critical, long-leadtime measures are taken very soon. The First 1990 Group on Electricity's Findings and Conclusions, the thinking that led to them, and the impact of events in the intervening year form the content of this book.

Rossin, A.D.; Fowler, K. (eds.)

1991-06-01T23:59:59.000Z

249

Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies  

E-Print Network [OSTI]

of sedimentary basins. 1. Introduction #12;In recent years emissions of carbon dioxide from the UK electricity of these measures for deployment in 2020 depends entirely on final UK carbon emission targets and the abilityScope for Future CO2 Emission Reductions from Electricity Generation through the Deployment

Haszeldine, Stuart

250

Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world  

SciTech Connect (OSTI)

The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

Heffner, Grayson C.

2002-09-01T23:59:59.000Z

251

Abstract--Electrical Distribution Systems (EDS) are facing ever-increasing complexity due to fast growing demand and large  

E-Print Network [OSTI]

to improve the reliability and quality of electrical distribution system. Index Terms- OPC technology, ICT1 Abstract-- Electrical Distribution Systems (EDS) are facing ever-increasing complexity due systems and Local Agent , Distribution Network, IEDs, Maltab OPC Toolbox, Distributed Generators

Paris-Sud XI, Université de

252

Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Markets  

E-Print Network [OSTI]

Wholesale Electricity Demand Response Program Comparison,J. (2009) Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services.

Cappers, Peter

2014-01-01T23:59:59.000Z

253

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

blending strategy of the electric motor and engine when thesignificantly lower electric motor power (ex. the singlehybrid even though the electric motor had a peak power of

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

254

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

255

The use of electrical resistance in the plant stem to measure plant response to soil moisture tension and evaporative demand  

E-Print Network [OSTI]

. . . . . . , . . . . . . ~. . . . . . . . . 30 10- Diurnal cotton plant stem electrical resistance readings as recorded simultaneously from three soil moisture levels. ~ 36 Flot 1-P (cotton), Diurnal cotton plant stem electrical resistance readings with soil moisture tension equal to 13... atsespheresl ~ ~ a ~ ~ ~ ~ ~ . ~ ~ ~ ~ ta ~ I ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ae ~ ~ ~ a ~ ~ t ~ ~ ~ ~ 37 13 ' Electrical resistance in the plant stem, and evapotrans- piration in non-irrigated and irrigated cotton plots during one diurnal period. . ~ 39 Plots...

Box, James E.

1956-01-01T23:59:59.000Z

256

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

E-Print Network [OSTI]

N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

DeForest, Nicholas

2014-01-01T23:59:59.000Z

257

Demand Response-Enabled Model Predictive HVAC Load Control in Buildings using Real-Time Electricity Pricing.  

E-Print Network [OSTI]

??A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy… (more)

Avci, Mesut

2013-01-01T23:59:59.000Z

258

Techno-economic Assessment of Wind Energy to Supply the Demand of Electricity for a Residential Community in Ethiopia.  

E-Print Network [OSTI]

?? The electricity sector is a major source of carbon dioxide emission that contributes to the global climate change. Over the past decade wind energy… (more)

Yebi, Adamu

2011-01-01T23:59:59.000Z

259

Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?  

SciTech Connect (OSTI)

25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is an example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R and D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which have recently been proposed for energy production, is critically reviewed. There are major challenges remaining that are shortly outlined. Scientific/technical achievements that are required in the light of the Fukushima accident are highlighted.

Schenkel, Roland [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen (Germany)

2012-06-19T23:59:59.000Z

260

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network [OSTI]

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enhancing Location Privacy for Electric Vehicles (at the right time)  

E-Print Network [OSTI]

An electric vehicle (also known as EV) is powered by an electric motor instead of a gasoline engine sudden demands for power). In future development, it has been proposed that such use of electric vehiclesEnhancing Location Privacy for Electric Vehicles (at the right time) Joseph K. Liu1 , Man Ho Au2

262

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network [OSTI]

Keywords: demand response, buildings, electricity use, Interface  Automated Demand Response  Building Automation of demand response in  commercial buildings.   One key 

Piette, Mary Ann

2009-01-01T23:59:59.000Z

263

The Fifth Northwest Electric Power  

E-Print Network [OSTI]

- generating resources would soon be unable to keep up with the demand for electricity. In the 1970s first plan, the lesson it drew from the experience of the 1970s and early 1980s was that the future can is unique in how it plans its energy future. Through the Northwest Power and Conservation Council's power

264

Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas  

E-Print Network [OSTI]

residences in Texas by climate zone as well as the average statewide electricity price ( /kWh). The ratio of electric/gas and heat pump houses constructed in Texas was determined using the annual surveys, National Association of Home Builders (NAHB... of Home Builders. Upper Marlboro, MD: NAHB Research Center. NREL. 2001. Building America House Performance Analysis Procedures. (NREL/TP-550-27754) Golden, CO: National Renewable Energy Laboratory. p.34 Paquette, Z., J. Miller, and M. DeWein. 2010...

Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

2012-01-01T23:59:59.000Z

265

Mean-Risk Optimization of Electricity Portfolios Using Multiperiod Polyhedral Risk Measures  

E-Print Network [OSTI]

Mean-Risk Optimization of Electricity Portfolios Using Multiperiod Polyhedral Risk Measures Andreas-risk optimization of electricity portfolios containing electricity futures as well as several com- ponents to satisfy a stochastic electricity demand: electricity spot market, two different types of supply contracts

Eichhorn, Andreas

266

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

of the engine and electric drive system. In the case of apower rating of the electric drive system in the vehicle. Aswas to operate on the electric drive when possible and to

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

267

Drivers of Future Energy Demand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9DrillingDrive

268

A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data  

SciTech Connect (OSTI)

Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

2013-05-01T23:59:59.000Z

269

PNNL Expert Landis Kannberg Discusses the Electrical Grid of the Future  

SciTech Connect (OSTI)

Mechanical Engineer Landis Kannberg discusses how PNNL is improving the nation's electricity infrastructure.

Landis Kannberg

2011-10-11T23:59:59.000Z

270

PNNL Expert Landis Kannberg Discusses the Electrical Grid of the Future  

ScienceCinema (OSTI)

Mechanical Engineer Landis Kannberg discusses how PNNL is improving the nation's electricity infrastructure.

Landis Kannberg

2013-06-10T23:59:59.000Z

271

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Commission (FERC) 2008a. “Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets,” (URL:1 2. Wholesale and Retails Electricity Markets in

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

272

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

273

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

274

Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world  

E-Print Network [OSTI]

MARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDMARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDend-users they serve. Demand Response Programs, once called

Heffner, Grayson C.

