Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

How Fusion Energy Works  

Broader source: Energy.gov [DOE]

Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

2

Method of controlling fusion reaction rates  

DOE Patents [OSTI]

A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

Kulsrud, Russell M. (Princeton, NJ); Furth, Harold P. (Princeton, NJ); Valeo, Ernest J. (Princeton Junction, NJ); Goldhaber, Maurice (Bayport, NY)

1988-01-01T23:59:59.000Z

3

Method of controlling fusion reaction rates  

DOE Patents [OSTI]

This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

1983-05-09T23:59:59.000Z

4

Observation of incomplete fusion reactions at l < l {sub crit}  

SciTech Connect (OSTI)

In order to understand the presence of incomplete fusion at low energies i.e. 4-7MeV/nucleon and also to study its dependence on various entrance-channel parameters, the two type of measurements (i) excitation function for {sup 12}C+{sup 159}Tb, and (ii) forward recoil ranges for {sup 12}C+{sup 159}Tb systems have been performed. The experimentally measured excitation functions have been analyzed within the framework of compound nucleus decay using statistical model code PACE4. Analysis of data suggests the production of xn/px)n-channels via complete fusion, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of ?-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. Further, the incomplete fusion events observed in case of forward recoil range measurements have been explained on the basis of the breakup fusion model, where these events may be attributed to the fusion of {sup 8}Be and/or {sup 4}He from {sup 12}C projectile to the target nucleus. In the present work, the SUMRULE model calculations are found to highly underestimate the observed incomplete fusion cross-sections which indicate that the l-values lower than l {sub crit} (limit of complete fusion) significantly contribute to the incomplete fusion reactions.

Yadav, Abhishek, E-mail: abhishekyadav117@gmail.com; Sharma, Vijay R., E-mail: abhishekyadav117@gmail.com; Singh, Devendra P., E-mail: abhishekyadav117@gmail.com; Unnati,; Singh, B. P.; Prasad, R. [Department of Physics, Aligarh Muslim University, Aligarh (UP) - 202 002 (India); Singh, Pushpendra P. [GSI-Helmholtz Centre for Heavy Ion Research GmbH, D-64291 Darmstadt (Germany); Bala, Indu; Kumar, R.; Muralithar, S.; Singh, R. P. [NP-Group: Inter-University Accelerator Center, Aruna Asaf Ali Marg, New Delhi - 110 067 (India); Sharma, M. K. [Department of Physics, S. V. College, Aligarh- 202 001 (India)

2014-08-14T23:59:59.000Z

5

Influence of projectile neutron number on cross section in cold fusion reactions  

E-Print Network [OSTI]

ON CROSS SECTION IN COLD FUSION REACTIONS I. Dragojevi? ,type of reaction has been referred to as “cold fusion. ”The study of cold fusion reactions is an indispensable

Dragojevic, I.

2008-01-01T23:59:59.000Z

6

Fusion Technology Working Group Presented by  

E-Print Network [OSTI]

Snowmass Fusion Technology Working Group Summary Presented by M. Abdou, S. Milora Snowmass July 23, 1999 #12;Technology Working Group Subgroup # 1 Subgroup # 2 Solid Walls Ulrickson / Mattas Liquid Walls / Ying Chamber Technology Abdou / Ulrickson Heating/CD/Fueling Swain / Temkin Magnets Schultz / Woolley

Abdou, Mohamed

7

Prompt dipole radiation in fusion reactions  

E-Print Network [OSTI]

The prompt gamma ray emission was investigated in the 16A MeV energy region by means of the 36,40Ar+96,92Zr fusion reactions leading to a compound nucleus in the vicinity of 132Ce. We show that the prompt radiation, which appears to be still effective at such a high beam energy, has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

Brunella Martin; Dimitra Pierroutsakou; Concetta Agodi; Rosa Alba; Virgil Baran; Alfonso Boiano; Giuseppe Cardella; Maria Colonna; Rosa Coniglione; Enrico De Filippo; Antonio Del Zoppo; Massimo Di Toro; Gianni Inglima; Tudor Glodariu; Marco La Commara; Concetta Maiolino; Marco Mazzocco; Angelo Pagano; Paolo Piattelli; Sara Pirrone; Carmelo Rizzo; Mauro Romoli; Mario Sandoli; Domenico Santonocito; Piera Sapienza; Cosimo Signorini

2007-10-08T23:59:59.000Z

8

Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions  

SciTech Connect (OSTI)

A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

Donovan, D. C. [Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550 (United States); Boris, D. R. [Naval Research Laboratory, 4555 Overlook Avenue, South West, Washington, DC 20375 (United States); Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Piefer, G. R. [Phoenix Nuclear Labs, 2555 Industrial Drive, Madison, Wisconsin 53713 (United States)

2013-03-15T23:59:59.000Z

9

Fusion-fission reactions with modified Woods-Saxon potential  

E-Print Network [OSTI]

A modified Woods-Saxon potential model is proposed for a unified description of the entrance channel fusion barrier and the fission barrier of fusion-fission reactions based on the Skyrme energy-density functional approach. The fusion excitation functions of 120 reactions have been systematically studied. The fusion (capture) cross sections are well described with the calculated potential and an empirical barrier distribution. Incorporating a statistical model (HIVAP code) for describing the decay of the compound nucleus, the evaporation residue (and fission) cross sections of 51 fusion-fission reactions have been systematically investigated. Optimal values of some key parameters of the HIVAP code are obtained based on the experimental data of these reactions. The experimental data are reasonably well reproduced by the calculated results. The upper and lower confidence limits of the systematic errors of the calculated results are given.

Ning Wang; Kai Zhao; Werner Scheid; Xizhen Wu

2007-12-15T23:59:59.000Z

10

Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers  

E-Print Network [OSTI]

The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

2006-01-25T23:59:59.000Z

11

Experimental study of nuclear fusion reactions in muonic molecular systems  

SciTech Connect (OSTI)

Since the pioneering discovery of the muon catalysis by Alvarez [L. W. Alvarez, K. Brander, F. S. Crawford, et al., Phys. Rev. 105, 1127 (1957)], considerable efforts were aimed at observation of various fusion processes. Results of these studies facilitated understanding the properties of lightest nuclei and dynamics of low-energy fusion reactions. There still remain unsolved theoretical and experimental problems, especially in case of pt fusion.

Bogdanova, L. N., E-mail: ludmila@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

2013-03-15T23:59:59.000Z

12

Stimulated Emission of Radiation in a Nuclear Fusion Reaction  

E-Print Network [OSTI]

This letter claims that process of stimulated emission of radiation can be used to induce a fusion reaction in a HD molecule to produce Helium-3. An experimental set-up for this reaction is presented. It is proposed to study the technical potential of this reaction as an energy amplifier.

Michael Duren

1999-04-06T23:59:59.000Z

13

Screened Coulomb potentials for astrophysical nuclear fusion reactions  

E-Print Network [OSTI]

The electron-screening acceleration of laboratory fusion reactions at astrophysical energies is an unsolved problem of great importance to astrophysics. That effect is modeled here by considering the fusion of hydrogen-like atoms whose electron probability density is used in Poisson's equation in order to derive the corresponding screened Coulomb potential energy. That way atomic excitations and deformations of the fusing atoms can be taken into account. Those potentials are then treated semiclassically in order to obtain the screening (accelerating) factor of the reaction. By means of the proposed model the effect of a superstrong magnetic field on laboratory Hydrogen fusion reactions is investigated here for the first time showing that, despite the considerable increase in the cross section of the $% dd$ reaction, the $pp$ reaction is still too slow to justify experimentation. The proposed model is finally applied on the $H^{2}(d,p) H^{3}$ fusion reaction describing satisfactorily the experimental data although some ambiguity remains regarding the molecular nature of the deuteron target. Notably, the present method gives a sufficiently high screening energy for Hydrogen fusion reactions so that the take-away energy of the spectator nucleus can also be taken into account.

Theodore E. Liolios

2000-09-04T23:59:59.000Z

14

Pairing Effects in Nuclear Fusion Reaction  

E-Print Network [OSTI]

We simulate a heavy-ion collision using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory (Cb-TDHFB) treating pairing correlation in the three-dimensional coordinate space. We apply the Cb-TDHFB to 22O+22O collision with a contact-type pairing energy functional, and compare results of Cb-TDHFB and TDHF to investigate the effects of pairing correlations in nuclear fusion. Our results seem to indicate that pairing effects do not increase the fusion cross section in this system.

Shuichiro Ebata; Takashi Nakatsukasa

2013-09-29T23:59:59.000Z

15

Subbarrier fusion reactions and many-particle quantum tunneling  

E-Print Network [OSTI]

Low energy heavy-ion fusion reactions are governed by quantum tunneling through the Coulomb barrier formed by a strong cancellation of the repulsive Coulomb force with the attractive nuclear interaction between the colliding nuclei. Extensive experimental as well as theoretical studies have revealed that fusion reactions are strongly influenced by couplings of the relative motion of the colliding nuclei to several nuclear intrinsic motions. Heavy-ion subbarrier fusion reactions thus provide a good opportunity to address a general problem on quantum tunneling in the presence of couplings, which has been a popular subject in the past decades in many branches of physics and chemistry. Here we review theoretical aspects of heavy-ion subbarrier fusion reactions from the view point of quantum tunneling in systems with many degrees of freedom. Particular emphases are put on the coupled-channels approach to fusion reactions, and the barrier distribution representation for multi-channel penetrability. We also discuss an application of the barrier distribution method to elucidation of the mechanism of dissociative adsorption of H$_2$ melecules in surface science.

K. Hagino; N. Takigawa

2012-10-17T23:59:59.000Z

16

Formation of superheavy nuclei in cold fusion reactions  

E-Print Network [OSTI]

Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

Feng, Zhao-Qing; Li, Jun-Qing; Scheid, Werner

2007-01-01T23:59:59.000Z

17

Formation of superheavy nuclei in cold fusion reactions  

E-Print Network [OSTI]

Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

Zhao-Qing Feng; Gen-Ming Jin; Jun-Qing Li; Werner Scheid

2007-10-17T23:59:59.000Z

18

Ab initio calculations of light-ion fusion reactions  

SciTech Connect (OSTI)

The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches. The ab initio No-Core Shell Model/Resonating-Group Method (NCSM/RGM) complements a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach is capable of describing simultaneously both bound and scattering states in light nuclei. Recent applications to light nuclei scattering and fusion reactions relevant to energy production in stars and Earth based fusion facilities, such as the deuterium-{sup 3}He fusion, are presented. Progress toward the inclusion of the three nucleon force into the formalism is outlined.

Hupin, G.; Quaglioni, S.; Navratil, P. [Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551 (United States); TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada) and Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551 (United States)

2012-10-20T23:59:59.000Z

19

E-Print Network 3.0 - actinide-based complete-fusion reactions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fusion reactions. The yields of superheavies with Z > 118 are sensitive... physics. The cold Pb- and Bi-based 1 and hot actinide-based 2 complete fusion reactions were...

20

Effect of pairing on transfer and fusion reactions  

E-Print Network [OSTI]

In the present contribution, the effect of pairing on nuclear transfer and fusion reactions close to the Coulomb barrier is discussed. A Time-Dependent Hartree-Fock + BCS (TDHF+BCS) microscopic theory has been developed to incorporate pairing. One- and two-particle transfer probabilities can be obtained showing the importance of pairing. The calculated transfer probabilities are compared to the recent experimental results obtained for the $^{96}$Zr+$^{40}$Ca. Reactions involving the $^{18}$O with lead isotopes are also presented, that are also of current experimental interest. Finally, a study of the fusion barrier height predicted with the TDHF+BCS theory is compared to the experimental values for the $^{40,44,48}$Ca+$^{40}$Ca reactions.

Guillaume Scamps; Denis Lacroix

2014-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model  

SciTech Connect (OSTI)

We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Hoza 69, PL-00-681 Warsaw (Poland); Andrzej Soltan Institute for Nuclear Studies, PL-05-400 Otwock-Swierk (Poland)

2011-05-15T23:59:59.000Z

22

How Fusion Energy Works | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cells Work 30 likes Fuel cells produce electrical power without any combustion and can provide power for virtually any application -- from cars and buses to commercial...

23

Dynamical analysis on heavy-ion fusion reactions near Coulomb barrier  

E-Print Network [OSTI]

The shell correction is proposed in the improved isospin dependent quantum molecular dynamics (ImIQMD) model, which plays an important role in heavy-ion fusion reactions near Coulomb barrier. By using the ImIQMD model, the static and dynamical fusion barriers, dynamical barrier distribution in the fusion reactions are analyzed systematically. The fusion and capture excitation functions for a series of reaction systems are calculated and compared with experimental data. It is found that the fusion cross sections for neutron-rich systems increase obviously, and the strong shell effects of two colliding nuclei result in a decrease of the fusion cross sections at the sub-barrier energies. The lowering of the dynamical fusion barriers favors the enhancement of the sub-barrier fusion cross sections, which is related to the nucleon transfer and the neck formation in the fusion reactions.

Zhao-Qing Feng; Gen-Ming Jin; Feng-Shou Zhang

2007-11-23T23:59:59.000Z

24

Nuclear fusion in dense matter: Reaction rate and carbon burning  

E-Print Network [OSTI]

In this paper we analyze the nuclear fusion rate between equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S-factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate which covers all cases. The parameters of this formula can be varied, taking into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the ^{12}C+^{12}C fusion reaction. This reaction is very important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovae, and in accreting neutron stars. The S-factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S-factor using a recently developed parameter-free model for the nuclear interaction, taking into account the effects of the Pauli nonlocality. For illustration, we analyze the efficiency of carbon burning in a wide range of densities and temperatures of stellar matter with the emphasis on carbon ignition at densities rho > 10^9 g/cc.

L. R. Gasques; A. V. Afanasjev; E. F. Aguilera; M. Beard; L. C. Chamon; P. Ring; M. Wiescher; D. G. Yakovlev

2005-06-16T23:59:59.000Z

25

Repulsive aspects of pairing correlation in nuclear fusion reaction  

E-Print Network [OSTI]

Numerical simulation on nuclear collisions are performed using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory (Cb-TDHFB) in the three-dimensional coordinate space. Comparing results of the Cb-TDHFB and the conventional time-dependent Hartree-Fock (TDHF) calculations, we study effects of the pairing correlation on fusion reaction of $^{22}$O+$^{22}$O, $^{52}$Ca+$^{52}$Ca, and $^{22}$O+$^{52}$Ca, using the Skyrme SkM$^*$ functional and a contact-type pairing energy functional. Although current results are yet preliminary, they may suggest that the pairing correlation could hinder the fusion probability at energies in the vicinity of the Coulomb barrier height. We also perform a calculation for heavier nuclei, $^{96}$Zn+$^{124}$Sn, which seems to suggest a similar hindrance effect.

Ebata, Shuichiro

2014-01-01T23:59:59.000Z

26

Does the Sun work as a nuclear fusion amplifier of  

E-Print Network [OSTI]

Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? Nicola Scafetta ACRIM oscillates because of planetary motion The Sun is likely very sensitive to these oscillations March 1977); We reconstruct here Sun-centred planetary conjunctions and tidal potentials for the AD 1645

Scafetta, Nicola

27

E-Print Network 3.0 - activity fusion reactions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

condition E is energy confinement time Only three reactions can be used within a thermonuclear fusion... is energy confinement time Only three ... Source: Mauel,...

28

Fusion and breakup in the reactions of 6,7Li and 9Be  

E-Print Network [OSTI]

We develop a three body classical trajectory Monte Carlo (CTMC) method to dicsuss the effect of the breakup process on heavy-ion fusion reactions induced by weakly bound nuclei. This method follows the classical trajectories of breakup fragments after the breakup takes place, and thus provides an unambiguous separation between complete and incomplete fusion cross sections. Applying this method to the fusion reaction $^{6}$Li + $^{209}$Bi, we find that there is a significant contribution to the total complete fusion cross sections from the process where all the breakup fragments are captured by the target nucleus (i.e., the breakup followed by complete fusion).

K. Hagino; M. Dasgupta; D. J. Hinde

2004-01-13T23:59:59.000Z

29

Neutron detector for fusion reaction-rate measurements  

SciTech Connect (OSTI)

We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response < 25-ps FWHM. A thin piece of scintillator material acts as a neutron-to- light converter. A zoom lens images light from the scintillator surface to a high-speed (15 ps) optical streak camera for recording. The zoom lens allows the scintillator to be positioned between 1 and 50 cm from a target. The camera simulaneously records an optical fiducial pulse which allows the camera time base to be calibrated relative to the incident laser power. Bursts of x rays formed by focusing 20-ps, 2.5-TW laser pulses onto gold disk targets demonstrate the detector resolution to be < 25 ps. We have recorded burn histories for deuterium/tritium-filled targets producing as few as 3 {times} 10{sup 7} neutrons.

Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

1993-09-03T23:59:59.000Z

30

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network [OSTI]

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

I. Casinos

2008-05-22T23:59:59.000Z

31

Probing anharmonic properties of nuclear surface vibration by heavy-ion fusion reactions  

E-Print Network [OSTI]

Describing fusion reactions between ^{16}O and ^{154}Dy and, between ^{16}O and ^{144}Sm by the $sd-$ and $sdf-$ interacting boson model, we show that heavy-ion fusion reactions are strongly affected by anharmonic properties of nuclear surface vibrations and nuclear shape, and thus provide a powerful method to study details of nuclear structure and dynamics.

N. Takigawa; K. Hagino; S. Kuyucak

1997-06-28T23:59:59.000Z

32

Excitation of nuclear anharmonic vibrations in heavy-ion fusion reactions  

E-Print Network [OSTI]

We discuss the effects of multi-phonon excitations on heavy-ion fusion reactions at energies near and below the Coulomb barrier, focusing especially on the role of anharmonicities. We carry out a systematic study of those effects on the excitation function of the fusion cross section and on the fusion barrier distribution, by using the vibrational limit of the interacting boson model. We also analyze the recently measured high-precision data of the $^{16}$O + $^{148}$Sm fusion reaction with this model and discuss the anharmonic properties of the quadrupole as well as the octupole vibrations in $^{148}$Sm. Negative and positive static quadrupole moments are deduced for the first 2$^+$ and 3$^-$ states in $^{148}$Sm, respectively. It is shown that the fusion barrier distribution strongly depends on the sign of the quadrupole moments, suggesting that subbarrier fusion reactions offer an alternative method to extract the static quadrupole moments of phonon states in spherical nuclei.

K. Hagino; S. Kuyucak; N. Takigawa

1997-11-05T23:59:59.000Z

33

Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei  

E-Print Network [OSTI]

The Skyrme energy-density functional approach has been extended to study the massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parameterized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with $Z_1Z_2fusion reactions, for example, the $^{238}$U-induced reactions and $^{48}$Ca+$^{208}$Pb the capture excitation functions have been reproduced remarkable well. The influence of structure effects in the reaction partners on the capture cross sections are studied with our parameterized barrier distribution. Through comparing the reactions induced by double-magic nucleus $^{48}$Ca and by $^{32}$S and $^{35}$Cl, the 'threshold-like' behavior in the capture excitation function for $^{48}$Ca induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with $^{36}$S, $^{37}$Cl, $^{48}$Ca and $^{50}$Ti bombarding on $^{248}$Cm, $^{247,249}$Bk, $^{250,252,254}$Cf and $^{252,254}$Es, and as well as the reactions lead to the same compound nucleus with Z=120 and N=182 are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

Ning Wang; Xizhen Wu; Zhuxia Li; Min Liu; Werner Scheid

2006-09-18T23:59:59.000Z

34

Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei  

SciTech Connect (OSTI)

The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

Wang Ning; Scheid, Werner [Institute for Theoretical Physics at Justus-Liebig-University, D-35392 Giessen (Germany); Wu Xizhen; Liu Min [China Institute of Atomic Energy, Beijing 102413 (China); Li Zhuxia [China Institute of Atomic Energy, Beijing 102413 (China); Institute of Theoretical Physics, Chinese Academic of Science, Beijing 100080 (China); Nuclear Theory Center of National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China)

2006-10-15T23:59:59.000Z

35

Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei  

E-Print Network [OSTI]

The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L \\approx 78$ MeV and the surface energy coefficient is $g_{\\rm sur}=18\\pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at neck side result in the lowering of the fusion barrier.

Ning Wang; Li Ou; Yingxun Zhang; Zhuxia Li

2014-06-04T23:59:59.000Z

36

PHYSICAL REVIEW C 72, 025806 (2005) Nuclear fusion in dense matter: Reaction rate and carbon burning  

E-Print Network [OSTI]

PHYSICAL REVIEW C 72, 025806 (2005) Nuclear fusion in dense matter: Reaction rate and carbon August 2005) In this paper we analyze the nuclear fusion rates among equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones

37

The nuclear fusion reaction rate based on relativistic equilibrium velocity distribution  

E-Print Network [OSTI]

The Coulomb barrier is in general much higher than thermal energy. Nuclear fusion reactions occur only among few protons and nuclei with higher relative energies than Coulomb barrier. It is the equilibrium velocity distribution of these high-energy protons and nuclei that participates in determining the rate of nuclear fusion reactions. In the circumstance it is inappropriate to use the Maxwellian velocity distribution for calculating the nuclear fusion reaction rate. We use the relativistic equilibrium velocity distribution for this purpose. The rate based on the relativistic equilibrium velocity distribution has a reduction factor with respect to that based on the Maxwellian distribution, which factor depends on the temperature, reduced mass and atomic numbers of the studied nuclear fusion reactions. This signifies much to the solar neutrino problem.

Jian-Miin Liu

2002-10-20T23:59:59.000Z

38

Fast Neutral Generation by Charge Exchange Reaction and Its Effect on Neutron Production Rate in Inertial Electrostatic Confinement Fusion Systems  

SciTech Connect (OSTI)

Fast neutral generation by charge exchange reaction in inertial electrostatic confinement plasmas is studied by solving the Poisson equation and the Boltzmann equation for fast neutrals. Fusion reactions carried by the charge exchange fast neutrals become appreciable compared with ion-background fusion reaction. It is shown that the fusion reaction between fast neutral and background gas is sensitively affected by experimental parameters (grid voltage, background gas pressure) and ion distribution function.

Yoshinaga, S.; Matsuura, H.; Nakao, Y.; Kudo, K. [Kyushu University (Japan)

2005-05-15T23:59:59.000Z

39

The role of nuclear reactions and -particle transport in the dynamics of inertial confinement fusion capsules  

E-Print Network [OSTI]

The role of nuclear reactions and -particle transport in the dynamics of inertial confinement fusion capsules Josselin Garnier1,a and Catherine Cherfils-Clérouin2 1 Laboratoire de Probabilités et the energy released by nuclear reactions, a nonlocal model for the -particle energy deposition process

Garnier, Josselin

40

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER  

E-Print Network [OSTI]

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER Don Steiner, Jeffrey Freidberg Farrokh Najmabadi William Nevins , and John Perkins The Energy Issues Working Group on Long-Term Visions energy production in the next century? 2. What is fusion's potential for penetrating the energy market

Najmabadi, Farrokh

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear Matter Incompressibility Effect on the Cross Section of Fusion Reactions with a weakly bound projectile  

E-Print Network [OSTI]

Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be +209Bi,208Pb,29Si and 27Al reactions. The results show that applying these effects at energies near the Coulomb barrier improves the agreement between the calculated and experimental cross sections, and modifies the mean values of the suppression parameter.

S. A. Seyyedi; H. Golnarkar

2015-01-19T23:59:59.000Z

42

Study of nuclei in the vicinity of the "Island of Inversion" through fusion-evaporation reaction  

E-Print Network [OSTI]

We report the first observation of high-spin states in nuclei in the vicinity of the "island of inversion", populated via the 18O+18O fusion reaction at an incident beam energy of 34 MeV. The fusion reaction mechanism circumvents the limitations of non-equilibrated reactions used to populate these nuclei. Detailed spin-parity measurements in these difficult to populate nuclei have been possible from the observed coincidence anisotropy and the linear polarization measurements. The spectroscopy of 33,34P and 33S is presented in detail along with the results of calculations within the shell model framework.

R. Chakrabarti; S. Mukhopadhyay Krishichayan; A. Chakraborty; A. Ghosh; S. Ray; S. S. Ghugre; A. K. Sinha; L. Chaturvedi; A. Y. Deo; I. Mazumdar; P. K. Joshi; R. Palit; Z. Naik; S. Kumar; N. Madhavan; R. P. Singh; S. Muralithar; B. K. Yogi; U. Garg

2009-04-30T23:59:59.000Z

43

Nuclear Matter Incompressibility Effect on the Cross Section of Fusion Reactions with a weakly bound projectile  

E-Print Network [OSTI]

Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be +209Bi,208Pb,29Si and 27Al reactions. The results show that applying these effects at energies near the Coulomb barrier improves the agreement between the calculated and experimental cross sections, and modifies the mean values of the suppression parameter.

Seyyedi, S A

2015-01-01T23:59:59.000Z

44

Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier  

E-Print Network [OSTI]

The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

2007-02-16T23:59:59.000Z

45

Synthesis of transactinide nuclei in cold fusion reactions using radioactive beams  

SciTech Connect (OSTI)

Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out reactions) using radioactive beams are evaluated. Because in most of the cases intensities of radioactive beams are significantly less than those of the stable beams, reactions with the greatest radioactive-beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland [Phys. Rev. C 76, 014612 (2007)], who investigated the same nuclei.

Smolanczuk, Robert [Theoretical Physics Department, Soltan Institute for Nuclear Studies, Hoza 69, PL-00-681 Warszawa (Poland)

2010-06-15T23:59:59.000Z

46

Synthesis of transactinide nuclei in cold fusion reactions using radioative beams  

E-Print Network [OSTI]

Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out) reactions using radioactive beams are evaluated. Because intensities of radioactive beams are in most of the cases significantly lower than the ones of the stable beams, reactions with the highest radioactive beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland who investigated the same nuclei.

Smolanczuk, Robert

2009-01-01T23:59:59.000Z

47

Synthesis of transactinide nuclei in cold fusion reactions using radioative beams  

E-Print Network [OSTI]

Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out) reactions using radioactive beams are evaluated. Because intensities of radioactive beams are in most of the cases significantly lower than the ones of the stable beams, reactions with the highest radioactive beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland who investigated the same nuclei.

Robert Smolanczuk

2009-12-04T23:59:59.000Z

48

The Dynamical Dipole Mode in Fusion Reactions with Exotic Nuclear Beams  

E-Print Network [OSTI]

We report the properties of the prompt dipole radiation, produced via a collective bremsstrahlung mechanism, in fusion reactions with exotic beams. We show that the gamma yield is sensitive to the density dependence of the symmetry energy below/around saturation. Moreover we find that the angular distribution of the emitted photons from such fast collective mode can represent a sensitive probe of its excitation mechanism and of fusion dynamics in the entrance channel.

V. Baran; C. Rizzo; M. Colonna; M. Di Toro; D. Pierroutsakou

2009-02-09T23:59:59.000Z

49

Dispersion relation approach to sub-barrier heavy-ion fusion reactions  

SciTech Connect (OSTI)

We discuss the conditions under which the dispersion relation technique, extensively employed in the context of elastic scattering, can be used in the analysis of heavy-ion fusion reactions. General unitarity defect arguments are used for this purpose. With the aid of an inverse dispersion relation, which gives the imaginary part of the fusion inclusive polarization potential in terms of the principal part integral involving the real part of the inclusive polarization potential, the sub-barrier fusion of heavy ions is discussed. The system /sup 16/O+/sup A/Sm is taken as an example.

Franzin, V.L.M.; Hussein, M.S.

1988-11-01T23:59:59.000Z

50

Department-wide Quick Reaction Work Order System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To describe the new Department Wide Quick Reaction Work Order System, to establish the criteria and procedures for its use, and to identify responsibilities for managing and operating the system.

1981-03-12T23:59:59.000Z

51

Absorption-Fluctuation Theorem for Nuclear Reactions: Brink-Axel, Incomplete Fusion and All That  

E-Print Network [OSTI]

We discuss the connection between absorption, averages and fluctuations in nuclear reactions. The fluctuations in the entrance channel result in the compound nucleus, Hauser-Feshbach, cross section, the fluctuations in the intermediate channels, result in modifications of multistep reaction cross sections, while the fluctuations in the final channel result in hybrid cross sections that can be used to describe incomplete fusion reactions. We discuss the latter in details and comment on the validity of the assumptions used in the develpoment of the Surrogate method. We also discuss the theory of multistep reactions with regards to intermediate state fluctuations and the energy dependence and non-locality of the intermediate channels optical potentials.

M. S. Hussein

2008-01-13T23:59:59.000Z

52

On the true nature of transfer reactions leading to the complete fusion of projectile and target  

E-Print Network [OSTI]

The transfer of nucleons in hot-fusion reactions occurs within 0.17 yoctosecond, in a new state of nuclear matter. We suggest that the same state should show itself in an early stage of the phenomena occurring in nucleus-nucleus collisions realized at relativistic energies.

G. Mouze; C. Ythier

2012-11-15T23:59:59.000Z

53

Relativistic equilibrium velocity distribution, nuclear fusion reaction rate and the solar neutrino problem  

E-Print Network [OSTI]

In solar interior, it is the equilibrium velocity distribution of few high-energy protons and nuclei that participates in determining nuclear fusion reaction rates. So, it is inappropriate to use the Maxwellian velocity distribution to calculate the rates of solar nuclear fusion reactions. We have to use the relativistic equilibrium velocity distribution for the purpose. The nuclear fusion reaction rate based on the relativistic equilibrium velocity distribution has a reduction factor with respect to that based on the Maxwellian distribution. The reduction factor depends on the temperature, reduced mass and atomic numbers of the studied nuclear fusion reactions, in other words, it varies with the sort of neutrinos. Substituting the relativistic equilibrium velocity distribution for the Maxwellian distribution is not important for the calculation of solar sound speeds. The relativistic equilibrium velocity distribution, if adopted in standard solar models, will lower solar neutrino fluxes and change solar neutrino energy spectra but maintain solar sound speeds. This velocity distribution is possibly a solution to the solar neutrino problem.

