Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LIFE Power Plant Fusion Power Associates  

E-Print Network (OSTI)

LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled near-term, NIF based, NIC-derivative fusion performance § 3 allows small, thin Fresnel lenses ­ enables

2

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network (OSTI)

and coolant. Lithium eutectic compounds such as lithium-lead (Li17Pb83), aqueous solutions of lithium salts groups have an aver- sion to large power plants in their back yards. As a whole, improved power plants for a burning fusion plasma (Meade, 1996). The next large ex- perimental device is ITER (Baker, 1996) which

Najmabadi, Farrokh

3

Methodology for Scaling Fusion Power Plant Availability  

Science Conference Proceedings (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

4

A Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel A. Cohen This invention discloses improvements in magnetic fusion reactor design and operational modes that reduce...

5

Projected thermodynamic efficiencies of fusion power plants  

DOE Green Energy (OSTI)

Estimated thermal efficiencies of proposed fusion power plant concepts are compared to the efficiencies of nonfusion power plants. Present trends in electrical power generation are also discussed. The fusion reactor system designs will have about the same thermal efficiencies as present day power plants using steam if these designs require the collection of thermal energy at the blanket and the transfer of that energy to a heat exchanger or boiler using the current technology. Two general methods should be pursued for increasing the thermal efficiencies of fusion power plants and thereby reducing the amount of waste heat. Methods should be developed for increasing the temperatures of the reactor coolants since the maximum attainable thermal efficiency of systems using coolants can be increased only by increasing the coolant temperatures. Second, advanced power recovery systems such as potassium topping turbines, MHD, and direct conversion should be developed since such systems avoid the limits on steam systems due to excessive operating pressures at high temperatures. Direct conversion is particularly attractive because it avoids the theoretical Carnot limit on thermal efficiency when heat is converted to electrical energy.

McKinnon, M.A.

1976-09-01T23:59:59.000Z

6

Safeguard Requirements for Fusion Power Plants  

Science Conference Proceedings (OSTI)

Nuclear proliferation risks from magnetic fusion energy associated with access to fissile materials can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production and diversion of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state openly produces fissile material in violation of international agreements. The degree of risk in each of these categories is assessed, taking into account both state and non-state actors, and it is found that safeguards are required for fusion energy to be highly attractive from a non-proliferation standpoint. Specific safeguard requirements and R&D needs are outlined for each category of risk, and the technical capability of the ITER experiment, under construction, to contribute to this R&D is noted. A preliminary analysis indicates a potential legal pathway for fusion power systems to be brought under the Treaty for the Non-Proliferation of Nuclear Weapons. "Vertical" proliferation risks associated with tritium and with the knowledge that can be gained from inertial fusion energy R&D are outlined.

Robert J. Goldston and Alexander Glaser

2012-08-10T23:59:59.000Z

7

Factors affecting potential market penetration of laser fusion power plants  

SciTech Connect

A mini-model has been constructed to estimate the optimal size of laser fusion power plants and to estimate the allowable cost of the first such plant in relation to the next best alternative. In estimating the costs of laser fusion, the mini-model incorporates such factors as market penetration, learning, economies of scale, system size, transmission costs, reserve requirements, development and licensing costs and site costs. The results of the mini-model simulations indicate that the optimal laser fusion plant size is approximately 3 GWe; risk considerations unincorporated in the mini-model suggest an optimal size closer to 2.5 GWe.

Deonigi, D.E.; Fraley, D.W.

1979-08-01T23:59:59.000Z

8

Pilot-Plant - a shortened path to fusion power  

SciTech Connect

Previous fusion reactor studies have focused on the characteristics of fusion reactors in a mature, commercial market, on full-scale "demonstration reactors" as commercial prototypes, and on other engineering development facilities. The projected large size and high capital cost of the development facilities present significant practical impediments to the development of fusion as a commercial power source. In other technologies, "pilot plants" have been constructed in advance of fullscale facilities. Such plants have had the characteristics of small size, low capital cost, and a limited set of objectives, while still having the integrated performance deemed necessary to gain experience with the operating characteristics of the new technology. A range of possible tokamak fusion pilot plants is considered, having as the primary objective providing requisite fusion power experience to an electric utility prior to construction of a full-scale demonstration reactor. Two approaches are explored, having the characteristics of either net electricity production or only the production of high-grade heat. The effects of choices such as mode of plasma heating and normal versus superconducting coils are also examined. Since tokamak scaling laws do not seem to permit simply "miniaturizing" the DEMO, fusion pilot plant designs incorporate only certain essential features of a power plant, while leaving the development of other features to complementary, specialized facilities.

Dean, S.O. [Fusion Power Associates; Peng, Yueng Kay Martin [ORNL

1993-01-01T23:59:59.000Z

9

Alloy Design for a Fusion Power Plant  

E-Print Network (OSTI)

described herein has been published in the Journal of Nuclear Materials, or has been submitted for publication in the proceed- ings of the 12th International Conference on Fusion Reactor Materials and Energy Materials. Richard Kemp August 8, 2006... to calculate optimised compositions for potential fusion alloys. Recommendations on the most fruitful ways of designing future experiments have also been made. In addition, a classical nucleation theory approach was taken to modelling the incubation...

Kemp, Richard

10

Personnel Safety for Future Magnetic Fusion Power Plants  

Science Conference Proceedings (OSTI)

The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical exposure value is ~1000 times the Earths magnetic field, but the Earths field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.

Lee Cadwallader

2009-07-01T23:59:59.000Z

11

J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Alternative Fusion Reactors as Future Commercial Power Plants  

E-Print Network (OSTI)

Alternative reactor based on a field-reversed configuration (FRC) has advantages of the cylindrical geometry, the open field line geometry (direct energy conversion (DEC) of the charged-particle flow), and high ? (plasma pressure/magnetic-field pressure). This paper aims to evaluate the attractiveness of a low radioactive FRC fusion core. Analysis of a conceptual deuterium- helium-3 (D- 3 He) fusion power reactor is presented and reference point is defined. Principal parameters of the D- 3 He plasma reference case (RC) and comparison with conceptual D- 3 He tokamak and FRC power plants are shown.

Sergei V. Ryzhkov

2008-01-01T23:59:59.000Z

12

Environmental impacts of nonfusion power systems. [Data on environmental effects of all power sources that may be competitive with fusion reactor power plants  

DOE Green Energy (OSTI)

Data were collected on the environmental effects of power sources that may be competitive with future fusion reactor power plants. Data are included on nuclear power plants using HTGR, LMBR, GCFR, LMFBR, and molten salt reactors; fossil-fuel electric power plants; geothermal power plants; solar energy power plants, including satellite-based solar systems; wind energy power plants; ocean thermal gradient power plants; tidal energy power plants; and power plants using hydrogen and other synthetic fuels as energy sources.

Brouns, R.J.

1976-09-01T23:59:59.000Z

13

usion Technology for ITER, the ITER Project. Further Development Towards a DEMO Fusion Power Plant (4/4)  

E-Print Network (OSTI)

usion Technology for ITER, the ITER Project. Further Development Towards a DEMO Fusion Power Plant (4/4)

CERN. Geneva

2011-01-01T23:59:59.000Z

14

Fusion Engineering and Design 38 (1997) 2757 Physics basis for a reversed shear tokamak power plant  

E-Print Network (OSTI)

fusion power plant. Analysis of plasma equilibrium and ideal MHD stability, bootstrap current and current the recirculating power fraction. The final plasma configuration for the ARIES-RS power plant obtains i of 4 frequency fast wave current drive to obtain maximum current profile flexibility, requiring 580 MW of power

California at San Diego, University of

15

Challenges of Fusion Power Plant Licensing: Differences and Commonalities with Existing Systems  

SciTech Connect

At present, there are no regulatory guidelines to follow for US fusion power plant construction and operation. Thus far, the Department of Energy (DOE) has been regulating existing fusion experiments, following the 1996-1999 DOE Fusion Standards and using the spirit of the ASME (American Society of Mechanical Engineers) code. Considering this reality, a few options emerged for licensing ARIES-type power plants and the like. Developing new fusion-specific regulations stands out as the most logical option, but requires well-coordinated effort between DOE, regulatory agencies, and the fusion community with considerable funding and long lead-time. Nevertheless, a few recent developments seem promising: (1) The US Nuclear Regulatory Commission (NRC) plans to assert regulatory jurisdiction over commercial fusion devices, and (2) the ongoing effort within ASME will develop rules for the construction of fusion-energy-related components. The most recent NRC, ASME and fusion licensing developments are reviewed in this paper. In addition, an interesting comparison with ITER was made to foresee how US fusion power plants could leverage from ITER.

L. El-Guebaly; L. Cadwallader; W. Sowder

2011-08-01T23:59:59.000Z

16

OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons  

Science Conference Proceedings (OSTI)

This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

1992-03-01T23:59:59.000Z

17

Divertor Development for a Future Fusion Power Plant.  

E-Print Network (OSTI)

??The thesis begins by describing the fusion process and operation of a fusion reactor, the approach in the conceptual development of a helium-cooled divertor, and (more)

Norajitra, Prachai

2011-01-01T23:59:59.000Z

18

Fusion Power Deployment  

DOE Green Energy (OSTI)

Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

J.A. Schmidt; J.M. Ogden

2002-02-06T23:59:59.000Z

19

Thick Liquid-Walled Spheromak Magnetic Fusion Power Plant  

DOE Green Energy (OSTI)

We assume a spheromak configuration can be made and sustained by a steady gun current, which injects particles, current and magnetic field, i.e., helicity injection. The equilibrium is calculated with an MHD equilibrium code, where an average beta of 10% is found. The toroidal current of 40 MA is sustained by an injection current of 100 kA (125 MW of gun power). The flux linking the gun is 1/1000th that of the flux in the spheromak. The geometry allows a flow of liquid, either molten salt, (flibe-Li{sub 2}BeF{sub 4} or flinabe-LiNaBeF{sub 4}) or liquid metal such as SnLi which protects most of the walls and structures from neutron damage. The free surface between the liquid and the burning plasma is heated by bremsstrahlung and optical radiation and neutrons from the plasma. The temperature of the free surface of the liquid is calculated and then the evaporation rate is estimated. The impurity concentration in the burning plasma is estimated and limited to a 20% reduction in the fusion power. For a high radiating edge plasma, the divertor power density of 460 MW/m{sup 2} is handled by high-speed (20 m/s), liquid jets. For low radiating edge plasmas, the divertor-power density of 1860 MW/m{sup 2} is too high to handle for flibe but possibly acceptable for SnLi with jets of 100 m/s flow speed. Calculations show the tritium breeding is adequate with enriched Li and appropriate design of the walls not covered by flowing liquid 15% of the total. We have come up with a number of problem areas needing further study to make the design self consistent and workable.

Moir, R W; Bulmer, R H; Fowler, T K; Youssef, M Z

2002-04-08T23:59:59.000Z

20

Z-inertial fusion energy: power plant final report FY 2006.  

SciTech Connect

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant  

Science Conference Proceedings (OSTI)

A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R&D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost.

Meier, W R; Abbott, R; Beach, R; Blink, J; Caird, J; Erlandson, A; Farmer, J; Halsey, W; Ladran, T; Latkowski, J; MacIntyre, A; Miles, R; Storm, E

2008-10-02T23:59:59.000Z

22

Search for fusion power  

SciTech Connect

A brief review of the basics of fusion power is given. Both inertial confinement and magnetic confinement fusion are discussed.

Post, R.F.

1978-10-12T23:59:59.000Z

23

First Generation of Fusion Power Plants: Design and  

E-Print Network (OSTI)

As the subject of this letter I would like to bring the Fusion Energy Division (FED) membership up to speed on some of the metrics for our division. I am also happy to do so as the previous Chairs have made our division look quite good. For those of you who are not intimately plugged into the American Nuclear Society (ANS), the overall society membership has been remarkably constant over the 2000 decade with total membership of approximately 10,800. As can be seen from the figure below, the membership of the FED over that period has had a significant increase, for which the Division receives high marks. The ANS has recently invested great effort into evaluating the strength of each Division and has devised a set of metrics by which they can determine where improvements need to be made and which of the 22 Professional Divisions are becoming subcritical. For this effort, they are using a Measures of Vitality System. The vitality of the Fusion Energy Division is given in the color-coded figure below for calendar year 2008. Green is good-above average, white average and red needs ANS attention. As you see from the figure, the FED is largely green, and in fact is the only Division which has received

Recent Advances; High Temperature Superconductors; Fusion Power Plant Safety

2009-01-01T23:59:59.000Z

24

Nuclear Fusion Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Nuclear fusion reactors, if they can be made to work, promise virtually unlimited power for the indefinite future. This is because the fuel, isotopes of hydrogen, are...