2002-01-01T23:59:59.000Z

275

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Max electricity demand across all days Min electricity demand across all days Electricity demand on single calendar day with highest peak Charging Unit Usage Residential Level 2...

276

Equity Effects of Increasing-Block Electricity Pricing  

E-Print Network [OSTI]

Evidence from Residential Electricity Demand,” Review ofLester D. “The Demand for Electricity: A Survey,” The BellResidential Demand for Electricity under Inverted Block

Borenstein, Severin

2008-01-01T23:59:59.000Z

277

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

industrial demand response (DR) with energy efficiency (EE) to most effectively use electricity and natural gas

McKane, Aimee T.

2009-01-01T23:59:59.000Z

278

The Rise of Electric Two-wheelers in China: Factors for their Success and Implications for the Future  

E-Print Network [OSTI]

congestion, growing energy demand and oil dependence, andMotor Vehicle Growth, Oil Demand, and CO2 Emissions through

Weinert, Jonathan X.

2007-01-01T23:59:59.000Z

279

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

SciTech Connect (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-03-20T23:59:59.000Z

280

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationssupervises testing in the Hybrid Vehicle Propulsion Systems

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

282

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

ScienceCinema (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-06-07T23:59:59.000Z

283

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network [OSTI]

s natural gas and electricity sectors within the timeframeto California’s electricity sector led to rolling blackoutsimpacts on the electricity sector is the hourly demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

284

Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies  

E-Print Network [OSTI]

over the better wind areas within the whole supply area, connected with the demand centres via HVDC of renewable energy, in particular wind energy, via HVDC (High- Voltage Direct Current) is possible from some of the large-scale distribution and transport of energy with a HVDC overlay grid. Using such a grid on top

285

Automated Demand Response and Commissioning  

SciTech Connect (OSTI)

This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-04-01T23:59:59.000Z

286

The wholesale market for electricity in England and Wales : recent developments and future reforms  

E-Print Network [OSTI]

The England and Wales wholesale electricity market is about to undergo major reform (NETA). I describe and analyse the proposed arrangements, contrasting them with those currently in operation. I argue that while NETA will ...

Sweeting, Andrew

2000-01-01T23:59:59.000Z

287

An analysis of hybrid-electric vehicles as the car of the future  

E-Print Network [OSTI]

This thesis will examine the validity of the benefits of the Hybrid-Electric Vehicle (HEV). With the recent focus on energy initiatives, reflected through Bush's state of the union, as well as President Hockfield's MIT ...

Kang, Heejay

2007-01-01T23:59:59.000Z

288

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

to assist the energy storage battery (12 kWh) in providingbattery and ultracapacitors in the vehicles when the characteristics of the energy storageBattery, Hybrid and Fuel Cell Electric Vehicle Symposium the energy storage

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

289

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

hybrid vehicle applications ultracap energy stored Wh ultracap peak power kW systemhybrid-electric vehicles Type of hybrid System Useable energysystem. In the case of a charge sustaining hybrid, the useable energy

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

290

Product definition for future electricity supply auctions: the 2006 Illinois experience  

SciTech Connect (OSTI)

Much of the discussion about new markets for electricity contracts focuses on the auction format to be used. Far less attention has been paid to the contract definition itself. An analysis of the 2006 Illinois Electricity Auction shows how a poorly formulated product definition can erode the performance of such markets. The authors propose an improved product definition to overcome the key problems they have identified. (author)

de Castro, Luciano; Negrete-Pincetic, Matias; Gross, George

2008-08-15T23:59:59.000Z

291

Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas  

E-Print Network [OSTI]

Abstract- Coal and hydro will be the main sources of electric energy in Chile for the near future and the environmental dilemma faced by the country, where both coal and hydro produce some kind of impact. The role

Dixon, Juan

292

[Electric and hybrid vehicle site operators program]: Thinking of the future  

SciTech Connect (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

Not Available

1993-01-01T23:59:59.000Z

293

California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning  

SciTech Connect (OSTI)

The California Energy Commission directed the Consortium for Electric Reliability Technology Solutions to analyze possible future scenarios for the California electricity system and assess transmission research and development (R&D) needs, with special emphasis on prioritizing public-interest R&D needs, using criteria developed by the Energy Commission. The scenarios analyzed in this report are not predictions, nor do they express policy preferences of the project participants or the Energy Commission. The public-interest R&D needs that are identified as a result of the analysis are one input that will be considered by the Energy Commission's Public Interest Energy Research staff in preparing a transmission R&D plan.

Eto, Joseph; Stovall, John P.

2003-04-01T23:59:59.000Z

294

Demand-Side Response from Industrial Loads  

SciTech Connect (OSTI)

Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

2013-01-01T23:59:59.000Z

295

Electricity: The future cannot be predicted - but it can be invented  

SciTech Connect (OSTI)

The electric power industry is about to experience another time of epochal change. Whatever structure and rules of the road emerge will be fertile ground for perceptive, market-oriented companies - and a graveyard for many of their competitors. The author presents his views on regulation within the electric industry as is has evolved over the past twenty years, and the role various factions have played in the implementation of these rules. He offers thoughts on how steps toward deregulation have been pursued by some special interests toward the enhancement of their lots in life. He argues that the opportunity is here for the consumer to become a player in the electric industry, but the implementation of this is not a given in the face of so many competing special interest groups.

Dar, V.K.

1994-12-01T23:59:59.000Z

296

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

297

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

298

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work Sheridan provided the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid

299

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy for demand response program impacts and contributed to the residential forecast. Mitch Tian prepared

300

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Abstract--We present new approaches for building yearly and seasonal models for 5-minute ahead electricity load  

E-Print Network [OSTI]

electricity load forecasting. They are evaluated using two full years of Australian electricity load data. We first analyze the cyclic nature of the electricity load and show that the autocorrelation function to building a single yearly model. I. INTRODUCTION PREDICTING the future electricity demand, also called

Koprinska, Irena

302

The future of GPS-based electric power system measurements, operation and control  

SciTech Connect (OSTI)

Much of modern society is powered by inexpensive and reliable electricity delivered by a complex and elaborate electric power network. Electrical utilities are currently using the Global Positioning System-NAVSTAR (GPS) timekeeping to improve the network`s reliability. Currently, GPS synchronizes the clocks on dynamic recorders and aids in post-mortem analysis of network disturbances. Two major projects have demonstrated the use of GPS-synchronized power system measurements. In 1992, the Electric Power Research Institute`s (EPRI) sponsored Phase Measurements Project used a commercially available Phasor Measurements Unit (PMU) to collect GPS-synchronized measurements for analyzing power system problems. In 1995, Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) under DOE`s and EPRI`s sponsorship launched the Wide Area Measurements (WAMS) project. WAMS demonstrated GPS-synchronized measurements over a large area of their power networks and demonstrated the networking of GPS-based measurement systems in BPA and WAPA. The phasor measurement technology has also been used to conduct dynamic power system tests. During these tests, a large dynamic resistor was inserted to simulate a small power system disturbance.

