Powered by Deep Web Technologies
Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Future with (out) Carbon Cycle 2.0 (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Bill Collins, Head of LBNL's Climate Sciences Department, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Collins, Bill

2011-06-08T23:59:59.000Z

2

Carbon Cycle 2.0: Bill Collins: A future without CC2.0  

ScienceCinema (OSTI)

Bill Collins speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Bill Collins

2010-09-01T23:59:59.000Z

3

Carbon Capture (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Smit, Berend

2011-06-08T23:59:59.000Z

4

Soil metagenomics and carbon cycling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soil metagenomics and carbon cycling Soil metagenomics and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon...

5

Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Paul Alivisatos, LBNL Director speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 4, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Alivisatos, Paul

2011-06-03T23:59:59.000Z

6

Global Impacts (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Gadgil, Ashok [EETD and UC Berkeley

2011-06-08T23:59:59.000Z

7

Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

DePaolo, Don [Director, LBNL Earth Sciences Division

2011-06-08T23:59:59.000Z

8

A Call to Action: Carbon Cycle 2.0 (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Alivisatos, Paul

2011-06-08T23:59:59.000Z

9

Carbon Cycle 2.0: Ashok Gadgil: global impact  

ScienceCinema (OSTI)

Ashok Gadgil speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ashok Gadgi

2010-09-01T23:59:59.000Z

10

Energy Demand in China (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Price, Lynn

2011-06-08T23:59:59.000Z

11

Biofuels Science and Facilities (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Jay D. Keasling speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Keasling, Jay D

2011-06-03T23:59:59.000Z

12

Carbon-Fuelled Future  

SciTech Connect (OSTI)

Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The authorąs work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Appel, Aaron M.

2014-09-12T23:59:59.000Z

13

Simple ocean carbon cycle models  

SciTech Connect (OSTI)

Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

1994-02-01T23:59:59.000Z

14

Prediction of future fifteen solar cycles  

E-Print Network [OSTI]

In the previous study (Hiremath 2006a), the solar cycle is modeled as a forced and damped harmonic oscillator and from all the 22 cycles (1755-1996), long-term amplitudes, frequencies, phases and decay factor are obtained. Using these physical parameters of the previous 22 solar cycles and by an {\\em autoregressive model}, we predict the amplitude and period of the future fifteen solar cycles. Predicted amplitude of the present solar cycle (23) matches very well with the observations. The period of the present cycle is found to be 11.73 years. With these encouraging results, we also predict the profiles of future 15 solar cycles. Important predictions are : (i) the period and amplitude of the cycle 24 are 9.34 years and 110 ($\\pm 11$), (ii) the period and amplitude of the cycle 25 are 12.49 years and 110 ($\\pm$ 11), (iii) during the cycles 26 (2030-2042 AD), 27 (2042-2054 AD), 34 (2118-2127 AD), 37 (2152-2163 AD) and 38 (2163-2176 AD), the sun might experience a very high sunspot activity, (iv) the sun might also experience a very low (around 60) sunspot activity during cycle 31 (2089-2100 AD) and, (v) length of the solar cycles vary from 8.65 yrs for the cycle 33 to maximum of 13.07 yrs for the cycle 35.

K. M. Hiremath

2007-04-11T23:59:59.000Z

15

Carbon Cycle 2.0: Nitash Balsara: Energy Storage  

ScienceCinema (OSTI)

Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

Nitash Balsara

2010-09-01T23:59:59.000Z

16

Carbon Cycle 2.0: Jay Keasling: Biofuels  

ScienceCinema (OSTI)

Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

Jay Keasling

2010-09-01T23:59:59.000Z

17

Carbon Cycle 2.0: Robert Cheng and Juan Meza  

ScienceCinema (OSTI)

Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

Robert Cheng and Juan Meza

2010-09-01T23:59:59.000Z

18

Tools for supercritical carbon dioxide cycle analysis and the cycle's applicability to sodium fast reactors  

E-Print Network [OSTI]

The Sodium-Cooled Fast Reactor (SFR) and the Supercritical Carbon Dioxide (S-C0?) Recompression cycle are two technologies that have the potential to impact the power generation landscape of the future. In order for their ...

Ludington, Alexander R. (Alexander Rockwell)

2009-01-01T23:59:59.000Z

19

Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle.  

E-Print Network [OSTI]

Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle. Carbon is one is without carbon. Where else is carbon on our Earth? In rocks, living organisms, the atmosphere, oceans Does carbon stay in one place? What processes include moving carbon? Introduce residence time: How long does

Carrington, Emily

20

Low Cost Solar Energy Conversion (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ramesh, Ramamoorthy

2011-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Carbon Cycle 2.0: Paul Alivisatos: Introduction  

ScienceCinema (OSTI)

Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Paul Alivisatos

2010-09-01T23:59:59.000Z

22

Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Robert Cheng and Juan Meza provide two presentations in one session at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Cheng, Robert K; Meza, Juan

2011-06-08T23:59:59.000Z

23

Atmospheric carbon dioxide and the global carbon cycle  

SciTech Connect (OSTI)

This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

Trabalka, J R [ed.

1985-12-01T23:59:59.000Z

24

Carbon Cycle 2.0: Mary Ann Piette: Impact of efficient buildings  

SciTech Connect (OSTI)

Mary Ann Piette speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Mary Ann Piette

2010-02-09T23:59:59.000Z

25

Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Balsara, Nitash

2011-06-03T23:59:59.000Z

26

Carbon Cycle 2.0: Mary Ann Piette: Impact of efficient buildings  

ScienceCinema (OSTI)

Mary Ann Piette speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Mary Ann Piette

2010-09-01T23:59:59.000Z

27

Recuperative supercritical carbon dioxide cycle  

DOE Patents [OSTI]

A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

2014-11-18T23:59:59.000Z

28

Supercritical carbon dioxide cycle control analysis.  

SciTech Connect (OSTI)

This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined. In particular, the peak heat removal capacity of the shutdown heat removal loop may be specified to be 1.1 % of the nominal reactor power. An investigation of the oscillating cycle behavior calculated by the ANL Plant Dynamics Code under specific conditions has been carried out. It has been found that the calculation of unstable operation of the cycle during power reduction to 0 % may be attributed to the modeling of main compressor operation. The most probable reason for such instabilities is the limit of applicability of the currently used one-dimensional compressor performance subroutines which are based on empirical loss coefficients. A development of more detailed compressor design and performance models is required and is recommended for future work in order to better investigate and possibly eliminate the calculated instabilities. Also, as part of such model development, more reliable surge criteria should be developed for compressor operation close to the critical point. It is expected that more detailed compressor models will be developed as a part of validation of the Plant Dynamics Code through model comparison with the experiment data generated in the small S-CO{sub 2} loops being constructed at Barber-Nichols Inc. and Sandia National Laboratories (SNL). Although such a comparison activity had been planned to be initiated in FY 2008, data from the SNL compression loop currently in operation at Barber Nichols Inc. has not yet become available by the due date of this report. To enable the transient S-CO{sub 2} cycle investigations to be carried out, the ANL Plant Dynamics Code for the S-CO{sub 2} Brayton cycle was further developed and improved. The improvements include further optimization and tuning of the control mechanisms as well as an adaptation of the code for reactor systems other than the Lead-Cooled Fast Reactor (LFR). Since the focus of the ANL work on S-CO{sub 2} cycle development for the majority of the current year has been on the applicability of the cycle to SFRs, work has started on modification of the ANL Plant Dynamics Code to allow

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2011-04-11T23:59:59.000Z

29

Carbon Cycle 2.0: Ramamoorthy Ramesh: Low-cost Solar  

ScienceCinema (OSTI)

Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

Ramamoorthy Ramesh:

2010-09-01T23:59:59.000Z

30

Carbon Cycle 2.0: Don DePaolo: Geo and Bio Sequestration  

ScienceCinema (OSTI)

Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

Don DePaolo:

2010-09-01T23:59:59.000Z

31

Carbon Cycle 2.0: Don DePaolo: Geo and Bio Sequestration  

SciTech Connect (OSTI)

Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

Don DePaolo:

2010-02-16T23:59:59.000Z

32

Microbial Carbon Cycling in Permafrost-Affected Soils  

SciTech Connect (OSTI)

The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Liebner, Susanne [University of Tromso, Norway; Wilhelm, Ronald [McGill University, Montreal, Quebec; Wagner, Dirk [Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany

2011-01-01T23:59:59.000Z

33

Monitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling  

E-Print Network [OSTI]

America, forest carbon sinks are be- lieved to offset a significant proportion of carbon emis- sionsMonitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling DAVID P University Corvallis, Oregon 97331-5752, USA ABSTRACT / Sources and sinks of carbon associated with forests

Lefsky, Michael

34

Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model  

SciTech Connect (OSTI)

Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

2004-04-01T23:59:59.000Z

35

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model  

E-Print Network [OSTI]

2009 P. E. Thornton et al. : Carbon-nitrogen interactionsregulate climate-carbon cycle feedbacks Monfray, P. ,T. H. : A global ocean carbon climatology: Results from

2009-01-01T23:59:59.000Z

36

Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183  

E-Print Network [OSTI]

73 Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183. Blaine Metting2 The purpose of this chapter is to review terrestrial biological carbon sequestration Northwest National Laboratory, Richland, Washington, USA. #12;74 TERRESTRIAL BIOLOGICAL CARBON SEqUESTRATION

Pennycook, Steve

37

Methanogenic burst in the end-Permian carbon cycle  

E-Print Network [OSTI]

The end-Permian extinction is associated with a mysterious disruption to Earth’s carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential ...

Rothman, Daniel H.

38

Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures  

SciTech Connect (OSTI)

The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

Jacob J. Jacobson; Steven J. Piet; Gretchen E. Matthern; David E. Shropshire; Robert F. Jeffers; A. M. Yacout; Tyler Schweitzer

2010-11-01T23:59:59.000Z

39

Quantitative implications of the secondary role of carbon dioxide climate forcing in the past glacial-interglacial cycles for the likely future climatic impacts of anthropogenic greenhouse-gas forcings  

E-Print Network [OSTI]

A review of the recent refereed literature fails to confirm quantitatively that carbon dioxide (CO2) radiative forcing was the prime mover in the changes in temperature, ice-sheet volume, and related climatic variables in the glacial and interglacial periods of the past 650,000 years, even under the "fast response" framework where the convenient if artificial distinction between forcing and feedback is assumed. Atmospheric CO2 variations generally follow changes in temperature and other climatic variables rather than preceding them. Likewise, there is no confirmation of the often-posited significant supporting role of methane (CH4) forcing, which despite its faster atmospheric response time is simply too small, amounting to less than 0.2 W/m2 from a change of 400 ppb. We cannot quantitatively validate the numerous qualitative suggestions that the CO2 and CH4 forcings that occurred in response to the Milankovich orbital cycles accounted for more than half of the amplitude of the changes in the glacial/intergla...

Soon, Willie

2007-01-01T23:59:59.000Z

40

Uncertainty in future carbon emissions : a preliminary exploration  

E-Print Network [OSTI]

In order to analyze competing policy approaches for addressing global climate change, a wide variety of economic-energy models are used to project future carbon emissions under various policy scenarios. Due to uncertainties ...

Webster, Mort David.

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)  

SciTech Connect (OSTI)

Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Piette, Mary Ann [Director, Demand Response Research Center] [Director, Demand Response Research Center

2010-02-02T23:59:59.000Z

42

Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Piette, Mary Ann [Director, Demand Response Research Center

2011-06-08T23:59:59.000Z

43

Short Communication Potential Remobilization of Belowground Permafrost Carbon under Future  

E-Print Network [OSTI]

). This is a positive feedback within the Earth System, as climate warming results in permafrost thawing that causes. This effect is not yet considered in climate model projections of future global warming. PERMAFROSTShort Communication Potential Remobilization of Belowground Permafrost Carbon under Future Global

Wagner, Diane

44

Carbon Cycle Coastal Sensitivity to Sea  

E-Print Network [OSTI]

vegetation created using the International Panel on Climate Change (IPCC) Good Practice Guidance of these vegetation carbon stores to mitigating climate change is getting increasing attention in national Emissions from Deforestation and Degradation (REDD) in developing countries has recently gained momentum

45

Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop  

SciTech Connect (OSTI)

As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

2014-02-21T23:59:59.000Z

46

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

47

Carbon Cycle Engineering | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannon (Various) Wind Farm7825 FayCycle

48

THE CARBON CYCLE FROM NORTH TO SOUTH ALONG THE GALATHEA 3 ROUTE  

E-Print Network [OSTI]

THE CARBON CYCLE FROM NORTH TO SOUTH ALONG THE GALATHEA 3 ROUTE Merete Bruun Christiansen (1 in the Galathea 3 expedition. Among the larger projects is `The marine carbon cycle from north to south along in the global carbon cycle. The World's open oceans are considered to be net absorbers of carbon dioxide (CO2

49

Autonomous observing strategies for the ocean carbon cycle  

SciTech Connect (OSTI)

Understanding the exchanges of carbon between the atmosphere and ocean and the fate of carbon delivered to the deep sea is fundamental to the evaluation of ocean carbon sequestration options. An additional key requirement is that sequestration must be verifiable and that environmental effects be monitored and minimized. These needs can be addressed by carbon system observations made from low-cost autonomous ocean-profiling floats and gliders. We have developed a prototype ocean carbon system profiler based on the Sounding Oceanographic Lagrangian Observer (SOLO; Davis et al., 1999). The SOLO/ carbon profiler will measure the two biomass components of the carbon system and their relationship to physical variables, such as upper ocean stratification and mixing. The autonomous observations within the upper 1500 m will be made on daily time scales for periods of months to seasons and will be carried out in biologically dynamic locations in the world's oceans that are difficult to access with ships (due to weather) or observe using remote sensing satellites (due to cloud cover). Such an observational capability not only will serve an important role in carbon sequestration research but will provide key observations of the global ocean's natural carbon cycle.

Bishop, James K.; Davis, Russ E.

2000-07-26T23:59:59.000Z

50

Black Carbon in the Soil Carbon Cycle: Is it an Oxidation Resistant End-Product?  

E-Print Network [OSTI]

for different materials and combustion temperatures. It is less than 1% for thermally altered biomass at combusBlack Carbon in the Soil Carbon Cycle: Is it an Oxidation Resistant End-Product? Simone resistant product of incomplete combustion, and consists out of a range of combustion products such as char

Fischlin, Andreas

51

Ris Energy Report 7 Future low carbon energy systems  

E-Print Network [OSTI]

Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

52

Atmospheric Chemistry, Carbon Cycle, and Climate (AC4): Observational Constraints on Sources and Sinks of Aerosols and Greenhouse Gases  

E-Print Network [OSTI]

and gas extraction can also inform future energy choices. In FY 2014, Atmospheric Chemistry, Carbon Cycle anthropogenic-biogenic emission intense regions 3. Deposition processes controlling atmospheric concentrations of aerosols and greenhouse gases Projects that quantify sources and sinks via new measurements and/or modeling

53

Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles  

SciTech Connect (OSTI)

This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

1990-09-01T23:59:59.000Z

54

Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model  

SciTech Connect (OSTI)

In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

2005-02-17T23:59:59.000Z

55

The Importance of CCS in aThe Importance of CCS in a LowLow--Carbon Energy FutureCarbon Energy Future  

E-Print Network [OSTI]

--a potential bridging strategy to a sustainable energy future · CCS also is needed decarbonizeThe Importance of CCS in aThe Importance of CCS in a LowLow--Carbon Energy FutureCarbon Energy on "Addressing Barriers to Carbon Capture and Storage in Developing Countries" Washington, DC September 7, 2011

56

Performance improvement options for the supercritical carbon dioxide brayton cycle.  

SciTech Connect (OSTI)

The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried out as part of the current investigation confirm the possibilities of improving the cycle efficiency that have been identified in previous investigations. The options in this group include: increasing the heat exchanger and turbomachinery sizes, raising of the cycle high end pressure (although the improvement potential of this option is very limited), and optimization of the low end temperature and/or pressure to operate as close to the (pseudo) critical point as possible. Analyses carried out for the present investigation show that significant cycle performance improvement can sometimes be realized if the cycle operates below the critical temperature at its low end. Such operation, however, requires the availability of a heat sink with a temperature lower than 30 C for which applicability of this configuration is dependent upon the climate conditions where the plant is constructed (i.e., potential performance improvements are site specific). Overall, it is shown that the S-CO{sub 2} Brayton cycle efficiency can potentially be increased to 45 %, if a low temperature heat sink is available and incorporation of larger components (e.g.., heat exchangers or turbomachinery) having greater component efficiencies does not significantly increase the overall plant cost.

Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

2008-07-17T23:59:59.000Z

57

PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NCLIMATE1951 Global soil carbon projections are improved by  

E-Print Network [OSTI]

Society relies on Earth system models (ESMs) to project future climate and carbon cycle feedbacks. However

German, Donovan P.

58

PUBLISHED ONLINE: 28 JULY 2013 | DOI: 10.1038/NCLIMATE1951 Global soil carbon projections are improved by  

E-Print Network [OSTI]

Society relies on Earth system models (ESMs) to project future climate and carbon (C) cycle feedbacks

Saleska, Scott

59

Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth1  

E-Print Network [OSTI]

Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth1 Karen;1 Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth ABSTRACT What are the drivers of future global carbon dioxide (CO2) emissions growth and how would the availability of key

Wing, Ian Sue

60

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

Dixon, B.W.; Piet, S.J.

2004-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment  

SciTech Connect (OSTI)

Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.

Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.

2012-11-15T23:59:59.000Z

62

Impact of climate change on the Northwestern Mediterranean Sea pelagic planktonic ecosystem and associated carbon cycle  

E-Print Network [OSTI]

and the microbial loop intensifies as the small-sized plankton biomass increases. Carbon net fixation and deep and associated carbon cycle M. Herrmann, C. Estournel, F. Diaz, F. Adloff ; LEGOS, LA, MIO, CNRM The northwestern and associated carbon cycle to the long-term evolution of oceanic and atmospheric circulations. For that we

63

A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles  

E-Print Network [OSTI]

®cance for the design and control of the transcritical carbon dioxide air- conditioning and heat pump systems 7 2000A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles S.M. Liaoa) of transcritical carbon dioxide air-conditioning cycles. The analysis shows that the COP of the transcritical

Zhao, Tianshou

64

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

Brent W. Dixon; Steven J. Piet

2004-10-01T23:59:59.000Z

65

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

66

The effect of carbonation after demolition on the life cycle assessment of pavements  

E-Print Network [OSTI]

The high contribution of CO? emissions associated with pavements has driven research to assess the life cycle of concrete versus asphalt structures and to develop a strategy to reduce the carbon footprint. The life cycle ...

Rossick, Katelyn M

2014-01-01T23:59:59.000Z

67

LETTER doi:10.1038/nature10854 Uncovering the Neoproterozoic carbon cycle  

E-Print Network [OSTI]

Ccarb and d13 C in organic carbon (d13 Corg) will covary, offset by the fractionation impartedLETTER doi:10.1038/nature10854 Uncovering the Neoproterozoic carbon cycle D. T. Johnston1 , F. A events in Earth history are, in large part, derived from the stable carbon isotope records of carbonate

Schrag, Daniel

68

Expert Judgments on the Future of Carbon Capture Tyler R. Loggins  

E-Print Network [OSTI]

Expert Judgments on the Future of Carbon Capture Tyler R. Loggins University of Massachusetts.D., Insight Decisions LLC, Greg Nemet Ph.D., University of Wisconsin Abstract Carbon Capture and Storage (CCS of Carbon Capture" by Erin Baker, Karen Jenni, Greg Nemet, and Tyler Loggins. Future Work · Gathering

Mountziaris, T. J.

69

Uncertainty in Future Carbon Emissions: A Preliminary Exploration Mort D. Webster  

E-Print Network [OSTI]

1 Uncertainty in Future Carbon Emissions: A Preliminary Exploration Mort D. Webster Abstract of economic-energy models are used to project future carbon emissions under various policy scenarios. Due distributions of carbon emissions from the MIT Emissions Prediction and Policy Analysis model. From the specific

70

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect (OSTI)

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

1994-09-01T23:59:59.000Z

71

Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander  

E-Print Network [OSTI]

Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander Jun Lan Yang, Yi Tai Ma*, Min Xia Li, Hai Qing Guan Thermal Energy Research Institute of Tianjin University, 300072 is performed for the transcritical carbon dioxide refrigeration cycles with a throttling valve

Bahrami, Majid

72

Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest  

E-Print Network [OSTI]

Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest Michael- composition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 134). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global

Kaspari, Mike

73

Carbon Capture and Storage FutureGen 2.0 Project Moves Forward...  