25

A Novel Supercritical CO2 Power Cycle for Energy Conversion in Fusion Power Plants  

Science Conference Proceedings (OSTI)

DEMO and Next-Step Facilities / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

I. P. Serrano; J. I. Linares; A. Cantizano; B. Y. Moratilla

26

Flibe Coolant Cleanup and Processing in the HYLIFE-II Inertial Fusion Energy Power Plant  

SciTech Connect

In the HYLIFE-II chamber design, a thick flowing blanket of molten-salt (Li{sub 2}BeF{sub 4}) called flibe is used to protect structures from radiation damage. Since it is directly exposed to the fusion target, the flibe will absorb the target debris. Removing the materials left over from target explosions at the rate of {approx}6/s and then recycling some of these materials poses a challenge for the inertial fusion energy power plant. The choice of target materials derives from multi-disciplinary criteria such as target performance, fabricability, safety and environment, corrosion, and cost of recycle. Indirect-drive targets require high-2 materials for the hohlraum. Gold and gadolinium are favorite target materials for laboratory experiments but cost considerations may preclude their use in power plants or at least requires cost effective recycle because a year's supply of gold and gadolinium is estimated at 520 M$ and 40 M$. Environmental and waste considerations alone require recycle of this material. Separation by volatility appears to be the most attractive (e.g., Hg and Xe); centrifugation (e.g., Pb) is acceptable with some problems (e.g., materials compatibility) and chemical separation is the least attractive (e.g. Gd and Hf). Mercury, hafnium and xenon might be substituted with equal target performance and have advantages in removal and recycle due to their high volatility, except for hafnium. Alternatively, lead, tungsten and xenon might be used due to the ability to use centrifugation and gaseous separation. Hafnium or tantalum form fluorides, which will complicate materials compatibility, corrosion and require sufficient volatility of the fluoride for separation. Further complicating the coolant cleanup and processing is the formation of free fluorine due to nuclear transformation of lithium and beryllium in the flibe, which requires chemical control of the fluoride level to minimize corrosion. The study of the choice of target materials and the appropriate processing needs further study because we have not come up with choices which perform as well as gold and gadolinium and which have practical processes for recovery and recycle.

Moir, R W

2001-03-23T23:59:59.000Z

27

Environmental impact of fusion power  

SciTech Connect

From 140th meeting on the American Association for the Advancement of Science; San Francisco, California, USA (24 Feb The environmental effects of fusion power is considered assuming as a typical model a conceptual design for a full-scale fusion power plant. The appraisal indlcates that such a system would yield plentiful, cheap power for all of the world's energy requirements and provide fine solutions to most of the environmental pollution problems if the uncertainties in the plasma physics can be resolved in the fashion that current experiments lead one to expect. (auth)

Fraas, A.P.

1973-01-01T23:59:59.000Z

28

About sponsorship Fusion power  

E-Print Network (OSTI)

project to build a nuclear-fusion reactor came a step closer to reality when politicians agreed it should are needed. Unlike existing nuclear reactors, which produce nasty long-lived radioactive wasteAbout sponsorship Fusion power Nuclear ambitions Jun 30th 2005 From The Economist print edition

29

Systems Modeling for the Laser Fusion-Fission Energy (LIFE) Power Plant  

Science Conference Proceedings (OSTI)

Laser Fusion-Fission Hybrid / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

W. R. Meier et al.

30

A Conceptual Study for a Feasible Fusion Energy Utilization Plant  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

Jung Hoon Han et al.

31

SiC/SiC Composite for an Advanced Fusion Power Plant Blanket A. R. Raffray1  

E-Print Network (OSTI)

SiC/SiC Composite for an Advanced Fusion Power Plant Blanket A. R. Raffray1 , L. El-Guebaly2 , D. K of an exploratory study of blanket concepts based on SiC/SiC structure and LiPb breeder. An assessment, and constraints relating to the SiC/SiC properties are discussed. INTRODUCTION The use of SiC/SiC composite

Najmabadi, Farrokh

32

The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant  

SciTech Connect

Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

Simonen, T

2008-12-23T23:59:59.000Z

33

Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants  

E-Print Network (OSTI)

HYLIFE-II inertial con?nement fusion reactor design. FusionInertial Con?nement Fusion Reactors. PhD thesis, UniversityInertial Con?nement Fusion Reactor. PhD thesis, University

Debonnel, Christophe Sylvain

2006-01-01T23:59:59.000Z

34

Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 2, Designs, assessments, and comparisons, Final report  

Science Conference Proceedings (OSTI)

The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.

Meier, W.R.; Bieri, R.L.; Monsler, M.J.

1992-03-01T23:59:59.000Z

35

Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants  

E-Print Network (OSTI)

advanced protection concept for NIF. Fusion Technology, 30(near-target experiments in NIF. Fusion Technology, 34(3):vered ?rst-wall systems for NIF. Fusion Technology, 34(3):

Debonnel, Christophe Sylvain

2006-01-01T23:59:59.000Z

36

Challenges of Fusion Power Plant Licensing: Differences and Commonalities with Existing Systems  

Science Conference Proceedings (OSTI)

Safety & Environment / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

L. El-Guebaly; L. Cadwallader; W. Sowder; ARIES Team

37

Use of Clearance Indexes to Assess Waste Disposal Issues for the HYLIFE-II Inertial Fusion Energy Power Plant Design  

SciTech Connect

Traditionally, waste management studies for fusion energy have used the Waste Disposal Rating (WDR) to evaluate if radioactive material from irradiated structures could qualify for shallow land burial. However, given the space limitations and the negative public perception of large volumes of waste, there is a growing international motivation to develop a fusion waste management system that maximizes the amount of material that can be cleared or recycled. In this work, we present an updated assessment of the waste management options for the HYLIFE-II inertial fusion energy (IFE) power plant, using the concept of Clearance Index (CI) for radioactive waste disposal. With that purpose, we have performed a detailed neutronics analysis of the HYLIFE-II design, using the TART and ACAB computer codes for neutron transport and activation, respectively. Whereas the traditional version of ACAB only provided the user with the WDR as an index for waste considerations, here we have modified the code to calculate Clearance Indexes using the current International Atomic Energy Agency (IAEA) clearance limits for radiological waste disposal. The results from the analysis are used to perform an assessment of the waste management options for the HYLIFE-II IFE design.

Reyes, S; Latkowski, J F; Sanz, J

2002-01-17T23:59:59.000Z

38

Comparison of the leading candidate combinations of blanket materials, thermodynamic cycles, and tritium systems for full scale fusion power plants  

SciTech Connect

The many possible combinations of blanket materials, tritium generation and recovery systems, and power conversion systems were surveyed and a comprehensive set of designs were generated by using a common set of ground rules that include all of the boundary conditions that could be envisioned for a full- scale commercial fusion power plant. Particular attention was given to the effects of blanket temperature on power plant cycle efficiency and economics, the interdependence of the thermodynamic cycle and the tritium recovery system, and to thermal and pressure stresses in the blanket structure. The results indicate that, of the wide variety of systems that have been considered, the most promising employs lithium recirculated in a closed loop within a niobium blanket structure and cooled with boiling potassium or cesium. This approach gives the simplest and lowest cost tritium recovery system, the lowest pressure and thermal stresses, the simplest structure with the lowest probability of a leak, the greatest resistance to damage from a plasma energy dump, and the lowest rate of plasma contamination by either outgassing or sputtering. The only other blanket materials combination that appears fairly likely to give a satisfactory tritium generation and recovery system is a lithium-beryllium fluoride-Incoloy blanket, and even this system involves major uncertainties in the effectiveness, size, and cost of the tritium recovery system. Further, the Li$sub 2$BeF$sub 4$ blanket system has the disadvantage that the world reserves of beryllium are too limited to support a full-blown fusion reactor economy, its poor thermal conductivity leads to cooling difficulties and a requirement for a complex structure with intricate cooling passages, and this inherently leads to an expansive blanket with a relatively high probability of leaks. The other blanket materials combinations yield even less attractive systems. (auth)

Fraas, A.P.

1975-01-01T23:59:59.000Z

39

Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants  

E-Print Network (OSTI)

Williams. HYLIFE-II: A molten-salt inertial fusion energyelectricity. The binary molten salt ?ibe (LiF-BeF 2 ) andtarget and ablated molten salt. Her approach was essentially

Debonnel, Christophe Sylvain

2006-01-01T23:59:59.000Z

40

Ongoing Fusion Research: Progress on Thick-Liquid Protected IFE Power Plant Design  

E-Print Network (OSTI)

First, I would like to thank Dr. Wayne Meier, the former Fusion Energy Division (FED) Chair and the 2002-2003 officers and members of the Executive Committee for their effort over the past year in helping FED move forward. I would also like to welcome the new officers and members of the Executive Committee, in particular Dr. Jake Blanchard as Vice-Chair and Dr. Jeff Latkowski as Secretary/Treasurer. In my first message as Chair of the Fusion Energy Division of the American Nuclear Society (ANS), I would like to address a number of topics ranging from national and international fusion developments to the latest news on FED, specifically: the ITER status, the Department of Energy (DOE) FY04 Fusion Budget, FESAC, ANS Division Metrics, and other FED news including TOFE. ITER The US is currently in negotiation to rejoin ITER. With the interest expressed by Korea and China to join ITER, there are now seven parties at the negotiation table: Canada, China, the European Union (EU), Japan, Korea, the Russian Federation and the US. The negotiations are being pursued over a series of meetings at three levels: the Senior

At Uc-berkeley

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fusion power production in TFTR  

SciTech Connect

Up to 9.3 MW of fusion power has been produced from deuterium-tritium (DT) fusion reactions in the Tokamak Fusion Test Reactor (TFTR). The total fusion yield from a single plasma pulse has reached 6.5 MJ. The experiments in TFTR with deuterium-tritium plasmas fueled and heated by neutral beam injection span wide ranges in plasma and operating conditions. Through the use of lithium pellet conditioning to control the edge recycling, the plasma confinement in TFTR has been improved to the point where the stability of the plasma to pressure driven modes is limiting the fusion power for plasma currents up to 2.5 MA. The central energy and fusion power densities in these plasmas are comparable to those expected in a thermalized DT reactor, such as ITER.

Bell, M.G.; Budny, R.V. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States)] [and others

1994-11-01T23:59:59.000Z

42

ITER Progress Highlights of the 8 th IAEA Technical Meeting on Fusion Power Plant Safety  

E-Print Network (OSTI)

First, I would like to personally thank Dr. Said Abdel-Khalik, the outgoing chair of the Fusion Energy Division (FED), for his service during his term. Said now serves not only as the past chair, but he has assumed the role of FEDs liaison to the ANS Public Policy Committee. I am pleased to report that the state of our division is quite strong. Division membership has exceeded 750 for three years in a row, and the student membership has grown to more than 200. These numbers reflect the strength and growth in the fusion community. ITER has ramped up dramatically in recent months with many team members moving from Naka and Garching to the Joint Work site in Cadarache, France. Current plans call for delivery of a new baseline design in the late spring of next year. In the U.S., NIF has demonstrated its full system performance on a single beam basis and is expected to have 25 % of the beams operational by January 2007. Truly, it is a very exciting time in the fusion community! Recently, Dr. Susana Reyes left the United States for a new position with the ITER safety team. In order to give her utmost attention to this exciting opportunity, Susana elected to

Plan U. S; Participation Iter

2006-01-01T23:59:59.000Z

43

Advanced fission and fossil plant economics-implications for fusion  

Science Conference Proceedings (OSTI)

In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

Delene, J.G.

1994-09-01T23:59:59.000Z

44

The Production and Delivery of an Inertial Fusion Energy Power Plant Fuel - The Cryogenic Target (A25529)  

E-Print Network (OSTI)

Proc. Of 24th Symposium On Fusion Technology, Warsaw, Poland (2006), To Be Published In Fusion Eng, And Design24th Symposium on Fusion Technology Warsaw, pl, 2006999612525

Bozek, A.S.

2006-09-01T23:59:59.000Z

45

The Fast Track to Fusion Power  

Science Conference Proceedings (OSTI)

World energy use is predicted to double in the next 40 years. Today, 80% is provided by burning fossil fuels, but this is not sustainable indefinitely because (i) it is driving climate change, and (ii) fossil fuels will eventually be exhausted (starting with oil). The resulting potential energy crisis requires increased investment in energy research and development (which is currently very small on the scale of the $3 trillion p.a. energy market, and falling). The wide portfolio of energy work that should be supported must include fusion, which is one of very few options that are capable in principle of supplying a large fraction of need in an environmentally responsible manner. The case for fusion has been strengthened by recent advances in plasma physics and fusion technology and by studies of fusion power plants that address safety and cost issues. The big questions are, 'How can we deliver fusion power as fast as possible?' and 'How long is it likely to take?' I will review progress in fusion, and argue for a focused fast-track program that could deliver a working prototype power station in less than 30 years.

Smith, Chris Llewellyn (UKAEA, Culham)

2005-04-28T23:59:59.000Z

46

Power Plant Considerations for the Reversed-Field Pinch (RFP)  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

Ronald L. Miller

47

Placing Fusion Power on a Pedestal | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Placing Fusion Power on a Pedestal American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Placing Fusion Power on a Pedestal...