Rizy, D.T. [Oak Ridge National Lab., TN (United States); Wilson, R.E. [Western Area Power Administration, Golden, CO (United States); Martin, K.E.; Litzenberger, W.H. [Bonneville Power Administration, Portland, OR (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Overholt, P.N. [Dept. of Energy, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

1998-11-01T23:59:59.000Z

303

The business value of demand response for balance responsible parties.  

E-Print Network [OSTI]

?? By using IT-solutions, the flexibility on the demand side in the electrical systems could be increased. This is called demand response and is part… (more)

Jonsson, Mattias

2014-01-01T23:59:59.000Z

304

ELECTR-5419; No of Pages 13 Please cite this article in press as: L. de Castro, et al., Product Definition for Future Electricity Supply Auctions: The 2006 Illinois Experience, Electr. J. (2008), doi:10.1016/j.tej.2008.08.008  

E-Print Network [OSTI]

ELECTR-5419; No of Pages 13 Please cite this article in press as: L. de Castro, et al., Product be that the product definition is not important. As we will argue here, for the case of electricity supply Definition for Future Electricity Supply Auctions: The 2006 Illinois Experience, Electr. J. (2008), doi:10

Gross, George

2008-01-01T23:59:59.000Z

305

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

306

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

307

Electric utility system master plan  

SciTech Connect (OSTI)

This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

Erickson, O.M.

1992-10-01T23:59:59.000Z

308

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

Energy. “Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

309

California DREAMing: the design of residential demand responsive technology with people in mind  

E-Print Network [OSTI]

Advanced Metering and Demand Response in ElectricityChen, X. (2008). Demand Response-enabled Autonomous Controlfor Thermal Comfort, Demand Response, and Reduced Annual

Peffer, Therese E.

2009-01-01T23:59:59.000Z

310

Cooperative Demand Response Using Repeated Game for Price-Anticipating Buildings in Smart Grid  

E-Print Network [OSTI]

E. El-Saadany, “A summary of demand response in electricityYang, and X. Guan, “Optimal demand response scheduling withwith application to demand response,” IEEE Transactions on

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

311

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

2001. “Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

312

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

313

Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing  

E-Print Network [OSTI]

demand response and energy ef?ciency in commercial buildings,”building control strategies and techniques for demand response,”building electricity use with application to demand response,”

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

314

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

315

Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response  

E-Print Network [OSTI]

high.  Demand response helps to manage building electricity Building  Control Strategies and Techniques for Demand Response.  Non?Residential Building in California.   Demand Response 

Kiliccote, Sila

2011-01-01T23:59:59.000Z

316

Cooperative Demand Response Using Repeated Game for Price-Anticipating Buildings in Smart Grid  

E-Print Network [OSTI]

1. Demand response with price-anticipating buildings. C.one-stage demand response because all the building managersbuilding electricity use, with application to demand response,”

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

317

Published assessments bearing on the future use of ceramic superconductors by the electric power sector  

SciTech Connect (OSTI)

Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report`s purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science & Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

Giese, R.F.; Wolsky, A.M.

1992-08-25T23:59:59.000Z

318

Published assessments bearing on the future use of ceramic superconductors by the electric power sector  

SciTech Connect (OSTI)

Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report's purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

Giese, R.F.; Wolsky, A.M.

1992-08-25T23:59:59.000Z

319

Harnessing the power of demand  

SciTech Connect (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

320

Demand Response This is the first of the Council's power plans to treat demand response as a resource.1  

E-Print Network [OSTI]

Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssembly of aB -Future Vehicle

322

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

all days Percentage of charging units connected on single calendar day with peak electricity demand Charging Demand: Range of Aggregate Electricity Demand versus Time of Day...

323

Historical Costs of Coal-Fired Electricity and Implications for the Future  

E-Print Network [OSTI]

We study the costs of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation costs, energy density, thermal efficiency, plant construction cost, interest rate, and capacity factor. The dominant determinants of costs at present are the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, decreasing from 1902 - 1970, increasing from 1970 - 1990, and leveling off or decreasing a little since then. This leads us to forecast that even without carbon capture and storage, and even under an optimistic scenario in which construction costs resume their previously decreasing trending behavior, the cost of coal-based electricity will drop for a while but eventually be determined by the price of coal, which varies stochastically but shows no long term decreasing trends. Our analysis emphasizes the importance of using long time series and compari...

McNerney, James; Farmer, J Doyne

2010-01-01T23:59:59.000Z

324

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

Federspiel, Clifford

2010-01-01T23:59:59.000Z

325

Demand Control Utilizing Energy Management Systems - Report of Field Tests  

E-Print Network [OSTI]

Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

Russell, B. D.; Heller, R. P.; Perry, L. W.

1984-01-01T23:59:59.000Z

326

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes  

E-Print Network [OSTI]

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

Sastry, S. Shankar

327

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures  

E-Print Network [OSTI]

and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Trieu Berlin, Germany December 46, 2012 NREL/PR6A2057018 Renewable Electricity Futures Study (2012). Hand, M is a low carbon, low air pollutant, low fuel use, low water use, domestic, and sustainable electricity

328

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary  

SciTech Connect (OSTI)

This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

Hurlbut, D. J.; McLaren, J.; Gelman, R.

2013-08-01T23:59:59.000Z

329

Security and privacy in demand response systems in smart grid.  

E-Print Network [OSTI]

??Demand response programs are used in smart grid to improve stability of the electric grid and to reduce consumption of electricity and costs during peak… (more)

Paranjpe, Mithila

2011-01-01T23:59:59.000Z

330

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

331

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

McKane, Aimee T.