Broader source: Energy.gov (indexed) [DOE]

Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase February 4, 2013 - 7:25pm...

74

A Carbon Dioxide Gas Turbine Direct Cycle with Partial Condensation for Nuclear Reactors  

SciTech Connect (OSTI)

A carbon dioxide gas turbine power generation system with a partial condensation cycle has been proposed for thermal and fast nuclear reactors, in which compression is done partly in the liquid phase and partly in the gas phase. This cycle achieves higher cycle efficiency than a He direct cycle mainly due to reduced compressor work of the liquid phase and of the carbon dioxide real gas effect, especially in the vicinity of the critical point. If this cycle is applied to a thermal reactor, efficiency of this cycle is about 55% at a reactor outlet temperature of 900 deg. C and pressure of 12.5 MPa, which is higher by about 10% than a typical helium direct gas turbine cycle plant (PBMR) at 900 deg. C and 8.4 MPa; this cycle also provides comparable cycle efficiency at the moderate core outlet temperature of 600 deg. C with that of the helium cycle at 900 deg. C. If this cycle is applied to a fast reactor, it is anticipated to be an alternative to liquid metal cooled fast reactors that can provide slightly higher cycle efficiency at the same core outlet temperature; it would eliminate safety problems, simplify the heat transport system and simplify plant maintenance. A passive decay heat removal system is realized by connecting a liquid carbon dioxide storage tank with the reactor vessel and by supplying carbon dioxide gasified from the tank to the core in case of depressurization event. (authors)

Yasuyoshi Kato; Takeshi Nitawaki; Yoshio Yoshizawa [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2002-07-01T23:59:59.000Z

75

BUILDINGPI: A FUTURE TOOL FOR BUILDING LIFE CYCLE ANALYSIS James O'Donnell1&2  

E-Print Network [OSTI]

) programs. Using IFC as a standard for data storage, building geometric data can be seamlessly transferredBUILDINGPI: A FUTURE TOOL FOR BUILDING LIFE CYCLE ANALYSIS James O'Donnell1&2 , Elmer Morrissey1 National Laboratory, Berkeley, 94720 ­ U.S.A. ABSTRACT Traditionally building simulation models are used

76

Photobiogeochemical cycling of carbon monoxide in the southeastern Beaufort Sea in spring and autumn  

E-Print Network [OSTI]

Photobiogeochemical cycling of carbon monoxide in the southeastern Beaufort Sea in spring the distribution, photoproduction, microbial uptake, and air­sea exchange of carbon monoxide (CO), a key that in warmer seas. Carbon monoxide (CO) is the dominant sink for hydroxyl radicals in the troposphere, thus

Vincent, Warwick F.

77

Integrating Natural Gas Hydrates in the Global Carbon Cycle  

SciTech Connect (OSTI)

We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

David Archer; Bruce Buffett

2011-12-31T23:59:59.000Z

78

FY-05 First Quarter Report on Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility  

SciTech Connect (OSTI)

The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

Chang Oh

2005-01-01T23:59:59.000Z

79

Study of Adsorption of Methanol in an Activated Carbon and Carbon Nanotube Matrix for Use in a Solar Based Refrigeration Cycle  

E-Print Network [OSTI]

This thesis seeks to investigate the adsorption capabilities of activated carbon and carbon nanotubes. The adsorption of methanol on both of these substances was tested for their application in a solar based refrigeration cycle. Research on carbon...

Sambath, Srivaths

2012-07-16T23:59:59.000Z

80

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...  

Broader source: Energy.gov (indexed) [DOE]

that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle engines have the potential to increase conversion efficiency to...

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)  

SciTech Connect (OSTI)

Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

Neises, T.; Turchi, C.

2013-09-01T23:59:59.000Z

82

Timing of the Early Triassic carbon cycle perturbations inferred from new UPb ages and ammonoid biochronozones  

E-Print Network [OSTI]

and Mineral Resources, Jiangzheng Road 1, 530023 Nanning, China Received 13 October 2006; received in revised significance for global correlations and for carbon cycle modeling. This calibration indicates that the most

Gilli, Adrian

83

Carbon cycling, fire and phenology in a tropical savanna woodland in Nhambita, Mozambique   

E-Print Network [OSTI]

In the savanna woodlands of Southern Africa, locally know as miombo, carbon cycling is poorly quantified and many of the key processes remain obscure. For example, seasonal constraints on productivity and leaf display ...

Ryan, Casey Merlin

2009-01-01T23:59:59.000Z

84

Chemical sensing and imaging in microfluidic pore network structures relevant to natural carbon cycling and industrial carbon sequestration  

SciTech Connect (OSTI)

Energy and climate change represent significant factors in global security. Atmospheric carbon dioxide levels, while global in scope, are influenced by pore-scale phenomena in the subsurface. We are developing tools to visualize and investigate processes in pore network microfluidic structures with transparent covers as representations of normally-opaque porous media. In situ fluorescent oxygen sensing methods and fluorescent cellulosic materials are being used to investigate processes related to terrestrial carbon cycling involving cellulytic respiring microorganisms. These structures also enable visualization of water displacement from pore spaces by hydrophobic fluids, including carbon dioxide, in studies related to carbon sequestration.

Grate, Jay W.; Zhang, Changyong; Wilkins, Michael J.; Warner, Marvin G.; Anheier, Norman C.; Suter, Jonathan D.; Kelly, Ryan T.; Oostrom, Martinus

2013-06-11T23:59:59.000Z

85

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles  

Broader source: Energy.gov (indexed) [DOE]

* Preliminary extended heat transfer surface manufacturing techniques considered * An s-CO2 Brayton Engine Cycle that will provide the baseline statepoints which will guide the...

86

Deep-Sea Research II 53 (2006) 555575 Spatial and seasonal patterns of carbon cycling  

E-Print Network [OSTI]

of the world's ocean and has been an area of intense scientific interest for several decades (Wu¨ st, 1959Deep-Sea Research II 53 (2006) 555­575 Spatial and seasonal patterns of carbon cycling through stations in the Arabian Sea. The goal of this work was to characterize carbon flows and trophic transfers

Jackson, George

87

Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2  

E-Print Network [OSTI]

LETTER Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2 of soil carbon (C) accu- mulation owing to microbial priming of `old' soil organic matter (SOM). However under elevated CO2 is sufficient in magnitude to offset increased belowground inputs. In addition, the C

Phillips, Richard P.

88

Land Use Change Effects on Forest Carbon Cycling Throughout the Southern United States  

E-Print Network [OSTI]

and deforestation on carbon cycling in forest floor and soil from 1900 to 2050 throughout 13 states in the southern because afforestation causes a gradual gain in carbon stocks for many decades, while deforestation causes Tg C, and deforestation caused emission of 49 Tg C. However, the net effect of land use change

89

Ewing Symposium in Honor of Taro Takahashi: The controversial aspects of the contemporary [carbon] cycle  

SciTech Connect (OSTI)

This Ewing Symposium in honor of Taro Takahashi's work on the carbon cycle was held at Lamont-Doherty Earth Observatory, Palisades, New York, on October 26-27, 2000. A program and set of abstracts are appended to this report. A summary of the meeting (included in this report) will be published in Global Biogeochemical Cycles. The theme of the symposium was the magnitude and cause of excess carbon storage on the north temperate continents. Disagreement exists on the relative roles of forest regrowth and fertilization by excess fixed nitrogen and carbon dioxide, as well as the distribution of this storage. Phenomena playing important roles include pre-anthropogenic gradients in carbon dioxide, the so-called rectification effect, uptake and release of carbon dioxide by the ocean, soil nitrogen dynamics, atmospheric carbon-13 gradients, and the role of fire.

Broecker, Wallace Smith

2001-12-31T23:59:59.000Z

90

Carbonate thermochemical cycle for the production of hydrogen  

DOE Patents [OSTI]

The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

Collins, Jack L (Knoxville, TN) [Knoxville, TN; Dole, Leslie R (Knoxville, TN) [Knoxville, TN; Ferrada, Juan J (Knoxville, TN) [Knoxville, TN; Forsberg, Charles W (Oak Ridge, TN) [Oak Ridge, TN; Haire, Marvin J (Oak Ridge, TN) [Oak Ridge, TN; Hunt, Rodney D (Oak Ridge, TN) [Oak Ridge, TN; Lewis Jr., Benjamin E (Knoxville, TN) [Knoxville, TN; Wymer, Raymond G (Oak Ridge, TN) [Oak Ridge, TN

2010-02-23T23:59:59.000Z

91

Future Carbon Regulations and Current Investments in Alternative Coal-Fired Power Plant Designs  

E-Print Network [OSTI]

This paper assesses the role of uncertainty over future U.S. carbon regulations in shaping the current choice of which type of power plant to build. The pulverized coal technology (PC) still offer the lowest cost power— ...

Sekar, Ram C.

92

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for Supercritical...

93

New Adsorption Cycles for Carbon Dioxide Capture and Concentration  

SciTech Connect (OSTI)

The objective of this three-year project was to study new pressure swing adsorption (PSA) cycles for CO{sub 2} capture and concentration at high temperature. The heavy reflux (HR) PSA concept and the use of a hydrotalcite like (HTlc) adsorbent that captures CO{sub 2} reversibly at high temperatures simply by changing the pressure were two key features of these new PSA cycles. Through the completion or initiation of nine tasks, a bench-scale experimental and theoretical program has been carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799). This final report covers the entire project from August 1, 2005 to July 31, 2008. This program included the study of PSA cycles for CO{sub 2} capture by both rigorous numerical simulation and equilibrium theory analysis. The insight gained from these studies was invaluable toward the applicability of PSA for CO{sub 2} capture, whether done at ambient or high temperature. The rigorous numerical simulation studies showed that it is indeed possible to capture and concentrate CO{sub 2} by PSA. Over a wide range of conditions it was possible to achieve greater than 90% CO{sub 2} purity and/or greater than 90% CO{sub 2} recovery, depending on the particular heavy reflux (HR) PSA cycle under consideration. Three HR PSA cycles were identified as viable candidates for further study experimentally. The equilibrium theory analysis, which represents the upper thermodynamic limit of the performance of PSA process, further validated the use of certain HR PSA cycles for CO{sub 2} capture and concentration. A new graphical approach for complex PSA cycle scheduling was also developed during the course of this program. This new methodology involves a priori specifying the cycle steps, their sequence, and the number of beds, and then following a systematic procedure that requires filling in a 2-D grid based on a few simple rules, some heuristics and some experience. It has been tested successfully against several cycle schedules taken from the literature, including a 2-bed 4-step Skarstrom cycle, a 4-bed 9-step process with 2 equalization steps, a 9-bed 11-step process with 3 equalization steps, and a 6-bed 13-step process with 4 equalization steps and 4 idle steps. With respect to CO{sub 2} capture and concentration by PSA, this new approach is now providing a very straightforward way to determine all the viable 3-bed, 4-bed, 5-bed, n-bed, etc. HR PSA cycle schedules to explore using both simulation and experimentation. This program also touted the use of K-promoted HTlc as a high temperature, reversible adsorbent for CO{sub 2} capture by PSA. This program not only showed how to use this material in HR PSA cycles, but it also proposed a new CO{sub 2} interaction mechanism in conjunction with a non-equilibrium kinetic model that adequately describes the uptake and release of CO{sub 2} in this material, and some preliminary fixed bed adsorption breakthrough and desorption elution experiments were carried out to demonstrate complete reversibility on a larger scale. This information was essentially missing from the literature and deemed invaluable toward promoting the use of K-promoted HTlc as a high temperature, reversible adsorbent for CO{sub 2} capture by PSA. Overall, the objectives of this project were met. It showed the feasibility of using K-promoted hydrotalcite (HTlc) as a high temperature, reversible adsorbent for CO{sub 2} capture by PSA. It discovered some novel HR PSA cycles that might be useful for this purpose. Finally, it revealed a mechanistic understanding of the interaction of CO{sub 2} with K-promoted HTlc.

James Ritter; Armin Ebner; Steven Reynolds Hai Du; Amal Mehrotra

2008-07-31T23:59:59.000Z

94

Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean  

E-Print Network [OSTI]

Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ...

Levine, Naomi Marcil

2010-01-01T23:59:59.000Z

95

August 22, 2002 Contribution to Stein, R. and Macdonald, R. W. (eds.) The Organic Carbon Cycle in  

E-Print Network [OSTI]

1 August 22, 2002 Contribution to Stein, R. and Macdonald, R. W. (eds.) The Organic Carbon Cycle. This problem is highlighted by a recent study of the carbon budget of the Mackenzie shelf by Macdonald et al

Eicken, Hajo

96

A Very Brief Introduction to the Ocean Carbon Cycle  

E-Print Network [OSTI]

and T generally inversely related Solubility pump #12;Air-sea flux of CO2 inversely related to air-sea heat flux of DIC in the ocean - air-sea heat fluxes drive air-sea carbon fluxes #12;Atlantic Vertical gradients - relationship to S 2. "Solubility Pump" - relationship to T 3. "Biological Pumps" - relationship to PO4 3- #12

Follows, Mick

97

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network [OSTI]

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).… (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

98

Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications  

SciTech Connect (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

Edwin A. Harvego; Michael G. McKellar

2011-05-01T23:59:59.000Z

99

R E V I E W Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests  

E-Print Network [OSTI]

R E V I E W Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests Geertje for carbon storage and sequestration. Lianas reduce tree growth, survival, and leaf productivity; however liana carbon stocks are unlikely to compensate for liana-induced losses in net carbon sequestration

Schnitzer, Stefan

100

Wetlands, Microbes, and the Carbon Cycle: Behind the Scenes @ Berkeley Lab  

ScienceCinema (OSTI)

Susannah Tringe, who leads the Metagenome Program at the Department of Energy's Joint Genome Institute (JGI), a collaboration in which Berkeley Lab plays a leading role, takes us behind the scenes to show how DNA from unknown wild microbes is extracted and analyzed to see what role they play in the carbon cycle. Tringe collects samples of microbial communities living in the wetland muck of the Sacramento-San Joaquin River Delta, organisms that can determine how these wetlands store or release carbon.

Tringe, Susannah

2013-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation of biogeochemical processes.

Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

2005-05-27T23:59:59.000Z

102

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGHBrayton Energy's supercritical carbon

103

Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment  

E-Print Network [OSTI]

M. , ( 2010), Product carbon footprint (PCF) assessment ofand Pflueger J. , (2012), Carbon footprint of a dell rackin 65% of the product carbon footprint of a laptop used in

Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

2013-01-01T23:59:59.000Z

104

ARM Carbon Cycle Gases Flasks at SGP Site  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.

Biraud, Sebastien

105

Belowground Carbon Cycling Processes at the Molecular Scale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P.2.2Security919 Belowground Carbon

106

DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES  

SciTech Connect (OSTI)

A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

Ashish Gupta

2002-06-01T23:59:59.000Z

107

Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications  

SciTech Connect (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.

Edwin A. Harvego; Michael G. McKellar

2011-11-01T23:59:59.000Z

108

ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

Torn, Margaret

109

CARBON LIFE-CYCLE AND ECONOMIC ANALYSIS OF FOREST CARBON SEQUESTRATION AND WOODY BIOENERGY PRODUCTION.  

E-Print Network [OSTI]

??Sequestering carbon in standing biomass, using woody bioenergy, and using woody products are the three potential ways to utilize forests in reducing greenhouse gases (GHGs)… (more)

Shrestha, Prativa

2013-01-01T23:59:59.000Z

110

Litter-Carbon Dynamics: The Importance of Decomposition, Accretion, and Sequestration in Understanding Ecosystem Carbon Cycling.  

E-Print Network [OSTI]

??The atmospheric CO2 concentration has been increasing since the industrial revolution. A proposed mitigation strategy is sequestering carbon (C) in terrestrial ecosystems, either in plant… (more)

Kochsiek, Amy

2010-01-01T23:59:59.000Z

111

warming ocean and changes in currents and mixing? The global carbon cycle is also tightly coupled to the cycles of nutrients and  

E-Print Network [OSTI]

1 warming ocean and changes in currents and mixing? The global carbon cycle is also tightly is a fundamental constituent of life and its global cycle is tightly connected to the habitability of our planet an important forcing factor of the global climate, which, on the other hand, controls the sources and sinks

112

COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE  

SciTech Connect (OSTI)

Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to evaluate the three methods to project future baseline carbon emissions. Extrapolation from Landsat change detection uses the observed rate of change to estimate change in the near future. Geomod is a software program that models the geographic distribution of change using a defined rate of change. FRCA is an integrated spatial analysis of forest inventory, biodiversity, and remote sensing that produces estimates of forest biodiversity and forest carbon density, spatial data layers of future probabilities of reforestation and deforestation, and a projection of future baseline forest carbon sequestration and emissions for an ecologically-defined area of analysis. For the period 1999-2012, extrapolation from Landsat change detection estimated a loss of 5000 ha and 520,000 t carbon from closed natural forest; Geomod modeled a loss of 2500 ha and 250 000 t; FRCA projected a loss of 4700 {+-} 100 ha and 480,000 t (maximum 760,000 t, minimum 220,000 t). Concerning labor time, extrapolation for Landsat required 90 actual days or 120 days normalized to Bachelor degree level wages; Geomod required 240 actual days or 310 normalized days; FRCA required 110 actual days or 170 normalized days. Users experienced difficulties with an MS-DOS version of Geomod before turning to the Idrisi version. For organizations with limited time and financing, extrapolation from Landsat change provides a cost-effective method. Organizations with more time and financing could use FRCA, the only method where that calculates the deforestation rate as a dependent variable rather than assuming a deforestation rate as an independent variable. This research indicates that best practices for the projection of baseline carbon emissions include integration of forest inventory and remote sensing tasks from the beginning of the analysis, definition of an analysis area using ecological characteristics, use of standard and widely used geographic information systems (GIS) software applications, and the use of species-specific allometric equations and wood densities developed for local species.

Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

2005-07-14T23:59:59.000Z

113

Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression  

SciTech Connect (OSTI)

The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical

Brun, Klaus; McClung, Aaron; Davis, John

2014-03-31T23:59:59.000Z

114

Peatland carbon cycle responses to hydrological change at time scales from years to centuries: Impacts on model  

E-Print Network [OSTI]

Peatland carbon cycle responses to hydrological change at time scales from years to centuries: Impacts on model simulations and regional carbon budgets By Benjamin N. Sulman A dissertation submitted to the long-term storage of carbon in peat, these ecosystems contain a significant fraction of the global

Wisconsin at Madison, University of

115

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

116

Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment  

E-Print Network [OSTI]

INTRODUCTION Life Cycle Assessment (LCA) is a leadingLife Cycle Assessment by including predictable disruptions to the life cycle, thereby increasing the meaningfulness of LCALife Cycle Assessment is a very important factor to consider in order to ensure the accuracy of estimated emissions and meaningfulness of LCA

Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

2013-01-01T23:59:59.000Z

117

Long-term soil warming and Carbon Cycle Feedbacks to the Climate System  

SciTech Connect (OSTI)

The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

Melillo, Jerry M.

2014-04-30T23:59:59.000Z

118

Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.  

SciTech Connect (OSTI)

A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

Moore, Robert Charles; Conboy, Thomas M.

2012-02-01T23:59:59.000Z

119

Present and future status of thermochemical cycles applied to fusion energy sources  

SciTech Connect (OSTI)

This paper reviews the status of current research on thermochemical hydrogen production cycles and identifies the needs for advanced cycles and materials research. The Los Alamos Scientific Laboratory (LASL) bismuth sulfate thermochemical cycle is characterized, and fusion reactor blanket concepts for both inertial and magnetic confinement schemes are presented as thermal energy sources for process heat applications.

Booth, L.A.; Cox, K.E.; Krakowski, R.A.; Pendergrass, J.H.

1980-01-01T23:59:59.000Z

120

Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop  

SciTech Connect (OSTI)

One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Natural migration rates of trees: Global terrestrial carbon cycle implications. Book chapter  

SciTech Connect (OSTI)

The paper discusses the forest-ecological processes which constrain the rate of response by forests to rapid future environmental change. It establishes a minimum response time by natural tree populations which invade alien landscapes and reach the status of a mature, closed canopy forest when maximum carbon storage is realized. It considers rare long-distance and frequent short-distance seed transport, seedling and tree establishment, sequential tree and stand maturation, and spread between newly established colonies.

Solomon, A.M.