48

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

DOE Green Energy (OSTI)

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

49

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

SciTech Connect

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

50

Fusion power: the transition from fundamental science to fusion reactor engineering  

SciTech Connect

The historical development of fusion research is outlined. The basics of fusion power along with fuel cost and advantages of fusion are discussed. Some quantitative requirements for fusion power are described. (MOW)

Post, R.F.

1975-07-25T23:59:59.000Z

51

An overview of the development of the first wall and other principal components of a laser fusion power plant  

E-Print Network (OSTI)

shot. A wall candidate based on tungsten armor bonded to a low activation ferritic steel sub- strate of the development of laser fusion energy. The second part introduces the tungsten armored ferritic steel concept

Raffray, A. René

52

Power plant  

SciTech Connect

A two stroke internal combustion engine is described that has at least one cylinder within which a piston reciprocates. The engine is joined to a gearbox which includes a ring gear. A pair of gears having diameters half that of the ring gear move within the latter. At least one of the pair of gears is connected to a piston by a pin extending between the piston and the periphery of said gear. An additional pair of gears are fixed to respective ones of the first-mentioned gear pair and are operatively joined to a pinion to which a drive shaft is secured. A turbine and filter arrangement is positioned on the side of the engine opposite the gearbox whereby exhaust gases from the engine are directed to the turbine to develop power at an output drive shaft joined to the turbine and to filter pollutants from the gases.

Finn, H.I. Jr.

1978-10-24T23:59:59.000Z

53

Radiological design criteria for fusion power test facilities  

Science Conference Proceedings (OSTI)

The quest for fusion power and understanding of plasma physics has resulted in planning, design, and construction of several major fusion power test facilities, based largely on magnetic and inertial confinement concepts. We have considered radiological design aspects of the Joint European Torus (JET), Livermore Mirror and Inertial Fusion projects, and Princeton Tokamak. Our analyses on radiological design criteria cover acceptable exposure levels at the site boundary, man-rem doses for plant personnel and population at large, based upon experience gained for the fission reactors, and on considerations of cost-benefit analyses.

Singh, M.S.; Campbell, G.W.

1982-02-12T23:59:59.000Z

54

China to strengthen joint research in fusion power www.chinaview.cn 2005-02-06 23:29:49  

E-Print Network (OSTI)

China to strengthen joint research in fusion power www.chinaview.cn 2005-02-06 23:29:49 BEIJING cooperation in research on fusion power plants, one of China's top science and technology decision makers said of Sciences (CAS), said fusion power plants will be final result of today's studies of plasma physics. China

55

A Pilot Plant: The Fastest Path to Commercial Fusion Energy  

SciTech Connect

Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ? 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

Robert J. Goldston

2010-03-03T23:59:59.000Z

56

Sunrise II Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sunrise Power Company, LLC (Sunrise), has planned the modification of an existing power plant project to increase its generation capacity by 265 megawatts by 2003. The initial...

57

Technological implications of fusion power: requirements and status  

SciTech Connect

The major technological requirements for fusion power, as implied by current conceptual designs of fusion power plants, are identified and assessed relative to the goals of existing technology programs. The focus of the discussion is on the tokamak magnetic confinement concept; however, key technological requirements of mirror magnetic confinement systems and of inertial confinement concepts will also be addressed. The required technology is examined on the basis of three general areas of concern: (a) the power balance, that is, the unique power handling requirements associated with the production of electrical power by fusion; (b) reactor design, focusing primarily on the requirements imposed by a tritium-based fuel cycle, thermal hydraulic considerations, and magnet systems; and (c) materials considerations, including radiation damage effects, neutron-induced activation, and resource limitations.

Steiner, D.

1978-01-01T23:59:59.000Z

58

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

59

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

Not Available

1994-04-01T23:59:59.000Z

60

Synfuel (hydrogen) production from fusion power  

DOE Green Energy (OSTI)

A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power.

Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An Advanced Computational Approach to System Modeling of Tokamak Power Plants  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

Zoran Dragojlovic; Charles Kessel; Rene Raffray; Farrokh Najmabadi; Lester Waganer; Laila El-Guebaly; Leslie Bromberg

62

Panel discussion on prospects for fusion power  

SciTech Connect

Although substantial progress is made every year in fusion research, the projected time to realize the ultimate goal of commercial fusion always seems to be 25 to 30 years away. This shifting schedule reflects the underlying difficulty of developing fusion. Every new technology improves the prospects for success, yet as each fusion mountain is scaled, it serves mainly to bring a better view of the next mountain. Two questions are considered: (1) why are so many configurations studied, and (2) what constitutes an economic power density.

Sheffield, J.

1986-01-01T23:59:59.000Z

63

Dale M. Meade Fusion Power Associates  

E-Print Network (OSTI)

Dale M. Meade Fusion Power Associates Annual Meeting Washington, DC December 4, 2002 FIRE Lighting Initiate R&D Activities Begin Site Evaluations #12;Summary · A Window of Opportunity may be opening for U

64

Fusion power and the environment  

SciTech Connect

Environmental characteristics of conceptual fusion-reactor systems based on magnetic confinement are examined quantitatively, and some comparisons with fission systems are made. Fusion, like all other energy sources, will not be completely free of environmental liabilities, but the most obvious of these-- tritium leakage and activation of structural materials by neutron bombardment-- are susceptible to significant reduction by ingenuity in choice of materials and design. Large fusion reactors can probably be designed so that worst-case releases of radioactivity owing to accident or sabotage would produce no prompt fatalities in the public. A world energy economy relying heavily on fusion could make heavy demands on scarce nonfuel materials, a topic deserving further attention. Fusion's potential environmental advantages are not entirely ''automatic'', converting them into practical reality will require emphasis on environmental characteristics throughout the process of reactor design and engineering. The central role of environmental impact in the long-term energy dilemma of civilization justifies the highest priority on this aspect of fusion. (auth)

Holdren, J.P.; Fowler, T.K.; Post, R.F.

1975-06-01T23:59:59.000Z

65

SiC/SiC Composite for an Advanced Fusion Power Plant Blanket A. R. Raffray', L. El-Guebaly', D. K. Sze3,M. Billone3, I. Sviatoslavsky', E. Mogahed', F. Najmabadi',  

E-Print Network (OSTI)

SiC/SiC Composite for an Advanced Fusion Power Plant Blanket A. R. Raffray', L. El-Guebaly', D. K of an exploratory study of blanket concepts based on SiC/SiC structure and LiPb breeder. An assessment, and constraints relating to the SiC/SiC properties are discussed. INTRODUCTION The use of SiC/SiC composite

Raffray, A. René

66

Advanced Fusion Reactors for Space Propulsion and Power Systems  

SciTech Connect

In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

Chapman, John J.

2011-06-15T23:59:59.000Z

67

ORNL's Peng wins Fusion Power Associates Leadership Award | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's Martin Peng, recipient of Fusion Power Associates' Leadership Award, explains an ITER fusion experiment diagram. OAK RIDGE, Tenn., Aug. 17, 2010 - Martin Peng, a researcher...

68

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

69

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

Not Available

1993-04-01T23:59:59.000Z

70

Power Plant Closure Guidebook  

Science Conference Proceedings (OSTI)

Organizations that are planning to decommission an aged power plant face a host of issues that must be addressed and many tasks that must be properly executed in order to ensure a successful closure of the facility.

2010-10-20T23:59:59.000Z

71

PPPL teams with South Korea on the forerunner of a commercial fusion power  

NLE Websites -- All DOE Office Websites (Extended Search)

PPPL teams with South Korea on the forerunner of a commercial fusion power PPPL teams with South Korea on the forerunner of a commercial fusion power station By John Greenwald December 21, 2012 Tweet Widget Facebook Like Google Plus One Schematic sketch of the proposed K-DEMO fusion facility. (Photo by Courtesy of South Korea's National Fusion Research Institute.) Schematic sketch of the proposed K-DEMO fusion facility. The U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has joined forces with researchers in South Korea to develop a pre-conceptual design for a pioneering fusion facility in that Asian nation. The proposed device, called K-DEMO, could be completed in the mid-to-late 2030s as the final step before construction of a commercial fusion power plant that would produce clean and abundant energy for

72

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

PPII Major Demonstrations Power Plant Improvement Initiative (PPII) The Power Plant Improvement Initiative (PPII) was established in October 2000 to further the commercial-scale...

73

Comparison of Options for a Pilot Plant Fusion Nuclear Mission  

Science Conference Proceedings (OSTI)

A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.

Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Waganer, L; Titus, P

2012-08-27T23:59:59.000Z

74

Fast power cycle for fusion reactors  

SciTech Connect

The unique, deep penetration capability of 14 MeV neutrons produced in DT fusion reactions allows the generation of very high temperature working fluid temperatures in a thermal power cycle. In the FAST (Fusion Augmented Steam Turbine) power cycle steam is directly superheated by the high temperature ceramic refractory interior of the blanket, after being generated by heat extracted from the relatively cool blanket structure. The steam is then passed to a high temperature gas turbine for power generation. Cycle studies have been carried out for a range of turbine inlet temperatures (1600/sup 0/F to 3000/sup 0/F (870 to 1650/sup 0/C)), number of reheats, turbine mechanical efficiency, recuperator effectiveness, and system pressure losses. Gross cycle efficiency is projected to be in the range of 55 to 60%, (fusion energy to electric power), depending on parameters selected. Turbine inlet temperatures above 2000/sup 0/F, while they do increase efficiency somewhat, are not necessarily for high cycle efficiency.

Powell, J.; Fillo, J.; Makowitz, H.

1978-01-01T23:59:59.000Z

75

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

76

Overview of Chamber and Power Plant Designs for IFE  

E-Print Network (OSTI)

as primary coolant minimizing need for leak tight blanket structures. · Vacuum boundary was separate from · Z-IFE "Z-Inertial Fusion Energy: Power Plant Final Report FY 2006" SANDIA REPORT SAND2006

77

Implications of high efficiency power cycles for fusion reactor design  

SciTech Connect

The implications of the High Efficiency Power Cycle for fusion reactors are examined. The proposed cycle converts most all of the high grade CTR heat input to electricity. A low grade thermal input (T approximately 100$sup 0$C) is also required, and this can be supplied at low cost geothermal energy at many locations in the U. S. Approximately 3 KW of low grade heat is required per KW of electrical output. The thermodynamics and process features of the proposed cycle are discussed. Its advantages for CTR's are that low Q machines (e.g. driven Tokamaks, mirrors) can operate with a high (approximately 80 percent) conversion of CTR fusion energy to electricity, where with conventional power cycles no plant output could be achieved with such low Q operation. (auth)

Powell, J.R.; Usher, J.; Salzano, F.J.

1975-01-01T23:59:59.000Z

78

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

79

Aspects of theta pinch power plant development  

SciTech Connect

An engineering conceptual design study of a fusion power plant based on the theta-pinch concept has recently been completed. This study presented a compatible design for ten major systems. Although the design appears viable, some systems need considerable development to show that they are completely feasible and credible. Interactions between systems prevent implementation of some obvious solutions to the individual problems. Design alternatives, development, and demonstrations, as well as fundamental research required on these systems to make a feasible theta-pinch power plant are discussed. (auth)

Coultas, T.A.; Krakowski, R.A.

1973-01-01T23:59:59.000Z

80

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

82

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

83

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

84

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

85

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

86

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

87

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

88

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

89

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

90

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

91

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

92

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

93

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

94

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

95

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

96

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

97

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

98

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

99

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

100

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

102

IMPROVEMENTS IN POWER PLANT  

SciTech Connect

A power plant for nuclear reactors is designed for improved cycle efficiency. In addition to the usual heat exchanger for heat transfer from gaseous reactor coolant to water for vaporization, a second heat exchanger is provided between the first heat exchanger and a point betwveen the intermediate- pressure and low-pressure turbine stages. In this way, interstage reheating of the steam is obtained without passage of the steam back to the first heat exchanger. (D.L.C.) Research Reactors

Peters, M.C.

1961-10-11T23:59:59.000Z

103

NEUTRONIC REACTOR POWER PLANT  

DOE Patents (OSTI)

This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

Metcalf, H.E.

1962-12-25T23:59:59.000Z

104

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Performance Summaries Power Plant Improvement Initiative (PPII) Project Performance Summaries Project Performance Summaries are written after project completion. These...

106

DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...  

Office of Scientific and Technical Information (OSTI)

projects, and scientific research data related to advanced systems for fusion energy and nuclear power, primary scientific challenges addressed through the Incite...