Jian-Miin Liu

2003-07-07T23:59:59.000Z

54

VII. Nuclear Chemistry (Chapter 17) A. Modes of radioactive decay, nuclear reactions, fission, fusion  

E-Print Network [OSTI]

40 VII. Nuclear Chemistry (Chapter 17) A. Modes of radioactive decay, nuclear reactions, fission #12;41 These masses are not exactly integer multiples due to nuclear interactions between the protons differences via the famous formula E = mc2 . Nuclear Fusion! For example, if you combine 2 protons and two

55

Fusion reactions involving radioactive beams at GANIL. Gilles de France  

E-Print Network [OSTI]

. In the first case, the high energy beam from the second cyclotron is fragmented onto a target (the production efficiently refocus the species after their production by the fragmentation mechanism, and to optimise energy reaction mechanism) at the Coulomb barrier are possible with that kind of beams. RIBs like 76 Kr

Paris-Sud XI, Université de

56

Dynamic study on fusion reactions for $^{40,48}$Ca+$^{90,96}$Zr around Coulomb barrier  

E-Print Network [OSTI]

By using the updated improved Quantum Molecular Dynamics model in which a surface-symmetry potential term has been introduced for the first time, the excitation functions for fusion reactions of $^{40,48}$Ca+$^{90,96}$Zr at energies around the Coulomb barrier have been studied. The experimental data of the fusion cross sections for $^{40}$Ca+$^{90,96}$Zr have been reproduced remarkably well without introducing any new parameters. The fusion cross sections for the neutron-rich fusion reactions of $^{48}$Ca+$^{90,96}$Zr around the Coulomb barrier are predicted to be enhanced compared with a non-neutron-rich fusion reaction. In order to clarify the mechanism of the enhancement of the fusion cross sections for neutron-rich nuclear fusions, we pay a great attention to study the dynamic lowering of the Coulomb barrier during a neck formation. The isospin effect on the barrier lowering is investigated. It is interesting that the effect of the projectile and target nuclear structure on fusion dynamics can be revealed to a certain extent in our approach. The time evolution of the N/Z ratio at the neck region has been firstly illustrated. A large enhancement of the N/Z ratio at neck region for neutron-rich nuclear fusion reactions is found.

Ning Wang; Xizhen Wu; Zhuxia Li

2003-01-09T23:59:59.000Z

57

The role of electron-screening deformations in solar nuclear fusion reactions and the solar neutrino puzzle  

E-Print Network [OSTI]

Thermonuclear fusion reaction rates in the solar plasma are enhanced by the presence of the electron cloud that screens fusing nuclei. The present work studies the influence of electron screening deformations on solar reaction rates in the framework of the Debye-Huckel model. These electron-ion cloud deformations, assumed here to be static and axially symmetric, are shown to be able to considerably influence the solar neutrino fluxes of the pp and the CNO chains, with reasonable changes in the macroscopic parameters of the standard solar model (SSM) . Various known deformation sources are discussed but none of them is found strong enough to have a significant impact on the SSM neutrino fluxes.

Theodore E. Liolios

2000-08-13T23:59:59.000Z

58

Competition of fusion and quasi-fission in the reactions leading to production of the superheavy elements  

E-Print Network [OSTI]

The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross sections is performed and a sudden disappearance of the capture cross sections is observed at low fusion probabilities. A dependence of the fusion hindrance on the asymmetry of the projectile-target system is investigated using the available data. The most promising pathways for further experiments are suggested.

M. Veselsky

2003-02-11T23:59:59.000Z

59

$^{64}$Ni+$^{64}$Ni fusion reaction calculated with the density-constrained time-dependent Hartree-Fock formalism  

E-Print Network [OSTI]

We study fusion reactions of the $^{64}$Ni+$^{64}$Ni system using the density-constrained time-dependent Hartree-Fock (TDHF) formalism. In this formalism the fusion barriers are directly obtained from TDHF dynamics. In addition, we incorporate the entrance channel alignments of the slightly deformed (oblate) $^{64}$Ni nuclei due to dynamical Coulomb excitation. We show that alignment leads to a fusion barrier distribution and alters the naive picture for defining which energies are actually sub-barrier. We also show that core polarization effects could play a significant role in fusion cross section calculations.

A. S. Umar; V. E. Oberacker

2007-09-25T23:59:59.000Z

60

Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions  

E-Print Network [OSTI]

Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.

Kai Wen; Fumihiko Sakata; Zhu-Xia Li; Xi-Zhen Wu; Ying-Xun Zhang; Shan-Gui Zhou

2014-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Study of the Fusion-Fission Process in the $^{35}Cl+^{24}Mg$ Reaction  

E-Print Network [OSTI]

Fusion-fission and fully energy-damped binary processes of the $^{35}$Cl+$^{24}$Mg reaction were investigated using particle-particle coincidence techniques at a $^{35}$Cl bombarding energy of E$_{lab}$ $\\approx$ 8 MeV/nucleon. Inclusive data were also taken in order to determine the partial wave distribution of the fusion process. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with a relatively large multiplicity of secondary light-charged particles emitted by the two primary excited fragments in the exit channel. No evidence is observed for ternary-breakup processes, as expected from the systematics recently established for incident energies below 15 MeV/nucleon and for a large number of reactions. The binary-process results are compared with predictions of statistical-model calculations. The calculations were performed using the Extended Hauser-Feshbach method, based on the available phase space at the scission point of the compound nucleus. This new method uses temperature-dependent level densities and its predictions are in good agreement with the presented experimental data, thus consistent with the fusion-fission origin of the binary fully-damped yields.

C. Beck; ; Sl. Cavallaro; ; R. Dayras

1998-04-30T23:59:59.000Z

62

Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions  

SciTech Connect (OSTI)

Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A{approx}200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n,xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

Fotiades, N.; Nelson, R. O.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cizewski, J. A. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Kruecken, R. [Physik Department E12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Clark, R. M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Becker, J. A.; Younes, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2011-10-28T23:59:59.000Z

63

Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions  

SciTech Connect (OSTI)

Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

Fotiadis, Nikolaos [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; Devlin, Matthew [Los Alamos National Laboratory; Cizewski, Jolie A [RUTGERS UNIV.; Krucken, Reiner [TECHNICAL UNIV OF MUNICH; Clark, R M [LBNL; Fallon, Paul [LBNL; Lee, I Yang [LBNL; Macchiavelli, Agusto O [LBNL; Becker, John A [LLNL; Younes, Walid [LLNL

2010-01-01T23:59:59.000Z

64

Signature of smooth transition from diabatic to adiabatic states in heavy-ion fusion reactions at deep subbarrier energies  

E-Print Network [OSTI]

We propose a novel extension of the standard coupled-channels framework for heavy-ion reactions in order to analyze fusion reactions at deep subbarrier incident energies. This extension simulates a smooth transition between the diabatic two-body and the adiabatic one-body states. To this end, we damp gradually the off-diagonal part of the coupling potential, for which the position of the onset of the damping varies for each eigen channel. We show that this model accounts well for the steep falloff of the fusion cross sections for the $^{16}$O+$^{208}$Pb, $^{64}$Ni+$^{64}$Ni, and $^{58}$Ni+$^{58}$Ni reactions.

Takatoshi Ichikawa; Kouichi Hagino; Akira Iwamoto

2009-09-12T23:59:59.000Z

65

Evidence of microscopic effects in fragment mass distribution in heavy ion induced fusion-fission reactions  

E-Print Network [OSTI]

Our measurements of variances ($\\sigma_{m}^2$) in mass distributions of fission fragments from fusion-fission reactions of light projectiles (C, O and F) on deformed thorium targets exhibit a sharp anomalous increase with energy near the Coulomb barrier, in contrast to the smooth variation of $\\sigma_{m}^2$ for the spherical bismuth target. This departure from expectation based on a statistical description is explained in terms of microscopic effects arising from the orientational dependence in the case of deformed thorium targets.

T. K. Ghosh; S. Pal; K. S. Gold; P. Bhattacharya

2005-06-27T23:59:59.000Z

66

Evidence for a New Path to the Self-Sustainment of the Thermonuclear Fusion Reactions in Magnetically Confined Burning Plasma Experiments  

E-Print Network [OSTI]

Evidence for a New Path to the Self-Sustainment of the Thermonuclear Fusion Reactions in Magnetically Confined Burning Plasma Experiments

67

Recent EFDA work on Pulsed DEMO, August 2012, TOFE T N Todd Culham Centre for Fusion Energy, Oxfordshire  

E-Print Network [OSTI]

) · Start-up power requirements, energy storage strategy · Energy storage systems available Energy, Oxfordshire The Future of Nuclear Power: Fusion Recent EFDA work on pulsed DEMO The UK fusion experimental demonstrations of simultaneous HH, N etc... But is ITB OK in DEMO (sustainable)? Alpha confinement

68

A model for enhanced fusion reaction in a solid matrix of metal deuterides  

E-Print Network [OSTI]

Our study shows that the cross-section for fusion improves considerably if d-d pairs are located in linear (one-dimensional) chainlets or line defects. Such non-equilibrium defects can exist only in a solid matrix. Further, solids harbor lattice vibrational modes (quanta, phonons) whose longitudinal-optical modes interact strongly with electrons and ions. One such interaction, resulting in potential inversion, causes localization of electron pairs on deuterons. Thus, we have attraction of D+ D- pairs and strong screening of the nuclear repulsion due to these local electron pairs (local charged bosons: acronym, lochons). This attraction and strong coupling permits low-energy deuterons to approach close enough to alter the standard equations used to define nuclear-interaction cross-sections. These altered equations not only predict that low-energy-nuclear reactions (LENR) of D+ D- (and H+ H-) pairs are possible, they predict that they are probable.

K. P. Sinha; A. Meulenberg

2009-01-16T23:59:59.000Z

69

A model for enhanced fusion reaction in a solid matrix of metal deuterides  

E-Print Network [OSTI]

Our study shows that the cross-section for fusion improves considerably if d-d pairs are located in linear (one-dimensional) chainlets or line defects. Such non-equilibrium defects can exist only in a solid matrix. Further, solids harbor lattice vibrational modes (quanta, phonons) whose longitudinal-optical modes interact strongly with electrons and ions. One such interaction, resulting in potential inversion, causes localization of electron pairs on deuterons. Thus, we have attraction of D+ D- pairs and strong screening of the nuclear repulsion due to these local electron pairs (local charged bosons: acronym, lochons). This attraction and strong coupling permits low-energy deuterons to approach close enough to alter the standard equations used to define nuclear-interaction cross-sections. These altered equations not only predict that low-energy-nuclear reactions (LENR) of D+ D- (and H+ H-) pairs are possible, they predict that they are probable.

Sinha, K P

2009-01-01T23:59:59.000Z

70

Hydrogen Hydrogen FusionFusionFusionFusionFusionFusion  

E-Print Network [OSTI]

100.000 years LNGS Laboratori Nazionali del Gran Sasso Borexino THE THERMONUCLEAR FUSION REACTIONHydrogen Hydrogen Fusion Deuterium FusionFusionFusionFusionFusionFusion THE SUN AS BOREXINO SEES

Heiz, Ulrich

71

Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs  

SciTech Connect (OSTI)

Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm,{sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

2012-10-20T23:59:59.000Z

72

Stopping of swift protons in matter and its implication for astrophysical fusion reactions C. A. Bertulani1,2,  

E-Print Network [OSTI]

s : 26.20. f, 34.50.Bw Nuclear fusion reactions proceed in stars at low energies, e.g., of the order sections measured in the labo- ratory with those in a stellar environment. Another screening effect protons in low-energy collisions is investigated. At low projectile energies the stopping is mainly due

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

73

Synthesis of superheavy element 120 via {sup 50}Ti+{sup A}Cf hot fusion reactions  

SciTech Connect (OSTI)

Synthesis of superheavy element 120 in terms of the {sup 50}Ti+{sup 249-252}Cf fusion-evaporation reactions is evaluated and discussed. It is found that the reactions of {sup 250,251}Cf({sup 50}Ti,3n){sup 297,298}120 and {sup 251,252}Cf({sup 50}Ti,4n){sup 297,298}120 are relatively favorable with the maximum evaporation-residue cross sections of 0.12, 0.09, 0.11, and 0.25 pb, respectively. However, {sup 252}Cf may be difficult to be target because its spontaneous fission will bring about serious background in the experiment. Fusion probabilities for different target-projectile combinations leading to the formation of surperheavy nucleus {sup 302}120 are estimated with the ''fusion-by-diffusion'' model and presented as a function of the Coulomb parameter Z{sub 1}Z{sub 2}/(A{sub 1}{sup 1/3}+A{sub 2}{sup 1/3}). Among the reactions {sup 50}Ti+{sup 252}Cf, {sup 54}Cr+{sup 248}Cm, {sup 58}Fe+{sup 244}Pu, and {sup 64}Ni+{sup 238}U, the reaction {sup 50}Ti+{sup 252}Cf has the largest fusion probability. Synthesis of superheavy element 120 is of essential importance for determining whether the magic proton shell should be at Z=114 or at higher proton numbers Z=120-126. Therefore, the experiment to produce isotopes with Z=120 in the fusion reactions {sup 50}Ti+{sup 250,251}Cf is of great interest.

Liu, Z. H. [China Institute of Atomic Energy, Beijing 102413 (China); Bao Jingdong [Department of Physics, Beijing Normal University, Beijing 100875 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China)

2009-11-15T23:59:59.000Z

74

A Classical Approach in Simple Nuclear Fusion Reaction 1H2 + 1H3 using Two-Dimension Granular Molecular Dynamics Model  

E-Print Network [OSTI]

Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between 1H2 and 1H3 is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary 2He4 nucleus.

Sparisoma Viridi; Rizal Kurniadi; Abdul Waris; Yudha Satya Perkasa

2011-09-30T23:59:59.000Z

75

Study of the 12C+12C fusion reactions near the Gamow energy  

E-Print Network [OSTI]

The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new resonances at E <= 3.0 MeV, in particular a strong resonance at E = 2.14 MeV, which lies at the high-energy tail of the Gamow peak. The resonance increases the present non-resonant reaction rate of the alpha channel by a factor of 5 near T = 8x10^8 K. Due to the resonance structure, extrapolation to the Gamow energy E_G = 1.5 MeV is quite uncertain. An experimental approach based on an underground accelerator placed in a salt mine in combination with a high efficiency detection setup could provide data over the full E_G energy range.

T. Spillane; F. Raiola; S. Zeng; H. -W. Becker; C. Bordeanu; L. Gialanella; C. Rolfs; M. Romano; D. Sch"urmann; J. Schweitzer; F. Strieder

2007-02-09T23:59:59.000Z

76

Statistics at work in heavy-ion reactions  

SciTech Connect (OSTI)

In the first part special aspects of the compound nucleus decay are considered. The evaporation of particles intermediate between nucleons and fission fragments is explored both theoretically and experimentally. The limitations of the fission decay width expression obtained with the transition state method are discussed, and a more general approach is proposed. In the second part the process of angular momentum transfer in deep inelastic reactions is considered. The limit of statistical equilibrium is studied and specifically applied to the estimation of the degree of alignment of the fragment spins. The magnitude and alignment of the transferred angular momentum is experimentally determined from sequentially emitted alpha, gamma, and fission fragments.

Moretto, L.G.

1982-07-01T23:59:59.000Z

77

Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration  

SciTech Connect (OSTI)

We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

Thirolf, P. G.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D. [Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, D-85748 Garching (Germany); Habs, D. [Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, D-85748 Garching (Germany); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany); Ma, W.; Schreiber, J. [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)

2011-10-28T23:59:59.000Z

78

Odd-Z Transactinide Compound Nucleus Reactions Including the Discovery of 260Bh  

E-Print Network [OSTI]

reactions: hot fusion and cold fusion. The main differencenot yet well understood. Cold fusion reactions are, as theof nuclides. An advantage that cold fusion reactions have is

Nelson, Sarah L

2008-01-01T23:59:59.000Z

79

Photo-fusion reactions in a new compact device for ELI  

SciTech Connect (OSTI)

In the last few years significant progress on technological, experimental and numerical studies on fusion process in high density and high temperature plasmas produced by a high intensity laser pulse interaction with clusters in a high external applied magnetic field, enable us to propose a compact photo-fusion magnetic device for high neutron production. For the purpose of the project a pulsed magnetic field driver with values up to 110 Tesla has been developed which allows increasing the trapping time of the high density plasma in the device and improving the neutron yield. Numerical simulations show that the proposed device is capable of producing up to 10{sup 9}-10{sup 10} neutrons per laser shot with an external magnetic field of 150 Tesla. The proposed device can be used for experiments and numerical code validation concerning different conventional and (or) exotic fusion fuels.

Moustaizis, S. D.; Auvray, P.; Hora, H.; Lalousis, P.; Larour, J.; Mourou, G. [Technical University of Crete, Science Department, 73100 Chania, Crete (Greece); LPP-Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France); Department of Theoret. Physics, Univ. New South Wales, Sydney 2052 (Australia); Institute of Electronic Structure and Laser, FORTH, Heraklion (Greece); LPP-Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France); LOA Laboratoire d'Optique Appliquee, ENSTA, Palaiseau Cedex (France)

2012-07-09T23:59:59.000Z

80

Fusion reactions in collisions induced by Li isotopes on Sn targets  

SciTech Connect (OSTI)

Fusion cross sections for the {sup 6}Li+{sup 120}Sn and {sup 7}Li+{sup 119}Sn systems have been measured. We aim to search for possible effects due to the different neutron transfer Q-values, by comparing the fusion cross sections for the two systems below the barrier. This experiment is the first step of a wider systematic aiming to study the above problems in collisions induced by stable and unstable Li isotopes on tin all forming the same compound nucleus.

Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M. [Dipartimento di Fisica, Universita di Messina, Messina (Italy) and INFN-Laboratori Nazionali del Sud and sezione di Catania, Catania (Italy); School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom) and TRIUMF, Vancouver (Canada); INFN-Laboratori Nazionali del Sud and sezione di Catania, Catania (Italy); INFN-Laboratori Nazionali del Sud and sezione di Catania, Catania, Italy and Dipartimento di Fisica ed Astronomia, Universita di Catania, Catania (Italy); INFN-Laboratori Nazionali del Sud and sezione di Catania, Catania (Italy); INFN- Laboratori Nazionali del Sud and sezione di Catania, Catania (Italy) and Dipartimento di Fisica ed Astronomia, Universita di Catania, Catania (Italy); TRIUMF, Vancouver (Canada); INFN-Laboratori Nazionali del Sud and sezione di Catania, Catania (Italy) and Dipartimento di Fisica ed Astronomia, Universita di Catania, Catania (Italy); Ruder Boskovic Institute, Zagreb (Croatia)

2012-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

INL Fusion Safety Program - Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brad Merrill Fusion Safety Program Group Leader Group Leader for the Fusion Safety Program. Technical lead for computer code development for fusion safety. Work in licensing,...

82

Role of Anharmonic Vibration on Heavy-ion Fusion Reaction and Large Angle Quasi-elastic Scattering of {sup 16}O+{sup 144}Sm  

SciTech Connect (OSTI)

We study the effects of double quadrupole and octupole phonon excitations of {sup 144}Sm nucleus on heavy-ion fusion reaction and large angle quasi-elastic scattering for {sup 16}O+{sup 144}Sm reaction using the coupled-channels approach. We explicitly taken into account the anharmonicites of nuclear vibrations using the sdf-interacting boson model. It is shown that the anhamronicities play an essential role in reproducing the experimental data of the fusion cross section as well as the fusion barrier distribution for this system. Also the quasi-elastic cross section is well reproduced in this way. However, the quasi-elastic barrier distribution has a high distinct peak which is smeared out in the experimental data. Our study indicates that the fusion and quasi-elastic barrier distribution for {sup 16}O+{sup 144}Sm system cannot be accounted for simultaneously with the standard coupled-channels formalism.

Muhammad, Zamrun F. [Jurusan Fisika, FMIPA Universitas Haluoleo, Kendari, Sulawesi Tenggara, 93232 (Indonesia); Hagino, K. [Department of Physics, Tohoku University, Sendai, 980-8576 (Japan)

2009-07-10T23:59:59.000Z

83

Signature of Shallow Potentials in Deep Sub-barrier Fusion Reactions  

E-Print Network [OSTI]

We extend a recent study that explained the steep falloff in the fusion cross section at energies far below the Coulomb barrier for the symmetric dinuclear system 64Ni+64Ni to another symmetric system, 58Ni+58Ni, and the asymmetric system 64Ni+100Mo. In this scheme the very sensitive dependence of the internal part of the nuclear potential on the nuclear equation of state determines a reduction of the classically allowed region for overlapping configurations and consequently a decrease in the fusion cross sections at bombarding energies far below the barrier. Within the coupled-channels method, including couplings to the low-lying 2+ and 3- states in both target and projectile as well as mutual and two-phonon excitations of these states, we calculate and compare with the experimental fusion cross sections, S-factors, and logarithmic derivatives for the above mentioned systems and find good agreement with the data even at the lowest energies. We predict, in particular, a distinct double peaking in the S-factor for the far subbarrier fusion of 58Ni+58Ni which should be tested experimentally.

S. Misicu; H. Esbensen

2007-02-15T23:59:59.000Z

84

Analysis of the energy transport and deposition within the reaction chamber of the prometheus inertial fusion energy reactor  

SciTech Connect (OSTI)

One of the parameters affecting the feasibility of Inertial Fusion Energy (IFE) devices is the number of shots per unit time, i.e. the repetition rate. The repetition rate limits the achievable power that can be obtained from the reactor. To obtain an estimate of the allowable time between shots, a code named RECON was developed to model the response of the reaction chamber to the pellet explosion. This paper discusses how the code treats the thermodynamic response of the cavity gas and models the condensation/evaporation of this vapor to and from the first wall. A large amount of energy from the pellet microexplosion is carried by the pellet debris and the x-rays generated in the fusion reaction. Models of x-ray attenuation and ion slowing down are used to estimate the fraction of the pellet energy that is absorbed in the vapor. A large amount of energy is absorbed into the cavity gas, which causes it to become partially ionized. The ionization complicates the calculation of the temperature, pressure, and the radiative heat transfer from the gas to the first wall. To treat this problem, methods developed by Zel`dovich and Raizer are used in modeling the internal energy and the radiative heat flux. RECON was developed to run with a relatively short computational time, yet accurate enough for conceptual reactor design calculations.

Eggleston, J.E.; Abdou, M.A.; Tillack, M.S. [Univ. of California, Los Angeles, CA (United States)

1994-12-31T23:59:59.000Z

85

The study of the nucleus-nucleus interaction potential for $^{16}$O+$^{27}$Al and $^{16}$O+$^{28}$Si fusion reactions  

E-Print Network [OSTI]

Using the Monte Carlo simulation method accompanied by the modifying effects of the density distributions overlapping, we have examined the nuclear matter incompressibility effects for asymmetric systems with light nuclei, namely $^{16}$O+$^{27}$Al and $^{16}$O+$^{28}$Si fusion reactions. The obtained results show that the nuclear equation of state has considerable influence on the calculation of fusion probabilities for these asymmetric systems.

O. N. Ghodsi; R. Gharaei

2014-03-08T23:59:59.000Z

86

Isospin Dependence of Incomplete Fusion Reactions at 25 MeV/Nucleon  

SciTech Connect (OSTI)

{sup 40}Ca+{sup 40,48}Ca,{sup 46}Ti reactions at 25 MeV/nucleon have been studied using the 4{pi} CHIMERA detector. An isospin effect on the competition between fusionlike and binarylike reaction mechanisms has been observed. The probability of producing a heavy residue is lower in the case of N{approx_equal}Z colliding systems as compared to the case of reactions induced on the neutron rich {sup 48}Ca target. Predictions based on constrained molecular dynamics II calculations show that the competition between fusionlike and binary reactions in the selected centrality bins can constrain the parametrization of the symmetry energy and its density dependence in the nuclear equation of state.

Amorini, F.; Agodi, C.; Alba, R.; Anzalone, A.; Coniglione, R.; Di Pietro, A.; Figuera, P.; Maiolino, C.; Santonocito, D.; Sapienza, P. [INFN Laboratori Nazionali del Sud, via Santa Sofia 44, Catania (Italy); Cardella, G.; Papa, M.; De Filippo, E.; Pagano, A.; Pirrone, S.; Verde, G. [INFN, Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Giuliani, G. [Department of Physics and Astronomy Catania University, Via Santa Sofia 64, Catania (Italy); Berceanu, I.; Pop, A. [National Institute for Physics and Nuclear Engineering 'Horia Hulubei', Bucharest (Romania); Cavallaro, S. [INFN Laboratori Nazionali del Sud, via Santa Sofia 44, Catania (Italy); Department of Physics and Astronomy Catania University, Via Santa Sofia 64, Catania (Italy)] (and others)

2009-03-20T23:59:59.000Z

87

Extended Optical Model Analyses of Elastic Scattering, Direct Reaction, and Fusion Cross Sections for the 9Be + 208Pb System at Near-Coulomb-Barrier Energies  

E-Print Network [OSTI]

Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous $\\chi^{2}$ analyses are performed for elastic scattering, DR, and fusion cross section data for the $^{9}$Be+$^{208}$Pb system at near-Coulomb-barrier energies. Similar $\\chi^{2}$ analyses are also performed by only taking into account the elastic scattering and fusion data as was previously done by the present authors, and the results are compared with those of the full analysis including the DR cross section data as well. We find that the analyses using only elastic scattering and fusion data can produce very consistent and reliable predictions of cross sections particularly when the DR cross section data are not complete. Discussions are also given on the results obtained from similar analyses made earlier for the $^{9}$Be+$^{209}$Bi system.

W. Y. So; S. W. Hong; B. T. Kim; T. Udagawa

2005-09-27T23:59:59.000Z

88

Sensitivity of fusion and quasi-elastic barrier distributions of {sub 16}O+{sub 144}Sm reaction on the coupling radius parameter  

SciTech Connect (OSTI)

We study the heavy-ion collision at sub-barrier energies of {sub 16}O+{sub 144}Sm system using full order coupled-channels formalism. We especially investigate the sensitivity of fusion and quasi-elastic barrier distributions for this system on the coupling radius parameter. We found that the coupled-channels calculations of the fusion and the quasi-elastic barrier distributions are sensitive to the coupling radius for this reaction in contrast to the fusion and quasi-elastic cross section. Our study indicates that the larger coupling radius, i.e., r{sub coup}=1.20, is required by the experimental quasi-elastic barrier distribution. However, the experimental fusion barrier distribution compulsory the small value, i.e., r{sub coup}=1.06.

Zamrun, Muhammad; Usman, Ida; Variani, Viska Inda [Department of Physics, Haluoleo University, Kendari, Sulawesi Tengagra, 93232 (Indonesia); Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2014-03-05T23:59:59.000Z

89

Probing the Structure of {sup 74}Ge Nucleus with Coupled-channels Analysis of {sup 74}Ge+{sup 74}Ge Fusion Reaction  

SciTech Connect (OSTI)

We study the fusion reaction of the {sup 74}Ge+{sup 74}Ge system in term of the full order coupled-channels formalism. We especially calculated the fusion cross section as well as the fusion barrier distribution of this reaction using transition matrix suggested by recent Coulomb excitation experiment. We compare the results with the one obtained by coupling matrix based on pure vibrational and rotational models. The present coupled-channels calculations for the barrier distributions obtained using experiment coupling matrix is in good agreement with the one obtained with vibrational model, in contrast to the rotational model. This is indicates that {sup 74}Ge nucleus favor a spherical shape than a deformed shape in its ground state. Our results will resolve the debates concerning the structure of this nucleus.

Zamrun F, Muhammad [Deparment of Physics University of Malaya, Kuala Lumpur, 50603 (Malaysia); Jurusan Fisika FMIPA, Universitas Haluoleo, Kendari, Sulawesi Tenggara, 93232 (Indonesia); Kasim, Hasan Abu [Deparment of Physics University of Malaya, Kuala Lumpur, 50603 (Malaysia)

2010-12-23T23:59:59.000Z

90

Fusion Power Associates Fusion Energy Sciences Program  

E-Print Network [OSTI]

experiments ­ Further work on inertial fusion energy technology ­ Take advantage of opportunities in HEDP on several smaller experiments ­ Further work on inertial fusion energy technology · Focus IFE first wall

91

Thermal properties of light nuclei from 12 fusion-evaporation reactions2  

E-Print Network [OSTI]

applications of nuclear44 physics, from nucleosynthesis calculations to reactor science. Its direct measurement of two, a comparison to a dedicated Hauser-Feshbach calculation allows to24 select a set of dissipative from direct reactions and/or -clustering32 effects. These channels are studied in further details

Paris-Sud XI, Université de

92

Enhancement of the Deuteron-Fusion Reactions in Metals and its Experimental Implications  

E-Print Network [OSTI]

Recent measurements of the reaction d(d,p)t in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for divers host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls which make them and the data analysis particularly error-prone. There are multi-parameter collateral effects which are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations due to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. In order to address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-H\\"{u}ckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays could be clearly excluded.

A. Huke; K. Czerski; P. Heide; G. Ruprecht; N. Targosz; W. ?ebrowski

2008-05-29T23:59:59.000Z

93

Entrance Channel Dynamics of Hot and Cold Fusion Reactions Leading to Superheavy Elements  

E-Print Network [OSTI]

We investigate the entrance channel dynamics for the reactions $\\mathrm{^{70}Zn}+\\mathrm{^{208}Pb}$ and $\\mathrm{^{48}Ca}+\\mathrm{^{238}U}$ using the fully microscopic time-dependent Hartree-Fock (TDHF) theory coupled with a density constraint. We calculate excitation energies and capture cross-sections relevant for the study of superheavy formations. We discuss the deformation dependence of the ion-ion potential for the $\\mathrm{^{48}Ca}+\\mathrm{^{238}U}$ system and perform an alignment angle averaging for the calculation of the capture cross-section. The results show that this parameter-free approach can generate results in good agreement with experiment and other theories.

