Powered by Deep Web Technologies
Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Terrestrial Carbon Cycle Dynamics under Recent and Future Climate Change  

Science Conference Proceedings (OSTI)

The behavior of the terrestrial carbon cycle under historical and future climate change is examined using the University of Victoria Earth System Climate Model, now coupled to a dynamic terrestrial vegetation and global carbon cycle model. When ...

H. Damon Matthews; Andrew J. Weaver; Katrin J. Meissner

2005-05-01T23:59:59.000Z

2

Terrestrial carbon cycle dynamics under recent and future climate change  

E-Print Network (OSTI)

The behavior of the terrestrial carbon cycle under historical and future climate change is examined using the University of Victoria Earth System Climate Model, now coupled to a dynamic terrestrial vegetation and global carbon cycle model. When forced by historical emissions of CO 2 from fossil fuels and land-use change, the coupled climatecarbon cycle model accurately reproduces historical atmospheric CO 2 trends, as well as terrestrial and oceanic uptake for the past two decades. Under six twenty-first-century CO 2 emissions scenarios, both terrestrial and oceanic carbon sinks continue to increase, though terrestrial uptake slows in the latter half of the century. Climatecarbon cycle feedbacks are isolated by comparing a coupled model run with a run where climate and the carbon cycle are uncoupled. The modeled positive feedback between the carbon cycle and climate is found to be relatively small, resulting in an increase in simulated CO 2 of 60 ppmv at the year 2100. Including non-CO 2 greenhouse gas forcing and increasing the models climate sensitivity increase the effect of this feedback to 140 ppmv. The UVic model does not, however, simulate a switch from a terrestrial carbon sink to a source during the twenty-first century, as earlier studies have suggested. This can be explained by a lack of substantial reductions in simulated vegetation productivity due to climate changes. 1.

H. Damon Matthews; Andrew J. Weaver; Katrin; J. Meissner

2005-01-01T23:59:59.000Z

3

Quantifying Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

4

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

5

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Print E-mail U.S. Carbon Cycle Science Program U.S. Carbon Cycle Science Program The U.S. Carbon Cycle Science Program, in consultation with the Carbon Cycle...

6

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

7

BNL | Carbon Cycle Science  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle Science & Technology Group aims to increase understanding The Carbon Cycle Science & Technology Group aims to increase understanding of the impacts of global change on managed and unmanaged ecosystems and improve knowledge of possible global change mitigation approaches. The group has three main focus areas. FACE Climate Change Experimental Facility Design and Management The CCS&T group is an internationally recognized leader in the development of Free Air CO2 Enrichment (FACE) research facilities. We are interested in the design and management of manipulative experiments that examine the effects of carbon dioxide, ozone, other atmospheric pollutants, temperature and precipitation on natural and managed ecosystems. FACE Plant Physiology and High Throughput Biochemical Phenotyping At FACE facilities we have studied the mechanisms that underlie the

8

Carbon Cycle 2.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Cycle 2.0 Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Artificial Photosynthesis Energy Storage Combustion Carbon Capture & Storage Developing World Efficiency Photovoltaics Biofuels Energy Analysis Climate Modeling Carbon Cycle 2.0 is... 1. A vision for * a global energy system integrated with the Earth's natural carbon cycles * an interactive Berkeley Lab environment with a shared sense of purpose 2. A program development plan that will allow us to deepen our capabilities and provide more opportunities to have impact 3. An attempt to integrate our basic research with applications using models of technology deployment constraints 4. Set of internal activities aimed at priming the effort

9

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

GHG emissions of future transportation modes. These resultsVehicle Manufacturing Futures in Transportation Life-cycleVehicle Manufacturing Futures in Transportation Life-cycle

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

10

Biofuels Science and Facilities (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Jay D. Keasling speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Keasling, Jay D.

2010-02-04T23:59:59.000Z

11

Tools for supercritical carbon dioxide cycle analysis and the cycle's applicability to sodium fast reactors  

E-Print Network (OSTI)

The Sodium-Cooled Fast Reactor (SFR) and the Supercritical Carbon Dioxide (S-C0?) Recompression cycle are two technologies that have the potential to impact the power generation landscape of the future. In order for their ...

Ludington, Alexander R. (Alexander Rockwell)

2009-01-01T23:59:59.000Z

12

NPP and the Global Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

the Global Carbon Cycle the Global Carbon Cycle Introduction Photosynthetic carbon fixation comprises a major component of the global carbon cycle. Data on net primary productivity (NPP) may be sparse, but a consistent NPP data set may be used to calibrate, parameterize and evaluate models of terrestrial carbon cycling, as well as for validation of remote sensing data and other applications (identifying trends, investigating biogeochemical processes, etc.). It is also useful to place such data within the context of carbon cycling and carbon storage worldwide. For example: How much carbon exists in the biosphere, and where exactly is it stored? How much is in fossil fuels (coal, oil, gas), and how large are current fossil-fuel emissions? How much is in living biomass (plants/ animals/ humans)?

13

Low Cost Solar Energy Conversion (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ramesh, Ramamoorthy

2010-02-04T23:59:59.000Z

14

Future nuclear fuel cycles: prospects and challenges  

Science Conference Proceedings (OSTI)

Solvent extraction has played, from the early steps, a major role in the development of nuclear fuel cycle technologies, both in the front end and back end. Today's stakes in the field of energy enhance further than before the need for a sustainable management of nuclear materials. Recycling actinides appears as a main guideline, as much for saving resources as for minimizing the final waste impact, and many options can be considered. Strengthened by the important and outstanding performance of recent PUREX processing plants, solvent-extraction processes seem a privileged route to meet the new and challenging requirements of sustainable future nuclear systems. (author)

Boullis, Bernard [Commissariat a l'Energie Atomique, Direction de l'Energie Nucleaire, Centre de Saclay, 91191, Gif-sur-Yvette cedex (France)

2008-07-01T23:59:59.000Z

15

Nonlinearity of Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Coupled climatecarbon models have shown the potential for large feedbacks between climate change, atmospheric CO2 concentrations, and global carbon sinks. Standard metrics of this feedback assume that the response of land and ocean carbon uptake ...

Kirsten Zickfeld; Michael Eby; H. Damon Matthews; Andreas Schmittner; Andrew J. Weaver

2011-08-01T23:59:59.000Z

16

Carbon Cycle 2.0 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Cycle 2.0 Carbon Cycle 2.0 Information on the vision and research surrounding the Carbon Cycle 2.0 energy program. cc2overvieweeforummay52011en.pdf (Chinese...

17

NETL: Turbine Projects - Carbon Management (FutureGen)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Management (FutureGen) Turbine Projects Carbon Management (FutureGen) Hydrogen Turbines new solicitation in FY05 DataFact Sheets...

18

Primary productivity control of simulated carbon cycle-climate feedbacks. Geophys  

E-Print Network (OSTI)

[1] Positive feedbacks between the terrestrial carbon cycle and climate represent an outstanding area of uncertainty in simulations of future climate change. Coupled climatecarbon cycle models have simulated widely divergent feedback magnitudes, and attempts to explain model differences have had only limited success. In this study, we demonstrate that the response of vegetation primary productivity to climate changes is a critical controlling factor in determining the strength of simulated carbon cycle-climate feedbacks. This conclusion sheds new light on coupled climate-carbon cycle model results, and highlights the need for improved model representation of photosynthesis processes so as to better constrain future projections of climate change. Citation: Matthews, H. D.,

H. Damon Matthews; Michael Eby; Andrew J. Weaver; Barbara J. Hawkins; M. Eby; A. J. Weaver; B. J. Hawkins

2005-01-01T23:59:59.000Z

19

Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Balsara, Nitash

2010-02-04T23:59:59.000Z

20

FutureGen Industrial Alliance Announces Carbon Storage Site Selection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for...

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Supercritical carbon dioxide cycle control analysis.  

SciTech Connect

This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined. In particular, the peak heat removal capacity of the shutdown heat removal loop may be specified to be 1.1 % of the nominal reactor power. An investigation of the oscillating cycle behavior calculated by the ANL Plant Dynamics Code under specific conditions has been carried out. It has been found that the calculation of unstable operation of the cycle during power reduction to 0 % may be attributed to the modeling of main compressor operation. The most probable reason for such instabilities is the limit of applicability of the currently used one-dimensional compressor performance subroutines which are based on empirical loss coefficients. A development of more detailed compressor design and performance models is required and is recommended for future work in order to better investigate and possibly eliminate the calculated instabilities. Also, as part of such model development, more reliable surge criteria should be developed for compressor operation close to the critical point. It is expected that more detailed compressor models will be developed as a part of validation of the Plant Dynamics Code through model comparison with the experiment data generated in the small S-CO{sub 2} loops being constructed at Barber-Nichols Inc. and Sandia National Laboratories (SNL). Although such a comparison activity had been planned to be initiated in FY 2008, data from the SNL compression loop currently in operation at Barber Nichols Inc. has not yet become available by the due date of this report. To enable the transient S-CO{sub 2} cycle investigations to be carried out, the ANL Plant Dynamics Code for the S-CO{sub 2} Brayton cycle was further developed and improved. The improvements include further optimization and tuning of the control mechanisms as well as an adaptation of the code for reactor systems other than the Lead-Cooled Fast Reactor (LFR). Since the focus of the ANL work on S-CO{sub 2} cycle development for the majority of the current year has been on the applicability of the cycle to SFRs, work has started on modification of the ANL Plant Dynamics Code to allow

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2011-04-11T23:59:59.000Z

22

Biomass Energy in a Carbon Constrained Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,

23

Laplace transform analysis of the carbon cycle  

Science Conference Proceedings (OSTI)

A Laplace transform representation is used to describe the changes in atmospheric CO"2 in response to emissions. The formalism gives an explicit representation of generic relations that are less clear when model results are presented as numerical integrations ... Keywords: Carbon cycle, Geosequestration, Laplace transforms, Response functions

I. G. Enting

2007-10-01T23:59:59.000Z

24

Closed cycle cogeneration for the future  

Science Conference Proceedings (OSTI)

While present energy needs can be met with available supplies of fossil fuels, the need to plan for the eventual elimination of dependence on premium fuels in utility and industrial applications remains urgent. One of the most promising power conversion technologies for these needs is the closed cycle gas turbine (CCGT) configured for power and heat production. Closed cycle gas turbines have been in commercial use, principally in Europe, for over four decades. That experience base, combined with emerging awareness of potential CCGT applications, could lead to the operation of coal-fired CCGT cogeneration systems in the U.S. within the next decade. This paper discusses the multi-fuel capability of the CCGT and compares its performance as a flexible cogeneration system with that of a more conventional steam turbine system.

Crim, W.M.; Fraize, W.E.; Kinney, G.; Malone, G.A.

1984-06-01T23:59:59.000Z

25

ON CALCULATING THE TRANSFER OF CARBON-13 IN RESERVOIR MODELS OF THE CARBON CYCLE  

E-Print Network (OSTI)

7. Keeling. C. D. 1973. The carbon dioxide cycle: reservoirexchange of atmospheric carbon dioxide with the oceans andmodel to study the carbon dioxide exchange in nature. Tellus

Tans, Pieter P.

2013-01-01T23:59:59.000Z

26

Carbon Cycle Engineering | Open Energy Information  

Open Energy Info (EERE)

Cycle Engineering Cycle Engineering Jump to: navigation, search Name Carbon Cycle Engineering Address 13725 Dutch Creek Road Place Athens, Ohio Zip 45701 Sector Biofuels, Biomass, Efficiency, Renewable Energy Product Agriculture; Consulting; Engineering/architectural/design Phone number 740-541-1685 Website http://www.Carboncycleengineer Coordinates 39.376838°, -82.029904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.376838,"lon":-82.029904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Microbial Carbon Cycling in Permafrost-Affected Soils  

Science Conference Proceedings (OSTI)

The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Liebner, Susanne [University of Tromso, Norway; Wilhelm, Ronald [McGill University, Montreal, Quebec; Wagner, Dirk [Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany

2011-01-01T23:59:59.000Z

28

FutureGen Industrial Alliance Announces Carbon Storage Site Selection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Industrial Alliance Announces Carbon Storage Site FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 October 6, 2010 - 12:00am Addthis WASHINGTON -- The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide (CO2) collected at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois. Last month the Department of Energy signed two agreements, one with the FutureGen Industrial Alliance and one with Ameren Energy Resources that committed $1 billion in Recovery Act funding to design, build and

29

Modeling the Solar Cycle: What the Future Holds  

E-Print Network (OSTI)

Stellar magnetic fields are produced by a magnetohydrodynamic dynamo mechanism working in their interior -- which relies on the interaction between plasma flows and magnetic fields. The Sun, being a well-observed star, offers an unique opportunity to test theoretical ideas and models of stellar magnetic field generation. Solar magnetic fields produce sunspots, whose number increases and decreases with a 11 year periodicity -- giving rise to what is known as the solar cycle. Dynamo models of the solar cycle seek to understand its origin, variation and evolution with time. In this review, I summarize observations of the solar cycle and describe theoretical ideas and dynamo modeling efforts to address its origin. I end with a discussion on the future of solar cycle modeling -- emphasizing the importance of a close synergy between observational data assimilation, kinematic dynamo models and full magnetohydrodynamic models of the solar interior.

Nandy, Dibyendu

2011-01-01T23:59:59.000Z

30

ORNL researchers improve soil carbon cycling models | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

researchers improve soil carbon cycling models researchers improve soil carbon cycling models January 01, 2013 ORNL's new carbon cycling model could help scientists understand the role of soil microbes (MBC) in climate change by tracking extracellular enzymes (ENZ) that break down carbon-rich soil materials (SOC) into forms that microbes can respire (DOC). A more robust model of the soil carbon cycle developed at Oak Ridge National Laboratory (ORNL) improves understanding of carbon residence time in soils and enables scientists to make more accurate climate predictions. The model does a better job than previous models of accounting for how microbes in the soil break down carbon-rich materials and release carbon dioxide. "Soil is a big reservoir of carbon," said co-author Melanie Mayes of the Environmental Sciences Division and the Climate Change Science

31

Belowground Carbon Cycling Processes at the Molecular Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

919 919 Belowground Carbon Cycling Processes at the Molecular Scale An EMSL Science Theme Advisory Panel Workshop Workshop Date: February 19-21, 2013 Prepared for the U.S. Department of Energy's Office of Biological and Environmental Research under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Belowground Carbon Cycling Processes at the Molecular Scale iii Executive Summary As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an Environmental Molecular

32

Carbon Cycle Uncertainty Increases Climate Change Risks and Mitigation Challenges  

Science Conference Proceedings (OSTI)

Projections of greenhouse gas concentrations over the twenty-first century generally rely on two optimistic, but questionable, assumptions about the carbon cycle: 1) that elevated atmospheric CO2 concentrations will enhance terrestrial carbon ...

Paul A. T. Higgins; John Harte

2012-11-01T23:59:59.000Z

33

Climate-Carbon Cycle Interactions Dr. John P. Krasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Ensemble Modeling of Climate-Carbon Cycle Interactions Dr. John P. Krasting geophysical fluid dynamics Laboratory Wednesday, Jan 23, 2013 - 4:15PM MBG AUDITORIUM Refreshments at...

34

Carbonate Thermochemical Cycle for the Production of Hydrogen ...  

Carbonate Thermochemical Cycle for the Production of Hydrogen (Supplemental to ID 1435) Note: The technology described above is an early stage opportunity.

35

Pages that link to "Carbon Cycle Engineering" | Open Energy Informatio...  

Open Energy Info (EERE)

| 250 | 500) Retrieved from "http:en.openei.orgwikiSpecial:WhatLinksHereCarbonCycleEngineering" Special pages About us Disclaimers Energy blogs Developer services OpenEI...

36

Changes related to "Carbon Cycle Engineering" | Open Energy Informatio...  

Open Energy Info (EERE)

Retrieved from "http:en.openei.orgwikiSpecial:RecentChangesLinkedCarbonCycleEngineering" Atom Special pages About us Disclaimers Energy blogs Developer services...

37

Population exposure from the fuel cycle: Review and future direction  

SciTech Connect

The legacy of radiation exposures confronting man arises from two historical sources of energy, the sun and radioactive decay. Contemporary man continues to be dependent on these two energy sources, which include the nuclear fuel cycle. Radiation exposures from all energy sources should be examined, with particular emphasis on the nuclear fuel cycle, incidents such as Chernobyl and Three Mile Island. In addition to risk estimation, concepts such as de minimis, life shortening as a measure of risk, and competing risks as projected into the future must be considered in placing radiation exposures in perspective. The utility of these concepts is in characterizing population exposures for decision makers in a manner that the public may judge acceptable. All these viewpoints are essential in the evaluation of population exposure from the nuclear fuel cycle.

Richmond, C.R.

1987-01-01T23:59:59.000Z

38

Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report  

SciTech Connect

This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

Sarmiento, J.L.

1994-07-01T23:59:59.000Z

39

Carbon Dioxide Carbonates in the Earth;s Mantle: Implications to the Deep Carbon Cycle  

SciTech Connect

An increase in the ionic character in C-O bonds at high pressures and temperatures is shown by the chemical/phase transformation diagram of CO{sub 2}. The presence of carbonate carbon dioxide (i-CO{sub 2}) near the Earth's core-mantle boundary condition provides insights into both the deep carbon cycle and the transport of atmospheric CO{sub 2} to anhydrous silicates in the mantle and iron core.

Yoo, Choong-Shik; Sengupta, Amartya; Kim, Minseob (Princeton); (WSU)

2012-05-22T23:59:59.000Z

40

Multicentury Changes to the Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model  

Science Conference Proceedings (OSTI)

A coupled climate and carbon (CO2) cycle model is used to investigate the global climate and carbon cycle changes out to the year 2300 that would occur if CO2 emissions from all the currently estimated fossil fuel resources were released to the ...

G. Bala; K. Caldeira; A. Mirin; M. Wickett; C. Delire

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Carbon Cycle 2.0: Presentations from the LBNL Symposium of February, 2010 (Videos)  

DOE Data Explorer (OSTI)

Carbon Cycle 2.0 is the name of one of the playlists on the official YouTube channel of Lawrence Berkeley National Laboratory. More important, however, it is also the name of a Berkeley Lab initiative to provide the science needed to restore the balance of carbon in the atmosphere. The initiative seeks to integrate diverse research activities and deliver creative solutions from the Lab that will lead to a carbon-neutral energy future. The Carbon Cycle 2.0 Symposium took place from February 1, 2010 through February 5, 2010. Presentations in the video playlist include: 1) A Call to Action, Paul Alivisatos [Berkeley Lab Director]; 2) A Future without CO2, Bill Collins [LBNL Climate Sciences Dept]; 3) Global Impact, Ashok Gadgil [EETD at LBNL and Univ of Berkeley]; 4) Energy Demand in China, Lynn Price [EETD at LBNL]; 5) Reducing Demand through Efficiency and Services Impacts and Opportunities in the Buildings Sector, Mary Ann Platte [Bldg Technologies Dept and Director]; 6) Carbon Capture, Berend Smit [Berkeley]; 7) Geologic Carbon Sequestration and Biosequestration, Don DePaolo [Director, Earth Sciences Division, LBNL]; 8) Combustion and Carbon Cycle 2.0, Robert K. Chang [EETD at LBNL]; 9) Low Cost Solar Energy Conversion, R. Ramesh [Materials Science Division, LBNL]; 10) Energy Storage: Breakthrough in Battery Technologies, Nitash Balsara [BATT Program, LBNL]; 11) Biofuels Science and Facilities, Jay Keasling (LBNL); 12) Symposium closing remarks, Paul Alivisatos.

42

Cost and carbon emissions of coal and combined cycle power plants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and carbon emissions of coal and combined cycle power plants in India: international implications Title Cost and carbon emissions of coal and combined cycle power plants in...

43

Carbon Cycle Uncertainty Increases Climate Change Risks and Mitigation Challenges PAUL A. T. HIGGINS  

E-Print Network (OSTI)

Carbon Cycle Uncertainty Increases Climate Change Risks and Mitigation Challenges PAUL A. T about the carbon cycle: 1) that elevated atmospheric CO2 concentrations will enhance terrestrial carbon that carbon cycle uncertainty is considerably larger than currently recognized and that plausible carbon cycle

Kammen, Daniel M.

44

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials Speaker(s): Roger Sathre Date: December 5, 2011 - 3:30pm Location: 90-4133 Seminar HostPoint of Contact: Anita...

45

Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency Title Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency Publication Type Journal Article Year of Publication 2009 Authors Ridgway, Paul L., Honghe Zheng, Xiangyun Song, Gao Liu, Philip N. Ross, and Vincent S. Battaglia Journal Electrochemical Society Volume 19 Start Page 51 Issue 25 Pagination 51-57 Abstract Vinylene Carbonate (VC) was added to the electrolyte in graphite-lithium half-cells. We report its effect on the coulombic efficiency (as capacity shift) of graphite electrodes under various formation cycling conditions. Cyclic voltammetry on glassy carbon showed that VC passivates the electrode against electrolyte reduction. The dQ/dV plots of the first lithiation of the graphite suggest that VC alters the SEI layer, and that by varying the cell formation rate, the initial ratio of ethylene carbonate to VC in the SEI layer can be controlled. VC was found to decrease first cycle efficiency and reversible capacity (in ongoing cycling) when used to excess. However, experiments with VC additive used with various formation rates did not show any decrease in capacity shift.

46

Phosphate influences cycling of iron and carbon in the environment |  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Phosphate influences cycling of iron and carbon in the environment August 30, 2013 Tweet EmailPrint Aquatic and terrestrial environments are dynamic systems where coupled microbiological, geochemical, and hydrological processes define the complex interactions that drive the biogeochemical cycling of water and the major and minor elements. Therefore, a thorough understanding of these complex interactions is critical for predicting the biogeochemical cycling of carbon, nutrients, heavy metals, radionuclides, and other contaminants; managing water quality; and understanding the interactions between

47

Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)  

Science Conference Proceedings (OSTI)

Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Piette, Mary Ann (Director, Demand Response Research Center)

2010-02-02T23:59:59.000Z

48

Carbon Cycle 2.0 Pioneering science for sustainable energy solutions  

E-Print Network (OSTI)

Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Carbon Cycle 2.0 LDRD Seminar Series The Carbon Cycle 2.0 initiative is hosting a weekly seminar series given by recipients-253) and are open to anyone interested in learning more about the wide variety of Carbon Cycle 2.0-themed research

Eisen, Michael

49

Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle  

E-Print Network (OSTI)

Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle Hanqin on the exchange of CO2 between the atmosphere and monsoon Asian ecosystems. During 1860­1990, modeled results suggest that monsoon Asia as a whole released 29.0 Pg C, which represents 50% of the global carbon release

50

Role of organic soils in the world carbon cycle: problem analysis and research needs  

SciTech Connect

In May 1979, The Institute of Ecology held a workshop to determine the role of organic soils in the global carbon cycle and to ascertain their past, present and future significance in world carbon flux. Wetlands ecologists and soil scientists who participated in the workshop examined such topics as Soils as Sources of Atmospheric CO/sub 2/, Organic Soils, Primary Production and Growth of Wetlands Ecosystems, and Management of Peatlands. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and Gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/.

Armentano, T.V. (ed.)

1980-02-01T23:59:59.000Z

51

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials Prospective Life-Cycle Modeling of Novel Carbon Capture Materials Speaker(s): Roger Sathre Date: December 5, 2011 - 3:30pm Location: 90-4133 Seminar Host/Point of Contact: Anita Estner Barbara Adams In this presentation we describe the prospective life-cycle modeling of metal-organic frameworks (MOF), a novel type of material with the potential for efficiently capturing CO2. Life-cycle modeling of emerging technologies, conducted early in the innovation process, can generate knowledge that can feed back to inform scientific discovery and development. We discuss the challenges of credibly modeling a system that does not yet exist, and describe methodological approaches including parametric system modeling (quantifying relations between system elements), scenario projections (defining plausible pathways for system scale-up),

52

Ris Energy Report 7 Future low carbon energy systems  

E-Print Network (OSTI)

Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

53

High efficiency carbonate fuel cell/turbine hybrid power cycle  

Science Conference Proceedings (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

54

FutureCarbon GmbH | Open Energy Information  

Open Energy Info (EERE)

FutureCarbon GmbH FutureCarbon GmbH Jump to: navigation, search Name FutureCarbon GmbH Place Bayreuth, Germany Zip 95448 Sector Carbon, Efficiency, Hydro, Hydrogen Product The company originated out of a former Mannesmann think tank. Its focus is the development of carbon nano materials.They are developing materials for efficiency improvents of PME fuel cells and others for hydrogen storage. Coordinates 49.945189°, 11.571023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.945189,"lon":11.571023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Microsoft PowerPoint - 6_Rowe-Future Challenges for Global Fuel Cycle Material Accounting Final_Updated.pptx  

National Nuclear Security Administration (NNSA)

Future Challenges Future Challenges for Global Fuel Cycle Material Accounting Nathan Rowe Chris Pickett Oak Ridge National Laboratory Nuclear Materials Management & Safeguards System Users Annual Training Meeting May 20-23, 2013 St. Louis, Missouri 2 Future Challenges for Global Fuel Cycle Material Accounting Introduction * Changing Nuclear Fuel Cycle Activities * Nuclear Security Challenges * How to Respond? - Additional Protocol - State-Level Concept - Continuity of Knowledge * Conclusion 3 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Fuel Cycle Source: International Atomic Energy Agency (IAEA), Nuclear Fuel Cycle Information System (NFCIS) web site IAEA Safeguards Begins Here 4 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Weapons Cycle Conversion

56

Life cycle assessment and biomass carbon accounting  

U.S. Energy Information Administration (EIA) Indexed Site

Biomass feedstocks Biomass feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest Σ = . Over time, if carbon stocks are returned to pre-harvest levels... ...the net emissions over this time are zero. single plot analysis Net Cumulative CO2 combustion emissions Cumulative CO2 combustion emissions Time Time Biomass energy Fossil fuel energy single plot analysis Net Cumulative CO2 combustion emissions Cumulative

57

THE CARBON CYCLE FROM NORTH TO SOUTH ALONG THE GALATHEA 3 ROUTE  

E-Print Network (OSTI)

THE CARBON CYCLE FROM NORTH TO SOUTH ALONG THE GALATHEA 3 ROUTE Merete Bruun Christiansen (1 in the Galathea 3 expedition. Among the larger projects is `The marine carbon cycle from north to south along in the global carbon cycle. The World's open oceans are considered to be net absorbers of carbon dioxide (CO2

58

Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites  

SciTech Connect

Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

Das, Sujit [ORNL

2011-01-01T23:59:59.000Z

59

NETL: Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-Combustion in Conjunction with Cryogenic Compression Project No.: DE-FE0009395 Southwest Research Institute (SwRI) is developing a novel supercritical carbon dioxide (sCO2) advanced power system utilizing pressurized oxy-combustion in conjunction with cryogenic compression. The proposed power system offers a leap in overall system efficiency while producing an output stream of sequestration ready CO2 at pipeline pressures. The system leverages developments in pressurized oxy-combustion technology and recent developments in sCO2 power cycles to achieve high net cycle efficiencies and produce CO2 at pipeline pressures without requiring additional compression of the flue gas.