107

A LUNAR POWER PLANT  

SciTech Connect

A concept of a nuclear power plant to be assembled on earth and operated on the moon is presented. The two principal design objectives are reliability and high specific power. Wherever there is an incompatibility between these two objectives, the decision favors reliability. The design is based on the premise that the power plant must be designed on the basis of current technology and with a minimum amount of research and development. The principal components consist of a fast reactor in a direct cycle with a mercury-vapor turbine. The high- frequency generator, hydrogen compressor for the generator cooling system, mercury-recirculating pump, and condensate pump are on an extension of the turbine shaft. Ths mercury vapor is condensed and the hydrogen cooled in wing radiators. The reactor is of a construction quite similar to EBR-I Mark IlI for which there is a large amount of operating experience. The radiator is a vertical tube-and-fin type built in concentric cylindrical sections of increseing diameter. The curved headers are connected by swivel joints so that, upon arrival, the radiator can be quickly unfolded from the compact cylindrical package it formed during transportation. (auth)

Armstrong, R.H.; Carter, J.C.; Hummel, H.H.; Janicke, M.J.; Marchaterre, J.F.

1960-12-01T23:59:59.000Z

108

Conceptual design of a theta-pinch power plant  

DOE Green Energy (OSTI)

From 5th symposium on engineering problems of fusion research; Princeton, New Jersey, USA (6 Nov 1973). An engineering design of a conceptual CTR power plant is presented. The fusion reaction is produced in a plasma in a toroidal chamber having major and minor radii of 55 and 0.5 meters, respectively. Major systems discussed include: implosion heating compression/confinement, energy storage, first wall, blanket, fuel ash supply and removal, power conversion, and others, with emphasis on the engineering systems. (auth)

Coultas, T.A.; Dauzvardis, P.V.; Krakowski, R.A.

1973-01-01T23:59:59.000Z

109

A Challenge to America: Develop Fusion Power Within a Decade | Princeton  

NLE Websites -- All DOE Office Websites (Extended Search)

A Challenge to America: Develop Fusion Power Within a Decade A Challenge to America: Develop Fusion Power Within a Decade By Norman R Augustine and Gary Hart April 4, 2013 Tweet Widget Facebook Like Google Plus One Deuterium-tritium fusion diagram. (Photo by Wikipedia) Deuterium-tritium fusion diagram. America's economy and security depend upon reliable sources of power. Over the next few decades, almost all of the power plants in the U.S. will need to be replaced, and America's dependence on fossil fuels presents serious national security concerns. They sap our economy, exacerbate climate change, and constrict our foreign policy. Our newfound boom in natural gas and oil production will ease but not eliminate these underlying issues. (Forbes Leadership Forum website, 4/02/2013) Read More Contact Info Kitta MacPherson

110

Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Fusion Sun Plasma The ultimate energy source Fusion occurs when two atomic nuclei are joined together. To fuse the atoms, the force that repels them as they come together must be overcome. Accelerators accomplish this by forcing molecules to collide with one another at very high temperatures (high temperatures are simply molecules moving at high speeds). When light nuclei are involved, fusion can produce more energy than was required to start the reaction. This process is the force that powers the Sun, whose source of energy is an ongoing fusion chain reaction. As an unconfined event, fusion was first developed for use in nuclear weapons. Fusion's great potential as a new energy source depends on scientists' ability to harness its power in laboratory events. The Z

111

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

112

ATOMIC POWER PLANT  

DOE Patents (OSTI)

This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

Daniels, F.

1957-11-01T23:59:59.000Z

113

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2...

114

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

115

Research Addressing Power Plant Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Power Plant Water Management to Minimize Water Use while Providing Reliable Electricity Generation Water and Energy 2 Water and Energy are inextricably linked. Because...

116

Development of Virtual Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Power Plants We are working in the emerging intersection between information, computation, and complexity Applications * Design * Environmental modeling * Controls with...

117

MEASUREMENT OF POWER PLANT EXHAUST ...  

Science Conference Proceedings (OSTI)

... by tracking propagation of acoustic plane waves in a ... of the robustness of plane wave propagation to ... for GHG monitoring in power plant stacks and ...

118

Fossil Energy Power Plant Desk  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Power Plant Desk Reference Revision 1: Bituminous Coal and Natural Gas to Electricity October 18, 2011 DOENETL-20111516 Preliminary - Do Not Cite or Quote Fossil...

119

Fusion Power | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

120

Fusion Power Demonstrations I and II  

SciTech Connect

In this report we present a summary of the first phase of the Fusion Power Demonstration (FPD) design study. During this first phase, we investigated two configurations, performed detailed studies of major components, and identified and examined critical issues. In addition to these design specific studies, we also assembled a mirror-systems computer code to help optimize future device designs. The two configurations that we have studied are based on the MARS magnet configuration and are labeled FPD-I and FPD-II. The FPD-I configuration employs the same magnet set used in the FY83 FPD study, whereas the FPD-II magnets are a new, much smaller set chosen to help reduce the capital cost of the system. As part of the FPD study, we also identified and explored issues critical to the construction of an Engineering Test Reactor (ETR). These issues involve subsystems or components, which because of their cost or state of technology can have a significant impact on our ability to meet FPD's mission requirements on the assumed schedule. General Dynamics and Grumman Aerospace studied two of these systems, the high-field choke coil and the halo pump/direct converter, in great detail and their findings are presented in this report.

Doggett, J.N. (ed.)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MODULAR CONTROL OF FUSION POWER HEATING APPLICATIONS  

SciTech Connect

This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

D.R.Demers

2012-08-24T23:59:59.000Z

122

Advances in Tandem Mirror fusion power reactors  

DOE Green Energy (OSTI)

The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

Perkins, L.J.; Logan, B.G.

1986-05-20T23:59:59.000Z

123

Uniform power plant identification system  

Science Conference Proceedings (OSTI)

In the seventies in the Federal Republic of Germany a uniform power plant identification system (Kraftwerks-Kennzeichen-System, KKS) was developed and introduced. It allows to keep the identification by all engineering disciplines from planning to waste management for any type of power plant. The paper explains the historical development, the structure and the application of this system.

Christiansen, W. (RWE Energie AG, Hauptverwaltung, Essen (DE)); Pannenbacker, K. (GABO mbH, Erlangen (DE)); Popp, H. (Siemens AG, Bereich Anlagentechnik, Erlangen (DE)); Seltmann, A. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

124

NETL Water and Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

125

Engineering problems in the development of fusion power reactors  

SciTech Connect

This paper reviews current progress in the development of fusion power from the engineering point of view and highlights the most outstanding technical issues which must be resolved. (MOW)

Varljen, T.C.

1976-11-02T23:59:59.000Z

126

Systems studies of dual purpose electric/synthetic fuels fusion plants  

SciTech Connect

A reactor power plant is proposed that can meet base load electrical demand, while the remainder can generate synthetic fuels and meet intermittent electrical demands. Two principal objectives of this study are: (1) to examine how strongly various economic demand and resource factors affect the amount of installed CTR capacity, and (2) to examine what increase in CTR capacity can be expected with dual purpose electric/synthetic fuel fusion plants, and also the relative importance of the different production modes. (MOW)

Beardsworth, E.; Powell, J.

1975-02-01T23:59:59.000Z

127

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

128

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

129

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

130

Owners of nuclear power plants  

Science Conference Proceedings (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

131

Asbury power plant, Asbury, Missouri  

Science Conference Proceedings (OSTI)

The Asbury power plant in rural southwest Missouri is off the beaten path in more ways than one. Three years ago, Empire District Electric Co., the plant's owner/operator, began mixing pieces of discarded tires into its coal fuel supply. Each ensuing year, without compromising local air quality, the plant has rid the area of millions of tires that otherwise would have ended up in a landfill. For demonstrating that a blight can be made right, Asbury is one of Power's 2005 top plants. 2 figs., 1 tab.

Wicker, K.

2005-08-01T23:59:59.000Z

132

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

133

The neutronics studies of fusion fission hybrid power reactor  

SciTech Connect

In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi [School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 (China)

2012-06-19T23:59:59.000Z

134

Technology assessment of laser-fusion power production  

SciTech Connect

The inherent features of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described. Technology developments for ultimate commercial application are outlined.

Booth, L.A.; Frank, T.G.

1976-01-01T23:59:59.000Z

135

Nuclear power plant design analysis  

SciTech Connect

Information concerning the engineering aspects of the design of commercial nuclear power plants is presented. Topics discussed include: electric utility economics; nuclear plant cconomics; thermal-transport systems and core design; nuclear analysis methods; safcty requirements; fuel-system analysis; dcsign considerations; and optimization approaches. (DCC)

Sesonske, A.

1973-01-01T23:59:59.000Z

136

Prospects for attractive fusion power systems By Farrokh Najmabadi  

E-Print Network (OSTI)

energy marketplace. Conceptual power-plant design studies for both magnetic- and inertial of plasma- facing and nuclear components are the dominant factors in arriving at an attractive power plant diverse and competitive energy marketplace. Conceptual power-plant design studies for both magnetic

Najmabadi, Farrokh

137

Power Quality Aspects in a Wind Power Plant: Preprint  

SciTech Connect

Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

2006-01-01T23:59:59.000Z

138

Troubleshooting power plant controls  

SciTech Connect

Using an example from an 80 MW cogeneration plant working at near capacity on a hot day, the paper illustrates the steps involved in troubleshooting a maintenance problem. It discusses identification of the problem, the planning involved in the identification of the problem, development of proof of an hypothesis, human factors, implementing effective solutions, and determination of the root cause.

Alley, S.D. [ANNA, Inc., Annapolis, MD (United States)

1995-05-01T23:59:59.000Z

139

Field-Reversed Configuration Power Plant Critical-Issue Scoping Study  

SciTech Connect

A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.

Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.

2000-03-31T23:59:59.000Z

140

ALARA at nuclear power plants  

SciTech Connect

Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

Baum, J.W.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fusion Nuclear Science Facility - Advanced Tokamak Option  

Science Conference Proceedings (OSTI)

Power Plant, Demo, and FNSF / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

C. P. C. Wong; V. S. Chan; A. M. Garofalo; J. A. Leuer; M. E. Sawan; J. P. Smith; R. D. Stambaugh

142

Financing Solar Thermal Power Plants  

DOE Green Energy (OSTI)

The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

Price, H. W.; Kistner, R.

1999-11-01T23:59:59.000Z

143

Pathway from the National Ignition Facility to an operational LIFE power plant  

E-Print Network (OSTI)

next step, after NIF, is construction of a full-scale power plant NIF-1111-23807.ppt 4 #12 delivery #12;7NIF-1111-23807.ppt #12;Principle of LIFE plant operation Heat transfer DT fuel cycle for high plant availability NIF-based fusion performance, with low tritium inventory in the plant

144

How much laser power can propagate through fusion plasma?  

E-Print Network (OSTI)

Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data, and suggest a way to increase that maximum by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and suggests the indirect control of backscatter through manipulation of plasma ionization state or acoustic damping.

Pavel M. Lushnikov; Harvey A. Rose

2005-12-30T23:59:59.000Z

145

Power plant | OpenEI  

Open Energy Info (EERE)

Power plant Power plant Dataset Summary Description No description given. Source Environmental Protection Agency (EPA) Date Released January 26th, 2009 (5 years ago) Date Updated June 07th, 2010 (4 years ago) Keywords eGrid eGRID2007 EIA Electricity emissions epa Power plant Data application/zip icon eGRID2007_Version1-1.zip (zip, 18.7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

146

Fiberglass plastics in power plants  

Science Conference Proceedings (OSTI)

Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

Kelley, D. [Ashland Performance Materials (United States)

2007-08-15T23:59:59.000Z

147

Inertial fusion with ultra-powerful lasers  

SciTech Connect

Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel.

Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

1993-10-01T23:59:59.000Z

148

Power Plant Baghouse Survey 2010  

Science Conference Proceedings (OSTI)

As particulate emission regulations become more stringent, the use of baghouses (also known as fabric filters) for particulate control on coal-fired boilers in the power generation industry has increased significantly in the past several years. With the potential for Maximum Achievable Control Technology requirements for air toxics being considered by the U.S. Environmental Protection Agency, power plants may be required to add sorbents to control mercury, trace metals and acid gases, further increasing ...

2010-12-31T23:59:59.000Z

149

Geothermal Power Plants in China  

DOE Green Energy (OSTI)

Nine small experimental geothermal power plants are now operating at six sites in the People's Republic of China. These range in capacity from 50 kW to 3MW, and include plants of the flash-steam and binary type. All except two units utilize geofluids at temperatures lower than 100 C. The working fluids for the binary plants include normal- and iso-butane, ethyl chloride, and Freon. The first geothermal plant came on-line in 1970, the most recent ones in 1979. Figure 1 shows the location of the plants. Major cities are also shown for reference. Table 1 contains a listing of the plants and some pertinent characteristics. The total installed capacity is 5,186 kW, of which 4,386 kW is from flash-steam units. In the report, they given an example of the results of exploratory surveys, and show system diagrams, technical specifications, and test results for several of the power plants.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

150

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

151

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

152

Improving particle confinement in inertial electrostatic fusion for spacecraft power and propulsion  

E-Print Network (OSTI)

Fusion energy is attractive for use in future spacecraft because of improved fuel energy density and reduced radioactivity compared with fission power. Unfortunately, the most promising means of generating fusion power on ...