A. S. Umar; V. E. Oberacker; J. A. Maruhn; P. -G. Reinhard

2010-04-15T23:59:59.000Z

94

Entrance Channel Dynamics of Hot and Cold Fusion Reactions Leading to Superheavy Elements  

E-Print Network [OSTI]

We investigate the entrance channel dynamics for the reactions $\\mathrm{^{70}Zn}+\\mathrm{^{208}Pb}$ and $\\mathrm{^{48}Ca}+\\mathrm{^{238}U}$ using the fully microscopic time-dependent Hartree-Fock (TDHF) theory coupled with a density constraint. We calculate excitation energies and capture cross-sections relevant for the study of superheavy formations. We discuss the deformation dependence of the ion-ion potential for the $\\mathrm{^{48}Ca}+\\mathrm{^{238}U}$ system and perform an alignment angle averaging for the calculation of the capture cross-section. The results show that this parameter-free approach can generate results in good agreement with experiment and other theories.

Umar, A S; Maruhn, J A; Reinhard, P -G

2010-01-01T23:59:59.000Z

95

Thermal properties of light nuclei from $^{12}$C+$^{12}$C fusion-evaporation reactions  

E-Print Network [OSTI]

The $^{12}$C+$^{12}$C reaction at 95 MeV has been studied through the complete charge identification of its products by means of the GARFIELD+RCo experimental set-up at INFN Laboratori Nazionali di Legnaro (LNL). In this paper, the first of a series of two, a comparison to a dedicated Hauser-Feshbach calculation allows to select a set of dissipative events which corresponds, to a large extent, to the statistical evaporation of highly excited $^{24}$Mg. Information on the isotopic distribution of the evaporation residues in coincidence with their complete evaporation chain is also extracted. The set of data puts strong constraints on the behaviour of the level density of light nuclei above the threshold for particle emission. In particular, a fast increase of the level density parameter with excitation energy is supported by the data. Residual deviations from a statistical behaviour are seen in two specific channels, and tentatively associated with a contamination from direct reactions and/or $\\alpha$-clustering effects. These channels are studied in further details in the second paper of the series.

L Morelli; G Baiocco; M D'Agostino; F Gulminelli; M Bruno; U Abbondanno; S Appannababu; S Barlini; M Bini; G Casini; M Cinausero; M Degerlier; D Fabris; N Gelli; F Gramegna; V L Kravchuk; T Marchi; G Pasquali; S Piantelli; S Valdré; Ad R Raduta

2014-04-14T23:59:59.000Z

96

Semi-classical Characters and Optical Model Description of Heavy Ion Scattering, Direct Reactions, and Fusion at Near-barrier Energies  

E-Print Network [OSTI]

An approach is proposed to calculate the direct reaction (DR) and fusion probabilities for heavy ion collisions at near-Coulomb-barrier energies as functions of the distance of closest approach D within the framework of the optical model that introduces two types of imaginary potentials, DR and fusion. The probabilities are calculated by using partial DR and fusion cross sections, together with the classical relations associated with the Coulomb trajectory. Such an approach makes it possible to analyze the data for angular distributions of the inclusive DR cross section, facilitating the determination of the radius parameters of the imaginary DR potential in a less ambiguous manner. Simultaneous $\\chi^{2}$-analyses are performed of relevant data for the $^{16}$O+$^{208}$Pb system near the Coulomb-barrier energy.

B. T. Kim; W. Y. So; S. W. Hong; T. Udagawa

2001-11-02T23:59:59.000Z

97

Historical collection of preprints, reprints, working papers, correspondence, and other documents related to the "cold fusion" experiments conducted by Stanley Pons and Martin Fleischmann.  

SciTech Connect (OSTI)

This historical collection consists of various letters, correspondence, working papers, reprints, preprints, workshop reports, and news clippings related to the "cold fusion" experiments conducted by Stanley Pons and Martin Fleischmann. Binders and contents. 1. Laboratory Reprints/Preprints (Laboratory Documents from 9 national Labs. Some original documents); 2. Summary Report by Dr. Duane L. Barney (Articles, Letters, and Reports through 1994 on Cold Fusion. Original Documents); 3. Conference Workshops (Official Documents, schedules, and notes from 4 conferences); 4. HSS&T Hearings, SRI Incident Jan. 1992 (Summary of Cold Fusion Research and reports following SRI Incident. Original Documents); 5. Media 1989 to Present (circa 1995) (Journals, Magazines, Newspapers, and Press Releases from 1989-1995. Some reprints, some original articles/magazines); 6. Science in Service of National Economy aka Manfred's Book (A comprehensive overview of various research being done at Laboratories across the country that could impact the economy); 7. ERAB Information (Comprehensive Report on Cold Fusion Research w/ recommendations on funding and continued research. Original documents); 8. Misc.: Memorandum, Notes, Reports, Summaries, and Updates Chronologically 1989 (Various documents related to Cold Fusion in order of print from 1989. Original documents); 9. Misc.: Memorandum, Notes, Reports, Summaries, and Updates Chronologically 1990-1992 (Various documents related to Cold Fusion including status reports and research in order of print from 1990-1992. Original documents); 10. Misc.: Memorandum, Notes, Reports, Summaries, and Updates Chronologically 1993-1995 (Various documents related to Cold Fusion including status reports and research in order of print from 1993-1995. Original documents); 11. General: Preprints/Reprints Filed by Institution A-H (Reports of Research and Conclusion from various universities and institutions.); 12. General: Preprints/Reprints Filed by Institution I-R (Reports of Research and Conclusion from various universities and institutions.); 13. General: Preprints/Reprints Filed by Institution S-Z (Reports of Research and Conclusion from various universities and institutions.); 14. General: Correspondence, Incoming, Inquiries A-F (Letters, Correspondence, and Inquiries regarding Cold Fusion and its research. Sorted by Last Name of Author. Original documents); 15. General: Correspondence, Incoming, Inquiries G-L (Letters, Correspondence, and Inquiries regarding Cold Fusion and its research. Sorted by Last Name of Author. Original documents); 16. General: Correspondence, Incoming, Inquiries M-R (Letters, Correspondence, and Inquiries regarding Cold Fusion and its research. Sorted by Last Name of Author. Original documents); 17. General: Correspondence, Incoming, Inquiries S-Z (Letters, Correspondence, and Inquiries regarding Cold Fusion and its research. Sorted by Last Name of Author. Original documents); 18. Miscellaneous papers (Investigation of Cold Fusion Phenomena in Deuterated Metals-NCFI Final Report Volumes I. II, and III; June 1991; 4th Annual Conference on Cold Fusion Proceedings: Volumes 1-4; Development of Advanced Concepts for Nuclear Processes in Deuterated Metals; A Comprehensive Report on the research methods, background information, and principles related to Cold Fusion; Cold Fusion Research: November 1989; ERAB report on Cold Fusion Research; Proceedings: Workshop on Anomalous Effects in Deuterided Metals; Workshop designed to generate audio between skeptics and advocates to examine Cold Fusion research results and remaining questions in research methods; Muon Catalyzed Fusion; Overview of Muon Catalyzed Fusion; Grant Application for Cold Fusion Research; Original application to DOE from Prof. Pons that was withdrawn in favor of a new grant proposal).

None

2013-04-01T23:59:59.000Z

98

Neutron imaging with bubble chambers for inertial confinement fusion.  

E-Print Network [OSTI]

??One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated… (more)

Ghilea, Marian Constantin (1973 - ); Meyerhofer, David D.

2011-01-01T23:59:59.000Z

99

Fusion energy  

ScienceCinema (OSTI)

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-23T23:59:59.000Z

100

Fusion energy  

SciTech Connect (OSTI)

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lightest Isotope of Bh Produced Via the 209Bi(52Cr,n)260Bh Reaction  

E-Print Network [OSTI]

models. For many years, “cold fusionreactions utilizingproduced via the new “cold fusionreaction 209 Bi( 52 Cr,

2007-01-01T23:59:59.000Z

102

Charged-Particle Thermonuclear Reaction Rates: IV. Comparison to Previous Work  

E-Print Network [OSTI]

We compare our Monte Carlo reaction rates (see Paper II of this series) to previous results that were obtained by using the classical method of computing thermonuclear reaction rates. For each reaction, the comparison is presented using two types of graphs: the first shows the change in reaction rate uncertainties, while the second displays our new results normalized to the previously recommended reaction rate. We find that the rates have changed significantly for almost all reactions considered here. The changes are caused by (i) our new Monte Carlo method of computing reaction rates (see Paper I of this series), and (ii) newly available nuclear physics information (see Paper III of this series).

Christian Iliadis; Richard Longland; Art Champagne; Alain Coc

2010-04-23T23:59:59.000Z

103

NUCLEAR STRUCTURE AND HEAVY-ION FUSION  

E-Print Network [OSTI]

mechanisms leading to fusion, nuclear structure is affectingknoi,. A [he "nuclear structure" in fusion will consist ofCI i CO I0 + Be fusion I0 ' -cm Nuclear reaction S-factors

Stokstad, R.G.

2010-01-01T23:59:59.000Z

104

Investigation of complete and incomplete fusion dynamics of {sup 20}Ne induced reactions at energies above the Coulomb barrier  

SciTech Connect (OSTI)

Experiment has been performed to explore the complete and incomplete fusion dynamics in heavy ion collisions using stacked foil activation technique. The measurement of excitation functions of the evaporation residues produced in the {sup 20}Ne+{sup 165}Ho system at projectile energies ranges ? 4-8 MeV/nucleon have been done. Measured cumulative and direct cross-sections have been compared with the theoretical model code PACE-2, which takes into account only the complete fusion process. The analysis indicates the presence of contributions from incomplete fusion processes in some ?-emission channels following the break-up of the projectile {sup 20}Ne in the nuclear field of the target nucleus {sup 165}Ho.

Singh, D., E-mail: dsinghiuac@gmail.com [Centre for Applied Physics, Central University of Jharkhand, Ranchi-835 205 (India); Ali, R. [Department of Physics, G.F.(P.G.), College, Shahjahanpur-242 001 (India); Kumar, Harish; Ansari, M. Afzal [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Rashid, M. H.; Guin, R. [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata-700 064 (India)

2014-08-14T23:59:59.000Z

105

Bemerkungen zur "kalten Fusion"  

E-Print Network [OSTI]

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Rainer W. Kuehne

2006-04-14T23:59:59.000Z

106

Bemerkungen zur "kalten Fusion"  

E-Print Network [OSTI]

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Kuehne, R W

2006-01-01T23:59:59.000Z

107

E-Print Network 3.0 - anisotropic d-d fusion Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

F. Leipold1 Summary: and Fusion Center, Cambridge, MA 02139, USA Introduction Plasmas for thermonuclear fusion contain a highly... in the deuterium-tritium fusion reaction which is...

108

Introduction to Fusion Energy Jerry Hughes  

E-Print Network [OSTI]

;Terrestrial energy sources have their origin in the nuclear fusion reactions of stars Supernova produces Earth #12;Terrestrial energy sources have their origin in the nuclear fusion reactions of stars energy sources have their origin in the nuclear fusion reactions of stars Geothermal Nuclear fission

109

Class II virus membrane fusion proteins  

SciTech Connect (OSTI)

Enveloped animal viruses fuse their membrane with a host cell membrane, thus delivering the virus genetic material into the cytoplasm and initiating infection. This critical membrane fusion reaction is mediated by a virus transmembrane protein known as the fusion protein, which inserts its hydrophobic fusion peptide into the cell membrane and refolds to drive the fusion reaction. This review describes recent advances in our understanding of the structure and function of the class II fusion proteins of the alphaviruses and flaviviruses. Inhibition of the fusion protein refolding reaction confirms its importance in fusion and suggests new antiviral strategies for these medically important viruses.

Kielian, Margaret [Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461 (United States)]. E-mail: kielian@aecom.yu.edu

2006-01-05T23:59:59.000Z

110

Making Fusion Power Work: Materials Blanket: 150 dpa/5 years, 2.5 MW/m2  

E-Print Network [OSTI]

particles from plasma ~15 % power High Heat Flux Components DEMO #12;7 Radiation damage in Materials dose rate (Sv/hr) Residual radioactivity in proposed fusion reactor steels after irradiation up to 115 of nanometre scale Y2O3 particles: act as He, H sinks, strengthen, reduce creep. Currently only small

111

"50" Years of Fusion Research Fusion Innovation Research and Energy  

E-Print Network [OSTI]

Classified US Program on Controlled Thermonuclear Fusion (Project Sherwood) carried out until 1958 when"50" Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ Fi P th SFusion Fire Powers the Sun "W d t if k f i k ""We need to see if we can make fusion work

112

Fusion Energy Program Presentation to  

E-Print Network [OSTI]

International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced MaterialsFusion Energy Program Presentation to Field Work Proposals Washington, D.C. N. Anne Davies Associate Director for Fusion energy Office of Energy Research March23, 1994 #12;FUSION ENERGY PROGRAM FYI

113

X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection  

SciTech Connect (OSTI)

We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility (JLF). This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

Vernon, S. P.; Lowry, M. E.; Baker, K. L.; Bennett, C. V.; Celeste, J. R.; Cerjan, C.; Haynes, S.; Hernandez, V. J.; Hsing, W. W.; LaCaille, G. A.; London, R. A.; Moran, B.; Schach von Wittenau, A.; Steele, P. T.; Stewart, R. E. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

114

X-ray bang-time and fusion reaction history at ~ps resolution using RadOptic detection  

SciTech Connect (OSTI)

We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility. This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

Vernon, S P; Lowry, M E; Baker, K L; Bennett, C V; Celeste, J R; Cerjan, C; Haynes, S; Hernandez, V J; Hsing, W W; London, R A; Moran, B; von Wittenau, A S; Steele, P T; Stewart, R E

2012-05-01T23:59:59.000Z

115

Non-statistical decay and $?$-correlations in the $^{12}$C+$^{12}$C fusion-evaporation reaction at 95 MeV  

E-Print Network [OSTI]

Multiple alpha coincidence and correlations are studied in the reaction $^{12}$C+$^{12}$C at 95 MeV for fusion-evaporation events completely detected in charge. Two specific channels with Carbon and Oxygen residues in coincidence with $\\alpha$-particles are addressed, which are associated with anomalously high branching ratios with respect the predictions by Hauser-Feshbach calculations. Triple alpha emission appears kinematically compatible with a sequential emission from a highly excited Mg. The phase space distribution of $\\alpha$-$\\alpha$ coincidences suggests a correlated emission from a Mg compound, leaving an Oxygen residue excited above the threshold for neutron decay. These observations indicate a preferential $\\alpha$ emission of $^{24}$Mg at excitation energies well above the threshold for $6-\\alpha$ decay.

L. Morelli; G. Baiocco; M. D'Agostino; F. Gulminelli; M. Bruno; U. Abbondanno; S. Appannababu; S. Barlini; M. Bini; G. Casini; M. Cinausero; M. Degerlier; D. Fabris; N. Gelli; F. Gramegna; V. L. Kravchuk; T. Marchi; G. Pasquali; S. Piantelli; S. Valdré; Ad R. Raduta

2014-04-14T23:59:59.000Z

116

Ph.D. Theses 1. M. Dasgupta Study of cross section and average angular momenta in fusion reactions of 28  

E-Print Network [OSTI]

(TIFR, 1992) 2. Pragya Singh Spectroscopy of high spin nuclear states of 92,91,90 Mo excited by heavy to transient magnetic fields (1993) 5. M.K. Sharan Study of high energy gamma rays following heavy ion-fission reactions (BARC, 1994) 7. S. Chattopadhyay Investigation of nuclear structure at high spins in mass-80

Shyamasundar, R.K.

117

Magnetic Confinement Fusion at the Crossroads  

E-Print Network [OSTI]

Matterhorn initiated at Princeton 1950s Classified US Project Sherwood on controlled thermonuclear fusionMagnetic Confinement Fusion at the Crossroads Michael Bell Princeton Plasma Physics Laboratory #12;MGB / UT / 070307 2 The Beginnings of Fusion Energy Research 1928 Concept of fusion reactions

Princeton Plasma Physics Laboratory

118

Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions  

SciTech Connect (OSTI)

The decay properties of {sup 290}116 and {sup 291}116, and the dependence of their production cross sections on the excitation energies of the compound nucleus, {sup 293}116, have been measured in the {sup 245}Cm({sup 48}Ca,xn){sup 293-x}116 reaction. These isotopes of element 116 are the decay daughters of element 118 isotopes, which are produced via the {sup 249}Cf+{sup 48}Ca reaction. They performed the element 118 experiment at two projectile energies, corresponding to {sup 297}118 compound nucleus excitation energies of E* = 29.2 {+-} 2.5 and 34.4 {+-} 2.3 MeV. During an irradiation with a total beam dose of 4.1 x 10{sup 19} {sup 48}Ca projectiles, three similar decay chains consisting of two or three consecutive {alpha} decays and terminated by a spontaneous fission (SF) with high total kinetic energy of about 230 MeV were observed. The three decay chains originated from the even-even isotope {sup 294}118 (E{sub {alpha}} = 11.65 {+-} 0.06 MeV, T{sub {alpha}} = 0.89{sub -0.31}{sup +1.07} ms) produced in the 3n-evaporation channel of the {sup 249}Cf+{sup 48}Ca reaction with a maximum cross section of 0.5{sub -0.3}{sup +1.6} pb.

Oganessian, Y T; Utyonkov, V K; Lobanov, Y V; Abdullin, F S; Polyakov, A N; Sagaidak, R N; Shirokovsky, I V; Tsyganov, Y S; Voinov, A A; Gulbekian, G G; Bogomolov, S L; Gikal, B N; Mezentsev, A N; Iliev, S; Subbotin, V G; Sukhov, A M; Subotic, K; Zagrebaev, V I; Vostokin, G K; Itkis, M G; Moody, K J; . Patin, J B; Shaughnessy, D A; Stoyer, M A; Stoyer, N J; Wilk, P A; Kenneally, J M; Landrum, J H; Wild, J F; Lougheed, R W

2006-01-31T23:59:59.000Z

119

PLASMA-PHYSICS-21 Heavy ion driven reactor-size double shell inertial fusion targets*  

E-Print Network [OSTI]

Inertial Confinement Fusion (ICF) is considered as an alternative to Magnetic Confinement Fusion to achieve controlled thermonuclear fusion. The main goal is to exploit the energy released from thermonuclear fusion reactions

M. C. Serna Moreno; N. A. Tahir; J. J. López Cela; A. R. Piriz; D. H. H. Hoffmann

120

Observation of the 3n Evaporation Channel in the Complete Hot-Fusion Reaction {sup 26}Mg+{sup 248}Cm Leading to the New Superheavy Nuclide {sup 271}Hs  

SciTech Connect (OSTI)

The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles (6{<=}Z{<=}18) and actinide targets suggests a disappearance of the 3n exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction {sup 248}Cm({sup 26}Mg,xn){sup 274-x}Hs and the observation of the new nuclide {sup 271}Hs produced in the 3n evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the 4n and 5n channels. This indicates the possible discovery of new neutron-rich transactinide nuclei using relatively light heavy ion beams of the most neutron-rich stable isotopes and actinide targets.

Dvorak, J.; Dvorakova, Z.; Kruecken, R.; Nebel, F.; Perego, R.; Schuber, R.; Tuerler, A.; Wierczinski, B.; Yakushev, A. [Technische Universitaet Muenchen, D-85748 Garching (Germany); Bruechle, W.; Jaeger, E.; Schaedel, M.; Schausten, B.; Schimpf, E. [Gesellschaft fuer Schwerionenforschung mbH, D-64291 Darmstadt (Germany); Chelnokov, M.; Kuznetsov, A.; Yeremin, A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Duellmann, Ch. E. [Gesellschaft fuer Schwerionenforschung mbH, D-64291 Darmstadt (Germany); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); University of California, Berkeley, California 94720-1460 (United States); Eberhardt, K. [Universitaet Mainz, D-55128 Mainz (Germany); Nagame, Y. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)] (and others)

2008-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy CrisisEnergy Crisis  

E-Print Network [OSTI]

Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy Crisis.maclellan@strath.ac.uk Introduction and Motivation What is Nuclear Fusion? Laser Plasma Interactions The world, and particularly is harnessing the power of nuclear fusion. It is however, extremely difficult to sustain a fusion reaction

Strathclyde, University of

122

Cold nuclear fusion  

SciTech Connect (OSTI)

Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

Tsyganov, E. N., E-mail: edward.tsyganov@utsouthwestern.edu [University of Texas Southwestern Medical Center at Dallas (United States)

2012-02-15T23:59:59.000Z

123

Investigations of nuclear structure and nuclear reactions induced by complex projectiles  

SciTech Connect (OSTI)

This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

Sarantites, D.G.

1990-01-01T23:59:59.000Z

124

Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies.  

SciTech Connect (OSTI)

The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the 'stiffness' of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

Jiang, C. L.; Back, B. B.; Esbensen, H.; Janssens, R. V. F.; Rehm, K. E.; Physics

2006-01-01T23:59:59.000Z

125

Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies  

E-Print Network [OSTI]

The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the "stiffness" of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the $Q$-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

C. L. Jiang; B. B. Back; H. Esbensen; R. V. F. Janssens; abd K. E. Rehm

2005-08-01T23:59:59.000Z

126

Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies  

SciTech Connect (OSTI)

The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the ''stiffness'' of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

Jiang, C.L.; Back, B.B.; Esbensen, H.; Janssens, R.V.F.; Rehm, K.E. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2006-01-15T23:59:59.000Z

127

Dynamic microscopic study of pre-equilibrium giant resonance excitation and fusion in the reactions $^{132}$Sn+$^{48}$Ca and $^{124}$Sn+$^{40}$Ca  

E-Print Network [OSTI]

We study pre-equilibrium giant dipole resonance excitation and fusion in the neutron-rich system $^{132}$Sn+$^{48}$Ca at energies near the Coulomb barrier, and we compare photon yields and total fusion cross sections to those of the stable system $^{124}$Sn+$^{40}$Ca. The dynamic microscopic calculations are carried out on a three-dimensional lattice using both the Time-Dependent Hartree-Fock method and the Density Constrained TDHF method. We demonstrate that the peak of the GDR excitation spectrum occurs at a substantially lower energy than expected for an equilibrated system, thus reflecting the very large prolate elongation of the dinuclear complex during the early stages of fusion. Our theoretical fusion cross-sections for both systems agree reasonably well with recent data measured at HRIBF.

V. E. Oberacker; A. S. Umar; J. A. Maruhn; P. -G. Reinhard

2012-01-25T23:59:59.000Z

128

E-Print Network 3.0 - alternate magnetic fusion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plasma Physics and Fusion 86 E. Velikhov, E. Azizov (presented by B.Kuteev) Summary: thermonuclear fusion reactor, using reaction of deuterium and tritium in high temperature...

129

Will NIF Work  

E-Print Network [OSTI]

It is vital that new clean and abundant sources of energy be developed for the sustainability of modern society. Nuclear fusion of the hydrogen isotopes deuterium and tritium, if successful, might make a major contribution toward satisfying this need. The U.S. has an important effort aimed at achieving practical inertial confinement fusion, ICF, which has been under development for decades at the Lawrence Livermore National Laboratory. The National Ignition Facility (NIF) is a giant laser to multiply-shock and thus quasi-isentropically compress a capsule of deuterium-tritium (DT) to high density and temperature, where the fusion rate is proportional to density squared times temperature to the fourth power. The principal problem that must be solved for NIF to work successfully is elimination of the Rayleigh-Tailor (R-T) instability that originates from the interface between the solid shell and the DT fuel within it. The R-T instability poisons the fusion reaction by reducing the temperature of the DT achieved ...

Nellis, W J

2009-01-01T23:59:59.000Z

130

Fusion - 2050 perspective (in Polish)  

E-Print Network [OSTI]

The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050.The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, ...

Romaniuk, R S

2013-01-01T23:59:59.000Z

131

Fusion power production in TFTR  

SciTech Connect (OSTI)

Up to 9.3 MW of fusion power has been produced from deuterium-tritium (DT) fusion reactions in the Tokamak Fusion Test Reactor (TFTR). The total fusion yield from a single plasma pulse has reached 6.5 MJ. The experiments in TFTR with deuterium-tritium plasmas fueled and heated by neutral beam injection span wide ranges in plasma and operating conditions. Through the use of lithium pellet conditioning to control the edge recycling, the plasma confinement in TFTR has been improved to the point where the stability of the plasma to pressure driven modes is limiting the fusion power for plasma currents up to 2.5 MA. The central energy and fusion power densities in these plasmas are comparable to those expected in a thermalized DT reactor, such as ITER.

Bell, M.G.; Budny, R.V. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States)] [and others

1994-11-01T23:59:59.000Z

132

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network [OSTI]

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

Zhong, X H; Ning, P Z

2004-01-01T23:59:59.000Z

133

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network [OSTI]

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

X. H. Zhong; L. Li; P. Z. Ning

2004-10-18T23:59:59.000Z

134

Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines  

SciTech Connect (OSTI)

Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1?1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

Hagen, E. C. [National Security Technologies, LLC; Lowe, D. R. [National Security Technologies, LLC; O'Brien, R. [University of Nevada, Las Vegas; Meehan, B. T. [National Security Technologies, LLC

2013-06-18T23:59:59.000Z

135

Role of atomic collisions in fusion  

SciTech Connect (OSTI)

Atomic physics issues have played a large role in controlled fusion research. A general discussion of the present role of atomic processes in both magnetic and inertial controlled fusion work is presented.

Post, D.E.

1982-04-01T23:59:59.000Z

136

Z-inertial fusion energy: power plant final report FY 2006.  

SciTech Connect (OSTI)

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

2006-10-01T23:59:59.000Z

137

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002  

E-Print Network [OSTI]

Harnessing the energy of thermonuclear fusion reactions is one of the greatest challenges of our time. FusionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002 ITER on the road to fusion energy Kaname Ikeda Director

138

I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114  

E-Print Network [OSTI]

of superheavy nuclei in cold fusion reactions. Phys. Rev. C,transfermium elements in cold fusion reactions. Phys. Rev.have been deemed “cold fusionreactions because of the low

Ellison, Paul Andrew

2011-01-01T23:59:59.000Z

139

Is Fusion Inhibited for Weakly Bound Nuclei?  

SciTech Connect (OSTI)

Complete fusion of light radioactive nuclei is predicted to be hindered at near-barrier energies. This feature is investigated in the case of the least bound stable nuclei. Evaporation residues resulting from the {sup 6,7}Li+{sup 9}Be and {sup 6,7}Li+{sup 12}C fusion reactions have been measured in order to study common features in reactions involving light weakly bound nuclei. The experimental excitation functions revealed that the fusion cross section is significantly smaller than the total reaction cross section and also smaller than the fusion cross section expected from the available systematics. A clear correlation between the fusion probability and nucleon (cluster) separation energy has been established.The results suggest that the breakup process has a strong influence on the hindrance of the fusion cross section. {copyright} {ital 1996} {ital The American Physical Society}

Takahashi, J.; Munhoz, M.; Szanto, E.M.; Carlin, N.; Added, N.; Suaide, A.A.; de Moura, M.M.; Liguori Neto, R.; Szanto de Toledo, A. [Universidade de Sao Paulo, Institute de Fisica, Departamento de Fisica Nuclear, Caixa Postal 66318, 05389-970 Sao Paulo, Sao Paulo, (Brasil)] [Universidade de Sao Paulo, Institute de Fisica, Departamento de Fisica Nuclear, Caixa Postal 66318, 05389-970 Sao Paulo, Sao Paulo, (Brasil); Canto, L.F. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ, (Brasil)] [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ, (Brasil)

1997-01-01T23:59:59.000Z

140

Simulation of Fusion Plasmas  

ScienceCinema (OSTI)

The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

Chris Holland

2010-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

NONE

1993-12-01T23:59:59.000Z

142

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

E-Print Network [OSTI]

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

F. Muhammad Zamrun; K. Hagino; N. Takigawa

2006-06-07T23:59:59.000Z

143

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

SciTech Connect (OSTI)

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of 16O with 154,144Sm, 186W and 208Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two 64Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

Zamrun, Muhammad; Hagino, F. K.; Takigawa, N. [Department of Physics, Tohoku University, 980-8578 (Japan)

2006-08-14T23:59:59.000Z

144

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents [OSTI]

A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

Lasche, George P. (Arlington, VA)

1988-01-01T23:59:59.000Z

145

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents [OSTI]

A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

Lasche, G.P.

1987-02-20T23:59:59.000Z

146

Z-Pinch Fusion for Energy Applications  

SciTech Connect (OSTI)

Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

SPIELMAN,RICK B.

2000-01-01T23:59:59.000Z

147

Proton-proton fusion in lattice effective field theory  

E-Print Network [OSTI]

The proton-proton fusion rate is calculated at low energy in a lattice effective field theory (EFT) formulation. The strong and the Coulomb interactions are treated non-perturbatively at leading order in the EFT. The lattice results are shown to accurately describe the low energy cross section within the validity of the theory at energies relevant to solar physics. In prior work in the literature, Coulomb effects were generally not included in non-perturbative lattice calculations. Work presented here is of general interest in nuclear lattice EFT calculations that involve Coulomb effects at low energy. It complements recent developments of the adiabatic projection method for lattice calculations of nuclear reactions.

Gautam Rupak; Pranaam Ravi

2014-11-10T23:59:59.000Z

148

Taming turbulence in magnetized plasmas: from fusion energy to  

E-Print Network [OSTI]

occurs (fusion of particle beams will not work...) Thermonuclear fusion in a confined plasma (T~10 keTaming turbulence in magnetized plasmas: from fusion energy to black hole accretion disks Troy?: In fusion plasmas turbulent leakage of heat and particles is a key issue. Sheared flow can suppress

149

Alloy Design for a Fusion Power Plant  

E-Print Network [OSTI]

Fusion power is generated when hot deuterium and tritium nuclei react, producing alpha particles and 14 MeV neutrons. These neutrons escape the reaction plasma and are absorbed by the surrounding material structure of the plant, transferring...