60

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Freight Transportation Modal Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ClimateCarbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison  

Science Conference Proceedings (OSTI)

Eleven coupled climatecarbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special ...

P. Friedlingstein; P. Cox; R. Betts; L. Bopp; W. von Bloh; V. Brovkin; P. Cadule; S. Doney; M. Eby; I. Fung; G. Bala; J. John; C. Jones; F. Joos; T. Kato; M. Kawamiya; W. Knorr; K. Lindsay; H. D. Matthews; T. Raddatz; P. Rayner; C. Reick; E. Roeckner; K.-G. Schnitzler; R. Schnur; K. Strassmann; A. J. Weaver; C. Yoshikawa; N. Zeng

2006-07-01T23:59:59.000Z

62

Integrated gasification combined cycle - a view to the future  

SciTech Connect

DOE is involved in research, development, and demonstration of Integrated Gasification Combined Cycle because of a strong belief that it will result in widespread commercialization that will be of great benefit to this nation. METC`s long-range vision comprises (1) product goals that require improvements to known technical advantages, and (2) market goals that are based on expectations of market pull.

Schmidt, D.K.

1994-10-01T23:59:59.000Z

63

Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles  

DOE Green Energy (OSTI)

This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

1990-09-01T23:59:59.000Z

64

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

Dixon, B.W.; Piet, S.J.

2004-10-03T23:59:59.000Z

65

The Carbon Cycle Response to ENSO: A Coupled ClimateCarbon Cycle Model Study  

Science Conference Proceedings (OSTI)

There is significant interannual variability in the atmospheric concentration of carbon dioxide (CO2) even when the effect of anthropogenic sources has been accounted for. This variability is well correlated with the El NioSouthern Oscillation (...

Chris D. Jones; Matthew Collins; Peter M. Cox; Steven A. Spall

2001-11-01T23:59:59.000Z

66

High efficiency carbonate fuel cell/turbine hybrid power cycles  

SciTech Connect

Carbonate fuel cells developed in commercial 2.85 MW size, have an efficiency of 57.9%. Studies of higher efficiency hybrid power cycles were conducted to identify an economically competitive system and an efficiency over 65%. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine, and a steam cycle, which generates power at a LHV efficiency over 70%; it is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95% of the fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming the fuel, and flows to a direct carbonate fuel cell system which generates 72% of the power. The portion of fuel cell anode exhaust not recycled, is burned and heat is transferred to compressed air from a gas turbine, heating it to 1800 F. The stream is then heated to 2000 F in gas turbine burner and expands through the turbine generating 13% of the power. Half the gas turbine exhaust flows to anode exhaust burner and the rest flows to the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Studies of the TTC for 200 and 20 MW size plants quantified performance, emissions and cost-of-electricity, and compared the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6%; estimated cost of electricity is 45.8 mills/kWhr. A 20-MW TTC plant has an efficiency of 65.2% and a cost of electricity of 50 mills/kWhr.

Steinfeld, G.

1996-12-31T23:59:59.000Z

67

Projected Future Carbon Storage and Greenhouse-Gas Fluxes of Terrestrial  

E-Print Network (OSTI)

Projected Future Carbon Storage and Greenhouse-Gas Fluxes of Terrestrial Ecosystems in the Western. Sleeter Chapter 9 of Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems.L., Hawbaker, T.J., and Sleeter, B.M., 2012, Projected future carbon storage and greenhouse gas fluxes

Fleskes, Joe

68

A Brief Review of the Application of 14C in Terrestrial Carbon Cycle Studies  

SciTech Connect

An over-arching goal of the DOE TCP program is to understand the mechanistic controls over the fate, transport, and residence time of carbon in the terrestrial biosphere. Many of the modern process and modeling studies focus on seasonal to interannual variability. However, much of the carbon on the landscape and in soils is in separate reservoirs with turnover times that are multi-decadal to millennial. It is the controls on these longer term pools or reservoirs that is a critical unknown in the face of rising GHGs and climate change and uncertainties of the terrestrial biosphere as a future global sink or source of atmospheric CO{sub 2} [eg., Friedlingstein et al., 2006; Govindasamy et al., 2005; Thompson et al., 2004]. Radiocarbon measurements, in combination with other data, can provide insight into, and constraints on, terrestrial carbon cycling. Radiocarbon (t{sub 1/2} 5730yrs) is produced naturally in the stratosphere when secondary neutrons generated by cosmic rays collide with {sup 14}N atoms [Libby 1946; Arnold and Libby, 1949]. Upon formation, {sup 14}C is rapidly oxidized to CO and then to CO{sub 2}, and is incorporated into the carbon cycle. Due to anthropogenic activities, the amount of {sup 14}C in the atmosphere doubled in the mid/late 1950s and early 1960s from its preindustrial value of {sup 14}C/{sup 12}C ratio of 1.18 x 10{sup -12} [eg., Nydal and Lovseth, 1983]. Following the atmospheric weapons test ban in 1963, the {sup 14}C/{sup 12}C ratio, has decreased due to the net isotopic exchange between the ocean and terrestrial biosphere [eg., Levin and Hessheimer, 2000] and a dilution effect due to the burning of {sup 14}C-free fossil fuel carbon, the 'Suess Effect' [Suess, 1955]. In the carbon cycle literature, radiocarbon measurements are generally reported as {Delta}{sup 14}C, which includes a correction for mass dependent fractionation [Stuiver and Polach, 1977]. In the context of carbon cycle studies radiocarbon measurements can be used to determine the 'age' and rate of change of carbon stocks or as a biogeochemical tracer to elucidate processes and pathways. It is this dual nature that can be exploited across scales in space (individual plant, plot or research site, ecosystem, regional, and global) and time (days to millennia). For example, across regional scales, {Delta}{sup 14}C measurements of atmosphere CO{sub 2} can be used to attribute carbon dioxide to sources (e.g., respiration vs. fossil fuel emissions) or sinks ( e.g,. photosynthesis), which cannot be readily inferred from concentration, net flux measurements, or {delta}{sup 13}CO{sub 2} [eg. Graven et al., 2009; Levin and Hessheimer, 2000; Turnbull et al., 2007]. At smaller scales, similar analyses can be used to elucidate the source, and 'age' of the below ground component undergoing heterotrophic respiration. Net (biome or ecosystem) uptake of carbon is the difference of two large fluxes: photosynthesis and respiration. Carbon fixation by photosynthesis is, to a large extent, a single process with theoretical underpinnings. On the other-hand, net ecosystem or biome respiration integrates microbial (heterotrophic) and plant (autotrophic) respiration. Eddy covariance methods can be used to estimate bulk CO{sub 2} fluxes but they cannot discriminate the process nor the source of the respired CO{sub 2}. It is these processes that are parameterized in predictive models and contribute to the uncertainty in the climate forcing effect of the carbon cycle in the future [Friedlingstein et al., 2006; Heimann and Reichstein, 2008].

Guilderson, T; Mcfarlane, K

2009-10-22T23:59:59.000Z

69

Consequences of Considering CarbonNitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle  

Science Conference Proceedings (OSTI)

The impact of carbonnitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical ...

Andrei P. Sokolov; David W. Kicklighter; Jerry M. Melillo; Benjamin S. Felzer; C. Adam Schlosser; Timothy W. Cronin

2008-08-01T23:59:59.000Z

70

Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment  

SciTech Connect

Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.

Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.

2012-11-15T23:59:59.000Z

71

Technical Report: Investigation of Carbon Cycle Processes within a Managed Landscape: An Ecosystem Manipulation and Isotope Tracer Approach  

SciTech Connect

The goal of this research is to provide a better scientific understanding of carbon cycle processes within an agricultural landscape characteristic of the Upper Midwest. This project recognizes the need to study processes at multiple spatial and temporal scales to reduce uncertainty in ecosystem and landscape-scale carbon budgets to provide a sound basis for shaping future policy related to carbon management. Specifically, this project has attempted to answer the following questions: 1. Would the use of cover crops result in a shift from carbon neutral to significant carbon gain in corn-soybean rotation ecosystems of the Upper Midwest? 2. Can stable carbon isotope analyses be used to partition ecosystem respiration into its autotrophic and heterotrophic components? 3. Can this partitioning be used to better understand the fate of crop residues to project changes in the soil carbon reservoir? 4. Are agricultural ecosystems of the Upper Midwest carbon neutral, sinks, or sources? Can the proposed measurement and modeling framework help address landscape-scale carbon budget uncertainties and help guide future carbon management policy?

Griffis, Timothy J; Baker, John M; Billmark, Kaycie

2009-06-01T23:59:59.000Z

72

Chemistry of organic carbon in soil with relationship to the global carbon cycle  

SciTech Connect

Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

Post, W.M. III

1988-01-01T23:59:59.000Z

73

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

74

Carbon capture technology: future fossil fuel use and mitigating climate change  

E-Print Network (OSTI)

Carbon capture technology: future fossil fuel use and mitigating climate change DR N FloRiN aND DR P FeNNell executive summary What is carbon capture and storage? Carbon Capture and Storage (CCS) refers to the set of technologies devel- oped to capture carbon dioxide (CO2) gas from the exhausts

75

Fire disturbance effects on regional carbon cycling in a sub-humid woodland.  

E-Print Network (OSTI)

??Fire disturbance affects many ecosystem processes, especially carbon (C) cycling. In addition, fire is routinely used as a management tool in wildland ecosystems. In this (more)

Yao, Jian, 1984-

2012-01-01T23:59:59.000Z

76

Studies on the LASL cadmium-cadmium carbonate cycle  

DOE Green Energy (OSTI)

The following results were obtained from studies on the cadmium-cadmium carbonate cycle. A new lower limit for the heat of formation of CdO(g) has been estimated ..delta..H/sup 0//sub f,298/ > 113.8 kJ/mol. Hydrogen production is subject to catalysis. While Pd is an effective catalyst, NH/sub 4/Cl shows greater catalytic activity. Seventy-two percent of the total available H/sub 2/ is formed in one-half hour at 523/sup 0/K using NH/sub 4/Cl as a catalyst. Four to five moles of water must be removed from CdCO/sub 3/ prior to its thermal decomposition.

Mason, C.F.V.; Bowman, M.G.; Behrens, R.G.

1980-01-01T23:59:59.000Z

77

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. (Argonne National Lab., IL (United States)); Johnson, R.A. (USDOE Morgantown Energy Technology Center, WV (United States))

1993-01-01T23:59:59.000Z

78

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. (Argonne National Lab., IL (United States)); Johnson, R.A. (USDOE Morgantown Energy Technology Center, WV (United States))

1993-01-01T23:59:59.000Z

79

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

1994-09-01T23:59:59.000Z

80

Study of Supercritical Carbon Dioxide Power Cycle for Low Grade Heat Conversion  

Science Conference Proceedings (OSTI)

Research on supercritical carbon dioxide power cycles has been mainly focused on high temperature applications, such as Brayton cycle in a nuclear power plant. This paper conducts a comprehensive study on the feasibility of a CO2-based supercritical power cycle for low-grade heat conversion. Energy and exergy analyses of the cycle were conducted to discuss the obstacles as well as the potentials of using supercritical carbon dioxide as the working fluid for supercritical Rankine cycle, Carbon dioxide has desirable qualities such as low critical temperature, stability, little environmental impact and low cost. However, the low critical temperature might be a disadvantage for the condensation process. Comparison between a carbon dioxide-based supercritical Rankine cycle and an organic fluid-based supercritical Rankine cycle showed that the former needs higher pressure to achieve the same efficiency and a heat recovery system is necessary to desuperheat the turbine exhaust and pre-heat the pressure charged liquid.

Vidhi, Rachana [University of South Florida, Tampa; Goswami, Yogi D. [University of South Florida, Tampa; Chen, Huijuan [University of South Florida, Tampa; Stefanakos, Elias [University of South Florida, Tampa; Kuravi, Sarada [University of South Florida, Tampa; Sabau, Adrian S [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES  

SciTech Connect

This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

Ashish Gupta

2003-01-15T23:59:59.000Z

82

NETL: News Release - FutureGen Industrial Alliance Announces Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2010 6, 2010 FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 Washington, D.C. - The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide (CO2) collected at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois. Last month the Department of Energy signed two agreements, one with the FutureGen Industrial Alliance and one with Ameren Energy Resources that committed $1 billion in Recovery Act funding to design, build and operate FutureGen 2.0. MORE INFO FutureGen 2.0 Siting Guidance FutureGen 2.0 Fact Sheet

83

Capturing and sequestering carbon by enhancing the natural carbon cycle: Prelimary identification of basic science needs and opportunities  

SciTech Connect

This document summarizes proceedings and conclusions of a US DOE workshop. The purpose of the workshop was to identify the underlying research needed to answer the following questions: (1) Can the natural carbon cycle be used to aid in stabilizing or decreasing atmospheric CO{sub 2} and CH{sub 4} by: (a) Increasing carbon capture; (b) Preventing carbon from returning to the atmosphere through intermediate (<100 years) to long-term sequestration (> 100 years)?; and (2) What kind of ecosystem management practices could be used to achieve this? Three working groups were formed to discuss the terrestrial biosphere, oceans, and methane. Basic research needs identified included fundamental understanding of carbon cycling and storage in soils, influence of climate change and anthropogenic emissions on the carbon cycle, and carbon capture and sequestration in oceans. 2 figs., 4 tabs.

Benson, S.M.

1997-07-01T23:59:59.000Z

84

Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase February 4, 2013 - 7:25pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Following the successful completion of the first phase, the Energy Department today announced the beginning of Phase II of project development with a new cooperative agreement between the FutureGen Industrial Alliance and the Department of Energy for an innovative carbon capture and storage (CCS) project in Illinois. "The Department of Energy is committed to the demonstration of carbon capture and storage technologies. We believe FutureGen 2.0 is an important step in making economic, commercial scale CCS a reality," said U.S.

85

USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future  

Open Energy Info (EERE)

USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future Jump to: navigation, search Tool Summary Name: USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future Agency/Company /Organization: United States Agency for International Development (USAID) Sector: Climate, Energy Focus Area: Renewable Energy, Economic Development Topics: GHG inventory, Low emission development planning, Policies/deployment programs Resource Type: Publications User Interface: Other Website: redd-net.org/resource-library/Energy+Trends+in+Developing+Asia%3A+Prio Language: English USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future Screenshot References: USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future[1]

86

An assessment of the future of closed-cycle gas turbines  

Science Conference Proceedings (OSTI)

The closed-cycle gas turbine (CCGT) has not reached the worldwide level of success that was expected inspite of the strongly desirable features of this concept and the success of several large closed-cycle power plants operating in Western Europe today. However, an assessment of the CCGT's future has recently been made at the Institute of Gas Technology (IGT), and IGT has shown that due to innovative developments in technologies relevant to the development of CCGT's, coupled with worldwide changes in some economic factors, the CCGT could become a successful competitor of other externally fired power plants and also of internal combustion engines, especially in sizes ranging from 200 to 5000 kW. Documentation of data recently published in the technical literature and some recent relevant developments at IGT in the area of combustion, show a promising future for the cost. 13 refs., 4 figs., 1 tab.

Fejer, A.A.; Khinkis, M.J.; Wurm, J.

1991-01-01T23:59:59.000Z

87

Integrating Natural Gas Hydrates in the Global Carbon Cycle  

Science Conference Proceedings (OSTI)

We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

David Archer; Bruce Buffett

2011-12-31T23:59:59.000Z

88

Reconciling carbon-cycle concepts, terminology, and methods  

E-Print Network (OSTI)

factors that determine whether particularly a or net source is sink of ecosystem atmospheric carbon dioxide (

2006-01-01T23:59:59.000Z

89

Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in "live"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in "live" discussion Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in "live" discussion July 13, 2011 - 12:00am Addthis On Wednesday July 13, World Bank President Robert B. Zoellick and US Energy Secretary Steven Chu will discuss how technology and policy can help the world move toward a low-carbon future. Their half-hour discussion at the World Bank's Washington headquarters will be web-streamed live via the World Bank's external website. The Zoellick-Chu dialogue is part of an all-day gathering of high-level representatives from developing and developed countries, international institutions and think tanks. With more than 100 countries now designing low-carbon development plans, the calls for greater coherence and

90

Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in "live"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in "live" discussion Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in "live" discussion July 13, 2011 - 12:00am Addthis On Wednesday July 13, World Bank President Robert B. Zoellick and US Energy Secretary Steven Chu will discuss how technology and policy can help the world move toward a low-carbon future. Their half-hour discussion at the World Bank's Washington headquarters will be web-streamed live via the World Bank's external website. The Zoellick-Chu dialogue is part of an all-day gathering of high-level representatives from developing and developed countries, international institutions and think tanks. With more than 100 countries now designing low-carbon development plans, the calls for greater coherence and

91

Evaluating the Carbon Cycle of a Coupled Atmosphere-Biosphere Model  

SciTech Connect

We investigate how well a coupled biosphere-atmosphere model, CCM3-IBIS, can simulate the functioning of the terrestrial biosphere and the carbon cycling through it. The simulated climate is compared to observations, while the vegetation cover and the carbon cycle are compared to an offline version of the biosphere model IBIS forced with observed climatic variables. The simulated climate presents some local biases that strongly affect the vegetation (e.g., a misrepresentation of the African monsoon). Compared to the offline model, the coupled model simulates well the globally averaged carbon fluxes and vegetation pools. The zonal mean carbon fluxes and the zonal mean seasonal cycle are also well represented except between 0{sup o} and 20{sup o}N due to the misrepresentation of the African monsoon. These results suggest that, despite regional biases in climate and ecosystem simulations, this coupled atmosphere-biosphere model can be used to explore geographic and temporal variations in the global carbon cycle.

Delire, C; Foley, J A; Thompson, S

2002-08-21T23:59:59.000Z

92

Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate- Ammonium Bicarbonate Process Description Current commercial processes to remove carbon dioxide (CO 2 ) from conventional power plants are expensive and energy intensive. The objective of this project is to reduce the cost associated with the capture of CO 2 from coal based gasification processes, which convert coal and other carbon based feedstocks to synthesis gas.

93

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

94

Major role of marine vegetation on the oceanic carbon cycle  

E-Print Network (OSTI)

Abstract. The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove forests) to the global level and a top-down approach derived from considerations of global sediment balance and a compilation of the organic carbon content of vegeatated sediments. Up-scaling of individual burial estimates values yielded a total carbon burial in vegetated habitats of 111 Tmol C y ?1. The total burial in unvegetated sediments was estimated to be 126 Tg C y ?1, resulting in a bottom-up estimate of total burial in the ocean of about 244 Tg C y ?1, two-fold higher than estimates of oceanic carbon burial that presently enter global carbon budgets. The organic carbon

C. M. Duarte; J. J. Middelburg; N. Caraco

2005-01-01T23:59:59.000Z

95

Direct Carbon Conversion: Review of Production and Electrochemical Conversion of Reactive Carbons, Economics and Potential Impact on the Carbon Cycle  

SciTech Connect

Concerns over global warning have motivated the search for more efficient technologies for electric power generation from fossil fuels. Today, 90% of electric power is produced from coal, petroleum or natural gas. Higher efficiency reduces the carbon dioxide emissions per unit of electric energy. Exercising an option of deep geologic or ocean sequestration for the CO{sub 2} byproduct would reduce emissions further and partially forestall global warming. We introduce an innovative concept for conversion of fossil fuels to electricity at efficiencies in the range of 70-85% (based on standard enthalpy of the combustion reaction). These levels exceed the performance of common utility plants by up to a factor of two. These levels are also in excess of the efficiencies of combined cycle plants and of advanced fuel cells now operated on the pilot scale. The core of the concept is direct carbon conversion a process that is similar to that a fuel cell but differs in that synthesized forms of carbon, not hydrogen, are used as fuel. The cell sustains the reaction, C + O{sub 2} = CO{sub 2} (E {approx} 1.0 V, T = 800 C). The fuel is in the form of fine particulates ({approx}100 nm) distributed by entrainment in a flow of CO{sub 2} to the cells to form a slurry of carbon in the melt. The byproduct stream of CO{sub 2} is pure. It affords the option of sequestration without additional separation costs, or can be reused in secondary oil or gas recovery. Our experimental program has discovered carbon materials with orders of magnitude spreads in anode reactivity reflected in cell power density. One class of materials yields energy at about 1 kW/m{sup 2} sufficiently high to make practical the use of the cell in electric utility applications. The carbons used in such cells are highly disordered on the nanometer scale (2-30 nm), relative to graphite. Such disordered or turbostratic carbons can be produced by controlled pyrolysis (thermal decomposition) of hydrocarbons extracted from coal, petroleum or natural gas. For coal and lignite, such hydrocarbons may be produced by cyclic hydrogenation (hydropyrolysis), with the recycle of the hydrogen intermediate following pyrolysis. Starting with common CH{sub x} feedstock for carbon black manufacture, the ash entrained into the carbon (<0.03%) does not jeopardize cell life or enter into the economic estimates for power generation. The value of carbon (relative to hydrogen) as an electrochemical fuel derives from thermodynamic aspects of the C/O{sub 2} reaction. First, the entropy change of the C/O{sub 2} reaction is nearly zero, allowing theoretical efficiencies ({Delta}G(T)/{Delta}H{sub i298}) of 100% (cf. H{sub 2}/O{sub 2} theoretical efficiency of 70%). Second, the thermodynamic activity of the carbon fuel and the CO{sub 2} product are spatially and temporally invariant. This allows 100% utilization of the carbon fuel in single pass (cf. hydrogen utilizations of 75-85%). The carbodmelt slurry is non-explosive at operating temperatures. The total energy efficiency for the C/O{sub 2} is roughly 80% for cell operation at practical rates. In summary, what gives this route its fundamental advantage in energy conversion is that it derives the greatest possible fraction of energy of the fossil resource from an electrochemical reaction (C+O{sub 2} = CO{sub 2}) that is comparatively simple to operate at efficiencies of 80%, in a single-pass cell configuration without bottoming turbine cycles.

Cooper, J F; Cherepy, N; Upadhye, R; Pasternak, A; Steinberg, M

2000-12-12T23:59:59.000Z

96

A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)  

SciTech Connect

Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

Neises, T.; Turchi, C.

2013-09-01T23:59:59.000Z

97

Future Carbon Regulations and Current Investments in Alternative Coal-Fired Power Plant Designs  

E-Print Network (OSTI)

This paper assesses the role of uncertainty over future U.S. carbon regulations in shaping the current choice of which type of power plant to build. The pulverized coal technology (PC) still offer the lowest cost power ...

Sekar, Ram C.

98

ClimateCarbon Cycle Model Response to Freshwater Discharge into the North Atlantic  

Science Conference Proceedings (OSTI)

The response of a coupled climatecarbon cycle model to discharge of freshwater into the North Atlantic is investigated with regard to cold reversals caused by meltwater from northern continental ice sheets such as the Younger Dryas during the ...

Atsushi Obata

2007-12-01T23:59:59.000Z

99

Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks  

Science Conference Proceedings (OSTI)

In the context of Coupled Model Intercomparison Project phase 5, most climate simulations use prescribed atmospheric CO2 concentration and therefore do not interactively include the effect of carbon cycle feedbacks. However, the RCP8.5 scenario ...

Pierre Friedlingstein; Malte Meinshausen; Vivek K. Arora; Chris D. Jones; Alessandro Anav; Spencer K. Liddicoat; Reto Knutti

100

The Carbon Cycle as the Main Determinant of Glacial-Interglacial Periods  

E-Print Network (OSTI)

An intriguing problem in climate science is the existence of Earth's glacial cycle. We show that it is possible to generate these periodic changes in climate by means of the Earth's carbon cycle as the main source factor. The carbon exchange between the Ocean, the Continent and the Atmosphere is modeled by means of a Lotka-Volterra three species system and the resulting atmospheric carbon cycle is used as the unique radiative forcing mechanism. It is shown that the carbon dioxide and temperature paths that are thus obtained have the same qualitative structure as the 100 kyr glacial-interglacial cycles depicted by the Vostok ice core data, reproducing the asymmetries of rapid heating--slow cooling, and short interglacial--long glacial ages.

de la Cuesta, Diego Jimnez; Nez, Daro; Rumbos, Beatriz; Vergara-Cervantes, Carlos

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An assessment of future energy use and carbon emissions from US residences  

SciTech Connect

This paper explores residential energy futures and their associated carbon emissions using an engineering-economic end-use model. The authors present detailed input assumptions and output results for twenty-four cases, each representing a different combination of electricity supply mix, demand-side policy case, and carbon tax. They describe current and projected future energy use by end-use and fuel, and assess which end-uses are growing most rapidly in importance over time.

Koomey, J.G.; Johnson, F.X.; McMahon, J.E.; Orland, M.C.; Levine, M.D.; Chan, P.; Krause, F.

1993-12-01T23:59:59.000Z

102

Chemical sensing and imaging in microfluidic pore network structures relevant to natural carbon cycling and industrial carbon sequestration  

SciTech Connect

Energy and climate change represent significant factors in global security. Atmospheric carbon dioxide levels, while global in scope, are influenced by pore-scale phenomena in the subsurface. We are developing tools to visualize and investigate processes in pore network microfluidic structures with transparent covers as representations of normally-opaque porous media. In situ fluorescent oxygen sensing methods and fluorescent cellulosic materials are being used to investigate processes related to terrestrial carbon cycling involving cellulytic respiring microorganisms. These structures also enable visualization of water displacement from pore spaces by hydrophobic fluids, including carbon dioxide, in studies related to carbon sequestration.

Grate, Jay W.; Zhang, Changyong; Wilkins, Michael J.; Warner, Marvin G.; Anheier, Norman C.; Suter, Jonathan D.; Kelly, Ryan T.; Oostrom, Martinus

2013-06-11T23:59:59.000Z

103

Carbonate Thermochemical Cycle for the Production of Hydrogen  

The present invention could largely displace carbon-based fuels (e.g. gasoline) within the world economy. Inventor FORSBERG, CHARLES Nuclear Science & Technology Division

104

Carbon nanotube, graphene and atomic wires as next generation interconnects: current status and future promise  

Science Conference Proceedings (OSTI)

Carbon based metal wires such as carbon nanotube (CNT) and graphene nano ribbon (GNR) attracted much attention for possible applications as future interconnects. In particular, both CNTs and GNRs have long electron mean free path (~ ), high carrier ... Keywords: design, performance, quantum simulation, reliability

Saroj K. Nayak

2009-07-01T23:59:59.000Z

105

Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties  

DOE R&D Accomplishments (OSTI)

The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

1987-12-00T23:59:59.000Z

106

Carbonate thermochemical cycle for the production of hydrogen  

DOE Patents (OSTI)

The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

Collins, Jack L (Knoxville, TN); Dole, Leslie R (Knoxville, TN); Ferrada, Juan J (Knoxville, TN); Forsberg, Charles W (Oak Ridge, TN); Haire, Marvin J (Oak Ridge, TN); Hunt, Rodney D (Oak Ridge, TN); Lewis Jr., Benjamin E (Knoxville, TN); Wymer, Raymond G (Oak Ridge, TN)

2010-02-23T23:59:59.000Z

107

Ewing Symposium in Honor of Taro Takahashi: The controversial aspects of the contemporary [carbon] cycle  

Science Conference Proceedings (OSTI)

This Ewing Symposium in honor of Taro Takahashi's work on the carbon cycle was held at Lamont-Doherty Earth Observatory, Palisades, New York, on October 26-27, 2000. A program and set of abstracts are appended to this report. A summary of the meeting (included in this report) will be published in Global Biogeochemical Cycles. The theme of the symposium was the magnitude and cause of excess carbon storage on the north temperate continents. Disagreement exists on the relative roles of forest regrowth and fertilization by excess fixed nitrogen and carbon dioxide, as well as the distribution of this storage. Phenomena playing important roles include pre-anthropogenic gradients in carbon dioxide, the so-called rectification effect, uptake and release of carbon dioxide by the ocean, soil nitrogen dynamics, atmospheric carbon-13 gradients, and the role of fire.