2009-01-01T23:59:59.000Z

332

Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study  

SciTech Connect (OSTI)

Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

2012-01-01T23:59:59.000Z

333

ICEPT Working Paper Comparison of Fuel Cell and Combustion Micro-CHP under Future Residential  

E-Print Network [OSTI]

ICEPT Working Paper Comparison of Fuel Cell and Combustion Micro-CHP under Future Residential and Combustion Micro-CHP under Future Residential Energy Demand Scenarios A.D. Hawkes2 and M.A. Leach Centre heat and power (micro-CHP) - a technology to provide heat and some electricity to individual

334

The Case for Electric Vehicles  

E-Print Network [OSTI]

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

335

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial floor space

336

Electricity Reliability  

E-Print Network [OSTI]

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

337

Demand Response Programs, 6. edition  

SciTech Connect (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

338

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

339

www.inl.gov A Future of Nuclear Energy  

E-Print Network [OSTI]

www.inl.gov A Future of Nuclear Energy: The Nuclear Renaissance, the Role of INL, and Potential in Nuclear Energy · Electrical Generation Supply/Demand · Global Warming, Greenhouse Gas Emissions/kilowatt-hour) Facts regarding nuclear energy in the US #12;· Standardized designs based on modularization producing

340

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin  

E-Print Network [OSTI]

the abated annual energy and demand expenditures, simplea/c annual abated energy and demand expenditures and presentof future abated energy and demand expenditures is estimated

Konopacki, Steven J.; Akbari, Hashem

2001-01-01T23:59:59.000Z

342

Near-Optimal Execution Policies for Demand-Response Contracts in Electricity Markets Vineet Goyal1, Garud Iyengar1 and Zhen Qiu1  

E-Print Network [OSTI]

-side participation including time of use pricing, real-time pricing for smart appliances and interruptible demand-AR0000235 the real-time spot price that can be significantly higher than the day-ahead price, especially contracts (if any) to offset the imbalance instead of paying the real-time spot price. Therefore

Goyal, Vineet

343

Reliability implications of price responsive demand : a study of New England's power system  

E-Print Network [OSTI]

With restructuring of the traditional, vertically integrated electricity industry come new opportunities for electricity demand to actively participate in electricity markets. Traditional definitions of power system ...

Whitaker, Andrew C. (Andrew Craig)

2011-01-01T23:59:59.000Z

344

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect (OSTI)

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

345

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

346

The alchemy of demand response: turning demand into supply  

SciTech Connect (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

347

A Full Demand Response Model in Co-Optimized Energy and  

SciTech Connect (OSTI)

It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

348

Trade-off analysis for electric power planning in New England : a methodology for dealing with uncertain futures  

E-Print Network [OSTI]

The use of a multi-attribute trade-off analysis technique as a vehicle to provide information to a diverse group of electric industry interests can play a beneficial role for developing long-range strategies for the electric ...

Connors, Stephen R.

1989-01-01T23:59:59.000Z

349

Planning for future uncertainties in electric power generation : an analysis of transitional strategies for reduction of carbon and sulfur emissions  

E-Print Network [OSTI]

The object of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gases. The research used the EPRI Electric Generation Expansion Analysis ...

Tabors, Richard D.

1991-01-01T23:59:59.000Z

350

The Rise of Electric Two-wheelers in China: Factors for their Success and Implications for the Future  

E-Print Network [OSTI]

households and the share spent on transportation both rose considerably. E2W prices decreased, gasoline prices rose and electricity

Weinert, Jonathan X.

2007-01-01T23:59:59.000Z

351

Water footprint of electric power generation : modeling its use and analyzing options for a water-scarce future  

E-Print Network [OSTI]

The interdependency between water and energy, sometimes called the water-energy nexus, is growing in importance as demand for both water and energy increases. Energy is required for water treatment and supply, while virtually ...

Delgado Martín, Anna

2012-01-01T23:59:59.000Z

352

FROM TECHNOLOGY COMPETITION TO REINVENTING INDIVIDUAL MOBILITY FOR A SUSTAINABLE FUTURE: CHALLENGES FOR NEW DESIGN STRATEGIES FOR ELECTRIC VEHICLE  

E-Print Network [OSTI]

FOR NEW DESIGN STRATEGIES FOR ELECTRIC VEHICLE MIDLER Christophe Ecole polytechnique BEAUME Romain Ecole-going revival of full battery electric vehicles (EV). Our analysis is drawn in two axes. First, we analyse In the automotive history, Electric Vehicle (EV) has been seen as an option for more than a century but lost

Boyer, Edmond

353

Home Network Technologies and Automating Demand Response  

SciTech Connect (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

354

Draft for Public Comment Appendix A. Demand Forecast  

E-Print Network [OSTI]

Draft for Public Comment A-1 Appendix A. Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required component of the Council's Northwest Regional Conservation had a tradition of acknowledging the uncertainty of any forecast of electricity demand and developing

355

Field Demonstration of Automated Demand Response for Both Winter and  

E-Print Network [OSTI]

) is a demand-side management strategy to reduce electricity use during times of high peak electric loads;1 Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings of a series of field test of automated demand response systems in large buildings in the Pacific Northwest

356

Demand Response Programs for Oregon  

E-Print Network [OSTI]

wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

357

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

358

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

359

The Role of Demand Response Policy Forum Series  

E-Print Network [OSTI]

The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

California at Davis, University of

360

Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement  

E-Print Network [OSTI]

Measuring Short-term Air Conditioner Demand Reductions forMeasuring Short-term Air Conditioner Demand Reductions forpilots have shown that air conditioner (AC) electric loads

Bode, Josh

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quantifying the Variable Effects of Systems with Demand Response Resources  

E-Print Network [OSTI]

Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

Gross, George

362

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

363

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

364

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Hydrogen and Electricity: Public-Private Partnershipand electricity demands. • Foster Public-Private Partnershipand electricity demands. • Foster Public-Private Partnership

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

365

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network [OSTI]

tariff-driven demand response in these buildings. By usingbuilding electricity costs distributed energy resources costs fuel costs demand responsebuilding energy systems. Local storage will enable demand response.

Stadler, Michael

2012-01-01T23:59:59.000Z

366

Global Energy: Supply, Demand, Consequences, Opportunities  

ScienceCinema (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2010-01-08T23:59:59.000Z

367

Electric Vehicle Deployment: Policy Questions and Impacts to...  

Energy Savers [EERE]

regarding policy questions and impacts to the electric grid from the energy demands of electric vehicles. EAC - Electric Vehicle Deployment - Impacts to the US Electric Grid -...

368

Demand for NGL as olefin plant feedstock  

SciTech Connect (OSTI)

Olefin plant demand for natural gas liquids as feedstock constitutes a key market for the NGL industry. Feedstock flexibility and the price sensitive nature of petrochemical demand are described. Future trends are presented. The formation and objectives of the Petrochemical Feedstock Association of the Americas are discussed.

Dodds, A.R. [Quantum Chemical Corp., Houston, TX (United States)

1997-12-31T23:59:59.000Z

369

The Rise of Electric Two-wheelers in China: Factors for their Success and Implications for the Future  

E-Print Network [OSTI]

based on interviews with Li-ion battery companies. The pacePerformance and Safety by Li-ion Battery for Pedelec. Lighth. Outlook of Future Li-ion Battery Chemistries for Safety

Weinert, Jonathan X.