1996-06-01T23:59:59.000Z

122

Photoperiodic Regulation of the Seasonal Pattern of Photosynthetic Capacity and the Implications for Carbon Cycling  

SciTech Connect (OSTI)

Although temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO{sub 2} cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% ({approx}4 PgC y{sup -1}), resulting in a >3% ({approx}2 PgC y{sup -1}) decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence.

Bauerle, William L. [Colorado State University, Fort Collins; Oren, Ram [Duke University; Way, Danielle A. [Duke University; Qian, Song S. [Duke University; Stoy, Paul C. [Montana State University; Thornton, Peter E [ORNL; Bowden, Joseph D. [Colorado State University, Fort Collins; Hoffman, Forrest M [ORNL; Reynolds, Robert F. [Clemson University

2012-01-01T23:59:59.000Z

123

in press, Global Biogeochemical Cycles, April 18, 2007 Carbon dioxide and oxygen fluxes in the Southern Ocean  

E-Print Network [OSTI]

found to affect oxygen fluxes. We find that ENSO also plays an important role in generating interannualin press, Global Biogeochemical Cycles, April 18, 2007 Carbon dioxide and oxygen fluxes College, London, UK Abstract. We analyze the variability of air-sea fluxes of carbon dioxide and oxygen

Marshall, John

124

Shedding light on carbon-mineral complexation in the soil environment: impacts on C sequestration and cycling  

E-Print Network [OSTI]

42 Shedding light on carbon-mineral complexation in the soil environment: impacts on C sequestration and cycling Sparks, D.L. & C. Chen Department of Plant and Soil Sciences and Delaware@udel.edu) Abstract Organic matter (OM)-mineral complexation plays a critical role in soil carbon (C) stabilization

Sparks, Donald L.

125

Carbon dioxide effects research and assessment program. A comprehensive plan. Part I. The global carbon cycle and climatic effects of increasing carbon dioxide  

SciTech Connect (OSTI)

Initial plans for research of the carbon dioxide (CO/sub 2/) and climate issue were prepared in 1978 and were reviewed extensively at that time by federal agencies and members of the scientific community. Since then the plans have been used to guide early phases of the Department of Energy's and the nation's efforts related to this issue. This document represents a revision of the 1978 plan to (a) reflect recent ideas and strategies for carbon cycle research, and (b) expand the scope of research on climatic responses to increasing atmospheric concentrations of CO/sub 2/. The revised plan takes into account a number of investigations already being supported by various agencies, and it attempts to build on or add to existing research where there is a crucial need for information directly related to the CO/sub 2/ issue. It should be recognized that this document is the first section of a comprehensive plan on the overall consequences of increasing concentrations of CO/sub 2/, and includes guidelines for research on the Global Carbon Cycle and Climatic Effects of Increasing CO/sub 2/.

None

1980-08-01T23:59:59.000Z

126

Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.  

SciTech Connect (OSTI)

Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5%/minute. It was determined that utilization of turbine throttling control below 50% load improves the cycle efficiency significantly. Consequently, the cycle control strategy has been updated to include turbine throttle valve control. The new control strategy still relies on inventory control in the 50%-90% load range and turbine bypass for fine and fast generator output adjustments, but it now also includes turbine throttling control in the 0%-50% load range. In an attempt to investigate the feasibility of using the S-CO{sub 2} cycle for normal decay heat removal from the reactor, the cycle control study was extended beyond the investigation of normal load following. It was shown that such operation is possible with the extension of the inventory and the turbine throttling controls. However, the cycle operation in this range is calculated to be so inefficient that energy would need to be supplied from the electrical grid assuming that the generator could be capable of being operated in a motoring mode with an input electrical energy from the grid having a magnitude of about 20% of the nominal plant output electrical power level in order to maintain circulation of the CO{sub 2} in the cycle. The work on investigation of cycle operation at low power level will be continued in the future. In addition to the cycle control study, the coupled PDC-SAS4A/SASSYS-1 code system was also used to simulate thermal transients in the sodium-to-CO{sub 2} heat exchanger. Several possible conditions with the potential to introduce significant changes to the heat exchanger temperatures were identified and simulated. The conditions range from reactor scram and primary sodium pump failure or intermediate sodium pump failure on the reactor side to pipe breaks and valve malfunctions on the S-CO{sub 2} side. It was found that the maximum possible rate of the heat exchanger wall temperature change for the particular heat exchanger design assumed is limited to {+-}7 C/s for less than 10 seconds. Modeling in the Plant Dynamics Code has been compared with available data from the Sandia Natio

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2011-11-07T23:59:59.000Z

127

Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies  

E-Print Network [OSTI]

of sedimentary basins. 1. Introduction #12;In recent years emissions of carbon dioxide from the UK electricity of these measures for deployment in 2020 depends entirely on final UK carbon emission targets and the abilityScope for Future CO2 Emission Reductions from Electricity Generation through the Deployment

Haszeldine, Stuart

128

Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation  

SciTech Connect (OSTI)

The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

2006-10-17T23:59:59.000Z

129

2005: Future effects of ozone on carbon sequestration and climate change policy using a global  

E-Print Network [OSTI]

production and carbon sequestration. The reduced carbon storage would then require further reductions in

B. Felzer; J. Reilly; J. Melillo; D. Kicklighter; M. Sarofim; C. Wang; R. Prinn; Q. Zhuang

130

Ocean Carbon Cycle Data from the Joint Global Ocean Flux Study (JGOFS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. JGOFS program, a component of the U.S Global Change Research Program, grew out of the recommendations of a National Academy of Sciences workshop in 1984. An ambitious goal was set to understand the controls on the concentrations and fluxes of carbon and associated nutrients in the ocean. A new field of ocean biogeochemistry emerged with an emphasis on quality measurements of carbon system parameters and interdisciplinary field studies of the biological, chemical and physical process which control the ocean carbon cycle. U.S. JGOFS, ended in 2005 with the conclusion of the Synthesis and Modeling Project (SMP). Data are available throughout the U.S. JGOFS web site at http://usjgofs.whoi.edu/ and from the U.S. JGOFS Data System at http://usjgofs.whoi.edu/jg/dir/jgofs/. Major named segments of the project are: Bermuda Atlantic Time Series (BATS) Study, Hawaii Ocean Time-series (HOT) Study, Equatorial Pacific Process Study, North Atlantic Bloom Experiment (1989), Arabian Sea Process Study, and the Southern Ocean Process Study.

131

An Indigenous Application for Estimating Carbon footprint of academia library systems based on life cycle assessment  

E-Print Network [OSTI]

a thorough Life Cycle Assessment (LCA) of all the componentsWarming Potential (GWP), Life Cycle Assessment (LCA), Carbonbe calculated using a Life Cycle Assessment (LCA) method, or

Garg, Saurabh; David Dornfeld

2008-01-01T23:59:59.000Z

132

Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle  

E-Print Network [OSTI]

A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and ...

Sokolov, Andrei P.

133

An Indigenous Application for Estimating Carbon footprint of academia library systems based on life cycle assessment  

E-Print Network [OSTI]

FOR ESTIMATING CARBON FOOTPRINT OF ACADEMIA LIBRARY SYSTEMSacross the world. A carbon footprint is a measure of thethat can calculate the carbon footprint of a library system

Garg, Saurabh; David Dornfeld

2008-01-01T23:59:59.000Z

134

Journal ofMurirzr Research, 53, 799-8 19, 1995 Carbon cycling in mesohaline ChesapeakeBay sediments 1  

E-Print Network [OSTI]

Journal ofMurirzr Research, 53, 799-8 19, 1995 Carbon cycling in mesohaline ChesapeakeBay sedimentsChesapeake Baywas analyzed using available data on sediment sulfate reduction, sediment oxygen consumption of integrated sediment metabolism and POC burial compared well with direct estimates derived from chlorophyll

Boynton, Walter R.

135

Sustainable Development (20 credits) The carbon cycle, its impact on climate, and the need to change this by introducing  

E-Print Network [OSTI]

Sustainable Development (20 credits) The carbon cycle, its impact on climate, and the need of Government legislation on technology and the growth of sustainable businesses will be emphasised and building sustainable hydrogen industries. · Metals recycling. · Mass and energy balances on human

Miall, Chris

136

Sit Down with Sabin: Margaret Torn: The Carbon Cycle Like You've Never Seen It (LBNL Summer Lecture Series)  

SciTech Connect (OSTI)

Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.

Russell, Sabin; Torn, Margaret

2011-07-06T23:59:59.000Z

137

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network [OSTI]

energy use. China’s Sustainable Energy Future Summary next31 -ii- China’s Sustainable Energy Future Executive Summarystudy, entitled China’s Sustainable Energy Future: Scenarios

2004-01-01T23:59:59.000Z

138

Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies  

SciTech Connect (OSTI)

This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

2012-06-01T23:59:59.000Z

139

Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using “Omics”  

SciTech Connect (OSTI)

Soils process and store large amounts of C; however, considerable uncertainty still exists about the details of that influence microbial partitioning of C into soil C pools, and what are the main influential forces that control the fraction of the C input that is stabilized. The soil microbial community is genotypically and phenotypically diverse. Despite our ability to predict the kinds of regional environmental changes that will accompany global climate change, it is not clear how the microbial community will respond to climate-induced modification of precipitation and inter-precipitation intervals, and if this response will affect the fate of C deposited into soil by the local plant community. Part of this uncertainty lies with our ignorance of how the microbial community adapts genotypically and physiologically to changes in soil moisture brought about by shifts in precipitation. Our overarching goal is to harness the power of multiple meta-omics tools to gain greater understanding of the functioning of whole-soil microbial communities and their role in C cycling. We will do this by meeting the following three objectives: 1. Further develop and optimize a combination of meta-omics approaches to study how environmental factors affect microbially-mediated C cycling processes. 2. Determine the impacts of long-term changes in precipitation timing on microbial C cycling using an existing long-term field manipulation of a tallgrass prairie soil. 3. Conduct laboratory experiments that vary moisture and C inputs to confirm field observations of the linkages between microbial communities and C cycling processes. We took advantage of our state-of-the-art expertise in community “omics” to better understand the functioning soil C cycling within the Great Prairie ecosystem, including our ongoing Konza Prairie soil metagenome flagship project at JGI and the unique rainfall manipulation plots (RaMPs) established at this site more than a decade ago. We employed a systems biology approach, considering the complex soil microbial community as a functioning system and using state-of-the-art metatranscriptomic, metaproteomic, and metabolomic approaches. These omics tools were refined, applied to field experiments, and confirmed with controlled laboratory studies. Our experiments were designed to specifically identify microbial community members and processes that are instrumental players in processing of C in the prairie soils and how these processes are impacted by wetting and drying events. This project addresses a key ecosystem in the United States that current climate models predict will be subjected to dramatic changes in rainfall patterns as a result of global warming. Currently Mollisols, such as those of the tallgrass prairie, are thought to sequester more C than is released into the atmosphere, but it is not known what changes in rainfall patterns will have on future C fluxes. Through an analysis of the molecular response of the soil microbial community to shifts in precipitation cycles that are accompanied by phenologically driven changes in quality of plant C rhizodeposits, we gained deeper insight into how the metabolism of microbes has adapted to different precipitation regimes and the impact of this adaption on the fate of C deposited into soil. In doing so, we addressed key questions about the microbial cycling of C in soils that have been identified by the DOE.

Myrold, David D. [Oregon State University; Bottomely, Peter J. [Oregon State University; Jumpponen, Ari [Kansas State University; Rice, Charles W. [Kansas State University; Zeglin, Lydia H. [Kansas State University; David, Maude M. [Lawrence Berkeley National Laboratory; Jansson, Janet K. [Lawrence Berkeley National Laboratory; Prestat, Emmanuel [Lawrence Berkeley National Laboratory; Hettich, Robert L. [Oak Ridge National Laboratory

2014-09-17T23:59:59.000Z

140

Influence of Dynamic Land Use and Land Cover Change on Simulated Global Terrestrial Carbon and Nitrogen Cycles, Climate-carbon Cycle Feedbacks, and Interactions with Rising CO2 and Anthropogenic Nitrogen Deposition  

SciTech Connect (OSTI)

Previous work has demonstrated the sensitivity of terrestrial net carbon exchange to disturbance history and land use patterns at the scale of individual sites or regions. Here we show the influence of land use and land cover dynamics over the historical period 1850-present on global-scale carbon, nutrient, water, and energy fluxes. We also explore the spatial and temporal details of interactions among land use and disturbance history, rising atmospheric carbon dioxide consentation, and increasing anthropogenic nitrogen deposition. Our simulations show that these interactions are significant, and that their importance grows over time, expressed as a fraction of the independent forcing terms. We conclude with an analysis of the influence of these interactions on the sign and magnitude of global climate-carbon cycle feedbacks.

Thornton, Peter E [ORNL; Hoffman, Forrest M [ORNL; Hurtt, George C [University of Hew Hampshire

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report  

SciTech Connect (OSTI)

Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

Chang H. Oh

2006-06-01T23:59:59.000Z

142

A Distinctive Energy Policy for Scotland? The Impact of Low Carbon Generation on the Future Price of  

E-Print Network [OSTI]

A Distinctive Energy Policy for Scotland? The Impact of Low Carbon Generation on the Future Price climate change, improved security of supply, affordable energy prices and a stimulus to economic growth of Allander Institute, supported by PricewaterhouseCoopers and published 19th June 2008 explore current energy

Mottram, Nigel

143

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

144

Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor.  

SciTech Connect (OSTI)

Analyses of supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be sure that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO{sub 2} Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510 C core outlet temperature and a 470 C turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1% or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact the tradeoff between efficiency and capital cost. In addition, for minimum temperatures below the critical temperature, a lower heat sink temperature is required the availability of which is dependent upon the climate at the specific plant site.

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2009-07-01T23:59:59.000Z

145

Studies of the terrestrial O{sub 2} and carbon cycles in sand dune gases and in biosphere 2  

SciTech Connect (OSTI)

Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O{sub 2} composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO{sub 2}.

Severinghaus, J.P.

1995-12-31T23:59:59.000Z

146

Supercritical Carbon Dioxide Brayton Cycle Energy Conversion for Sodium-Cooled Fast Reactors/Advanced Burner Reactors  

SciTech Connect (OSTI)

An optimized supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle power converter has been developed for the 100 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) eliminating the potential for sodium-water reactions and achieving a small power converter and turbine generator building. Cycle and plant efficiencies of 39.1 and 38.3 %, respectively, are calculated for the ABTR core outlet temperature of 510 deg. C. The ABTR S-CO{sub 2} Brayton cycle will incorporate Printed Circuit Heat Exchanger{sup TM} units in the Na-to-CO{sub 2} heat exchangers, high and low temperature recuperators, and cooler. A new sodium test facility is being completed to investigate the potential for transient plugging of narrow sodium channels typical of a Na-to-CO{sub 2} heat exchanger under postulated off-normal or accident conditions. (authors)

Sienicki, James J.; Moisseytsev, Anton; Cho, Dae H.; Momozaki, Yoichi; Kilsdonk, Dennis J.; Haglund, Robert C.; Reed, Claude B.; Farmer, Mitchell T. [Argonne National Laboratory 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

2007-07-01T23:59:59.000Z

147

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

SciTech Connect (OSTI)

The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

148

Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options  

SciTech Connect (OSTI)

In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

Fricke, Brian A [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

2013-01-01T23:59:59.000Z

149

Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon  

E-Print Network [OSTI]

Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

Flores Cervantes, Déborah Xanat, 1978-

2008-01-01T23:59:59.000Z

150

A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies  

E-Print Network [OSTI]

We describe the coupling of a three-dimensional ocean circulation model, with explicit thermodynamic seaice and ocean carbon cycle representations, to a two-dimensional atmospheric/land model. This coupled system has been ...

Dutkiewicz, Stephanie.

151

Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint  

SciTech Connect (OSTI)

The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

Ma, Z.; Turchi, C. S.

2011-03-01T23:59:59.000Z

152

Argonne Terrestrial Carbon Cycle Data from Batavia Prairie and Agricultural Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Carbon dioxide fluxes and stocks in terrestrial ecosystems are key measurements needed to constrain quantification of regional carbon sinks and sources and the mechanisms controlling them. This information is required to produce a sound carbon budget for North America. This project examines CO2 and energy fluxes from agricultural land and from restored tallgrass prairie to compare their carbon sequestration potentials. The study integrates eddy covariance measurements with biometric measurements of plant and soil carbon stocks for two systems in northeastern Illinois: 1) long-term cultivated land in corn-soybean rotation with conventional tillage, and 2) a 15 year-old restored prairie that represents a long-term application of CRP conversion of cultivated land to native vegetation. The study contributes to the North American Carbon Program (NACP) by providing information on the magnitude and distribution of carbon stocks and the processes that control carbon dynamics in cultivated and CRP-restored land in the Midwest. The prairie site has been functioning since October 2004 and the agricultural site since July 2005. (From http://www.atmos.anl.gov/ FERMI/index.html)

Matamala, Roser (ANL); Jastrow, Julie D.; Lesht, Barry (ANL); Cook, David (ANL); Pekour, Mikhail (ANL); Gonzalez-Meler, Miquel A. (University of Illinois at Chicago); Katul, Gabriel G. (Duke University)

153

CHAPTER 5: CONCLUSIONS AND FUTURE WORK Theoretical predictions of the mechanical properties of carbon nanotubes, and  

E-Print Network [OSTI]

of multifunctional composite materials with controllable electrical and thermal properties, in addition to order to these material systems within the last few years. Initial experimental work on carbon nanotube properties of carbon nanotubes, and in particular their predicted high strengths (on the order of 60 GPa

Fisher, Frank

154

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model  

E-Print Network [OSTI]

forests indi- cates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions... National Laboratory, Oak Ridge, TN 37831-6335, USA 2Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1543, USA 3Climate and Global Dynamics Division, National Center for Atmospheric Research...

Thornton, P. E.; Doney, S. C.; Lindsay, Keith; Moore, J. K.; Mahowald, N. M.; Randerson, J. T.; Fung, I.; Lamarque, J. F.; Feddema, Johannes J.

2009-01-01T23:59:59.000Z

155

A Super Critical Carbon Dioxide Cycle for Next Generation Nuclear Reactors  

E-Print Network [OSTI]

A systematic, detailed major component and system design evaluation and multiple-parameter optimization under practical constraints has been performed of the family of supercritical CO[subscript 2] Brayton power cycles for ...

Dostal, Vaclav

156

Development and application of a steady state code for supercritical carbon dioxide cycles  

E-Print Network [OSTI]

The supercritical CO2 power conversion system is of interest for advanced nuclear reactor applications because the same efficiencies are obtained as for the most developed of the closed gas-turbine cycles (helium-Brayton), ...

Legault, David M. (David Michael)

2006-01-01T23:59:59.000Z

157

Date Issue Brief # ISSUE BRIEF Natural Gas: A Bridge to a Low?Carbon Future?  

E-Print Network [OSTI]

Issue Brief 09?11Resources for the Future Resources for the Future is an independent, nonpartisan think tank that, through its social science research, enables policymakers and stakeholders to make better, more informed decisions about energy, environmental, natural resource, and public health issues. Headquartered in Washington, DC, its research scope comprises programs in nations around the world.

Stephen P. A. Brown; Alan J. Krupnick; Margaret A. Walls; Stephen P. A. Brown; Alan J. Krupnick; Margaret A. Walls

2009-01-01T23:59:59.000Z

158

Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100  

E-Print Network [OSTI]

Historical and future black carbon deposition on the three ice caps: Ice core measurements black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 tends to enhance snow and ice melting due to the absorption caused by the increased BC deposition

159

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

SciTech Connect (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

160

Current and Future Carbon Budgets of Tropical Rain Forest: A Cross Scale Analysis. Final Report  

SciTech Connect (OSTI)

The goal of this project was to make a first assessment of the major carbon stocks and fluxes and their climatic determinants in a lowland neotropical rain forest, the La Selva Biological Station, Costa Rica. Our research design was based on the concurrent use of several of the best available approaches, so that data could be cross-validated. A major focus of our effort was to combine meteorological studies of whole-forest carbon exchange (eddy flux), with parallel independent measurements of key components of the forest carbon budget. The eddy flux system operated from February 1998 to February 2001. To obtain field data that could be scaled up to the landscape level, we monitored carbon stocks, net primary productivity components including tree growth and mortality, litterfall, woody debris production, root biomass, and soil respiration in a series of replicated plots stratified across the major environmental gradients of the forest. A second major focus of this project was on the stocks and changes of carbon in the soil. We used isotope studies and intensive monitoring to investigate soil organic stocks and the climate-driven variation of soil respiration down the soil profile, in a set of six 4m deep soil shafts stratified across the landscape. We measured short term tree growth, climate responses of sap flow, and phenology in a suite of ten canopy trees to develop individual models of tree growth to daytime weather variables.