Broecker, Wallace Smith

2001-12-31T23:59:59.000Z

108

and Implications for the Global Carbon Cycle Executive Summary  

E-Print Network (OSTI)

North America is currently a net source of carbon dioxide to the atmosphere, contributing to the global buildup of greenhouse gases in the atmosphere and associated changes in the earths climate. In 2003, North America emitted nearly two billion metric tons of carbon to the atmosphere as carbon dioxide. North Americas fossil fuel emissions in 2003 (1856 million metric tons of carbon 10 % with 95 % certainty) were 27 % of global emissions. Approximately 85 % of those emissions were from the United States, 9 % from Canada and 6 % from Mexico. The conversion of fossil fuels to energy (primarily electricity) is the single largest contributor, accounting for approximately 42 % of North American fossil emissions in 2003. Transportation is the second largest, accounting for 31 % of total emissions. There are also globally important carbon sinks in North America. In 2003, growing vegetation in North America removed approximately 530 million tons of carbon per year ( 50%) from the atmosphere and stored it as plant material and soil organic matter. This land sink is equivalent to approximately 30 % of the fossil fuel emissions from North America. The imbalance between the fossil fuel source and the sink on land is a net release to the atmosphere of 1335 million metric tons of carbon per year ( 25%). Approximately 50 % of North Americas terrestrial sink is due to the regrowth of forests in the United

Lisa Dilling (co-lead; David M. Fairman; Richard A. Houghton; Gregg H. Marl; Adam Z. Rose; Thomas J. Wilbanks

2007-01-01T23:59:59.000Z

109

The future of carbon capture and storage in Europe www.sccs.org.uk s.haszeldine@ed.ac.uk p 1 The future of carbon capture and storage in Europe  

E-Print Network (OSTI)

The future of carbon capture and storage in Europe www.sccs.org.uk s.haszeldine@ed.ac.uk p 1 The future of carbon capture and storage in Europe Response to COM (2013) 180 final Professor Stuart Haszeldine Dr Vivian Scott Mr Chris Littlecott 1 July 2013 SCCS (Scottish carbon capture

Haszeldine, Stuart

110

ARM - PI Product - ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsARM-LBNL-NOAA Flask Sampler for Carbon Cycle ProductsARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases Site(s) SGP General Description Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2

111

Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications  

Science Conference Proceedings (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550C and 750C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550C versus 850C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550C and 750C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

Edwin A. Harvego; Michael G. McKellar

2011-05-01T23:59:59.000Z

112

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

113

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network (OSTI)

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS). (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

114

Cadmium-cadmium carbonate cycle for the thermochemical production of hydrogen  

DOE Green Energy (OSTI)

A means of thermally decomposing water using cadmium, cadmium oxide and cadmium carbonate is described. Experimental emphasis is placed on the hydrogen producing step which consists of reacting cadmium with water and carbon dioxide to produce cadmium carbonate and hydrogen. The cycle is completed by decomposing the carbonate, first to the oxide, and then to the metal. Laboratory studies show that hydrogen is evolved slowly in relatively high yields (57 to 65%), but, when produced in the presence of ammonium chloride, both the yield and rate are increased (72% in 0.5 hr). The figure of merit of the cycle is 78% with a probability of some decrease resultant from the ammonium chloride reaction.

Mason, C.F.V.; Bowman, M.G.

1980-01-01T23:59:59.000Z

115

ARM Carbon Cycle Gases Flasks at SGP Site  

DOE Data Explorer (OSTI)

Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.

Sebastien Biraud

116

The CharXive Challenge. Regulation of global carbon cycles by vegetation fires  

E-Print Network (OSTI)

It is an open, but not unanswerable, question as to how much atmospheric CO2 is sequestered globally by vegetation fires. In this work I conceptualise the question in terms of the general CharXive Challenge, discuss a mechanism by which thermoconversion of biomass may regulate the global distribution of carbon between reservoirs, show how suppression of vegetation fires by human activities may increase the fraction of carbon in the atmospheric pool, and pose three specific CharXive Challenges of crucial strategic significance to our management of global carbon cycles.

Ball, R

2010-01-01T23:59:59.000Z

117

DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES  

SciTech Connect

A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

Ashish Gupta

2002-06-01T23:59:59.000Z

118

FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

FutureGen FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production Office of Fossil Energy U. S. Department of Energy Washington, DC June 2, 2003 Lowell Miller, Director, Office of Coal & Power Systems 24-Jun-03 Slide 2 Office of Fossil Energy Presentation Agenda * FE Hydrogen Program * FutureGen * Carbon Sequestration Leadership Forum (CSLF) 24-Jun-03 Slide 3 Office of Fossil Energy Key Drivers * Decreasing domestic supply will lead to increased imports from less stable regions * Conventional petroleum is finite; production will peak and irreversibly decline due to continually increasing demand * Improving environmental quality - Meeting air emission regulations - Greenhouse gas emissions 0 2 4 6 8 10 12 14 16 18 20 1970 1975 1980 1985 1990 1995 2000 2005

119

Potential multiple steady-states in the long-term carbon cycle  

E-Print Network (OSTI)

Modelers of the long term carbon cycle in Earth history have previously assumed there is only one stable climatic steady state. Here we investigate the possibility of multiple steady states. We find them in Abiotic World, lacking any biotic influence, resulting from possible variations in planetary albedo in different temperature, atmospheric carbon dioxide level regimes, with the same weathering forcing balancing a volcanic source to the atmosphere, ocean pool. In Plant World modeling relevant to the Phanerozoic, we include the additional effects of biotic enhancement of weathering on land, organic carbon burial, oxidation of reduced organic carbon in terrestrial sediments and the variation of biotic productivity with temperature, finding a second stable steady state appearing between twenty and fifty degrees C. The very warm early Triassic climate may be the prime candidate for an upper temperature steady state. Given our results, the anthropogenic driven rise of atmospheric carbon dioxide could potentially...

Tennenbaum, Stephen; Schwartzman, David

2013-01-01T23:59:59.000Z

120

System dynamics modelling of product carbon footprint life cycles for collaborative green supply chains  

Science Conference Proceedings (OSTI)

Governments, environmental groups and industry associations are reducing greenhouse gas emissions to insure environmental sustainability. Manufacturing plays an important role in economic development but is a main cause of global warming since production ... Keywords: economic inputoutput life cycle assessment, mass customisation, product carbon footprint, system dynamics

AmyJ. C. Trappey; CharlesV. Trappey; Chih-Tung Hsiao; JerryJ. R. Ou; Chin-Tsung Chang

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications  

Science Conference Proceedings (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.

Edwin A. Harvego; Michael G. McKellar

2011-11-01T23:59:59.000Z

122

The effectiveness of forest carbon sequestration strategies with system-wide adjustments, Resources for the Future  

E-Print Network (OSTI)

This paper addresses the effectiveness of tree planting and forest conservation strategies to increase the sink of carbon in global forests. Because forests are expected to sequester additional carbon without explicit human intervention, a baseline case is presented. The baseline predicts that forests will sequester an additional 17.9 Pg (10 15 grams) of carbon over the next 150 years, with nearly 95 % of this accruing to storage in marketed forest products. The paper then compares strategies which assume markets adjust to changes in future timber supply to an optimistic regional planner case in which no market adjustment occurs. The resulting predictions show that system wide market interactions may lead to substantial leakage of carbon from the forest system.

Brent Sohngen; Robert Mendelsohn; Roger Sedjo

1998-01-01T23:59:59.000Z

123

Moving to a low-carbon future: Perspectives on nuclear and alternative power sources  

Science Conference Proceedings (OSTI)

This paper summarizes key findings from climate science to make the case that the United States (and ultimately the world) will need to dramatically reduce carbon dioxide emissions from the energy system over the next few decades. While transportation energy is an important consideration, the focus of this paper is on electric power. Today, the United States generates just over half of its electric power from coal. The average size-weighted age of the fleet of U.S. coal plants is 35 y, and many will have to be replaced in the next few years. If that capacity were to be replaced with new conventional coal plants, it would commit the nation (and the world) to many more decades of high carbon-dioxide emissions, or it would make the cost of meeting a future carbon-dioxide emission constraint much higher than it needs to be. A range of low- and no-carbon energy technologies offers great potential to create a portfolio of options that can dramatically reduce emissions. A few of the advantages and disadvantages of these technologies are discussed. Policy and regulatory advances that will be needed to move the energy system to a low-carbon future are identified.

Morgan, M.G. [Carnegie Mellon University, Pittsburgh, PA (United States)

2007-11-15T23:59:59.000Z

124

Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing  

E-Print Network (OSTI)

Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which

Chang H. Oh; Thomas Lillo; William Windes; Terry Totemeier; Bradley Ward; Richard Moore; Robert Barner; Chang H. Oh; Thomas Lillo; William Windes; Terry Totemeier; Bradley Ward; Richard Moore; Robert Barner

2002-01-01T23:59:59.000Z

125

Numerical evaluation of mechanisms driving Early Jurassic changes in global carbon cycling  

Science Conference Proceedings (OSTI)

The Early Jurassic (early Toarcian, ca. 183 Ma) carbon cycle perturbation is characterized by aabout -5 parts per thousand {delta} {sup 13}C excursion in the exogenic carbon reservoirs, a 1000 ppm rise in atmospheric CO{sub 2}, and a 6-7 degrees warming. Two proposed explanations for this presumed global carbon cycle perturbation are the liberation of massive amounts of isotopically light CH4 from (1) Gondwanan coals by heating during the intrusive eruption of the Karoo-Ferrar large igneous province (LIP) or (2) the thermal dissociation of gas hydrates. Carbon cycle modeling indicates that the release of CH4 from Gondwanan coals synchronous with the eruption of the Karoo-Ferrar LIP fails to reproduce the magnitude or timing of the CO{sub 2} and {delta} {sup 13}C excursions. However, sensitivity analyses constrained by a marine cyclostratigraphically dated {delta}{sup 13}C record indicate that both features of geologic record can be explained with the huge input of about 15,340-24,750 Gt C over about 220 k.y., a result possibly pointing to the involvement of hydrothermal vent complexes in the Karoo Basin. The simulated release of > 6000 Gt C from gas hydrates also reproduces aspects of the early Toarcian rock record, but the large mass involved raises fundamental questions about its formation, storage, and release.

Beerling, D.J.; Brentnall, S.J. [University of Sheffield, Sheffield (United Kingdom)

2007-03-15T23:59:59.000Z

126

China and a Sustainable Future: Towards a Low Carbon Economy and Society |  

Open Energy Info (EERE)

China and a Sustainable Future: Towards a Low Carbon Economy and Society China and a Sustainable Future: Towards a Low Carbon Economy and Society Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China and a Sustainable Future: Towards a Low Carbon Economy and Society Agency/Company /Organization: United Nations Development Programme Sector: Energy, Land Focus Area: Energy Efficiency, Renewable Energy Website: content.undp.org/go/cms-service/stream/asset/?asset_id=2471266 Country: China Eastern Asia Coordinates: 35.86166°, 104.195397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.86166,"lon":104.195397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Analysis of Carbon Dioxide Capture Retrofit Options: Duke Edwardsport Integrated-Gasification Combined-Cycle Plant  

Science Conference Proceedings (OSTI)

This report summarizes the results of a project supported by Duke Energy using tailored collaboration funds to study the potential impact to plant performance of retrofitted carbon dioxide (CO2) capture on the Duke Edwardsport integrated-gasificationcombined-cycle (IGCC) plant. The Duke Edwardsport IGCC plant is under construction and scheduled to begin operation in September 2012. Details on the project have been published in a 2010 Electric Power Research Institute (EPRI) report, Duke Edwardsport Gener...

2011-09-27T23:59:59.000Z

128

Tampa Electric Company Polk Integrated Gasification Combined Cycle Plant Carbon Capture Retrofit Study  

Science Conference Proceedings (OSTI)

In support of the Industry Technology Demonstration Program on Integrated Gasification Combined Cycle (IGCC) with carbon capture and storage (CCS), an engineering study was conducted to evaluate the cost and performance impacts of various CCS schemes at the Tampa Electric Polk Power Station. The portion of the work presented here was funded by the Electric Power Research Institute (EPRI) IGCC with CCS demonstration program collaborative and focuses on novel CO2 capture and purification systems integrated...

2010-03-30T23:59:59.000Z

129

Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.  

Science Conference Proceedings (OSTI)

A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

Moore, Robert Charles; Conboy, Thomas M.

2012-02-01T23:59:59.000Z

130

Global warming and the future of coal carbon capture and storage  

SciTech Connect

The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

Ken Berlin; Robert M. Sussman [Skadden Arps, Slate, Meagher and Flom (United States)

2007-05-15T23:59:59.000Z

131

Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop  

Science Conference Proceedings (OSTI)

One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

2008-12-01T23:59:59.000Z

132

The Carbon Footprint of Bioenergy Sorghum Production in Central Texas: Production Implications on Greenhouse Gas Emissions, Carbon Cycling, and Life Cycle Analysis  

E-Print Network (OSTI)

Enhanced interest in biofuel production has renewed interest in bioenergy crop production within the United States. Agricultures role in biofuel production is critical because it has the potential to supply renewable energy while minimizing greenhouse gas (GHG) emissions. However, agronomic management practices influence direct and indirect GHG emissions, and both can have a significant impact on biofuel production efficiency. Our overall objective was to determine the carbon (C) footprint of bioenergy sorghum (Sorghum bicolor L.) production in central Texas. Specifically, we determined the impacts of crop rotation, nitrogen (N) fertilization, and residue return on direct and indirect GHG emissions, theoretical biofuel yield, C pools, and life cycle GHG emissions from bioenergy sorghum production in 2010 and 2011. An experiment established in 2008 near College Station, TX to quantify the impacts of crop management practices on bioenergy sorghum yield and soil properties was utilized, and included two crop rotations (sorghum-sorghum or corn-sorghum), two fertilization levels (0 or 280 kg N ha^(-1) annually), and two residue return rates (0 or 50% biomass residue returned) to assess management impacts on sorghum production, C cycling, and life cycle GHGs. Corn production was poor under moderate drought conditions, while bioenergy sorghum produced relatively large yields under both moderate and severe drought conditions. Nitrogen addition increased crop yields, and rotated sorghum had higher yield than monoculture sorghum. Fluxes of CO_(2) and N_(2)O were higher than those reported in literature and highest soil fluxes were frequently observed following precipitation events during the growing season. Residue return increased cumulative CO_(2) emissions and N fertilization increased N_(2)O emissions. Residue return also increased soil microbial biomass-C, an important indicator of soil quality. Continuous sorghum significantly increased soil organic C (SOC) concentrations near the soil surface and at two depths below 30 cm. Analysis of change in SOC across time to estimate net CO_(2) emissions to the atmosphere revealed bioenergy sorghum production accrued high amounts of SOC annually. Most treatments accrued more than 4 Mg C ha^(-1) yr^(-1) from 2008 to 2012, which indicated great potential for C sequestration and offsetting GHG emissions. Life cycle GHG emissions (as g CO_(2)-eq MJ^(-1)) were all negative due to high SOC increases each year and indicated all bioenergy sorghum production treatments sequestered atmospheric CO_(2) per unit of theoretical energy provided. Despite its relatively low production efficiency, rotated sorghum with N addition and residue return was selected as the ideal bioenergy sorghum production scenario due to a number of sustainability factors. Bioenergy sorghum may offer great benefit as a high-yielding biofuel feedstock with minimal impacts to net GHG emissions.

Storlien, Joseph Orgean

2013-08-01T23:59:59.000Z

133

Factors influencing anthropogenic carbon dioxide uptake in the North Atlantic in models of the ocean carbon cycle  

SciTech Connect

The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO{sub 2} uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO{sub 2} uptake as the ocean absorbs increasing amounts of CO{sub 2}. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO{sub 2} in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO{sub 2} forcing scenario. Neglecting physical climate change effects, North Atlantic CO{sub 2} uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO{sub 2} in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO{sub 2} compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO{sub 2} uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO{sub 2} uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation of atmospheric CO{sub 2}. In the climate change experiment, a shallowing of the mixed layer depths in the North Atlantic results in a significant reduction in primary production, reducing the potential role for biology in drawing down anthropogenic CO{sub 2}.

Smith, R.S.; Marotzke, J. [Max Planck Institute for Meteorology, Hamburg (Germany)

2008-09-30T23:59:59.000Z

134

Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.  

Science Conference Proceedings (OSTI)

Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5%/minute. It was determined that utilization of turbine throttling control below 50% load improves the cycle efficiency significantly. Consequently, the cycle control strategy has been updated to include turbine throttle valve control. The new control strategy still relies on inventory control in the 50%-90% load range and turbine bypass for fine and fast generator output adjustments, but it now also includes turbine throttling control in the 0%-50% load range. In an attempt to investigate the feasibility of using the S-CO{sub 2} cycle for normal decay heat removal from the reactor, the cycle control study was extended beyond the investigation of normal load following. It was shown that such operation is possible with the extension of the inventory and the turbine throttling controls. However, the cycle operation in this range is calculated to be so inefficient that energy would need to be supplied from the electrical grid assuming that the generator could be capable of being operated in a motoring mode with an input electrical energy from the grid having a magnitude of about 20% of the nominal plant output electrical power level in order to maintain circulation of the CO{sub 2} in the cycle. The work on investigation of cycle operation at low power level will be continued in the future. In addition to the cycle control study, the coupled PDC-SAS4A/SASSYS-1 code system was also used to simulate thermal transients in the sodium-to-CO{sub 2} heat exchanger. Several possible conditions with the potential to introduce significant changes to the heat exchanger temperatures were identified and simulated. The conditions range from reactor scram and primary sodium pump failure or intermediate sodium pump failure on the reactor side to pipe breaks and valve malfunctions on the S-CO{sub 2} side. It was found that the maximum possible rate of the heat exchanger wall temperature change for the particular heat exchanger design assumed is limited to {+-}7 C/s for less than 10 seconds. Modeling in the Plant Dynamics Code has been compared with available data from the Sandia Natio

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2011-11-07T23:59:59.000Z

135

Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation  

DOE Green Energy (OSTI)

The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

2006-10-17T23:59:59.000Z

136

BuildingPI: A future tool for building life cycle analysis  

SciTech Connect

Traditionally building simulation models are used at the design phase of a building project. These models are used to optimize various design alternatives, reduce energy consumption and cost. Building performance assessment for the operational phase of a buildings life cycle is sporadic, typically working from historical metered data and focusing on bulk energy assessment. Building Management Systems (BMS) do not explicitly incorporate feedback to the design phase or account for any changes, which have been made to building layout or fabric during construction. This paper discusses a proposal to develop an Industry Foundation Classes (IFC) compliant data visualization tool Building Performance Indicator (BuildingPI) for performance metric and performance effectiveness ratio evaluation.

O' Donnell, James; Morrissey, Elmer; Keane, Marcus; Bazjanac,Vladimir

2004-03-29T23:59:59.000Z

137

Simulating past and future dynamics of natural ecosystems in the United States. Global Biogeochemical Cycles 17(2)1045  

E-Print Network (OSTI)

[1] Simulations of potential vegetation distribution, natural fire frequency, carbon pools, and fluxes are presented for two DGVMs (Dynamic Global Vegetation Models) from the second phase of the Vegetation/Ecosystem Modeling and Analysis Project. Results link vegetation dynamics to biogeochemical cycling for the conterminous United States. Two climate change scenarios were used: a moderately warm scenario from the Hadley Climate Centre and a warmer scenario from the Canadian Climate Center. Both include sulfate aerosols and assume a gradual CO2 increase. Both DGVMs simulate a reduction of southwestern desert areas, a westward expansion of eastern deciduous forests, and the expansion of forests in the western part of the Pacific Northwest and in north-central California. Both DGVMs predict an increase in total biomass burnt in the next century, with a more pronounced increase under the Canadian scenario. Under the Hadley scenario, both DGVMs simulate increases in total carbon stocks. Under the Canadian scenario, both DGVMs simulate a decrease in live vegetation carbon. We identify similarities in model behavior due to the climate forcing and explain differences by the different structure of the models and their different sensitivity to

Dominique Bachelet; Ronald P. Neilson; Thomas Hickler; Raymond J. Drapek; James M. Lenihan; Martin T. Sykes; Benjamin Smith; Stephen Sitch; Kirsten Thonicke

2003-01-01T23:59:59.000Z

138

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

energy use. Chinas Sustainable Energy Future Summary next31 -ii- Chinas Sustainable Energy Future Executive Summarystudy, entitled Chinas Sustainable Energy Future: Scenarios

2004-01-01T23:59:59.000Z

139

Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?  

E-Print Network (OSTI)

Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions "drivers": population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c. The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty. Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production - or p times g - through a time-independent factor of 9.7 +/- 0.3 milliwatts per inflation-adjuste...

Garrett, Timothy J

2008-01-01T23:59:59.000Z

140

Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle  

E-Print Network (OSTI)

A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and ...

Sokolov, Andrei P.

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Water-Use Efficiency of the Terrestrial Biosphere: A Model Analysis Focusing on Interactions between the Global Carbon and Water Cycles  

Science Conference Proceedings (OSTI)

Carbon and water cycles are intimately coupled in terrestrial ecosystems, and water-use efficiency (WUE; carbon gain at the expense of unit water loss) is one of the key parameters of ecohydrology and ecosystem management. In this study, the ...

Akihiko Ito; Motoko Inatomi

2012-04-01T23:59:59.000Z

142

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

143

Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System, Euro-Par 2005  

E-Print Network (OSTI)

Abstract. Grid-BGC is a Grid-enabled terrestrial biogeochemical cycle simulator collaboratively developed by the National Center for Atmospheric Research (NCAR) and the University of Colorado (CU) with funding from NASA. The primary objective of the project is to utilize Globus Grid technology to integrate inexpensive commodity cluster computational resources at CU with the mass storage system at NCAR while hiding the logistics of data transfer and job submission from the scientists. We describe a typical process for simulating the terrestrial carbon cycle, present our solution architecture and software design, and describe our implementation experiences with Grid technology on our systems. By design the Grid-BGC software framework is extensible in that it can utilize other grid-accessible computational resources and can be readily applied to other climate simulation problems which have similar workflows. Overall, this project demonstrates an end-to-end system which leverages Grid technologies to harness distributed resources across organizational boundaries to achieve a cost-effective solution to a computeintensive problem. 1

Jason Cope; Craig Hartsough; Peter Thornton; Henry M. Tufo; Nathan Wilhelmi; Matthew Woitaszek

2005-01-01T23:59:59.000Z

144

Thermal cycling effect on the nanoparticle distribution and specific heat of a carbonate eutectic with alumina nanoparticles  

E-Print Network (OSTI)

The objective of this research was to measure the effect of thermal cycling on the nanoparticle distribution and specific heat of a nanocomposite material consisting of a eutectic of lithium carbonate and potassium carbonate and 1% by mass alumina nanoparticles. The material was subjected to thermal cycling in a stainless steel tube using a temperature controlled furnace. After thermal cycling, the stainless steel tube was sectioned into three equal parts top, middle and bottom. Composite material samples were taken from the central region and near the wall region of each section. The specific heat of this material in the temperature range of 290C-397C was measured using the Modulated Differential Scanning Calorimeter (MDSC) method. The concentration of alumina nanoparticles in this material was measured using neutron activation analysis. The average specific heat of the uncycled material was found to be 1.37 J/gC.The average specific heat of the thermally cycled material was between 1.7-2.1 J/gC. It was found that the concentration of the nanoparticle varied along the height of the sample tube. The nanoparticles tended to settle towards the bottom of the tube with thermal cycling. There was also migration of nanoparticles towards the wall of the sample tube with thermal cycling. Despite these gross movements of nanoparticles, there was no significant change in the specific heat of the nanocomposite due to thermal cycling.

Shankar, Sandhya

2011-05-01T23:59:59.000Z

145

A Distinctive Energy Policy for Scotland? The Impact of Low Carbon Generation on the Future Price of  

E-Print Network (OSTI)

A Distinctive Energy Policy for Scotland? The Impact of Low Carbon Generation on the Future Price Distinctive Energy Policy for Scotland?' explores the emergence of a distinctive energy policy for Scotland and raises the issue of the desirability of any differentiation from UK energy policy. Although

Mottram, Nigel

146

EVALUATING THE LAND AND OCEAN COMPONENTS OF THE GLOBAL CARBON CYCLE IN THE CMIP5 EARTH SYSTEM MODELS  

Science Conference Proceedings (OSTI)

We assess the ability of 18 Earth System Models to simulate the land and ocean carbon cycle for the present climate. These models will be used in the next Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) for climate ...

A. Anav; P. Friedlingstein; M. Kidston; L. Bopp; P. Ciais; P. Cox; C. Jones; M. Jung; R. Myneni; Z. Zhu

147

Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models  

Science Conference Proceedings (OSTI)

The authors assess the ability of 18 Earth system models to simulate the land and ocean carbon cycle for the present climate. These models will be used in the next Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) for ...

A. Anav; P. Friedlingstein; M. Kidston; L. Bopp; P. Ciais; P. Cox; C. Jones; M. Jung; R. Myneni; Z. Zhu

2013-09-01T23:59:59.000Z

148

Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies  

Science Conference Proceedings (OSTI)

This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

2012-06-01T23:59:59.000Z

149

The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems  

SciTech Connect

Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

1994-06-01T23:59:59.000Z

150

Organic Carbon Cycling in East China Sea Shelf Sediments: Linkages with Hypoxia  

E-Print Network (OSTI)

The Changjiang River provides the main source of sediment and terrestrial derived organic carbon (OC) to the Changjiang large delta-front estuary (LDE) in the East China Sea (ECS). This study analyzed bulk OC, biomarkers including lignin and plant pigment, black carbon (BC) on ECS sediments sampled in winter 2009 and 2010 in order to study the OC cycling under the influence of natural and anthropogenic disturbance. Low-oxygen tolerant foraminiferal microfossils were analyzed in another two sediment cores to study the historical hypoxia events in the Changjiang LDE. Bulk carbon to nitrogen (C/N) ratio and stable isotope ?13C in the surface sediment samples indicated a mixture source of terrestrial, deltaic and marine derived OC. Refractory BC and reworked marine OC seemed to comprise most of the OC pool with older, less reactive signatures as deduced from ?14C, and BC analyses. Winter wind/wave energy and hydrodynamic sorting had a substantial winnowing effect on surface sediment OC redistribution. As a result, the highest lignin concentration shifted to the south during the 2010 cruise after the summer flood event. In addition, algal inputs from local deltaic lakes due to eutrophication and/or lateral transport likely caused the observed lack of benthic-pelagic coupling of pigment concentrations between the surface sediments and the water column after the summer flood in 2010. For the down-core sediment, the mass accumulation rate distribution followed the dispersal pathway of the ECS sediment. Terrestrial and marine derived OC showed significant spatial and temporal distribution. Lignin rich materials were better preserved in sediments closer to the coast while offshore sediments tended to be composed of lignin-poor, degraded OC, that were likely hydrodynamically sorted to a long distance during transport. Besides eutrophication, plant pigments indicated that marine-derived OC was mostly deposited in the sediment mixed layer with decay in the underlying sediment accumulation layer. The total OC standing stock since 1900 is approximately 1.621.15 kgC m^-2, about 1/10 of the total OC stock in all the middle and lower lakes in the Changjiang catchment. There has been an increase in the number of hypoxic bottom water events on the Changjiang LDE over the past 60 yrs indicated from the increases in low-oxygen tolerant foraminiferal microfossils due to excess deposition of OC and summer stratification.