2007-01-01T23:59:59.000Z

370

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

sjstems (ITS) Electricity Sector Promoting nuclear useindustrial and electricity generation sectors (Table 4-2).In the industrial sector, electricity demand will increase,

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

371

Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration  

SciTech Connect (OSTI)

Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

2014-01-31T23:59:59.000Z

372

Automated demand response applied to a set of commercial facilities.  

E-Print Network [OSTI]

?? Commercial facility demand response refers to voluntary actions by customers that change their consumption of electric power in response to price signals, incentives, or… (more)

Lincoln, Donald F.

2010-01-01T23:59:59.000Z

373

SGDP Report Now Available: Interoperability of Demand Response...  

Office of Environmental Management (EM)

and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

374

SGDP Report: Interoperability of Demand Response Resources Demonstrati...  

Office of Environmental Management (EM)

and demonstrate methodologies to enhance the ability of customer sited demand response resources, both conventional and renewable, to integrate more effectively with electric...

375

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

in Demand Response for Wholesale Ancillary Services. ” Incan be used to link wholesale and retail real-time prices.11 Wholesale Electricity Market Information

Ghatikar, Girish

2010-01-01T23:59:59.000Z

376

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

377

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

378

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

379

Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.  

SciTech Connect (OSTI)

Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

Starke, Michael R [ORNL; Kirby, Brendan J [ORNL; Kueck, John D [ORNL; Todd, Duane [Alcoa; Caulfield, Michael [Alcoa; Helms, Brian [Alcoa

2009-02-01T23:59:59.000Z

380

What does it take to create a clean energy future for Washington? Solar, Wind, Hydro  

E-Print Network [OSTI]

Solar, Wind, Hydro A Complete Energy System Home and Commercial Generation Demand Response 10-10 m 10's leadership and economic advantages in clean energy. - The mission of the Clean Energy Institute is to accelerate the adoption of a clean energy future by advancing next generation solar energy and electrical

Hochberg, Michael

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Primer on the Fifth Power Plan: A Guide for Our Energy Future  

E-Print Network [OSTI]

be unable to keep up with the demand for electricity. In the 1970s, the Bonneville Power AdministrationA Primer on the Fifth Power Plan: A Guide for Our Energy Future Spring 2004 Striking a Balance Between Energy and the Environment in the Columbia River Basin he Northwest is unique in how it plans its

382

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

383

Strategies for Demand Response in Commercial Buildings  

SciTech Connect (OSTI)

This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-06-20T23:59:59.000Z

384

Development and evaluation of fully automated demand response in large facilities  

SciTech Connect (OSTI)

This report describes the results of a research project to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve electric grid reliability, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. The two main drivers for widespread demand responsiveness are the prevention of future electricity crises and the reduction of electricity prices. Additional goals for price responsiveness include equity through cost of service pricing, and customer control of electricity usage and bills. The technology developed and evaluated in this report could be used to support numerous forms of DR programs and tariffs. For the purpose of this report, we have defined three levels of Demand Response automation. Manual Demand Response involves manually turning off lights or equipment; this can be a labor-intensive approach. Semi-Automated Response involves the use of building energy management control systems for load shedding, where a preprogrammed load shedding strategy is initiated by facilities staff. Fully-Automated Demand Response is initiated at a building or facility through receipt of an external communications signal--facility staff set up a pre-programmed load shedding strategy which is automatically initiated by the system without the need for human intervention. We have defined this approach to be Auto-DR. An important concept in Auto-DR is that a facility manager is able to ''opt out'' or ''override'' an individual DR event if it occurs at a time when the reduction in end-use services is not desirable. This project sought to improve the feasibility and nature of Auto-DR strategies in large facilities. The research focused on technology development, testing, characterization, and evaluation relating to Auto-DR. This evaluation also included the related decisionmaking perspectives of the facility owners and managers. Another goal of this project was to develop and test a real-time signal for automated demand response that provided a common communication infrastructure for diverse facilities. The six facilities recruited for this project were selected from the facilities that received CEC funds for new DR technology during California's 2000-2001 electricity crises (AB970 and SB-5X).

Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

2004-03-30T23:59:59.000Z

385

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network [OSTI]

on the higher of either $500/MWH, or the wholesale electricity price in the customer?s area, during the time of the event. Exact payment arrangements differ by program provider. Day-Ahead Demand Response Program Day-Ahead Demand Response Program (DADRP...), offers retail electricity customers a chance to bid load reduction capability in New York State?s wholesale electricity market. To participate, companies bid their load reduction capability, on a day-ahead basis, into the wholesale electricity market...

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

386

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

SciTech Connect (OSTI)

Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

2008-11-19T23:59:59.000Z

387

A Successful Implementation with the Smart Grid: Demand Response Resources  

E-Print Network [OSTI]

1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

Gross, George

388

Opportunities and Challenges for Data Center Demand Response  

E-Print Network [OSTI]

Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

Wierman, Adam

389

An Integrated Architecture for Demand Response Communications and Control  

E-Print Network [OSTI]

An Integrated Architecture for Demand Response Communications and Control Michael LeMay, Rajesh for the MGA and ZigBee wireless communications. Index Terms Demand Response, Advanced Meter Infrastructure. In principle this can be done with demand response techniques in which electricity users take measures

Gross, George

390

Towards Continuous Policy-driven Demand Response in Data Centers  

E-Print Network [OSTI]

Towards Continuous Policy-driven Demand Response in Data Centers David Irwin, Navin Sharma, and Prashant Shenoy University of Massachusetts, Amherst {irwin,nksharma,shenoy}@cs.umass.edu ABSTRACT Demand response (DR) is a technique for balancing electricity sup- ply and demand by regulating power consumption

Shenoy, Prashant

391

Demand Response Providing Ancillary A Comparison of Opportunities and  

E-Print Network [OSTI]

LBNL-5958E Demand Response Providing Ancillary Services A Comparison of Opportunities Government or any agency thereof or The Regents of the University of California. #12;Demand Response System Reliability, Demand Response (DR), Electricity Markets, Smart Grid Abstract Interest in using

392

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

demand-side management activities and commercial buildings’demand-side management (DSM) framework presented in Figure 1 provides continuous energy management concepts for shaping electric loads in buildings,demand-side management activities, DR methods and levels of automation. We highlight OpenADR as a standard for commercial buildings

Kiliccote, Sila

2014-01-01T23:59:59.000Z

393

Coordination of Energy Efficiency and Demand Response  

SciTech Connect (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

394

Electric Efficiency Standard  

Broader source: Energy.gov [DOE]

In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity...

395

Hydrogen: Fueling the Future  

SciTech Connect (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

396

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

SciTech Connect (OSTI)

We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers participating in automated demand response programs with building control systems can respond to dynamic prices by using the actual prices as inputs to their control systems. Alternatively, prices can be mapped into"building operation modes," which can act as inputs to control systems. We present several different strategies customers could use to map prices to operation modes. Our results show that OpenADR can be used to communicate dynamic pricing within the Smart Grid and that OpenADR allows for interoperability with existing and future systems, technologies, and electricity markets.

Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Kiliccote, Sila

2010-06-02T23:59:59.000Z

397

Measuring the capacity impacts of demand response  

SciTech Connect (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

398

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

technology investments and more permanent behavior change. Both objectives also address foundational energy usage

Levy, Roger

2014-01-01T23:59:59.000Z

399

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

potential as-available renewable over generation issues,examining many of the roadmap renewable integration options.integration of significant renewable resources into the HECO

Levy, Roger

2014-01-01T23:59:59.000Z

400

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Examination Table 1. HECO Water Heater Direct Control –Reliability Table 2. HECO Water Heater Direct Control –criteria for current water heater and air conditioning

Levy, Roger

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Implications of Low Electricity Demand Growth  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000Implications ofU.S. Energy

402

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

development effort. While storage water heater options beganany load reduction. 36 Water heater storage capability, ifstrategies based on water heater storage capacity 37 – the

Levy, Roger

2014-01-01T23:59:59.000Z

403

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

Shen, Bo

2013-01-01T23:59:59.000Z

404

The house of the future  

ScienceCinema (OSTI)

Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

None

2010-09-01T23:59:59.000Z

405

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

E-Print Network [OSTI]

building control strategies and techniques for demand response,”demand response and energy ef?ciency in commercial buildings,”building electricity use with application to demand response,”

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

406

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

impacts of marginal electricity demand for CA hydrogenUS DOE, 2007. EIA. Electricity data. [cited 2007 March 2,F. Decarbonized hydrogen and electricity from natural gas.

Yang, Christopher

2008-01-01T23:59:59.000Z

407

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

408

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

409

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

410

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

and Demand Response in Commercial Buildings”, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

411

Future Grid: The Environment Future Grid Initiative White Paper  

E-Print Network [OSTI]

Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

412

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy-2 Demand Forecast Disaggregation......................................................1-4 Statewide

413

Demand Dispatch-Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency EIA Energy Information Administration EMS Energy Management Systems ERCOT Electric Reliability Council of Texas EV Electric Vehicle FERC Federal Energy Regulatory...

414

Combined cycle meets Thailand's growing power demands  

SciTech Connect (OSTI)

This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

1993-08-01T23:59:59.000Z

415

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

416

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

417

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network [OSTI]

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

418

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

419

Demand Side Bidding. Final Report  

SciTech Connect (OSTI)

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

420

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network [OSTI]

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

International Oil Supplies and Demands. Volume 1  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

422

International Oil Supplies and Demands. Volume 2  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

423

Progress toward Producing Demand-Response-Ready Appliances  

SciTech Connect (OSTI)

This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

Hammerstrom, Donald J.; Sastry, Chellury

2009-12-01T23:59:59.000Z

424

MTBE demand as a oxygenated fuel additive  

SciTech Connect (OSTI)

The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

NONE

1996-10-01T23:59:59.000Z

425

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

electricity demand. Imported biofuels would still be used.it to make low-carbon biofuels, using feedstocks that bestavailable, sustainable biofuels in 2050 are about 13 bgge/

2011-01-01T23:59:59.000Z

426

POWERTECH 2009, JUNE 28 -JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response Resources in  

E-Print Network [OSTI]

POWERTECH 2009, JUNE 28 - JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response, IEEE, Abstract--The use of demand-side resources, in general, and demand response resources (DRRs concerns. Integration of demand response resources in the competitive electricity markets impacts resource

Gross, George

427

Structuring and integrating human knowledge in demand forecasting: a judgmental adjustment approach  

E-Print Network [OSTI]

1 Structuring and integrating human knowledge in demand forecasting: a judgmental adjustment.cheikhrouhou@epfl.ch Abstract Demand forecasting consists of using data of the past demand to obtain an approximation of the future demand. Mathematical approaches can lead to reliable forecasts in deterministic context through

Paris-Sud XI, Université de

428

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

for the boom: a simulation study of power plant constructionLEDGE-CA simulations, about 22 GW of NGCT power plants arepower plant type (by prime mover), location, and ownership. Simulation

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

429

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

121]. Like other renewable resources and nuclear power, inhydro, nuclear, or renewable resources, and average GHGsupplied by each renewable resource and the capacity of

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

430

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

109 Figure 57. Assumed natural gas and coal prices in LEDGE-in Figure 57. The coal price stays relatively constantAssumed natural gas and coal prices in LEDGE-CA [152]. It

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

431

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

wind turbines, biomass, or geothermal power. By 2050, thebiomass, geothermal, and nuclear power plants arebiomass Nuclear, geothermal, and biomass power plants are

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

432

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Generation from wind and solar power plants can be highlygrid. When wind stops blowing, another power plant must bethan intermittent wind availability or uncertain power plant

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

433

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

in the state come renewable resources by 2010 [26]. Thegeneration to come from renewable resources by 2020 [27].loads until the renewable resource is available. Tehachapi

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

434

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

high fraction of coal generation, greenhouse gas emissionsimports in 2005 from [111]; instate coal generation adjustedaccordingly Instate coal generation set equal to 2005 value,

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

435

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

from existing power plants without CCS technology declines.from existing NGCC and NGCT plants without CCS technology.Mixed technology grid profiles, existing nuclear plants are

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

436

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Biomass Geothermal Small Hydro Solar Wind Statewide CA-N CA-with a relatively small hydro resource require additionaldairy Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

437

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

cycle NGCT Natural gas combustion turbine NGST Natural gasfrom NGCC and natural gas combustion turbine (NGCT) powerfrom average natural gas combustion turbine (NGCT) plants.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

438

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

plant dispatched – a nuclear plant, for example – ratherCalifornia’s two nuclear plants represent 8% of capacity,are coal facilities, one is a nuclear plant, and one is

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

439

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

turbine NGST Natural gas steam turbine NWPP Northwest Powerfrom natural gas steam turbine (NGST) and natural gasNGST = Natural gas steam turbine; NWPP = Northwest Power

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

440

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

fractions of coal power, marginal emissions rates could beon coal power in LADWP leads to higher average emissionscoal-fired power plants, respectively, median hourly GHG emissions

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electric Drive Vehicle Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

pricing encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid *...