Dietrich, Carl, 1977-

2007-01-01T23:59:59.000Z

153

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

Science Conference Proceedings (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

154

Assessment of tritium breeding requirements for fusion power reactors  

Science Conference Proceedings (OSTI)

This report presents an assessment of tritium-breeding requirements for fusion power reactors. The analysis is based on an evaluation of time-dependent tritium inventories in the reactor system. The method presented can be applied to any fusion systems in operation on a steady-state mode as well as on a pulsed mode. As an example, the UWMAK-I design was analyzed and it has been found that the startup inventory requirement calculated by the present method significantly differs from those previously calculated. The effect of reactor-parameter changes on the required tritium breeding ratio is also analyzed for a variety of reactor operation scenarios.

Jung, J.

1983-12-01T23:59:59.000Z

155

Inertial confinement fusion reaction chamber and power conversion system study. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO/sub 2/ granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO/sub 2/ granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs.

Maya, I.; Schultz, K.R.; Bourque, R.F.; Cheng, E.T.; Creedon, R.L.; Norman, J.H.; Price, R.J.; Porter, J.; Schuster, H.L.; Simnad, M.J.

1985-10-01T23:59:59.000Z

156

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

157

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

158

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

159

Fusion Implementation  

SciTech Connect

If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

J.A. Schmidt

2002-02-20T23:59:59.000Z

160

Power Supply Reliability Estimates for Experimental Fusion Facilities  

Science Conference Proceedings (OSTI)

This paper presents the results of a task to analyze the operating experience data for large, pulsed power supplies used at the DIII-D tokamak. This activity supports the International Thermonuclear Experimental Reactor (ITER) project by giving fusion-specific reliability values for large power supplies that energize neutral beams and magnets. These failure rate data are necessary to perform system availability calculations and to make estimates of the frequency of safety-significant events (e.g., power supply arcs or fires) that might occur in other fusion facilities such as ITER. The analysis shows that the DIII-D data results compare well with the results of similar data analysis work that the Italian National Agency for New Technologies, Energy and the Environment (ENEA) has performed on the JET tokamak and compare fairly with data from two accelerators.

Cadwallader, lee; Pinna, Tonio; Petersen, Peter

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Internal combustion electric power hybrid power plant  

SciTech Connect

An internal combustion-electric motor hybrid power plant for an automotive vehicle is disclosed. The power plant includes an internal combustion engine and a direct current electric motor generator which are connected to a drive shaft for the vehicle. A clutch mechanism is provided to connect the internal combustion engine, the direct current electric motor generator and the drive shaft for selectively engaging and disengaging the drive shaft with the internal combustion engine and the motor generator. A storage battery is electrically connected to the motor generator to supply current to and receive current therefrom. Thermoelectric semi-conductors are arranged to be heated by the waste heat of the internal combustion engine. These thermoelectric semi-conductors are electrically connected to the battery to supply current thereto. The thermoelectric semi-conductors are mounted in contact with the outer surfaces of the exhaust pipe of the internal combustion engine and also with the outer surfaces of the cylinder walls of the engine.

Cummings, T.A.

1979-04-10T23:59:59.000Z

162

World electric power plants database  

SciTech Connect

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

163

Steam Reheat in Nuclear Power Plants.  

E-Print Network (OSTI)

??In this work, reheating steam from a commercial nuclear power plant is explored in order to increase efficiency and power output. A thermal source in (more)

Marotta, Paul John

2012-01-01T23:59:59.000Z

164

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

165

Modeling water use at thermoelectric power plants  

E-Print Network (OSTI)

The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

Rutberg, Michael J. (Michael Jacob)

2012-01-01T23:59:59.000Z

166

Integrated Coal Gasification Power Plant Credit (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

167

SLAC National Accelerator Laboratory - Power Plants: Scientists...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plants: Scientists Use X-ray Laser to Probe Engines of Photosynthesis By Glenn Roberts Jr. June 6, 2012 The molecular power plants that carry out photosynthesis are at the...

168

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

169

UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS  

E-Print Network (OSTI)

Thermal power plants larger than 50 megawatts (MW) are required to obtain a California Energy Commission UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS: INFORMING A PROGRAM TO STUDY Landing Power Plant (at center). Image from the U.S. Army Corps of Engineers Digital Visual Library. #12

170

Pinch me - I'm fusing! Fusion Power - what is it? What is a z pinch? And why are z-pinches a promising fusion power technology?  

SciTech Connect

The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind.

DERZON,MARK S.

2000-03-01T23:59:59.000Z

171

Scenarios for multi-unit inertial fusion energy plants producing hydrogen fuel  

DOE Green Energy (OSTI)

This work describes: (a) the motivation for considering fusion in general, and Inertial Fusion Energy (IFE) in particular, to produce hydrogen fuel powering low-emission vehicles; (b) the general requirements for any fusion electric plant to produce hydrogen by water electrolysis at costs competitive with present consumer gasoline fuel costs per passenger mile, for advanced car architectures meeting President Clinton`s 80 mpg advanced car goal, and (c) a comparative economic analysis for the potential cost of electricity (CoE) and corresponding cost of hydrogen (CoH) from a variety of multi-unit IFE plants with one to eight target chambers sharing a common driver and target fab facility. Cases with either heavy-ion or diode-pumped, solid-state laser drivers are considered, with ``conventional`` indirect drive target gains versus ``advanced, e.g. Fast Ignitor`` direct drive gain assumptions, and with conventional steam balance-of-plant (BoP) versus advanced MHD plus steam combined cycle BoP, to contrast the potential economics under ``conventional`` and ``advanced`` IFE assumptions, respectively.

Logan, B.G.

1993-12-01T23:59:59.000Z

172

Tracking New Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

173

FRC Based Fusion Neutron Source for Materials Evaluation  

Science Conference Proceedings (OSTI)

Power Plant, Demo, and FNSF / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

John Slough

174

Strategic Plans for the Fusion DEMO Program of Korea  

Science Conference Proceedings (OSTI)

Power Plant, Demo, and FNSF / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

Hyuck Jong Kim; Hyung Chan Kim; Chul-Sik Lee; Myeun Kwon; Gyung-Su Lee

175

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network (OSTI)

Efficiency Investments to Power Plants J. Koorney, A.H.Efficiency Investments to Power Plants Jonathan Koorney,Pollution, and Avoid Power Plant Construction. Testimony

Koomey, J.G.

2008-01-01T23:59:59.000Z

176

Power Plant Baghouse Survey 2011  

Science Conference Proceedings (OSTI)

The requirement to reduce stack particulate matter (PM) emissions is one of the key challenges for coal-fired power plants, in light of the proposed Maximum Achievable Control Technology (MACT) ruling for hazardous air pollutants (HAPs) issued by the U.S. Environmental Protection Agency on March 16, 2011. The proposed MACT ruling may require that total PM, including condensable and filterable PM, be maintained at 0.03 lb/MMBtu. A final HAPs ruling is expected in December 2011. As particulate emission reg...

2011-12-06T23:59:59.000Z

177

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

178

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

Power Plant Database Power Plant Database Jump to: navigation, search Name Coal Power Plant Database Data Format Excel Spreadsheet, Excel Pivot Table, Access Database Geographic Scope United States TODO: Import actual dataset contents into OpenEI The Coal Power Plant Database (CPPDB) is a dataset which "consolidates large quantities of information on coal-fired power plants in a single location."[1] It is produced by the National Energy Technology Laboratory (NETL). External links 2007 Edition Excel Spreadsheet Excel Pivot Table Access Database User's Manual (PDF) References ↑ "User's Manual: Coal Power Plant Database" Retrieved from "http://en.openei.org/w/index.php?title=Coal_Power_Plant_Database&oldid=273301" Categories: Datasets Articles with outstanding TODO tasks

179

MIT's Plasma Science Fusion Center: I-Mode Powers Up on Alcator...  

NLE Websites -- All DOE Office Websites (Extended Search)

MIT's Plasma Science Fusion Center: I-Mode Powers Up on Alcator C-Mod Tokamak American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science...

180

Sabotage at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

Purvis, James W.

1999-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

182

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

183

Wood Burning Combined Cycle Power Plant  

E-Print Network (OSTI)

A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas turbine combined cycle system that obtains its heat input from a high temperature, high pressure ceramic air heater burning wood waste products as a fuel. This paper presents the results of the design study including the cycle evaluation and a description of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step forward in wood-fueled power plants.

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

184

Dirty kilowatts: America's most polluting power plants  

SciTech Connect

In 2006, the US EPA tracked more than 1,400 fossil-fired power plants of varying sizes through its Acid Rain Program. This report ranks each of the 378 largest plants (generating at least 2 million megawatt-hours in 2006) for which both the most recent EPA emissions data and Energy Information Administration (EIA) electric generation data are available. The report ranks each plant based on emission rates, or pounds of pollutant for each megawatt-hour (or million megawatt-hours, in the case of mercury) the plant produced. It ranks the top fifty power plants polluters for sulfur dioxide, nitrogen oxides, carbon dioxide, and mercury. A complete listing of all 378 plants is included as Appendix A. Appendix B contains overheads of an NETL presentation: Tracking new coal-fired power plants - coal's resurgence in electric power generation, 24 January 2007. The 12 states with the heaviest concentrations of the dirtiest power plants, in terms of total tons of carbon dioxide emitted, are: Texas (five, including two of the top 10 dirtiest plants); Pennsylvania (four); Indiana (four, including two of the top 10 dirtiest plants); Alabama (three); Georgia (three, including two of the top three dirtiest plants); North Carolina (three); Ohio (three); West Virginia (three); Wyoming (two); Florida (two); Kentucky (two); and New Mexico (two). Carbon dioxide emissions from power plants are now at roughly 2.5 billion tons per year. Power plants are responsible for about 30%-40% of all man-made CO{sub 2} emissions in the USA. Power plants, especially those that burn coal, are by far the largest single contributor of SO{sub 2} pollution in the United States. Power plant mercury emissions remain steady as compared to previous years. A searchable database ranking 378 U.S. power plants on carbon dioxide, sulfur dioxide, nitrogen oxide and mercury pollution is available online at http://www.dirtykilowatts.org. 22 refs., 8 tabs., 2 apps.

NONE

2007-07-15T23:59:59.000Z

185

Power Plant Optimization Demonstration Projects Cover Photos:  

NLE Websites -- All DOE Office Websites (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

186

Control system for cogenerative power plants  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, distribution management system, electric power systems, optimization, process control, real time systems, simulation

Florin Hartescu

2008-08-01T23:59:59.000Z

187

Balance of Plant Corrosion Issues in Aging Nuclear Power Plants  

Science Conference Proceedings (OSTI)

... number of times, can be used to forecast the most probable number of leaks. ... Conditions for Long Term Operation of Nuclear Power Plants in Sweden.

188

Requirements for Power Plant and Power Line Development (Wisconsin) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Siting and Permitting Provider Public Service Commission of Wisconsin

189

Wind Power Plant Monitoring Project Annual Report  

DOE Green Energy (OSTI)

The intermittent nature of the wind resource, together with short-term power fluctuations, are the two principal issues facing a utility with wind power plants in its power grid. To mitigate these issues, utilities, wind power plant developers, and operators need to understand the nature of wind power fluctuations and how they affect the electrical power system, as well as to analyze ancillary service requirements with real wind power plant output data. To provide the necessary data, NREL conducted a study to collect at least 2 years of long-term, high-frequency (1-hertz [Hz]) data from several medium- to large-scale wind power plants with different wind resources, terrain features, and turbine types. Researchers then analyzed the data for power fluctuations, frequency distribution of wind power (by deriving a probability distribution function of wind power plant output variations), spatial and temporal diversity of wind power, and wind power capacity credit issues. Results of these analyses can provide data on the potential effects of wind power plants on power system regulation.

Wan, Y.

2001-07-11T23:59:59.000Z

190

Fusion Power: A Strategic Choice for the Future Energy Provision. Why is So Much Time Wasted for Decision Making?  

Science Conference Proceedings (OSTI)

From a general analysis of the world energy issue, it is argued that an affordable, clean and reliable energy supply will have to consist of a portfolio of primary energy sources, a large fraction of which will be converted to a secondary carrier in large baseload plants. Because of all future uncertainties, it would be irresponsible not to include thermonuclear fusion as one of the future possibilities for electricity generation.The author tries to understand why nuclear-fusion research is not considered of strategic importance by the major world powers. The fusion programs of the USA and Europe are taken as prime examples to illustrate the 'hesitation'. Europe is now advocating a socalled 'fast-track' approach, thereby seemingly abandoning the 'classic' time frame towards fusion that it has projected for many years. The US 'oscillatory' attitude towards ITER in relation to its domestic program is a second case study that is looked at.From the real history of the ITER design and the 'siting' issue, one can try to understand how important fusion is considered by these world powers. Not words are important, but deeds. Fast tracks are nice to talk about, but timely decisions need to be taken and sufficient money is to be provided. More fundamental understanding of fusion plasma physics is important, but in the end, real hardware devices must be constructed to move along the path of power plant implementation.The author tries to make a balance of where fusion power research is at this moment, and where, according to his views, it should be going.