Li, Xinxin

2013-05-01T23:59:59.000Z

151

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network (OSTI)

chains and emission factors for the generation, transmission and distribution portions of the electricityAn Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements

152

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

in total energy use. Chinas Sustainable Energy Future31 -ii- Chinas Sustainable Energy Future Executive SummaryC HINA S E NERGY C HALLENGE China has ambitious goals for

2004-01-01T23:59:59.000Z

153

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Nuclear Power Gas-fired Hydro Power Coal-fired Ordinarynuclear power, non- Chinas Sustainable Energy Future hydro

2004-01-01T23:59:59.000Z

154

The Key to an Energy-Efficient and Low-Carbon Future  

Science Conference Proceedings (OSTI)

Symposium, Green Technologies for Materials Manufacturing and ... Abstract Scope, Our world faces significant and urgent challenges in meeting future energy...

155

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

availability of supplies of natural gas, Chinas Sustainable Energy Future including the West to East Gas Transmission

2004-01-01T23:59:59.000Z

156

A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle  

Science Conference Proceedings (OSTI)

The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

Stephen C. Piper

2005-10-15T23:59:59.000Z

157

Engineering and Economic Evaluations of Integrated-Gasification Combined-Cycle Plant Designs with Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

The objectives of this research were to assess the performance and costs of coal-fired integrated-gasificationcombined-cycle (IGCC) power plants. The base cases are Greenfield designs without carbon dioxide (CO2) capture; two additional cases were studied with retrofitted full CO2 capture. The study represents Phase 3 of a multiyear study executed on behalf of the CoalFleet for Tomorrow program, a collaborative research and development program that promotes the deployment of advanced coal technologies, i...

2011-09-29T23:59:59.000Z

158

Experiences from Simulating the Global Carbon Cycle in a Grid Computing Environment, The Fourteenth Global Grid Forum (GGF 14),Chicago  

E-Print Network (OSTI)

Abstract. We discuss our software development experiences with Grid-BGC, a gridenabled terrestrial carbon cycle modeling environment. Grid-BGC leverages grid computing technologies to create a secure, reliable and easy to use distributed computational environment for climate modeling. The goal is to develop a system which insulates the scientists from tedious configuration details thereby increasing scientific productivity. This project is part of a collaborative effort between the

Jason Cope; Craig Hartsough; Sean Mccreary; Peter Thornton; Henry M. Tufo; Nathan Wilhelmi; Matthew Woitaszek

2005-01-01T23:59:59.000Z

159

Studies of the terrestrial O{sub 2} and carbon cycles in sand dune gases and in biosphere 2  

Science Conference Proceedings (OSTI)

Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O{sub 2} composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO{sub 2}.

Severinghaus, J.P.

1995-12-31T23:59:59.000Z

160

Program on Technology Innovation: Tampa Electric Company Polk Integrated Gasification Combined Cycle Plant Carbon Capture Retrofit Study  

Science Conference Proceedings (OSTI)

In support of the Industry Technology Demonstration Program on Integrated Gasification Combined Cycle (IGCC) with carbon capture and storage (CCS), an engineering study was conducted to evaluate the cost and performance impacts of various CCS schemes at the Tampa Electric Polk Power Station. The portion of the work presented here was funded by the Electric Power Research Institute (EPRI) Technology Innovation Program and focuses on a comparison of chemical and physical solvent-based CO2 capture systems i...

2010-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Sustainability Green Growth Energy Demand Elasticity of GDPSustainability Green Growth Energy Demand GDP CarbonFigure 15. In Green Growth, building energy use more than

2004-01-01T23:59:59.000Z

162

Twentieth-Century Droughts and Their Impacts on Terrestrial Carbon Cycling in China  

Science Conference Proceedings (OSTI)

Midlatitude regions experienced frequent droughts during the twentieth century, but their impacts on terrestrial carbon balance are unclear. This paper presents a century-scale study of drought effects on the carbon balance of terrestrial ...

Jingfeng Xiao; Qianlai Zhuang; Eryuan Liang; Xuemei Shao; A. David McGuire; Aaron Moody; David W. Kicklighter; Jerry M. Melillo

2009-09-01T23:59:59.000Z

163

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

Science Conference Proceedings (OSTI)

The AVESTAR Center located at the U.S. Department of Energys National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a gasification with CO{sub 2} capture process simulator with a combined cycle power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTARs IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

164

Natural Variability in a Stable, 1000-Yr Global Coupled ClimateCarbon Cycle Simulation  

Science Conference Proceedings (OSTI)

A new 3D global coupled carbonclimate model is presented in the framework of the Community Climate System Model (CSM-1.4). The biogeochemical module includes explicit land watercarbon coupling, dynamic carbon allocation to leaf, root, and wood, ...

Scott C. Doney; Keith Lindsay; Inez Fung; Jasmin John

2006-07-01T23:59:59.000Z

165

Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon  

E-Print Network (OSTI)

Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

Flores Cervantes, Dborah Xanat, 1978-

2008-01-01T23:59:59.000Z

166

Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options  

SciTech Connect

In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

Fricke, Brian A [ORNL; Abdelaziz, Omar [ORNL; Vineyard, Edward Allan [ORNL

2013-01-01T23:59:59.000Z

167

Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth1  

E-Print Network (OSTI)

, and natural #12;6 gas. Coal gasification and liquid biomass are introduced as backstop technologies given above are estimates, a residual term also exists. While the customary approach when taking eq. (3 with carbon capture (NGCC) and coal integrated gasification with carbon capture (IGCC) as backstop

Wing, Ian Sue

168

Damage of Land Biosphere due to Intense Warming by 1000-Fold Rapid Increase in Atmospheric Methane: Estimation with a ClimateCarbon Cycle Model  

Science Conference Proceedings (OSTI)

Decadal-time-scale responses of climate and the global carbon cycle to warming associated with rapid increases in atmospheric methane from a massive methane release from marine sedimentary methane hydrates are investigated with a coupled climate...

Atsushi Obata; Kiyotaka Shibata

2012-12-01T23:59:59.000Z

169

Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint  

DOE Green Energy (OSTI)

The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

Ma, Z.; Turchi, C. S.

2011-03-01T23:59:59.000Z

170

Livscykelanalys fr koldioxidutslpp frn flerbostadshus; Life Cycle Analysis of Carbon Dioxide Emissions from Residential Buildings.  

E-Print Network (OSTI)

?? Today, about 15 to 20 percent of Swedens total emission of carbon dioxide can be traced to the household sector. By examining apartment blocks (more)

Palmborg, Sofia

2013-01-01T23:59:59.000Z

171

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

DOE Green Energy (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

172

Thermally-aware modeling and performance evaluation for single-walled carbon nanotube-based interconnects for future high performance integrated circuits  

Science Conference Proceedings (OSTI)

Given the performance and reliability limits of conventional copper interconnects in the tens of nanometer regime, carbon-nanotube (CNT) based interconnects emerge as a potential reliable alternative for future high performance VLSI industry. In this ... Keywords: Carbon nanotube bundles, High performance interconnect, Thermal modeling

Amir Hosseini; Vahid Shabro

2010-10-01T23:59:59.000Z

173

Argonne Terrestrial Carbon Cycle Data from Batvia Prairie and Agricultural Sites  

DOE Data Explorer (OSTI)

Carbon dioxide fluxes and stocks in terrestrial ecosystems are key measurements needed to constrain quantification of regional carbon sinks and sources and the mechanisms controlling them. This information is required to produce a sound carbon budget for North America. This project examines CO2 and energy fluxes from agricultural land and from restored tallgrass prairie to compare their carbon sequestration potentials. The study integrates eddy covariance measurements with biometric measurements of plant and soil carbon stocks for two systems in northeastern Illinois: 1) long-term cultivated land in corn-soybean rotation with conventional tillage, and 2) a 15 year-old restored prairie that represents a long-term application of CRP conversion of cultivated land to native vegetation. The study contributes to the North American Carbon Program (NACP) by providing information on the magnitude and distribution of carbon stocks and the processes that control carbon dynamics in cultivated and CRP-restored land in the Midwest. The prairie site has been functioning since October 2004 and the agricultural site since July 2005. (From http://www.atmos.anl.gov/ FERMI/index.html)

Matamala, Roser [ANL; Jastrow, Julie D.; Lesht, Barry [ANL; Cook, David [ANL; Pekour, Mikhail [ANL; Gonzalez-Meler, Miquel A. [University of Illinois at Chicago

174

Current and Future Carbon Budgets of Tropical Rain Forest: A Cross Scale Analysis. Final Report  

DOE Green Energy (OSTI)

The goal of this project was to make a first assessment of the major carbon stocks and fluxes and their climatic determinants in a lowland neotropical rain forest, the La Selva Biological Station, Costa Rica. Our research design was based on the concurrent use of several of the best available approaches, so that data could be cross-validated. A major focus of our effort was to combine meteorological studies of whole-forest carbon exchange (eddy flux), with parallel independent measurements of key components of the forest carbon budget. The eddy flux system operated from February 1998 to February 2001. To obtain field data that could be scaled up to the landscape level, we monitored carbon stocks, net primary productivity components including tree growth and mortality, litterfall, woody debris production, root biomass, and soil respiration in a series of replicated plots stratified across the major environmental gradients of the forest. A second major focus of this project was on the stocks and changes of carbon in the soil. We used isotope studies and intensive monitoring to investigate soil organic stocks and the climate-driven variation of soil respiration down the soil profile, in a set of six 4m deep soil shafts stratified across the landscape. We measured short term tree growth, climate responses of sap flow, and phenology in a suite of ten canopy trees to develop individual models of tree growth to daytime weather variables.

Oberbauer, S. F.

2004-01-16T23:59:59.000Z

175

Design and Validation of an Offline Oceanic Tracer Transport Model for a Carbon Cycle Study  

Science Conference Proceedings (OSTI)

An offline passive tracer transport model with self-operating diagnostic-mode vertical mixing and horizontal diffusion parameterizations is used with assimilated ocean currents to find the chlorofluorocarbon (CFC-11) cycle in oceans. This model ...

Vinu Valsala; Shamil Maksyutov; Ikeda Motoyoshi

2008-06-01T23:59:59.000Z

176

Grid-BGC: a grid-enabled terrestrial carbon cycle modeling system  

Science Conference Proceedings (OSTI)

Grid-BGC is a Grid-enabled terrestrial biogeochemical cycle simulator collaboratively developed by the National Center for Atmospheric Research (NCAR) and the University of Colorado (CU) with funding from NASA. The primary objective of the project is ...

Jason Cope; Craig Hartsough; Peter Thornton; Henry Tufo; Nathan Wilhelmi; Matthew Woitaszek

2005-08-01T23:59:59.000Z

177

A Super Critical Carbon Dioxide Cycle for Next Generation Nuclear Reactors  

E-Print Network (OSTI)

A systematic, detailed major component and system design evaluation and multiple-parameter optimization under practical constraints has been performed of the family of supercritical CO[subscript 2] Brayton power cycles for ...

Dostal, Vaclav

178

Commercial Activated Carbon for the Catalytic Production of Hydrogen via the Sulfur-Iodine Thermochemical Water Splitting Cycle  

DOE Green Energy (OSTI)

Eight activated carbon catalysts were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. No statistically significant correlation was found between catalyst sample properties and catalytic activity. Four of the eight samples were examined for one week of continuous operation at 723 K. All samples appeared to be stable over the period of examination.

Daniel M. Ginosar; Lucia M. Petkovic; Kyle C. Burch

2011-07-01T23:59:59.000Z

179

Joint hearing on carbon dioxide and the greenhouse effect. Testimony presented to Subcommittee on Natural Resources, Agriculture Research and Environment and Subcommittee on Investigations and Oversight of the Science and Technology Committee, US House of Representatives  

SciTech Connect

This testimony describes the DOE Carbon Cycle Research Program. Separate sections describe the technical objectives of the program, ongoing research activities, and future needs. (ACR)

Trabalka, J.R.

1984-01-01T23:59:59.000Z

180

Terrestrial carbon cycle - climate relations in eight CMIP5 earth system models  

Science Conference Proceedings (OSTI)

Eight Earth System Models from the Coupled Model Intercomparison Project (CMIP5) are evaluated, focusing on both the net carbon dioxide flux and its components, and their relation with climatic variables (temperature, precipitation and soil ...

Pu Shao; Xubin Zeng; Koichi Sakaguchi; Russell K. Monson; Xiaodong Zeng

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Review of Thorium Utilization as an option for Advanced Fuel Cycle--Potential Option for Brazil in the Future  

SciTech Connect

Since the beginning of Nuclear Energy Development, Thorium was considered as a potential fuel, mainly due to the potential to produce fissile uranium 233. Several Th/U fuel cycles, using thermal and fast reactors were proposed, such as the Radkwoski once through fuel cycle for PWR and VVER, the thorium fuel cycles for CANDU Reactors, the utilization in Molten Salt Reactors, the utilization of thorium in thermal (AHWR), and fast reactors (FBTR) in India, and more recently in innovative reactors, mainly Accelerator Driven System, in a double strata fuel cycle. All these concepts besides the increase in natural nuclear resources are justified by non proliferation issues (plutonium constrain) and the waste radiological toxicity reduction. The paper intended to summarize these developments, with an emphasis in the Th/U double strata fuel cycle using ADS. Brazil has one of the biggest natural reserves of thorium, estimated in 1.2 millions of tons of ThO{sub 2}, as will be reviewed in this paper, and therefore R&D programs would be of strategically national interest. In fact, in the past there was some projects to utilize Thorium in Reactors, as the ''Instinto/Toruna'' Project, in cooperation with France, to utilize Thorium in Pressurized Heavy Water Reactor, in the mid of sixties to mid of seventies, and the thorium utilization in PWR, in cooperation with German, from 1979-1988. The paper will review these initiatives in Brazil, and will propose to continue in Brazil activities related with Th/U fuel cycle.

Maiorino, J.R.; Carluccio, T.

2004-10-03T23:59:59.000Z

182

Experience from the Short Course on Introduction to Nuclear Chemistry and Fuel Cycle Separations and Future Educational Opportunities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Short Course - Short Course - Overview & Lessons Learned David Kosson, Vanderbilt & CRESP Introduction to Nuclear Chemistry and Fuel Cycle Separations December 16-18, 2008 Vanderbilt University Vanderbilt University Dept. of Civil and Environmental Engineering safety performance cleanup closure M E Environmental Management Environmental Management 1 Course Objective To provide an introduction to the chemistry and p y separations processes of importance to entire nuclear fuel cycle. Targeted Audience: * Professionals in management, oversight and regulation of nuclear processes and facilities. * Graduate students in engineering and sciences planning a career focused on nuclear processes. focused on nuclear processes. * As an introduction for professionals that will be engaged in nuclear

183

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

184

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

185

The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling  

Science Conference Proceedings (OSTI)

Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.

Nemergut, Diana R [Institute of Arctic and Alpine Research; Townsend, Alan R [Institute of Arctic and Alpine Research; Taylor, John [University of California, Berkeley; Sattin, Sarah R [Institute of Arctic and Alpine Research; Freeman, Kristen R [University of Colorado, Boulder; Fierer, Noah [Institute of Arctic and Alpine Research; Neff, Jason [University of Colorado, Boulder; Bowman, William D [University of Colorado, Boulder; Schadt, Christopher Warren [ORNL; Weintraub, Michael N [University of Toledo, Toledo, OH; Schmidt, Steven K. [University of Colorado

2008-01-01T23:59:59.000Z

186

The National Ignition Facility: The Path to a Carbon-Free Energy Future  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

Stolz, C J

2011-03-16T23:59:59.000Z

187

Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment  

Science Conference Proceedings (OSTI)

Increased partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free-Air CO2 enrichment in a Liquidambar styraciflua L. (sweetgum) plantation in Oak Ridge, TN, USA, greater inputs of fine roots resulted in the incorporation of new C (i.e., C with a depleted 13C) into root-derived particulate organic matter (POM) pools to 90-cm depth. Even though production in the sweetgum stand was limited by soil N availability, soil C and N content increased over time, and were greater throughout the soil profile under elevated [CO2] at the conclusion of the experiment. However, greater C inputs under elevated [CO2] did not result in increased net N immobilization or C mineralization rates in long-term laboratory incubations, and did not appear to prime the decomposition of older SOM. The 13CO2 of the C mineralized from the incubated soil closely tracked the 13C of the labile POM pool in the elevated [CO2] treatment, especially in shallower soil, and did not indicate the decomposition of older (i.e., pre-experiment) SOM. While potential C mineralization rates were positively and linearly related to total soil organic matter (SOM) C content in the top 30 cm of soil, this relationship did not hold in deeper soil. Taken together with an increased mean residence time of C in deeper soil pools, these findings indicate that C inputs from relatively deep roots under elevated [CO2] may have increased potential for long-term storage. Expanded representation of biogeochemical cycling throughout the soil profile may improve model projections of future forest responses to rising atmospheric [CO2].

Iversen, Colleen M [ORNL; Keller, Dr. Jason K. [Chapman University; Garten Jr, Charles T [ORNL; Norby, Richard J [ORNL

2012-01-01T23:59:59.000Z

188

KRW oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestration of unused CO{sub 2}. The intent is to provide the CO{sub 2} budget, or an equivalent CO{sub 2} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and low-pressure glycol sulfur removal followed by Claus/SCOT treatment to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO{sub 2} release rate of 0.801 kg/k Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H{sub 2}S recovery, followed by either low-pressure glycol or membrane CO{sub 2} recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H{sub 2}S recovery and a fuel cell as the topping cycle with no shift stages. From the IGCC plant, a 500-km pipeline took the CO{sub 2} to geological sequestering. In a comparison of air-blown and oxygen-blown CO{sub 2}-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, and the cost of oxygen-blown IGCC was 58.29 mills/kWh.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.

1996-08-01T23:59:59.000Z

189

EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California  

Energy.gov (U.S. Department of Energy (DOE))

Draft Environmental Impact Statement: Public Comment Period Extended Until 10/01/13This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC (HECA's) project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

190

Energy impacts of controlling carbon dioxide emissions from an integrated gasification/combined-cycle system  

SciTech Connect

This paper presents results from a study of the impacts associated with CO{sub 2} recovery in integrated gasification/combined-cycle (IGCC) systems which is being conducted for the Morgantown Energy Technology Center by Argonne National Laboratory. The objective of the study is to compare, on a consistent systems-oriented basis, the energy and economic impacts of adding CO{sub 2} capture and sequestration to an IGCC system. The research reported here has emphasized commercial technologies for capturing CO{sub 2}, but ongoing work is also addressing advanced technologies under development and alternate power-system configurations that may enhance system efficiency.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.

1994-08-01T23:59:59.000Z

191

Oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

This project emphasizes CO2-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems, CO2 transportation, and options for the long-term sequestration Of CO2. The intent is to quantify the CO2 budget, or an ``equivalent CO2`` budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, bituminous coal feed, and low-pressure glycol sulfur removal, followed by Claus/SCOT treatment, to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO2 release rate of 0.801 kg/kV-Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H2S recovery, followed by either low-pressure glycol or membrane CO2 recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H2S recovery and a fuel cell as the topping cycle, with no shift stages. From the IGCC plant, a 500-km pipeline takes the CO2 to geological sequestering. For the optimal CO2 recovery case, the net electric power production was reduced by 37.6 MW from the base case, with a CO2 release rate of 0.277 kg/kWhe (when makeup power was considered). In a comparison of air-blown and oxygen-blown CO2-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, while the cost for oxygen-blown IGCC was 58.29 mills/kWh. For the optimal cases employing glycol CO2 recovery, there was no clear advantage; the cost for air-blown IGCC was 95.48 mills/kWh, and the cost for the oxygen-blown IGCC was slightly lower, at 94.55 mills/kWh.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.

1996-12-31T23:59:59.000Z

192

Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

Science Conference Proceedings (OSTI)

Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

Wullschleger, Stan [ORNL

2012-03-22T23:59:59.000Z

193

Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2  

Science Conference Proceedings (OSTI)

The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

Stephen C. Piper; Ralph F. Keeling

2012-01-03T23:59:59.000Z

194

Analysis and optimization of the Graz cycle : a coal fired power generation scheme with near-zero carbon dioxide emissions  

E-Print Network (OSTI)

Humans are releasing record amounts of carbon dioxide into the atmosphere through the combustion of fossil fuels in power generation plants. With mounting evidence that this carbon dioxide is a leading cause of global ...

Alexander, Brentan R

2007-01-01T23:59:59.000Z

195

Linking ecosystem scale vegetation change to shifts in carbon and water cycling: the consequences of widespread pion mortality in the Southwest  

DOE Green Energy (OSTI)

The southwestern United States experienced an extended drought from 1999-2002 which led to widespread coniferous tree mortality. Pion-juniper (PJ) woodlands, which occupy 24 million ha throughout the Southwest, were extremely vulnerable to this drought. An abrupt die-off of 40 to 95% of pion pine (Pinus edulis) and 2-25% of juniper (Juniperus monosperma) across 1.5 million ha triggered rapid and extensive changes in the structure of PJ woodlands with potentially large, yet unknown, consequences for ecosystem services and feedbacks between the carbon cycle and climate system. Given the spatial extent of PJ woodlands (3rd largest biome in the US) and climatic predictions of increased frequency and intensity of drought in the region, it is crucial to understand the consequences of these disturbances on regional carbon and energy dynamics, biogeochemical processes and atmospheric CO2. The overall objective of our research was to quantify what impact widespread mortality of pion trees has for carbon and water cycling in PJ woodlands. Our specific objectives for this proposal were: 1) Quantify the carbon, water and energy exchange trajectory after mortality in PJ woodlands; 2) Determine the mechanisms controlling the response and recovery of ecosystem production and respiration processes following large-scale pion mortality; 3) Use the relationships we measure between ecosystem structure and function PJ woodlands recover from mortality to scale the results of our study up to the regional scale.

Litvak, Marcy Ellen [University of New Mexico

2012-10-01T23:59:59.000Z

196

Analysis of reservoir heterogeneities due to shallowing-upward cycles in carbonate rocks of the Pennsylvanian Wahoo Limestone of Northeastern Alaska. Annual report, October 1990--September 1991  

Science Conference Proceedings (OSTI)

The primary objective of this project is to develop an integrated database to characterize reservoir heterogeneities resulting from numerous small-scale shallowing-upward cycles (parasequences) comprising the carboniferous Pennsylvanian Wahoo Limestone. The Wahoo Limestone is the upper formation of an extensive carbonate platform sequence of the Carboniferous Lisburne Group which is widely exposed in the Brooks Range and is a widespread hydrocarbon reservoir unit in the subsurface of the North Slope of Alaska. A principal goal is to determine lateral and vertical variations in the complex mosaic of carbonate facies comprising the Wahoo Limestone. This report presents the preliminary results of research accomplished by a team of specialists in carbonate petrology, biostratigraphy, and diagenesis during the 1990--1991 fiscal year.It includes a summary of regional geological framework studies, a discussion conodont analyses, an overview of diagenetic studies, a brief description of progress in computerized database development, and appendices containing some of the new data on petrographic analyses, conodont analyses, and locality and sample information. Our correlation scheme, which uses cyclic stratigraphy, biostratigraphy, and cement stratigraphy, will allow interpretation of the depositional history and paleogeographic evolution of the region. We have developed predictive facies models and will make paleogeographic maps to illustrate different stages in the history of the Wahoo carbonate ramp. Our detailed analyses of the Wahoo Limestone will provide a basis for interpreting correlative rocks in the adjacent subsurface of the coastal plain of ANWR, a potential hydrocarbon lease-sale area. In a broader sense, our work will provide an excellent generic example of carbonate shallowing-upward cycles which typify carbonate sediments.

Watts, K.

1992-09-01T23:59:59.000Z

197

Analysis of reservoir heterogeneities due to shallowing-upward cycles in carbonate rocks of the Pennsylvanian Wahoo Limestone of Northeastern Alaska  

Science Conference Proceedings (OSTI)

The primary objective of this project is to develop an integrated database to characterize reservoir heterogeneities resulting from numerous small-scale shallowing-upward cycles (parasequences) comprising the carboniferous Pennsylvanian Wahoo Limestone. The Wahoo Limestone is the upper formation of an extensive carbonate platform sequence of the Carboniferous Lisburne Group which is widely exposed in the Brooks Range and is a widespread hydrocarbon reservoir unit in the subsurface of the North Slope of Alaska. A principal goal is to determine lateral and vertical variations in the complex mosaic of carbonate facies comprising the Wahoo Limestone. This report presents the preliminary results of research accomplished by a team of specialists in carbonate petrology, biostratigraphy, and diagenesis during the 1990--1991 fiscal year.It includes a summary of regional geological framework studies, a discussion conodont analyses, an overview of diagenetic studies, a brief description of progress in computerized database development, and appendices containing some of the new data on petrographic analyses, conodont analyses, and locality and sample information. Our correlation scheme, which uses cyclic stratigraphy, biostratigraphy, and cement stratigraphy, will allow interpretation of the depositional history and paleogeographic evolution of the region. We have developed predictive facies models and will make paleogeographic maps to illustrate different stages in the history of the Wahoo carbonate ramp. Our detailed analyses of the Wahoo Limestone will provide a basis for interpreting correlative rocks in the adjacent subsurface of the coastal plain of ANWR, a potential hydrocarbon lease-sale area. In a broader sense, our work will provide an excellent generic example of carbonate shallowing-upward cycles which typify carbonate sediments.

Watts, K.

1992-09-01T23:59:59.000Z

198

System dynamics based models for selecting HVAC systems for office buildings: a life cycle assessment from carbon emissions perspective.  

E-Print Network (OSTI)

??This study aims to explore the life cycle environmental impacts of typical heating ventilation and air condition (HVAC) systems including variable air volume (VAV) system, (more)

Chen, S

2011-01-01T23:59:59.000Z

199

Past and Future Effects of Ozone on Net Primary Production and Carbon Sequestration Using a Global Biogeochemical Model  

E-Print Network (OSTI)

Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860-1995) show ...

Felzer, Benjamin Seth.