Kemp, Richard

150

China To Build Its Own Fusion Reactor ENERGY TECH  

E-Print Network [OSTI]

Thermonuclear Experimental Reactor project reached agreement in Moscow Tuesday to construct the first fusion devices in thermonuclear reaction," and that "Chinese scientists started to develop a fusion operationChina To Build Its Own Fusion Reactor ENERGY TECH by Edward Lanfranco Beijing (UPI) July 1, 2005

151

The influence of projectile neutron number in the 208Pb(48Ti, n)255Rf and 208Pb(50Ti, n)257Rf reactions  

E-Print Network [OSTI]

type of reaction has been referred to as “cold fusion. ”Cold fusion reactions have been used in the discovery ofwe used as a guide in our cold fusion studies was recently

Dragojevic, I.

2008-01-01T23:59:59.000Z

152

Comparison of reactions for the production of 258,257Db: 208Pb(51V,xn) and 209Bi(50Ti,xn)  

E-Print Network [OSTI]

as 10 - 15 MeV, hence ‘cold’ fusion. These low excitationmodel for predicting cold fusion reaction cross sections [7,been produced in ‘cold’ nuclear fusion reactions with Pb and

Gates, Jacklyn M.

2008-01-01T23:59:59.000Z

153

Sub-barrier fusion with N/Z exotic beams of light nuclei Hence, sub-barrier fusion is sensitive to the density dependence  

E-Print Network [OSTI]

can sensitively examine the dependence of fusion on the isospin degree-of-freedom. Nuclear changes as reaction dynamics proceeds Present status of sub-barrier fusion with n-rich light nuclei models (improved understanding of fusion dynamics) · Constrain models of nuclear reactions in a neutron

de Souza, Romualdo T.

154

Synthesis of the isotopes of elements 118 and 116 in the {sup 249}Cf and {sup 245}Cm+{sup 48}Ca fusion reactions  

SciTech Connect (OSTI)

The decay properties of {sup 290}116 and {sup 291}116, and the dependence of their production cross sections on the excitation energies of the compound nucleus, {sup 293}116, have been measured in the {sup 245}Cm ({sup 48}Ca, xn){sup 293-x}116 reaction. These isotopes of element 116 are the decay daughters of element 118 isotopes, which are produced via the {sup 249}Cf+{sup 48}Ca reaction. We performed the element 118 experiment at two projectile energies, corresponding to {sup 297}118 compound nucleus excitation energies of E*=29.2{+-}2.5 and 34.4{+-}2.3 MeV. During an irradiation with a total beam dose of 4.1x10{sup 19} {sup 48}Ca projectiles, three similar decay chains consisting of two or three consecutive {alpha} decays and terminated by a spontaneous fission (SF) with high total kinetic energy of about 230 MeV were observed. The three decay chains originated from the even-even isotope {sup 294}118 (E{sub {alpha}}=11.65{+-}0.06 MeV, T{sub {alpha}}=0.89{sub -0.31}{sup +1.07} ms) produced in the 3n-evaporation channel of the {sup 249}Cf+{sup 48}Ca reaction with a maximum cross section of 0.5{sub -0.3}{sup +1.6} pb.

Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Subotic, K.; Zagrebaev, V. I.; Vostokin, G. K.; Itkis, M. G. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); University of California, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] (and others)

2006-10-15T23:59:59.000Z

155

How Solar Works | Department of Energy  

Energy Savers [EERE]

Learn More How Fusion Energy Works 33 likes Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel...

156

Microscopic analysis of fusion hindrance in heavy systems  

E-Print Network [OSTI]

Background: Heavy-ion fusion reactions involving heavy nuclei at energies around the Coulomb barrier exhibit fusion hindrance, where the probability of compound nucleus formation is strongly hindered compared with that in light- and medium-mass systems. The origin of this fusion hindrance has not been well understood from a microscopic point of view. Purpose: Analyze the fusion dynamics in heavy systems by a microscopic reaction model and understand the origin of the fusion hindrance. Method: We employ the time-dependent Hartree-Fock (TDHF) theory. We extract nucleus--nucleus potential and energy dissipation by the method combining TDHF dynamics of the entrance channel of fusion reactions with one-dimensional Newton equation including a dissipation term. Then, we analyze the origin of the fusion hindrance using the properties of the extracted potential and energy dissipation. Results: Extracted potentials show monotonic increase as the relative distance of two nuclei decreases, which induces the disappearance...

Washiyama, Kouhei

2015-01-01T23:59:59.000Z

157

Fusion Induced by Radioactive Ion Beams  

E-Print Network [OSTI]

The use of radioactive beams opens a new frontier for fusion studies. The coupling to the continuum can be explored with very loosely bound nuclei. Experiments were performed with beams of nuclei at or near the proton and neutron drip-lines to measure fusion and associated reactions in the vicinity of the Coulomb barrier. In addition, the fusion yield is predicted to be enhanced in reactions involving very neutron-rich unstable nuclei. Experimental measurements were carried out to investigate if it is feasible to use such beams to produce new heavy elements. The current status of these experimental activities is given in this review.

J. F. Liang; C. Signorini

2005-04-26T23:59:59.000Z

158

Economic analysis of fusion breeders  

SciTech Connect (OSTI)

This paper presents a study of the economic performance of Fission/Fusion Hybrid devices. This work takes fusion breeder cost estimates and applies methodology and cost factors used in the fission reactor programs to compare fusion breeders with Liquid Metal Fast Breeder Reactors (LMFBR). The results of the analysis indicate that the Hybrid will be in the same competitive range as proposed LMFBRs and have the potential to provide economically competitive power in a future of rising uranium prices. The sensitivity of the results to variations in key parameters is included.

Delene, J.G.

1985-01-01T23:59:59.000Z

159

Potential inversion with subbarrier fusion data revisited  

E-Print Network [OSTI]

We invert experimental data for heavy-ion fusion reactions at energies well below the Coulomb barrier in order to directly determine the internucleus potential between the colliding nuclei. In contrast to the previous applications of the inversion formula, we explicitly take into account the effect of channel couplings on fusion reactions, by assuming that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. We apply this procedure to the $^{16}$O +$^{144}$Sm and $^{16}$O +$^{208}$Pb reactions, and find that the inverted internucleus potential are much thicker than phenomenological potentials. A relation to the steep fall-off phenomenon of fusion cross sections recently found at deep subbarrier energies is also discussed.

K. Hagino; Y. Watanabe

2007-06-18T23:59:59.000Z

160

Inertial fusion energy: A clearer view of the environmental and safety perspectives  

SciTech Connect (OSTI)

If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

Latkowski, J.F.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Security on the US Fusion Grid  

SciTech Connect (OSTI)

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

162

Data security on the national fusion grid  

SciTech Connect (OSTI)

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

163

Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements  

E-Print Network [OSTI]

of transfermium elements in cold fusion reactions." Physical1. Introduction Part I: Cold Fusion Production and Decay of1.2. Hot versus Cold Fusion 1.3. Excitation Functions 1.3.1.

Gates, Jacklyn M.

2008-01-01T23:59:59.000Z

164

Quantum Tunneling in Nuclear Fusion  

E-Print Network [OSTI]

Recent theoretical advances in the study of heavy ion fusion reactions below the Coulomb barrier are reviewed. Particular emphasis is given to new ways of analyzing data, such as studying barrier distributions; new approaches to channel coupling, such as the path integral and Green function formalisms; and alternative methods to describe nuclear structure effects, such as those using the Interacting Boson Model. The roles of nucleon transfer, asymmetry effects, higher-order couplings, and shape-phase transitions are elucidated. The current status of the fusion of unstable nuclei and very massive systems are briefly discussed.

Balantekin, A B

1998-01-01T23:59:59.000Z

165

Quantum Tunneling in Nuclear Fusion  

E-Print Network [OSTI]

Recent theoretical advances in the study of heavy ion fusion reactions below the Coulomb barrier are reviewed. Particular emphasis is given to new ways of analyzing data, such as studying barrier distributions; new approaches to channel coupling, such as the path integral and Green function formalisms; and alternative methods to describe nuclear structure effects, such as those using the Interacting Boson Model. The roles of nucleon transfer, asymmetry effects, higher-order couplings, and shape-phase transitions are elucidated. The current status of the fusion of unstable nuclei and very massive systems are briefly discussed.

A. B. Balantekin; N. Takigawa

1997-08-19T23:59:59.000Z

166

Muon catalyzed fusion  

SciTech Connect (OSTI)

This paper presents an overview of the program and results of our experiment performed by a European-American collatoration at the Swiss Institute of Nuclear Research. Systematic investigations of the low temperature region (23K to 300K) reveal a surprisingly rich physics of mesoatomic and mesomolecular processes, unparalleled in other systems of isotopic hydrogen mixtures. A dramatic density dependence of the reaction rates is found. The rich structure in the time spectra of the fusion neutrons observed at low gas density yields first evidence for new effects, most likely strong contributions from reactions of hot muonic atoms. The important question of muon losses due to He sticking is investigated by different methods and over a wide range of tritium concentrations.

Breunlich, W.H.; Cargnelli, M.; Marton, J.; Naegele, N.; Pawlek, P.; Scrinzi, A.; Werner, J.; Zmeskal, J.; Bistirlich, J.; Crowe, K.M.

1986-01-01T23:59:59.000Z

167

Introduction Minimal Fusion Systems  

E-Print Network [OSTI]

Introduction Minimal Fusion Systems Maximal Parabolics Results Minimal Fusion Systems Ellen Henke University of Birmingham Ellen Henke Minimal Fusion Systems #12;Introduction Minimal Fusion Systems Maximal Parabolics Results Contents 1 Introduction 2 Minimal Fusion Systems 3 Maximal Parabolics 4 Results Ellen

Thévenaz, Jacques

168

Dynamical deformation effects in subbarrier fusion of $^{64}$Ni+$^{132}$Sn  

E-Print Network [OSTI]

We show that dynamical deformation effects play an important role in fusion reactions involving the $^{64}$Ni nucleus, in particular the $^{64}$Ni+$^{132}$Sn system. We calculate fully microscopic interaction potentials and the corresponding subbarrier fusion cross sections.

A. S. Umar; V. E. Oberacker

2006-09-25T23:59:59.000Z

169

Nuclear Fusion via Triple Collisions in Solar Plasma  

E-Print Network [OSTI]

We consider several nuclear fusion reactions that take place at the center of the sun, which are omitted in the standard pp-chain model. More specifically the reaction rates of the nonradiative production of ^3He, ^7Be, and ^8B nuclei in triple collisions involving electrons are estimated within the framework of the adiabatic approximation. These rates are compared with those of the corresponding binary fusion reactions.

V. B. Belyaev; D. E. Monakhov; N. Shevchenko; S. A. Sofianos; S. A. Rakityansky; M. Braun; L. L. Howell; W. Sandhas

1997-09-09T23:59:59.000Z

170

Role of Fusion Energy in a Sustainable Global Energy Strategy  

SciTech Connect (OSTI)

Fusion can play an important role in sustainable global energy because it has an available and unlimited fuel supply and location not restricted by climate or geography. Further, it emits no greenhouse gases. It has no potential for large energy releases in an accident, and no need for more than about 100 years retention for radioactive waste disposal. Substantial progress in the realization of fusion energy has been made during the past 20 years of research. It is now possible to produce significant amounts of energy from controlled deuterium and tritium (DT) reactions in the laboratory. This has led to a growing confidence in our ability to produce burning plasmas with significant energy gain in the next generation of fusion experiments. As success in fusion facilities has underpinned the scientific feasibility of fusion, the high cost of next-step fusion facilities has led to a shift in the focus of international fusion research towards a lower cost development path and an attractive end product. The increasing data base from fusion research allows conceptual fusion power plant studies, of both magnetic and inertial confinement approaches to fusion, to translate commercial requirements into the design features that must be met if fusion is to play a role in the world's energy mix; and identify key R and D items; and benchmark progress in fusion energy development. This paper addresses the question, ''Is mankind closer or farther away from controlled fusion than a few decades ago?'' We review the tremendous scientific progress during the last 10 years. We use the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements of an attractive fusion system with present achievements and to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the energy market.

Sheffield, J.

2001-03-07T23:59:59.000Z

171

Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs  

SciTech Connect (OSTI)

A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

Not Available

1980-08-01T23:59:59.000Z

172

Culham Centre for Fusion Energy Fusion -A clean future  

E-Print Network [OSTI]

, scientists and engineers are working to make fusion a real option for our electricity supply.At the forefront consumption is expected to grow dramatically over the next fifty years as the world's population expands; Governments are divided over whether to include nuclear fission in their energy portfolios; and renewable

173

COLLOQUIUM: Magnetized Target Fusion Work at General Fusion | Princeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,Principles of CollectivePrinceton

174

Fusion Plasma Theory project summaries  

SciTech Connect (OSTI)

This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

Not Available

1993-10-01T23:59:59.000Z

175

Fusion Ignition Research Experiment Highlights  

E-Print Network [OSTI]

objectives for FIRE are to address the critical burning plasma issues of an attractive magnetic fusion power plant as envisioned by the Advanced Reactor Innovation Evaluation Studies (ARIES). The FIRE Design study. institutions, and is managed through the Virtual Laboratory for Technology. The technical work on FIRE has been

176

INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion 46 (2004) 471487 PII: S0741-3335(04)69034-8  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion the cold plasma dispersion relation, the ion­ion hybrid cutoff frequency is uniquely determined and tritium density equilibrium (nD nT), maximizing fusion reactions in a burning plasma experiment. A number

Heidbrink, William W.

177

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020 (12pp) doi:10.1088/0029-5515/49/9/095020  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020-scale fluctuations, in contrast to present day experiments where, in general, relatively low energy fast ions of alpha particles produced in DT reactions as the main heating source. Fusion alphas, with small

Zonca, Fulvio

178

Fusion Residues  

E-Print Network [OSTI]

We discuss when and how the Verlinde dimensions of a rational conformal field theory can be expressed as correlation functions in a topological LG theory. It is seen that a necessary condition is that the RCFT fusion rules must exhibit an extra symmetry. We consider two particular perturbations of the Grassmannian superpotentials. The topological LG residues in one perturbation, introduced by Gepner, are shown to be a twisted version of the $SU(N)_k$ Verlinde dimensions. The residues in the other perturbation are the twisted Verlinde dimensions of another RCFT; these topological LG correlation functions are conjectured to be the correlation functions of the corresponding Grassmannian topological sigma model with a coupling in the action to instanton number.

Kenneth Intriligator

1991-08-19T23:59:59.000Z

179

Influence of projectile - breakup threshold on complete fusion  

E-Print Network [OSTI]

Complete fusion excitations for 11,10B+159Tb have been measured at energies around the respective Coulomb barriers, and the existing complete fusion measurements for 7Li+159Tb have been extended to higher energies. The measurements show significant reduction of complete fusion cross sections at above-barrier energies for both the reactions, 10B+159Tb and 7Li+159Tb, when compared to those for 11B+159Tb. The comparison shows that the extent of suppression of complete fusion cross sections is correlated with the -separation energies of the projectiles. Also, the two reactions, 10B+159Tb and 7Li+159Tb were found to produce incomplete fusion products at energies near the respective Coulomb barriers, with the - particle emitting channel being the favoured incomplete fusion process in both the cases.

A. Mukherjee; Subinit Roy; M. K. Pradhan; M. Saha Sarkar; P. Basu; B. Dasmahapatra; T. Bhattacharya; S. Bhattacharya; S. K. Basu; A. Chatterjee; V. Tripathi; S. Kailas

2006-03-24T23:59:59.000Z

180

Fusion pumped light source  

DOE Patents [OSTI]

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - actinide-based complete fusion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research- An overview of programs BY STEPHEN 0. DEAN F IFTY YEARS AGO... controlled thermonuclear reactions, or nuclear fusion, as it is now more com- monly called, has...

182

Framework for a Road Map to Magnetic Fusion Energy Status Report  

E-Print Network [OSTI]

Framework for a Road Map to Magnetic Fusion Energy Status Report Dale Meade for U. S. Magnetic paths: 1) ITER plus Fusion Nuclear Science Facility leading to a Tokamak DEMO 2) ITER directly Fusion Program Leaders Working Group MIT Independent Activities Period Plasma Science and Fusion Center

183

Theory of fusion hindrance and synthesis of the superheavy elements  

E-Print Network [OSTI]

The two-step model for fusion reactions of massive systems is briefly reviewed.By the use of fusion probabilities obtained by the model and of survival probabilities obtained by the new statistical code, we predict residue cross sections for 48Ca+actinide systems leading to superheavy elements with Z=114, 116 and 118.

Yasuhisa Abe; Bertrand Bouriquet; Caiwan Shen; Grigori Kosenko

2003-08-06T23:59:59.000Z

184

IS C O N SIN FUSION TECHNOLOGY INSTITUTE  

E-Print Network [OSTI]

· W IS C O N SIN · FUSION·T E CHNOLOGY · INSTITUTE FUSION TECHNOLOGY INSTITUTE UNIVERSITY Isotopes Using Inertial Electrostatic Confinement B.B. Cipiti Fusion Technology Institute University N was created using the 16 O(p,)13 N reaction from the oxygen in the water. Approximately 1.0 n

185

Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-10-01T23:59:59.000Z

186

Nuclear astrophysical plasmas: ion distribution functions and fusion rates  

E-Print Network [OSTI]

This article illustrates how very small deviations from the Maxwellian exponential tail, while leaving unchanged bulk quantities, can yield dramatic effects on fusion reaction rates and discuss several mechanisms that can cause such deviations.

Marcello Lissia; Piero Quarati

2005-11-15T23:59:59.000Z

187

Using Radio Waves to Control Fusion Plasma Density  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat goes to electrons instead of plasma ions, as would happen in the center of a self-sustaining fusion reaction. Supercomputer simulations run at the Department of Energy's...

188

July 4, 2006/ARR An Overview of Fusion Technology and  

E-Print Network [OSTI]

Inertial Fusion Energy; UCSD's contribution involves the reaction chamber, final optics, and target to short-pulse high-energy laser irradiation, laser ablation plume dynamics, laser plasma light

Raffray, A. René

189

How Fusion Energy Works | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

32 likes Every four minutes, another American home or business goes solar, but how do solar panels turn sunlight into energy? We'll answer that question and more Learn More...

190

Microscopic study of Ca$+$Ca fusion  

E-Print Network [OSTI]

We investigate the fusion barriers for reactions involving Ca isotopes $\\mathrm{^{40}Ca}+\\mathrm{^{40}Ca}$, $\\mathrm{^{40}Ca}+\\mathrm{^{48}Ca}$, and $\\mathrm{^{48}Ca}+\\mathrm{^{48}Ca}$ using the microscopic time-dependent Hartree-Fock theory coupled with a density constraint. In this formalism the fusion barriers are directly obtained from TDHF dynamics. We also study the excitation of the pre-equilibrium GDR for the $\\mathrm{^{40}Ca}+\\mathrm{^{48}Ca}$ system and the associated $\\gamma$-ray emission spectrum. Fusion cross-sections are calculated using the incoming-wave boundary condition approach. We examine the dependence of fusion barriers on collision energy as well as on the different parametrizations of the Skyrme interaction.

R. Keser; A. S. Umar; V. E. Oberacker

2012-02-17T23:59:59.000Z

191

Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions {sup 233,238}U, {sup 242}Pu, and {sup 248}Cm+{sup 48}Ca  

SciTech Connect (OSTI)

We have studied the dependence of the production cross sections of the isotopes {sup 282,283}112 and {sup 286,287}114 on the excitation energy of the compound nuclei {sup 286}112 and {sup 290}114. The maximum cross section values of the xn-evaporation channels for the reaction {sup 238}U({sup 48}Ca,xn){sup 286-x}112 were measured to be {sigma}{sub 3n}=2.5{sub -1.1}{sup +1.8} pb and {sigma}{sub 4n}=0.6{sub -0.5}{sup +1.6} pb; for the reaction {sup 242}Pu({sup 48}Ca,xn){sup 290-x}114: {sigma}{sub 2n}{approx}0.5 pb, {sigma}{sub 3n}=3.6{sub -1.7}{sup +3.4} pb, and {sigma}{sub 4n}=4.5{sub -1.9}{sup +3.6} pb. In the reaction {sup 233}U({sup 48}Ca,2-4n){sup 277-279}112 at E*=34.9=2.2 MeV we measured an upper cross section limit of {sigma}{sub xn}{<=}0.6 pb. The observed shift of the excitation energy associated with the maximum sum evaporation residue cross section {sigma}{sub ER}(E*) to values significantly higher than that associated with the calculated Coulomb barrier can be caused by the orientation of the deformed target nucleus in the entrance channel of the reaction. An increase of {sigma}{sub ER} in the reactions of actinide targets with {sup 48}Ca is consistent with the expected increase of the survivability of the excited compound nucleus upon closer approach to the closed neutron shell N=184. In the present work we detected 33 decay chains arising in the decay of the known nuclei {sup 282}112, {sup 283}112, {sup 286}114, {sup 287}114, and {sup 288}114. In the decay of {sup 287}114({alpha}){yields}{sup 283}112({alpha}){yields}{sup 279}110(SF), in two cases out of 22, we observed decay chains of four and five sequential {alpha} transitions that end in spontaneous fission of {sup 271}Sg (T{sub {alpha}}{sub /SF}=2.4{sub -1.0}{sup +4.3} min) and {sup 267}Rf (T{sub SF}{approx}2.3 h), longer decay chains than reported previously. We observed the new nuclide {sup 292}116 (T{sub {alpha}}=18{sub -6}{sup +16} ms,E{sub {alpha}}=10.66{+-}0.07 MeV) in the irradiation of the {sup 248}Cm target at a higher energy than in previous experiments. The observed nuclear decay properties of the nuclides with Z=104-118 are compared with theoretical nuclear mass calculations and the systematic trends of spontaneous fission properties. As a whole, they give a consistent pattern of decay of the 18 even-Z neutron-rich nuclides with Z=104-118 and N=163-177. The experiments were performed with the heavy-ion beam delivered by the U400 cyclotron of the FLNR (JINR, Dubna) employing the Dubna gas-filled recoil separator.

Oganessian, Yu.Ts.; Utyonkov, V.K.; Lobanov, Yu.V.; Abdullin, F.Sh.; Polyakov, A.N.; Shirokovsky, I.V.; Tsyganov, Yu.S.; Gulbekian, G.G.; Bogomolov, S.L.; Gikal, B.N.; Mezentsev, A.N.; Iliev, S.; Subbotin, V.G.; Sukhov, A.M.; Voinov, A.A.; Buklanov, G.V.; Subotic, K.; Zagrebaev, V.I.; Itkis, M.G.; Patin, J.B. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lawrence Livermore National Laboratory, University of California, Livermore, California 94551 (United States); Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics, 607190 Sarov (Russian Federation)] [and others

2004-12-01T23:59:59.000Z

192

Fusion yield: Guderley model and Tsallis statistics  

E-Print Network [OSTI]

The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai [Mathai A.M.:2005, A pathway to matrix-variate gamma and normal densities, Linear Algebra and Its Applications}, 396, 317-328]. The extended thermonuclear reaction rate is obtained in closed form via a Meijer's G-function and the so obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981.[Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 23, 399-...

Haubold, H J

2010-01-01T23:59:59.000Z

193

Nuclear diagnostics for inertial confinement fusion implosions  

SciTech Connect (OSTI)

This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

Murphy, T.J.

1997-11-01T23:59:59.000Z

194

Individual Reactions of Permanganate and Various Reductants - Student Report to the DOE ERULF Program for Work Conducted May to July 2000  

SciTech Connect (OSTI)

Tank waste on the Hanford Site contains radioactive elements that need to be removed from solution prior to disposal. One effective way to do this is to precipitate the radioactive elements with manganese solids, produced by permanganate oxidation. When added to tank waste, the permanganate reacts quickly producing manganese (IV) dioxide precipitate. Because of the speed of the reaction it is difficult to tell what exactly is happening. Individual reactions using non-radioactive reductants found in the tanks were done to determine reaction kinetics, what permanganate was reduced to, and what oxidation products were formed. In this project sodium formate, sodium nitrite, glycolic acid, glycine, and sodium oxalate were studied using various concentrations of reductant in alkaline sodium hydroxide solutions. It was determined that formate reacted the quickest, followed by glycine and glycolic acid. Oxalate and nitrite did not appear to react with the permanganate solutions. The products of the oxidation reaction were examined. Formate was oxidized to carbonate and water. Glycolic acid was oxidized slower producing oxalate and water. Glycine reactions formed some ammonia in solution, oxalate, and water. The research reported by Amber Gauger in this report was part of a DOE ERULF student intern program at Pacific Northwest National Laboratory under the direction of Richard Hallen in the summer of 2000.

Gauger, Amber M.; Hallen, Richard T.

2012-09-15T23:59:59.000Z

195

Fusion Plasmas Martin Greenwald  

E-Print Network [OSTI]

. Despite the cold war, which raged for another 30 years, controlled fusion research became a modelFusion Plasmas Martin Greenwald Encyclopedia of Electrical and Electronic Engineering, John Webster - editor, published by John Wiley & Sons, New York (1999) #12;Controlled Fusion For half a century

Greenwald, Martin

196

Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device  

SciTech Connect (OSTI)

The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science.After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program as an integrated part of ITER and Development of Fusion Energy project Agreement. Moreover, the relationship with the NIFS' new parent organization the National Institutes of Natural Sciences and with foreign research institutions is briefly explained.

Motojima, Osamu [National Institute for Fusion Science, Toki-shi, Gifu-ken, 509-5292 (Japan)

2006-12-01T23:59:59.000Z

197

Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine  

SciTech Connect (OSTI)

The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

2010-11-30T23:59:59.000Z

198

Fusion Power Associates, 2011 Annual Meeting 1 General Fusion  

E-Print Network [OSTI]

7 Plasma Injector 10 people $3M 1 year #12;Fusion Power Associates, 2011 Annual Meeting 8 Density people $3.5M 14 months #12;Fusion Power Associates, 2011 Annual Meeting 11 Plasma Compression ExperimentsFusion Power Associates, 2011 Annual Meeting 1 General Fusion #12;Fusion Power Associates, 2011

199

50 Years of Fusion Research Fusion Innovation Research and Energy  

E-Print Network [OSTI]

, .... · Controlled Thermonuclear Fusion had great potential ­ Uncontrolled Thermonuclear fusion demonstrated in 19521 50 Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ SOFE 2009 June 1, 2009 San Diego, CA 92101 #12;2 #12;2 #12;3 Fusion Prior to Geneva 1958 · A period of rapid

200

Secondary fusion coupled deuteron/triton transport simulation and thermal-to-fusion neutron convertor measurement  

SciTech Connect (OSTI)

A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) was developed to simulate deuteron/triton transportation and reaction coupled problem. The 'Forced particle production' variance reduction technique was used to improve the simulation speed, which made the secondary product play a major role. The mono-energy 14 MeV fusion neutron source was employed as a validation. Then the thermal-to-fusion neutron convertor was studied with our tool. Moreover, an in-core conversion efficiency measurement experiment was performed with {sup 6}LiD and {sup 6}LiH converters. Threshold activation foils was used to indicate the fast and fusion neutron flux. Besides, two other pivotal parameters were calculated theoretically. Finally, the conversion efficiency of {sup 6}LiD is obtained as 1.97x10{sup -4}, which matches well with the theoretical result. (authors)

Wang, G. B.; Wang, K. [Department of Engineering Physics, Tsinghua University, Beijing, 100084 (China); Liu, H. G.; Li, R. D. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900 (China)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Elements of Successful and Safe Fusion Experiment Operations  

SciTech Connect (OSTI)

A group of fusion safety professionals contribute to a Joint Working Group (JWG) that performs occupational safety walkthroughs of US and Japanese fusion experiments on a routine basis to enhance the safety of visiting researchers. The most recent walkthrough was completed in Japan in March 2008 by the US Safety Monitor team. This paper gives the general conclusions on fusion facility personnel safety that can be drawn from the series of walkthroughs.

K. Rule, L. Cadwallader, Y. Takase, T. Norimatsu, O. Kaneko, M. Sato, and R. Savercool

2009-02-03T23:59:59.000Z

202

The Fast Track to Fusion Power  

SciTech Connect (OSTI)

World energy use is predicted to double in the next 40 years. Today, 80% is provided by burning fossil fuels, but this is not sustainable indefinitely because (i) it is driving climate change, and (ii) fossil fuels will eventually be exhausted (starting with oil). The resulting potential energy crisis requires increased investment in energy research and development (which is currently very small on the scale of the $3 trillion p.a. energy market, and falling). The wide portfolio of energy work that should be supported must include fusion, which is one of very few options that are capable in principle of supplying a large fraction of need in an environmentally responsible manner. The case for fusion has been strengthened by recent advances in plasma physics and fusion technology and by studies of fusion power plants that address safety and cost issues. The big questions are, 'How can we deliver fusion power as fast as possible?' and 'How long is it likely to take?' I will review progress in fusion, and argue for a focused fast-track program that could deliver a working prototype power station in less than 30 years.

Smith, Chris Llewellyn (UKAEA, Culham) [UKAEA, Culham

2005-04-28T23:59:59.000Z

203

Historical Perspective on the United States Fusion Program Invited paper presented at American Nuclear Society 16th  

E-Print Network [OSTI]

controlled thermonuclear reactions, or nuclear fusion as it is now more commonly called, has remained elusiveHistorical Perspective on the United States Fusion Program Invited paper presented at American Nuclear Society 16th Topical Meeting on the Technology of Fusion Energy 14-16 September, 2004 in Madison

204

The European Fusion Programme  

SciTech Connect (OSTI)

The long-term objective of the European fusion programme is the harnessing of the power of fusion to help meet mankind's future energy needs.This paper describes the current research programme, the unique organisational character of the fusion programme, and European and world-wide co-operation. The future evolution of the programme as part of the European Research Area and the developments currently taking place in preparation for the possible construction of ITER, the next major step towards the realisation of fusion power, are discussed.