Oberbauer, S. F.

2004-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

162

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

163

Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling  

E-Print Network [OSTI]

Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon experiments were conducted at sites spanning the steep oxygen, organic matter, and biological community gradients across the Arabian Sea oxygen minimum zone, in order to quantify the role that fauna play

164

Nitrogen cycling, plant biomass, and carbon dioxide evolution in a subsurface flow wetland  

E-Print Network [OSTI]

to ascertain the fate of nitrogen in a constructed wetland and the rate of bioremediation as indicated by carbon dioxide evolution. Research included a study of nitrogen uptake by plants and nitrification. A tracer isotope of nitrogen,ą?N, was used to follow...

Lane, Jeffrey J

2012-06-07T23:59:59.000Z

165

EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

166

Role of large scale storage in a UK low carbon energy future Philipp Grunewalda  

E-Print Network [OSTI]

) and enable demand side management (DSM) of electric appliances, including ground source heat pumps, air, 311 Mechanical Engineering Building, London SW7 2AZ, UK bLow Carbon Research Institute, Cardiff University, Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff, CF10 3NB Abstract

167

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGHBrayton Energy's supercritical carbon|

168

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY13 Q3  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGHBrayton Energy's supercritical carbon||

169

Equatorial Pacific Sediment Deposition during the Early to Middle Miocene: Carbon Cycling and Proxies for Productivity  

E-Print Network [OSTI]

trough [Shipboard Scientific Party, Init. Repts. DSDP 574, 1985]. Four holes were cored: Hole 574 cored from 0 ? 206.5 mbsf, Hole 574A cored from 0 - 180.2 m in length (100% recovery) and Hole 574C cored from 194.5 to 525.5 mbsf (58% recovery); Hole B... recovered only 9.5 m of core. Sediments from both Holes A and C are dominantly calcareous ooze. Siliceous microfossils are a typical component (2-30%, 7 Table 1) and make up the majority of the non-carbonate sediment fraction [Mayer et al., 1986...

Piela, Christine Marie

2012-02-14T23:59:59.000Z

170

The National Ignition Facility: The Path to a Carbon-Free Energy Future  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

Stolz, C J

2011-03-16T23:59:59.000Z

171

Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

SciTech Connect (OSTI)

Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

Wullschleger, Stan [ORNL] [ORNL

2012-03-22T23:59:59.000Z

172

Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

ScienceCinema (OSTI)

Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

Wullschleger, Stan [ORNL

2013-01-22T23:59:59.000Z

173

Project Title: Carbon cycling at the landscape scale: the effect of changes in climate and fire frequency on age distribution, stand structure, and net ecosystem production.  

E-Print Network [OSTI]

Project Title: Carbon cycling at the landscape scale: the effect of changes in climate and fire: Our project addresses Task 1 in RFP 2003-1. Climate, fire (frequency and intensity), and forest@mhub.zoology.wisc.edu, 4 Tinker@uwyo.edu Duration of Project: 3 years Annual Funding Requested from the Joint Fire Science

Turner, Monica G.

174

Microsoft PowerPoint - 6_Rowe-Future Challenges for Global Fuel Cycle Material Accounting Final_Updated.pptx  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review ofElectronic Input Options Gary L. HirschFuture

175

Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2  

SciTech Connect (OSTI)

The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

Stephen C. Piper; Ralph F. Keeling

2012-01-03T23:59:59.000Z

176

Development of pyro-processing technology at CRIEPI for carving out the future of nuclear fuel cycle  

SciTech Connect (OSTI)

Pyro-processing has been attracting increasing attention as a promising candidate as an advanced nuclear fuel cycle technology. It provides economic advantage as well as reduction in proliferation risk and burden of long live radioactive waste, especially when it is combined with advanced fuels such as metallic or nitride fuel which gives excellent burning efficiency of minor actinides (MA). CRIEPI has been developing pyro-processing technology since late eighties with both domestic and international collaborations. In the early stage, electrochemical and thermodynamic properties in LiCl-KCl eutectic melt, and fundamental feasibility of core technology like electrorefining were chiefly investigated. Currently, stress in the process chemistry development is also placed on supporting technologies, such as treatment of anode residue and high temperature distillation for cathode product from electrorefining, and so on. Waste treatment process development, such as studies on adsorption behavior of various FP elements into zeolite and conditions for the fabrication of glass-bonded sodalite waste form, are steadily improved as well. In parallel, dedicated pyro-processing equipment such as zeolite column for treatment of spent electro-refiner salt is currently in progress. Recently, an integrated engineering-scale fuel cycle tests were performed funded by Japanese government (MEXT) as an important step before proceeding to large scale hot demonstration of pyro-processing. Oxide fuels can be readily introduced into the pyro-processing by reducing them to metals by adoption of electrochemical reduction technique. Making use of this advantage, the pyro-processing is currently under preliminary evaluation for its applicability to the treatment of the corium, mainly consisting of (U,Zr)O{sub 2}, formed in different composition during the accident of the Fukushima Daiichi nuclear power plant. (authors)

Iizuka, M.; Koyama, T.; Sakamura, Y.; Uozumi, K.; Fujihata, K.; Kato, T.; Murakami, T.; Tsukada, T. [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements (Germany)

2013-07-01T23:59:59.000Z

177

Analysis and optimization of the Graz cycle : a coal fired power generation scheme with near-zero carbon dioxide emissions  

E-Print Network [OSTI]

Humans are releasing record amounts of carbon dioxide into the atmosphere through the combustion of fossil fuels in power generation plants. With mounting evidence that this carbon dioxide is a leading cause of global ...

Alexander, Brentan R

2007-01-01T23:59:59.000Z

178

Terrestrial Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluorite

179

ARM - Carbon Cycle Balance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love to heartotdngovInstrumentswrf-chem Comments?Campaign

180

Forest Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, Programs and2FIRSTGuidelinesForest

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wetland (peat) Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes its AP1000®

182

House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide  

E-Print Network [OSTI]

and Terrestrial Sequestration of Carbon Dioxide Howard Herzog Principal Research Engineer Massachusetts Institute to the Technical Group of the Carbon Sequestration Leadership Forum (see www.cslforum.org). Just two weeks ago, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

183

The future of carbon capture and storage in Europe www.sccs.org.uk s.haszeldine@ed.ac.uk p 1 The future of carbon capture and storage in Europe  

E-Print Network [OSTI]

is resilient to a wide range of future scenarios for electricity and heat supply. 3) In principle, CCS

Haszeldine, Stuart

184

System dynamics based models for selecting HVAC systems for office buildings: a life cycle assessment from carbon emissions perspective.  

E-Print Network [OSTI]

??This study aims to explore the life cycle environmental impacts of typical heating ventilation and air condition (HVAC) systems including variable air volume (VAV) system,… (more)

Chen, S

2011-01-01T23:59:59.000Z

185

Estimation of net carbon sequestration potential of citrus under different management systems using the life cycle approach.  

E-Print Network [OSTI]

??A study was conducted to determine the net carbon sequestration potential of citrus to mitigate climate change. Perennial crops such as citrus have the potential… (more)

Bwalya, jackson Mwamba

2013-01-01T23:59:59.000Z

186

Transient Accident Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to an Autonomous Lead-Cooled Fast Reactor  

SciTech Connect (OSTI)

The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising advanced alternative to the Rankine saturated steam cycle and recuperated gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO{sub 2} Brayton cycle coupled to an autonomous, natural circulation Lead-Cooled Fast Reactor (LFR). The plant dynamics code was used to simulate the whole-plant response to accident conditions. The specific design features of the reactor concept influencing passive safety are discussed and accident scenarios are identified for analysis. Results of calculations of the whole-plant response to loss-of-heat sink, loss-of-load, and pipe break accidents are demonstrated. The passive safety performance of the reactor concept is confirmed by the results of the plant dynamics code calculations for the selected accident scenarios. (authors)

Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

2006-07-01T23:59:59.000Z

187

Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor.  

SciTech Connect (OSTI)

The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is a promising advanced alternative to the Rankine steam cycle and recuperated gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO{sub 2} Brayton cycle coupled to an autonomous, natural circulation lead-cooled fast reactor (LFR). The plant dynamics code was used to simulate the whole-plant response to accident conditions. The specific design features of the reactor concept influencing passive safety are discussed and accident scenarios are identified for analysis. Results of calculations of the whole-plant response to loss-of-heat sink, loss-of-load, and pipe break accidents are demonstrated. The passive safety performance of the reactor concept is confirmed by the results of the plant dynamics code calculations for the selected accident scenarios.

Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

2008-08-01T23:59:59.000Z

188

Techno-economic analysis of sour gas oxy-fuel combustion power cycles for carbon capture and sequestration  

E-Print Network [OSTI]

The world's growing energy demand coupled with the problem of global warming have led us to investigate new energy sources that can be utilized in a way to reduce carbon dioxide emissions than traditional fossil fuel power ...

Chakroun, Nadim Walid

2014-01-01T23:59:59.000Z

189

Past and Future Effects of Ozone on Net Primary Production and Carbon Sequestration Using a Global Biogeochemical Model  

E-Print Network [OSTI]

Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860-1995) show ...

Felzer, Benjamin Seth.

190

Thermal cycling effect on the nanoparticle distribution and specific heat of a carbonate eutectic with alumina nanoparticles  

E-Print Network [OSTI]

. The concentration of alumina nanoparticles in this material was measured using neutron activation analysis. The average specific heat of the uncycled material was found to be 1.37 J/g°C.The average specific heat of the thermally cycled material was between 1.7-2.1 J...

Shankar, Sandhya

2011-08-08T23:59:59.000Z

191

Sustainable Management of Carbon, Nutrients, and Agrichemicals through Cycling of Bioresources fom Bioenergy and Livestock Production and Municipalities  

E-Print Network [OSTI]

Bioenergy and Livestock Production and Municipalities Bioenergy and livestock industries and municipalities offer bioresources for sustained crop productivity and environmental quality. In the emerging bioenergy and a potential source of carbon· credits for bioenergy systems. Incorporation of the char by-product in soil can

192

Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects  

E-Print Network [OSTI]

and summer. The effects of gasoline combustion, natural gas combustion, and biogenic respiration of plants isotopic tracers. The calculations showed large contributions of natural gas combustion in the winter burning, and fossil fuel combustion impart carbon and oxygen isotope signals to the atmosphere that can

Ehleringer, Jim

193

High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures  

E-Print Network [OSTI]

High-resolution modeling of the western North American power system demonstrates low-cost and low energy Carbon emissions a b s t r a c t Decarbonizing electricity production is central to reducing of resource cost scenarios, most coal power plants would be replaced by solar, wind, gas, and/or nuclear

Kammen, Daniel M.

194

FutureGen Project Report  

SciTech Connect (OSTI)

This report summarizes the comprehensive siting, permitting, engineering, design, and costing activities completed by the FutureGen Industrial Alliance, the Department of Energy, and associated supporting subcontractors to develop a first of a kind near zero emissions integrated gasification combined cycle power plant and carbon capture and storage project (IGCC-CCS). With the goal to design, build, and reliably operate the first IGCC-CCS facility, FutureGen would have been the lowest emitting pulverized coal power plant in the world, while providing a timely and relevant basis for coal combustion power plants deploying carbon capture in the future. The content of this report summarizes key findings and results of applicable project evaluations; modeling, design, and engineering assessments; cost estimate reports; and schedule and risk mitigation from initiation of the FutureGen project through final flow sheet analyses including capital and operating reports completed under DOE award DE-FE0000587. This project report necessarily builds upon previously completed siting, design, and development work executed under DOE award DE-FC26- 06NT4207 which included the siting process; environmental permitting, compliance, and mitigation under the National Environmental Policy Act; and development of conceptual and design basis documentation for the FutureGen plant. For completeness, the report includes as attachments the siting and design basis documents, as well as the source documentation for the following: • Site evaluation and selection process and environmental characterization • Underground Injection Control (UIC) Permit Application including well design and subsurface modeling • FutureGen IGCC-CCS Design Basis Document • Process evaluations and technology selection via Illinois Clean Coal Review Board Technical Report • Process flow diagrams and heat/material balance for slurry-fed gasifier configuration • Process flow diagrams and heat/material balance for dry-fed gasifier configuration • Full capital cost report and cost category analysis (CAPEX) • Full operating cost report and assumptions (OPEX) Comparative technology evaluations, value engineering exercises, and initial air permitting activities are also provided; the report concludes with schedule, risk, and cost mitigation activities as well as lessons learned such that the products of this report can be used to support future investments in utility scale gasification and carbon capture and sequestration. Collectively, the FutureGen project enabled the comprehensive site specific evaluation and determination of the economic viability of IGCC-CCS. The project report is bound at that determination when DOE formally proposed the FutureGen 2.0 project which focuses on repowering a pulverized coal power plant with oxy-combustion technology including CCS.

Cabe, Jim; Elliott, Mike

2010-09-30T23:59:59.000Z

195

Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants  

E-Print Network [OSTI]

? Nuclear Power Plants ? Solar Power Plants ? Wind Power Plants ? Geothermal Power Plants 1.2.2 Based on the Function Performed Three main types of power plants are categorized according to the functions they perform. These are called “base load..., Temperature and Efficiency for PC Technologies. Reprinted from Hermine Nalbandian 2009. Energia – Center for Applied Energy Research With the extensive favorable experience in Europe, Japan and Korea using supercritical (SC) steam cycles over the past...

Kundi, Manish

2011-12-16T23:59:59.000Z

196

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP) MANAGING CLIMATE CHANGE AND SECURING A FUTURE FOR THE MIDWEST'S INDUSTRIAL BASE  

SciTech Connect (OSTI)

This is the third semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two-year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

David Ball; Robert Burns; Judith Bradbury; Bob Dahowski; Casie Davidson; James Dooley; Neeraj Gupta; Rattan Lal; Larry Wickstrom

2005-04-29T23:59:59.000Z

197

Black Carbon’s Properties and Role in the Environment: A Comprehensive Review  

E-Print Network [OSTI]

NOAA/ESRL. Mauna Loa Carbon Dioxide Annual Mean Data.H. Can reducing black carbon emissions counteract globalanalysis of black carbon in soils. Global Biogeochem. Cycle.

Shrestha, Gyami

2010-01-01T23:59:59.000Z

198

Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe  

SciTech Connect (OSTI)

Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

Miura, N.; Fujioka, T.; Kashima, K. [and others

1997-04-01T23:59:59.000Z

199

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network [OSTI]

of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements chains and emission factors for the generation, transmission and distribution portions of the electricity, for electricity and for particular products, results show environmental impacts split up by generation type

200

The lifetime of excess atmospheric carbon dioxide  

SciTech Connect (OSTI)

Since the beginning of the industrial revolution human activity has significantly altered biogeochemical cycling on a global scale. The uncertainties of future climate change rests partly on issues of physical-climate system dynamics and their representation in general circulation models. However understanding the carbon cycle is a key to comprehending the changing terrestrial biosphere and to developing a reasonable range of future concentrations of greenhouse gases. The authors look at correction of model uncertainties in the examination of the lifetime of carbon dioxide. The two difficulties analysed are as follows: (1) most model-derived estimates of the relaxation of the concentration of CO2 reveal a function which is not always well approximated by weighted sums of exponentials; (2) the function c(t) is quite sensitive to assumptions about the terrestrial biosphere and the relaxation experiment. 51 refs., 15 figs., 7 tabs.

Moore, B. III; Braswell, B.H. (Univ. of New Hampshire, Durham, NH (United States))

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Carbon-Optimal and Carbon-Neutral Supply Chains  

E-Print Network [OSTI]

that the focus in the life-cycle assessment (LCA) and carbonclosely related to life-cycle assessment (LCA). The existingsupply chains, and on life-cycle assessment (LCA) and carbon

Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

2011-01-01T23:59:59.000Z

202

application au cycle: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander Jun Lan Yang is performed for the transcritical carbon dioxide refrigeration...

203

Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

NONE

1996-12-01T23:59:59.000Z

204

A modeling software linking approach for the analysis of an integrated reforming combined cycle with hot potassium carbonate CO[subscript 2] capture  

E-Print Network [OSTI]

The focus of this study is the analysis of an integrated reforming combined cycle (IRCC) with natural gas as fuel input. This IRCC consisted of a hydrogen-fired gas turbine (GT) with a single-pressure steam bottoming cycle ...

Nord, Lars Olof

205

Soil metagenomics and carbon cycling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofat HomeAssurance: DOESoil metagenomics

206

ENERGY WHITE PAPER Our energy future -  

E-Print Network [OSTI]

ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

207

Perspectives on Carbon Capture and Sequestration in the United States  

E-Print Network [OSTI]

Community acceptance of carbon capture and sequestrationand realities of carbon capture and storage; www.eenews.net/Howard. What Future for Carbon Capture and Sequestration?

Wong-Parodi, Gabrielle

2011-01-01T23:59:59.000Z

208

A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits  

SciTech Connect (OSTI)

A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

Klasson, KT

2002-12-23T23:59:59.000Z

209

Benefits and concerns of a closed nuclear fuel cycle  

SciTech Connect (OSTI)

Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a “once-through” fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

Widder, Sarah H.

2010-11-17T23:59:59.000Z

210

Recovery of Carbon and Nitrogen Cycling and Microbial Community Functionality in a Post-Lignite Mining Rehabilitation Chronosequence in East Texas  

E-Print Network [OSTI]

nutrients through a number of methods (Barnhisel and Hower, 1997; Bradshaw, 1997; Palmer et al., 2010; Hons, 1978; Lorenz and Lal, 2007; Whitford, 1988; Coyne et al., 1998; Ingram et al., 2005). One important characteristic, soil organic carbon (SOC), has...

Ng, Justin

2012-10-19T23:59:59.000Z

211

In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO{sub 2}/TiN cells  

SciTech Connect (OSTI)

In this study, direct experimental materials science evidence of the important theoretical prediction for resistive random access memory (RRAM) technologies that a critical amount of oxygen vacancies is needed to establish stable resistive switching in metal-oxide-metal samples is presented. In detail, a novel in-operando hard X-ray photoelectron spectroscopy technique is applied to non-destructively investigates the influence of the current compliance and direct current voltage sweep cycles on the Ti/HfO{sub 2} interface chemistry and physics of resistive switching Ti/HfO{sub 2}/TiN cells. These studies indeed confirm that current compliance is a critical parameter to control the amount of oxygen vacancies in the conducting filaments in the oxide layer during the RRAM cell operation to achieve stable switching. Furthermore, clear carbon segregation towards the Ti/HfO{sub 2} interface under electrical stress is visible. Since carbon impurities impact the oxygen vacancy defect population under resistive switching, this dynamic carbon segregation to the Ti/HfO{sub 2} interface is suspected to negatively influence RRAM device endurance. Therefore, these results indicate that the RRAM materials engineering needs to include all impurities in the dielectric layer in order to achieve reliable device performance.

Sowinska, Malgorzata, E-mail: sowinska@ihp-microelectronics.com; Bertaud, Thomas; Walczyk, Damian; Calka, Pauline; Walczyk, Christian [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Thiess, Sebastian [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Alff, Lambert [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Brandenburgische Technische Universität, Konrad-Zuse-Strasse 1, 03046 Cottbus (Germany)

2014-05-28T23:59:59.000Z

212

Carbon isotope ratios of organic compound fractions in oceanic suspended particles  

E-Print Network [OSTI]

Radiocarbon evidence of fossil-carbon cycling in sediments1968), Metabolic fractionation of carbon isotopes in marineof particulate organic carbon using bomb 14 C, Nature,

Hwang, Jeomshik; Druffel, Ellen R. M

2006-01-01T23:59:59.000Z

213

The human carbon budget: an estimate of the spatial distribution of metabolic carbon consumption and release in the United States  

E-Print Network [OSTI]

West TO, Marland G (2002a) Net carbon ?ux from agriculturalmethodology for full carbon cycle analyses. Environ PollutG (2002b) A synthesis of carbon seques- tration, carbon

West, Tristram O.; Marland, Gregg; Singh, Nagendra; Bhaduri, Budhendra L.; Roddy, Adam B.

2009-01-01T23:59:59.000Z

214

Corresponding author: Tel. (617) 253-3901, Fax. (617) 253-9845, Email: jrm1@mit.edu THE FUTURE OF COAL CONSUMPTION IN A CARBON CONSTRAINED WORLD  

E-Print Network [OSTI]

, and the dispatch between coal and natural gas generation technologies. In this paper, we develop plausible, yet of penalties or restrictions on carbon dioxide emissions, coal use for electricity generation is expected coal and natural gas generation technologies. This analysis emphasizes the time frame to 2050

215

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

216

Future Accelerators (?)  