200

Fuel Cycle Research & Development Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Initiatives » Fuel Cycle Technologies » Fuel Cycle Research & Development » Fuel Cycle Research & Development Documents Fuel Cycle Research & Development Documents November 8, 2011 2011 Fuel Cycle Technologies Annual Review Meeting As the largest domestic source of low-carbon energy, nuclear power is making major contributions toward meeting our nation's current and future energy demands. The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. July 11, 2011 Nuclear Separations Technologies Workshop Report

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures  

E-Print Network (OSTI)

Administration, 2008). A number of low- carbon power generation technologies are available today, but many-rated by their forced outage rates to represent the amount of power generation capacity that is available on average). Rather, it does so indirectly, by changing the relative costs of power generating technologies

Kammen, Daniel M.

202

Methane Emissions from Natural Wetlands in the United States: Satellite-Derived Estimation Based on Ecosystem Carbon Cycling  

Science Conference Proceedings (OSTI)

Wetlands are an important natural source of methane to the atmosphere. The amounts of methane emitted from inundated ecosystems in the United States can vary greatly from area to area. Seasonal temperature, water table dynamics, and carbon ...

Christopher Potter; Steven Klooster; Seth Hiatt; Matthew Fladeland; Vanessa Genovese; Peggy Gross

2006-12-01T23:59:59.000Z

203

Regional Impacts of Climate Change and Atmospheric CO2 on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis  

Science Conference Proceedings (OSTI)

The increase in atmospheric CO2 over this century depends on the evolution of the oceanic airsea CO2 uptake, which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here, the future oceanic CO2 uptake is ...

Tilla Roy; Laurent Bopp; Marion Gehlen; Birgit Schneider; Patricia Cadule; Thomas L. Frlicher; Joachim Segschneider; Jerry Tjiputra; Christoph Heinze; Fortunat Joos

2011-05-01T23:59:59.000Z

204

House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

get a handle on the coal problem, nothing else matters." Similar sentiments motivated me and my at a large industrial source, such as a coal-fired power plant. By capture, it is meant isolating the CO2-authors on the just released MIT report on The Future of Coal (see www.mit.edu/coal). I am also a US delegate

205

Michael Heine, SGL Group - The Carbon Company, Carbon Fibers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fibers in Lightweight Systems for Wind Energy and Automotive Applications: Availability and Challenges for the Future Michael Heine, SGL Group - The Carbon Company, Carbon...

206

Program on Technology Innovation: An Assessment of the Future Potential for Biomass Electricity Generation in a Carbon-Constrained World  

Science Conference Proceedings (OSTI)

This report was developed as part of EPRI's Program on Technology Innovation. It evaluates the potential role of biomass electric power generation technologies in a carbon-constrained world. Also, it provides detailed background on U.S. and international biomass use, supply issues, and technologies that can be used to convert biomass into electric power and transportation fuels. A Geographic Information Systems (GIS) compatible database of U.S. biomass fuel supplies was also developed as part of this pro...

2007-04-23T23:59:59.000Z

207

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP) MANAGING CLIMATE CHANGE AND SECURING A FUTURE FOR THE MIDWEST'S INDUSTRIAL BASE  

SciTech Connect

This is the third semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two-year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

David Ball; Robert Burns; Judith Bradbury; Bob Dahowski; Casie Davidson; James Dooley; Neeraj Gupta; Rattan Lal; Larry Wickstrom

2005-04-29T23:59:59.000Z

208

Final Scientific/Technical Report for Building Transmission Capacity in the Western Interconnection to Support a Low Carbon Future  

SciTech Connect

The Building Transmission Capacity grant activities focused on educating both policy makers (primarily at Public Utility Commissions) and utilities across the West. Western Grid Group (WGG), the grant recipient, chose three methods to reach these audiences - direct outreach, a website that contains information on policies and strategies to integrate more variable generation resources, and a report - The Best of the West, Policies and Practices to Support Transition to a Lower-Carbon Electric Sector in the Western Interconnection and that highlights what is working in the West. While all avenues for education are effective the Best of the West report is the first west-wide assessment of its kind. The report details incremental changes that are working to integrate variable generation but it also expounds on what fundamental or transformative changes are needed to get to the 20% wind penetration and beyond.

Amanda Ormond; Merrisa Walker

2011-03-31T23:59:59.000Z

209

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network (OSTI)

the Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. You are free to copy and distribute-free Future? IGCC and Wind in 2040 80 4.2 Limits of Disaggregation 84 4.3 Research Questions and Contributions Commission Net System Power 24 Table 3: Electricity Mixes for top 10 electricity importers 25 Table 4

210

Carbon Balance and Management BioMed Central Editorial Welcome to Carbon Balance and Management  

E-Print Network (OSTI)

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We are pleased to announce the launch of Carbon Balance and Management, a new online open access journal published by BioMed Central. Carbon Balance and Management Carbon Balance and Management is a new open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive, policyrelevant understanding of the global carbon cycle [1]. Advancement in the union of the two issues indicted by the journal's title will be a very important element of future global economic and societal development. We must develop predictive and observational capabilities to determine how carbon systems are changing now and how they will be changing in the future, and we must

Robert Dickinson

2006-01-01T23:59:59.000Z

211

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources,...

212

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Key resources related to carbon cycle and climate change research Recent Greenhouse Gas Concentrations Latest Global Carbon Budget Estimates Illustration of the Global Carbon...

213

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

the process through which carbon is cycled through the air, ground, plants, animals, and fossil fuels. People and animals inhale oxygen from the air and exhale carbon dioxide...

214

Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report  

SciTech Connect

The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

1996-12-01T23:59:59.000Z

215

Black Carbons Properties and Role in the Environment: A Comprehensive Review  

E-Print Network (OSTI)

NOAA/ESRL. Mauna Loa Carbon Dioxide Annual Mean Data.H. Can reducing black carbon emissions counteract globalanalysis of black carbon in soils. Global Biogeochem. Cycle.

Shrestha, Gyami

2010-01-01T23:59:59.000Z

216

INCCA: Integrated Climate and Carbon  

SciTech Connect

The INCCA (Integrated Climate and Carbon) initiative will develop and apply the ability to simulate the fate and climate impact of fossil fuel-derived carbon dioxide (CO{sub 2}) and aerosols on a global scale. Coupled climate and carbon cycle modeling like that proposed for INCCA is required to understand and predict the future environmental impacts of fossil fuel burning. At present, atmospheric CO{sub 2} concentrations are prescribed, not simulated, in large climate models. Credible simulations of the entire climate system, however, need to predict time-evolving atmospheric greenhouse forcing using anthropogenic emissions as the fundamental input. Predicting atmospheric COS concentrations represents a substantial scientific advance because there are large natural sources and sinks of carbon that are likely to change as a result of climate change. Both terrestrial (e.g., vegetation on land) and oceanic components of the carbon cycle are known to be sensitive to climate change. Estimates of the amount of man-made CO{sub 2} that will accumulate in the atmosphere depend on understanding the carbon cycle. For this reason, models that use CO{sub 2} emissions, not prescribed atmospheric concentrations, as fundamental inputs are required to directly address greenhouse-related questions of interest to policymakers. INCCA is uniquely positioned to make rapid progress in this high-priority area of global change modeling and prediction because we can leverage previous and ongoing LLNL developments, and use existing component models that are well-developed and published. The need for a vastly improved carbon dioxide prediction capability is appreciated by the DOE. As the US Accelerated Climate Prediction Initiative (ACPI) progresses, we expect the DOE will emphasize the carbon cycle as the next major department-level earth science focus. INCCA will position LLNL for substantial additional funding as this new focus is realized. In the limited time since our LDRD funding was first received (1 November 2000) we have made good progress in acquisition and testing of component models, applications of the terrestrial biosphere model, enhancements to the ocean carbon cycle model and development of the fossil fuel aerosol model.

Thompson, S L

2001-03-13T23:59:59.000Z

217

HigHligHts Fossil Energy Techline, "DOE Announces Restructured FutureGen  

NLE Websites -- All DOE Office Websites (Extended Search)

Announces Restructured FutureGen Announces Restructured FutureGen Approach to Demonstrate Carbon Capture and Storage Technology at Multiple Clean Coal Plants." On January 30, US Secretary of Energy Samuel W. Bodman announced a restructured approach to the FutureGen project, which involves the demonstration of carbon capture and storage (CCS) t e c h n o l o g y a t s e v e r a l commercial-scale Integrated Gasification Combined Cycle (IGCC) power plants. The US Department of Energy (DOE) said that the reorganized approach caps their financing at no more than the plant's CCS component, allowing for plants to be operational as early as 2015. Under this restructured approach, DOE believes that at least twice the amount of carbon dioxide

218

Carbon Cycle 2.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

循环 2.0 循环 2.0 为可持续能源解决方案提供创新科学研究 人工光合作用 能源储存 燃烧技术 碳捕集和储存 发展中国家 能效 光伏太阳能板 生物燃料 能源分析 气候模拟 碳循环2.0是... 1. 愿景: * 碳循环2.0是一个与地球自然碳循环系统整合为一体的全球能源系统。 * 碳循环2.0是伯克利实验室各个研究领域共同追求的目标。 2. 这是一个项目发展规划,它将会加强我们的能力,并给予我们创 造更多影响力的机会。 3. 这是一个新的尝试,通过技术推广模式,将基础研究与实际应用

219

Carbon and Greenhouse Gas Dynamics in Annual Grasslands: Effects of Management and Potential for Climate Change Mitigation  

E-Print Network (OSTI)

2005. Regional patterns in carbon cycling across the Greatand J. Kadyszewski. 2004. Carbon supply from changes inof annual grassland carbon cycling to the quantity and

Ryals, Rebecca

2012-01-01T23:59:59.000Z

220

Optimum cycle parameters of coal fired closed cycle gas turbine in regenerative and combined cycle configurations  

Science Conference Proceedings (OSTI)

This paper presents the methodology developed for the estimation of thermodynamic performance and reports the optimum cycle parameters of coal fired CCGT in regenerative and combined cycle configurations using air, helium and carbon dioxide as working gases. A rigorous approach has been followed for the determination of the cycle efficiency by assuming the specific heat of working gases as a continuous function of temperature for accurate estimation of cycle parameters. 14 refs.

Rao, J.S.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ENERGY WHITE PAPER Our energy future -  

E-Print Network (OSTI)

ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

222

Corresponding author: Tel. (617) 253-3901, Fax. (617) 253-9845, Email: jrm1@mit.edu THE FUTURE OF COAL CONSUMPTION IN A CARBON CONSTRAINED WORLD  

E-Print Network (OSTI)

of coal consumption in the US and European electric power sectors to carbon prices, natural gas prices and natural gas prices are determined endogenously. Coal consumption in the US electric power sector increases consumption is most highly dependent upon the carbon price. Coal consumption is less sensitive to natural gas

223

Livscykelanalys av flerbostadshus energieffektiviseringstgrder fr minskade koldioxidutslpp; Life Cycle Analysis of Residential Buildings - Energy Efficiency Measures for Decreasing Carbon Dioxide Emissions.  

E-Print Network (OSTI)

?? The importance of energy- and environmental issues has increased, and the work towards reducing carbon dioxide emissions plays a major part. The European Union (more)

Hedin, Hanna

2013-01-01T23:59:59.000Z

224

A technical and economic analysis of a natural gas combined cycle power plant with carbon dioxide capture using membrane separation technology.  

E-Print Network (OSTI)

?? Carbon dioxide (CO2) capture and storage (CCS) is a key technology to reduce anthropogenic greenhouse gas emissions and mitigate the potential effects of climate (more)

Ducker, Michael Jay

2012-01-01T23:59:59.000Z

225

Deoxygenation in Cycling Fossil Plants  

Science Conference Proceedings (OSTI)

Minimizing shutdown oxygen levels at a cycling fossil plant can reduce corrosion product transport to the boilers. In this study two forms of activated carbon were used to catalyze the oxygen/hydrazine reaction and minimize oxygen levels.

1992-05-01T23:59:59.000Z

226

2011 Fuel Cycle Technologies Annual Review Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Fuel Cycle Technologies Annual Review Meeting 1 Fuel Cycle Technologies Annual Review Meeting 2011 Fuel Cycle Technologies Annual Review Meeting As the largest domestic source of low-carbon energy, nuclear power is making major contributions toward meeting our nation's current and future energy demands. The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. To support nuclear energy's continued and expanded role in our energy platform, therefore, the United States must continually improve its knowledge, technology, and policy in order to:

227

AVESTAR® - Natural Gas Combined Cycle (NGCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Combined Cycle (NGCC) Dynamic Simulator Natural Gas Combined Cycle (NGCC) Dynamic Simulator A simulator that can provide future engineers with realistic, hands-on experience for operating advanced natural gas combined cycle (NGCC) power plants will soon be available at an innovative U.S. Department of Energy training center. Under a new cooperative research and development agreement signed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and Invensys Operations Management, the partners will develop, test, and deploy a dynamic simulator and operator training system (OTS) for a generic NGCC power plant equipped for use with post-combustion carbon capture. NETL will operate the new dynamic simulator/OTS at the AVESTAR (Advanced Virtual Energy Simulation Training and Research) Center in Morgantown, W.Va.

228

Building for the future A United Nations showcase in Nairobi  

E-Print Network (OSTI)

vegetable-based. Our distribution policy aims to reduce UNEP's carbon footprint. #12;Building for the future

229

DOE Takes Next Steps with Restructured FutureGen Approach | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Restructured FutureGen Approach with Restructured FutureGen Approach DOE Takes Next Steps with Restructured FutureGen Approach May 7, 2008 - 11:30am Addthis Announces Draft Solicitation for Multiple Commercial-Scale Clean Coal Plants with Sequestration WASHINGTON, DC - The U.S. Department of Energy (DOE) today released a draft Funding Opportunity Announcement (FOA) to solicit public input on the demonstration of multiple commercial-scale Integrated Gasification Combined Cycle (IGCC) or other clean coal power plants with cutting-edge carbon capture and storage (CCS) technology under the Department's restructured FutureGen approach. The draft solicitation outlines the planned scope of the project, evaluation criteria, terms and conditions, and cost sharing requirements for public-private cooperation under FutureGen.

230

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Fluidized-Bed Steam-Electric Steam-Electric Combined-CycleCombined-Cycle Current (1974) Future Future a Source:steam plants. The combined-cycle versions of advanced

Ferrell, G.C.

2010-01-01T23:59:59.000Z

231

Recent Climate-Driven Increases in Vegetation Productivity for the Western Arctic: Evidence of an Acceleration of the Northern Terrestrial Carbon Cycle  

Science Conference Proceedings (OSTI)

Northern ecosystems contain much of the global reservoir of terrestrial carbon that is potentially reactive in the context of near-term climate change. Annual variability and recent trends in vegetation productivity across Alaska and northwest ...

J. S. Kimball; M. Zhao; A. D. McGuire; F. A. Heinsch; J. Clein; M. Calef; W. M. Jolly; S. Kang; S. E. Euskirchen; K. C. McDonald; S. W. Running

2007-02-01T23:59:59.000Z

232

Effect of the on/off cycling modulation time ratio of C2H2/SF6 flows on the formation of geometrically controlled carbon coils  

Science Conference Proceedings (OSTI)

Carbon coils could be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under thermal chemical vapor deposition system. Nickel catalyst layer deposition and then hydrogen plasma ...

Young-Chul Jeon; Jun-Ho Eum; Sung-Hoon Kim; Jung-Chul Park; Sung Il Ahn

2012-01-01T23:59:59.000Z

233

Program on Technology Innovation: Drying of Low-Rank Coal with Supercritical Carbon Dioxide (CO2) in Integrated Gasification Combined Cycle (IGCC) Plants  

Science Conference Proceedings (OSTI)

This study is part of the Electric Power Research Institute (EPRI) Technology Innovation Program to assess the potential to achieve increased process efficiency and reduced capital cost by drying low-rank coal with supercritical carbon dioxide (SCCO2). This study follows the EPRI report Program on Technology Innovation: Assessment of the Applicability of Drying Low-Rank Coal With Supercritical Carbon Dioxide in IGCC Plants (1016216), which concluded that this system has potential benefits with respect to...

2010-07-30T23:59:59.000Z

234

A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits  

SciTech Connect

A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

Klasson, KT

2002-12-23T23:59:59.000Z

235

Background paper for "The 10-50 Solution: Technologies and Policies for a Low-Carbon Future" Pew Center & NCEP Conference, Washington, DC, March 25 26, 2004  

E-Print Network (OSTI)

School of Public Policy 310 Barrows Hall, University of California, Berkeley, CA 94720-3050 USA Email demand, with biomass meeting another 20% (Herzog, et al., 2001).1 Combining this potential growth for a future requiring significantly more energy than the current global supply capacity of ~10 TW demand

Kammen, Daniel M.

236

Benefits and concerns of a closed nuclear fuel cycle  

Science Conference Proceedings (OSTI)

Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a once-through fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

Widder, Sarah H.

2010-11-17T23:59:59.000Z

237

Description, calibration and sensitivity analysis of the local ecosystem submodel of a global model of carbon and nitrogen cycling and the water balance in the terrestrial biosphere  

Science Conference Proceedings (OSTI)

We have developed a geographically-distributed ecosystem model for the carbon, nitrogen, and water dynamics of the terrestrial biosphere TERRA. The local ecosystem model of TERRA consists of coupled, modified versions of TEM and DAYTRANS. The ecosystem model in each grid cell calculates water fluxes of evaporation, transpiration, and runoff; carbon fluxes of gross primary productivity, litterfall, and plant and soil respiration; and nitrogen fluxes of vegetation uptake, litterfall, mineralization, immobilization, and system loss. The state variables are soil water content; carbon in live vegetation; carbon in soil; nitrogen in live vegetation; organic nitrogen in soil and fitter; available inorganic nitrogen aggregating nitrites, nitrates, and ammonia; and a variable for allocation. Carbon and nitrogen dynamics are calibrated to specific sites in 17 vegetation types. Eight parameters are determined during calibration for each of the 17 vegetation types. At calibration, the annual average values of carbon in vegetation C, show site differences that derive from the vegetation-type specific parameters and intersite variation in climate and soils. From calibration, we recover the average C{sub v} of forests, woodlands, savannas, grasslands, shrublands, and tundra that were used to develop the model initially. The timing of the phases of the annual variation is driven by temperature and light in the high latitude and moist temperate zones. The dry temperate zones are driven by temperature, precipitation, and light. In the tropics, precipitation is the key variable in annual variation. The seasonal responses are even more clearly demonstrated in net primary production and show the same controlling factors.

Kercher, J.R. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Chambers, J.Q. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); [California Univ., Santa Barbara, CA (United States). Dept. of Biological Sciences

1995-10-01T23:59:59.000Z

238

Energy Technologies and Carbon Dioxide Management  

Science Conference Proceedings (OSTI)

This symposium will pave the way to accomplish an efficient use of energy and manage ... such as establish carbon footprints and life cycle analysis; develop carbon ... develop carbon credits and offsets for mandatory & voluntary markets, etc.

239

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network (OSTI)

Electricity Natural gas combined cycle and renewablecoal gasification combined cycle with carbon captureand storage Natural gas combined cycle Price change and

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

240

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network (OSTI)

Electricity Natural gas combined cycle and renewablecoal gasification combined cycle with carbon captureand storage Natural gas combined cycle Price change and

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Future Healthcare  

E-Print Network (OSTI)

Patients want answers, not numbers. Evidence-based medicine must have numbers to generate answers. Therefore, analysis of numbers to provide answers is the Holy Grail of healthcare professionals and its future systems. ...

Datta, Shoumen

2010-12-15T23:59:59.000Z

242

Future tense  

Science Conference Proceedings (OSTI)

Future Tense, one of the revolving features on this page, presents stories and essays from the intersection of computational science and technological speculation, their boundaries limited only by our ability to imagine what will and could be.

Rudy Rucker

2011-07-01T23:59:59.000Z

244

FutureGen: Pathway to Near-Zero Emissions and Sustainable Energy  

DOE Green Energy (OSTI)

This presentation will highlight the U.S. Department of Energys (DOE) FutureGen project ? a $1 billion government-industry partnership to design, build, and operate a near-zero emissions coal-fueled power plant. The lead organization for the FutureGen initiative is the National Energy Technology Laboratory (NETL), a multi-purpose laboratory operated by the U.S. DOEs Office of Fossil Energy. NETL has a mission to conduct R&D from fundamental science to technology demonstration for resolving the environmental, supply, and reliability constraints of producing and using fossil energy resources. The commercial-scale FutureGen R&D facility is a pathway toward future fossil-energy power plants that will produce hydrogen and electricity while nearly eliminating emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. Low carbon emissions would be achieved by integrating CO2 capture and sequestration operations with the power plant.

Zitney, S.E.; Sarkus, T.A

2007-11-04T23:59:59.000Z

245

The human carbon budget: an estimate of the spatial distribution of metabolic carbon consumption and release in the United States  

E-Print Network (OSTI)

West TO, Marland G (2002a) Net carbon ?ux from agriculturalmethodology for full carbon cycle analyses. Environ PollutG (2002b) A synthesis of carbon seques- tration, carbon

West, Tristram O.; Marland, Gregg; Singh, Nagendra; Bhaduri, Budhendra L.; Roddy, Adam B.

2009-01-01T23:59:59.000Z

246

The Kalina cycle and similar cycles for geothermal power production  

SciTech Connect

This report contains a brief discussion of the mechanics of the Kalina cycle and ideas to extend the concept to other somewhat different cycles. A modified cycle which has a potential heat rejection advantage but little or no performance improvement is discussed. Then, the results of the application of the Kalina cycle and the modified cycle to a geothermal application (360/degree/F resource) are discussed. The results are compared with published results for the Kalina cycle with high temperature sources and estimates about performance at the geothermal temperatures. Finally, the conclusions of this scoping work are given along with recommendations of the direction of future work in this area. 11 refs., 4 figs., 1 tab.

Bliem, C.J.

1988-09-01T23:59:59.000Z

247

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

248

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas  

E-Print Network (OSTI)

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas Fluxes in Terrestrial Ecosystems, and Benjamin M. Sleeter Chapter 5 of Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes, carbon sequestration, and greenhouse-gas fluxes in terrestrial ecosystems of the Western United States

Fleskes, Joe

249

Debris and Future Space Activities  

E-Print Network (OSTI)

Debris and Future Space Activities Prof. Joel R. Primack Physics Department University eleven year cycle, it heats the upper atmosphere and makes it expand so that debris and spacecraft in low which overflows occasionally and washes only the lowest hillsides clear of debris. Debris in orbit

California at Santa Cruz, University of

250

WATCH: Current Knowledge of the Terrestrial Global Water Cycle  

Science Conference Proceedings (OSTI)

Water-related impacts are among the most important consequences of increasing greenhouse gas concentrations. Changes in the global water cycle will also impact the carbon and nutrient cycles and vegetation patterns. There is already some evidence ...

Richard Harding; Martin Best; Eleanor Blyth; Stefan Hagemann; Pavel Kabat; Lena M. Tallaksen; Tanya Warnaars; David Wiberg; Graham P. Weedon; Henny van Lanen; Fulco Ludwig; Ingjerd Haddeland

2011-12-01T23:59:59.000Z

251

Supercritical CO2Brayton Cycle Control Strategy for Autonomous Liquid Metal-Cooled Reactors  

Science Conference Proceedings (OSTI)

This presentation discusses a supercritical carbon dioxide brayton cycle control strategy for autonomous liquid metal-cooled reactors.

Moisseytsev, A.; Sienicki, J.J.

2004-10-06T23:59:59.000Z

252

Warming mineralises young and old soil carbon equally  

E-Print Network (OSTI)

Abstract. The temperature sensitivity of soil organic carbon decomposition is critical for predicting future climate change because soils store 2-3 times the amount of atmospheric carbon. Of particular controversy is the question, whether temperature sensitivity differs between young or labile and old or more stable carbon pools. Ambiguities in experimental methodology have so far limited corroboration of any particular hypothesis. Here, we show in a clear-cut approach that differences in temperature sensitivity between young and old carbon are negligible. Using the change in stable isotope composition in transitional systems from C3 to C4 vegetation, we were able to directly distinguish the temperature sensitivity of carbon differing several decades in age. This method had several advantages over previously followed approaches. It allowed to identify release of much older carbon, avoided un-natural conditions of long-term incubations and did not require arguable curve-fitting. Our results demonstrate that feedbacks of the carbon cycle on climate change are driven equally by young and old soil organic carbon. 1

F. Conen; J. Leifeld; B. Seth; C. Alewell

2006-01-01T23:59:59.000Z

253

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

254

Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks  

SciTech Connect

Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO{sub 2} increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

Erickson III, David J [ORNL

2011-01-01T23:59:59.000Z

255

FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation  

SciTech Connect

This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

Zitney, S.E.

2006-11-01T23:59:59.000Z

256

Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.  

SciTech Connect

STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal resistance of a gas-filled gap.

Moisseytsev, A.; Sienicki, J. J.

2007-03-08T23:59:59.000Z

257

Life-Cycle Water and Greenhouse Gas Implications of Alternative...  

NLE Websites -- All DOE Office Websites (Extended Search)

of life-cycle assessment and optimization in assessing such questions as: a.) How will future transportation energy production impact water resource availability in the US? b.)...

258

Formation of Carbon Dwarfs  

E-Print Network (OSTI)

We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

Charles L. Steinhardt; Dimitar D. Sasselov

2005-02-08T23:59:59.000Z

259

Understanding the petrochemical cycle: Part 1  

Science Conference Proceedings (OSTI)

Fitness in the hydrocarbon processing industry (HPI) arena involves understanding and coping with business cycles: supply and demand. This becomes increasingly more important as the industry globalizes and matures. Competitive-edge thinking needs to look hard at the forces that influence business cycles. Recognition of potential pitfalls is very important when considering: future capacity expansion, mergers and acquisitions, market departure, plant closure, potential product substitution, etc. Understanding pricing mechanisms and the workings of hockey-stick profitability profiles help HPI operators endure cycle downturns and prepare plants to maximize profits for the next upswing. The paper discusses characteristic trends, cycles in the hydrocarbon processing industry, current conditions, and mitigating cycle effects.

Sedriks, W. (SRI International, Menlo Park, CA (United States))

1994-03-01T23:59:59.000Z

260

Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.  

SciTech Connect

Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO{sub 2} cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO{sub 2} cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO{sub 2} cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO{sub 2} cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2012-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations  

Science Conference Proceedings (OSTI)

More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

262

Trade, transport, and sinks extend the carbon dioxide responsibility of countries: An editorial essay  

Science Conference Proceedings (OSTI)

Globalization and the dynamics of ecosystem sinks need be considered in post-Kyoto climate negotiations as they increasingly affect the carbon dioxide concentration in the atmosphere. Currently, the allocation of responsibility for greenhouse gas mitigation is based on territorial emissions from fossil-fuel combustion, process emissions and some land-use emissions. However, at least three additional factors can significantly alter a country's impact on climate from carbon dioxide emissions. First, international trade causes a separation of consumption from production, reducing domestic pollution at the expense of foreign producers, or vice versa. Second, international transportation emissions are not allocated to countries for the purpose of mitigation. Third, forest growth absorbs carbon dioxide and can contribute to both carbon sequestration and climate change protection. Here we quantify how these three factors change the carbon dioxide emissions allocated to China, Japan, Russia, USA, and European Union member countries. We show that international trade can change the carbon dioxide currently allocated to countries by up to 60% and that forest expansion can turn some countries into net carbon sinks. These factors are expected to become more dominant as fossil-fuel combustion and process emissions are mitigated and as international trade and forest sinks continue to grow. Emission inventories currently in wide-spread use help to understand the global carbon cycle, but for long-term climate change mitigation a deeper understanding of the interaction between the carbon cycle and society is needed. Restructuring international trade and investment flows to meet environmental objectives, together with the inclusion of forest sinks, are crucial issues that need consideration in the design of future climate policies. And even these additional issues do not capture the full impact of changes in the carbon cycle on the global climate system.