Antidormi, R.; Bartlett, D.; Bruhns, H. [European Commission (Belgium)

2004-03-15T23:59:59.000Z

205

Indecomposable Fusion Products  

E-Print Network [OSTI]

We analyse the fusion products of certain representations of the Virasoro algebra for c=-2 and c=-7 which are not completely reducible. We introduce a new algorithm which allows us to study the fusion product level by level, and we use this algorithm to analyse the indecomposable components of these fusion products. They form novel representations of the Virasoro algebra which we describe in detail. We also show that a suitably extended set of representations closes under fusion, and indicate how our results generalise to all (1,q) models.

Matthias R. Gaberdiel; Horst G. Kausch

1996-04-04T23:59:59.000Z

206

Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

207

Path toward fusion energy  

SciTech Connect (OSTI)

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

208

Isomer ratio measurements as a probe of the dynamics of breakup and incomplete fusion  

SciTech Connect (OSTI)

The incomplete fusion mechanism following breakup of {sup 6,7}Li and {sup 9}Be projectiles incident on targets of {sup 209}Bi and {sup 208}Pb is investigated through isomer ratio measurements for the {sup 212}At and {sup 211}Po products. The phenomenological analysis presented in this paper indicates that incomplete fusion brings relatively more angular momentum into the system than equivalent reactions with a direct beam of the fused fragment. This is attributed to the trajectories of breakup fragments. Calculations with a 3D classical trajectory model support this. Isomer ratio measurements for incomplete fusion reactions can provide a test of new theoretical models of breakup and fusion.

Gasques, L. R.; Dasgupta, M.; Hinde, D. J.; Peatey, T.; Diaz-Torres, A.; Newton, J. O. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

2006-12-15T23:59:59.000Z

209

E-Print Network 3.0 - alpha-particle-induced nuclear reactions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production balances the various energy losses and the fusion reaction is self-sustaining. The product ions Source: Bishop, Christopher M. - Microsoft Research Cambridge &...

210

E-Print Network 3.0 - alpha induced reactions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production balances the various energy losses and the fusion reaction is self-sustaining. The product ions... (alpha particles in the case of a deuterium-tritium plasma)...

211

Thermonuclear Fusion Energy : Assessment and Next Step Ren Pellat  

E-Print Network [OSTI]

Thermonuclear Fusion Energy : Assessment and Next Step René Pellat High Commissioner at the French 2000, Rome Abstract Fifty years of thermonuclear fusion work with no insurmountable road blocks have is well advanced through the International Thermonuclear Experimental Reactor (ITER) programme, which has

212

Inertial Confinement Fusion and the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

Ross, P.

2012-08-29T23:59:59.000Z

213

Liquid Vortex Shielding for Fusion Energy Applications  

SciTech Connect (OSTI)

Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

2005-05-15T23:59:59.000Z

214

Distribution Category: Magnetic Fusion Energy  

E-Print Network [OSTI]

. Abdou Fusion Power Program October 1982 Invited paper presented at the International Conference by Mohamed A. Abdou ABSTRACT Key technological problems that influence tritium breeding in fusion blankets

Abdou, Mohamed

215

Fusion Chamber Technology Publications  

E-Print Network [OSTI]

1. Abdou, M.A., The APEX Team, Ying, A., Morley, N., Gulec, K., Smolentsev, S., Kotschenreuther, M-248, 2001. 2. Mohamed Abdou and the APEX Team, Exploring novel high power density concepts for attractive fusion systems, Fusion Engineering and Design, vol. 45, pp. 145-167, 1999. 3. Abdou, M. A., Ying, A., Lu

California at Los Angeles, University of

216

Suppressed fusion cross section for neutron halo nuclei  

E-Print Network [OSTI]

Fusion reactions of neutron-halo nuclei are investigated theoretically with a three-body model. The time-dependent wave-packet method is used to solve the three-body Schrodinger equation. The halo neutron behaves as a spectator during the Coulomb dissociation process of the projectile. The fusion cross sections of 11Be-209Bi and 6He-238U are calculated and are compared with measurements. Our calculation indicates that the fusion cross section is slightly hindered by the presence of weakly bound neutrons.

Makoto Ito; Kazuhiro Yabana; Takashi Nakatsukasa; Manabu Ueda

2006-01-20T23:59:59.000Z

217

Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process  

E-Print Network [OSTI]

We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N=126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th layer, placed beneath a deuterated polyethylene foil, both forming the production target. Th ions laser-accelerated to about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 production target will be accelerated as well to about 7 MeV/u, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10^14 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. In contrast to classical radioactive beam facilities, where intense but low-density radioactive beams are merged with stable targets, the novel fission-fusion process draws on the fusion between neutron-rich, short-lived, light fission fragments both from beam and target. The high ion beam density may lead to a strong collective modification of the stopping power in the target, leading to significant range enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), estimates promise a fusion yield of about 10^3 ions per laser pulse in the mass range of A=180-190, thus enabling to approach the r-process waiting point at N=126.

D. Habs; P. G. Thirolf; M. Gross; K. Allinger; J. Bin; A. Henig; D. Kiefer; W. Ma; J. Schreiber

2010-09-10T23:59:59.000Z

218

Electron screening effect on stellar thermonuclear fusion  

E-Print Network [OSTI]

We study the impact of plasma correlation effects on nonresonant thermonuclear reactions for various stellar objects, namely in the liquid envelopes of neutron stars, and the interiors of white dwarfs, low-mass stars, and substellar objects. We examine in particular the effect of electron screening on the enhancement of thermonuclear reactions in dense plasmas within and beyond the linear mixing rule approximation as well as the corrections due to quantum effects at high density. In addition, we examine some recent unconventional (Yukawa-potential and "quantum-tail") theoretical results on stellar thermonuclear fusions and show that these scenarios do not apply to stellar conditions.

Potekhin, A Y

2013-01-01T23:59:59.000Z

219

Fusion rules and the Patera-Sharp generating-function method  

E-Print Network [OSTI]

We review some contributions on fusion rules that were inspired by the work of Sharp, in particular, the generating-function method for tensor-product coefficients that he developed with Patera. We also review the Kac-Walton formula, the concepts of threshold level, fusion elementary couplings, fusion generating functions and fusion bases. We try to keep the presentation elementary and exemplify each concept with the simple $\\su(2)_k$ case.

L. Begin; C. Cummins; P. Mathieu; M. A. Walton

2002-10-18T23:59:59.000Z

220

Image Fusion for MR Bias Correction  

E-Print Network [OSTI]

. For example, for fast-spin echo (FSE) pulse sequences, the MR signal is given by this equation: · Target T1Image Fusion for MR Bias Correction Ayres Fan Stochastic Systems Group Joint work with W. Wells, J strength · Spatially varying field strength encodes spatial location in the frequency domain #12;MR Imaging

Willsky, Alan S.

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Subbarrier heavy ion fusion enhanced by nucleon transfer and subbarrier fusion of nuclei far from the line of ?-stability  

E-Print Network [OSTI]

We discuss a model for the description of subbarrier fusion of heavy ions which takes into account the coupling to the low-energy surface vibrational states and to the few-nucleon transfer with arbitrary reaction Q-value. The fusion reactions ^{28,30}Si+^{58,62,64}Ni, ^{40}Ca+^{90,96}Zr, ^{28}S+^{94,100}Mo, ^{16,18,20,22,24}O+^{58}Ni and ^{28}Si+^{124,126,128,130,132}Sn are analyzed in detail. The model describes rather well the experimental fusion cross section and mean angular momentum for reactions between nuclei near the \\beta-stability line. It is shown that these quantities are significantly enhanced by few-nucleon transfer with large positive Q-value. A shape independent parameterization of the heavy ion potential at distances smaller then the touching point is proposed.

V. Yu. Denisov

1998-09-28T23:59:59.000Z

222

Fusion Energy Sciences Program Mission  

E-Print Network [OSTI]

Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion power has the long-range potential to serve as an abundant and clean source of energy and recommends

223

RESEARCH HIGHLIGHTS State of fusion  

E-Print Network [OSTI]

RESEARCH HIGHLIGHTS State of fusion In the 1950s,the promise of controlled nuclear fusion, although there is still some way to go to realize the dream,the latest status report on fusion research for continued optimism. Nuclear fusion power relies on the energy released when two light atomic nuclei fuse

Loss, Daniel

224

Spherical torus fusion reactor  

DOE Patents [OSTI]

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

225

Snowmass 2002: The Fusion Energy Sciences Summer Study  

SciTech Connect (OSTI)

The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will present a uniform technical assessment of the benefits of the three approaches. The draft report will be presented and extensively discussed during the July meeting, leading to a final report. This report will provide critical fusion community input to the decision process of FESAC and DOE in 2002-2003, and to the review of burning plasma science by the National Academy of Sciences called for by FESAC and Energy Legislation which was passed by the House of Representatives [H.R. 4]. Members of the fusion community are encouraged to participate in the Snowmass working groups.

N. Sauthoff; G. Navratil; R. Bangerter

2002-01-31T23:59:59.000Z

226

Compressed Gas Safety for Experimental Fusion Facilities  

SciTech Connect (OSTI)

Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard associated with compressed gas cylinders and methods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

2005-05-15T23:59:59.000Z

227

Compressed Gas Safety for Experimental Fusion Facilities  

SciTech Connect (OSTI)

Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

Lee C. Cadwallader

2004-09-01T23:59:59.000Z

228

Fusing exotic nuclei below the barrier This work was supported by the U.S.  

E-Print Network [OSTI]

: At the temperature of the crust, the Coulomb barrier is too high for thermonuclear fusion of carbon ­ another heat;Motivation Fusion reactions in the outer crust result in X-ray bursts and superbursts Problem) Polarization of nuclei fusion enhancement ? Y. Eyal et al., PRC 13, 1527 (1976) Astrophysically relevant

de Souza, Romualdo T.

229

Generalized Fusion Potentials  

E-Print Network [OSTI]

Recently, DiFrancesco and Zuber have characterized the RCFTs which have a description in terms of a fusion potential in one variable, and proposed a generalized potential to describe other theories. In this note we give a simple criterion to determine when such a generalized description is possible. We also determine which RCFTs can be described by a fusion potential in more than one variable, finding that in fact all RCFTs can be described in such a way, as conjectured by Gepner.

Ofer Aharony

1993-01-31T23:59:59.000Z

230

COLLOQUIUM: Spitzer's 100th: Founding PPPL & Pioneering Work...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5:30pm Colloquia MBG Auditorium COLLOQUIUM: Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Dr. Greg Hammett Princeton University Professor Russell Kulsrud...

231

Dynamical deformation effects in subbarrier fusion of {sup 64}Ni+{sup 132}Sn  

SciTech Connect (OSTI)

We show that dynamical deformation effects play an important role in fusion reactions involving the {sup 64}Ni nucleus, in particular the {sup 64}Ni+{sup 132}Sn system. We calculate fully microscopic interaction potentials and the corresponding subbarrier fusion cross-sections.

Umar, A. S.; Oberacker, V. E. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

2006-12-15T23:59:59.000Z

232

ITER Fusion Energy  

ScienceCinema (OSTI)

ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

Dr. Norbert Holtkamp

2010-01-08T23:59:59.000Z

233

I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114  

E-Print Network [OSTI]

the low excitation energy of the nuclear reaction results inof nuclear fusion reactions at low excitation energies withlow (1 eV – 100 keV) neutron energies. It goes on to discuss the nuclear reactions

Ellison, Paul Andrew

2011-01-01T23:59:59.000Z

234

How much laser power can propagate through fusion plasma?  

E-Print Network [OSTI]

Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data, and suggest a way to increase that maximum by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and suggests the indirect control of backscatter through manipulation of plasma ionization state or acoustic damping.

Pavel M. Lushnikov; Harvey A. Rose

2006-03-28T23:59:59.000Z

235

Workshop on Accelerators for Heavy Ion Fusion: Summary Report of the Workshop  

SciTech Connect (OSTI)

The Workshop on Accelerators for Heavy Ion Fusion was held at Lawrence Berkeley National Laboratory May 23-26, 2011. The workshop began with plenary sessions to review the state of the art in HIF (heavy ion fusion), followed by parallel working groups, and concluded with a plenary session to review the results. There were five working groups: IFE (inertial fusion energy) targets, RF approach to HIF, induction accelerator approach to HIF, chamber and driver interface, ion sources and injectors.

Seidl, P.A.; Barnard, J.J.

2011-04-29T23:59:59.000Z

236

A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium  

SciTech Connect (OSTI)

This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.

Reed, Mark; Parker, Ronald R.; Forget, Benoit [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

2012-06-19T23:59:59.000Z

237

Safety Monitor Joint Working Group (JWG) Tour  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring Program) Meeting...

238

Status of the HAPL Program Laser Fusion Energy  

E-Print Network [OSTI]

-optics Government Labs 1. NRL 2. LLNL 3. SNL 4. LANL 5. ORNL 6. PPPL 7. SRNL Industry 1. General Atomics 2. L3/PSD 3 still need to do Electricity or Hydrogen Generator Reaction chamber Spherical pellet Pellet factory* Threat spectra Fusion Test Facility: Gain > 50 @ 500 kJ 2 different simulations** Simulations Codes

239

FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF)  

E-Print Network [OSTI]

FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF): UPDATE · It was well recognized there were also critical materials and technology issues that needed to be addressed in order to apply the knowledge we gained about burning plasma state #12;FUSION NUCLEAR SCIENCE PROGRAM

240

Reflections on Fusion's History and Implications for Fusion's Future*  

E-Print Network [OSTI]

confinement configurations; to demonstrate performance capability at burning plasma conditions; and to develop of achieving the plasma conditions needed for a practical fusion power system. Fusion researchers have achieved confinement fusion (ICF) researchers have achieved great success as well. Two major facilities, the National

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Realization of Fusion Energy: An alternative fusion roadmap  

E-Print Network [OSTI]

Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

242

Ceramics for fusion devices  

SciTech Connect (OSTI)

Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors.

Clinard, F.W. Jr.

1984-01-01T23:59:59.000Z

243

Ceramics for fusion applications  

SciTech Connect (OSTI)

Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

Clinard, F.W. Jr.

1986-01-01T23:59:59.000Z

244

Fusion reactor control  

SciTech Connect (OSTI)

The plasma kinetic temperature and density changes, each per an injected fuel density rate increment, control the energy supplied by a thermonuclear fusion reactor in a power production cycle. This could include simultaneously coupled control objectives for plasma current, horizontal and vertical position, shape and burn control. The minimum number of measurements required, use of indirect (not plasma parameters) system measurements, and distributed control procedures for burn control are to be verifiable in a time dependent systems code. The International Thermonuclear Experimental Reactor (ITER) has the need to feedback control both the fusion output power and the driven plasma current, while avoiding damage to diverter plates. The system engineering of fusion reactors must be performed to assure their development expeditiously and effectively by considering reliability, availability, maintainability, environmental impact, health and safety, and cost.

Plummer, D.A.

1995-12-31T23:59:59.000Z

245

CRYOGENICS FOR FUSION  

SciTech Connect (OSTI)

Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to 'fusion for energy' will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

Dauguet, P.; Bonneton, M.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F. [Air Liquide Advanced Technology Division BP15, ZI Les Engenieres, 38360 Sassenage (France); Gistau-Baguer, G. M.; Boissin, J. C. [Consultants, Grenoble (France)

2008-03-16T23:59:59.000Z

246

Spherical torus fusion reactor  

DOE Patents [OSTI]

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

247

Neutronic analysis of a fusion hybrid reactor  

SciTech Connect (OSTI)

In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

Kammash, T. [Univ. of Michigan, NERS, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

248

Fusion technology status and requirements  

SciTech Connect (OSTI)

This paper summarizes the status of fusion technology and discusses the requirements to be met in order to build a demonstration fusion plant. Strategies and programmatic considerations in pursuing engineering feasibility are also outlined.

Thomassen, K.I.

1982-01-26T23:59:59.000Z

249

data fusion 15 June 2012  

E-Print Network [OSTI]

real world data fusion Fred Daum 15 June 2012 data fusion Copyright © 2012 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. 1 #12;PATRIOT

Dobigeon, Nicolas

250

Alpha-nucleus potential for alpha-decay and sub-barrier fusion  

E-Print Network [OSTI]

The set of parameters for alpha-nucleus potential is derived by using the data for both the alpha-decay half-lives and the fusion cross-sections around the barrier for reactions alpha+40Ca, alpha+59Co, alpha+208Pb. The alpha-decay half-lives are obtained in the framework of a cluster model using the WKB approximation. The evaluated alpha-decay half-lives and the fusion cross-sections agreed well with the data. Fusion reactions between alpha-particle and heavy nuclei can be used for both the formation of very heavy nuclei and spectroscopic studies of the formed compound nuclei.

V. Yu. Denisov; H. Ikezoe

2005-10-27T23:59:59.000Z

251

Fusion welding process  

DOE Patents [OSTI]

A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

1983-01-01T23:59:59.000Z

252

Fusion Energy Division progress report, 1 January 1990--31 December 1991  

SciTech Connect (OSTI)

The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1994-03-01T23:59:59.000Z

253

Fusion Energy Division annual progress report, period ending December 31, 1989  

SciTech Connect (OSTI)

The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1991-07-01T23:59:59.000Z

254

Developing inertial fusion energy - Where do we go from here?  

SciTech Connect (OSTI)

Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

Meier, W.R.; Logan, G.

1996-06-11T23:59:59.000Z

255

Fusion potentials I  

E-Print Network [OSTI]

We reconsider the conjecture by Gepner that the fusion ring of a rational conformal field theory is isomorphic to a ring of polynomials in $n$ variables quotiented by an ideal of constraints that derive from a potential. We show that in a variety of cases, this is indeed true with {\\it one-variable} polynomials.

P. Di Francesco; J. -B. Zuber

1992-11-30T23:59:59.000Z

256

About sponsorship Fusion power  

E-Print Network [OSTI]

using the energy released when two light atomic nuclei are brought together to make a heavier one are needed. Unlike existing nuclear reactors, which produce nasty long-lived radioactive waste, the radioactive processes involved with fusion are relatively short- lived and the waste products benign. Unlike

257

Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints  

SciTech Connect (OSTI)

Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.

Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

2011-07-31T23:59:59.000Z

258

A lower cost development path for heavy ion fusion  

SciTech Connect (OSTI)

If two features of the inertial fusion process are exploited successfully, they can lead to significantly lower costs for demonstrating the feasibility of commercial electric power production from this source of energy. First, fusion capsule ignition and burn physics is independent of reaction chamber size and hydrodynamically-equivalent capsules can be designed to perform at small yield, exactly as they do at large yield. This means that an integrated test of all power plant components and feasibility tests of various reaction chamber concepts can be done at much smaller sizes (about 1--2 m first wall radius) and much lower powers (tens of MWs) than magnetic fusion development facilities such as ITER. Second, the driver, which is the most expensive component of currently conceived IFE development facilities, can be used to support more than one experiment target chamber/reactor (simultaneously and/or sequentially). These two factors lead to lower development facility costs, modular facilities, and the planning flexibility to spread costs over time or do several things in parallel and thus shorten the total time needed for development of Inertial Fusion Energy (IFE). In this paper the authors describe the general feature of a heavy ion fusion development plan that takes advantage of upgradable accelerators and the ability to test chambers and reactor systems at small scale in order to reduce development time and costs.

Hogan, W.J. [Lawrence Livermore National Lab., CA (United States); Meier, W.R. [Shafer (W.J.) Associates, Inc., Wakefield, MA (United States)

1993-05-19T23:59:59.000Z

259

Fusion of imprecise, uncertain, and conflicting beliefs with DSm rules of combination  

E-Print Network [OSTI]

In this paper one studies, within Dezert-Smarandache Theory (DSmT), the case when the sources of information provide imprecise belief functions/masses, and we generalize the DSm rules of combination (classic or hybrid rules) from scalar fusion to sub-unitary interval fusion and, more general, to any set of sub-unitary interval fusion. This work generalizes previous works available in literature which appear limited to IBS (Interval-valued belief structures) in the Transferable Belief Model framework. Numerical didactic examples of these new DSm fusion rules for dealing with imprecise information are also presented.

Jean Dezert; Florentin Smarandache

2004-04-17T23:59:59.000Z

260

New mechanism of membrane fusion  

E-Print Network [OSTI]

We have carried out Monte Carlo simulation of the fusion of bilayers of single chain amphiphiles which show phase behavior similar to that of biological lipids. The fusion mechanism we observe is very different from the ``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do not grow radially to form a hemifused state. Instead, stalk formation destabilizes the membranes and results in hole formation in the vicinity of the stalks. When holes in each bilayer nucleate spontaneously next to the same stalk, an incomplete fusion pore is formed. The fusion process is completed by propagation of the initial connection, the stalk, along the edges of the aligned holes.

M. Mueller; K. Katsov; M. Schick

2001-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Stau-catalyzed Nuclear Fusion  

E-Print Network [OSTI]

We point out that the stau may play a role of a catalyst for nuclear fusions if the stau is a long-lived particle as in the scenario of gravitino dark matter. In this letter, we consider d d fusion under the influence of stau where the fusion is enhanced because of a short distance between the two deuterons. We find that one chain of the d d fusion may release an energy of O(10) GeV per stau. We discuss problems of making the stau-catalyzed nuclear fusion of practical use with the present technology of producing stau.

K. Hamaguchi; T. Hatsuda; T. T. Yanagida

2006-10-06T23:59:59.000Z

262

Research on fusion neutron sources  

SciTech Connect (OSTI)

The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

2012-06-19T23:59:59.000Z

263

Finite element modeling and experimental study of brittle fracture in tempered martensitic steels for thermonuclear fusion applications.  

E-Print Network [OSTI]

??In this work we have studied brittle fracture in high-chromium reduced activation tempered martensitic steels foreseen as structural materials for thermonuclear fusion reactors. Developing the… (more)

Mueller, Pablo Federico

2009-01-01T23:59:59.000Z

264

Advanced Fusion Reactors for Space Propulsion and Power Systems  

SciTech Connect (OSTI)

In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

Chapman, John J.

2011-06-15T23:59:59.000Z

265

anterior cervical fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

266

alkaline phosphatase fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

267

antibody fusion proteins: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

268

abl fusion gene: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

269

acyltransferase gfp fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

270

albumin fusion proteins: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

271

anatomical information fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

272

antigen fusion proteins: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

273

affects myoblast fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

274

anterior spinal fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

275

anterior vertebral fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

276

anterior interbody fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

277

acquired motor fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

278

angiography fusion images: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

279

alloy fusion safety: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

280

altered fusion transcript: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

artificial gene fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

282

activate membrane fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

283

Fusion barrier distributions in systems with finite excitation energy  

E-Print Network [OSTI]

Eigen-channel approach to heavy-ion fusion reactions is exact only when the excitation energy of the intrinsic motion is zero. In order to take into account effects of finite excitation energy, we introduce an energy dependence to weight factors in the eigen-channel approximation. Using two channel problem, we show that the weight factors are slowly changing functions of incident energy. This suggests that the concept of the fusion barrier distribution still holds to a good approximation even when the excitation energy of the intrinsic motion is finite. A transition to the adiabatic tunneling, where the coupling leads to a static potential renormalization, is also discussed.

K. Hagino; N. Takigawa; A. B. Balantekin

1997-06-24T23:59:59.000Z

284

Isospin dependence of reactions $^{48}$Ca+$^{243-251}$Bk  

E-Print Network [OSTI]

The fusion process of $^{48}$Ca induced reactions is studied with the two-step model. In this model, the fusion process is devided into two stages: first, the sticking stage where projectile and target come to the touching point over the Coulomb barrier from infinite distance, and second, the formation stage where the di-nucleus formed with projectile and target evolve to form the spherical compound nucleus from the touching point. By the use of the statistical evaporation model, the residue cross sections for different neutron evaporation channels are analyzed. From the results, optimum reactions are given to synthesize $Z$ = 117 element with $^{48}$Ca induced reactions.

Caiwan Shen; Yasuhisa Abe; Davoid Boilley; Grigory Kosenko; Enguang Zhao

2008-09-13T23:59:59.000Z

285

Progress of Theoretical Physics Supplement No. 154, 2004 325 The Stopping of Low Energy Ions in Reactions  

E-Print Network [OSTI]

molecular orbital wavefunctions. At low projectile energies the stopping is mainly due to nuclear stopping of fusion reactions.3),4) It is well known that the laboratory measurements of low energy fusion reactionsProgress of Theoretical Physics Supplement No. 154, 2004 325 The Stopping of Low Energy Ions

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

286

Thermonuclear Fusion Research Progress and the Way to the Reactor  

SciTech Connect (OSTI)

The paper reviews the progress of fusion research and its prospects for electricity generation. It starts with a reminder of the principles of thermonuclear fusion and a brief discussion of its potential role in the future of the world energy production. The reactions allowing energy production by fusion of nuclei in stars and on earth and the conditions required to sustain them are reviewed. At the high temperatures required for fusion (hundred millions kelvins), matter is completely ionized and has reached what is called its 4th state: the plasma state. The possible means to achieve these extreme temperatures is discussed. The remainder of the paper focuses on the most promising of these approaches, magnetic confinement. The operating principles of the presently most efficient machine of this type -- the tokamak -- is described in some detail. On the road to producing energy with fusion, a number of obstacles have to be overcome. The plasma, a fluid that reacts to electromagnetic forces and carries currents and charges, is a complex medium. Fusion plasma is strongly heated and is therefore a good example of a system far from equilibrium. A wide variety of instabilities can grow in this system and lead to self-organized structures and spontaneous cycles. Turbulence is generated that degrades the confinement and hinders easy achievement of long lasting hot plasmas. Physicists have learned how to quench turbulence, thereby creating sort of insulating bottles inside the plasma itself to circumvent this problem. The recent history of fusion performance is outlined and the prospect of achieving power generation by fusion in a near future is discussed in the light of the development of the 'International Tokamak Experimental Reactor' project ITER.

Koch, Raymond [Laboratory for Plasma Physics, Royal Military Academy, Association EURATOM - Belgian State, 1000 Brussels (Belgium)

2006-06-08T23:59:59.000Z

287

Fusion Energy Division progress report, January 1, 1992--December 31, 1994  

SciTech Connect (OSTI)

The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

1995-09-01T23:59:59.000Z

288

Fusion pumped laser  

DOE Patents [OSTI]

The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

Pappas, D.S.

1987-07-31T23:59:59.000Z

289

Does neutron transfer with positive Q-values enhance sub-barrier fusion cross section?  

E-Print Network [OSTI]

[Background] Significant enhancement of sub-barrier fusion cross sections owing to neutron rearrangement with positive $Q$-values were found for many combinations of colliding nuclei. However several experimental results on fusion reactions were reported recently in which such enhancement has not been observed in spite of a possibility for neutron rearrangement with positive $Q$-values. [Purpose] We aim to clarify much better the mechanism of neutron rearrangement in sub-barrier fusion reactions to find the other requirements (beside positive $Q$-value) which favour (or prevent) sub-barrier fusion enhancement. [Method] Channel coupling approach along with the semi-classical model for neutron transfer have been used for analysis of available experimental data. [Results] (1) Only 1n and 2n transfers with positive $Q$-values have a noticeable impact on sub-barrier fusion. Positive $Q$-value for neutron rearrangement is necessary but not sufficient requirement for additional sub-barrier fusion enhancement takes place. (2) "Rigidity" of colliding nuclei in respect of collective excitations is important that the sub-barrier fusion enhancement due to neutron rearrangement with positive $Q$-value be clearly visible. (3) Neutron binding energy in "donor" nucleus has a strong impact only in the case of fusion of light weakly bound nuclei.

V. A. Rachkov; A. V. Karpov; A. S. Denikin; V. I. Zagrebaev

2014-06-17T23:59:59.000Z

290

Still Flying Fusion Edition  

E-Print Network [OSTI]

please either join the Yahoo Group (http://uk.groups.yahoo.com/group/stillflying) or email the editor (stillflying@bitwiser.com - subject heading "Contribution"). Disclaimer This publication is not affiliated with Joss Whedon ; Mutant Enemy, Inc.... This abridged edition is available only at Fusion, Issue Two will be available soon, complete with an Adam Baldwin interview! If you wish to subscribe (for free) please email stillflying@bitwiser.com with the subject heading "Subscribe" and you...

2013-11-27T23:59:59.000Z

291

(Fusion energy research)  

SciTech Connect (OSTI)

This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

Phillips, C.A. (ed.)

1988-01-01T23:59:59.000Z

292

Fusion Policy Advisory Committee FINAL REPORT  

E-Print Network [OSTI]

Fusion Policy Advisory Committee (FPAC) FINAL REPORT September 1990 Report of the Technical Panel on Magnetic Fusion of the Energy Research Advisory Board Washington, D .C. 20585 #12;#12;Fusion Policy of your Fusion Policy Advisory Committee. It presents a fusion policy that the Committee believes

293

Nuclear fusion in muonic deuterium-helium complex  

E-Print Network [OSTI]

Experimental study of the nuclear fusion reaction in charge-asymmetrical d-mu-3He complex is presented. The 14.6 MeV protons were detected by three pairs of Si(dE-E) telescopes placed around the cryogenic target filled with the deuterium + helium-3 gas at 34 K. The 6.85 keV gamma rays emitted during the de-excitation of d-mu-3He complex were detected by a germanium detector. The measurements were performed at two target densities, 0.0585 and 0.169 (relative to liquid hydrogen density) with an atomic concentration of 3He c=0.0469. The values of the effective rate of nuclear fusion in d-mu-3He was obtained for the first time, and the J=0 nuclear fusion rate in d-mu-3He was derived.