D'haeseleer, William D

2005-04-15T23:59:59.000Z

191

Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of TMDLs on Impacts of TMDLs on Coal-Fired Power Plants April 2010 DOE/NETL-2010/1408 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The

192

Efficiency combined cycle power plant  

SciTech Connect

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

193

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

194

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world  

E-Print Network (OSTI)

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world and solar-thermal power plants The first parabolic trough power plants in Europe ­ the world's largest solar

Laughlin, Robert B.

195

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

196

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

197

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

198

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

199

ORNL's Peng wins Fusion Power Associates Leadership Award | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Peng Wins Leadership Award Peng Wins Leadership Award ORNL's Peng wins Fusion Power Associates Leadership Award Morgan McCorkle - August 17, 2010 ORNL's Martin Peng, recipient of Fusion Power Associates' Leadership Award, explains an ITER fusion experiment diagram. OAK RIDGE, Tenn., Aug. 17, 2010 - Martin Peng, a researcher in the Fusion Energy Division of Department of Energy's Oak Ridge National Laboratory, has been selected by the Fusion Power Associates board of directors to receive a 2010 FPA Leadership Award. The FPA Leadership awards have been given annually since 1980 to individuals who have shown outstanding leadership qualities in accelerating the development of fusion as an energy source. The award will be presented at the Fusion Power Associates annual meeting and symposium to be held Dec. 1-2 in Washington, D.C. The FPA board said

200

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Materials in Nuclear Power Plant Construction - TMS  

Science Conference Proceedings (OSTI)

139th Annual Meeting & Exhibition. February 14 - 18, 2010, Washington State Convention Center, Seattle, Washington USA. Materials in Nuclear Power. Plant ...

202

NETL: Power Plant Improvement Initiative (PPII)  

NLE Websites -- All DOE Office Websites (Extended Search)

PPII Map Clean Coal Demonstrations Power Plant Improvement Initiative (PPII) Project Location Map Place mouse cursor over state for and select the project you are interested in....

203

Increasing Power Plant Efficiency: Lignite Fuel Enhancement ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Power Plant Efficiency: Lignite Fuel Enhancement (Completed March 31, 2010) Project Description The objectives of this project are to demonstrate a unique system for...

204

Organizational learning at nuclear power plants  

E-Print Network (OSTI)

The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

Carroll, John S.

1991-01-01T23:59:59.000Z

205

Next Generation Geothermal Power Plants: 2012 Update  

Science Conference Proceedings (OSTI)

The intent of this report is to provide an update of historical and current trends in geothermal power plant technology, extending the previous Next Generation Geothermal Power Plant (NGGPP) report originally developed by EPRI in 1996.BackgroundIn its 1996 study, EPRI evaluated a number of technologies with the potential to lower the cost of geothermal power production or to expand cost effective power production to lower temperature resources, thus opening ...

2012-12-13T23:59:59.000Z

206

TS Power Plant, Eureka County, Nevada  

SciTech Connect

Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

Peltier, R. [DTE Energy Services (United States)

2008-10-15T23:59:59.000Z

207

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

Hossein Ghezel-Ayagh

2003-05-27T23:59:59.000Z

208

AN INDISPENSABLE TRUTH How fusion power can save the planet  

E-Print Network (OSTI)

-15 The nature of sunlight 3-15 Ways to use solar power 3-16 Panels on every rooftop 3-18 Photovoltaic panels 3 footprint 3-12 Energy storage 3-13 Meshing with the grid 3-14 The bottom line on wind 3-15 Solar energy 3-19 Dangers 3-20 Central station solar power 3-20 Solar thermal plants 3-20 Fossil footprint 3-22 Solar

Chen, Francis F.

209

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Arrangement for hydroelectric power plants  

SciTech Connect

Hydroelectric power plant contains a flow tube for the water, an inlet tube leading to the flow tube and a discharge tube leading from the flow tube. In the flow tube a turbine is arranged to be driven by the flowing water and which via a drive shaft drives an electric generator. Accentuated sub-divisioning as between mechanical unit and portions of an installation nature is provided. The turbine and generator are located in the direct vicinity of each other and together with the drive shaft form a unit which in its entirety is situate in the flow tube and arranged to be traversed by flowing water. The unit is so arranged that the turbine can be in contact with the water flow while the generator has a watertight enclosure into which the drive shaft extends through a watertight bushing. Furthermore an electric cable for transmitting the electricity produced is connected. The installation components, the said tubes, are made from prefabricated concrete components. The flow tube is essentially vertical and exhibits a support for the unit and, at its upper end, an aperture through which the unit can be lowered.

Osterberg, T.V.

1984-03-13T23:59:59.000Z

212

Power Plant Practices to Ensure Cable Operability  

Science Conference Proceedings (OSTI)

Installation practices as well as environmental conditions affect the operability of electrical cables in power plants. This report evaluates operability criteria for nuclear power plant cables, good practices for cable installation, and cable maintenance and surveillance. As a reference source for utility practices, this report suggests potential improvements that could benefit the industry.

1992-05-02T23:59:59.000Z

213

Lessons learned from existing biomass power plants  

DOE Green Energy (OSTI)

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

214

Power Transformer Application for Wind Plant Substations  

Science Conference Proceedings (OSTI)

Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.

Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

2010-01-01T23:59:59.000Z

215

Residential Solar Thermal Power Plant  

Solar power is a renewable source of energy that involves no fossil fuel combustion, and releases no greenhouse gases. In the past, solar power has not been ...

216

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

217

Wind Power Plant SCADA and Controls  

SciTech Connect

Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

Badrzadeh, Babak [IEEE PES Wind Plant Collector System Design Working Group; Castillo, Nestor [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Janakiraman, R. [IEEE PES Wind Plant Collector System Design Working Group; Kennedy, R. [IEEE PES Wind Plant Collector System Design Working Group; Klein, S. [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Vargas, L. [IEEE PES Wind Plant Collector System Design Working Group

2011-01-01T23:59:59.000Z

218

Power Quality Investigation of a Manufacturing Plant  

Science Conference Proceedings (OSTI)

This case study summarizes the findings and results of a power quality (PQ) audit performed at a manufacturing plant to harden the plant processes to external PQ disturbances. Recommendations were made by EPRI and implemented by the manufacturer. The result was a significant improvement in immunity of the plant processes to voltage sags.

2007-12-31T23:59:59.000Z

219

Combined power plants -- Past, present, and future  

Science Conference Proceedings (OSTI)

The early history of combined power plants is described, together with the birth of the CCGT plant (the combined cycle gas turbine). Sustained CCGT development in the 1970s and 1980s, based on sound thermodynamic considerations, is outlined. Finally more recent developments and future prospects for the combined gas turbine/steam turbine combined plant are discussed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1995-10-01T23:59:59.000Z

220

DIRECT FUEL/CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DIRECT FUEL/CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

222

Thermal spray applications for power plant components  

Science Conference Proceedings (OSTI)

Power plants usually are located near water and many are in salt water environments. Corrosion occurring in these environments is a problem often solved with thermal spray coatings. The use of thermal spray aluminum and zinc in three power plants for various components is reviewed. Special emphasis is on the cooling tower at the Seabrook, New Hampshire plant. A guide to selection of the coating and process also is given.

Sampson, E.R.

2000-03-01T23:59:59.000Z

223

Nuclear Power Plant Concrete Structures  

Science Conference Proceedings (OSTI)

A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

Basu, Prabir [International Atomic Energy Agency (IAEA)] [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF)] [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

224

Findings of the US research needs workshop on the topic of fusion power  

SciTech Connect

The US Department of Energy, Office of Fusion Energy Sciences (OFES) conducted a Research Needs Workshop, referred to as ReNeW, in June 2009. The information developed at this workshop will help OFES develop a plan for US fusion research during the ITER era, roughly the next two decades. The workshop was organized in five Themes, one of which was Harnessing Fusion Power (or Fusion Power for short). The top level goal of the Fusion Power Theme was to identify the research needed to develop the knowledge to design and build, with high confidence, robust and reliable systems that can convert fusion products to useful forms of energy in a reactor environment, including a self-sufficient supply of tritium fuel. Each Theme was subsequently subdivided into Panels to address specific topics. The Fusion Power Panel topics were: Fusion Fuel Cycle; Power Extraction; Materials Science; Safety and Environment; and Reliability, Availability, Maintainability and Inspectability (RAMI). Here we present the key findings of the Fusion Power Theme.

W. R. Meier; A. R. Raffray; R. J. Kurtz; N. B. Morley; W. T. Reiersen; Phil Sharpe; S. Willms

2010-12-01T23:59:59.000Z

225

Findings of the US Research Needs Workshop on the Topic of Fusion Power  

SciTech Connect

The US Department of Energy, Office of Fusion Energy Sciences (OFES) conducted a Research Needs Workshop, referred to as ReNeW, in June 2009. The information developed at this workshop will help OFES develop a plan for US fusion research during the ITER era, roughly the next two decades. The workshop was organized in five Themes, one of which was Harnessing Fusion Power (or Fusion Power for short). The top level goal of the Fusion Power Theme was to identify the research needed to develop the knowledge to design and build, with high confidence, robust and reliable systems that can convert fusion products to useful forms of energy in a reactor environment, including a self-sufficient supply of tritium fuel. Each Theme was subsequently subdivided into Panels to address specific topics. The Fusion Power Panel topics were: fusion fuel cycle; power extraction; materials science; safety and environment; and reliability, availability, maintainability and inspectability (RAMI). Here we present the key findings of the Fusion Power Theme.

Meier, W R; Raffray, A R; Kurtz, R J; Morley, N B; Reiersen, W T; Sharpe, P; Willms, S

2009-09-16T23:59:59.000Z

226

Findings of the US research needs workshop on the topic of fusion power  

SciTech Connect

The US Department of Energy, Of?ce of Fusion Energy Sciences (OFES) conducted a Research Needs Workshop, referred to as ReNeW, in June 2009. The information developed at this workshop will help OFES develop a plan for US fusion research during the ITER era, roughly the next two decades. The workshop was organized in ?ve Themes, one of which was Harnessing Fusion Power (or Fusion Power for short). The top level goal of the Fusion Power Theme was to identify the research needed to develop the knowledge to design and build, with high con?dence, robust and reliable systems that can convert fusion products to useful forms of energy in a reactor environment, including a self-suf?cient supply of tritium fuel. Each Theme was subsequently subdivided into Panels to address speci?c topics. The Fusion Power Panel topics were: Fusion Fuel Cycle; Power Extraction; Materials Science; Safety and Environment; and Reliability, Availability, Maintainability and Inspectability (RAMI). Here we present the key ?ndings of the Fusion Power Theme.

Meier, Wayne R.; Raffray, R.; Kurtz, Richard J.; Morley, Neil B.; Reiersen, Wayne T.; Sharpe, Phil; Willms, Scott

2010-12-01T23:59:59.000Z

227

Desalination Study of Florida Power & Light Power Plants  

Science Conference Proceedings (OSTI)

This report documents a project sponsored jointly by EPRI and Florida Power & Light (FPL) to determine the viability of converting existing power plants to large-scale, dual-purpose cogeneration of power and fresh water from desalination. Of four desalination processes studied, reverse osmosis offered the lowest product water cost.

1992-12-18T23:59:59.000Z

228

Groundwater Protection Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The nuclear power industry has entered into a voluntary initiative to implement groundwater monitoring programs at all nuclear power plant sites. This EPRI guideline provides essential technical guidance to nuclear power utilities on the necessary elements of a sound groundwater protection program.

2008-01-10T23:59:59.000Z

229

Thirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago  

E-Print Network (OSTI)

than 30 countries signed a deal on Tuesday to build the world's most advanced nuclear fusion reactor nuclear reactors, but critics argue it could be at least 50 years before a commercially viable reactorThirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago Representatives of more

230

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing (except water vapor) is emitted to the atmosphere. Resources below 400°F

231

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

232

Direct FuelCell/Turbine Power Plant  

SciTech Connect

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

233

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

234

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

235

An Evaluation of Fusion Energy R&D Gaps Using Technology Readiness Levels  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

M. S. Tillack et al.

236

Toward an Integrated Simulation Predictive Capability for Fusion Plasma Chamber Systems  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

A. Ying; M. Narula; M. Abdou; R. Munipalli; M. Ulrickson; P. Wilson

237

Fusion Nuclear Science Facility (FNSF) Before Upgrade to Component Test Facility (CTF)  

Science Conference Proceedings (OSTI)

Power Plant, Demo, and FNSF / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

Y. K. M. Peng et al.

238

Design optimization of IGCC power plants  

SciTech Connect

Integrated gasification-combined-cycle (IGCC) power plants have the potential for providing performance and cost improvements over conventional coal-fired steam power plants with flue-gas desulfurization. The major design options for IGCC power plants include the following: oxygen-blown versus air-blown gasification processes; entrained-flow, fluidized-bed, or fixed-bed gasifier; coal-slurry feed versus coal-dry feed; hot versus cold fuel-gas cleanup; gas turbine alternatives; and, design alternatives for the Heat Recovery Steam Generator (HRSG). This paper summarizes some results from these studies. The advanced thermoelectric techniques used at Tennessee Technological University (TTU) are very powerful tools for evaluating and optimizing IGCC power plants.