Peters, Glen P [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Marland, Gregg [ORNL; Hertwich, Edgar G. [Norwegian University of Science and Technology; Saikku, Laura [University of Helsinki

2009-01-01T23:59:59.000Z

263

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-04-01T23:59:59.000Z

264

Nuclear-fuel-cycle policy and the future of nuclear power. Oversight hearing before the Subcommittee on Oversight and Investigations of the Committee on Interior and Insular Affairs, House of Representatives, Ninety-Seventh Congress, First Session, October 23, 1981  

Science Conference Proceedings (OSTI)

Edward Teller, Ralph Nader, and a panel from Merrill Lynch, Pierce, Fenner, and Smith were among the 12 witnesses at this hearing on the Reagan administration's decision to eliminate the ban on plutonium reprocessing and its effect on the nuclear industry's future. Subcommittee Chairman Edward J. Markey asked for comments on safety question, recent plant cancellations, contributions that nuclear power can make in relieving oil dependence in the transportation sector, proliferation, and the inconsistency of subsidizing nuclear while imposing a free-market philosophy on solar, coal, and conservation. The testimony if followed by an appendix of additional material submitted for the record. (DCK)

Not Available

1982-01-01T23:59:59.000Z

265

Terrestrial biogeochemical feedbacks in the climate system: from past to future  

Science Conference Proceedings (OSTI)

The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O'Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

2010-01-05T23:59:59.000Z

266

Global demographic trends and future carbon emissions  

E-Print Network (OSTI)

. Although such changes can affect energy use and greenhouse gas emissions, emissions scenario analyses have an energy­ economic growth model that accounts for a range of demographic dynamics, we show that slowing in particular world regions. climate change | energy | integrated assessment | population | households

267

The Future of Low Carbon Transportation Fuels  

E-Print Network (OSTI)

" Nuclear" Oil resources" Unconventional:" oil shale liquid, " oil sands" Coal resources" Transport! Elec

Kammen, Daniel M.

268

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network (OSTI)

policy 52 New nuclear stations in the UK 57 The UK nuclear fuel cycle: historic, present and future 63 energy, nuclear research 86 and the fuel cycle The future of waste disposal 88 Public perception failures, can nuclear power stations be built to budget and time? Is public opinion sufficiently resilient

Birmingham, University of

269

CARBON DIOXIDE FIXATION.  

DOE Green Energy (OSTI)

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

270

Soil Carbon Modeling (Mac Post) A. Rothamsted model carbon pools and processes. Their approximate equivalents for the EBIS sample processing  

E-Print Network (OSTI)

Soil Carbon Modeling (Mac Post) A. Rothamsted model carbon pools and processes. Their approximate' soil horizon show that model improvements need to be made to capture observed soil carbon cycling and transport processes. Testing and improvement of soil carbon cycling models is a key anticipated output

271

Future power supply  

Science Conference Proceedings (OSTI)

This article is a review of the U.S. needs for new generating capacity during the next decade. Considering regulatory and technical issues and assuming a modest annual load growth of 1.9%, it is anticipated that there will be a 90 GWe deficit by the year 2000. Likely sources to provide this additional capacity are reviewed, and it is concluded that most new plants will be gas-fired simple-cycle combustion turbines. This will occur mainly because the country has excess baseload capacity and needs to add a considerable amount of peaking capacity to bring the generation mix into balance. It is also concluded that fossil-fueled plants will provide the country`s baseload for the foreseeable future.

Campbell, N.A.; Harris, K. [Burns & McDonnell Engineering Co., Kansas City, MO (United States)

1993-03-01T23:59:59.000Z

272

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

273

Analysis of Strategies of Companies under Carbon Constraint: Relationship between Profit Structure of Companies and Carbon/Fuel Price Uncertainty  

E-Print Network (OSTI)

This paper examines the relationship between future carbon prices and the expected profit of companies by case studies with model companies. As the future carbon price will vary significantly in accordance with the political ...

Hashimoto, Susumu

274

Renewable energy and low carbon economy transition in India  

Science Conference Proceedings (OSTI)

Cooperation of large developing countries such as India would be important in achieving a low carbon future

P. R. Shukla; Subash Dhar; Junichi Fujino

2010-01-01T23:59:59.000Z

275

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

276

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

277

Hydrogen: Fueling the Future  

DOE Green Energy (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

278

Carbon Sequestration - Public Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Meeting Programmatic Environmental Impact Statement Public Meeting May 18, 2004 National Energy Technology Laboratory Office of Fossil Energy Scott Klara Carbon Sequestration Technology Manager Carbon Sequestration Program Overview * What is Carbon Sequestration * The Fossil Energy Situation * Greenhouse Gas Implications * Pathways to Greenhouse Gas Stabilization * Sequestration Program Overview * Program Requirements & Structure * Regional Partnerships * FutureGen * Sources of Information What is Carbon Sequestration? Capture can occur: * at the point of emission * when absorbed from air Storage locations include: * underground reservoirs * dissolved in deep oceans * converted to solid materials * trees, grasses, soils, or algae Capture and storage of CO 2 and other Greenhouse Gases that

279

Seeking to Better Understand the Carbon Cycle  

Office of Science (SC) Website

the biology involved in global climate change as possible to gives us more predictive and management capabilities." Part of the mission of the Department of Energy's Office of...

280

Biorefinery and Carbon Cycling Research Project  

Science Conference Proceedings (OSTI)

In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

2012-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Pre-Combustion Carbon Capture Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants June 11, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced the selection of nine projects that will develop pre-combustion carbon capture technologies that can reduce CO2 emissions in future coal-based integrated gasification combined cycle (IGCC) power plants. The projects, totaling nearly $14.4 million, will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. Pre-combustion processes convert fossil fuels into a gaseous mixture of hydrogen and CO2 prior to combustion. The CO2 is then separated and the

282

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network (OSTI)

natural gas price volatility has engendered a resurgence in coal-coal gasification combined cycle with carbon capture and storage Natural gas combined cycle Price

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

283

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network (OSTI)

natural gas price volatility has engendered a resurgence in coal-coal gasification combined cycle with carbon capture and storage Natural gas combined cycle Price

2007-01-01T23:59:59.000Z

284

Nutrient Cycling Study  

DOE Green Energy (OSTI)

The particular goal of this study is to develop measurement techniques for understanding how consortia of organisms from geothermal facilities utilize sulfur and iron for metabolic activity; and in turn, what role that activity plays in initiating or promoting the development of a biofilm on plant substrates. Sulfur cycling is of interest because sulfur is produced in the resource. Iron is found in some of the steel formulations used in plant components and is also added as chemical treatment for reducing sulfide emissions from the plants. This report describes the set-up and operation of a bioreactor for evaluating the response of colonies of geothermal organisms to changes in nutrient and environmental conditions. Data from initial experiments are presented and plans for future testing is discussed.

Peter A. Pryfogle

2005-09-01T23:59:59.000Z

285

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

286

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

287

Global climate change and pedogenic carbonates  

SciTech Connect

Global Climate Change summarizes what is known about soil inorganic carbon and develops strategies that could lead to the retention of more carbon in the soil. It covers basic concepts, analytical methods, secondary carbonates, and research and development priorities. With this book one will get a better understanding of the global carbon cycle, organic and inorganic carbon, and their roles, or what is known of them, in the greenhouse effect.

Lal, R.; Kimble, J.M.; Stewart, B.A.; Eswaran, H. [eds.

1999-11-01T23:59:59.000Z

288

Biomass Gasification Combined Cycle  

DOE Green Energy (OSTI)

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

289

State options for low-carbon coal policy  

Science Conference Proceedings (OSTI)

There is growing state-level interest in the USA in accelerating the development of low-carbon coal technologies, including carbon capture and storage (CCS). Many states have adopted greenhouse gas emission targets and made commitments to low-carbon energy, and believe that these polices will result in job creation, air quality improvements, and reliable low-cost energy supplies. This paper provides an overview of options for states to encourage the deployment of carbon capture and sequestration. It describes actions (including legislation, regulations, and incentives) throughout the country. It also reviews in greater detail the range of policies available to state Public Utility Commissions for advancing deployment of CCS. Many states are adopting meaningful incentives for integrated gasification combined cycle (IGCC) power plants, and, as a handful of states are beginning to demonstrate, a number of these incentives can apply to CCS as well. States also have a number of authorities relevant to advancement of clean coal power, particularly within the domain of state public utility commissions (PUCs). State commissions have a wide array of policy options available to them in pursuing this goal, and will play a crucial role in determining the speed and effectiveness with which such technologies are deployed. States also enjoy major advantages, such as their direct jurisdiction over many critical power plant issues (including siting and retail ratemaking) that federal agencies do not possess. Regardless of the final form of federal greenhouse gas rules, states have the chance to gain experience as first movers and policy innovators, and will play an important role in shaping a low-carbon future. Although national policy is essential, a proactive approach by state policymakers and regulators to drive CCS can reduce future compliance costs, speed the required technological developments, and pave the way for future national policy.

Richard Cowart; Shanna Vale; Joshua Bushinsky; Pat Hogan

2008-02-15T23:59:59.000Z

290

Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models  

E-Print Network (OSTI)

carbon capture and storage, 2) a natural gas combined cycle technology with carbon capture and storage 1 power generation technologies are: 1) a natural gas combined cycle technology (advanced gas) without eight of technologies in the electric power sector: conventional fossil fuel, natural gas combined cycle

291

ARM - Field Campaign - Aircraft Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAircraft Carbon govCampaignsAircraft Carbon Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aircraft Carbon 2006.07.01 - 2008.09.30 Lead Scientist : Margaret Torn For data sets, see below. Description Airborne trace-gas measurements at ARM-SGP provided valuable data for addressing carbon-cycle questions highlighted by the US Climate Change Research Program and the North American Carbon Program. A set of carbon-cycle instruments and sample collection systems were added to an ARM-managed aircraft at ARM-SGP user facility. A separate (in-place) grant covered the cost of developing the instrument systems, analyzing the data, and ingesting all data to the ARM data archives. In the short-term (~1 y) we had two priorities. The first was to acquire

292

An Economic Analysis of Select Fuel Cycles Using the Steady-State Analysis Model for Advanced Fuel Cycles Schemes (SMAFS)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP) is currently considering alternatives to the current U.S. once-through fuel cycle. This report evaluates the relative economics of three alternative fuel cycles to determine those cost components important to overall fuel cycle costs and total generation costs. The analysis determined that the unit cost of nuclear reactors is the most important nuclear generation cost parameter in future fuel cycles. The report also evaluates ...

2007-12-20T23:59:59.000Z

293

The Case for Hydrogen in a Carbon Constrained World  

DOE Green Energy (OSTI)

Unlike other fuels, hydrogen (H{sub 2}) can be generated and consumed without generating carbon dioxide (CO{sub 2}). This creates both significant engineering challenges and unsurpassed ecological advantages for H{sub 2} as a fuel, while enabling an inexhaustible (closed) global fuel cycle based on the cleanest, most abundant, natural, and elementary substances: H{sub 2}, O{sub 2}, and H{sub 2}O. If generated using light, heat, and/or electrical energy from solar, wind, fission, or (future) fusion power sources, H{sub 2} becomes a versatile, storable, and universal carbonless energy carrier, a necessary element for future global energy system(s) aimed at being free of air and water pollution, CO{sub 2}, and other greenhouse gases. The case for hydrogen rests fundamentally on the need to eliminate pollution and stabilize Earth's atmosphere and climate system.

Berry, G D; Aceves, S M

2005-02-18T23:59:59.000Z

294

Combined power plants -- Past, present, and future  

Science Conference Proceedings (OSTI)

The early history of combined power plants is described, together with the birth of the CCGT plant (the combined cycle gas turbine). Sustained CCGT development in the 1970s and 1980s, based on sound thermodynamic considerations, is outlined. Finally more recent developments and future prospects for the combined gas turbine/steam turbine combined plant are discussed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1995-10-01T23:59:59.000Z

295

Carbon-free generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon-free generation Carbon-free generation Carbon-free central generation of electricity, either through fossil fuel combustion with carbon dioxide capture and storage or development of renewable sources such as solar, wind, and/or nuclear power, is key to our future energy portfolio. Brookhaven also provides tools and techniques for studying geological carbon dioxide sequestration and analyzing safety issues for nuclear systems. Our nation faces grand challenges: finding alternative and cleaner energy sources and improving efficiency to meet our exponentially growing energy needs. Researchers at Brookhaven National Laboratory are poised to meet these challenges with basic and applied research programs aimed at advancing the effective use of renewable energy through improved conversion,

296

Enhancing Water Cycle Measurements for Future Hydrologic Research  

Science Conference Proceedings (OSTI)

The Consortium of Universities for the Advancement of Hydrologic Sciences, Inc., established the Hydrologic Measurement Facility to transform watershed-scale hydrologic research by facilitating access to advanced instrumentation and expertise ...

H. W. Loescher; J. M. Jacobs; O. Wendroth; D. A. Robinson; G. S. Poulos; K. Mcguire; P. Reed; B. P. Mohanty; J. B. Shanley; W. Krajewski

2007-05-01T23:59:59.000Z

297

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

transportation.com This white paper is intended to serve asthe results in this white paper, we encourage the reader toare the focus of this white paper but the methodology is

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

298

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

gasoline vehicles, hybrid electric vehicles, aircraft, high-Gasoline Vehicle (CGV), Hybrid Electric Vehicle (HEV),Plug-in Hybrid Electric Vehicle (PHEV), and Battery Electric

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

299

The nitrogen cycle and ecohydrology of seasonally dry grasslands  

E-Print Network (OSTI)

This thesis addresses the coupling of hydrologic and biogeochemical processes and, specifically, the organization of ecosystem traits with the water, carbon, and nitrogen cycles. Observations from a factorial irrigation- ...

Parolari, Anthony Joseph

2013-01-01T23:59:59.000Z

300

Meteorological Variability and the Annual Surface Pressure Cycle on Mars  

Science Conference Proceedings (OSTI)

It is commonly admitted that the seasonal surface pressure cycle, observed on Mars by the two Viking landers, is due to condensation and sublimation of the atmospheric carbon dioxide in the polar caps. A three Martian year numerical simulation ...

Frdric Hourdin; Phu Le Van; Franois Forget; Olivier Talagrand

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Life-cycle assessment of wastewater treatment plants  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

Dong, Bo, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

302

Toward a consistency cross-check of eddy covariance fluxbased and biometric estimates of ecosystem carbon balance  

E-Print Network (OSTI)

estimates of annual carbon sequestration in a Sitka spruce (carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration

2009-01-01T23:59:59.000Z

303

Carbon dynamics following landscape fire: influence of burn severity, climate, and stand history in the Metolius Watershed, Oregon.  

E-Print Network (OSTI)

??Fire is a fundamental disturbance that drives terrestrial and atmospheric carbon dynamics. Previous studies have quantified fire effects on carbon cycling from local to global (more)

[No author

2009-01-01T23:59:59.000Z

304

Nuclear Fuel Cycle Integrated System Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Integrated System Analysis Fuel Cycle Integrated System Analysis Abdellatif M. Yacout Argonne National Laboratory Nuclear Engineering Division The nuclear fuel cycle is a complex system with multiple components and activities that are combined to provide nuclear energy to a variety of end users. The end uses of nuclear energy are diverse and include electricity, process heat, water desalination, district heating, and possibly future hydrogen production for transportation and energy storage uses. Components of the nuclear fuel cycle include front end components such as uranium mining, conversion and enrichment, fuel fabrication, and the reactor component. Back end of the fuel cycle include used fuel coming out the reactor, used fuel temporary and permanent storage, and fuel reprocessing. Combined with those components there

305

Transposed critical temperature Rankine thermodynamic cycle  

DOE Green Energy (OSTI)

The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of the working fluid and turbine states for optimized geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for given source and sink conditions (7 parameter optimization), turbine inlet states are found to be consistently adjacent to the low pressure side of the working fluids' TPCT line on pressure-enthalpy coordinates. Although the TPCT concepts herein may find numerous future applications in high temperature, advanced cycles for fossil or nuclear fired steam power plants and in supercritical organic Rankine heat recovery bottoming cycles for Diesel engines, this discussion is limited to moderate temperature (150 to 250/sup 0/C) closed simple organic Rankine cycle geothermal power plants. Conceptual design calculations pertinent to the first geothermal binary cycle Demonstration Plant are included.

Pope, W.L.; Doyle, P.A.

1980-04-01T23:59:59.000Z

306

Back end of an enduring fuel cycle  

SciTech Connect

An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world`s riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future.

Pillay, K.K.S.

1998-03-01T23:59:59.000Z

307

NETL: Gasification Systems - Liquid Carbon Dioxide/Coal Slurry for Feeding  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Liquid Carbon Dioxide/Coal Slurry for Feeding Low-Rank Coal to Gasifiers Project Number: DE-FE0007977 There is increased interest in carbon capture and storage (CCS) for future coal-based power plants, and in a CCS integrated gasification plant, relatively pure, high pressure CO2 stream(s) will be available within the power plant. Electric Power Research Institute (EPRI) aims to help reduce the cost and improve the efficiency of integrated gasification combined cycle (IGCC) with CCS by using a portion of the high purity CO2 product stream as the carrier fluid to feed low rank coal (LRC) into the gasifier. EPRI proposes to confirm the potential advantages of LRC/liquid carbon dioxide (LCO2) slurries by: Conducting plant-wide technical and economic simulations.

308

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

309

Life Cycle Engineering Group  

Science Conference Proceedings (OSTI)

... for green manufacturing and construction applications; conduct life cycle engineering assessments for energy efficiency and environmental ...

2012-08-23T23:59:59.000Z

310

2009 Integrated Gasification Combined Cycle Engineering Economic Evaluation  

Science Conference Proceedings (OSTI)

The 2009 Electric Power Research Institute (EPRI) report Integrated Gasification Combined Cycle (IGCC) Design Considerations for Carbon Dioxide (CO2) Capture (1015690) contains engineering and economic evaluations of state-of-the-art integrated gasification combined cycle (IGCC) power plant designs available for near-term deployment. The study assessed the expected performance and costs of coal-fed IGCC power plants before and after retrofit for carbon dioxide (CO2) capture. The study evaluated paired ca...

2009-09-30T23:59:59.000Z

311

Ultra Fine Grain/Ultra Low Carbon 718  

Science Conference Proceedings (OSTI)

An ultra low carbon alloy 718 composition has been investigated in combination with ultra fine grain processing to improve the low cycle fatigue capabilities.

312

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

E-Print Network (OSTI)

and Carbon Emissions Outlook to 2050. Lawrence Berkeley2009. World Energy Outlook 2009. Paris: OECD Publishing.Future Energy and Emissions Outlook Nina Zheng, Nan Zhou and

Zheng, Nina

2010-01-01T23:59:59.000Z

313

NETL: News Release - DOE Announces Restructured Approach to FutureGen  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2008 DOE Announces Restructured FutureGen Approach to Demonstrate Carbon Capture and Storage Technology at Multiple Clean Coal Plants Affirms Commitment to Clean Coal...

314

Molecular geomicrobiology: genes and geochemical cycling Jennifer Macalady 1  

E-Print Network (OSTI)

Frontiers Molecular geomicrobiology: genes and geochemical cycling Jennifer Macalady 1 , Jillian F occurs. Yet, the field of molecular geomicrobiology remains in its infancy. In the foreseeable future, merging of modern biogeochemistry with molecularly resolved ecological studies will inspire

Macalady, Jenn

315

LIFE Materials: Fuel Cycle and Repository Volume 11  

Science Conference Proceedings (OSTI)

The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of the repository design. (4) A simple, but arguably conservative, estimate for the dose from a repository containing 63,000 MT of spent LIFE fuel would have similar performance to the currently planned Yucca Mountain Repository. This indicates that a properly designed 'LIFE Repository' would almost certainly meet the proposed Nuclear Regulatory Commission standards for dose to individuals, even though the waste in such a repository would have produced 20-30 times more generated electricity than the reference case for Yucca Mountain. The societal risk/benefit ratio for a LIFE repository would therefore be significantly better than for currently planned repositories for LWR fuel.

Shaw, H; Blink, J A

2008-12-12T23:59:59.000Z

316

Carbon dioxide and climate: a bibliography  

SciTech Connect

This bibliography with abstracts presents 394 citations retrieved from the Energy Data Base of the Department of Energy Technical Information Center, Oak Ridge, Tennessee. The citations cover all aspects of the climatic effects of carbon dioxide emissions to the atmosphere. These include carbon cycling, temperature effects, carbon dioxide control technologies, paleoclimatology, carbon dioxide sources and sinks, mathematical models, energy policies, greenhouse effect, and the role of the oceans and terrestrial forests.

Ringe, A.C. (ed.)

1980-10-01T23:59:59.000Z

317

The closed fuel cycle  

Science Conference Proceedings (OSTI)

Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

Froment, Antoine; Gillet, Philippe [AREVA NC (France)

2007-07-01T23:59:59.000Z

318

Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle  

SciTech Connect

This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

San Martin, Robert L.

1989-01-01T23:59:59.000Z

319

Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle  

SciTech Connect

This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

San Martin, Robert L.

1989-04-01T23:59:59.000Z

320

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

322

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

323

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

324

Future Electronics in CNST  

Science Conference Proceedings (OSTI)

... Electronic Transport in Nanoscale Organic/Inorganic Devices. ... for graphene, nanophotonic, nanoplasmonic, spintronic, and other future electronics. ...

2013-05-02T23:59:59.000Z

325

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network (OSTI)

strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush

Rollins, Andrew M.

326

The Joint Center for Artificial Photosynthesis (JCAP) and Carbon Cycle 2.0 are honored to host Profs. Fujii, Sugiyama, and Bagheri from the University of Tokyo. They will be  

E-Print Network (OSTI)

energy cycle driver (Bagheri) The Global Solar + Initiative (GS+I) at the University of Tokyo When's new Global Solar + Initiative (GS+I). Started in November 2010, GS+I is addressing challenges in shifting to a sustainable global energy system which suppresses the emission of greenhouse gases. GS

327

Climate control of terrestrial carbon exchange across biomes and continents  

Science Conference Proceedings (OSTI)

Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 N). The sensitivity of NEE to mean annual temperature breaks down at ~ 16 C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.

Ricciuto, Daniel M [ORNL; Gu, Lianhong [ORNL

2010-07-01T23:59:59.000Z

328

Edgeworth cycles revisited  

E-Print Network (OSTI)

Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend ...

Doyle, Joseph J.

329

Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West  

E-Print Network (OSTI)

Natural Gas Conclusions and Recommendations Future carbon regulationsregulations, particularly the effects on wholesale electricity market prices, natural gasnatural gas commodity prices, could increase or decrease under carbon regulations,

Barbose, Galen

2008-01-01T23:59:59.000Z

330

Pursuing Energy Efficiency as a Hedge against Carbon Regulatory Risks: Current Resource Planning Practices in the West  

E-Print Network (OSTI)

Natural Gas Conclusions and Recommendations Future carbon regulationsregulations, particularly the effects on wholesale electricity market prices, natural gasnatural gas commodity prices, could increase or decrease under carbon regulations,

Barbose, Galen

2009-01-01T23:59:59.000Z

331

World nuclear fuel cycle requirements 1991  

Science Conference Proceedings (OSTI)

The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

Not Available

1991-10-10T23:59:59.000Z

332

Cycle to Cycle Manufacturing Process Control  

E-Print Network (OSTI)

Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

Hardt, David E.

333

Thermodynamic Phase Stability in Gasification Carbon Feedstock ...  

Science Conference Proceedings (OSTI)

Conference Tools for 2014 TMS Annual Meeting & Exhibition ... Symposium, Energy Technologies and Carbon Dioxide Management ... Abstract Scope, Integrated Gasification Combined Cycle for power production is considered a clean ... of Differently Heat Treated Steels in CCS Environment with Supercritical CO2.

334

Answering Key Fuel Cycle Questions  

Science Conference Proceedings (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) program has both outcome and process goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the energy future. Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: What are the AFCI program goals? Which potential waste disposition approaches do we plan for? What are the major separations, transmutation, and fuel options? How do we address proliferation resistance? Which potential energy futures do we plan for? What potential external triggers do we plan for? Should we separate uranium? If we separate uranium, should we recycle it, store it or dispose of it? Is it practical to plan to fabricate and handle hot fuel? Which transuranic elements (TRU) should be separated and transmuted? Of those TRU separated, which should be transmuted together? Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? Should we separate and/or transmute very long-lived Tc and I isotopes? Which separation technology? What mix of transmutation technologies? What fuel technology best supports the above decisions?

Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

2003-10-01T23:59:59.000Z

335

Renewables in India : Status and Future Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewables in India : Status and Future Potential Renewables in India : Status and Future Potential Speaker(s): Luis Fernandes Date: July 9, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose We analyse the status and the trends in the growth of renewables in India. We propose a methodology linking micro-simulation to macro-modelling to obtain technical and economic potential estimates for solar water heaters in residential and commercial and biomass gasifiers for thermal applications in industry. We assess the sustainability of renewables based on the criteria of life cycle cost, net energy ratio, resource constraint and greenhouse gas emissions. The renewable based technologies seem to be sustainable based on all criteria, except the high life cycle cost. In some cases e.g. in wind and biomass based systems land availability may

336

CARBON TETRACHLORIDE  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about carbon tetrachloride.

unknown authors

2005-01-01T23:59:59.000Z

337

Weekly NYMEX Coal Futures  

Reports and Publications (EIA)

The New York Mercantile Exchange (NYMEX) Report provides settlement price data for Central Appalachian (CAPP), Western Powder River Basin (PRB), and Eastern CSX Transportation (CSX) coal futures.

Information Center

338

DOE Manual Studies Terrestrial Carbon Sequestration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manual Studies Terrestrial Carbon Sequestration Manual Studies Terrestrial Carbon Sequestration DOE Manual Studies Terrestrial Carbon Sequestration January 18, 2011 - 12:00pm Addthis Washington, DC - There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage (CCS) "best practices" manual issued by the U.S. Department of Energy. Best Practices for Terrestrial Sequestration of Carbon Dioxide details the most suitable operational approaches and techniques for terrestrial sequestration, a carbon dioxide (CO2) mitigation strategy capable of removing CO2 already in the air. Consequently, terrestrial sequestration, which uses photosynthesis - part of the natural carbon cycle - to create

339

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

340

Carbon-enhanced VRLA batteries.  