E-Print Network [OSTI]

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

217

Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2  

SciTech Connect (OSTI)

The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

Keeling, Ralph [UCSD-SIO

2014-12-12T23:59:59.000Z

218

Background paper for "The 10-50 Solution: Technologies and Policies for a Low-Carbon Future" Pew Center & NCEP Conference, Washington, DC, March 25 26, 2004  

E-Print Network [OSTI]

School of Public Policy 310 Barrows Hall, University of California, Berkeley, CA 94720-3050 USA Email, and nations. Over the next five decades solar and wind energy could provide well over one third of electricity for a future requiring significantly more energy than the current global supply capacity of ~10 TW demand

Kammen, Daniel M.

219

The Kalina cycle and similar cycles for geothermal power production  

SciTech Connect (OSTI)

This report contains a brief discussion of the mechanics of the Kalina cycle and ideas to extend the concept to other somewhat different cycles. A modified cycle which has a potential heat rejection advantage but little or no performance improvement is discussed. Then, the results of the application of the Kalina cycle and the modified cycle to a geothermal application (360/degree/F resource) are discussed. The results are compared with published results for the Kalina cycle with high temperature sources and estimates about performance at the geothermal temperatures. Finally, the conclusions of this scoping work are given along with recommendations of the direction of future work in this area. 11 refs., 4 figs., 1 tab.

Bliem, C.J.

1988-09-01T23:59:59.000Z

220

Global Proteomics Reveal An Atypical Strategy for Carbon/Nitrogen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

crucial to global oxygen production and worldwide carbon and nitrogen cycles. These microalgae are robust organisms capable carbon neutral biofuel production. Synechocystis sp....

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Carbon Nanotubes: Bearing Stress Like Never Before  

E-Print Network [OSTI]

A.J. (2013). Carbon Nanotubes: Present and Future CommercialP.M. (2008). Carbon Nanotubes. A. Jorio, G. Dresselhaus, &V.N. (2004). Carbon Nanotubes: properties and application.

Limaye, Aditya

2013-01-01T23:59:59.000Z

222

Future climate trends from a first-difference atmospheric carbon dioxide regression model involving emissions scenarios for business as usual and for peak fossil fuel  

E-Print Network [OSTI]

This paper investigates the implications of the future continuation of the demonstrated past (1960-2012) strong correlation between first-difference atmospheric CO2 and global surface temperature. It does this, for the period from the present to 2050, for a comprehensive range of future global fossil fuel energy use scenarios. The results show that even for a business-as-usual (the mid-level IPCC) fossil fuel use estimate, global surface temperature will rise at a slower rate than for the recent period 1960-2000. Concerning peak fossil fuel, for the most common scenario the currently observed (1998-2013)temperature plateau will turn into a decrease. The observed trend to date for temperature is compared with that for global climate disasters: these peaked in 2005 and are notably decreasing. The temperature and disaster results taken together are consistent with either a reduced business-as-usual fossil fuel use scenario into the future, or a peak fossil fuel scenario, but not with the standard business-as-usu...

Leggett, L M W

2014-01-01T23:59:59.000Z

223

Microsoft PowerPoint - 6_Rowe-Future Challenges for Global Fuel...  

National Nuclear Security Administration (NNSA)

International Atomic Energy Agency (IAEA), Nuclear Fuel Cycle Information System (NFCIS) web site IAEA Safeguards Begins Here 4 Future Challenges for Global Fuel Cycle Material...

224

Supercritical CO2Brayton Cycle Control Strategy for Autonomous Liquid Metal-Cooled Reactors  

SciTech Connect (OSTI)

This presentation discusses a supercritical carbon dioxide brayton cycle control strategy for autonomous liquid metal-cooled reactors.

Moisseytsev, A.; Sienicki, J.J.

2004-10-06T23:59:59.000Z

225

Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research  

E-Print Network [OSTI]

their representation in Earth system models. Tropical forests play a significant role in the global carbon cycle

Bermingham, Eldredge

226

Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies  

E-Print Network [OSTI]

-cycle modeling for light-duty vehicles GREET CCLUB CCLUB: Carbon Calculator for Land Use Change from Biofuels, and black carbon (in a new release) CO2e of the three (with their global warming potentials) Criteria

Bustamante, Fabián E.

227

Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks  

SciTech Connect (OSTI)

Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO{sub 2} increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

Erickson III, David J [ORNL

2011-01-01T23:59:59.000Z

228

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect (OSTI)

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

2001-10-01T23:59:59.000Z

229

Formation of Carbon Dwarfs  

E-Print Network [OSTI]

We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

Charles L. Steinhardt; Dimitar D. Sasselov

2012-01-27T23:59:59.000Z

230

Future Healthcare  

E-Print Network [OSTI]

Patients want answers, not numbers. Evidence-based medicine must have numbers to generate answers. Therefore, analysis of numbers to provide answers is the Holy Grail of healthcare professionals and its future systems. ...

Datta, Shoumen

2010-12-15T23:59:59.000Z

231

Cycle cover with short cycles Nicole Immorlica  

E-Print Network [OSTI]

Introduction Given a graph and a subset of marked elements (nodes, edges, or some combination thereof), a cycleCycle cover with short cycles Nicole ImmorlicaÂŁ Mohammad MahdianÂŁ Vahab S. MirrokniÂŁ Abstract Cycle for variants of cycle covering problems which bound the size and/or length of the covering cycles

Immorlica, Nicole

232

Lesson Summary Students will learn about different carbon  

E-Print Network [OSTI]

Lesson Summary Students will learn about different carbon sources and sinks and the release · Knowledge of carbon as the main constituent of living organisms AAAS Science Benchmarks The Physical Setting Materials · 1 copy of The Carbon Cycle (Figure 1) · 1 copy of The Carbon Cycle A4 sheet for each student · 1

Mojzsis, Stephen J.

233

FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation  

SciTech Connect (OSTI)

This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

Zitney, S.E.

2006-11-01T23:59:59.000Z

234

Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon  

E-Print Network [OSTI]

the Coupled Carbon Cycle Climate Model Intercomparison Project model projections H A I F E N G Q I A N *, R E Carbon Cycle Climate Model Intercomparison Project. Our analysis suggests that the NHL will be a carbon the intense warming there enhances SOM decomposition, soil organic carbon (SOC) storage continues to increase

Zeng, Ning

235

Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.  

SciTech Connect (OSTI)

STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal resistance of a gas-filled gap.

Moisseytsev, A.; Sienicki, J. J.

2007-03-08T23:59:59.000Z

236

Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.  

SciTech Connect (OSTI)

Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO{sub 2} cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO{sub 2} cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO{sub 2} cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO{sub 2} cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2012-05-10T23:59:59.000Z

237

CARBON DIOXIDE FIXATION.  

SciTech Connect (OSTI)

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

238

Future Yield Growth: What Evidence from Historical Data?  

E-Print Network [OSTI]

The potential future role of biofuels has become an important topic in energy legislation as it is seen as a potential low carbon alternative to conventional fuels. Hence, future yield growth is an important topic from ...

Gitiaux, Xavier

239

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network [OSTI]

materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

Rollins, Andrew M.

240

Analysis of Strategies of Companies under Carbon Constraint: Relationship between Profit Structure of Companies and Carbon/Fuel Price Uncertainty  

E-Print Network [OSTI]

This paper examines the relationship between future carbon prices and the expected profit of companies by case studies with model companies. As the future carbon price will vary significantly in accordance with the political ...

Hashimoto, Susumu

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Terrestrial biogeochemical feedbacks in the climate system: from past to future  

SciTech Connect (OSTI)

The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O'Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

2010-01-05T23:59:59.000Z

242

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect (OSTI)

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

243

Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere  

SciTech Connect (OSTI)

Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on “Trends and Future Challenges in Sampling The Deep Subsurface” was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation’s Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

Wilkins, Michael J.; Daly, Rebecca; Mouser, Paula J.; Trexler, Ryan; Sharma, Shihka; Cole, David R.; Wrighton, Kelly C.; Biddle , Jennifer F.; Denis, Elizabeth; Fredrickson, Jim K.; Kieft, Thomas L.; Onstott, T. C.; Peterson, Lee; Pfiffner, Susan M.; Phelps, Tommy J.; Schrenk, Matthew O.

2014-09-12T23:59:59.000Z

244

Coupling between the Carbon Cycle and  

E-Print Network [OSTI]

.37 kW/m2 ... the rest is absorbed ... and later re-emitted at a longer wavelength (infrared) Radiative - small fluctuations 2. Reflected - albedo variations - with climate 3. Emitted radiation - emissivity 750 Gt Ocean 38,000 Gt Surface 1,000 Gt Deep 37,000 Gt Biosphere 600 Gt Soil 1,700 Gt Fossil fuel 5

Zeeman, Mary Lou

245

Heterogeneous reservoirs in the marine carbon cycle  

E-Print Network [OSTI]

Understanding the fate of primary production in the ocean is a challenging task because once produced, organic material is oxidized over timescales which range from minutes, to millions of years. This timescale diversity ...

Follett, Christopher L

2014-01-01T23:59:59.000Z

246

ARM - What is the Carbon Cycle?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of Global Warming? Outreach Home Outreach Outreach

247

Life cycle assessment and biomass carbon accounting  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332

248

Biorefinery and Carbon Cycling Research Project  

SciTech Connect (OSTI)

In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

2012-06-08T23:59:59.000Z

249

The Future of Low Carbon Transportation Fuels  

E-Print Network [OSTI]

" Nuclear" Oil resources" Unconventional:" oil shale liquid, " oil sands" Coal resources" Transport! Elec

Kammen, Daniel M.

250

Seasonal cycle of Precipitation over Major River Basins in South and Southeast Asia: A Review of the CMIP5 climate models data for present climate and future climate projections  

E-Print Network [OSTI]

We review the skill of thirty coupled climate models participating in Coupled Model Intercomparison Project 5 in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for historical period (1961-2000). We also present projected changes by these models by end of century (2061-2100) under extreme scenario RCP8.5. First, we assess their ability to reproduce observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA slope) - a measure of seasonality within active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) - a multiplicative measure of precipitation and extent of its concentration relative to the uniform distribution (relative entropy - RE). We apply SI distinctly for monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation regime. For present climate, neither any single model nor the multi-mod...

Hasson, Shabeh ul; Lucarini, Valerio; Böhner, Jürgen

2015-01-01T23:59:59.000Z

251

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

252

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

253

Fossil energy, clean coal technology, and FutureGen  

SciTech Connect (OSTI)

Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

Sarkus, T.A.

2008-07-15T23:59:59.000Z

254

Nuclear Futures Analysis and Scenario Building  

SciTech Connect (OSTI)

This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios.

Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

1999-07-09T23:59:59.000Z

255

The Future of Natural Gas AN INTERDISCIPLINARY MIT STUDYForeword and Acknowledgements The Future of Natural Gas is the fourth in a  

E-Print Network [OSTI]

series of MIT multidisciplinary reports examining the role of various energy sources that may be important for meeting future demand under carbon dioxide (CO 2) emissions constraints. In each case, we explore the steps needed to enable competitiveness in a future marketplace conditioned by a CO 2 emissions price or by a set of regulatory initiatives. This report follows an interim report issued in June 2010. The first three reports dealt with nuclear power (2003), coal (2007) and the nuclear fuel cycle (2010 and 2011). A study of natural gas is more complex than these previous reports because gas is a major fuel for multiple end uses — electricity, industry, heating — and is increasingly discussed as a potential pathway to reduced oil dependence for transportation. In addition, the realization over the last few years that the producible unconventional gas resource in the U.S. is very large has intensified the discussion about natural gas as a “bridge ” to a low-carbon future. Recent indications of a similarly large global gas shale resource may also transform the geopolitical landscape for gas. We have carried out the integrated analysis reported here as a contribution to the energy, security and climate debate. Our primary audience is U.S. government, industry and academic leaders, and decision makers. However, the study is carried out with an international perspective. invested in advising us. However, the study is the responsibility of the MIT study group and the advisory committee members do not necessarily endorse all of its findings and recommendations, either individually or collectively. Finally, we are very appreciative of the support from several sources. First and foremost, we thank the American Clean Skies Foundation. Discussions with the Foundation led to the conclusion that an integrative study on the future of natural gas in a carbon-constrained world could contribute to the energy debate in an important way, and the Foundation stepped forward as the major sponsor. MIT Energy

unknown authors

256

APPLICATION FORM FOR FREE LOCKED CYCLE This form is for staff or students who require a cycle parking space in a locked  

E-Print Network [OSTI]

guaranteed a cycle space. · Entry to locked cycle sheds will require the code to a combination lock. To avoidAPPLICATION FORM FOR FREE LOCKED CYCLE PARKING This form is for staff or students who require a cycle parking space in a locked facility. Please read the following notes and retain for future

Matthews, Adrian

257

The role of carbon in climate change: a lifecyclethinking approach to a complex issue  

E-Print Network [OSTI]

;Exchange pool: · The primary source of carbon to the atmosphere is outgassing from the Earth's interior carbonate rock forma>on (largely biogenic) The Carbon Cycle 6 UNESCO Chair in Life Cycle Chair in Life Cycle and Climate Change Climate records #12;Source: J.R. Petit, J. Jouzel. et. al

258

Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles  

SciTech Connect (OSTI)

Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world�s hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements - around 530 oC and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

The Pennsylvania State Univeristy: Serguei Lvov, Mike Chung, Mark Fedkin, Victor Balashov, Elena, Chalkova, Nikolay Akinfiev; University of South Carolina: Carol Stork, Thomas Davis, Francis Gadala-Maria, Thomas Stanford, John Weidner; Tulane University: Victor Law, John Prindle; ANL: Michele Lewis

2011-01-06T23:59:59.000Z

259

Biomass Gasification Combined Cycle  

SciTech Connect (OSTI)

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

260

Cycle Track Lessons Learned  

E-Print Network [OSTI]

Cycle Track Lessons Learned #12;Presentation Overview · Bicycling trends · Cycle track lessons learned · What is a "Cycle track"? · Essential design elements of cycle tracks Separation Width Crossing driveways & low-volume streets Signalized intersections #12;Trend in kilometers cycled per year

Bertini, Robert L.

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Toward a consistency cross-check of eddy covariance flux–based and biometric estimates of ecosystem carbon balance  

E-Print Network [OSTI]

estimates of annual carbon sequestration in a Sitka spruce (carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration

2009-01-01T23:59:59.000Z

262

Hydrogen: Fueling the Future  

SciTech Connect (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

263

Trophic cycling and carbon export relationships in the California Current Ecosystem Michael R. Stukel,a,*,1 Michael R. Landry,a Claudia R. Benitez-Nelson,b and Ralf Goerickea  

E-Print Network [OSTI]

and tested its predictions of mesozooplankton fecal-pellet export against vertical carbon-flux measurements measured 14C-primary production and chlorophyll-based rate estimates of phytoplankton growth coastal upwelling to offshore oligotrophic conditions. E-ratios (carbon export : 14C-primary production

Benitez-Nelson, Claudia

264

Framtidens lantbruk / Future Agriculture Future Agriculture  

E-Print Network [OSTI]

Framtidens lantbruk / Future Agriculture Future Agriculture ­ Livestock, Crops and Land Use Report from a multidisciplinary research platform. Phase I (2009 ­ 2012) #12;Future Agriculture ­ Livestock Waldenström Utgivningsår: 2012, Uppsala Utgivare: SLU, Framtidens lantbruk/Future Agriculture Layout: Pelle

265

Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements  

E-Print Network [OSTI]

Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements Yonghoon Choi1. Wang (2004), Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements carbon cycle. However, the dynamics of carbon (C) cycling in coastal wetlands and its response to sea

Wang, Yang

266

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

267

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

268

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

2007-01-01T23:59:59.000Z

269

The nitrogen cycle and ecohydrology of seasonally dry grasslands  

E-Print Network [OSTI]

This thesis addresses the coupling of hydrologic and biogeochemical processes and, specifically, the organization of ecosystem traits with the water, carbon, and nitrogen cycles. Observations from a factorial irrigation- ...

Parolari, Anthony Joseph

2013-01-01T23:59:59.000Z

270

Life-cycle assessment of wastewater treatment plants  

E-Print Network [OSTI]

This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

Dong, Bo, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

271

Synthesis and Characterization of Structured Si-Carbon Nanocomposite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Si-Carbon Nanocomposite Anodes and Functional Polymer Binders Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications...

272

Crystallographic Snapshots of Cyanide- and Water-Bound C-Clusters from Bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase  

E-Print Network [OSTI]

Nickel-containing carbon monoxide dehydrogenases (CODHs) reversibly catalyze the oxidation of carbon monoxide to carbon dioxide and are of vital importance in the global carbon cycle. The unusual catalytic CODH C-cluster ...

Kung, Yan

273

Comprehensive carbon footprint analysis of the value chains  

E-Print Network [OSTI]

, carbon sequestration) VTT: expertise in sustainability assessment (life cycle analysis, carbon footprint of wood supply 2.Carbon sequestration Managed stand Unmanaged stand photos: Erkki Oksanen/Metla #12;VTT of the results Quality - wood & biomass Biodiversity Carbon - sequestration - footprint Economics - cost

274

EIS-0394: FutureGen Project  

Broader source: Energy.gov [DOE]

The EIS provides information about the potential environmental impacts of the DOE's proposal to provide federal funding to FutureGen Alliance, Inc. for the FutureGen Project. The project would include the planning, design, construction, and operation by the Alliance of a coal-fueled electric power and hydrogen gas production plant integrated with carbon dioxide capture and geologic sequestration of the captured gas.

275

FUTURE POWER GRID INITIATIVE Future Power Grid  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Future Power Grid Control Paradigm OBJECTIVE This project integration & exploit the potential of distributed smart grid assets » Significantly reduce the risk of advanced mathematical models, next- generation simulation and analytics capabilities for the power grid

276

LIFE Materials: Fuel Cycle and Repository Volume 11  

SciTech Connect (OSTI)

The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of the repository design. (4) A simple, but arguably conservative, estimate for the dose from a repository containing 63,000 MT of spent LIFE fuel would have similar performance to the currently planned Yucca Mountain Repository. This indicates that a properly designed 'LIFE Repository' would almost certainly meet the proposed Nuclear Regulatory Commission standards for dose to individuals, even though the waste in such a repository would have produced 20-30 times more generated electricity than the reference case for Yucca Mountain. The societal risk/benefit ratio for a LIFE repository would therefore be significantly better than for currently planned repositories for LWR fuel.

Shaw, H; Blink, J A

2008-12-12T23:59:59.000Z

277

PLANS FOR FUTURE MEGAWATT FACILITIES.  

SciTech Connect (OSTI)

Proton accelerators producing beam powers of up to 1 MW are presently either operating or under construction and designs for Multi-Megawatt facilities are being developed. High beam power has applications in the production of high intensity secondary beams of neutrons, muons, kaons and neutrinos as well as in nuclear waste transmutation and accelerator-driven sub-critical reactors. Each of these applications has additional requirements on beam energy and duty cycle. This paper will review how present designs for future Multi-Megawatt facilities meet these requirements and will also review the experience with present high power facilities.

ROSER,T.

2004-10-13T23:59:59.000Z

278

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study Renewable Electricity Generation and Storage Technologies for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable;Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

279

Carbon Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Capture Pre-Combustion Post-Combustion CO2 Compression Systems Analysis Regulatory Drivers Program Plan Capture Handbook Carbon capture involves the separation of CO2 from...

280

Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed Cmos Electronics  

E-Print Network [OSTI]

Carbon-based nanomaterials such as metallic single-walled carbon nanotubes, multiwalled carbon nanotubes (MWCNTs), and graphene have been considered as some of the most promising candidates for future interconnect technology ...

Chen, Xiangyu

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Living a Sustainable Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solve the energy crisis through biological methods, including genetically engineering algae and cyanobacteria. Create a Sustainable Future: Living Living a Sustainable Future How...

282

Introduction to Futures Markets  

E-Print Network [OSTI]

An introduction to futures markets, this publication describes the history of the markets, defines terminology and offers advice on how to use futures effectively in farm marketing programs....

Mintert, James R.; Welch, Mark

2009-01-07T23:59:59.000Z

283

Active stewardship: sustainable future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the...

284

Exponential growth, energetic Hubbert cycles, and the advancement of technology  

E-Print Network [OSTI]

peak as of this writing in April 2008. The multi-Hubbert cycle analysis of oil and gas production exponentially in the near future, given the declining oil and gas produc- tion rates and the high prices of bothExponential growth, energetic Hubbert cycles, and the advancement of technology Tad W. Patzek

Patzek, Tadeusz W.