Tsatsaronis, G.; Lin, L.; Pisa, J.; Tawfik, T. (Tennessee Technological Univ., Cookeville, TN (United States))

1992-01-01T23:59:59.000Z

239

Capital cost models for geothermal power plants  

SciTech Connect

A computer code, titled GEOCOST, has been developed at Battelle, Pacific Northwest Laboratories, to rapidly and systematically calculate the potential costs of geothermal power. A description of the cost models in GEOCOST for the geothermal power plants is given here. Plant cost models include the flashed steam and binary systems. The data sources are described, along with the cost data correlations, resulting equations, and uncertainties. Comparison among GEOCOST plant cost estimates and recent A-E estimates are presented. The models are intended to predict plant costs for second and third generation units, rather than the more expensive first-of-a-kind units.

Cohn, P.D.; Bloomster, C.H.

1976-07-01T23:59:59.000Z

240

Economic analyses of alpha channeling in tokamak power plants.  

SciTech Connect

The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T{sub i} somewhat larger than the electron temperature T{sub e}, which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small.

Ehst, D.A.

1998-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2mo Callaway Unit 1 1,190 8,996 100.0 Union Electric Co 1 Plant 1 Reactor Owner Note: Totals may not equal sum of components due to independent rounding.

242

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ct Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of components due to independent ...

243

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ar Arkansas Nuclear One Unit 1, Unit 2 1,835 15,023 100.0 Entergy Arkansas Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of ...

244

Brawley Power Plant Abandoned | Open Energy Information  

Open Energy Info (EERE)

Abandoned Abandoned Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brawley Power Plant Abandoned Abstract N/A Authors California Division of Oil, Gas and and Geothermal Resources Published Journal Geothermal Hot Line, 1985 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Brawley Power Plant Abandoned Citation California Division of Oil, Gas, and Geothermal Resources. 1985. Brawley Power Plant Abandoned. Geothermal Hot Line. 15(2):76-77. Retrieved from "http://en.openei.org/w/index.php?title=Brawley_Power_Plant_Abandoned&oldid=682727" Categories: References Uncited References Geothermal References What links here Related changes Special pages Printable version Permanent link Browse properties

245

Power Plant Wastewater Treatment Technology Review Report  

Science Conference Proceedings (OSTI)

Assessing power plant water management options means screening an increasing number of wastewater treatment technologies. This report provides engineers with detailed information on treatment process performance, economics, and applications to complete rapid, yet meaningful, technology screening evaluations.

1997-01-01T23:59:59.000Z

246

Atmospheric considerations for central receiver power plants  

DOE Green Energy (OSTI)

This report documents the results of a study of the effects of atmospheric attenuation, turbulent scattering, and the use of cooling towers on the performance of solar thermal central receiver power plants.

Henderson, R.G.; Pitter, R.L.

1979-06-01T23:59:59.000Z

247

PV Power Plants Conference USA 2012  

Energy.gov (U.S. Department of Energy (DOE))

The 4th PV Power Plants conference will cover relevant topics for successful project development and sustainable business. This year's event will have an additional focus on certain distributed...

248

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Sources Coal-Fired Power Plants (CFPPs) Where is the coal in the United States? Coal Across the U.S. The U.S. contains coal resources in various places. The coal occurs...

249

Existing Coal-fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vulnerabilities for Existing Coal-fired Power Plants August 2010 DOENETL-20101429 Disclaimer This report was prepared as an account of work sponsored by an agency of the...

250

Quality control during construction of power plants  

SciTech Connect

This paper traces the background and examines the necessity for a program to control quality during the construction phase of a power plant. It also attempts to point out considerations for making these programs cost effective.

Hartstern, R.F.

1982-03-01T23:59:59.000Z

251

Parabolic Trough Solar Thermal Electric Power Plants  

DOE Green Energy (OSTI)

Although many solar technologies have been demonstrated, parabolic trough solar thermal electric power plant technology represents one of the major renewable energy success stories of the last two decades.

Not Available

2003-06-01T23:59:59.000Z

252

Region 8: 1977 power plant summary  

SciTech Connect

This document provides summary information on power generation facilities located in the U.S. EPA, Region VIII states of Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming. When available, plant specific information is presented.

Parker, G.E.; Boulter, G.

1978-07-01T23:59:59.000Z

253

Experience curves for power plant emission control technologies  

E-Print Network (OSTI)

1/2, 2004 Experience curves for power plant emission controlcoal-fired electric power plants. In particular, we focus on2004) Experience curves for power plant emission control

Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

2007-01-01T23:59:59.000Z

254

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

D. , The Central Reciever Power Plant: An Environmental,of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of Storage

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

255

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F. Baldwin.a central solar thermal power plant. A variety of heliostatSTORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F. Baldwin.

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

256

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

257

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

258

Advanced Cooling Options for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Alternative power plant cooling systems exist that offer significant opportunity for reducing the amount of water used in power plant cooling. These systems include direct dry cooling using air-cooled condensers, indirect dry cooling using air-cooled heat exchangers paired with water-cooled surface condensers, and a variety of hybrid systems incorporating both dry and wet cooling elements. The water savings afforded by the use of these systems, however, comes at a price in the form of more expensive ...

2013-11-27T23:59:59.000Z

259

Nuclear power plant construction activity, 1988  

SciTech Connect

Nuclear Power Plant Construction Activity 1988 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1988. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

1989-06-14T23:59:59.000Z

260

OUT Success Stories: Solar Trough Power Plants  

DOE Green Energy (OSTI)

The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

Jones, J.

2000-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Parabolic Trough Organic Rankine Cycle Power Plant  

DOE Green Energy (OSTI)

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

262

Nuclear Power Plant NDE Challenges Past, Present, and Future  

Science Conference Proceedings (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship

S. R. Doctor

2007-01-01T23:59:59.000Z

263

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

264

Miniature Hydroelectric Power Plant : EnergySmart School Inventors  

NLE Websites -- All DOE Office Websites (Extended Search)

Miniature Hydroelectric Power Plant EnergySmart School Inventors EnergySmart School Inventors Miniature Hydroelectric Power Plant Michael Torrey Inventor: Michael Torrey The...

265

Power Plant and Industrial Fuel Use Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Electricity Advisory Committee Technology Development Electricity Policy Coordination and...

266

Zhangbei Guotou Wind Power Plant | Open Energy Information  

Open Energy Info (EERE)

Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name Zhangbei Guotou Wind Power Plant Place Beijing Municipality, China Zip 100037 Sector Wind energy Product A company...

267

Utility Power Plant Construction (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Power Plant Construction (Indiana) Utility Power Plant Construction (Indiana) Eligibility Construction InstallerContractor MunicipalPublic Utility Rural Electric...

268

Pages that link to "Coal Power Plant Database" | Open Energy...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Power Plant Database" Coal Power Plant Database Jump to: navigation, search What...

269

Changes related to "Coal Power Plant Database" | Open Energy...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Power Plant Database" Coal Power Plant Database Jump to: navigation, search This is...

270

NREL: Technology Transfer - First Hybrid CSP-Coal Power Plant ...  

First Hybrid CSP-Coal Power Plant is Fired Up in Colorado July 23, 2010. On June 30, Xcel Energy began operating an experimental power plant near ...

271

Power Plant Electrical Reference Series, Volume 2: Power Transformers  

Science Conference Proceedings (OSTI)

This comprehensive and practical guide to electric power apparatus and electrical phenomena provides an up-to-date source book for power plant managers, engineers, and operating personnel. Aiding in the recognition and prevention of potential problems, the 16-volume guide can help utilities save staff time and reduce operating expenses.

1988-05-01T23:59:59.000Z

272

Aspects of thermal power plant automation  

Science Conference Proceedings (OSTI)

Thermal electric power plant is a set of facilities/equipment interconnected, designed to produce electricity or heat and power, by converting chemical energy of a fuel. This paper analyze the energy production stations, both turbine and steam generator ... Keywords: modeling and simulation, the Ovation System

Marius-Constantin Popescu; Nikos Mastorakis

2010-03-01T23:59:59.000Z

273

PROPOSED AMENDMENT TO THE NUCLEAR POWER PLANT  

E-Print Network (OSTI)

NOTE TO EDITORS: The Nuclear Regulatory Commission has received two reports from its independent Advisory Committee on Reactor Safeguards. The attached reports, in the form of letters, comment on a proposed amendment to the NRC's rule on license renewal for nuclear power plants and a proposed revision to the decommissioning rule for nuclear power reactors. Attachments:

T. S. Kress

1995-01-01T23:59:59.000Z

274

A Power Plant for the Home  

Science Conference Proceedings (OSTI)

The use of energy in American homes is still being developed for better efficiency. The idea of having a power plant in your home's basement instead is a consideration. Combined heat and power (CHP) systems can utilize up to 90 percent of a fossil fuel's ...

P. P. Predd

2007-04-01T23:59:59.000Z

275

Nuclear power plant construction activity 1987  

SciTech Connect

This annual report published by the Energy Information Administration (EIA) presents data on nuclear power plant construction activity. The previous report, Nuclear Power Plant Construction Activity 1986, included data for units that, as of December 31, 1986, were (1) in the construction pipeline, (2) canceled, or (3) commercial operation as of December 31, 1986. The data in this report, which were collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction,'' update the data in the previous report to be current as of December 31, 1987. Three types of information are included: plant characteristics and ownership; construction costs; and construction schedules and milestone dates.

1988-06-09T23:59:59.000Z

276

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network (OSTI)

EFFICIENCY INVESTMENTS TO POWER PLANTS: APPLICATIONS TOEFFICIENCY INVESTMENTS TO POWER PLANTS: APPLICATIONS TOEfficiency Investments to Power Plants: Applications to

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

277

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

Hossein Ghezel-Ayagh

2003-05-22T23:59:59.000Z

278

Monitoring Biological Activity at Geothermal Power Plants  

Science Conference Proceedings (OSTI)

The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

Peter Pryfogle

2005-09-01T23:59:59.000Z

279

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER  

E-Print Network (OSTI)

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER Don Steiner, Jeffrey Freidberg Farrokh Najmabadi William Nevins , and John Perkins The Energy Issues Working Group on Long-Term Visions energy production in the next century? 2. What is fusion's potential for penetrating the energy market

Najmabadi, Farrokh

280

Power Plant Dams (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant Dams (Kansas) Power Plant Dams (Kansas) Power Plant Dams (Kansas) < Back Eligibility Commercial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across any watercourse, the party so desiring to do the same may run the stream over the land of any other person by ditching or otherwise, and he, she or it may obtain the right to erect and maintain said dam and keep up and maintain the necessary ditches

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Embrittlement of Power Plant Steels  

Science Conference Proceedings (OSTI)

Plant operators seek to adopt approaches that can minimize costs, prevent forced outages, and maximize safety and reliability. Rigorous life assessment methodologies have been developed over the years and are commonly employed to determine component integrity and life. Such assessments examine key operational characteristics including: elevated temperature exposure, cycling operation, loading, environmental exposure, etc., to determine remaining life. Many of these characteristics can have a ...

2013-12-19T23:59:59.000Z

282

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2mi Donald C Cook Unit 1, Unit 2 2,069 15,646 52.8 Indiana Michigan Power Co Fermi Unit 2 1,085 7,738 26.1 Detroit Edison Co Palisades Unit 1 793 ...

283

ITER, fusion and the power reactor Leonid E. Zakharov,  

E-Print Network (OSTI)

came from outside of the FES "street light spot" when propulsion of lithium was invented as potentially the fusion research in the World. It also should affect the US approach to the reactor. 1 ITER and the basic reactor, it is necessary to realize that the ITER project, although vital for keeping fusion research

Zakharov, Leonid E.

284

Issues in the commercialization of magnetic fusion power  

SciTech Connect

This study identifies and outlines the issues that must be considered if fusion is to be put into commercial practice. The issues are put into perspective around a consistent framework and a program of study and research is recommended to anticipate and handle the issues for a successful fusion commercialization program. (MOW)

Rockwood, A.D.; Willke, T.L.