Science Conference Proceedings (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FutureGen_factsheet.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vision Vision for Tomorrow's Clean Energy FutureGen - A Sequestration and Hydrogen Research Initiative Responding to the President's Initiatives The Technology The Integrated Sequestration and Hydrogen Research Initiative is a $1 billion government/ industry partnership to design, build and operate a nearly emission-free, coal-fired electric and hydrogen production plant. The 275-megawatt prototype plant will serve as a large scale engineering laboratory for testing new clean power, carbon capture, and coal-to-hydrogen technologies. It will be the cleanest fossil fuel-fired power plant in the world. The project is a direct response to the President's Climate Change and Hydrogen Fuels Initiatives. President Bush emphasized the importance of technology in stabilizing greenhouse gas concentrations in the atmosphere with two major policy announcements: the National Climate

342

CURRENT AND FUTURE IGCC TECHNOLOGIES:  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 16, 2008 DOE/NETL-2008/1337 A Pathway Study Focused on Non-Carbon Capture Advanced Power Systems R&D Using Bituminous Coal - Volume 1 Current and Future IGCC Technologies Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

343

Possible future environmental issues for fossil fuel technologies. Final report  

SciTech Connect

The work reported here was carried out for the Department of Energy's Office of Fossil Energy to identify and assess 15 to 20 major environmental issues likely to affect the implementation of fossil energy technologies between 1985 and 2000. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; and true and modified in situ oil shale retorting. Environmental analysis of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. The 16 environmental issues identified as those most likely for future regulatory actions and the main features of, and the possible regulatory actions associated with, each are as follows: disposal of solid waste from coal conversion and combustion technologies; water consumption by coal and oil shale conversion technologies; siting of coal conversion facilities; the carbon dioxide greenhouse effect; emission of polycyclic organic matter (POM); impacts of outer continental shelf (OCS) oil development; emission of trace elements; groundwater contamination; liquefied natural gas (LNG), safety and environmental factors; underground coal mining - health and safety; fugitive emissions from coal gasification and liquefaction - health and safety; boomtown effects; emission of fine particulates from coal, oil and oil shale technologies; emission of radioactivity from the mining and conversion of coal; emission of nitrogn oxides; and land disturbance from surface mining. (LTN)

Attaway, L.D.

1979-07-01T23:59:59.000Z

344

Success Stories: Carbon Explorer  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL Device Monitors Ocean Carbon LBNL Device Monitors Ocean Carbon Imagine waking up each morning and discovering that twenty percent of all plants in your garden had disappeared over night. They had been eaten. Equally astonishing would be the discovery in the afternoon that new plants had taken their place. This is the norm of life in the ocean. Without the ability to accurately observe these daily changes in ocean life cycles, over vast spatial scales, we lack the ability to predict how the ocean will respond to rising CO2 levels, crippling our ability to develop accurate models of global warming or devise strategies to prevent it. The Carbon Explorer, conceived by Berkeley Lab's James K. Bishop in collaboration with Scripps Institution of Oceanography (La Jolla, California) and WET labs, Inc. (Philomath, Oregon), bridges this

345

Carbon Sequestration on Surface Mine Lands  

Science Conference Proceedings (OSTI)

The first quarter of 2004 was dedicated to tree planting activities in two locations in Kentucky. During the first year of this project there was not available mine land to plant in the Hazard area, so 107 acres were planted in the Martin County mine location. This year 120 acres were planted in the Hazard area to compensate for the prior year and an additional 57 acres were planted on Peabody properties in western Kentucky. Additional sets of special plots were established on each of these areas that contained 4800 seedlings each for carbon sequestration demonstrations. Plantings were also conducted to continue compaction and water quality studies on the newly established areas as well as continual measurements of the first year's plantings. Total plantings on this project now amount to 357 acres containing 245,960 seedlings. During the second quarter of this year monitoring systems were established for all the new research areas. Weather data pertinent to the research as well as hydrology and water quality monitoring continues to be conducted on all areas. Studies established to assess specific questions pertaining to carbon flux and the invasion of the vegetation by small mammals are being quantified. Experimental practices initiated with this research project will eventually allow for the planting on long steep slopes with loose grading systems and allow mountain top removal areas to be constructed with loose spoil with no grading of the final layers of rooting material when establishing trees for the final land use designation. Monitoring systems have been installed to measure treatment effects on both above and below ground carbon and nitrogen pools in the planting areas. Soil and tissue samples were collected from both years planting and analyses were conducted in the laboratory. Examination of decomposition and heterotropic respiration on carbon cycling in the reforestation plots continued during the reporting period. Entire planted trees were extracted from the study area to evaluate carbon accumulation as a function of time on the mine sites. These trees were extracted and separated into the following components: foliage, stems, branches, and roots. Each component was evaluated to determine the contribution of each to the total sequestration value. The fourth quarter of the year was devoted to analyzing the first two years tree planting activities and the evaluation of the results. These analyses included the species success at each of the sites and quantifying the data for future year determination of research levels. Additional detailed studies have been planned to further quantify total carbon storage accumulation on the study areas. At least 124 acres of new plantings will be established in 2005 to bring the total to 500 acres or more in the study area across the state of Kentucky.

Donald H. Graves; Christopher Barton; Bon Jun Koo; Richard Sweigard; Richard Warner

2004-11-30T23:59:59.000Z

346

Fuel Cycle Research & Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Research & Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit proliferation risk. The FCRD program will develop a suite of options to enable future policymakers to make informed decisions about how best to manage used fuel from nuclear reactors. The overall goal is to demonstrate the technologies necessary to allow commercial deployment of solutions for the sustainable management of used

347

The Future of LAB  

Science Conference Proceedings (OSTI)

The global linear alkylbenzene (LAB) industry has experienced depressed margins and feedstock shortages during the past few years. The following is an analysis of the industrys current state and its most likely future. The Future of LAB inform Ma

348

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

349

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

350

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

351

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

352

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

353

Fermilab | Plan for the Future | Fermilab's Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab's Future Fermilab's Future 2013-2015 Next Fermilab's research program for 2015 and beyond New facilities at Fermilab, the nation's dedicated particle physics laboratory, would provide thousands of scientists from across the United States and around the world with world-class scientific opportunities. In collaboration with the Department of Energy and the particle physics community, Fermilab is pursuing a strategic plan that addresses fundamental questions about the physical laws that govern matter, energy, space and time. Fermilab is advancing plans for the best facilities in the world for the exploration of neutrinos and rare subatomic processes, far beyond current global capabilities. The proposed construction of a two-megawatt high-intensity proton accelerator, Project X, would enable a comprehensive

354

Toward an energy surety future.  

SciTech Connect

Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

2005-10-01T23:59:59.000Z

355

PLANAR MEMS SUPERCAPACITOR USING CARBON NANOTUBE FORESTS  

E-Print Network (OSTI)

PLANAR MEMS SUPERCAPACITOR USING CARBON NANOTUBE FORESTS Y.Q. Jiang, Q. Zhou, and L. Lin Mechanical ABSTRACT Planar micro supercapacitors utilizing vertically aligned carbon nanotube (CNT) forests and very robust cycling stability. As such, we believe these planar MEMS supercapacitors could

Lin, Liwei

356

FutureGen Project Launched | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Project Launched FutureGen Project Launched FutureGen Project Launched December 6, 2005 - 4:29pm Addthis Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman today announced that the Department of Energy has signed an agreement with the FutureGen Industrial Alliance to build FutureGen, a prototype of the fossil-fueled power plant of the future. The nearly $1 billion government-industry project will produce electricity and hydrogen with zero-emissions, including carbon dioxide, a greenhouse gas. The initiative is a response to President Bush's directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. Today's announcement marks the official

357

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

358

Duty Cycle Software  

Duty cycles capture the influence of one variable in relations to the whole system. This allows for analysis in determining the impact of new ...

359

Nuclear fuel cycle costs  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1982-02-01T23:59:59.000Z

360

Cycles in fossil diversity  

E-Print Network (OSTI)

Transitions in Global Marine Diversity, Science 281, 1157-know if this cycle is a variation in true diversity or onlyin observed diversity, but either case requires explanation

Rohde, Robert A.; Muller, Richard A.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Future Communications Needs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs Future Communications Needs More Documents & Publications...

362

Fuel cycles and envisioned roles of fast neutron reactors and hybrids  

Science Conference Proceedings (OSTI)

Future innovative nuclear fuel cycles will require insuring sustainability in terms of safe operation, optimal use of resources, radioactive waste minimization and reduced risk of proliferation. The present paper introduces some basic notions and fundamental fuel cycle strategies. The simulation approach needed to evaluate the impact of the different fuel cycle alternatives will also be shortly discussed.

Salvatores, Massimo [CEA-Cadarache, DEN-Dir, Bat. 101, St-Paul-Lez-Durance 13108 (France)

2012-06-19T23:59:59.000Z

363

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

364

Stimulating carbon efficient supply chains : carbon labels and voluntary public private partnerships  

E-Print Network (OSTI)

This thesis looks at the potential of labeling products with life cycle greenhouse gas emission information as a bottom-up, complementary alternative to carbon cap and trade systems. By improving the transparency of product ...

Tan, Kwan Chong

2009-01-01T23:59:59.000Z

365

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

366

Future fuels from Montana  

SciTech Connect

To make America less dependent on foreign oil, Montana Governor Brain Schweitzer pushes for investment in synfuel technology. He advocates coal as the 'new fuel' for cars and believes synfuels from coal can bridge the gap between the petroleum economy of the past and the hydrogen economy of the future. He is pushing for a 'Future Fuels' project to form a public-private partnership to build 20 coal conversion, synfuel manufacturing plants. This could contribute to making the USA energy self-sufficient, more quickly than the FutureGen project, he believes.

Buchsbaum, L.

2006-04-15T23:59:59.000Z

367

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

368

Hydrogen & Our Energy Future  

Fuel Cell Technologies Publication and Product Library (EERE)

Hydrogen & Our Energy Future (40 pages) expands on DOE's series of one-page fact sheets to provide an in-depth look at hydrogen and fuel cell technologies. It provides additional information on the sc

369

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

370

Neural Network Prediction of solar cycle 24  

E-Print Network (OSTI)

The ability to predict the future behavior of solar activity has become of extreme importance due to its effect on the near Earth environment. Predictions of both the amplitude and timing of the next solar cycle will assist in estimating the various consequences of Space Weather. The level of solar activity is usually expressed by international sunspot number ($R_z$). Several prediction techniques have been applied and have achieved varying degrees of success in the domain of solar activity prediction. In this paper, we predict a solar index ($R_z$) in solar cycle 24 by using the neural network method. The neural network technique is used to analyze the time series of solar activity. According to our predictions of yearly sunspot number, the maximum of cycle 24 will occur in the year 2013 and will have an annual mean sunspot number of 65. Finally, we discuss our results in order to compare it with other suggested predictions.

Ajabshirizadeh, A; Abbassi, S

2010-01-01T23:59:59.000Z

371

Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath  

E-Print Network (OSTI)

Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath Ecosystems with Emphasis on Cold-season cycling of carbon and nitrogen in temperate and subarctic heath ecosystems. Over the last three years, I spend many hours introducing me to modeling carbon exchange, thank you. Also thanks to Karina Clemmensen

372

Baseload coal investment decisions under uncertain carbon legislation  

SciTech Connect

More than 50% of electricity in the U.S. is generated by coal. The U.S. has large coal resources, the cheapest fuel in most areas. Coal fired power plants are likely to continue to provide much of U.S. electricity. However, the type of power plant that should be built is unclear. Technology can reduce pollutant discharges and capture and sequester the CO{sub 2} from coal-fired generation. The U.S. Energy Policy Act of 2005 provides incentives for large scale commercial deployment of Integrated Coal Gasification Combined Cycle (IGCC) systems (e.g., loan guarantees and project tax credits). This analysis examines whether a new coal plant should be pulverized coal (PC) or IGCC. Do stricter emissions standards (PM, SO{sub 2}, NOx, Hg) justify the higher costs of IGCC over PC? How does potential future carbon legislation affect the decision to add carbon capture and storage (CCS) technology? Finally, can the impact of uncertain carbon legislation be minimized? We find that SO{sub 2}, NOx, PM, and Hg emission standards would have to be far more stringent than twice current standards to justify the increased costs of the IGCC system. A CO{sub 2} tax less than $29/ton would lead companies to continuing to choose PC, paying the tax for emitted CO{sub 2}. The earlier a decision-maker believes the carbon tax will be imposed and the higher the tax, the more likely companies will choose IGCC with CCS. Having government announce the date and level of a carbon tax would promote more sensible decisions, but government would have to use a tax or subsidy to induce companies to choose the technology that is best for society. 14 refs., 6 figs., 4 tabs.

Joule A. Bergerson; Lester B. Lave [University of Calgary, Calgary, AB (Canada)

2007-05-15T23:59:59.000Z

373

Future land use plan  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

NONE

1995-08-31T23:59:59.000Z

374

Carbon dioxide for enhanced oil recovery  

SciTech Connect

The current status and outlook for carbon dioxide in the immediate future has been examined by Kenneth M. Stern of Chem Systems Inc. Stern. Most of the tonnage carbon dioxide being used for EOR comes from natural gas wells. Major projects are now in progress to develop natural carbon dioxide sources and to transport the gas via pipeline to the injection region. These projects and the maximum permissible cost of carbon dioxide at current petroleum prices are discussed. Potential sources include exhaust gases from power plants, natural gas processing plants, chemical plants, and natural carbon dioxide wells.

Not Available

1986-04-28T23:59:59.000Z

375

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

376

The Anderson Quin Cycle  

SciTech Connect

The objective of this study was to make a more refined evaluation of the Anderson Quin Cycle based on most recent information on the performance of various elements that will be used in the Anderson Quin Cycle. My original estimate of the work plan for evaluating and optimizing the Anderson Quin Cycle called for 7000 man hours of work. Since this grant was limited to 2150 man hours, we could not expect to achieve all the objectives within the allotted period of work. However, the most relevant program objectives have been completed as reported here. The analysis generally confirms the results originally estimated in my paper on the subject. (Ref. 2) Further optimizations should show even higher efficiencies. The Anderson Quin Cycle (US Patent applied for) basically consists of 5 elements in the power cycle: A refrigeration system to cool and clean the inlet air before it enters the compressor that supplies air for the gas turbine; a gas turbine consisting of a compressor, combustor, and turbine; a steam boiler and steam turbine system using the heat from the exhaust gas out of the gas turbine; a vapor turbine cycle, which utilizes the condensed heat from the exhaust of the steam turbine and the exhaust gas heat leaving the steam boiler to operate a vapor turbine cycle which utilizes another fluid than water, in this case isobutane; and the fifth element consists of a gas cooler and heat pump system, which removes the heat from the exhaust gas to lower its temperature essentially to atmospheric temperature, and at the same time permits treatment of the exhaust gas to remove acid components such as sulfur dioxide and nitrogen oxides. Current industry accepted component characteristics were incorporated in the performance analysis of the overall cycle, ensuring accurate and meaningful operating predictions. The characteristics and performance of each of the elements are described. The thermal efficiency of the optimized calculated Anderson Quin Cycle is 62 percent.

Anderson, J.H.; Bilbow, W.M.

1993-03-18T23:59:59.000Z

377

FutureGen 2.0 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal » Major Demonstrations » Clean Coal » Major Demonstrations » FutureGen 2.0 FutureGen 2.0 On August 5, 2010, U.S. Energy Secretary Steven Chu announced the awarding of $1 billion in Recovery Act funding to the FutureGen Alliance, Ameren Energy Resources, Babcock & Wilcox, and Air Liquide Process & Construction, Inc. to build FutureGen 2.0, a clean coal repowering program and carbon dioxide (CO2) storage network. The project partners will repower Ameren's 200 megawatt Unit 4 in Meredosia, Illinois with advanced oxy-combustion technology to capture approximately 1.3 million tonnes of CO2 each year - more than 90 percent of the plant's carbon emissions. Other emissions will be reduced to near zero levels. Oxy-combustion burns coal with a mixture of oxygen and CO2 instead of air

378

Combined cycle phosphoric acid fuel cell electric power system  

DOE Green Energy (OSTI)

By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

Mollot, D.J.; Micheli, P.L.

1995-12-31T23:59:59.000Z

379

Cycle isolation monitoring  

SciTech Connect

There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C. [Santee Copper, Moncks Corner, SC (United States)

2009-07-15T23:59:59.000Z

380

Cycle Chemistry Improvement Program  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. This report, which describes formal cycle chemistry improvement programs at nine utilities, will assist utilities in achieving significant operation and maintenance cost reductions.

1997-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Crude Oil Price Cycles  

Gasoline and Diesel Fuel Update (EIA)

The heating oil and diesel fuel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle. Over the past 10...

382

Crude Oil Price Cycles  

U.S. Energy Information Administration (EIA)

The heating oil and diesel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle.

383

The Annual Agricultural Cycle  

E-Print Network (OSTI)

. Sman shad agriculture 1.WAV Length of track 00:44:03 Related tracks (include description/relationship if appropriate) Title of track The Annual Agricultural Cycle Translation of title Description (to be used in archive entry...

Zla ba sgrol ma

2009-11-16T23:59:59.000Z

384

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

385

Challenges for improving estimates of soil organic carbon stored in  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenges for improving estimates of soil organic carbon stored in Challenges for improving estimates of soil organic carbon stored in permafrost regions September 30, 2013 Tweet EmailPrint One of the greatest environmental challenges of the 21st century lies in predicting the impacts of anthropogenic activities on Earth's carbon cycle. Soil is a significant component of the carbon cycle, because it contains at least two-thirds of the world's terrestrial carbon and more than twice as much carbon as the atmosphere. Although soil organic carbon (SOC) stocks were built over millennial time scales, they are susceptible to a far more rapid release back to the atmosphere due to climatic and land use change. If environmental perturbations negatively impact the processes regulating the storage of SOC, significant amounts of this carbon could be decomposed

386

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

387

Analysis on Distribution Characteristics of Soil Carbon Pool in Mining Subsidence Wetlands  

Science Conference Proceedings (OSTI)

There are short cycle, intensity disturbance and other characteristics about formation of subsided wetlands in mining coal area with higher groundwater table, ?nthere are also differences to general wetlands about conversion of carbon sources, ... Keywords: Carbon Pool, Distribution, Mining Areas

Qu Junfeng, Zhang Shaoliang, Xu Zhanjun, Zhang Ying

2013-01-01T23:59:59.000Z

388

IM Future | Open Energy Information  

Open Energy Info (EERE)

IM Future Jump to: navigation, search Name IM Future Place Spain Sector Services, Wind energy Product Spain-based firm that provides operation and maintenance services for wind...

389

Secular Cycles and Millennial Trends  

E-Print Network (OSTI)

both secular cycles and millennial up- ward trend dynamics.Cycles and Millennial Trends by Andrey Korotayev, ArtemySecular Cycles and Millennial Trends 1 Initially, we want to

Korotayev, Andrey V; Malkov, Artemy S; Khaltourina, Daria A

2006-01-01T23:59:59.000Z

390

Carbonate fuel cell matrix strengthening  

DOE Green Energy (OSTI)

The present baseline electrolyte matrix is a porous ceramic powder bed impregnated with alkali carbonate electrolyte. The matrix provides both ionic conduction and gas sealing. During fuel cell stack operation, the matrix experiences both mechanical and thermal stresses. Different mechanical characteristics of active and wet seal areas generate stress. Thermal stress is generated by nonuniform temperature distribution and thermal cycling. A carbonate fuel cell generally may experience planned and unplanned thermal cycles between 650 C and room temperature during its 40,000h life. During the cycling, the electrolyte matrix expands and contracts at a different rate from other cell components. Furthermore, the change in electrolyte volume associated with freezing/melting may generate additional thermal stress. Strengthening of the matrix may be beneficial for longer-term stability of the carbonate fuel cell with respect to repeated thermal cycling. Several promising strengtheners with improved chemical and mechanical stabilities were identified. Fibers provide the highest strengthening effect, followed by particulates. Matrix fabrication technique was successfully modified for uniformly incorporating the advanced strengtheners, maintaining the desired aspect ratio. Enhanced gas sealing demonstrated using the advanced matrices.

Yuh, C.Y.; Haung, C.M.; Johnsen, R.

1995-12-31T23:59:59.000Z

391

Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System  

Science Conference Proceedings (OSTI)

Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

2013-08-08T23:59:59.000Z

392

Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Carbon Nanotubes. Sponsored by: TMS Electronic, Magnetic and Photonic Materials Division Date and Time: Sunday, February 13, 2005 ~ 8:30 am-5:00 pm

393

Carbon Nanomaterials  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... The graphene film was spin-coated using carbon nanotubes to form the cathode of the field emission device. A phosphor coated graphene-PET...

394

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Evgeny G. Fateev

2013-01-20T23:59:59.000Z

395

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Fateev, Evgeny G

2013-01-01T23:59:59.000Z

396

Carbon sequestration research and development  

SciTech Connect

Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

1999-12-31T23:59:59.000Z

397

Fuel Cycle and Isotopes Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Divisions Fuel Cycle and Isotopes Division Jeffrey Binder, Division Director Jeffrey Binder, Division Director The Fuel Cycle and Isotopes Division (FCID) of the Nuclear Science...

398

Paleoreconstruction of Particulate Organic Carbon Inputs to the High-Arctic Colville River Delta, Beaufort Sea, Alaska  

E-Print Network (OSTI)

High Arctic permafrosted soils represent a massive sink in the global carbon cycle, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger of thawing and potentially releasing large amounts of carbon as both carbon dioxide and methane into the atmosphere. It is difficult to make predictions about the future of this sink without knowing how it has reacted to past temperature and climate changes. This dissertation summarizes the results of the first study to look at long term, fine scale organic carbon delivery by the high-Arctic Colville River into Simpsons Lagoon in the near-shore Beaufort Sea. Modern delivery of organic carbon to the Lagoon was determined to come from a variety of sources through the use of a three end-member mixing model and sediment biomarker concentrations. These sources include the Colville River in the western area of the Lagoon near the river mouth, marine sources in areas of the Lagoon without protective barrier islands, and coastal erosional sources and the Mackenzie River in the eastern area of the Lagoon. Downcore organic carbon delivery was measured on two cores in the Lagoon, one taken near the mouth of the Colville River (spans about 1800 years of history) and one taken on the eastern end of the Lagoon (spans about 600 years of history). Bulk organic parameters and biomarkers were measured in both cores and analyzed with Principle Component Analysis to determine long-term trends in organic carbon delivery. It was shown that at various times in the past, highly degraded organic carbon inputs of what is likely soil and peat carbon were delivered to the Lagoon. At other times, inputs of fresher, non-degraded, terrestrially-derived organic carbon inputs of what are likely higher amounts of plant and vegetative material was delivered to the Lagoon. Inputs of degraded soil carbon were also shown to correspond to higher temperatures on the North Slope of Alaska, likely indicating that warmer temperatures lead to a thawing of permafrost and in turn organic carbon mobilization to the coastal Beaufort Sea.

Schreiner, Kathryn 1983-

2013-05-01T23:59:59.000Z

399

NETL: Carbon Storage - Carbon Sequestration Leadership Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

CSLF Carbon Storage Carbon Sequestration Leadership Forum CSLF Logo The Carbon Sequestration Leadership Forum (CSLF) is a voluntary climate initiative of industrially developed and...

400

Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. 38 refs., 11 figs., 5 tabs.

Yunhua Zhu; H. Christopher Frey [Pacific Northwest National Laboratory, Richland, WA (United States)

2006-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Helium process cycle  

DOE Patents (OSTI)

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2007-10-09T23:59:59.000Z

402

Helium process cycle  

SciTech Connect

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2007-10-09T23:59:59.000Z

403

Helium process cycle  

DOE Patents (OSTI)

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2008-08-12T23:59:59.000Z

404

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

405

Qualitative and Quantitative Comparison of Two Promising Oxy-Fuel Power Cycles for CO2 Capture Presentation at the  

E-Print Network (OSTI)

Worldwide ever rising emissions of greenhouse gases to atmosphere-> global warming and environmental change Kyoto Protocol demands the reduction of greenhouse gases, mainly CO2 In EU: strong pressure on utilities and companies to reduce CO2 emissions Carbon capture and storage (CCS) as short and mid term solution Background- II (CCS Technologies) Post-combustion: CO2-Capture from exhaust gas (chemical absorbtion, membranes, ) Pre-combustion: Decarbonization of fossil fuel to produce pure hydrogen for power cycle (e.g. steam reforming of methane, ) Oxy-fuel power generation: Internal combustion with pure oxygen and CO2/H2O as working fluid enabling CO2 separation by condensation Which technology has the best chances to dominate future power generation?

Thermal Turbomaschinery; Asme Turbo Expo; Wolfgang Sanz; Herbert Jericha; Bernhard Bauer; Emil Gttlich

2007-01-01T23:59:59.000Z

406

Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO? capture  

E-Print Network (OSTI)

Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new ...

Hong, Jongsup

2009-01-01T23:59:59.000Z

407

Dynamic response of the supercritical C0? Brayton recompression cycle to various system transients  

E-Print Network (OSTI)

The supercritical carbon dioxide (SC0?) power conversion system has been suggested for use with many of the Generation IV nuclear reactors. The SC0? cycle is highly attractive because of its low operating temperatures and ...

Trinh, Tri Q. (Tri Quang)

2009-01-01T23:59:59.000Z

408

Advances in measurements of particle cycling and fluxes in the ocean  

E-Print Network (OSTI)

The sinking flux of particles is an important removal mechanism of carbon from the surface ocean as part of the biological pump and can play a role in cycling of other chemical species. This work dealt with improving methods ...

Owens, Stephanie Anne

2013-01-01T23:59:59.000Z

409

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

410

Superfluid thermodynamic cycle refrigerator  

DOE Patents (OSTI)

This invention is comprised of a cryogenic refrigerator which cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He/[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Swift, G.W.; Kotsubo, V.Y.

1991-04-02T23:59:59.000Z

411

Superfluid thermodynamic cycle refrigerator  

DOE Patents (OSTI)

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

Swift, G.W.; Kotsubo, V.Y.

1992-12-22T23:59:59.000Z

412

Superfluid thermodynamic cycle refrigerator  

DOE Patents (OSTI)

This invention is comprised of a cryogenic refrigerator which cools a heat source by cyclically concentrating and diluting the amount of {sup 3}He in a single phase {sup 3}He/{sup 4}He solution. The {sup 3}He in superfluid {sup 4}He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid {sup 3}He at an initial concentration in superfluid {sup 4}He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of {sup 4}He while restricting passage of {sup 3}He. The {sup 3}He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Swift, G.W.; Kotsubo, V.Y.

1991-04-02T23:59:59.000Z

413

Superfluid thermodynamic cycle refrigerator  

DOE Patents (OSTI)

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

1992-01-01T23:59:59.000Z

414

Regulatory cross-cutting topics for fuel cycle facilities.  