285

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network [OSTI]

Lead Acid, Ni-Mh, and Li-ion battery manufacturing isMh battery, HEV Page 4 of 10 with a Li-ion battery, PHEV20with a Li-ion battery, PHEV60 with a Li-ion battery, and

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

286

Synthesis and fluid interaction of ultra long carbon nanotubes  

E-Print Network [OSTI]

The successful integration for carbon nanotubes in future electronic applications relies on advances in their synthesis. In this work optimization of growth parameters was conducted to obtain ultra long carbon nanotubes. ...

Hofmann, Mario

2009-01-01T23:59:59.000Z

287

FutureGen Alliance Formally Seeking Proposals for CO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Springfield, Ill. - The FutureGen Alliance released a Request for Site Proposals (RFP) today for communities that would like to be considered to host the carbon dioxide (CO...

288

Secretary Chu Announces FutureGen | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Wilcox, and Air Liquide Process & Construction, Inc. to build FutureGen 2.0, a clean coal repowering program and carbon dioxide (CO2) storage network. The project partners...

289

California Energy Futures Study Working Committee  

E-Print Network [OSTI]

Organization (ILO) (2008) Green Jobs: Towards decent work in a sustainable, low-carbon world. 376 pp. Urbanchuk of renewable & sustainable feedstocks for fuels (e.g. BCAP), development of new market mechanisms Medium's Energy Future, Biofuels #12;#12;#12;#12;Build-out Rate Final scenario 5.5 bgge ~100 biorefineries

California at Davis, University of

290

Review problems on photosynthesis, carbon cycle. Julie Wright, HAS222d/253e 2007 1) Photosynthesis resembles the hydrogen fuel cell we studied in the lab. The following reactions  

E-Print Network [OSTI]

resembles the hydrogen fuel cell we studied in the lab. The following reactions were taken from the review) the overall reaction of photosynthesis is: H2O + CO2 ---> O2 + CH2O E'o = -1.24 Hydrogen fuel cell: 2H2O does hydrogen combustion differ from sugar/alcohol/biofuels combustion ecologically? 2) Why is carbon

291

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(say, a trip) and such factors are not fully captured in this dataset. 9. Older combined cycle units were a step change in lower operating costs due to cycling...

292

Edgeworth cycles revisited  

E-Print Network [OSTI]

Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend ...

Doyle, Joseph J.

293

Photovoltaics Life Cycle Analysis  

E-Print Network [OSTI]

1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

294

Carbon-enhanced VRLA batteries.  

SciTech Connect (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

295

Global Energy Futures: With International Futures (IFs)  

SciTech Connect (OSTI)

Dr. Hughes presents and discusses the results of simulations on alternative energy futures composed in collaboration with SNL's Sustainability Innovation Foundry.

Hughes, Barry

2013-03-20T23:59:59.000Z

296

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

297

Carbon Smackdown: Carbon Capture  

SciTech Connect (OSTI)

In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

Jeffrey Long

2010-07-12T23:59:59.000Z

298

Carbon Smackdown: Carbon Capture  

ScienceCinema (OSTI)

In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

Jeffrey Long

2010-09-01T23:59:59.000Z

299

mathematics single cycle  

E-Print Network [OSTI]

47 mathematics education single cycle master's study programme #12;48 single cycle master's study program in Mathematics Education #12;49 single cycle master's study program in Mathematics Education MATHEMATICS EDUCATION The program is in tune with the principles of the Bologna Declaration. · Academic title

Â?umer, Slobodan

300

Answering Key Fuel Cycle Questions  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we plan for? · Should we separate uranium? · If we separate uranium, should we recycle it, store it or dispose of it? · Is it practical to plan to fabricate and handle “hot” fuel? · Which transuranic elements (TRU) should be separated and transmuted? · Of those TRU separated, which should be transmuted together? · Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? · Should we separate and/or transmute very long-lived Tc and I isotopes? · Which separation technology? · What mix of transmutation technologies? · What fuel technology best supports the above decisions?

Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cycle to Cycle Manufacturing Process Control  

E-Print Network [OSTI]

Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

Hardt, David E.

302

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

303

Stimulating carbon efficient supply chains : carbon labels and voluntary public private partnerships  

E-Print Network [OSTI]

This thesis looks at the potential of labeling products with life cycle greenhouse gas emission information as a bottom-up, complementary alternative to carbon cap and trade systems. By improving the transparency of product ...

Tan, Kwan Chong

2009-01-01T23:59:59.000Z

304

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents [OSTI]

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

305

Nuclear materials safeguards for the future  

SciTech Connect (OSTI)

Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

Tape, J.W.

1995-12-31T23:59:59.000Z

306

Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath  

E-Print Network [OSTI]

Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath Ecosystems with Emphasis on Cold-season cycling of carbon and nitrogen in temperate and subarctic heath ecosystems. Over the last three years, I spend many hours introducing me to modeling carbon exchange, thank you. Also thanks to Karina Clemmensen

307

Fuel cycles and envisioned roles of fast neutron reactors and hybrids  

SciTech Connect (OSTI)

Future innovative nuclear fuel cycles will require insuring sustainability in terms of safe operation, optimal use of resources, radioactive waste minimization and reduced risk of proliferation. The present paper introduces some basic notions and fundamental fuel cycle strategies. The simulation approach needed to evaluate the impact of the different fuel cycle alternatives will also be shortly discussed.

Salvatores, Massimo [CEA-Cadarache, DEN-Dir, Bat. 101, St-Paul-Lez-Durance 13108 (France)

2012-06-19T23:59:59.000Z

308

Calculating the Social Cost of Carbon  

E-Print Network [OSTI]

The paper1 discusses the determination of the social cost of carbon (SCC) using the PAGE2002 model used in the Stern Review. The SCC depends sensitively on assumptions about future economic development, the range and likelihood of economic...

Hope, Chris; Newbery, David

309

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

310

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

311

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

312

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

313

Advanced Fuel Cycles Activities in IAEA  

SciTech Connect (OSTI)

Considerable scientific and technical progress in many areas of Partitioning and Transmutation (P and T) has been recognized as probable answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. These recent global developments such as Russian initiative on Global Nuclear Infrastructure-International Fuel Centre and the US initiative on Global Nuclear Energy Partnership (GNEP) have made advanced fuel cycles as one of the decisive influencing factor for the future growth of nuclear energy. International Atomic Energy Agency has initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) with overall objective of bringing together technology holders and technology users to consider jointly the international and national actions required achieving desired innovations in nuclear reactors and fuel cycles. One of the interesting common features of these initiatives (INPRO, GNEP and GNI-IFC) is closed fast reactor fuel cycles and proliferation resistance. Any fuel cycle that integrate P and T into it is also known as 'Advanced Fuel Cycle' (AFC) that could achieve reduction of plutonium and Minor Actinide (MA) elements (namely Am, Np, Cm, etc.). In this regard, some Member States are also evaluating alternative concepts involving the use of thorium fuel cycle, inert-matrix fuel or coated particle fuel. Development of 'fast reactors with closed fuel cycles' would be the most essential step for implementation of P and T. The scale of realization of any AFC depends on the maturity of the development of all these elemental technologies such as recycling MA, Pu as well as reprocessed uranium. In accordance with the objectives of the Agency, the programme B entitled 'Nuclear Fuel cycle technologies and materials' initiated several activities aiming to strengthen the capabilities of interested Member States for policy making, strategic planning, technology development and implementation of safe, reliable, economically efficient, proliferation resistant, environmentally sound and secure nuclear fuel cycle programmes. The paper describes some on-going IAEA activities in the area of: MA-fuel and target, thorium fuel cycle, coated particle fuel, MA-property database, inert matrix fuels, liquid metal cooled fast reactor fuels and fuel cycles, management of reprocessed uranium and proliferation resistance in fuel cycle. (authors)

Nawada, H.P.; Ganguly, C. [Nuclear Fuel Cycle and Materials Section, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna (Austria)

2007-07-01T23:59:59.000Z

314

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

315

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

316

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

317

CHARTING BC'S ECONOMIC FUTURE  

E-Print Network [OSTI]

CHARTING BC'S ECONOMIC FUTURE discussionguide 100communityconversations #12;1 Thank you for agreeing to participate in this Community Conversation about BC's economic future. Each year Simon Fraser is "Charting BC's Economic Future". Faced with an increasingly competitive global economy, it is more important

Kavanagh, Karen L.

318

Stirling-cycle refrigerator  

SciTech Connect (OSTI)

A Stirling-cycle refrigerator comprises a plurality of Stirling-cycle refrigerator units each having a displacer defining an expansion chamber, a piston defining a compression chamber, and a circuit including a heater and a cooler and interconnecting the expansion chamber and the compression chamber, and a heat exchanger shared by the circuits and disposed between the coolers and the heaters for effecting heat exchange between working gases in the circuits. The heat exchanger may comprise a countercurrent heat exchanger, and the Stirling-cycle refrigerator units are operated in cycles which are 180/sup 0/ out of phase with each other.

Nakamura, K.

1985-06-11T23:59:59.000Z

319

Advanced thermochemical hydrogen cycles  

SciTech Connect (OSTI)

The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

Hollabaugh, C.M.; Bowman, M.G.

1981-01-01T23:59:59.000Z

320

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Life Cycle Cost Estimate  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

1997-03-28T23:59:59.000Z

322

Theoretical and experimental analysis of supercritical carbon dioxide cooling / Paul Marius Harris.  

E-Print Network [OSTI]

??With on-going developments in the field of trans-critical carbon dioxide (R-744) vapour compression cycles, a need to effectively describe the heat transfer of supercritical carbon… (more)

Harris, Paul Marius

2014-01-01T23:59:59.000Z

323

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

ITS—RR—07—07 A Low-Carbon Fuel Standard for California PartEnergy Commission. A Low Carbon Fuel Standard For CaliforniaPont, et al. (2007). Full Fuel Cycle Assessment Well To Tank

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

324

E-Print Network 3.0 - aves carbon isotopes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

J-L. 2006. A new scenario Summary: , Bowling DR, Ehleringer JR. 2003. Seasonal cycle of carbon dioxide and its isotopic composition in an urban... history. ??? Meetings...

325

Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System  

SciTech Connect (OSTI)

Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

2013-08-08T23:59:59.000Z

326

Ecosystem element cycling Introduction  

E-Print Network [OSTI]

be responsible for well over 50% of the "wet mass" of organisms. The "dry mass" of living organisms, which is composed of other molecules, is often referred to as biomass. There are four basic types of molecules carbon atoms, and energy is released as carbohydrates and fats are transformed to carbon dioxide

Ickert-Bond, Steffi

327

Moving Towards a More Sustainable and Secure Energy Future  

E-Print Network [OSTI]

-emitting replacement ? Natural gas ? Clean coal with carbon capture ? Renewables 6 Rio Nogales: 800 MW Combined Cycle Natural Gas Plant - Acquired by CPS Energy in April 2012 - Located in Seguin, TX off of IH10 - Primary replacement... office in SA ? $600k education investment ? LEDs (light-emitting diodes) ? HQ and Mfrg in SA ? Plan for 25,000 LED street lights in SA major thorough fares ? $10/light produced in SA for education ? Clean coal w carbon capture ? R&D council...

Stoker, K.

2012-01-01T23:59:59.000Z

328

Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2  

E-Print Network [OSTI]

Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2 Yao Huang,1), Soil organic carbon sequestration potential of cropland in China, Global Biogeochem. Cycles, 27, doi:10 carbon (SOC) in cropland is of great importance to the global carbon (C) balance and to agricultural

Pittendrigh, Barry

329

Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes  

E-Print Network [OSTI]

Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record and carbon sequestration in the Late Paleozoic, we have compiled new and published oxygen and carbon isotopic Carboniferous Stable isotopes Carbon cycling Brachiopods To evaluate the isotopic record of climate change

Grossman, Ethan L.

330

First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001  

E-Print Network [OSTI]

First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001 Caldeira, K for Research on Ocean Carbon Sequestration (DOCS) *Climate and Carbon Cycle Modeling Group, Lawrence Livermore carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection

331

Western Economics Forum, Fall 2009 Can Carbon Find a Home on the Range?  

E-Print Network [OSTI]

for agricultural lands to provide ecosystem services related to carbon sequestration. Many geologic sequestration suggests that total carbon sequestration on these lands can impact carbon cycles. The Chicago Climate evaluate the potential effectiveness of alternative carbon sequestration policies on rangelands ex ante

Norton, Jay B.

332

Non-carbon induction furnace  

DOE Patents [OSTI]

The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

1984-01-06T23:59:59.000Z

333

Advanced nuclear fuel cycles - Main challenges and strategic choices  

SciTech Connect (OSTI)

A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

2013-07-01T23:59:59.000Z

334

Historical forest baselines reveal potential for continued carbon sequestration  

E-Print Network [OSTI]

Historical forest baselines reveal potential for continued carbon sequestration Jeanine M-based studies suggest that land-use history is a more important driver of carbon sequestration in these systems agricultural lands are being promoted as important avenues for future carbon sequestration (8). But the degree

Mladenoff, David

335

My Amazing Future 2012  

ScienceCinema (OSTI)

Idaho National Laboratory's My Amazing Future program gives 8th grade women the opportunity to experience careers in science and engineering.

None

2013-05-28T23:59:59.000Z

336

Future City Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Competition is an unique opportunity for middle school children to combine skills in engineering, environmental science, and art to create a vision for the future. Exercising your...

337

The Future Metropolitan Landscape  

E-Print Network [OSTI]

care for the design of this landscape, for its water, air,The Future Metropolitan Landscape Peter Bosselmann and Denirather to an urbanized landscape with multiple centers,

Bosselmann, Peter; Ruggeri, Deni

2007-01-01T23:59:59.000Z

338

Carbon Nanotubes.  

E-Print Network [OSTI]

?? Carbon nanotubes have extraordinary mechanical, electrical, thermal andoptical properties. They are harder than diamond yet exible, have betterelectrical conductor than copper, but can also… (more)

Fredriksson, Tore

2014-01-01T23:59:59.000Z

339

An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete  

SciTech Connect (OSTI)

The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

Haselbach, Liv M.; Thomle, Jonathan N.

2014-07-01T23:59:59.000Z

340

Toward an energy surety future.  

SciTech Connect (OSTI)

Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Carbon sequestration research and development  

SciTech Connect (OSTI)

Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

1999-12-31T23:59:59.000Z

342

Cycle isolation monitoring  

SciTech Connect (OSTI)

There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C. [Santee Copper, Moncks Corner, SC (United States)

2009-07-15T23:59:59.000Z

343

Malone cycle refrigerator development  

SciTech Connect (OSTI)

This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

Shimko, M.A.; Crowley, C.J.

1999-07-01T23:59:59.000Z

344

The Hanford Story: Future  

Broader source: Energy.gov [DOE]

The Future Chapter of the Hanford Story illustrates the potential and possibilities offered by a post-cleanup Hanford. From land use plans and preservation at Hanford to economic development and tourism opportunities, the Future chapter touches on a variety of local economic, cultural and environmental perspectives.

345

FUTURE LOGISTICS LIVING LABORATORY  

E-Print Network [OSTI]

FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab is a collaboration between NICTA, SAP and Fraunhofer. Australia's first Living Lab provides a platform for industry and research to work together, to investigate real-world problems and to demonstrate innovative technology

Heiser, Gernot

346

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

347

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

348

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

349

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

350

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

351

Advances in measurements of particle cycling and fluxes in the ocean  

E-Print Network [OSTI]

The sinking flux of particles is an important removal mechanism of carbon from the surface ocean as part of the biological pump and can play a role in cycling of other chemical species. This work dealt with improving methods ...

Owens, Stephanie Anne

2013-01-01T23:59:59.000Z

352

Dynamic response of the supercritical C0? Brayton recompression cycle to various system transients  

E-Print Network [OSTI]

The supercritical carbon dioxide (SC0?) power conversion system has been suggested for use with many of the Generation IV nuclear reactors. The SC0? cycle is highly attractive because of its low operating temperatures and ...

Trinh, Tri Q. (Tri Quang)

2009-01-01T23:59:59.000Z

353

Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO? capture  

E-Print Network [OSTI]

Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new ...

Hong, Jongsup

2009-01-01T23:59:59.000Z

354

Total Organic Carbon Analyzer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Organic Carbon Analyzer Total Organic Carbon Analyzer The carbon analyzer is used to analyze total carbon (TC), inorganic carbon (IC), total organic carbon (TOC), purgeable...

355

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

SciTech Connect (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

356

Electrochemically-mediated amine regeneration for carbon dioxide separations  

E-Print Network [OSTI]

This thesis describes a new strategy for carbon dioxide (CO?) separations based on amine sorbents, which are electrochemically-mediated to facilitate the desorption and regeneration steps of the separation cycle. The ...

Stern, Michael C. (Michael Craig)

2014-01-01T23:59:59.000Z

357

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

358

Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research  

SciTech Connect (OSTI)

This report provides a critical review of existing literature and modeling tools related to life-cycle assessment (LCA) applied to pavements. The review finds that pavement LCA is an expanding but still limited research topic in the literature, and that the existing body of work exhibits methodological deficiencies and incompatibilities that serve as barriers to the widespread utilization of LCA by pavement engineers and policy makers. This review identifies five key issues in the current body of work: inconsistent functional units, improper system boundaries, imbalanced data for asphalt and cement, use of limited inventory and impact assessment categories, and poor overall utility. This review also identifies common data and modeling gaps in pavement LCAs that should be addressed in future work. These gaps include: the use phase (rolling resistance, albedo, carbonation, lighting, leachate, and tire wear and emissions), asphalt fumes, feedstock energy of bitumen, traffic delay, the maintenance phase, and the end-of-life phase. This review concludes with a comprehensive list of recommendations for future research, which shed light on where improvements in knowledge can be made that will benefit the accuracy and comprehensiveness of pavement LCAs moving forward.

Santero, Nicholas; Masanet, Eric; Horvath, Arpad

2010-04-20T23:59:59.000Z

359

Helium process cycle  

DOE Patents [OSTI]

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2008-08-12T23:59:59.000Z

360

Helium process cycle  

DOE Patents [OSTI]

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2007-10-09T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Plutonium recovery from carbonate wash solutions  

SciTech Connect (OSTI)

Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig.

Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

1991-12-31T23:59:59.000Z

362

Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities  

SciTech Connect (OSTI)

Modification and loss of forests due to natural and anthropogenic disturbance contribute an estimated 20% of annual greenhouse gas (GHG) emissions worldwide. Although forest carbon pool modeling rarely suggests a 'carbon neutral' flux profile, the life cycle assessment community and associated product carbon footprint protocols have struggled to account for the GHG emissions associated with forestry, specifically, and land use generally. Principally, this is due to underdeveloped linkages between life cycle inventory (LCI) modeling for wood and forest carbon modeling for a full range of forest types and harvest practices, as well as a lack of transparency in globalized forest supply chains. In this paper, through a comparative study of U.S. and Chinese coated freesheet paper, we develop the initial foundations for a methodology that rescales IPCC methods from the national to the product level, with reference to the approaches in three international product carbon footprint protocols. Due to differences in geographic origin of the wood fiber, the results for two scenarios are highly divergent. This suggests that both wood LCI models and the protocols need further development to capture the range of spatial and temporal dimensions for supply chains (and the associated land use change and modification) for specific product systems. The paper concludes by outlining opportunities to measure and reduce uncertainty in accounting for net emissions of biogenic carbon from forestland, where timber is harvested for consumer products. - Highlights: Black-Right-Pointing-Pointer Typical life cycle assessment practice for consumer products often excludes significant land use change emissions when estimating carbon footprints. Black-Right-Pointing-Pointer The article provides a methodology to rescale IPCC guidelines for product-level carbon footprints. Black-Right-Pointing-Pointer Life cycle inventories and product carbon footprint protocols need more comprehensive land use-related accounting. Black-Right-Pointing-Pointer Interdisciplinary collaboration linking the LCA and forest carbon modeling communities is necessary.

Newell, Joshua P., E-mail: jpnewell@umich.edu [School of Natural Resources and Environment, University of Michigan, Ann Arbor (United States); Vos, Robert O., E-mail: vos@usc.edu [Spatial Sciences Institute, University of Southern California (United States)

2012-11-15T23:59:59.000Z

363

Effects of doping single and double walled carbon nanotubes with nitrogen and boron  

E-Print Network [OSTI]

Controlling the diameter and chirality of carbon nanotubes to fine tune their electronic band gap will no longer be enough to satisfy the growing list of characteristics that future carbon nanotube applications are starting ...