442

The Electricity and Transportation Infrastructure Convergence  

E-Print Network [OSTI]

The Electricity and Transportation Infrastructure Convergence Using Electrical Vehicles Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The Electricity and Transportation Infrastructure Convergence Using Electrical

443

Background paper for "The 10-50 Solution: Technologies and Policies for a Low-Carbon Future" Pew Center & NCEP Conference, Washington, DC, March 25 26, 2004  

E-Print Network [OSTI]

School of Public Policy 310 Barrows Hall, University of California, Berkeley, CA 94720-3050 USA Email, and nations. Over the next five decades solar and wind energy could provide well over one third of electricity for a future requiring significantly more energy than the current global supply capacity of ~10 TW demand

Kammen, Daniel M.

444

Coordinating Interstate ElectricTransmission Siting: An Introduction...  

Broader source: Energy.gov (indexed) [DOE]

the near future. While improved demand-side management (including energy effi ciency and demand response), bett er utilization of the existing transmission grid, and other...

445

The Impacts of Commercial Electric Utility Rate Structure Elements...  

Broader source: Energy.gov (indexed) [DOE]

FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Retail Demand Response in Southwest Power Pool Future Power Systems 21 - The Smart Customer...

446

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

447

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

448

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

H. , and James M. Gri˘ n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

449

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

450

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

451

Satisfiability of Elastic Demand in the Smart Grid  

E-Print Network [OSTI]

We study a stochastic model of electricity production and consumption where appliances are adaptive and adjust their consumption to the available production, by delaying their demand and possibly using batteries. The model incorporates production volatility due to renewables, ramp-up time, uncertainty about actual demand versus planned production, delayed and evaporated demand due to adaptation to insufficient supply. We study whether threshold policies stabilize the system. The proofs use Markov chain theory on general state space.

Tomozei, Dan-Cristian

2010-01-01T23:59:59.000Z

452

Interoperability of Demand Response Resources Demonstration in NY  

SciTech Connect (OSTI)

The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

Wellington, Andre

2014-03-31T23:59:59.000Z

453

Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)  

SciTech Connect (OSTI)

Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Majumdar, Arun

2008-07-29T23:59:59.000Z

454

Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Majumdar, Arun

2011-04-28T23:59:59.000Z

455

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

456

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

457

Electric Power annual 1996: Volume II  

SciTech Connect (OSTI)

This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

NONE

1997-12-01T23:59:59.000Z

458

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

459

The Future Potential of Waver Power in the United States  

SciTech Connect (OSTI)

The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the United States, is located close to coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As a renewable electricity generation technology, ocean wave energy offers a low air pollutant option for diversifying the U.S. electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses the following: (1) The theoretical, technical and practical potential for electricity generation from wave energy (2) The present lifecycle cost profile (Capex, Opex, and Cost of Electricity) of wave energy conversion technology at a reference site in Northern California at different plant scales (3) Cost of electricity variations as a function of deployment site, considering technical, geo-spatial and and electric grid constraints (4) Technology cost reduction pathways (5) Cost reduction targets at which the technology will see significant deployment within US markets, explored through a series of deployment scenarios RE Vision Consulting, LLC (RE Vision), engaged in various analyses to establish current and future cost profiles for marine hydrokinetic (MHK) technologies, quantified the theoretical, technical and practical resource potential, performed electricity market assessments and developed deployment scenarios. RE Vision was supported in this effort by NREL analysts, who compiled resource information, performed analysis using the ReEDSa model to develop deployment scenarios, and developed a simplified assessment of the Alaska and Hawaii electricity markets.

Mirko Previsic; Jeff Epler; Maureen Hand; Donna Heimiller; Walter Short; Kelly Eurek

2012-09-20T23:59:59.000Z

460

Power system balancing with high renewable penetration : the potential of demand response .  

E-Print Network [OSTI]

??This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model… (more)

Critz, David Karl

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Demand response compensation, net Benefits and cost allocation: comments  

SciTech Connect (OSTI)

FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

Hogan, William W.

2010-11-15T23:59:59.000Z

462

Electronics, Electrical Engineering  

E-Print Network [OSTI]

SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World

463

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

464

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

owned integrated hydro electricity utilities prevail,s Loading Order for Electricity Resources”, Staff Report,International Developments in Electricity Demand Management

McNeil, MIchael

2011-01-01T23:59:59.000Z

465

Open Automated Demand Response for Small Commerical Buildings  

SciTech Connect (OSTI)

This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

2009-05-01T23:59:59.000Z

466

Coal: Energy for the future  

SciTech Connect (OSTI)

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

NONE

1995-05-01T23:59:59.000Z

467

Researcher explores economics of U.S. urban water demand  

E-Print Network [OSTI]

Story by Kathy Wythe tx H2O | pg. 24 Researcher explores economics of U.S. urban water demand Photo by: Danielle Supercinski tx H2O | pg. 25 With projected demands for future water supplies becoming more critical, understand- ing urban... contributing to urban water demand in the United States. They analyzed how water use is affected by water prices in nearly 200 U.S. cities. ?It?s interesting that many people still buy into the myth that water demand is not price- sensitive, even though...

Wythe, Kathy

2009-01-01T23:59:59.000Z

468

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

469

Emerging Technologies for Industrial Demand-Side Management  

E-Print Network [OSTI]

as demand-side management strategies for industrial consumers of electricity. An alternative strategy to replacing aging electric motors with high efficiency or ASD motors is a turbine let-down. A turbine letdown is a turbine which uses pressure reduction...

Neely, J. E.; Kasprowicz, L. M.

470

Guidelines for Marketing Demand-Side Management in the Commercial Sector  

E-Print Network [OSTI]

For the past decade, electric and gas utilities throughout the nation, not just in hot and humid climates, have promoted energy efficiency through a variety of demand-side management (DSM) programs. In 1984, the Electric Power Research Institute...

George, S. S.

1988-01-01T23:59:59.000Z

471

Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities  

E-Print Network [OSTI]

of electrical energy in these plants will be shown. Results from potential electrical efficiency, demand response, and natural gas efficiency measures that have applications in tomato processing facilities will be presented. Additionally, water conservation...

Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

2013-01-01T23:59:59.000Z

472

Electric Power Research Institute Cooperation to Increase Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. Electric...