V. M. Bystritsky; M. Filipowicz; V. V. Gerasimov; P. E. Knowles; F. Mulhauser; N. P. Popov; V. A. Stolupin; V. P. Volnykh; J. Wozniak

2005-06-22T23:59:59.000Z

294

Magnetized Target Fusion Collaboration. Final report  

SciTech Connect (OSTI)

Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

John Slough

2012-04-18T23:59:59.000Z

295

The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion  

SciTech Connect (OSTI)

The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residues showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion.

Liao Maofu [Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Kielian, Margaret [Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States)]. E-mail: kielian@aecom.yu.edu

2005-02-05T23:59:59.000Z

296

INL Fusion Safety Program - Past Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Significant publications from the INL Fusion Safety Program D. A. Petti and K. A. McCarthy, "Progress in US fusion safety and environmental activities over the last decade," Fusion...

297

Pathways to Laser Fusion Beyond NIF Fusion Power Associates Meeting  

E-Print Network [OSTI]

Pathways to Laser Fusion Beyond NIF Fusion Power Associates Meeting Washington DC 10 December 2013 Research supported by the Department of Energy, NNSA #12;How far will NIF go towards ignition? NIF indirect of laser energy on capsule · Ignition and significant yield?? NIF Polar drive · Much more efficient use

298

Fusion Electricity A roadmap to the realisation of fusion energy  

E-Print Network [OSTI]

Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed association EURaToM ­ University of latvia LATVIA lithuanian Energy Institute LITHUANIA Ministry of Education and Research ROMANIA Ministry of Education, science, culture and sport SLOVENIA centro de Investigaciones

299

Fusion reactor pumped laser  

DOE Patents [OSTI]

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

Jassby, Daniel L. (Princeton, NJ)

1988-01-01T23:59:59.000Z

300

US ITER - Why Fusion?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlong version) The0 - 20 Publications 1.HowUPF:US Fusion

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fusion Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big Sky Learning|FundingFurnaceBenefitsFusion

302

Fusion Science to Prepare  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big SkyDIII-D Explorations of Fusion Science

303

Fusion_MHD.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big SkyDIII-D Explorations ofFusion,

304

Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFunding availableFusion

305

Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFunding availableFusion Large

306

Fusion Power Associates Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFundingSciencesFusion Power

307

Photons & Fusion Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced2 Photons & Fusion

308

Photons & Fusion Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced2 Photons & FusionJuly

309

US ITER | Why Fusion?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled SystemReleasesFeedbackSharepointUS Why Fusion? US

310

Fusion Safety Program annual report, fiscal year 1992  

SciTech Connect (OSTI)

This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG&G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study.

Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

1993-01-01T23:59:59.000Z

311

Fusion Safety Program annual report, fiscal year 1992  

SciTech Connect (OSTI)

This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study.

Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

1993-01-01T23:59:59.000Z

312

Fusion reactions in nuclear astrophysics: The MUSIC approach  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFundingSciencesFusionreactions

313

FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner  

SciTech Connect (OSTI)

Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

Martin, Adam K.; Eskridge, Richard H.; Lee, Michael H. [Propulsion Research Center, NASA Marshall Space Flight Center XD22, Huntsville, AL 35812 (United States); Fimognari, Peter J. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2006-01-20T23:59:59.000Z

314

Study of internal magnetic field via polarimetry in fusion plasmas  

E-Print Network [OSTI]

Motivation Controlled thermonuclear fusion is a promising2007]. Controlled thermonuclear fusion is based on the

Zhang, Jie

2013-01-01T23:59:59.000Z

315

Cellulose binding domain fusion proteins  

DOE Patents [OSTI]

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

1998-01-01T23:59:59.000Z

316

Quasi-rational fusion products  

E-Print Network [OSTI]

Fusion is defined for arbitrary lowest weight representations of $W$-algebras, without assuming rationality. Explicit algorithms are given. A category of quasirational representations is defined and shown to be stable under fusion. Conjecturally, it may coincide with the category of representations of finite quantum dimensions.

Werner Nahm

1994-02-08T23:59:59.000Z

317

Cellulose binding domain fusion proteins  

DOE Patents [OSTI]

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

1998-02-17T23:59:59.000Z

318

su(3)k fusion coefficients  

E-Print Network [OSTI]

A closed and explicit formula for all $\\su{(3)}_k$ fusion coefficients is presented which, in the limit $k \\rightarrow \\infty$, turns into a simple and compact expression for the $su(3)$ tensor product coefficients. The derivation is based on a new diagrammatic method which gives directly both tensor product and fusion coefficients.

L. Begin; P. Mathieu; M. A. Walton

1992-06-08T23:59:59.000Z

319

Fusion Policy Advisory Committee (FPAC)  

SciTech Connect (OSTI)

This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

Not Available

1990-09-01T23:59:59.000Z

320

Fusion Nuclear Science Facility (FNSF)  

E-Print Network [OSTI]

Fusion Nuclear Science Facility (FNSF) ­ Motivation, Role, Required Capabilities YK Martin Peng;1 Managed by UT-Battelle for the Department of Energy Example: fusion nuclear-nonnuclear coupling effects-composites; Nano-structure alloy; PFC designs, etc. · Nuclear-nonnuclear coupling in PFC: - Plasma ion flux induces

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Frontiers of Fusion Materials Science  

E-Print Network [OSTI]

migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

322

Magnetic Fusion Pilot Plant Studies  

E-Print Network [OSTI]

FNSF = Fusion Nuclear Science Facility CTF = Component Test Facility · Powerplantlike maintenance. · Targeted ultimate capabilities: ­ Fusion nuclear S&T development, component testing · Steady applicable to power plant · Demonstrate methods for fast replacement of in-vessel components ­ Net

323

The Fusion Machine (extended abstract)  

E-Print Network [OSTI]

directly. In the fusion machine, only channels exist at runtime. Channels may be remote, or co to rendezvous at the chan- nel. Execution amounts to the heating of a term (a directed implementation, rendezvous can result in explicit fusions, namely equational concurrent constraints on names. Upon heating

Gardner, Philippa

324

Clean steels for fusion  

SciTech Connect (OSTI)

Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

Gelles, D.S.

1995-03-01T23:59:59.000Z

325

Fusion Cross Section in the {sup 4,6}He+{sup 64}Zn Collisions Around the Coulomb Barrier  

SciTech Connect (OSTI)

New fusion data for the {sup 4}He+{sup 64}Zn system at sub-barrier energies are measured to cover the same energy region of previous measurements for {sup 6}He+{sup 64}Zn. Aim of the experiment was to compare the fusion excitation functions for the two system to investigate on the effects of the {sup 6}He neutron-halo structure on the fusion reaction mechanism at energies around the Coulomb barrier. The fusion cross section was measured by using an activation technique. Comparing the two systems, we observe an enhancement of the fusion cross section in the reaction induced by {sup 6}He, at and below the Coulomb barrier.

Fisichella, M. [Dipartimento di Fisica, Universita di Messina, Messina (Italy); INFN-Laboratori Nazionali del Sud and sezione di Catania, Catania (Italy); Di Pietro, A.; Figuera, P.; Marchetta, C. [INFN-Laboratori Nazionali del Sud and sezione di Catania, Catania (Italy); Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Scuderi, V.; Strano, E.; Torresi, D. [INFN-Laboratori Nazionali del Sud and sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita di Catania, Catania (Italy); Milin, M. [Department of Physics Faculty of Science University of Zagreb, Zagreb (Croatia); Skukan, N.; Zadro, M. [Ruder Boskovic Institute, Zagreb (Croatia)

2011-10-28T23:59:59.000Z

326

Polyneutron Chain Reactions  

SciTech Connect (OSTI)

Although helium atoms do not form molecules, a sufficiently large number will bind into a stable liquid droplet. A comparable situation is expected for neutrons, with a sufficiently large number binding into a stable droplet of neutron matter. Such polyneutron droplets can be viewed as isotopes of an element with nuclear charge Z=0, tentatively denoted neutrium, symbol Nt. Because of the relatively weak binding of neutrons compared with that of a mix of neutrons and protons, the minimum number of neutrons required for stability of a droplet is fairly large. Early estimates of {approx}60 may be reduced to a dozen or so by the BCS pairing interaction. The Nt entries with N{>=}12 are new to the table of isotopes. Because all of them are beta-unstable, none is expected to persist as a free particle. Yet, some may occasionally be produced by means to be described below, and it is of interest to examine their decay chains and their interactions with charged nuclei to ascertain how their presence might be revealed. Although these reactions are interesting, they cannot be taken seriously without identifying a source for the initial Nt isotope that begins the chain. Here, we consider possible interactions between {sup 16}O and {sup A}Nt. Although there is no strong interaction between them, we can expect a very weak residual attraction that can form a loosely bound {sup 16}O {sup A}Nt nuclear molecule. This is not a compound nucleus in the usual sense because, considered as fluids, the {sup 16}O and {sup A}Nt droplets are immiscible. For a droplet with fewer than about 60 neutrons, beta decay of {sup A}Nt is prevented by the buildup of Coulomb energy associated with transforming {sup A}Nt into {sup A}H in close proximity to {sup 16}O. Thus, it is possible that {sup 16}O {sup A}Nt molecules can persist indefinitely and that a few of them may be present in ordinary water as supermassive oxygen nuclei. Because the binding of these molecules is weak, the {sup A}Nt component can tunnel to an adjacent nucleus, and if the adjacent nucleus is {sup 18}O, a chain reaction can begin. The circumstances under which it can develop to produce macroscopic consequences depend on the mix of reactants and upon the appropriate removal of poisons and addition of fresh reactants to the reaction volume. With the proper conditions, there can be generation of sensible excess energy, helium, and other reaction products associated with the various cold fusion reactions.

John C. Fisher

2000-11-12T23:59:59.000Z

327

Study of $^{64}$Ni+$^{132}$Sn Fusion with Density Constrained TDHF Formalism  

E-Print Network [OSTI]

We study fusion reactions of the $^{64}$Ni+$^{132}$Sn system using the recently introduced density constrained time-dependent Hartree-Fock formalism. In this formalism the fusion barriers are directly obtained from TDHF dynamics. In addition, we incorporate the entrance channel alignment of the deformed (oblate) $^{64}$Ni nucleus due to dynamical Coulomb excitation. We discuss the influence of particle transfer and other dynamical effects on the fusion cross sections. Calculated cross sections are in very good agreement with data and other calculations.

A. S. Umar; V. E. Oberacker

2007-05-09T23:59:59.000Z

328

Fusion of {sup 48}Ca+{sup 48}Ca Far Below the Barrier  

SciTech Connect (OSTI)

In recent years, a puzzling pattern has been observed in fusion cross sections well below the Coulomb barrier, characterized as a departure from the exponential-like behavior predicted by standard coupled-channels models, known as fusion hindrance. We report on recent fusion measurements performed at the Laboratori Nazionali di Legnaro, in particular the {sup 48}Ca+{sup 48}Ca reaction down to the level of 0.6 {mu}b. Unlike most recent results in this field, we do not observe the typical divergent behavior of the logarithmic derivative; but rather a sort of saturation, albeit at a larger value than predicted with a standard nucleus-nucleus potential.

Scarlassara, F.; Montagnoli, G.; Mason, P. [Dipartimento di Fisica 'G. Galilei', Universita di Padova and INFN Sezione di Padova, via Marzolo 8, I-35231 Padova (Italy); Stefanini, A. M.; Silvestri, R.; Corradi, L.; Fioretto, E.; Guiot, B. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova) (Italy); Courtin, S.; Haas, F.; Lebhertz, D. [IPHC, CNRS-IN2P3, Universite de Strasbourg, F-67037 Strasbourg Cedex 2 (France); Szilner, S. [Ruder Boskovic Institute, HR-10002 Zagreb (Croatia)

2009-08-26T23:59:59.000Z

329

Information integration for data fusion  

SciTech Connect (OSTI)

Data fusion has been identified by the Department of Defense as a critical technology for the U.S. defense industry. Data fusion requires combining expertise in two areas - sensors and information integration. Although data fusion is a rapidly growing area, there is little synergy and use of common, reusable, and/or tailorable objects and models, especially across different disciplines. The Laboratory-Directed Research and Development project had two purposes: to see if a natural language-based information modeling methodology could be used for data fusion problems, and if so, to determine whether this methodology would help identify commonalities across areas and achieve greater synergy. The project confirmed both of the initial hypotheses: that the natural language-based information modeling methodology could be used effectively in data fusion areas and that commonalities could be found that would allow synergy across various data fusion areas. The project found five common objects that are the basis for all of the data fusion areas examined: targets, behaviors, environments, signatures, and sensors. Many of the objects and the specific facts related to these objects were common across several areas and could easily be reused. In some cases, even the terminology remained the same. In other cases, different areas had their own terminology, but the concepts were the same. This commonality is important with the growing use of multisensor data fusion. Data fusion is much more difficult if each type of sensor uses its own objects and models rather than building on a common set. This report introduces data fusion, discusses how the synergy generated by this LDRD would have benefited an earlier successful project and contains a summary information model from that project, describes a preliminary management information model, and explains how information integration can facilitate cross-treaty synergy for various arms control treaties.

Bray, O.H.

1997-01-01T23:59:59.000Z

330

A REALISTIC EXAMINATION OF COLD FUSION CLAIMS 24 YEARS LATER  

SciTech Connect (OSTI)

On March 29, 1989, chemists Martin Fleischmann and Stanley Pons announced they had discovered an effect whose explanation was required to lie in the realm of nuclear reactions. Their claim, and those subsequent to it of roughly similar nature, became known as ‘cold fusion’. Research continues to this day on this effect, but what has become clear is that whatever it is, it is not a conventional fusion process. Thus the ‘cold fusion’ moniker is somewhat inappropriate and many current researchers in the field prefer the term “Low Energy Nuclear Reactions (LENR)”, although other terms have been coined for it as well. the results developed out of the LENR research do in fact show something is happening to produce signals which might be interpreted as supporting nuclear reactions (which is what encourages and sustains LENR researchers), but which can also be interpreted via a set of unique and interesting conventional processes. The focus of this document is to describe and address recent objections to such processes so that subsequent LENR research can be guided to develop information that will determine whether either set of explanations has merit. It is hoped that criteria delineated herein will aid the USDOE and other agencies in determining if LENR proposals are meritorious and worthy of support or not.

Shanahan, K.

2012-10-22T23:59:59.000Z

331

Organic materials for fusion-reactor applications  

SciTech Connect (OSTI)

Organic materials requirements for fusion-reactor magnets are described with reference to the temperature, radiation, and electrical and mechanical stress environment expected in these magnets. A review is presented of the response to gamma-ray and neutron irradiation at low temperatures of candidate organic materials; i.e. laminates, thin films, and potting compounds. Lifetime-limiting features of this response as well as needed testing under magnet operating conditions not yet adequately investigated are identified and recomendations for future work are made.

Hurley, G.F.; Coltman, R.R. Jr.

1983-09-01T23:59:59.000Z

332

LiWall Fusion - The New Concept of Magnetic Fusion  

SciTech Connect (OSTI)

Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

L.E. Zakharov

2011-01-12T23:59:59.000Z

333

Image Fusion for MR Bias Stochastic Systems Group  

E-Print Network [OSTI]

We can target T1 and T2 through appropriate selection of TE and TR. #12;Image Reconstruction The MRImage Fusion for MR Bias Correction Ayres Fan Stochastic Systems Group Joint work with W. Wells, J. Fisher, M. Cetin, S. Haker, A. Willsky, B. Mulkern #12;Magnetic Resonance The magnetic resonance (MR

Willsky, Alan S.

334

N.P. Basse1 Plasma Science and Fusion Center  

E-Print Network [OSTI]

) The energy spectrum E(k) is related to P(k) through E(k) = Ad × P(k), where Ad is the surface area 33rd IEEE International Conference on Plasma Science, Traverse City, Michigan, USA (2006) A study of multiscale density fluctuations Work supported by US DoE Office of Fusion Energy Sciences #12;Introduction

Basse, Nils Plesner

335

Joint Working Group for Fusion Safety | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider in the U.S. | National

336

Poxvirus entry and membrane fusion  

SciTech Connect (OSTI)

The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.

Moss, Bernard [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445 (United States)]. E-mail: bmoss@nih.gov

2006-01-05T23:59:59.000Z

337

Fusion reactor pumped laser  

DOE Patents [OSTI]

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

338

5th International Symposium on Fusion Nuclear Technology Rome, September 19 -24 1999  

E-Print Network [OSTI]

5th International Symposium on Fusion Nuclear Technology Rome, September 19 - 24 1999 In as the working gas (and later with a mixture of 10 % oxygen in helium), purging the vacuum vessel with dry

339

Fusion rules in conformal field theory  

E-Print Network [OSTI]

Several aspects of fusion rings and fusion rule algebras, and of their manifestations in twodimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme.

J. Fuchs

1993-07-09T23:59:59.000Z

340

Temperature & Nuclear Fusion 4 October 2011  

E-Print Network [OSTI]

Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class-Boltzmann equation: L = 4R2 T4 . (d) In fusion energy generation: T . #12;temperature & nuclear fusion 2 Nuclear

Militzer, Burkhard

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Temperature & Nuclear Fusion 4 October 2011  

E-Print Network [OSTI]

Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class temperature. #12;temperature & nuclear fusion 2 Nuclear Fusion 2. There are a few different energy scales

Militzer, Burkhard

342

Electron Screening Effect on Stellar Thermonuclear Fusion  

E-Print Network [OSTI]

thermonuclear fusions and show that these scenarios do not apply to stellar conditions. c ? 2013 WILEY

K. -h. Spatschek; M. Bonitz; T. Klinger; U. Ebert; C. Franck; A. V. Keudell; D. Naujoks; M. Dewitz; A. Y. Potekhin; G. Chabrier

2012-01-01T23:59:59.000Z

343

Fusion project decision delayed ITER -NUCLEAR FUSION PROJECT  

E-Print Network [OSTI]

that are needed," said Hidekazu Tanaka, a senior official of the Japanese Education, Culture, Sports, Science at the level of an electricity- producing power station. Its goal will be to produce 500 megawatts of fusion

344

Magnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan  

E-Print Network [OSTI]

controlled thermonuclear fusion in the laboratory -- Intermediate between MFE and IFE · Presently only fundedMagnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan G. A. Wurden Fusion Energy Program Office Los Alamos National Laboratory Jan. 14, 2003 #12;Magnetized Target Fusion: Input

345

Advanced fusion concepts: project summaries  

SciTech Connect (OSTI)

This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

None

1980-12-01T23:59:59.000Z

346

Priorities for the US Fusion Program Author: Jeff Freidberg (40+ years and still going as a fusion researcher)  

E-Print Network [OSTI]

) the ridiculously inefficient management system that the world's fusion scientists are forced to work under, and (2 quality research, when I look ahead the ST does not hold, at least for me, much hope of turning into a low and management issues override the best scientific path. Recommendation: Although I favor the stellarator

347

Effects of nuclear deformation and neutron transfer in capture process, and origin of fusion hindrance at deep sub-barrier energies  

E-Print Network [OSTI]

The roles of nuclear deformation and neutron transfer in sub-barrier capture process are studied within the quantum diffusion approach. The change of the deformations of colliding nuclei with neutron exchange can crucially influence the sub-barrier fusion. The comparison of the calculated capture cross section and the measured fusion cross section in various reactions at extreme sub- barrier energies gives us information about the fusion and quasifission.

V. V. Sargsyan; G. G. Adamian; N. V. Antonenko; W. Scheid; H. Q. Zhang

2011-11-30T23:59:59.000Z

348

Fusion materials irradiations at MaRIE's fission fusion facility  

SciTech Connect (OSTI)

Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

Pitcher, Eric J [Los Alamos National Laboratory

2010-10-06T23:59:59.000Z

349

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

350

Fusion Rules for Extended Current Algebras  

E-Print Network [OSTI]

The initial classification of fusion rules have shown that rational conformal field theory is very limited. In this paper we study the fusion rules of extend ed current algebras. Explicit formulas are given for the S matrix and the fusion rules, based on the full splitting of the fixed point fields. We find that in s ome cases sensible fusion rules are obtained, while in others this procedure lea ds to fractional fusion constants.

Ernest Baver; Doron Gepner

1996-01-30T23:59:59.000Z

351

Virasoro Representations on Fusion Graphs  

E-Print Network [OSTI]

For any non-unitary model with central charge c(2,q) the path spaces associated to a certain fusion graph are isomorphic to the irreducible Virasoro highest weight modules.

J. Kellendonk; A. Recknagel

1992-10-01T23:59:59.000Z

352

Maintenance FUSION IGNITION RESEARCH EXPERIMENT  

E-Print Network [OSTI]

Insulation Enclosure Remote Maintenance Module FUSION IGNITION RESEARCH EXPERIMENT SYSTEM describes the status of the configuration development and the integration of the major subsystem components vessel structural stiffness, this configuration makes use of the cooling jacket as nuclear shielding

353

Pulsed Power Driven Fusion Energy  

SciTech Connect (OSTI)

Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

SLUTZ,STEPHEN A.

1999-11-22T23:59:59.000Z

354

EURATOM/CCFE Fusion Association  

E-Print Network [OSTI]

- Public Understanding and Education Outreach 7 - Training 7 JET Operations 8 JET Studies 11 MAST 14 - MAST to capture heat from the fusion core to generate electricity in a power station. In this Executive Summary

355

Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction  

SciTech Connect (OSTI)

The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

Moller, Peter [Los Alamos National Laboratory; Iwamoto, A [JAPAN; Ichikawa, I [JAPAN

2010-09-10T23:59:59.000Z

356

Japanese magnetic confinement fusion research  

SciTech Connect (OSTI)

Six U.S. scientists surveyed and assessed Japanese research and development in magnetic fusion. The technical accomplishments from the early 1980s through June 1989 are reviewed, and the Japanese capabilities and outlook for future contributions are assessed. Detailed evaluations are provided in the areas of basic and applied plasma physics, tokamak confinement, alternate confinement approaches, plasma technology, and fusion nuclear technology and materials.

Davidson, R.C.; Abdou, M.A.; Berry, L.A.; Horton, C.W.; Lyon, J.F.; Rutherford, P.H.

1990-01-01T23:59:59.000Z

357

Contrib. Plasma Phys. 53, No. 45, 397 405 (2013) / DOI 10.1002/ctpp.201200094 Electron screening effect on stellar thermonuclear fusion  

E-Print Network [OSTI]

effect on stellar thermonuclear fusion Alexander Y. Potekhin1,2 and Gilles Chabrier2,3 1 Ioffe Physical thermonuclear reactions for various stellar objects, namely in the liquid envelopes of neutron stars. In addition, we examine some recent unconventional theo- retical results on stellar thermonuclear fusions

358

Physics Regimes in the Fusion Ignition Research Experiment (FIRE)  

SciTech Connect (OSTI)

Burning plasma science is recognized widely as the next frontier in fusion research. The Fusion Ignition Research Experiment (FIRE) is a design study of a next-step burning plasma experiment with the goal of developing a concept for an experimental facility to explore and understand the strong nonlinear coupling among confinement, magnetohydrodynamic (MHD) self-heating, stability, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. This will require plasmas dominated by alpha heating (Q greater than or equal to 5) that are sustained for a duration comparable to characteristic plasma timescales (greater than or equal to 10) tau(subscript ''E''), approximately 4 tau(subscript ''He''), approximately 2 tau(subscript ''skin''). The work reported here has been undertaken with the objective of finding the minimum size (cost) device to achieve these physics goals.

D.M. Meade; S.C.Jardin; C.E. Kessel; M.A. Ulrickson; J.H. Schultz; P.H. Rutherford; J.A. Schmidt; J.C. Wesley; K.M. Young; N.A.Uckan; R.J. Thome; P. Heitzenroeder; B.E. Nelson; and C.C.Baker

2001-06-19T23:59:59.000Z

359

Prospects for improved fusion reactors  

SciTech Connect (OSTI)

Ideally, a new energy source must be capable of displacing old energy sources while providing both economic opportunities and enhanced environmental benefits. The attraction of an essentially unlimited fuel supply has generated a strong impetus to develop advanced fission breeders and, even more strongly, the exploitation of nuclear fusion. Both fission and fusion systems trade a reduced fuel charge for a more capital-intensive plant needed to utilize a cheaper and more abundant fuel. Results from early conceptual designs of fusion power plants, however, indicated a capital intensiveness that could override cost savings promised by an inexpensive fuel cycle. Early warnings of these problems appeared, and generalized routes to more economically attractive systems have been suggested; specific examples have also recently been given. Although a direct reduction in the cost (and mass) of the fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, coils, and primary structure) most directly reduces the overall cost of fusion power, with the mass power density (MPD, ratio of net electric power to FPC mass, kWe/tonne) being suggested as a figure-of-merit in this respect, other technical, safety/environmental, and institutional issues also enter into the definition of and direction for improved fusion concepts. These latter issues and related tradeoffs are discussed.

Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

1986-01-01T23:59:59.000Z

360

TRITIUM ACCOUNTANCY IN FUSION SYSTEMS  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

2014-03-06T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

SciTech Connect (OSTI)

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

362

Screened thermonuclear reactions and predictive stellar evolution of detached double-lined eclipsing binaries  

E-Print Network [OSTI]

The low energy fusion cross sections of charged-particle nuclear reactions (and the respective reaction rates) in stellar plasmas are enhanced due to plasma screening effects. We study the impact of those effects on predictive stellar evolution simulations for detached double-lined eclipsing binaries. We follow the evolution of binary systems (pre-main sequence or main sequence stars) with precisely determined radii and masses from 1.1Mo to 23Mo (from their birth until their present state). The results indicate that all the discrepancies between the screened and unscreened models (in terms of luminosity, stellar radius, and effective temperature) are within the observational uncertainties. Moreover, no nucleosynthetic or compositional variation was found due to screening corrections. Therefore all thermonuclear screening effects on the charged-particle nuclear reactions that occur in the binary stars considered in this work (from their birth until their present state) can be totally disregarded. In other words, all relevant charged-particle nuclear reactions can be safely assumed to take place in a vacuum, thus simplifying and accelerating the simulation processes.

Theodore Liolios; Theocharis Kosmas

2005-07-06T23:59:59.000Z

363

Information Technology Systems for Fusion Industry and ITER Project  

SciTech Connect (OSTI)

The industrial developments in the fusion industry will have to overcome numerous technical challenges and will have a strong need for modern information technology (IT) systems.The fusion industry has manifested itself with an unprecedented international collaboration, the International Thermonuclear Experimental Reactor (ITER). Data accumulated in ITER will be the major output of the project and will create the knowledge base for a future fusion power plant. A modern and effective information infrastructure will be critical to the success of the ITER project.To accumulate and maintain the knowledge base at all stages of the project, we propose to build an integrated information system for ITER: ITER Information Plant (IIP). IIP will minimize lost experiment time and accelerate the understanding, interpretation, and planning of fusion experiments. IIP will allow to reap maximum benefits from the project's scientific and technological achievements, make the ITER results accessible to hundreds of researchers worldwide. This will facilitate collaboration, dramatically increasing the pace of scientific and technological discovery and the rate at which practical use is made of these discoveries.As the first of its kind, the ITER Information Plant could be used in the future as a prototype IT system for national and international fusion projects, in which multicountry collaboration, distributed work sites and operations are catalysts for success.

Putvinskaya, N.; Bulasheva, N.; Cole, G.; Dillon, T.; Frieman, E.; Sabado, M.; Schissel, D. (and others)

2005-04-15T23:59:59.000Z

364

ash fusion temperature: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Fusion Performance Plasma Physics and Fusion Websites Summary: Inst. for Plasma Research 3 Univ. of Texas Inst for Fusion Studies (October 6, 1999) The physics in a...

365

Decommissioning of the Tokamak Fusion Test Reactor  

SciTech Connect (OSTI)

The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

2003-10-28T23:59:59.000Z

366

How NIF Works  

SciTech Connect (OSTI)

The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

2009-07-30T23:59:59.000Z

367

How NIF Works  

ScienceCinema (OSTI)

The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

None

2010-09-01T23:59:59.000Z

368

Conformal nets III: fusion of defects  

E-Print Network [OSTI]

Conformal nets provides a mathematical model for conformal field theory. We define a notion of defect between conformal nets, formalizing the idea of an interaction between two conformal field theories. We introduce an operation of fusion of defects, and prove that the fusion of two defects is again a defect, provided the fusion occurs over a conformal net of finite index. There is a notion of sector (or bimodule) between two defects, and operations of horizontal and vertical fusion of such sectors. Our most difficult technical result is that the horizontal fusion of the vacuum sectors of two defects is isomorphic to the vacuum sector of the fused defect. Equipped with this isomorphism, we construct the basic interchange isomorphism between the horizontal fusion of two vertical fusions and the vertical fusion of two horizontal fusions of sectors.

Arthur Bartels; Christopher L. Douglas; André Henriques

2015-02-21T23:59:59.000Z

369

Kinetic advantage of controlled intermediate nuclear fusion  

SciTech Connect (OSTI)

The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

Guo Xiaoming [Physics and Computer Science Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5 (Canada)

2012-09-26T23:59:59.000Z

370

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

Kramer, Kevin James

2010-01-01T23:59:59.000Z

371

Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies  

E-Print Network [OSTI]

Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

2011-06-10T23:59:59.000Z

372

Fusion of {sup 6}Li with {sup 159}Tb at near-barrier energies  

SciTech Connect (OSTI)

Complete and incomplete fusion cross sections for {sup 6}Li + {sup 159}Tb have been measured at energies around the Coulomb barrier by the {gamma}-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by {approx}34% compared to coupled-channel calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data for {sup 11,10}B + {sup 159}Tb and {sup 7}Li + {sup 159}Tb shows that the extent of suppression is correlated with the {alpha} separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction {sup 6}Li + {sup 159}Tb at below-barrier energies are primarily due to the d transfer to unbound states of {sup 159}Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

Pradhan, M. K.; Mukherjee, A.; Basu, P.; Goswami, A.; Kshetri, R.; Roy, Subinit; Chowdhury, P. Roy; Sarkar, M. Saha; Palit, R.; Parkar, V. V.; Santra, S.; Ray, M. [Nuclear Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata-700064 (India); Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005 (India); Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Department of Physics, Behala College, Parnasree, Kolkata-700060 (India)

2011-06-15T23:59:59.000Z

373

The Path to Magnetic Fusion Energy  

SciTech Connect (OSTI)

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL) [PPPL

2011-05-04T23:59:59.000Z

374

Inertial fusion program. Progress report, July 1-December 31, 1978  

SciTech Connect (OSTI)

Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

Perkins, R.B.