Science Conference Proceedings (OSTI)

This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

2013-10-01T23:59:59.000Z

415

Driving the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

the Future the Future A r g o n n e ' s v e h i c l e s ys t e m s r e s e A r c h 3 2 v e h i c l e s y s t e m s r e s e a r c h At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help reduce our nation's petroleum consumption and greenhouse gas emissions. Our Vehicle Systems research focuses on maximizing vehicle performance and efficiency through in-depth studies of the interactions and integration of components and controls in a large, complex vehicle system. Working with the U.S. Department of Energy (DOE) and the automotive industry, we investigate the potential of vehicle technologies ranging from alternative fuels to advanced powertrains, such as plug-in hybrids and electric vehicles. Funding

416

California Energy Commission Assessment of Natural Gas Combined Cycle  

E-Print Network (OSTI)

California Energy Commission 1 Assessment of Natural Gas Combined Cycle Plants for Carbon Dioxide Capture and Storage in a Gas-Dominated Electricity Market California Energy Commission Request for Proposals RFP # 500-10-502 Pre-Bid Conference Date: Wednesday, November 3, 2010 #12;California Energy

417

A Comparative Life Cycle Assessment of Petroleum and  

E-Print Network (OSTI)

,eutrophicationimpactsaremuchgreaterduetonon- point nutrient emissions. Fundamental tradeoffs in the carbon and nitrogen cycles are addressed sector produces approximately two and a half billion gallons of vegetable oils annually, with 2). Recent chemical modifications improve the oxidative stability of vegetable oils, demonstrat- ing

Illinois at Chicago, University of

418

Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research  

Science Conference Proceedings (OSTI)

This report provides a critical review of existing literature and modeling tools related to life-cycle assessment (LCA) applied to pavements. The review finds that pavement LCA is an expanding but still limited research topic in the literature, and that the existing body of work exhibits methodological deficiencies and incompatibilities that serve as barriers to the widespread utilization of LCA by pavement engineers and policy makers. This review identifies five key issues in the current body of work: inconsistent functional units, improper system boundaries, imbalanced data for asphalt and cement, use of limited inventory and impact assessment categories, and poor overall utility. This review also identifies common data and modeling gaps in pavement LCAs that should be addressed in future work. These gaps include: the use phase (rolling resistance, albedo, carbonation, lighting, leachate, and tire wear and emissions), asphalt fumes, feedstock energy of bitumen, traffic delay, the maintenance phase, and the end-of-life phase. This review concludes with a comprehensive list of recommendations for future research, which shed light on where improvements in knowledge can be made that will benefit the accuracy and comprehensiveness of pavement LCAs moving forward.

Santero, Nicholas; Masanet, Eric; Horvath, Arpad

2010-04-20T23:59:59.000Z

419

Blue Ribbon Commission on America's Nuclear Future Charter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blue Ribbon Commission on America's Nuclear Future Charter Blue Ribbon Commission on America's Nuclear Future Charter Blue Ribbon Commission on America's Nuclear Future Charter March 2, 2010 - 12:00am Addthis The Secretary of Energy, acting at the direction of the President, is establishing the Commission to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, including all alternatives for the storage, processing, and disposal of civilian and defense used nuclear fuel, high-level waste, and materials derived from nuclear activities. Specifically, the Commission will provide advice, evaluate alternatives, and make recommendations for a new plan to address these issues, including: Evaluation of existing fuel cycle technologies and R&D programs. Criteria for evaluation should include cost, safety, resource utilization

420

Regional business cycles in Italy  

Science Conference Proceedings (OSTI)

There is clear evidence for differences in the structure of the Italian regional business cycle in the period 1951-2004: the relationship with the national business cycle is closer in the North than in the South. The interaction between regional cycles ... Keywords: Regional business cycles, Spectral analysis, Stylized facts

Camilla Mastromarco; Ulrich Woitek

2007-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

AFIP-6 MKII First Cycle Report  

SciTech Connect

The first fuel plate frame assembly of the AFIP-6 MKII experiment was irradiated as planned from December, 2011 through February, 2012 in the center flux trap of the Advanced Test Reactor during cycle 151A. Following irradiation in this cycle and while reconfiguring the experiment in the ATR canal, a non-fueled component (the bottom plate) of the first fuel plate frame assembly became separated from the rail sides. There is no evidence that the fueled region of the fuel plate frame assembly was compromised by this incident or the irradiation conditions. The separation of this component was determined to have been caused by flow induced vibrations, where vortex shedding frequencies were resonant with a natural frequency of the bottom plate component. This gave way to amplification, fracture, and separation from the assembly. Although parallel flow induced vibrations were analyzed, vortex shedding flow induced vibrations was an unfamiliar failure mode that was difficult to identify. Both the once-irradiated first fuel plate and un-irradiated second fuel plate frame assemblies were planned for irradiation in the subsequent cycle 151B. The AFIP-6 MKII experiment was excluded from irradiation in cycle 151B because non-trivial design modifications would be needed to mitigate this type of incident during the second irradiation cycle. All items of the experiment hardware were accounted for and cycle 151B occurred with a non-fueled AFIP backup assembly in the center flux trap. Options for completion of the AFIP-6 MKII experiment campaign are presented and future preventative actions are recommended.

N.E. Woolstenhulme

2012-03-01T23:59:59.000Z

422

Department of Energy and FutureGen Alliance Discuss Next Steps for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and FutureGen Alliance Discuss Next Steps for and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 20, 2010 - 1:00pm Addthis Washington, DC - Officials from the Department of Energy, the state of Illinois, Ameren, Babcock & Wilcox, American Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture and storage project in Illinois. The project remains on track for obligation before the end of September. Preparations will then begin for the repowering of Unit 4 at the Ameren facility in Meredosia, with construction set to begin in 2012. At the same time, following DOE best practices, a site selection process will be conducted to locate a site for the carbon

423

Electricity Network Investment and Regulation for a Low Carbon Future  

E-Print Network (OSTI)

Charges Effective from 01 April 2005, London: National Grid It is recognised that high TNUoS charges could have a detrimental effect on renewable development in North of Scotland, where a considerable renewable resource (wind and marine) 9... links such as North-South DC cables could be proposed and built by third parties. Some links to Scottish Islands, the Netherlands and offshore generation may be built under this type of arrangement. 13 4.2 Constructive Engagement Regulated...

Pollitt, Michael G.; Bialek, Janusz

424

The Future of Low-Carbon Transportation Fuels  

E-Print Network (OSTI)

, grease, tallow, waste oil, algae Nuclear Oil resources Unconventional: oil shale liquid, oil sands Coal

California at Davis, University of

425

Electricity solutions for a carbon-constrained future  

SciTech Connect

A successful response to the threat of climate change will require substantial technical work as well as practical problem solving in the political, regulatory and public areas. EPRI's 2007 Summer Seminar brought together regulatory, industry, academic, and policy leaders to discuss critical issues and delineate the initiating actions required to begin resolving the climate dilemma. Although the global nature of climate change amplifies its complexity and uncertainly, technology must play a leading role in winnowing opportunity from challenge and crafting a viable solution. 6 figs.

Schimmoller, B. [EPRI (United States)

2007-09-30T23:59:59.000Z

426

Use expander cycles for LPG recovery  

SciTech Connect

Expander-type cycles are competitive with other gas recovery processes even when applied to relatively rich gas feeds for a high recovery of only propane plus. These cycles are the most economical to use when (1) ''free pressure drop'' is available between feed and residue gas pressure; (2) product requires demethanization only; (3) feed is very lean and propane plus heavier components are required; (4) a small, unattended, prefabricated unit for LPG recovery is needed; (5) an offshore LPG facility is required to be built on a platform where space and weight allowance is at a premium; (6) a facility is initially built for propane recovery, but is planned for future conversion to ethane recovery; and (7) relatively low-pressure gas feeds (which are usually quite rich) must be processed for a high recovery of ethane. A flow chart for an oil absorption plant is presented.

Valdes, A.R.

1974-01-01T23:59:59.000Z

427

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

428

NETL: News Release - Secretary Chu Announces Agreement on FutureGen...  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2009 Secretary Chu Announces Agreement on FutureGen Project in Mattoon, Illinois Paves Way for First U.S. Commercial Scale Carbon Capture and Storage Project Washington, D.C. -...

429

NETL: News Release - DOE Estimates Future Water Needs for Thermoelectric  

NLE Websites -- All DOE Office Websites (Extended Search)

December 6, 2007 December 6, 2007 DOE Estimates Future Water Needs for Thermoelectric Power Plants 2007 Analysis Adds Projected Water Requirements for Carbon Capture WASHINGTON, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has released a 2007 update to its groundbreaking study, Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements. The updated analysis increases understanding of regional and national water needs and usage in the power industry, and provides input for research and development aimed at water-use reduction. MORE INFO Link to the updated study NETL's Water-Energy Interface web page New in this year's report is a response to heightened concerns over atmospheric carbon dioxide. The report examines the possibility that future

430

CARBON SEQUESTRATION ON SURFACE MINE LANDS  

Science Conference Proceedings (OSTI)

A monitoring program to measure treatment effects on above ground, and below ground carbon and nitrogen pools for the planting areas is being conducted. The collection of soil and tissue samples from both the 2003 and 2004 plantings is complete and are currently being processed in the laboratory. Detailed studies have been initiated to address specific questions pertaining to carbon cycling. Examinations of decomposition and heterotropic respiration on carbon cycling in the reforestation plots were continued during this reporting period. A whole-tree harvesting method was employed to evaluate carbon accumulation as a function of time on the mined site. The trees were extracted from the sites and separated into the following components: foliage, stems, branches, and roots.

Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

2004-11-30T23:59:59.000Z

431

DOE Joint Genome Institute: Tracking the Remnants of the Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking the Remnants of the Carbon Cycle: How an Ancestral Fungus May Have Influenced Coal Formation For want of a nail, the nursery rhyme goes, a kingdom was lost. A similar,...

432

Integrated Gasification Combined Cycle (IGCC) Design Considerations for High Availability  

Science Conference Proceedings (OSTI)

This report analyses public domain availability data from Integrated Gasification Combined Cycles (IGCC) and other significant coal gasification facilities, backed up with additional data gained from interviews and discussions with plant operators. Predictions for the availability of future IGCCs are made based on the experience of the existing fleet and anticipated improvements from the implementation of lessons learned.

2007-03-26T23:59:59.000Z

433

Modelling life cycle and population dynamics of Nostocales (cyanobacteria)  

Science Conference Proceedings (OSTI)

Cyanobacteria of the order Nostocales found in lakes in temperate regions are generally assumed to benefit from climate change. To predict their future development under varying environmental conditions, we developed a mathematical model that simulates ... Keywords: Cylindrospermopsis raciborskii, Hasse diagram, Life cycle, Nostocales, Population dynamics, Shallow lake

K. D. Jhnk; R. Brggemann; J. Rcker; B. Luther; U. Simon; B. Nixdorf; C. Wiedner

2011-05-01T23:59:59.000Z

434

Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities  

SciTech Connect

Modification and loss of forests due to natural and anthropogenic disturbance contribute an estimated 20% of annual greenhouse gas (GHG) emissions worldwide. Although forest carbon pool modeling rarely suggests a 'carbon neutral' flux profile, the life cycle assessment community and associated product carbon footprint protocols have struggled to account for the GHG emissions associated with forestry, specifically, and land use generally. Principally, this is due to underdeveloped linkages between life cycle inventory (LCI) modeling for wood and forest carbon modeling for a full range of forest types and harvest practices, as well as a lack of transparency in globalized forest supply chains. In this paper, through a comparative study of U.S. and Chinese coated freesheet paper, we develop the initial foundations for a methodology that rescales IPCC methods from the national to the product level, with reference to the approaches in three international product carbon footprint protocols. Due to differences in geographic origin of the wood fiber, the results for two scenarios are highly divergent. This suggests that both wood LCI models and the protocols need further development to capture the range of spatial and temporal dimensions for supply chains (and the associated land use change and modification) for specific product systems. The paper concludes by outlining opportunities to measure and reduce uncertainty in accounting for net emissions of biogenic carbon from forestland, where timber is harvested for consumer products. - Highlights: Black-Right-Pointing-Pointer Typical life cycle assessment practice for consumer products often excludes significant land use change emissions when estimating carbon footprints. Black-Right-Pointing-Pointer The article provides a methodology to rescale IPCC guidelines for product-level carbon footprints. Black-Right-Pointing-Pointer Life cycle inventories and product carbon footprint protocols need more comprehensive land use-related accounting. Black-Right-Pointing-Pointer Interdisciplinary collaboration linking the LCA and forest carbon modeling communities is necessary.

Newell, Joshua P., E-mail: jpnewell@umich.edu [School of Natural Resources and Environment, University of Michigan, Ann Arbor (United States); Vos, Robert O., E-mail: vos@usc.edu [Spatial Sciences Institute, University of Southern California (United States)

2012-11-15T23:59:59.000Z

435

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

436

NETL: Gasifipedia - Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Carbon sequestration, also termed carbon storage, is the permanent storage of CO2, usually in deep geologic formations. Industrially-generated CO2 -- resulting from fossil fuel combustion, gasification, and other industrial processes -- is injected as a supercritical fluid into geologic reservoirs, where it is held in place by natural traps and seals. Carbon storage is one approach to minimizing atmospheric emissions of man-made CO2. As discussed above, the main purpose of CO2 EOR such as the Weyburn Project is tertiary recovery of crude oil, but in effect substantial CO2 remains sequestered/stored as a result. Current Status of CO2 Storage CO2 storage is currently underway in the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway and the Weyburn-Midale CO2 Project in Canada, have been injecting CO2 into geologic storage formations more than a decade. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, as well. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. In addition, a number of smaller pilot projects are underway in different parts of the world to determine suitable locations and technologies for future long-term CO2 storage. To date, more than 200 small-scale CO2 storage projects have been carried out worldwide. A demonstration project that captures CO2 from a pulverized coal power plant and pipes it to a geologic formation for storage recently came online in Alabama.

437

Comparative study and evaluation of advanced-cycle systems. Final report  

DOE Green Energy (OSTI)

This volume presents 3 appendices (A, B, and C) containing data dealing with the advanced power cycles evaluated. They are: Phase 1 Power Cycles Data Tabulation; Phase 2 Power Cycles--Conceptual Designs; and Summary of Power Cycle Data and Development Plans from the Energy Conversion Alternatives Study. The 19 advanced cycles and their fuels evaluated in Phase 1 and two reference cycles (last two) are: advanced steam, atmospheric fluidized-bed furnace, coal; advanced steam, conventional furnace, No. 6 oil; advanced steam, high-temperature gas-cooled reactor, nuclear; advanced steam, liquid metal fast breeder reactor, nuclear; advanced open-cycle gas turbine, recuperative, air-cooled, high Btu gas derived from coal; advanced open-cycle gas turbine, recuperative, air-cooled, No. 6 oil; advanced open-cycle gas turbine, combined-cycle, air-cooled, low-Btu gas derived from coal; advanced open-cycle gas turbine, combined-cycle, water-cooled, low-Btu gas derived from coal; advanced open-cycle gas turbine combined-cycle, water-cooled, liquid semiclean fuel derived from coal; closed-cycle gas turbine, supercritical carbon dioxide, atmospheric fluidized-bed, coal; closed-cycle gas turbine, helium atmospheric fluidized-bed, coal; closed-cycle gas turbine, helium, high-temperature gas-cooled reactor, nuclear; open-cycle plasma MHD, coal; closed-cycle plasma MHD, conventional furnace, coal; liquid-metal MHD, atmospheric fluidized-bed, coal; metal-vapor turbine, atmospheric fluidized-bed, coal; thermionic, conventional furnace, coal; fuel-cell, low-temperature, hydrogen derived from coal; fuel-cell, low-temperature, No. 6 oil; conventional steam with stack gas scrubbing (reference case for base load and midrange), coal; and simple-cycle gas turbine (reference case for peaking), high-Btu gas derived from coal. (MCW)

Pomeroy, B.D.; Fleck, J.J.; Marsh, W.D.; Brown, D.H.; Shah, R.P.

1978-02-01T23:59:59.000Z

438

Securing Our Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Energy Our Energy Securing Our Energy Future Future World Energy Demand Growing Dramatically 12 1400 1200 10 1000 2000 2050 2100 Population of Population of Industrialized Countries Industrialized Countries Wo W rl r d o ld Po P pu p la l ti t on o o u a i n Wo W rl r d E d ne n rg r y o l E e gy Co C ns n um u pt p io i n o s m t on Population (Billions) Energy Consumption (Qbtu / yr) 8 800 6 600 4 400 2 200 0 0 1900 1950 Year U.S. Electricity Generation by Fue U.S. Electricity Generation by Fuel Electric Generation by Fuel 1980 - 2030 (billion kilowatt-hours) 0 1000 2000 3000 4000 5000 6000 1980 1990 2000 2010 2020 2030 Renewables/Other Nuclear Natural Gas Petroleum Coal Source: EIA Annual Energy Outlook 2008 Why Do We Keep Coal in the Mix? Why Do We Keep Coal in the Mix? World Energy Reserves World Energy Reserves Source: Energy Information Administration/ International Reserves Data

439

NYMEX Futures Prices  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Futures Prices NYMEX Futures Prices (Crude Oil in Dollars per Barrel, All Others in Dollars per Gallon) Period: Daily Weekly Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/ Contract 12/10/13 12/11/13 12/12/13 12/13/13 12/16/13 12/17/13 View History Crude Oil (Light-Sweet, Cushing, Oklahoma) Contract 1 98.51 97.44 97.5 96.6 97.48 97.22 1983-2013 Contract 2 98.66 97.72 97.82 96.93 97.77 97.47 1985-2013 Contract 3 98.58 97.72 97.77 96.91 97.7 97.36 1983-2013 Contract 4 98.19 97.39 97.42 96.55 97.28 96.92 1985-2013 Reformulated Regular Gasoline (New York Harbor) Contract 1 1985-2006 Contract 2 1994-2006 Contract 3 1984-2006 Contract 4 1994-2006 RBOB Regular Gasoline (New York Harbor)

440

Program on Technology Innovation: Modified Brayton Cycle for Use in Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

A modified closed Brayton cycle using supercritical carbon dioxide (SCO2) as the working fluid is being proposed for a number of power generation applications. The technology offers the prospect of increased plant efficiency and reduced plant cost. This report compares candidate closed Brayton cycle performance with advanced ultra-supercritical steam-Rankine cycle performance.BackgroundIncreasing the efficiency of coal-fired steam-electric power ...

2013-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "future carbon cycle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural gas storage on activated carbon  

SciTech Connect

Natural gas is a good fuel for internal combustion engines, but its low energy density is a significant drawback. The energy density can be increased by adsorption on a high surface area activated carbon. But with usage, some of the constituents in the natural gas composition accumulate on the carbon and reduce its adsorptivity. The adsorption desorption of natural gas on 9LXC activated carbon was investigated to 100 cycles at 21/sup 0/C and pressures of up to 12 MPa. The decrease in the capacity, G, as a function of the number of cycles, N, was found to follow the empirical correlation: G/G /SUB o/ = 1 - 0.085Log(N). Analysis of the activated carbon after 100 cycles showed accumulation of C/sub 4/ and higher hydrocarbons but not of C/sub 2/ and C/sub 3/. For automotive applications, activated carbon appears practical in a narrow pressure range, centering around 7 MPa (1000 psig). The preferred storage is at a pressure of 17 MPa or higher, without the use of activated carbons.

Golovoy, A.; Blais, E.J.

1983-10-01T23:59:59.000Z

442

Fuel Cycle Subcommittee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report to NEAC Report to NEAC Fuel Cycle Subcommittee Meeting of April 23, 2013 Washington D.C. June 13, 2013 Burton Richter (Chair), Margaret Chu, Darleane Hoffman, Raymond Juzaitis, Sekazi K Mtingwa, Ronald P Omberg, Joy L Rempe, Dominique Warin 2 I Introduction and Summary The Fuel Cycle Subcommittee of NEAC met in Washington on April 23, 2013. The meeting focused on issues relating to the NE advanced reactor program (sections II, III, and IV), and on storage and transportation issues (section V) related to a possible interim storage program that is the first step in moving toward a new permanent repository as recommended by the Blue Ribbon Commission (BRC) and discussed in the recent response by DOE to Congress on the BRC report 1 . The agenda is given in

443

Hydrogen & Our Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

444

A Comprehensive Model for Evaluation of Carbon Footprint and Greenhouse Gages Emission in Household Biogas Plants  

Science Conference Proceedings (OSTI)

Based on Life Cycle Assessment and other related methods, this paper introduced a comprehensive model for the evaluation of the carbon footprint and greenhouse gases emission in household biogas plants including nearly all the processes of the household ... Keywords: Biogas Plant, Carbon Footprint, Life Cycle, Greenhouse Gas

Jie Zhou; Shubiao Wu; Wanqin Zhang; Changle Pang; Baozhi Wang; Renjie Dong; Li Chen

2012-07-01T23:59:59.000Z

445

Forest Carbon Index | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Index Forest Carbon Index Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Carbon Index Agency/Company /Organization: Resources for the Future Partner: United Nations Foundation Sector: Land Focus Area: Forestry Topics: Finance, GHG inventory, Market analysis Resource Type: Maps, Software/modeling tools User Interface: Website Website: www.forestcarbonindex.org/ Web Application Link: www.forestcarbonindex.org/maps.html Cost: Free References: Forest Carbon Index [1] The Forest Carbon Index (FCI) compiles and displays global data relating to biological, economic, governance, investment, and market readiness conditions for every forest and country in the world, revealing the best places and countries for forest carbon investments. Please use this site to

446

Stirling cycle engine  

DOE Patents (OSTI)

In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

Lundholm, Gunnar (Lund, SE)

1983-01-01T23:59:59.000Z

447

The Energy Strategy Cycle  

E-Print Network (OSTI)

Effective long-range energy planning begins with a reflective analysis that encompasses the complexity of today's energy reality and sets a course for activity to achieve long-range continuing advancement. This strategy approach involves an interrelated 'cycle' that once started and controlled in the proper direction is almost self-building in improvement. Energy conservation is the driving force to create additive progress involving system flexibility, process integration, and less energy dependence.

Korich, R. D.

1983-01-01T23:59:59.000Z

448

USCEA fuel cycle '93  

SciTech Connect

The US Council for Energy Awareness sponsored the Fuel Cycle '93 conference in Dallas, Texas, on March 21-24, 1993. Over 250 participants attended, numerous papers were presented, and several panel discussions were held. The focus of most industry participants remains the formation of USEC and the pending US-Russian HEU agreement. Following are brief summaries of two key papers and the Fuel Market Issues panel discussion.

Not Available

1993-04-01T23:59:59.000Z

449

The semantics of the future  

E-Print Network (OSTI)

Natural languages use a number of different methods to refer to future eventualities: among them are futurates, as in (la), and futures, as in (lb) and (c). (1) a. The Red Sox (are) play(ing) the Yankees tomorrow. b. We'll ...

Copley, Bridget, Lynn, 1974-

2002-01-01T23:59:59.000Z

450

The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America  

Science Conference Proceedings (OSTI)

Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO2) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns ...

J. S. Gregg; L. M. Losey; R. J. Andres; T. J. Blasing; G. Marland

2009-12-01T23:59:59.000Z

451

Time Scales of Terrestrial Carbon Response Related to Land-Use Application: Implications for Initializing an Earth System Model  

Science Conference Proceedings (OSTI)

The dynamic vegetation and carbon cycling component, LM3V, of the Geophysical Fluid Dynamics Laboratory (GFDL) prototype Earth system model (ESM2.1), has been designed to simulate the effects of land use on terrestrial carbon pools, including ...

Lori T. Sentman; Elena Shevliakova; Ronald J. Stouffer; Sergey Malyshev

2011-10-01T23:59:59.000Z

452

NETL: Carbon Storage - Knowledge Sharing  

NLE Websites -- All DOE Office Websites (Extended Search)

Knowledge Sharing Knowledge Sharing Carbon Storage Knowledge Sharing Outreach Efforts at SECARB's Anthropogenic Test Site in Alabama Outreach Efforts at SECARB's Anthropogenic Test Site in Alabama In order to achieve the commercialization of CO2 storage technologies, the U.S. Department of Energy (DOE) acknowledges that knowledge sharing between various entities is essential. Distribution of the results and lessons learned from both field projects and Core R&D efforts will provide the foundation for future, large-scale CCS field tests across North America and in addressing future challenges associated with public acceptance, infrastructure (pipelines, compressor stations, etc.), and regulatory framework. DOE promotes information and knowledge sharing through various avenues including the Regional Carbon Sequestration Partnerships (RCSP)

453

DOE Hydrogen Analysis Repository: Life Cycle Analysis of Vehicles for  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis of Vehicles for Canada Life Cycle Analysis of Vehicles for Canada Project Summary Full Title: Life Cycle Analysis of Vehicles Powered by a Fuel Cell and by Internal Combustion Engine for Canada Project ID: 117 Principal Investigator: Xianguo Li Purpose In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station.

454

The Air or Brayton Cycle Solvent Recovery System  

E-Print Network (OSTI)

The required temperature and technique for condensing common industrial solvents from the exhaust air of drying ovens is explained. The benefits of the Air Cycle for this application are discussed. The operation of the 8000 CFM Air Cycle Solvent Recovery System developed by the AiResearch Manufacturing Company of California under contract to the Department of Energy is discussed. Performance data for the recovery of solvents from an industrial drying oven is presented. The advantages of the "free spindle" arrangement as an alternate to the present gear drive are explained. The simple method for adjusting and controlling the turbine exhaust temperature for the "free spindle" arrangement is explained. The application of the Air Cycle for condensing solvent vapors from inert atmosphere ovens and from activated carbon desorbed with nitrogen is also described. Relative merits of the Air Cycle System compared with other available methods of solvent recovery are discussed.

Fox, B. J.

1986-06-01T23:59:59.000Z

455

FAQ : Future Scientists  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ FAQ How do I get started as a school volunteer? You can talk with program coordinator, Rick Diamond, or any of the EETD staff who have already participated in the Future Scientist program. To contact Rick Diamond, please call (510) 486-4459 or enable JavaScript within your browser's preferences. When you are ready to plan a classroom visit, call the Community Resources for Science (CRS) and ask about school and grade availability for your topic. CRS staff will place you with a K-6 grade teacher in the East Bay. CRS can also provide excellent advise on classroom guidance and materials, and handle all the contact logistics. All you do is give them a call. Community Resources for Science 1375 Ada Street Berkeley, CA 94702 (510) 654-6433 http://www.crscience.org/

456

future science group  

NLE Websites -- All DOE Office Websites (Extended Search)

35 35 ISSN 1759-7269 10.4155/BFS.13.56 © 2013 Future Science Ltd While lignocellulosic feedstocks represent a promising renewable and sustainable alternative to petroleum- based fuels, high production costs associated with con- version processes currently prevent them from being economically viable for large-scale implementation [1]. The production of biofuels from lignocellulosic feedstocks requires the depolymerization of cell wall carbohydrates into simple sugars that can be utilized during fermentation. However, the desired cellulose microfibrils are surrounded by a matrix of lignin and hemicellulose, which greatly inhibits their accessibility to hydrolytic enzymes [1,2]. Lignin is a phenolic polymer that reinforces the secondary cell wall, confers struc-

457

future science group  

NLE Websites -- All DOE Office Websites (Extended Search)

61 61 ISSN 1759-7269 10.4155/BFS.11.150 © 2012 Future Science Ltd In 1950 Reese et al. proposed a mechanism for cel- lulose hydrolysis, which involved two general com- ponents, C 1 and C x , acting in sequence [1]. According to the model, the C 1 component first disrupted and swelled the crystalline cellulose, possibly releasing soluble oligo saccharides into