Villalpando Paéz, Federico

2006-01-01T23:59:59.000Z

364

Future Grid: The Environment Future Grid Initiative White Paper  

E-Print Network [OSTI]

Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

365

A Computational Study on the Thermal-Hydraulic Behavior of Supercritical Carbon Dioxide in Various Printed Circuit Heat Exchanger Designs  

E-Print Network [OSTI]

that will bridge the gap between energy production and consumption. To decrease the high demand alternative fuel sources are gaining in popularity. The supercritical carbon dioxide Brayton power cycle has been proposed as a possible cycle for nuclear...

Matsuo, Bryce

2013-02-04T23:59:59.000Z

366

Superfluid thermodynamic cycle refrigerator  

DOE Patents [OSTI]

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

1992-01-01T23:59:59.000Z

367

Superfluid thermodynamic cycle refrigerator  

DOE Patents [OSTI]

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

Swift, G.W.; Kotsubo, V.Y.

1992-12-22T23:59:59.000Z

368

Future Climate Engineering Solutions  

E-Print Network [OSTI]

Future Climate Engineering Solutions Joint report 13 engineering participating engeneering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Engineering Solutions ­ A Climate call from engineers. . . . . . . . . . . . . . . . . . . . .23 Summaries of National Reports . . . . . . . . . . . . . . . . . . . .25 Summary of The Climate Plan

369

AFIP-6 MKII First Cycle Report  

SciTech Connect (OSTI)

The first fuel plate frame assembly of the AFIP-6 MKII experiment was irradiated as planned from December, 2011 through February, 2012 in the center flux trap of the Advanced Test Reactor during cycle 151A. Following irradiation in this cycle and while reconfiguring the experiment in the ATR canal, a non-fueled component (the bottom plate) of the first fuel plate frame assembly became separated from the rail sides. There is no evidence that the fueled region of the fuel plate frame assembly was compromised by this incident or the irradiation conditions. The separation of this component was determined to have been caused by flow induced vibrations, where vortex shedding frequencies were resonant with a natural frequency of the bottom plate component. This gave way to amplification, fracture, and separation from the assembly. Although parallel flow induced vibrations were analyzed, vortex shedding flow induced vibrations was an unfamiliar failure mode that was difficult to identify. Both the once-irradiated first fuel plate and un-irradiated second fuel plate frame assemblies were planned for irradiation in the subsequent cycle 151B. The AFIP-6 MKII experiment was excluded from irradiation in cycle 151B because non-trivial design modifications would be needed to mitigate this type of incident during the second irradiation cycle. All items of the experiment hardware were accounted for and cycle 151B occurred with a non-fueled AFIP backup assembly in the center flux trap. Options for completion of the AFIP-6 MKII experiment campaign are presented and future preventative actions are recommended.

N.E. Woolstenhulme

2012-03-01T23:59:59.000Z

370

Buying Hedge with Futures  

E-Print Network [OSTI]

Agricultural Economist, Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Many bulk purchasers of agricultural com- modities need price risk management tools to help stabilize input prices. Livestock feeders... anticipating future feed needs or grain export- ers making commitments to sell grain are two users of agricultural commodities who could benefit from input price management strate- gies. A common tool is a buying, or long, hedge using futures. Producers...

Welch, Mark; Kastens, Terry L.

2009-01-07T23:59:59.000Z

371

Preparing for the Future  

E-Print Network [OSTI]

tx H2O | pg. 12 Preparing for the Future Story by Kathy Wythe Preparing for the Future University establishes water management degree program Texas A&M University launched an interdisci-plinary water management degree programduring the fall... 2005 semester with 12 stu-dents seeking either master?s or doctorate degrees in water management and hydrologic sciences. The degree program, the first in Texas, includes 42 faculty members in 12 departments from four differ- ent colleges, said Ron...

Wythe, Kathy

2006-01-01T23:59:59.000Z

372

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

373

Life Cycle Assessment and Grid Electricity: What Do We Know and  

E-Print Network [OSTI]

explore the limits of current knowledge about grid electricity in LCA and carbon footprinting for the U cycle assessment and policy analyses in a world with incomplete and uncertain information. Introduction drivers in regional greenhouse gas intensity and in region-specific life cycle inventories (4). However

Jaramillo, Paulina

374

Understanding the petrochemical cycle  

SciTech Connect (OSTI)

The presentation will examine the nature of the supply, demand and profitability cycles that appear to be endemic in the petrochemical industry. The focus will be on the underlying factors that cause cyclicality. Data for ethylene and first line derivatives will be used both to provide quantitative illustrations of the magnitude of the cyclical effects and to give an improved perspective on the forces that drive cylicality. We will also examine to what extent cycle timing may be predictable, and present some scenario based projections.

Sedriks, W. [SRI Consulting, Melno Park, CA (United States)

1996-10-01T23:59:59.000Z

375

Concepts associated with a unified life cycle analysis  

SciTech Connect (OSTI)

There is a risk associated with most things in the world, and all things have a life cycle unto themselves, even brownfields. Many components can be described by a''cycle of life.'' For example, five such components are life-form, chemical, process, activity, and idea, although many more may exist. Brownfields may touch upon several of these life cycles. Each life cycle can be represented as independent software; therefore, a software technology structure is being formulated to allow for the seamless linkage of software products, representing various life-cycle aspects. Because classes of these life cycles tend to be independent of each other, the current research programs and efforts do not have to be revamped; therefore, this unified life-cycle paradigm builds upon current technology and is backward compatible while embracing future technology. Only when two of these life cycles coincide and one impacts the other is there connectivity and a transfer of information at the interface. The current framework approaches (e.g., FRAMES, 3MRA, etc.) have a design that is amenable to capturing (1) many of these underlying philosophical concepts to assure backward compatibility of diverse independent assessment frameworks and (2) linkage communication to help transfer the needed information at the points of intersection. The key effort will be to identify (1) linkage points (i.e., portals) between life cycles, (2) the type and form of data passing between life cycles, and (3) conditions when life cycles interact and communicate. This paper discusses design aspects associated with a unified life-cycle analysis, which can support not only brownfields but also other types of assessments.

Whelan, Gene; Peffers, Melissa S.; Tolle, Duane A.; Brebbia, C. A.; Almorza Gomar, D.; Klapperich, H.

2002-01-01T23:59:59.000Z

376

Carbon Fiber  

ScienceCinema (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-07-23T23:59:59.000Z

377

Carbon Fiber  

SciTech Connect (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-04-17T23:59:59.000Z

378

Carbon Sequestration  

SciTech Connect (OSTI)

Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

None

2013-05-06T23:59:59.000Z

379

Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications  

E-Print Network [OSTI]

Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating of a transcritical carbon dioxide heat pump system are presented in this article. A computer code has been developed conditions. q 2004 Elsevier Ltd and IIR. All rights reserved. Keywords: Optimization; Heat pump; Carbon

Bahrami, Majid

380

DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle  

Broader source: Energy.gov [DOE]

Washington, D.C. -- Increased understanding of methane's role in the global climate cycle and the potential of methane hydrate as a future energy resource could result from a recent joint research...

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of the fundamental attributes and inputs for proliferation resistance assessments of nuclear fuel cycles  

E-Print Network [OSTI]

Robust and reliable quantitative proliferation resistance assessment tools are critical to a strengthened nonproliferation regime and to the future deployment of nuclear fuel cycle technologies. Efforts to quantify proliferation resistance have thus...

Giannangeli, Donald D. J., III

2007-09-17T23:59:59.000Z

382

Fueling Future with Algal Genomics  

SciTech Connect (OSTI)

Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

Grigoriev, Igor

2012-07-05T23:59:59.000Z

383

Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models  

SciTech Connect (OSTI)

The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.

Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

2014-01-01T23:59:59.000Z

384

GENERAL CIRCULATION Energy Cycle  

E-Print Network [OSTI]

process. PE is useful for global energy balance. Solar radiant energy does not reach the Earth equally everywhere. On average, the tropics receive and absorb far more solar energy annually than the polar regionsGENERAL CIRCULATION Contents Energy Cycle Mean Characteristics Momentum Budget Overview Energy

Grotjahn, Richard

385

CLASS DESCRIPTIONS CYCLING SERIES  

E-Print Network [OSTI]

will utilize concepts from the 50-minute cycling class while going the distance to optimal health. Whether you're an avid cyclist, triathlete, or desire a longer class for a greater challenge, join us for this 75-minute AN URBANATHLETE Are you registered to compete in an adventure race like the Men's Health Urbanathlon, Warrior Dash

Pittendrigh, Barry

386

Life cycle assessment  

SciTech Connect (OSTI)

Life-Cycle Assessment (LCA) is a technical, data-based and holistic approach to define and subsequently reduce the environmental burdens associated with a product, process, or activity by identifying and quantifying energy and material usage and waste discharges, assessing the impact of those wastes on the environment, and evaluating and implementing opportunities to effect environmental improvements. The assessment includes the entire life-cycle of the product, process or activity encompassing extraction and processing of raw materials, manufacturing, transportation and distribution, use/reuse, recycling and final disposal. LCA is a useful tool for evaluating the environmental consequences of a product, process, or activity, however, current applications of LCA have not been performed in consistent or easily understood ways. This inconsistency has caused increased criticism of LCA. The EPA recognized the need to develop an LCA framework which could be used to provide consistent use across the board. Also, additional research is needed to enhance the understanding about the steps in the performance of an LCA and its appropriate usage. This paper will present the research activities of the EPA leading toward the development of an acceptable method for conducting LCA`s. This research has resulted in the development of two guidance manuals. The first manual is intended to be a practical guide to conducting and interpreting the life-cycle inventory. A nine-step approach to performing a comprehensive inventory is presented along with the general issues to be addressed. The second manual addresses life-cycle design.

Curran, M.A. [Environmental Protection Agency, Cincinnati, OH (United States)

1994-12-31T23:59:59.000Z

387

Combined Cycle Combustion Turbines  

E-Print Network [OSTI]

Combined Cycle Combustion Turbines Steven Simmons February 27 2014 1 #12;CCCT Today's Discussion 1 Meeting Pricing of 4 advanced units using information from Gas Turbine World Other cost estimates from E E3 EIA Gas Turbine World California Energy Commission Date 2010 Oct 2012, Dec 2013 Apr 2013 2013 Apr

388

Prediction of Sunspot Cycles by Data Assimilation Method  

E-Print Network [OSTI]

Despite the known general properties of the solar cycles, a reliable forecast of the 11-year sunspot number variations is still a problem. The difficulties are caused by the apparent chaotic behavior of the sunspot numbers from cycle to cycle and by the influence of various turbulent dynamo processes, which are far from understanding. For predicting the solar cycle properties we make an initial attempt to use the Ensemble Kalman Filter (EnKF), a data assimilation method, which takes into account uncertainties of a dynamo model and measurements, and allows to estimate future observational data. We present the results of forecasting of the solar cycles obtained by the EnKF method in application to a low-mode nonlinear dynamical system modeling the solar $\\alpha\\Omega$-dynamo process with variable magnetic helicity. Calculations of the predictions for the previous sunspot cycles show a reasonable agreement with the actual data. This forecast model predicts that the next sunspot cycle will be significantly weaker (by $\\sim 30%$) than the previous cycle, continuing the trend of low solar activity.

I. N. Kitiashvili; A. G. Kosovichev

2009-02-11T23:59:59.000Z

389

Combustion of biomass as a global carbon sink  

E-Print Network [OSTI]

This note is intended to highlight the important role of black carbon produced from biomass burning in the global carbon cycle, and encourage further research in this area. Consideration of the fundamental physical chemistry of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates that black carbon may be a significant carbon reservoir that persists over geological time scales.

Ball, Rowena

2008-01-01T23:59:59.000Z

390

Carbon accumulation of tropical peatlands over millennia: a modeling approach  

E-Print Network [OSTI]

in the global carbon cycle by storing about 40­90 Gt C in peat. Over the past several decades, tropical with lowering the water table and peat burning, releasing large amounts of carbon stored in peat the Holocene Peat Model (HPM), which has been successfully applied to northern temperate peatlands. Tropical

391

Water for future Mars astronauts?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water for future Mars astronauts? Water for future Mars astronauts? Within its first three months on Mars, NASA's Curiosity Rover saw a surprising diversity of soils and sediments...

392

Selling Hedge with Futures  

E-Print Network [OSTI]

and Cooperative Extension Service. When a commodity price is acceptable prior to the time the commodity will be sold in the cash market, a producer can use a selling hedge to reduce the risk of declining prices. What Is a Hedge? A selling hedge involves... taking a position in the futures market that is equal and opposite to the position one expects to have in the cash market, so one is covered (subject to basis risk) against price declines during the intervening period. If futures and cash prices...

Kastens, Terry L.; Welch, Mark

2009-01-07T23:59:59.000Z

393

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

394

Investigation of combined-cycle steam-plant problems. Final report  

SciTech Connect (OSTI)

The operation and maintenance of gas turbine combined-cycle steam generators is reviewed. Feedwater cycles and auxiliary equipment are also discussed, and the results of on-site discussions with operating and maintenance personnel are presented. Actual problems encountered are delineated, and recommendations are given for improving operation of existing plants, for design of new plants, and for future research and development.

Crutchfield, H.C.

1982-07-01T23:59:59.000Z

395

Low Carbon Fuel Standards  

E-Print Network [OSTI]

gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

396

Stirling cycle engine  

DOE Patents [OSTI]

In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

Lundholm, Gunnar (Lund, SE)

1983-01-01T23:59:59.000Z

397

Carbon Dioxide Capture from Coal-Fired  

E-Print Network [OSTI]

. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologiesCarbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005 environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

398

Carbon supercapacitors  

SciTech Connect (OSTI)

Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

Delnick, F.M.

1993-11-01T23:59:59.000Z

399

Future Fixed Target Facilities  

SciTech Connect (OSTI)

We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

Melnitchouk, Wolodymyr

2009-01-01T23:59:59.000Z

400

Pennsylvania's Natural Gas Future  

E-Print Network [OSTI]

1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

Lee, Dongwon

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

California's Energy Future  

E-Print Network [OSTI]

#12;California's Energy Future ­ The Potential for Biofuels May 2013 Heather Youngs and Christopher R. Somerville #12;LEGAL NOTICE This report was prepared pursuant to a contract between the California Energy Commission (CEC) and the California Council on Science andTechnology (CCST). It does

California at Davis, University of

402

Carbon microtubes  

DOE Patents [OSTI]

A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

2011-06-14T23:59:59.000Z

403

Doping of carbon foams for use in energy storage devices  

DOE Patents [OSTI]

A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

1994-10-25T23:59:59.000Z

404

Doping of carbon foams for use in energy storage devices  

DOE Patents [OSTI]

A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Morrison, Robert L. (Modesto, CA); Kaschmitter, James L. (Pleasanton, CA)

1994-01-01T23:59:59.000Z

405

Atmospheric chemistry impacts and feedbacks on the global carbon cycle  

E-Print Network [OSTI]

prediction. Issues to be addressed include the quantification of the impact of the atmospheric oxidation and the oxidative state of the atmosphere. The end goal is to create a model that can quantitatively predict is required to: Predict 3-D atmospheric CO2 production as a function of the CCSM3 atmospheric chemistry module

406

Altered Belowground Carbon Cycling Following Land-Use Change  

E-Print Network [OSTI]

, University of Illinois, Urbana, Illinois, USA; 2 Energy Bioscience Institute, University of Illinois, Urbana, Illinois, USA; 3 Department of Plant Biology, University of Illinois, Urbana, Illinois, USA; 4 Photosynthesis Research Unit, US Department of Agriculture, University of Illinois, Urbana, Illinois, USA; 5

DeLucia, Evan H.

407

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles  

Broader source: Energy.gov (indexed) [DOE]

* Cavity shape selected with aid of thermo-hydraulic absorber models * Annualdiurnal solar conditions and resulting TIT-fixed flow rates have been used to evaluate the...

408

Comprehensive Scenarios of Millennial Timescale Carbon Cycle and Climate  

E-Print Network [OSTI]

Grid ENabled Integrated Earth system model (GENIE) www.genie.ac.uk #12;Outline GENIE-1 Earth System #12;GENIE-1 fast Earth system model 2D atmosphere 3D ocean 2D sea ice Atmospheri c CO2 2D land surface System Model Tim Lenton, Mark Williamson, David Cameron, Andy Ridgwell, Neil Edwards, Bob Marsh, John

Williamson, Mark

409

Evolution of hydrological and carbon cycles under a changing climate  

E-Print Network [OSTI]

information from climate records, flux measurements at eddy flux towers, and observations from satellites that amount (Trenberth et al., 2007). The World Meteorological Organization, National Oceanic and Atmospheric Administration, and National Aeronautics and Space Administration all reported that 2000­2009 was the warmest

Montana, University of

410

COLLOQUIUM: Ensemble Modeling of Climate-Carbon Cycle Interactions |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis15Information AgePrinceton

411

COLLOQUIUM: Human Impacts on the Earth's Geologic Carbon Cycle |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,Principles of Collective

412

ORNL researchers improve soil carbon cycling models | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&DNuclearNuclearCamilaOak

413

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and Productivity Questionnaire (HPQ)DepartmentLaboratoryPlantations

414

Sandia National Laboratories: Supercritical Carbon Dioxide Brayton Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards SolarEnded

415

Climate-Carbon Cycle Interactions Dr. John P. Krasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail GlobalPROGRAM MISSIONScienceOcean

416

Modeling the water-carbon-energy cycle | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8Mistakes to Avoid MistakesResponse Times.Modeling

417

8. Discussion This thesis has quantified the ecosystem carbon stocks of the Nhambita  

E-Print Network [OSTI]

destructive to woody biomass: aboveground carbon stocks can only be330 maintained under high intensity fires200 8. Discussion This thesis has quantified the ecosystem carbon stocks of the Nhambita area findings of this thesis and discuss some of the implications for 1) modelling the carbon cycle of miombo

418

Seoul National University http://bp.snu.ac.kr The Role of Carbon Incorporation in  

E-Print Network [OSTI]

O2 · Hydrothermal followed by carbonization at 500°C J. Phys. Chem. C 113, 20504 (2009). J. PhysSeoul National University http://bp.snu.ac.kr The Role of Carbon Incorporation in SnO2 of cracks during cycling Sn-Based Oxide Li Metal Carbon-Coated SnO2 #12;Seoul National University http

Park, Byungwoo

419

Carbon sequestration in peatland: patterns and mechanisms of response to climate change  

E-Print Network [OSTI]

Carbon sequestration in peatland: patterns and mechanisms of response to climate change L I S A R., 2000; Turunen et al., 2002; Kremenetski et al., 2003). Rates of carbon (C) sequestration (i.e., uptake in the climatic water budget is crucial to predicting potential feedbacks on the global carbon (C) cycle. To gain

420

Oxygen production and carbon sequestration in an upwelling coastal Burke Hales,1  

E-Print Network [OSTI]

Oxygen production and carbon sequestration in an upwelling coastal margin Burke Hales,1 Lee Karp), Oxygen production and carbon sequestration in an upwelling coastal margin, Global Biogeochem. Cycles, 20 of particulate organic carbon (POC) and dissolved O2 during the upwelling season off the Oregon coast. Oxygen

Pierce, Stephen

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China  

E-Print Network [OSTI]

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

422

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES  

E-Print Network [OSTI]

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES J. R. Mc of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle

423

Wildland fire emissions, carbon, and climate: Science overview and knowledge needs  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Science overview and knowledge needs William T: Available online 6 January 2014 Keywords: Wildland fire Climate Forests Carbon cycle Emissions a b s t r a c climate change and the principal emissions component of wildland fires, while black carbon and other

424

Electricity solutions for a carbon-constrained future  

SciTech Connect (OSTI)

A successful response to the threat of climate change will require substantial technical work as well as practical problem solving in the political, regulatory and public areas. EPRI's 2007 Summer Seminar brought together regulatory, industry, academic, and policy leaders to discuss critical issues and delineate the initiating actions required to begin resolving the climate dilemma. Although the global nature of climate change amplifies its complexity and uncertainly, technology must play a leading role in winnowing opportunity from challenge and crafting a viable solution. 6 figs.