1980-11-01T23:59:59.000Z

375

The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants  

SciTech Connect (OSTI)

Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ``steady state`` (SS) or ``equivalent steady state`` (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used.

Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [California Univ., Berkeley, CA (United States)

1996-06-26T23:59:59.000Z

376

A semi-analytic model of magnetized liner inertial fusion  

E-Print Network [OSTI]

Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized alpha-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original Ma...

McBride, Ryan D

2015-01-01T23:59:59.000Z

377

Engineering the fusion reactor first wall  

SciTech Connect (OSTI)

Recently the National Academy of Engineering published a set of Grand Challenges in Engineering in which the second item listed was entitled 'Provide energy from fusion'. Clearly a key component of this challenge is the science and technology associated with creating and maintaining burning plasmas. This is being vigorously addressed with both magnetic and inertial approaches with various experiments such as ITER and NIF. Considerably less attention is being given to another key component of this challenge, namely engineering the first wall that will contain the burning plasma. This is a daunting problem requiring technologies and materials that can not only survive, but also perform multiple essential functions in this extreme environment. These functions are (1) shield the remainder of the device from radiation. (2) convert of neutron energy to useful heat and (3) breed and extract tritium to maintain the reactor fuel supply. The first wall must not contaminate the plasma with impurities. It must be infused with cooling to maintain acceptable temperatures on plasma facing and structural components. It must not degrade. It must avoid excessive build-up of tritium on surfaces, and, if surface deposits do form, must be receptive to cleaning techniques. All these functions and constraints must be met while being subjected to nuclear and thermal radiation, particle bombardment, high magnetic fields, thermal cycling and occasional impingement of plasma on the surface. And, operating in a nuclear environment, the first wall must be fully maintainable by remotely-operated manipulators. Elements of the first wall challenge have been studied since the 1970' s both in the US and internationally. Considerable foundational work has been performed on plasma facing materials and breeding blanket/shield modules. Work has included neutronics, materials fabrication and joining, fluid flow, tritium breeding, tritium recovery and containment, energy conversion, materials damage and magnetohydrodynamics. While work to date has been quite valuable, no blanket concept has been built and operated in anything approaching a realistic fusion reactor environment. Rather, work has been limited to isolated experiments on first wall components and paper studies. The need now is to complete necessary R&D on first wall components, assemble components into a practical design, and test the first wall in a realistic fusion environment. Besides supporting work, major prototype experiments could be performed in non-nuclear experiments, as part of the ITER project and as part of the Component Test Facility. The latter is under active consideration and is a proposed machine which would use a driven plasma to expose an entire first wall to a fusion environment. Key US contributors to first wall research have been UCLA, UCSD, U of Wisconsin, LANL, ORNL, PNNL, Argonne and Idaho National Lab. Current efforts have been coordinated by UCLA. It is recognized that when this work progresses to a larger scale, leadership from a national laboratory will be required. LANL is well-prepared to provide such leadership.

Wurden, Glen [Los Alamos National Laboratory; Scott, Willms [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

378

Hindrance of Heavy-ion Fusion at Extreme Sub-Barrier Energies in Open-shell Colliding Systems  

E-Print Network [OSTI]

The excitation function for the fusion-evaporation reaction 64Ni+100Mo has been measured down to a cross-section of ~5 nb. Extensive coupled-channels calculations have been performed, which cannot reproduce the steep fall-off of the excitation function at extreme sub-barrier energies. Thus, this system exhibits a hindrance for fusion, a phenomenon that has been discovered only recently. In the S-factor representation introduced to quantify the hindrance, a maximum is observed at E_s=120.6 MeV, which corresponds to 90% of the reference energy E_s^ref, a value expected from systematics of closed-shell systems. A systematic analysis of Ni-induced fusion reactions leading to compound nuclei with mass A=100-200 is presented in order to explore a possible dependence of the fusion hindrance on nuclear structure.

C. L. Jiang; K. E. Rehm; H. Esbensen; R. V. F. Janssens; B. B. Back; P. Collon; C. N. Davids; J. P. Greene; D. J. Henderson; C. J. Lister; S. Kurtz; R. C. Pardo; T. Pennington; M. Paul; D. Peterson; D. Seweryniak; B. Shumard; S. Sinha; X. D. Tang; I. Tanihata; S. Zhu

2004-12-20T23:59:59.000Z

379

Working Paper  

E-Print Network [OSTI]

Jul 2, 2010 ... Working Paper. Branch and Bound Algorithms for ...... interest when evaluating the performance. First, each derived subproblem means usage ...

2010-07-16T23:59:59.000Z

380

{gamma}-ray 'bang-time' measurements with a gas-Cherenkov detector for inertial-confinement fusion experiments  

SciTech Connect (OSTI)

In a laser driven inertial-confinement fusion experiment, bang time is defined as the time between the laser light impinging the target and the peak of the fusion reactions. Bang time is often used to compare computed predictions to experiment. Large laser facilities, such as NIF and LMJ, which are currently under construction, will produce yields far in excess of any previous inertial-confinement fusion experiment. One of the implications of such high yields is that fusion {gamma} rays, which have branching ratios four orders of magnitude less than that of fusion neutrons, may be used to diagnose bang time. This article describes the first of such {gamma}-ray bang-time measurement made using the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The diagnostic used for this was a gas Cherenkov detector. The experimental setup, data and error analyses, and suggested improvements are presented.

Horsfield, C. J.; Caldwell, S. E.; Christensen, C. R.; Evans, S. C.; Mack, J. M.; Sedillo, T.; Young, C. S.; Glebov, V. Yu. [Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States)

2006-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Effects of nuclear structure on average angular momentum in subbarrier fusion  

E-Print Network [OSTI]

We investigate the effects of nuclear quadrupole and hexadecapole couplings on the average angular momentum in sub-barrier fusion reactions. This quantity could provide a probe for nuclear shapes, distinguishing between prolate vs. oblate quadrupole and positive vs. negative hexadecapole couplings. We describe the data in the O + Sm system and discuss heavier systems where shape effects become more pronounced.

A. B. Balantekin; J. R. Bennett; S. Kuyucak

1994-07-21T23:59:59.000Z

382

Annual Report of the EURATOM/CCFE Fusion Programme 2011/12 1 Executive Summary  

E-Print Network [OSTI]

to energy via Einstein's famous equation, E=mc2 (with c being the value of the speed of light). The reaction Energy1 for the period April 2011 to March 2012. The objective of fusion research is to develop power, and their waste products would be much more manageable than that from today's fission nuclear power stations

383

Gamma Reaction History for the NIF  

SciTech Connect (OSTI)

Bang time and reaction history measurements are fundamental components of diagnosing ICF implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF System Design Requirements. A staged approach of implementing Gamma Reaction History (GRH) diagnostics on the NIF has been initiated. In the early stage, multiple detectors located close to target chamber center (at 2 and 6 m) and coupled to photomultiplier tubes are geared toward the loweryield THD campaign. In the later stage, streak camera–coupled instruments will be used for improved temporal resolution at the higher yields expected from the DT ignition campaign. Multiple detectors will allow for increased dynamic range and gamma energy spectral information.

Herrmann, H W; Evans, S C; Kim, Y; Mack, J M; Young, C S; Cox, B C; Frogget, B C; Kaufman, M I; Malone, R M; Tunnell, T W; Stoeffl, W

2009-06-05T23:59:59.000Z

384

Ignition and Inertial Confinement Fusion at The National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

Moses, E

2009-10-01T23:59:59.000Z

385

PRELIMINARY ASSESSMENT OF NDE METHODS ON INSPECTION OF HDPE BUTT FUSION PIPING JOINTS FOR LACK OF FUSION  

SciTech Connect (OSTI)

Studies at the Pacific Northwest National Laboratory in Richland, Washington, are being conducted to evaluate nondestructive examination approaches for inspecting butt fusion joints in high density polyethylene (HDPE) pipe for lack of fusion (LOF). The work provides information to the United States Nuclear Regulatory Commission on the effectiveness and need for volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic nondestructive techniques and high-speed tensile impact testing for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch IPS DR-11 material by varying the fusion parameters in attempts to provide good joints and joints containing LOF. These butt joints were visually examined and volumetrically examined with time-of-flight diffraction (TOFD) and phased-array (PA) ultrasound. A limited subset of pipe joint material was destructively analyzed by either slicing through the joint and visually examining the surface or by employing a standard high-speed tensile impact test. Initial correlation of the fusion parameters, nondestructive, and destructive evaluations have shown that areas with gross LOF were detected with both TOFD and PA ultrasound and that the tensile impact test showed a brittle failure at the joint. There is still some ambiguity in results from the less obvious LOF conditions. Current work is targeted on assessing the sensitivity of the ultrasonic volumetric examinations and validating the results with a destructive analysis. It is expected that on-going and future work will lead to quantifying the ultrasonic responses in terms of joint integrity.

Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Cumblidge, Stephen E.; Anderson, Michael T.

2010-01-01T23:59:59.000Z

386

Image fusion for a nighttime driving display  

E-Print Network [OSTI]

An investigation into image fusion for a nighttime driving display application was performed. Most of the image fusion techniques being investigated in this application were developed for other purposes. When comparing the ...

Herrington, William Frederick

2005-01-01T23:59:59.000Z

387

Fusion Energy Sciences Advisory Committee Strategic Planning  

E-Print Network [OSTI]

with excellent safety features and modest environmental impact that is available to all nations. The quest of the fusion fuel from within the reactor. Throughout its history, the quest for fusion has been a global

388

Idaho National Laboratory Fusion Safety Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Information: Brad Merrill 208-526-0395 Email Contact Fusion Safety Program Thermonuclear fusion powers the Sun and the stars and is the most powerful energy source known....

389

EURATOM/CCFE Fusion Association Annual Report  

E-Print Network [OSTI]

European and UK fusion research Public understanding and education outreach Training JET operations Tokamak for clean electricity generation here on earth. Fusion power stations would emit no greenhouse gases

390

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network [OSTI]

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

Abdou, Mohamed

391

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network [OSTI]

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges on MFE Roadmapping in the ITER Era Princeton, NJ 7-10 September 2011 1 #12;Fusion Nuclear Science never done any experiments on FNST in a real fusion nuclear environment we must be realistic on what

Abdou, Mohamed

392

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

393

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

394

Inside ITER seminar on History of Fusion Page 1 History of Fusion  

E-Print Network [OSTI]

Union thermonuclear explosion 400kT #12;Inside ITER seminar on History of Fusion Page 4 Big IvanInside ITER seminar on History of Fusion Page 1 History of Fusion Personal view V. Chuyanov 9 July 2009 Special thanks to ITER Communication Division. #12;Inside ITER seminar on History of Fusion Page 2

395

JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER  

E-Print Network [OSTI]

JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergy Fusion fuel: deuterium et tritium Deuterium: plenty in the ocean Tritium: made in situ from Lithium

396

Pionic Fusion of Heavy Ions  

E-Print Network [OSTI]

We report the first experimental observation of the pionic fusion of two heavy ions. The 12C(12C,24Mg)pi0 and 12C(12C,24Na)pi+ cross sections have been measured to be 208 +/- 38 and 182 +/- 84 picobarns, respectively, at E_cm = 137 MeV. This cross section for heavy-ion pion production, at an energy just 6 MeV above the absolute energy-conservation limit, constrains possible production mechanisms to incorporate the kinetic energy of the entire projectile-target system as well as the binding energy gained in fusion.

D. Horn; G. C. Ball; D. R. Bowman; W. G. Davies; D. Fox; A. Galindo-Uribarri; A. C. Hayes; G. Savard; L. Beaulieu; Y. Larochelle; C. St-Pierre

1996-08-13T23:59:59.000Z

397

Method for vacuum fusion bonding  

DOE Patents [OSTI]

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2001-01-01T23:59:59.000Z

398

Fusion bonding and alignment fixture  

DOE Patents [OSTI]

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2000-01-01T23:59:59.000Z

399

Reviewers Comments on the 5th Symposium and the Status of Fusion Research 2003  

SciTech Connect (OSTI)

Better to understand the status of fusion research in the year 2003 we will first put the research in its historical context. Fusion power research, now beginning its sixth decade of continuous effort, is unique in the field of scientific research. Unique in its mixture of pure and applied research, unique in its long-term goal and its promise for the future, and unique in the degree that it has been guided and constrained by national and international governmental policy. Though fusion research's goal has from the start been precisely defined, namely, to obtain a net release of energy from controlled nuclear fusion reactions between light isotopes (in particular those of hydrogen and helium) the difficulty of the problem has spawned in the past a very wide variety of approaches to the problem. Some of these approaches have had massive international support for decades, some have been pursued only at a ''shoestring'' level by dedicated groups in small research laboratories or universities. In discussing the historical and present status of fusion research the implications of there being two distinctly different approaches to achieving net fusion power should be pointed out. The first, and oldest, approach is the use of strong magnetic fields to confine the heated fuel, in the form of a plasma and at a density typically four or five orders of magnitude smaller than the density of the atmosphere. In steady state this fusion fuel density is still sufficient to release fusion energy at the rate of many megawatts per cubic meter. The plasma confinement times required for net energy release in this regime are long--typically a second or more, representing an extremely difficult scientific challenge --witness the five decades of research in magnetic fusion, still without having reaching that goal. The second, more recently initiated approach, is of course the ''inertial'' approach. As its name implies, the ''confinement'' problem is solved ''inertially,'' that is by compressing and heating a tiny pellet of frozen fusion fuel in nanoseconds, such that before disassembly the pellet fuses and releases its energy as a micro-explosion. The first, and most thoroughly investigated means to create this compression and heating is to use multiple laser beams, with total energies of megajoules, focused down to impinge uniformly on the pellet target. To illustrate the extreme difference between the usual magnetic confinement regime at that of inertial fusion, there are twenty orders of magnitude in fusion power density (ten orders of magnitude in plasma density) between the two regimes. In principle fusion power systems could operate at any density between these extremes, if means were to be found to exploit this possibility.

Post, R F

2005-02-03T23:59:59.000Z

400

The automorphisms of affine fusion rings  

E-Print Network [OSTI]

The fusion rings associated to affine Kac-Moody algebras appear in several different contexts in math and mathematical physics. In this paper we find all automorphisms of all affine fusion rings, or equivalently the symmetries of the corresponding fusion coefficients. Most of these are directly related to symmetries of the corresponding Coxeter-Dynkin diagram. We also find all pairs of isomorphic affine fusion rings.

T. Gannon

2000-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Breakthrough: Neutron Science for the Fusion Mission  

SciTech Connect (OSTI)

How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

McGreevy, Robert

2012-04-24T23:59:59.000Z

402

Fusion Energy: Visions of the Future  

E-Print Network [OSTI]

worldwide · X-ray/neutron applications · US teams at KSU, NSTec 2009: LPP Focus Fusion-1 lab begins

403

Breakthrough: Neutron Science for the Fusion Mission  

ScienceCinema (OSTI)

How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

McGreevy, Robert

2014-06-03T23:59:59.000Z

404

Investigation into Fusion Feasibility of a Magnetized Target Fusion Reactor  

E-Print Network [OSTI]

illustrate how various material properties influence the efficiency of the design in our model setting by an imploding shell of lead-lithium. With sufficient compression, the plasma will heat to igni- tion in producing fusion is forcing the lighter particles to interact enough with each other so that they can fuse

Wetton, Brian

405

Fusion rules for N=2 superconformal modules  

E-Print Network [OSTI]

In this note we calculate the fusion coefficients for minimal series representations of the N=2 superconformal algebra by using a modified Verlinde's formula, and obtain associative and commutative fusion algebras with non-negative integral fusion coefficients at each level. Some references are added.

Minoru Wakimoto

1998-07-22T23:59:59.000Z

406

EURATOM/CCFE Fusion Association Annual Report  

E-Print Network [OSTI]

potential as an energy source. We are looking forward to JET advancing the records for fusion power for the year 2013. The objective of fusion research is to develop power stations that harness the process that powers the sun for clean electricity generation here on earth. Fusion power stations would emit

407

CONFERENCES AND SYMPOSIA FUSION REACTOR DESIGN IV  

E-Print Network [OSTI]

.1. Introduction; NUCLEAR FUSION, Vol.26, No.10 (1986) 1377 #12;CONFERENCES AND SYMPOSIA 5.2. Progress. Alternative fusion concepts (AFCs); 6.1. Introduction and status; 6.2. Summary of concepts; 6.3. Conclusions; 7. Fusion nuclear technology and materials; 7.1. Progress since 1981; 7.2. Issues and R and D needs

Abdou, Mohamed

408

Improved Image Fusion Using Balanced Multiwavelets  

E-Print Network [OSTI]

Improved Image Fusion Using Balanced Multiwavelets Lahouari Ghouti, Ahmed Bouridane and Mohammad K. Ibrahim Abstract-- This paper presents the use of balanced multi- wavelets for image fusion. The proposed image fusion scheme incorporates the use of balanced multiwavelets transform, which uses multiple

Ghouti, Lahouari

409

Fusion Lecture Summary Eugene S. Evans  

E-Print Network [OSTI]

March 31, 2010 2 / 15 #12;National Ignition Facility (NIF) location: Lawrence Livermore National. Evans (2010) Fusion Lecture Summary March 31, 2010 1 / 15 #12;Outline 1 Overview of NIF Specifications Timeline Goals 2 Inertial Confinement Fusion (ICF) 3 Science at NIF 4 Fusion and the Future Laser Inertial

Budker, Dmitry

410

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network [OSTI]

FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical for fusion power plants is given and their economic, safety, and environmental features are explored. Concep- tual design studies predict that fusion power plants will be capital intensive and will be used

Najmabadi, Farrokh

411

Plasma Physics and Fusion Energy Miklos Porkolab  

E-Print Network [OSTI]

Plasma Physics and Fusion Energy Miklos Porkolab MIT Plasma Science and Fusion Center Presented at the Fusion Power Associates Annual Meeting Washington, D.C. December 2-3, 2009 Porkolab_FPA_2009 #12;Proposed is sufficient physics to make ITER a success but much more to learn for DEMO grade plasmas See review talk

412

Laser Fusion Energy The High Average Power  

E-Print Network [OSTI]

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

413

White Paper on Magnetic Fusion Program Strategies  

E-Print Network [OSTI]

of the international fusion program, the International Thermonuclear Experimental Reactor (ITER), is now halfwayWhite Paper on Magnetic Fusion Program Strategies Prepared for The President's Committee of Advisors on Science and Technology Prepared by David E. Baldwin Senior Vice President for Fusion General

414

Introduction to Magnetic Thermonuclear Fusion and  

E-Print Network [OSTI]

Introduction to Magnetic Thermonuclear Fusion and Related Research Projects Ghassan Antar Fusion 2. Research on Turbulence (Theory and Experiment) 3. Research on Disruptions 4. Research on Plasma Facing Components #12;Ghassan Y. ANTAR 3 Fusion Occurs when Two Nuclei Unite to Form One The Energy

Shihadeh, Alan

415

*****I* ****f?* Fusion Programme Evaluation Board  

E-Print Network [OSTI]

of the Community's programme in the field of Controlled Thermonuclear Fusion; to appraise the environmental, safety*****I* ****f?* Report of the Fusion Programme Evaluation Board prepared for the Commission . . . . . . . . . . . . 11 CHAPTER ONE: NUCLEAR FUSION AND ITS POTENTIAL CONTRIBUTION TO THE WORLD'S ENERGY NEEDS 1

416

Journal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report  

E-Print Network [OSTI]

.2. A Brief History of Heavy Ion Fusion The heavy ion fusion approach to inertial fusion energy (IFEJournal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report on Inertial Fusion Energy 1 Ronald Davidson,2 Barrett Ripin, Mohamed Abdou, David E. Baldwin

Abdou, Mohamed

417

Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages  

SciTech Connect (OSTI)

HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4{sup +} T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo.

Jiang Jiyang [Department of Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232-2363 (United States); Aiken, Christopher [Department of Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232-2363 (United States)]. E-mail: chris.aiken@vanderbilt.edu

2006-03-15T23:59:59.000Z

418

Strong plasma screening in thermonuclear reactions: Electron drop model  

E-Print Network [OSTI]

We analyze enhancement of thermonuclear fusion reactions due to strong plasma screening in dense matter using a simple electron drop model. The model assumes fusion in a potential that is screened by an effective electron cloud around colliding nuclei (extended Salpeter ion-sphere model). We calculate the mean field screened Coulomb potentials for atomic nuclei with equal and nonequal charges, appropriate astrophysical S factors, and enhancement factors of reaction rates. As a byproduct, we study analytic behavior of the screening potential at small separations between the reactants. In this model, astrophysical S factors depend not only on nuclear physics but on plasma screening as well. The enhancement factors are in good agreement with calculations by other methods. This allows us to formulate the combined, pure analytic model of strong plasma screening in thermonuclear reactions. The results can be useful for simulating nuclear burning in white dwarfs and neutron stars.

Kravchuk, P A

2014-01-01T23:59:59.000Z

419

Strong plasma screening in thermonuclear reactions: Electron drop model  

E-Print Network [OSTI]

We analyze enhancement of thermonuclear fusion reactions due to strong plasma screening in dense matter using a simple electron drop model. The model assumes fusion in a potential that is screened by an effective electron cloud around colliding nuclei (extended Salpeter ion-sphere model). We calculate the mean field screened Coulomb potentials for atomic nuclei with equal and nonequal charges, appropriate astrophysical S factors, and enhancement factors of reaction rates. As a byproduct, we study analytic behavior of the screening potential at small separations between the reactants. In this model, astrophysical S factors depend not only on nuclear physics but on plasma screening as well. The enhancement factors are in good agreement with calculations by other methods. This allows us to formulate the combined, pure analytic model of strong plasma screening in thermonuclear reactions. The results can be useful for simulating nuclear burning in white dwarfs and neutron stars.

P. A. Kravchuk; D. G. Yakovlev

2014-01-11T23:59:59.000Z

420

Fusion Test Facilities John Sheffield  

E-Print Network [OSTI]

Fusion Test Facilities John Sheffield ISSE - University of Tennessee FPA meeting Livermore December Stambaugh, and their colleagues #12;Destructive Testing · It is common practice to test engineered components to destruction prior to deployment of a system e.g., - Automobile crash tests - Airplane wing

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Third Edition, Gene Fusion System  

E-Print Network [OSTI]

. Small-Scale Isolation of pGEX DNA .... 9 6. Large-Scale Isolation of pGEX DNA .... 9 Notes on Sequencing ....................................................... 2 pGEX Vectors ............................................. 2 Purification Modules. Screening pGEX Vectors with PCR ..... 10 Purification of GST Fusion Proteins.. 11 8. Preparation

Lai, Zhi-Chun

422

Component Framework for Coupled Integrated Fusion Plasma Simulation  

SciTech Connect (OSTI)

Fusion Successful simulation of the complex physics that affect magnetically confined fusion plasma remains an important target milestone towards the development of viable fusion energy. Major advances in the underlying physics formulations, mathematical modeling, and computational tools and techniques are needed to enable a complete fusion simulation on the emerging class of large scale capability parallel computers that are coming on-line in the next few years. Several pilot projects are currently being undertaken to explore different (partial) code integration and coupling problems, and possible solutions that may guide the larger integration endeavor. In this paper, we present the design and implementation details of one such project, a component based approach to couple existing codes to model the interaction between high power radio frequency (RF) electromagnetic waves, and magnetohydrodynamics (MHD) aspects of the burning plasma. The framework and component design utilize a light coupling approach based on high level view of constituent codes that facilitates rapid incorporation of new components into the integrated simulation framework. The work illustrates the viability of the light coupling approach to better understand physics and stand-alone computer code dependencies and interactions, as a precursor to a more tightly coupled integrated simulation environment.

Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Batchelor, Donald B [ORNL

2007-01-01T23:59:59.000Z

423

Uniformity of fuel target implosion in Heavy Ion Fusion  

E-Print Network [OSTI]

In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling he...

Kawata, S; Suzuki, T; Karino, T; Barada, D; Ogoyski, A I; Ma, Y Y

2015-01-01T23:59:59.000Z

424

Going To Work: Work Relationships  

E-Print Network [OSTI]

One of a worker's top goals should be to develop good relationships with coworkers and supervisers. This publication discusses five general rules for building good relationships at work and offers advice on handling criticism....

Hoffman, Rosemarie

2000-07-20T23:59:59.000Z

425

Dynamical approach to heavy-ion induced fusion using actinide target  

SciTech Connect (OSTI)

To treat heavy-ion reactions using actinide target nucleus, we propose a model which takes into account the coupling to the collective states of interacting nuclei in the penetration of the Coulomb barrier and the dynamical evolution of nuclear shape from the contact configuration. A fluctuation-dissipation model (Langevin equation) was applied in the dynamical calculation, where effect of nuclear orientation at the initial impact on the prolately deformed target nucleus was considered. Using this model, we analyzed the experimental data for the mass distribution of fission fragments (MDFF) in the reaction of {sup 36}S+{sup 238}U at several incident energies. Fusion-fission, quasifission and deep-quasi-fission are separated as different trajectories on the potential energy surface. We estimated the fusion cross section of the reaction.

Aritomo, Y.; Hagino, K.; Chiba, S.; Nishio, K. [Flerov Laboratory of Nuclear Reactions, JINR, Dubna, 141980 (Russian Federation); Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan)

2012-10-20T23:59:59.000Z

426

Inertial confinement fusion research and development studies. Final report, October 1979-August 1980  

SciTech Connect (OSTI)

These Inertial Confinement Fusion (ICF) research and development studies were selected for structural, thermal, and vacuum pumping analyses in support of the High Yield Lithium Injection Fusion Energy (HYLIFE) concept development. An additional task provided an outlined program plan for an ICF Engineering Test Facility, using the HYLIFE concept as a model, although the plan is generally applicable to other ICF concepts. The HYLIFE is one promising type of ICF concept which features a falling array of liquid lithium jets. These jets surround the fusion reaction to protect the first structural wall (FSW) of the vacuum chamber by absorbing the fusion energy, and to act as the tritium breeder. The fusion energy source is a deuterium-tritium pellet injected into the chamber every second and driven by laser or heavy ion beams. The studies performed by Grumman have considered the capabilities of specific HYLIFE features to meet life requirements and the requirement to recover to preshot conditions prior to each subsequent shot. The components under investigation were the FSW which restrains the outward motion of the liquid lithium, the nozzle plate which forms the falling jet array, the graphite shield which is in direct top view of the fusion pellet, and the vacuum pumping system. The FSW studies included structural analysis, and definition of an experimental program to validate computer codes describing lithium motion and the resulting impact on the wall.

Bullis, R.; Finkelman, M.; Leng, J.; Luzzi, T.; Ojalvo, I.; Powell, E.; Sedgley, D.

1980-08-01T23:59:59.000Z

427

Work Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14 Sales of4) MonthlyWork &Work

428

Working Copy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellowsWood and4213WorkWork

429

Technical Letter Report - Preliminary Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) has a multi-year program at the Pacific Northwest National Laboratory (PNNL) to provide engineering studies and assessments of issues related to the use of nondestructive evaluation (NDE) methods for the reliable inspection of nuclear power plant components. As part of this program, there is a subtask 2D that was set up to address an assessment of issues related to the NDE of high density polyethylene (HDPE) butt fusion joints. This work is being driven by the nuclear industry wanting to employ HDPE materials in nuclear power plant systems. This being a new material for use in nuclear applications, there are a number of issues related to its use and potential problems that may evolve. The industry is pursuing ASME Code Case N-755 entitled “Use of Polyethylene (PE) Plastic Pipe for Section III, Division 1, Construction and Section XI Repair/Replacement Activities” that contains the requirements for nuclear power plant applications of HDPE. This Code Case requires that inspections be performed after the fusion joint is made by visually examining the bead that is formed and conducting a pressure test of the joint. These tests are only effective in general if gross through-wall flaws exist in the fusion joint. The NRC wants to know whether a volumetric inspection can be conducted on the fusion joint that will reliably detect lack-of-fusion conditions that may be produced during joint fusing. The NRC has requested that the work that PNNL is conducting be provided to assist them in resolving this inspection issue of whether effective volumetric NDE can be conducted to detect lack of fusion (LOF) in the butt HDPE joints. PNNL had 24 HDPE pipe specimens manufactured of 3408 material to contain LOF conditions that could be used to assess the effectiveness of NDE in detecting the LOF. Basic ultrasonic material properties were measured and used to guide the use of phased arrays and time-of-flight diffraction (TOFD) work that was conducted. Millimeter (mm) waves were also used to inspect these assemblies. Fluor and NDE Innovations, Inc. conducted TOFD inspections using their commercially available equipment on all 24 specimens. These NDE inspection results were reviewed and several of the specimens were selected for destructive evaluation using a microtome to slice small blocks of blank and fusion joint material. This interim report provides a status/summary of the work that has been conducted to date. In the areas selected for destructive testing where there were strong acoustic responses, LOF was verified. In areas where there were no NDE responses, no LOF was found. It needs to be noted that only a small amount of material has been destructively characterized at this point and further work is planned to determine if these trends hold up. Some of the material from three of the assemblies was sent off for mechanical testing but the results were not available to be included in this status report. The initial work shows that at least some of the LOF is providing NDE responses that have been verified through destructive testing. Thus, there is promise that a volumetric examination can be conducted on HDPE butt fusion joints. The future work will lead to quantifying what various NDE methods can detect, what they miss, and what they incorrectly characterize as defective.