473

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network [OSTI]

costs EV battery degradation costs electricity sales fixedand sales, DER capital costs, fuel costs, demand response measures and EV

Stadler, Michael

2012-01-01T23:59:59.000Z

474

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

.S., electric power generation accounts for significant portions of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand #12;OutlineOutline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions

Nagurney, Anna

475

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand. #12;Introduction Literature Review Integrated Electric Power Supply ChainsIntroduction Literature Review Integrated Electric Power Supply Chains Empirical Examples

Nagurney, Anna

476

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

477

Open Automated Demand Response Communications Specification (Version 1.0)  

SciTech Connect (OSTI)

The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

2009-02-28T23:59:59.000Z

478

Load Reduction, Demand Response and Energy Efficient Technologies and Strategies  

SciTech Connect (OSTI)

The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

2008-11-19T23:59:59.000Z

479

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

480

Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services  

E-Print Network [OSTI]

Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Christopher Parkinson B highly-distributed sustainable demand- side infrastructure, in the form of heat pumps, electric vehicles

Victoria, University of

Note: This page contains sample records for the topic "future electricity demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Tracking Progress Last updated 5/7/2014 Statewide Energy Demand 1  

E-Print Network [OSTI]

dollars) to $1.8 trillion in 2012 (2012 dollars). Forecast Electricity Demand Although the California Energy Commission's energy demand forecast includes multiple scenarios, the Energy Commission worked together1 to agree upon a single managed demand forecast that incorporates all energy efficiency

482

Residential Demand Response under Uncertainty Paul Scott and Sylvie Thiebaux and  

E-Print Network [OSTI]

Residential Demand Response under Uncertainty Paul Scott and Sylvie Thi´ebaux and Menkes van den stochastic optimisation in residential demand response. 1 Introduction Electricity consumption in residential participate in smart grid activities such as demand response where loads are shifted to times favourable

Thiébaux, Sylvie

483

Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems  

E-Print Network [OSTI]

Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable Resources Electric Energy System #12;#12;Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems benefits correspond to a real-world power system, as we use actual data on demand-response and wind

484

Demo Abstract: Toward Data-driven Demand-Response Optimization in a Campus Microgrid  

E-Print Network [OSTI]

Demo Abstract: Toward Data-driven Demand-Response Optimization in a Campus Microgrid Yogesh Simmhan-driven demand response optimization (DR) in the USC campus microgrid, as part of the Los An- geles Smart Grid of this project is to investigate techniques for demand-response optimization (DR) ­ cur- tailing the electricity

Prasanna, Viktor K.

485

energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR  

E-Print Network [OSTI]

240 chapter 12 energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR Vincent C. Tidwell the potential to impact the production, demand, and delivery of energy in a number of ways. Chapter citation;energy: supply, demand, and impacts 241 · Delivery of electricity may become more vulnerable

Kammen, Daniel M.

486

Demand-Side Load Scheduling Incentivized by Dynamic Energy Hadi Goudarzi, Safar Hatami, and Massoud Pedram  

E-Print Network [OSTI]

Demand-Side Load Scheduling Incentivized by Dynamic Energy Prices Hadi Goudarzi, Safar Hatami growth in electrical energy consumption under worst- case demand conditions [1]. To avoid expending 90089 {hgoudarz, shatami, pedram}@usc.edu Abstract--Demand response is an important part of the smart

Pedram, Massoud

487

Multi-period Optimal Procurement and Demand Responses in the Presence of Uncertain Supply  

E-Print Network [OSTI]

Smart Grid involves changes in both the demand side and supply side. On the supply side, more renewable energy will be integrated to reduce greenhouse gas emissions and other pollution. On the demand side, smarter demand management systems will be available to respond to the electricity price and improve

Low, Steven H.

488

A collaborative demand forecasting process with event-based fuzzy judgments  

E-Print Network [OSTI]

1 A collaborative demand forecasting process with event-based fuzzy judgments Naoufel Cheikhrouhoua to reliable demand forecast in some environments by extrapolating regular patterns in time-series. However for demand planning purposes. Since forecasters have partial knowledge of the context and of future events

Boyer, Edmond

489

(2013) 128 Data Center Demand Response: Avoiding the Coincident Peak via  

E-Print Network [OSTI]

(2013) 1­28 Data Center Demand Response: Avoiding the Coincident Peak via Workload Shifting.chen@hp.com Abstract Demand response is a crucial aspect of the future smart grid. It has the potential to provide centers' participation in demand response is becoming increasingly important given their high

Wierman, Adam

490

The Impact of Technological Change and Lifestyles on the Energy Demand  

E-Print Network [OSTI]

demand into a model of total private consumption. Private consumption is determined by economic variables of technological and socio- demographic variables on the demand for gasoline/diesel, heating and electricity. Key, households' electricity and heat consumption are growing rapidly despite of technological progress

Steininger, Karl W.

491

Demand Dispatch-Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemand

492

Customer focused collaborative demand planning  

E-Print Network [OSTI]

Many firms worldwide have adopted the process of Sales & Operations Planning (S&OP) process where internal departments within a firm collaborate with each other to generate a demand forecast. In a collaborative demand ...

Jha, Ratan (Ratan Mohan)

2008-01-01T23:59:59.000Z

493

Please cite this article in press as: Hughes L, Meeting residential space heating demand with wind-generated electricity, Renewable Energy (2009), doi:10.1016/j.renene.2009.11.014  

E-Print Network [OSTI]

, or compressed air (Blarke and Lund 2008). Energy suppliers are forced to go to these lengths when integrating. The benefits as well as the limitations of the approach are discussed in detail. Keywords: Energy storage- generated electricity, Renewable Energy (2009), doi:10.1016/j.renene.2009.11.014 ERG/200909 Meeting

Hughes, Larry

494

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

495

Office of Electricity Delivery And Energy Reliability To Hold...  

Broader source: Energy.gov (indexed) [DOE]

Office of Electricity Delivery And Energy Reliability To Hold Technical Conference On The Design Of Future Electric Transmission Office of Electricity Delivery And Energy...

496

1.0 Motivation............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st  

E-Print Network [OSTI]

............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st Century..........................2 1.2 UK Energy ...................................................................................24 6.6 Correlation between Wind Strength and Demand for Electricity..................24 6

497

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network [OSTI]

Demand-Side Management Framework for Commercial BuildingsTimes (NYT) Building and Its Demand-Side Management Lawrencedemand-side management (DSM) framework presented in Table 1 provides three major areas for changing electric loads in buildings:

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

498

[Electric and hybrid vehicle site operators program]: Thinking of the future. Second year third quarter report, January 1--March 31, 1993  

SciTech Connect (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants` names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State`s campus.

Not Available

1993-04-01T23:59:59.000Z

499

TRAVEL DEMAND AND RELIABLE FORECASTS  

E-Print Network [OSTI]

TRAVEL DEMAND AND RELIABLE FORECASTS FOR TRANSIT MARK FILIPI, AICP PTP 23rd Annual Transportation transportation projects § Develop and maintain Regional Travel Demand Model § Develop forecast socio in cooperative review during all phases of travel demand forecasting 4 #12;Cooperative Review Should Include

Minnesota, University of

500

Demand Forecasting of New Products  

E-Print Network [OSTI]

Demand Forecasting of New Products Using Attribute Analysis Marina Kang A thesis submitted Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock upon currently employed new-SKU demand forecasting methods which involve the processing of large

Sun, Yu