Schimmoller, B. [EPRI (United States)

2007-09-30T23:59:59.000Z

425

Electricity Network Investment and Regulation for a Low Carbon Future  

E-Print Network [OSTI]

,060.80 2 Total capex 112.7 112.3 111.8 111.4 110.9 3 Depreciation -68.5 -74.1 -79.7 85.3 -90.9 4 Closing asset value 964.3 1002.5 1034.7 1060.8 1080.9 5 Present value of opening / closing 920 825.2 6 Year movement in closing RAV 94.8 ALLOWED ITEMS 7... Operating costs (excluding pensions) 67 64.7 63.1 61.7 60.2 8 Capital expenditure (excluding pensions) 103.5 103.1 102.6 102.2 101.7 9 Pensions allowance 16 16 16 16 1 10 Tax allowance 19.4 22 23.1 24.5 24.5 11 Capex incentive scheme 1.8 1 -0.6 -1.1 -0.5 12...

Pollitt, Michael G.; Bialek, Janusz

426

On the Stochastic Properties of Carbon Futures Prices Julien Chevallier  

E-Print Network [OSTI]

, in the wider context of the European Union Emissions Trading Scheme (EU ETS) and the price formation

427

FutureGen Industrial Alliance Announces Carbon Storage Site Selection...  

Energy Savers [EERE]

making Illinois an international leader in developing the latest in cutting-edge, clean coal technology," Illinois Governor Pat Quinn said. "This is an exciting opportunity for...

428

FutureGen Industrial Alliance Announces Carbon Storage Site Selection  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPartTrends for

429

FutureGen Industrial Alliance Announces Carbon Storage Site Selection  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergy Research | Department1 -

430

FutureCarbon GmbH | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy Inc JumpGeothermal Field-

431

HEURISTIC SEARCH FOR HAMILTON CYCLES  

E-Print Network [OSTI]

by combining it with the remaining cycles. The following is the description of the main part of the algorithmHEURISTIC SEARCH FOR HAMILTON CYCLES IN CUBIC GRAPHS Janez ALES, Bojan MOHAR and Tomaz PISANSKI. A successful heuristic algorithm for nding Hamilton cycles in cubic graphs is described. Several graphs from

Mohar, Bojan

432

Edinburgh Research Explorer Money Cycles  

E-Print Network [OSTI]

Edinburgh Research Explorer Money Cycles Citation for published version: Clausen, A & Strub, C 2014 'Money Cycles' Edinburgh School of Economics Discussion Paper Series. Link: Link to publication record date: 11. Dec. 2014 #12;Edinburgh School of Economics Discussion Paper Series Number 249 Money Cycles

Millar, Andrew J.

433

1209 Future of metal resources 1215 Gold nanoparticle and phage networks  

E-Print Network [OSTI]

1209 Future of metal resources 1215 Gold nanoparticle and phage networks 1295 Nitric oxide role patterning SUSTAINABILITY SCIENCE Future of metal resources Analyses of metal cycles reported by Robert and re- place the metal in end-of-life products, which are then ei- ther recycled or enter waste streams

Mjolsness, Eric

434

Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

435

Carbon Storage Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Sequestration Partnership MSU . . . . . . . . . . . . . . . . . . . . . . . Montana State University MVA . . . . . . . . . . . . . . . . . . . . . . . Monitoring,...

436

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

437

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network [OSTI]

Process Program for Geothermal Power Plant Cycles,'*for a Rankine Cycle Geothermal Power Plant," Proceedings,Design and Optimize Geothermal Power Cycles," presented at

Pope, William L.

2012-01-01T23:59:59.000Z

438

Life-cycle Assessment of Semiconductors  

E-Print Network [OSTI]

life-cycle energy requirements (e total ) and global warmingtotal life-cycle global warming impacts. Chapter 3 Life-cycle Energy and Global

Boyd, Sarah B.

2009-01-01T23:59:59.000Z

439

FUTURES with Jaime Escalante  

SciTech Connect (OSTI)

The United States Department of Energy awarded the Foundation for Advancements in Science and Education (FASE) $826,000 as support to produce the second set of FUTURES segments consisting of 12, 15-minute programs. The programs provide motivation for students to study math by connecting math to the work place and real-life problem scenarios. The programs are broadcast in 50 states through PBS Elementary and Secondary Service (E/SS). The grant term ended on December 16, 1993 and this final report documents program and financial activity results. The 12 episodes are titled: Animal Care, Meteorology, Mass Communication, Advanced Energy, Oceanography, Graphic Design, Future Habitats, Environmental Science & Technology, Fitness & Physical Performance, Interpersonal Communications, Advanced Transportation and Product Design. Each program addresses as many as ten careers or job types within the broader field named. Minority and gender-balanced role models appear throughout the programs.

NONE

1996-08-01T23:59:59.000Z

440

Quantum thermodynamic cooling cycle  

E-Print Network [OSTI]

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

442

Geothermal Life Cycle Calculator  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

443

Quantum thermodynamic cooling cycle  

E-Print Network [OSTI]

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Jose P. Palao; Ronnie Kosloff; Jeffrey M. Gordon

2001-06-08T23:59:59.000Z

444

Beowawe Binary Bottoming Cycle  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergyBeowawe Binary Bottoming Cycle

445

RHIC progress and future  

SciTech Connect (OSTI)

The talk reviews RHIC performance, including unprecedented manipulations of polarized beams and recent low energy operations. Achievements and limiting factors of RHIC operation are discussed, such as intrabeam scattering, electron cloud, beam-beam effects, magnet vibrations, and the efficiency of novel countermeasures such as bunched beam stochastic cooling, beam scrubbing and chamber coatings. Future upgrade plans and the pertinent R&D program will also be presented.

Montag,C.

2009-05-04T23:59:59.000Z

446

Buildings of the Future  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and the Pacific Northwest National Laboratory are developing a vision for future buildings—at least one hundred years from today—based on the collective views of thought leaders. As part of this effort, we will explore technology and demographic trends that could revolutionize the built environment across energy, water, environment, resilient design, health, security, and productivity.

447

Carbon Additionality: Discussion Paper  

E-Print Network [OSTI]

ahead, and identifying the carbon pools and other green house gas emissions sources and savings coveredCarbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 Carbon

448

Nuclear and Particle Futures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclearLife Cycle |

449

2014 Planning Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.Carbon Storage R&Dfront14 Page

450

2015 Planning Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch 2015 Mon,Energy

451

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND

452

Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design  

SciTech Connect (OSTI)

The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.

Forsberg, C. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 24-207A Cambridge, MA 02139 (United States); Miller, W.F. [Texas A.M. University System, MS 3133 College Station, TX 77843-3133 (United States)

2013-07-01T23:59:59.000Z

453

Financing Strategies for Nuclear Fuel Cycle Facility  

SciTech Connect (OSTI)

To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

David Shropshire; Sharon Chandler

2005-12-01T23:59:59.000Z

454

Kouchoul cycle implication in the Tailer engine cycle  

SciTech Connect (OSTI)

The author presents here the study of the Tailer engine modified cycle using the concept of load transfer for the Kouchoul cycle. Theoretical equations and numerical simulation of the Tailer engine modified cycle implicating the Kouchoul cycle are developed. The Tailer engine modified cycle can be improved by approaching cycles of spark plug engines by the addition of a phase of cooling of gases to the bottom dead center (bdc). This is possible only by putting a reservoir of cooled gas in communication with the cylinder to the bottom dead center. So as not to complicate the kinematic of the engine, the communication between cylinder and cooled reservoir is executed by some holes of 1 mm distributed on the whole periphery of the cylinder at the bdc.

Arques, P.

1996-12-31T23:59:59.000Z

455

Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

Schroeder, Jenna N.

456

Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework  

SciTech Connect (OSTI)

This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

Schroeder, Jenna N.

2014-06-10T23:59:59.000Z

457

Growth mechanisms of carbon nanotrees with branched carbon nanofibers synthesized by plasma-enhanced chemical vapour deposition  

E-Print Network [OSTI]

be interesting for future applications in nanoelectronic devices and also composite materials. hal-008807221 Growth mechanisms of carbon nanotrees with branched carbon nanofibers synthesized by plasma , Didier Pribat*, 3 1 State Key Laboratory for Advanced Metals and Materials, University of Science

Boyer, Edmond

458

Carbon Trading, Carbon Taxes and Social Discounting  

E-Print Network [OSTI]

Carbon Trading, Carbon Taxes and Social Discounting Elisa Belfiori belf0018@umn.edu University of Minnesota Abstract This paper considers the optimal design of policies to carbon emissions in an economy, such as price or quantity controls on the net emissions of carbon, are insufficient to achieve the social

Weiblen, George D

459

Bioenergy: America's Energy Future  

SciTech Connect (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-07-31T23:59:59.000Z

460

Bioenergy: America's Energy Future  

ScienceCinema (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Future Physics | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big SkyDIII-D ExplorationsFuture Physics March

462

Future of Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big SkyDIII-D ExplorationsFuture

463

Life Cycle Inventory of a CMOS Chip  

E-Print Network [OSTI]

are shown. Keywords- Life Cycle Assessment (LCA); Life Cycleindustry, and Life Cycle Assessment (LCA) is emerging as a

Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

2006-01-01T23:59:59.000Z

464

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

88 Figure 38. Carbon Intensity of China's Electricityboth its energy and carbon intensities as it strives to meetincluding energy and carbon intensity reduction goals of 16%

Zheng, Nina

2012-01-01T23:59:59.000Z

465

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

Fossil fuel with carbon capture and sequestration (CCS)and natural gas) with carbon capture and storage (CCS) andpower, fossil fuel with carbon capture and storage (CCS),

2011-01-01T23:59:59.000Z

466

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

payback time Carbon footprint Efficiency improvement (forin embedded energy, carbon footprint, etc. ) would be moreenergy consumption or carbon footprint in operation of the “

Dornfeld, David

2011-01-01T23:59:59.000Z

467

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

Coast Regional Carbon Sequestration Partnership: Source-Sinkfuel with carbon capture and sequestration (CCS) wouldBoard CCS Carbon capture and sequestration CCST California

2011-01-01T23:59:59.000Z

468

Carbon dioxide and climate  

SciTech Connect (OSTI)

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

Not Available

1990-10-01T23:59:59.000Z

469

Open cycle thermoacoustics  

SciTech Connect (OSTI)

A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

Reid, Robert Stowers

2000-01-01T23:59:59.000Z

470

Stirling cycle rotary engine  

SciTech Connect (OSTI)

A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

Chandler, J.A.

1988-06-28T23:59:59.000Z

471

Milk Futures, Options and Basis  

E-Print Network [OSTI]

The milk futures and options market enables producers and processors to manage price risk. This publication explains hedging, margin accounts, basis and how to track it, and other fundamentals of the futures and options market....

Haigh, Michael; Stockton, Matthew; Anderson, David P.; Schwart Jr., Robert B.

2001-10-12T23:59:59.000Z

472

Advanced regenerative absorption refrigeration cycles  

DOE Patents [OSTI]

Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

Dao, Kim (14 Nace Ave., Piedmont, CA 94611)

1990-01-01T23:59:59.000Z

473

Public Review Draft: A Method for Assessing Carbon Stocks, Carbon  

E-Print Network [OSTI]

Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse, and Zhu, Zhiliang, 2010, Public review draft; A method for assessing carbon stocks, carbon sequestration

474

Carbon-Optimal and Carbon-Neutral Supply Chains  

E-Print Network [OSTI]

Li, M. Daskin. 2009. Carbon Footprint and the Management ofThe Importance of Carbon Footprint Estimation Boundaries.Carbon accounting and carbon footprint - more than just

Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

2011-01-01T23:59:59.000Z

475

An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy  

E-Print Network [OSTI]

the assumption that technol- ogies available today are used to fully offset net human emissions of carbon dioxideAn idealized assessment of the economics of air capture of carbon dioxide in mitigation policy, primarily carbon dioxide (CO2). During 2007, countries have been actively engaged in negotiating future

Colorado at Boulder, University of

476

Carbide-Derived Carbons for Adsorptive Removal of VOCs from Air Streams  

E-Print Network [OSTI]

Carbide-Derived Carbons for Adsorptive Removal of VOCs from Air Streams References 1. USEPA Literature Results Carbide-Derived Carbons Motivation Future Research · The effect of pore size and pore size decreasing removal cost is an advancement for the industry and the environment. Carbide-derived carbons (CDCs

Das, Suman

477

OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS  

E-Print Network [OSTI]

OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS M. A. de and institutional perceptions for future carbon sequestration projects. INTRODUCTION The United States Department scrutiny. DOE, NEDO and NRC agreed to an initial field experiment on ocean carbon sequestration via direct

478

The research programme Future Agriculture  

E-Print Network [OSTI]

The research programme Future Agriculture ­ livestock, crops and land use Welcome to a lunch.slu.se/futureagriculture For questions, please contact KatarinaVrede (katarina.vrede@slu.se) About Future Agriculture ­ livestock, crops and land use The changes and challenges facing agriculture in the future will be substantial, not only

479

Virtuous Cycle Cycles of activity and software projects  

E-Print Network [OSTI]

Inspection #12;Programming Cycle - single bug Selected Bug Shared Code Fix Bug Continuous Integration ~8 cycle cvscheck compilation style checking testing javadocs documentation jumble quality of unit testing #12;NetValue Development cvscheck - Source Code Control and Build Shared Centralized Automatic

Pfahringer, Bernhard

480

Autonomous observations of the ocean biological carbon pump  

SciTech Connect (OSTI)

Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

Bishop, James K.B.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Federal Control of Geological Carbon Sequestration  

SciTech Connect (OSTI)

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

Reitze, Arnold

2011-04-11T23:59:59.000Z

482

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

biomass and the carbon intensity of various technologies.constant levels of carbon intensity in fuel. The investments

2011-01-01T23:59:59.000Z

483

On carbon footprints and growing energy use  

SciTech Connect (OSTI)

Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

Oldenburg, C.M.

2011-06-01T23:59:59.000Z

484

Life Cycle Asset Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

(The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

1998-10-14T23:59:59.000Z

485

HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM  

SciTech Connect (OSTI)

The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

Richard Tuthill

2002-07-18T23:59:59.000Z

486

Orbital Resonance and Solar Cycles  

E-Print Network [OSTI]

We present an analysis of planetary moves, encoded in DE406 ephemerides. We show resonance cycles between most planets in Solar System, of differing quality. The most precise resonance - between Earth and Venus, which not only stabilizes orbits of both planets, locks planet Venus rotation in tidal locking, but also affects the Sun: This resonance group (E+V) also influences Sunspot cycles - the position of syzygy between Earth and Venus, when the barycenter of the resonance group most closely approaches the Sun and stops for some time, relative to Jupiter planet, well matches the Sunspot cycle of 11 years, not only for the last 400 years of measured Sunspot cycles, but also in 1000 years of historical record of "severe winters". We show, how cycles in angular momentum of Earth and Venus planets match with the Sunspot cycle and how the main cycle in angular momentum of the whole Solar system (854-year cycle of Jupiter/Saturn) matches with climatologic data, assumed to show connection with Solar output power and insolation. We show the possible connections between E+V events and Solar global p-Mode frequency changes. We futher show angular momentum tables and charts for individual planets, as encoded in DE405 and DE406 ephemerides. We show, that inner planets orbit on heliocentric trajectories whereas outer planets orbit on barycentric trajectories.

P. A. Semi

2009-03-29T23:59:59.000Z

487

Extreme Financial cycles$ B. Candelonb,  

E-Print Network [OSTI]

Extreme Financial cycles$ B. Candelonb, , G. Gauliera , C. Hurlinb aUniversity Maastricht proposes a new approach to date extreme financial cycles. Elabo- rating on recent methods in extreme value theory, it elaborates an extension of the famous calculus rule to detect extreme peaks and troughs

Paris-Sud XI, Université de

488

FutureGen_factsheet.cdr  

Broader source: Energy.gov (indexed) [DOE]

on June 11, 2001, and the Global Climate Change Initiative on February 14, 2002. Carbon capture and sequestration technologies likely will be essential to meeting the...

489

Magnesium for Future Autos  

SciTech Connect (OSTI)

In the quest for better fuel economy and improved environmental performance, magnesium may well become a metal of choice for constructing lighter, more efficient vehicles. Magnesium is the lightest structural metal, yet it has a high strength-to-weight ratio makes it comparable to steel in many applications. The world’s automakers already use magnesium for individual components. But new alloys and processing methods are needed before the metal can become economically and technologically feasible as a major automotive structural material. This article will explore the formation, challenges and initial results of an international collaboration—the Magnesium Front End Research and Development (MFERD) project—that is leveraging the expertise and resources of Canada, China and the United States to advance the creation of magnesium-intensive vehicles. The MFERD project aims to develop the enabling technologies and knowledge base that will lead to a vehicles that are 50-60 percent lighter, equally affordable, more recyclable and of equal or better quality when compared to today’s vehicles. Databases of information also will be captured in models to enable further alloy and manufacturing process optimization. Finally, a life-cycle analysis of the magnesium used will be conducted.

Nyberg, Eric A.; Luo, Alan A.; Sadayappan, Kumar; Shi, Wenfang

2008-10-01T23:59:59.000Z

490

Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin  

SciTech Connect (OSTI)

Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

2013-12-06T23:59:59.000Z

491

Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales  

E-Print Network [OSTI]

a closed loop in the carbon cycle Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales using carbon X-ray spectromicroscopy Paul R. Haberstroh a,*, Jay A. Brandes b , Yves Ge´linas c

Long, Bernard

492

Carbon dioxide and methane in karst systems Supervisors: Prof Dave Mattey, Dr Dave Lowry and Dr. Rebecca Fisher  

E-Print Network [OSTI]

Carbon dioxide and methane in karst systems Supervisors: Prof Dave Mattey, Dr Dave Lowry and Dr in the carbon cycle and very little is known about the behavior of methane in karst systems. Methane carbon isotopic evidence for oxidation of atmospheric methane in a dynamically ventilated cave

Royal Holloway, University of London

493

Photophysics of carbon nanotubes  

E-Print Network [OSTI]

This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

Samsonidze, Georgii G

2007-01-01T23:59:59.000Z

494

CALIFORNIA CARBON SEQUESTRATION THROUGH  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

495

Comprehensive Fuel Cycle - Community Perspective - 13093  

SciTech Connect (OSTI)

Should a five-county region surrounding the Department of Energy's Savannah River Site ('SRS') use its assets to help provide solutions to closing the nation's nuclear fuel cycle? That question has been the focus of a local ad hoc multi-disciplinary community task force (Tier I) that has been at work in recent months outlining issues and identifying unanswered questions to determine if assuming a leadership role in closing the nuclear fuel cycle is in the community's interest. If so, what are the terms and conditions under which we the community would agree to participate? Our starting point was the President's Blue Ribbon Commission on America's Nuclear Future ('Commission') which made a total of eight (8) recommendations in its final report. There are several recommendations that are directly relevant to the Tier I group and potential efforts of the Region. These are the 'consent-based approach', the creation of an independent nuclear waste management entity funded from the existing nuclear waste fee; the 'prompt efforts to develop one or more consolidated storage facilities', and 'continued U.S. innovation in nuclear energy technology and for workforce development'. (authors)

McLeod, Richard V. [Savannah River Community Reuse Organization, P.O. Box 696, Aiken, SC 29802 (United States)] [Savannah River Community Reuse Organization, P.O. Box 696, Aiken, SC 29802 (United States); Frazier, Timothy A. [Dickstein Shapiro LLP, 1825 Eye Street NW, Washington, DC, 20006-5403 (United States)] [Dickstein Shapiro LLP, 1825 Eye Street NW, Washington, DC, 20006-5403 (United States)

2013-07-01T23:59:59.000Z

496

Testing of a Stirling cycle cooler  

SciTech Connect (OSTI)

Stirling cycle coolers have long been used as low temperature refrigeration devices. They are relatively compact, reliable, commercially available, and use helium as the working fluid. The Stirling cycle, in principle, can be used for household refrigeration and heat pumping applications as well. Currently, these applications are almost entirely provided by the vapor compression technology using chlorofluorocarbons (CFCs) as working fluids. It has been known that CFCs cause depletion of the ozone layer that protects the earth against harmful levels of ultraviolet radiation from the sun. A recent report of a ''hole'' in the ozone layer above Antarctica and of possible environmental and health consequences from ozone depletion aroused public attention. The urgent need to reduce the future used of CFCs should instigate investigation of non-CFC alternative technologies. The Stirling cooler technology, which does not use CFCs, could be a viable alternative. A laboratory test of the performance of a Stirling cooler is reported and its implications for household refrigeration are explored. 11 refs., 6 figs., 2 tabs.

Chen, F.C.; Keshock, E.G.; Murphy, R.W.

1988-09-01T23:59:59.000Z

497

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network [OSTI]

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

498

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network [OSTI]

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

499

The Future of Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

500

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z