Crawford, Susan L.; Cumblidge, Stephen E.; Doctor, Steven R.; Hall, Thomas E.; Anderson, Michael T.

2008-05-29T23:59:59.000Z

430

aml1-eto fusion protein: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

431

antibody-photosensitizer fusion protein: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

432

antibody-gdnf fusion protein: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

433

akar2-akap12 fusion protein: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

434

E-Print Network 3.0 - advanced fusion material Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics and Fusion 5 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

435

E-Print Network 3.0 - advanced deuterium fusion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics and Fusion 2 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

436

A Virtualized Computing Platform For Fusion Control Systems  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. 2,500 servers, 400 network devices and 700 terabytes of networked attached storage provide the foundation for NIF's Integrated Computer Control System (ICCS) and Experimental Data Archive. This talk discusses the rationale & benefits for server virtualization in the context of an operational experimental facility, the requirements discovery process used by the NIF teams to establish evaluation criteria for virtualization alternatives, the processes and procedures defined to enable virtualization of servers in a timeframe that did not delay the execution of experimental campaigns and the lessons the NIF teams learned along the way. The virtualization architecture ultimately selected for ICCS is based on the Open Source Xen computing platform and 802.1Q open networking standards. The specific server and network configurations needed to ensure performance and high availability of the control system infrastructure will be discussed.

Frazier, T; Adams, P; Fisher, J; Talbot, A

2011-03-18T23:59:59.000Z

437

Fusion proton diagnostic for the C-2 field reversed configuration  

SciTech Connect (OSTI)

Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50?cm{sup 2}), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (?100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Tkachev, A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

2014-11-15T23:59:59.000Z

438

Magneto-Inertial Fusion (Magnetized Target Fusion)( g g )  

E-Print Network [OSTI]

National Security, LLC for the DOE/NNSA Slide 1 LA-UR-11-01898 #12;Some Observations An economic for the DOE/NNSA 2 #12;Magneto-inertial fusion: Part of a plan B · May allow more efficient drivers, lower Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 3 #12;A Wide Range of Driver

439

On Thermonuclear Reaction Rates  

E-Print Network [OSTI]

Nuclear reactions govern major aspects of the chemical evolution od galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the case of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are also discussed.

H. J. Haubold; A. M. Mathai

1996-12-02T23:59:59.000Z

440

Semiclassical treatment of fusion processes in collisions of weakly bound nuclei  

E-Print Network [OSTI]

We describe a semiclassical treatment of nuclear fusion reactions involving weakly bound nuclei. In this treatment, the complete fusion probabilities are approximated by products of two factors: a tunneling probability and the probability that the system is in its ground state at the strong absorption radius. We investigate the validity of the method in a schematic two-channel application, where the channels in the continuum are represented by a single resonant state. Comparisons with full coupled-channels calculations are performed. The agreement between semiclassical and quantal calculations isquite good, suggesting that the procedure may be extended to more sophisticated discretizations of the continuum.

L. F. Canto; R. Donangelo; H. D. Marta

2005-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lochon Catalyzed D-D Fusion in Deuterated Palladium in the Solid State  

E-Print Network [OSTI]

Lochons (local charged bosons or local electron pairs) can form on D+ to give D- (bosonic ions) in Palladium Deuteride in the solid state. Such entities will occur at special sites or in linear channel owing to strong electron-phonon interaction or due to potential inversion on metallic electrodes. These lochons can catalyze D- - D+ fusion as a consequence of internal conversion leading to the formation of He-4 plus production of energy (Q=23.8 MeV) which is carried by the alpha particle and the ejected electron-pair. The reaction rate for this fusion process is calculated.

K. P. Sinha; A. Meulenberg

2007-05-04T23:59:59.000Z

442

Fusion reactor breeder material safety compatibility studies  

SciTech Connect (OSTI)

Tritium breeder material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Breeder material safety compatibility studies are being conducted to identify and characterize breeder-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate the following. 1. Ternary oxides (LiAlO/sub 2/, Li/sub 2/ZrO/sub 3/, Li/sub 2/SiO/sub 3/, Li/sub 4/SiO/sub 4/, and LiTiO/sub 3/) at postulated blanket operating temperatures are chemically compatible with water coolant, while liquid lithium and Li/sub 7/Pb/sub 2/ reactions with water generate heat, aerosol, and hydrogen. 2. Lithium oxide and 17Li-83Pb alloy react mildly with water requiring special precautions to control hydrogen release. 3. Liquid lithium reacts substantially, while 17Li83Pb alloy reacts mildly with concrete to produce hydrogen. 4. Liquid lithium-air reactions may present some major safety concerns. Additional scoping tests are needed, but the ternary oxides, lithium oxide, and 17Li-83Pb have definite safety advantages over liquid lithium and Li/sub 7/Pb/sub 2/. The ternary oxides present minimal safetyrelated problems when used with water as coolant, air or concrete; but they do require neutron multipliers, which may have safety compatibility concerns with surrounding materials. The combined favorable neutronics and minor safety compatibility concerns of lithium oxide and 17Li-83Pb make them prime candidates as breeder materials. Current safety efforts are directed toward assessing the compatibility of lithium oxide and the lithium-lead alloy with coolants and other materials.

Jeppson, D.W.; Cohen, S.; Muhlestein, L.D.

1983-09-01T23:59:59.000Z

443

Kinetics of actinide complexation reactions  

SciTech Connect (OSTI)

Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

Nash, K.L.; Sullivan, J.C.

1997-09-01T23:59:59.000Z

444

Fermilab at Work | Work Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab LifeWork

445

Fusion of \\ade Lattice Models  

E-Print Network [OSTI]

Fusion hierarchies of \\ade face models are constructed. The fused critical $D$, $E$ and elliptic $D$ models yield new solutions of the Yang-Baxter equations with bond variables on the edges of faces in addition to the spin variables on the corners. It is shown directly that the row transfer matrices of the fused models satisfy special functional equations. Intertwiners between the fused \\ade models are constructed by fusing the cells that intertwine the elementary face weights. As an example, we calculate explicitly the fused $2\\times 2$ face weights of the 3-state Potts model associated with the $D_4$ diagram as well as the fused intertwiner cells for the $A_5$--$D_4$ intertwiner. Remarkably, this $2\\times 2$ fusion yields the face weights of both the Ising model and 3-state CSOS models.

Yu-kui Zhou; Paul A. Pearce

1994-05-04T23:59:59.000Z

446

Fusion rules of chiral algebras  

E-Print Network [OSTI]

Recently (hep-th/9307183) we showed that for the case of the WZW- and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the $W_{3}$-algebra and the $N=1$ and $N=2$ NS superconformal algebras.

M. Gaberdiel

1993-12-04T23:59:59.000Z

447

Cosmic Data Fusion  

E-Print Network [OSTI]

We compare and combine likelihood functions of the cosmological parameters Omega_m, h and sigma_8 from the CMB, type Ia supernovae and from probes of large scale structure. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat LambdaCDM cosmology with a scale-invariant adiabatic initial power spectrum. First we consider three data sets that directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a `biasing' relation: peculiar velocities, CMB and supernovae. We assume a baryonic fraction as inferred from Big-Bang Nucleosynthesis and find that all three data sets agree well, overlapping significantly at the 2-sigma level. This therefore justifies a joint analysis, in which we find a joint best fit point and 95% confidence limits of Omega_m=0.28 (0.17,0.39), h=0.74 (0.64,0.86), and sigma_8=1.17 (0.98,1.37). Secondly we extend our earlier work on combining CMB, supernovae, cluster number counts, IRAS galaxy redshift survey data to include BOOMERANG and MAXIMA-1 data and to allow a free Omega_b h^2. We find that, given our assumption of a scale invariant initial power spectrum (n=1), we obtain the robust result of Omega_b h^2= 0.031 +/- 0.03, which is dominated by the CMB constraint.

S. L. Bridle

2000-12-22T23:59:59.000Z

448

was a decisive one as in the studies of hyperon rare decays at FNAL (E715 and E761 experi ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic  

E-Print Network [OSTI]

­ ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic nuclei nuclear fusion reactions was successfully carried out in the muon channel of the SC. The muon beam is also intensity (1¯A) make this accelerator valuable even in the up­to­date nuclear studies. For example

Titov, Anatoly

449

A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion  

SciTech Connect (OSTI)

This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES ??Gridť (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid'??s resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

2012-12-20T23:59:59.000Z

450

Paramyxovirus fusion: Real-time measurement of parainfluenza virus 5 virus-cell fusion  

SciTech Connect (OSTI)

Although cell-cell fusion assays are useful surrogate methods for studying virus fusion, differences between cell-cell and virus-cell fusion exist. To examine paramyxovirus fusion in real time, we labeled viruses with fluorescent lipid probes and monitored virus-cell fusion by fluorimetry. Two parainfluenza virus 5 (PIV5) isolates (W3A and SER) and PIV5 containing mutations within the fusion protein (F) were studied. Fusion was specific and temperature-dependent. Compared to many low pH-dependent viruses, the kinetics of PIV5 fusion was slow, approaching completion within several minutes. As predicted from cell-cell fusion assays, virus containing an F protein with an extended cytoplasmic tail (rSV5 F551) had reduced fusion compared to wild-type virus (W3A). In contrast, virus-cell fusion for SER occurred at near wild-type levels, despite the fact that this isolate exhibits a severely reduced cell-cell fusion phenotype. These results support the notion that virus-cell and cell-cell fusion have significant differences.

Connolly, Sarah A. [Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500 (United States); Lamb, Robert A. [Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500 (United States) and Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3500 (United States)]. E-mail: ralamb@northwestern.edu

2006-11-25T23:59:59.000Z

451

Fusion reactor materials. Semiannual progress report for period ending September 30, 1993  

SciTech Connect (OSTI)

This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

Rowcliffe, A.F.; Burn, G.L.; Knee`, S.S.; Dowker, C.L. [comps.

1994-02-01T23:59:59.000Z

452

Muon Catalyzed Fusion in 3 K Solid Deuterium  

E-Print Network [OSTI]

Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of $\\mu d$ and the hyperfine transition rate have been measured: $\\tilde{\\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} \\mu/s$, and $\\tilde{\\lambda}_{(3/2)(1/2)} =34.2(8)_{stat.}(1)_{syst.} \\mu /s$. The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.

P. E. Knowles; A. Adamczak; J. M. Bailey; G. A. Beer; J. L. Beveridge; M. C. Fujiwara; T. M. Huber; R. Jacot-Guillarmod; P. Kammel; S. K. Kim; A. R. Kunselman; G. M. Marshall; C. J. Martoff; G. R. Mason; F. Mulhauser; A. Olin; C. Petitjean; T. A. Porcelli; J. Zmeskal

1997-02-20T23:59:59.000Z

453

A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas  

SciTech Connect (OSTI)

Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the {sup 12}C(n, ?){sup 9}Be reaction occurring between neutrons and {sup 12}C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

Cazzaniga, C., E-mail: carlo.cazzaniga@mib.infn.it; Nocente, M.; Gorini, G. [University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Rebai, M.; Giacomelli, L. [University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Tardocchi, M.; Croci, G.; Grosso, G. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Calvani, P.; Girolami, M.; Trucchi, D. M. [CNR-ISM, Research Area Roma 1, Via Salaria km 29.300, 00015-Monterotondo Scalo (Rm) (Italy); Griesmayer, E. [Atominstitut, Vienna University of Technology, Vienna (Austria); Pillon, M. [Associazione EURATOM-ENEA sulla Fusione ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati (Roma) (Italy)

2014-11-15T23:59:59.000Z

454

Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion with Validation from Mechanical Testing  

SciTech Connect (OSTI)

Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-in. IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer-diameter weld beads were removed for the microwave inspection. In two of the four pipes, both the outer and inner weld beads were removed and the pipe joints re-evaluated. The pipes were sectioned and the joints destructively evaluated with the side-bend test by cutting portions of the fusion joint into slices that were planed and bent. The last step in this limited study will be to correlate the fusion parameters, nondestructive, and destructive evaluation results to validate the effectiveness of what each NDE technology detects and what each does not detect. The results of the correlation will be used in identifying any future work that is needed.

Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Doctor, Steven R.; Moran, Traci L.; Watts, Michael W.

2010-12-01T23:59:59.000Z

455

M. Abdou April 2013 Fusion Nuclear Science and Technology  

E-Print Network [OSTI]

M. Abdou April 2013 Fusion Nuclear Science and Technology Challenges and Required R&D Mohamed Fusion Nuclear Science and Technology Challenges and Required R&D Presentation Outline Introduction to the Fusion Nuclear Environment and Fusion Nuclear Components FNST R&D Challenges Need for Fusion Nuclear

Abdou, Mohamed

456

Course: FUSION SCIENCE AND ENGINEERING Universit degli Studi di Padova  

E-Print Network [OSTI]

the subject of controlled thermonuclear fusion in magnetically confined plasmas. Both fusion science of Controlled Thermonuclear Fusion, b) Engineering of a Magnetically Confined Fusion Reactor, c) ExperimentalCourse: FUSION SCIENCE AND ENGINEERING UniversitĂ  degli Studi di Padova in agreement

Cesare, Bernardo

457

Fusion Nuclear Science Pathways Assessment  

SciTech Connect (OSTI)

With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

C.E. Kessel, et. al.

2012-02-23T23:59:59.000Z

458

Fusion: an energy source for synthetic fuels  

SciTech Connect (OSTI)

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

Fillo, J A; Powell, J; Steinberg, M

1980-01-01T23:59:59.000Z

459

Perspectives on a Constrained Fusion Ten-Year Fusion Program (Comments on FESAC charge #2)  

E-Print Network [OSTI]

roadmap to a demonstration power plant. It is imperative that the US program, stellarators, next-step planning activities, spherical tokamaks, and fusion simulation), and harnessing fusion power (surviving neutron fluxes, producing tritium and heat

460

Improved Controls for Fusion RF Systems. Final technical report  

SciTech Connect (OSTI)

We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration.

Casey, Jeffrey A. [Rockfield Research Inc., Las Vegas, NV (United States)

2011-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternate Alpha Induced Reactions for NIF Radiochemistry  

SciTech Connect (OSTI)

Radiochemical analysis of NIF capsule residues has been identified as a potential diagnostic of NIF capsule performance. In particular, alpha-induced nuclear reactions that occur on tracer elements added to the NIF capsule have been shown through simulation to be a very sensitive diagnostic for mix. The short range of the alpha particles makes them representative of the hot spot where they are created through the fusion of deuterium and tritium. Reactions on elements doped into the innermost part of the capsule ablator would therefore be sensitive to material that had mixed into the hot spot. Radiochemical determinations of activated detector elements may perhaps be the only true measure of mix that occurs in a NIF capsule, particularly in cases when the capsule fails.

Shaughnessy, D A; Moody, K J; Bernstein, L A

2010-02-26T23:59:59.000Z

462

Electron assisted $dd$ reactions in metals  

E-Print Network [OSTI]

The electron assisted low energy $dd$ reactions in deuterized metals are investigated. It is shown that if a metal is irradiated with slow, free deuterons then the $e+d+d\\rightarrow e^{\\prime }+p+t$ and $e+d+d\\rightarrow e^{\\prime }+n+$ $^{3}He$\\ electron assisted $dd$ processes will have measurable probabilities even in the case of slow deuterons. The cross sections and the yields in an irradiated sample are determined. The results are associated with the so called anomalous screening effect. It is concluded that the electron $dd$ processes have to be taken into account when evaluating the experimental data of low energy fusion reactions in metals.

Péter Kálmán; Tamás Keszthelyi

2014-02-19T23:59:59.000Z

463

Journal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review Panel  

E-Print Network [OSTI]

participation in the of the Fusion Energy Sciences Program of the Office of International Thermonuclear ReactorJournal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review. S. Department of Energy Fusion Energy Advisory Committee (FEAC) review of its Inertial Fusion Energy

Abdou, Mohamed

464

On the classification of fusion rings  

E-Print Network [OSTI]

The fusion rules and modular matrix of a rational conformal field theory obey a list of properties. We use these properties to classify rational conformal field theories with not more than six primary fields and small values of the fusion coefficients. We give a catalogue of fusion rings which can arise for these field theories. It is shown that all such fusion rules can be realized by current algebras. Our results support the conjecture that all rational conformal field theories are related to current algebras.

D. Gepner; A. Kapustin

1994-10-13T23:59:59.000Z

465

Fusion Rings Related to Affine Weyl Groups  

E-Print Network [OSTI]

The construction of the fusion ring of a quasi-rational CFT based on $\\hat{sl}(3)_k$ at generic level $k\

P. Furlan; V. B. Petkova

2000-07-27T23:59:59.000Z

466

Cavitation-Induced Fusion: Proof of Concept  

E-Print Network [OSTI]

Cavitation-induced fusion (also known as bubble fusion or sonofusion) has been a topic of much debate and controversy and is generally (albeit incorrectly) perceived as unworkable. In this paper we present the theoretical foundations of cavitation-induced fusion and summarize the experimental results of the research conducted in the past 20 years. Based on the systematic study of all available data we conclude that the cavitation-induced fusion is feasible, doable, and can be used for commercial power generation. We present the results of our own research and disclose a commercial reactor prototype.

Max I. Fomitchev-Zamilov

2012-09-09T23:59:59.000Z

467

PPPL Races Ahead with Fusion Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Princeton Plasma Physics Laboratory. A Collaborative National Center for Fusion & Plasma Research. All rights reserved. NONDISCRIMINATION STATEMENT In compliance with Title IX of...

468

Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

. Benefits Total world energy consumption has increased by more than 50% during the past 25 years, and given,182 31,317 Total, Fusion Energy Sciences 280,683a 318,950 427,850 Public Law Authorizations: Public LawScience/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile

469

The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy  

E-Print Network [OSTI]

-consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

470

Strengthening and AcceleratingStrengthening and Accelerating the Development of Fusion Powerthe Development of Fusion Power  

E-Print Network [OSTI]

Development of Fusion Power Chris Llewellyn Smith Director, UKAEA Culham Chairman Consultative Committee) people of the importance of developing fusion as (potentially) an environmentally responsible source (used to fuel a fusion power station) 200,000 KW-hrs = (total US electricity production for 15 years

471

Compatibility of Physics and Engineering in Magnetic Fusion White Paper on Magnetic Fusion Priorities  

E-Print Network [OSTI]

Compatibility of Physics and Engineering in Magnetic Fusion White Paper on Magnetic Fusion.edu (Dated: July 14, 2012) The compatibility of the requirements of physics and engineering is the fundamental issue in the achievement of useful magnetic fusion energy. Issues that must be addressed include

472

Fusion Power Associates Annual Meeting and Symposium Fusion Energy: Preparing for the NIF and ITER Era  

E-Print Network [OSTI]

Fusion Power Associates Annual Meeting and Symposium Fusion Energy: Preparing for the NIF and ITER of Directors 8:20 Presentation of Awards ­ S. Dean, President, FPA 8:30 Fusion at the Department of Energy Technology Program­ Stan Milora, ORNL 1:40 Issues and Opportunities from ITER Review ­ R. Hawryluk, PPPL 2

473

A Strategic Program Plan for Fusion Energy Sciences Fusion Energy Sciences  

E-Print Network [OSTI]

, while creating manageable waste and little risk to public safety and health. Making fusion energy a part light atoms such as those of hydrogen, holds great promise for clean and abundant energy produc- tionA Strategic Program Plan for Fusion Energy Sciences 1 Fusion Energy Sciences #12;2 Bringing

474

Combustion kinetics and reaction pathways  

SciTech Connect (OSTI)

This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

1993-12-01T23:59:59.000Z

475

To be presented at the Eighth Topical Meeting on Technology of Fusion Energy, Salt Lake City, UT,October 9-13, 1988.  

E-Print Network [OSTI]

To be presented at the Eighth Topical Meeting on Technology of Fusion Energy, Salt Lake City, UT fc rt,^ O U. S. Government purposes. *Work supported by the Department of Energy, Office of Fusion few microns (2 2 microns) to avoid sticking problems on the cold surfaces of the heat exchanger

Harilal, S. S.

476

fusion | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration goSecuritycdns ||fors | Nationalfrmac |fusion |

477

The ABC Effect in Double-Pionic Nuclear Fusion and a pn Resonance as its Possible Origin  

E-Print Network [OSTI]

The ABC effect -- a long-standing puzzle in double-pionic fusion -- has been reexamined by the first exclusive and kinematically complete measurements of solid statistics for the fusion reactions $pn \\to d\\pi^0\\pi^0$, $pd \\to ^3$He$\\pi\\pi$ and $dd \\to ^4$He$\\pi\\pi$ using the WASA detector, first at CELSIUS and recently at COSY -- the latter with a statistics increased by another two orders of magnitude. In all cases we observe a huge low-mass enhancement in the $\\pi\\pi$-invariant mass accompanied by a pronounced $\\Delta\\Delta$ excitation. For the most basic fusion reaction, the $pn \\to d\\pi^0\\pi^0$ reaction, we observe in addition a very pronounced resonance-like energy dependence in the total cross section with a maximum 90 MeV below the $\\Delta\\Delta$ mass and a width of only 50 MeV, which is five times smaller than expected from a conventional $t$-channel $\\Delta\\Delta$ excitation. This reveals the ABC effect to be the consequence of a s-channel resonance with the formfactor of this dibaryonic state being reflected in the low-mass enhancement of the $\\pi\\pi$-invariant mass. From the fusion reactions to $^3$He and $^4$He we learn that this resonance is robust enough to survive even in nuclei.

M. Bashkanov; for the CELSIUS/WASA; WASA-at-COSY Collaborations

2009-06-12T23:59:59.000Z

478

An overview of the development of the first wall and other principal components of a laser fusion power plant  

E-Print Network [OSTI]

power plant, the first wall must be resistant to these emissions and suffer virtually no erosion on each power plant John D. Sethian a,*, A. Rene Raffray b , Jeffery Latkowski c , James P. Blanchard d , Lance the JNM Special Issue on the development of a first wall for the reaction chamber in a laser fusion power

Raffray, A. René

479

Antibody-independent Targeted Quantification of TMPRSS2-ERG Fusion Protein Products in Prostate Cancer  

SciTech Connect (OSTI)

Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. The studies on TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies or an antibody-independent method that is sufficiently sensitive for detecting the truncated ERG protein products resulting from TMPRSS2-ERG gene fusions and alternative splicing. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancer cell lines and tumors. The highly sensitive PRISM-SRM assays led to confident detection of 6 unique ERG peptides in either the TMPRSS2-ERG positive cell lines or tissues but not in the negative controls, indicating that ERG protein expression is highly correlated with TMPRSS2-ERG gene rearrangements. Significantly, our results demonstrated for the first time that at least two groups of ERG protein isoforms were simultaneously expressed at variable levels in TMPRSS2-ERG positive samples as evidenced by concomitant detection of two mutually exclusive peptides. Three peptides shared across almost all fusion protein products were determined to be the most abundant peptides, and hence can be used as “signature” peptides for detecting ERG overexpression resulting from TMPRSS2-ERG gene fusion. These PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products, thus improving our understanding of the role of TMPRSS2-ERG gene fusion in the biology of prostate cancer.

He, Jintang; Sun, Xuefei; Shi, Tujin; Schepmoes, Athena A.; Fillmore, Thomas L.; Petyuk, Vladislav A.; Xie, Fang; Zhao, Rui; Gritsenko, Marina A.; Yang, Feng; Kitabayashi, Naoki; Chae, Sung Suk; Rubin, Mark; Siddiqui, Javed; Wei, John; Chinnaiyan, Arul M.; Qian, Weijun; Smith, Richard D.; Kagan, Jacob; Srivastava, Sudhir; Rodland, Karin D.; Liu, Tao; Camp, David G.

2014-10-01T23:59:59.000Z

480

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network [OSTI]

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

Note: This page contains sample records for the topic "fusion reactions work" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection  

SciTech Connect (OSTI)

In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

Moiseenko, V. E.; Agren, O. [Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', Akademichna St. 1, 61108 Kharkiv (Ukraine); Uppsala University, Angstroem Laboratory, Division of Electricity, Box 534, SE-7512 Uppsala (Sweden)

2012-06-19T23:59:59.000Z

482

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

aspects of a hybrid fusion-fission energy system called theof a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevin

Kramer, Kevin James

2010-01-01T23:59:59.000Z

483

ORNL's Peng wins Fusion Power Associates Leadership Award | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tax-exempt research and educational foundation that provides information on the status of fusion development and other applications of plasma science and fusion research....

484

Exploring Plasma Science Advances from Fusion Findings to Astrophysica...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

confinement fusion experiments at the National Ignition Facility (NIF) at the DOE's Lawrence Livermore National Laboratory. Speakers noted that producing fusion by heating a...

485

accelerator fusion research: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the Fusion Ignition Research Experiment (FIRE), a tokamak designed for burning plasma research. Engineering 17 Research Needs Workshop for Magnetic Fusion Energy Plasma Physics...

486

association fusion research: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the Fusion Ignition Research Experiment (FIRE), a tokamak designed for burning plasma research. Engineering 18 Research Needs Workshop for Magnetic Fusion Energy Plasma Physics...

487

Quantifying the {sup 12}C+{sup 12}C sub-Coulomb fusion with the time-dependent wave-packet method  

SciTech Connect (OSTI)

This contribution provides a preliminary study of the {sup 12}C+{sup 12}C sub-Coulomb fusion reaction using the time-dependent wave-packet method within a nuclear molecular picture. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.

Diaz-Torres, Alexis; Wiescher, Michael [ECT, Strada delle Tabarelle 286, I-38123 Villazzano, Trento (Italy); JINA and Department of Physics, University of Notre Dame, IN 46656 (United States)

2012-10-20T23:59:59.000Z

488

Socio-economic Aspects of Fusion  

SciTech Connect (OSTI)

Fusion power systems, if developed and deployed, would have many attractive features including power production not dependant on weather or solar conditions, flexible siting, and minimal carbon dioxide production. In this paper, we quantify the benefit of these features. In addition, fusion deployment scenarios are developed for the last half of this century and these scenarios are analyzed for resource requirements and waste production.

J.A. Schmidt

2004-10-21T23:59:59.000Z

489

Fusion Ignition Research Experiment Engineering Status Report  

E-Print Network [OSTI]

of the world. The FIRE web site has been chosen as a selection for the Scout Report for Science and EngineeringFusion Ignition Research Experiment -FIRE- Engineering Status Report For Fiscal Year 2000 Issued on the Fusion Ignition Research Experiment (FIRE), a tokamak designed for burning plasma research. Engineering

490

The Case for Magnetized Target Fusion (MTF)  

E-Print Network [OSTI]

of conventional unmagnetized targets by orders of magnitude; (b) makes fusion "easier" for any driver; (c) makes) drivers feasible; (d) allows experimentation at much higher energy (e.g., 20 MJ implosion kinetic energy can reduce the required radial convergence to drivers can lead to a new fusion

491

Plasmas are Hot and Fusion is Cool  

SciTech Connect (OSTI)

Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

None

2011-01-01T23:59:59.000Z

492

Fusion Power Associates Meeting 3 December 2009  

E-Print Network [OSTI]

of laser-accelerated planar targets Visible, XUV & x-ray Detectors & Spectrometers Distance Distance SIDEFusion Power Associates Meeting 3 December 2009 Overview of the NRL laser fusion program: Progress in the Science and Technology of Direct Drive Laser fusion with the KrF laser Presented by: Steve Obenschain

493

EPRI Fusion Energy Assessment July 19, 2011  

E-Print Network [OSTI]

EPRI Fusion Energy Assessment July 19, 2011 Palo Alto, CA Roadmapping an MFE Strategy R.J. Fonck research program RJF EPRI 2011 #12;ACCELERATE MFE VIA FUSION NUCLEAR S&T PROGRAM IN ITER TIMEFRAME #12;THE development · Similar efforts, and results, pursued by international partners RJF EPRI 2011 #12;THE SEQUENCE

494

Unlocking Fusion Power: Materials are the Key  

E-Print Network [OSTI]

ComponentsHigh Heat Flux Components DEMODEMO #12;5 Radiation damage in Materials Bombardment of 2-10 MW / m2 fusion "ash") gets embedded ­ forms nano-sized bubbles n #12;6 Radiation damage in Materials Bombardment" for steels "useful" for steels SAFE for a fusion reactor Materials #12;12 Surface gamma dose rate (Sv

495

Sean Finnegan & Ann Satsangi Fusion Energy Sciences  

E-Print Network [OSTI]

Energy (IFE) science. #12;HEDLP definition "High-energy-density laboratory plasma (HEDLP) physicsSean Finnegan & Ann Satsangi Fusion Energy Sciences Program Management Team for HEDLP Fusion Power Associates15 December 2011 Comments on the DOE-SC Program in High Energy Density Laboratory Plasma Science

496

ERDA-76/110/l FUSION POWER  

E-Print Network [OSTI]

ERDA-76/110/l UC-20 FUSION POWER BY MAGNETIC CONFINEMENT PROGRAMPLAN VOLUME I SUMMARY JULY 1976 electric plants. These include direct production of hydrogen gas and/or synthetic fuels; direct energy production for chemical processing; fissile fuel production; fission product waste disposal; and fusion

497

05/22/2006 12:33 PMnews @ nature.com -Chaos could keep fusion under control -A leaky magnetic bottle may prove key to making a reactor. Page 1 of 3http://www.nature.com/news/2006/060522/full/060522-2.html  

E-Print Network [OSTI]

) achieve its goal of generating net energy from fusion. Fusion occurs when two light elements, usually hydrogen, collide to form a new element, usually helium, releasing an enormous amount of energy and produces less long-lived radioactive waste. Scientists have worked for decades to build a fusion reactor

498

Microfluidic chemical reaction circuits  

SciTech Connect (OSTI)

New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

2012-06-26T23:59:59.000Z

499

fusion  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A en Responding to Emergencies7/%2A