1979-12-01T23:59:59.000Z

285

AFRD - Fusion Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Fusion Virtual National Laboratory Heavy Ion Fusion Virtual National Laboratory AFRD - Fusion Energy Sciences AFRD - Home Fusion - Home HIF-VNL Website Ion Beam Technology Group website Artist's conception of a heavy ion fusion power plant Artist's conception of an IFE powerplant We further inertial fusion energy as a future power source, primarily through R&D on heavy-ion induction accelerators. Our program is part of a "Virtual National Laboratory," headquartered in AFRD, that joins us with Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory in close collaboration on inertial fusion driven by beams of heavy ions. The related emergent science of high-energy-density physics (HEDP) has become a major focus. For further synergy, we have combined forces with the former Ion Beam

286

Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a Component Testing Facility  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

Y. K. M. Peng et al.

287

Plant Support Engineering: Elastomer Handbook for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

On a daily basis, engineers and maintenance personnel make judgments regarding the capabilities, degradation, and longevity of elastomeric material and its compatibility with other materials. Although most applications of elastomers in nuclear power plants are not unique to the industry, there is an extra emphasis in certain applications with regard to reliability, quality, and resistance to nuclear-plant-specific environments. Existing resources on elastomers are extensive, but they are not tailored to ...

2007-08-20T23:59:59.000Z

288

Magnetic fusion reactor economics  

SciTech Connect

An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

Krakowski, R.A.

1995-12-01T23:59:59.000Z

289

Fusion Engineering and Design 80 (2006) 2562 Physics basis for the advanced tokamak fusion  

E-Print Network (OSTI)

2005 Abstract The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-axis. Transport projections are presented using the drift-wave based GLF23 model. The approach to power.V. All rights reserved. Keywords: Reactor studies; Fusion power plant; Advanced tokamak; Physics basis 1

290

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Dry-Cooling Tower Power-Generation Subsystem Summary AnGas-Circulation Subsystem The Power-Generation Subsystem Theinsulating plant piping. power-generation heat exchangers.

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

291

Stateline Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Stateline Solar Power Plant Stateline Solar Power Plant Jump to: navigation, search Name Stateline Solar Power Plant Facility Stateline Sector Solar Facility Type Photovoltaic Developer First Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Blythe Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Blythe Solar Power Plant Blythe Solar Power Plant Jump to: navigation, search Name Blythe Solar Power Plant Facility Blythe Sector Solar Facility Type Photovoltaic Developer First Solar Location Blythe, California Coordinates 33.6172329°, -114.5891744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6172329,"lon":-114.5891744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

power plant | OpenEI Community  

Open Energy Info (EERE)

plant plant Home Kyoung's picture Submitted by Kyoung(155) Contributor 12 November, 2012 - 09:17 Legal Reviews are Underway BHFS Legal review permitting power plant roadmap transmission The legal review of the Regulatory Roadmap flowcharts and supporting content is well underway and will continue for the next several months with our legal team at [www.bhfs.com Brownstein Hyatt Farber and Schreck]. The BHFS has been meeting with the NREL roadmap team during weekly 2-3 hour meetings to provide comments and suggestions on each flowchart at the federal and state levels. They have had some fantastic recommendations for updates - particularly for Sections 7 and 8 of the roadmap, pertaining to the permitting of power plants and transmission lines. Syndicate content 429 Throttled (bot load)

294

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

Hossein Ghezel-Ayagh

2003-05-23T23:59:59.000Z

295

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

296

Third International Conference on Improved Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This international conference reviewed advances in materials, components, and designs for coal-fired power plants. Also showcased were results from the EPRI improved power plant project, similar collaborative European projects, and new power plants in Japan. The proceedings' 54 papers contribute to an improved international understanding of advanced coal-fired power plant technology.

1992-09-01T23:59:59.000Z

297

Plant Support Engineering: Guidance for Planned Replacement of Large Power Transformers at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Utilities continue to pursue license renewal applications and power uprates, and these initiatives are being undertaken on an aging fleet of nuclear plants. Many plants are facing the necessity of replacing large power transformers to support these initiatives. However, industry expertise to support such activities has diminished since the days of plant construction8212there are fewer qualified vendors and equipment manufacturers, materials and standards might have changed, and licensees are typically no...

2007-11-02T23:59:59.000Z

298

Multisystem Data Integration in Fossil Power Plants  

Science Conference Proceedings (OSTI)

A modern power plant has numerous measurements, control signals, and other data that are used for process control, state indication, plant information, and equipment health monitoring. Much of these data are available in the control system and its associated process historian, but other data can reside in auxiliary systems, such as programmable logic controllers, unconnected (local) instruments, and computerized systems used for combustion monitoring, advanced process control, emissions control, ...

2013-11-27T23:59:59.000Z

299

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

300

Applications of high power millimeter waves in the DIII-D fusion program  

SciTech Connect

First operation of a new generation of MW level, 110 GHz generator (gyrotron) on the DIII-D fusion experimental device has been achieved. The desire for high power, cw millimeter (mm) wave sources to support fusion research and development is just now beginning to be realized. Plasma heating and current drive with directed mm waves rely on the strong absorption achieved when the wave frequency matches the natural ``cyclotron`` frequency of electrons in a magnetic field, or its harmonics. Recent progress in fusion experiments highlights the need for control of the interior details of the hot plasma, and nun wave systems are ideally suited for this role. A brief status of fusion research is given, and the importance of mm waves in the future directions for fusion research is described. The vacuum transmission components necessary for transmitting, monitoring, and launching high power 1 10 GHz waves into a plasma have been developed at General Atomics (GA) and will be described. High power mm waves have a number of attractive technological features for fusion applications compared with other candidate plasma heating and current drive technologies. Millimeter waves can be transmitted with high power density over large distances with low losses by utilizing corrugated waveguides, so the generators can be sited remotely, facilitating maintenance and saving valuable space near the fusion device.

Freeman, R.L.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Report on Hawaii geothermal power plant project  

DOE Green Energy (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

302

Experience curves for power plant emission control technologies  

E-Print Network (OSTI)

power plant emission control technologies Historical growthpower plant emission control technologies The environmental policy initiatives responsible for the substantial growthfired power plants. E.S. Rubin et al. Historical growth in

Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

2007-01-01T23:59:59.000Z

303

Virtual environments for nuclear power plant design  

SciTech Connect

In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

1996-03-01T23:59:59.000Z

304

Slim Holes for Small Power Plants  

SciTech Connect

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

305

Slim Holes for Small Power Plants  

DOE Green Energy (OSTI)

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

306

Processing on Information Fusion of Weak Electrical Signals in Plants  

Science Conference Proceedings (OSTI)

Information transmission of weak electrical signals in Bellis perennis was inosculated by a touching test system of self-made double shields with platinum sensors. Tested data of electrical signals denoised by the wavelet soft threshold and using Gaussian ... Keywords: intelligent control, information fusion, RBF neural networks, wavelet soft threshold denoising, weak electrical signal, Bellis perennis

Lanzhou Wang; Jinli Ding

2010-06-01T23:59:59.000Z

307

Strategies in tower solar power plant optimization  

E-Print Network (OSTI)

A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

Ramos, A

2012-01-01T23:59:59.000Z

308

Improved Conventional Testing of Power Plant Cables  

Science Conference Proceedings (OSTI)

Factors such as mechanical stress, dust and pollution accumulation, moisture, and thermal aging can cause deterioration and ultimately failure of power, control, and instrumentation cables. This report documents physical, chemical, and electrical tests performed on thermally aged power plant cable, with emphasis on improvements in two major electrical diagnostic techniques: low-frequency insulation analysis to probe the bulk condition of cable insulation and partial discharge testing to detect cracks and...

1996-03-14T23:59:59.000Z

309

Mercury Fate in IGCC Power Plants  

Science Conference Proceedings (OSTI)

Integrated Gasification Combined Cycle (IGCC) power plants are an alternative to conventional pulverized coal boilers. In an IGCC facility, coal or other feedstocks are converted to synthetic gas (syngas) at high temperature and pressure. The syngas can be used to produce electrical power in a combined cycle combustion turbine. One of the advantages of IGCC technology is that contaminants can be removed from the syngas prior to combustion, reducing the volume of gas that must be treated and leading to lo...

2006-12-21T23:59:59.000Z

310

France gets nuclear fusion plant France will get to host the project to build a 10bn-euro (6.6bn) nuclear fusion reactor, in  

E-Print Network (OSTI)

the construction costs will be shouldered by the EU. "We believe that the Iter project should start as soon energy programme in 1959. ITER - NUCLEAR FUSION PROJECT Project estimated to cost 10bn euros and will runFrance gets nuclear fusion plant France will get to host the project to build a 10bn-euro (£6.6bn

311

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

on the Gross Thermal Efficiency of a Solar Power Plant .and Maintenance* - Net Thermal Efficiency of the Solar PowerMWe Net Thermal Efficiency of the Solar Power Plant,MWe-hr/

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

312

Power Plant Tolling: Profits at the Point of Convergence?  

Science Conference Proceedings (OSTI)

Power plant tolling is a new concept for the electric power industry that appears to be increasingly used by power plant operators. This report describes how tolling is implemented and the rapid changes occurring in such transactions.

1998-04-20T23:59:59.000Z

313

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

on June, 1978 prices, AN OVERVIEW OF THE SOLAR POWER PLANTstorage for a solar power plant at a reasonable price usingsolar power plant energy storage for a reasonable price

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

314

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

315

Fusion: the way ahead Feature: Physics World March 2006 pages 20 -26  

E-Print Network (OSTI)

is due to power up in 2016 and will be the next step towards a demonstration fusion power plant, which power produces long-lived radioactive waste, while renewable energy sources such as wind, wave or solar is playing a key role in ensuring ITER will demonstrate the reality of fusion power At a Glance: Fusion power

316

Report on Hawaii Geothermal Power Plant Project  

DOE Green Energy (OSTI)

The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

Not Available

1983-06-01T23:59:59.000Z

317

Combined cycle power plant incorporating coal gasification  

DOE Patents (OSTI)

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

318

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

319

Groundwater Monitoring Guidance for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recent experience has shown that the initial design of nuclear power plant groundwater characterization programs can have a significant impact upon the resources needed to demonstrate regulatory compliance. This document provides technical experience and lessons learned in designing an optimized groundwater investigation program.

2005-09-06T23:59:59.000Z

320

Utilities expand baseload power plant plans  

Science Conference Proceedings (OSTI)

This article examines the plans being made by electric utilities to expand the number of baseload plants to accommodate increasing power demands. The results of a survey of utility's construction plans is presented. The topics include current construction, construction planning in the Southeast, current baseload technology, nuclear potential, and incorporation of environmental externalities impact in planning.

Smock, R.

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

Hossein Ghezel-Ayagh

2008-09-30T23:59:59.000Z

322

Heber geothermal demonstration power plant. Final report  

DOE Green Energy (OSTI)

The binary power plant is to be a 45 MW net electrical facility deriving energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) Heber reservoir in Southern California. The optimized baseline design established for the power plant is described, and the design and optimization work that formed the basis for the baseline design is documented. The work accomplished during Phase II, Preliminary Design is also recorded, and a base provided from which detailed plant design could be continued. Related project activities in the areas of licensing, environmental, cost, and schedule are also described. The approach used to establish the Phase II optimized baseline design was to (1) review the EPRI Phase I conceptual design and feasibility studies; (2) identify current design criteria and state-of-the-art technology; and (3) develop a preliminary design optimized to the Heber site based on utiliity standards.

Not Available

1979-06-01T23:59:59.000Z

323

Nevada geothermal power plant project approved  

Science Conference Proceedings (OSTI)

A proposal to construct and test a 12.5-megawatt geothermal power plant in the Steamboat Hot Springs KGRA in Washoe County, Nevada, has been approved by the Bureau of Land Management (BLM). The power plant could be completed by October 1987. Several stipulations are included in the BLM approval. The stipulations include a program to monitor ground water, surface water, and hydrothermal features to detect any impacts on the hydrology in the Steamboat Hot Springs area. When plant operations are tested, an emission test will be required to verify that noncondensible gas concentrations are within federal and state standards. No geothermal fluid will be discharged on the land's surface. Other stipulations include the special construction of electrical distribution lines to protect birds of prey; the fencing of hazardous areas; and a minimal disturbance of surface areas.

Not Available

1987-07-01T23:59:59.000Z

324

Mohave Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Mohave Solar Power Plant Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Owner Mojave Solar LLC, Developer Abengoa Solar, Mohave Sun LLC Location Mohave County, Arizona Coordinates 35.017264°, -117.316607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.017264,"lon":-117.316607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Proceedings: 1989 Fossil Power Plant construction conference  

SciTech Connect

EPRI's First International Conference on Fossil Plant Construction was held in Cincinnati, Ohio on August 29--31, 1989. The Conference was attended by approximately 140 people representing 35 utilities, many US architect engineering companies, equipment suppliers and independent power producers. The conference covered world wide developments in fossil plant construction. Included in these proceedings are papers from the following sessions: The Challenge of Demands for New Capacity and Construction; Recent Plant Construction Experience; Construction Experience for New Technologies; Cogeneration Project Experience; Regulatory Requirements for Fossil Plant Construction; Planning, Development and Design; Modular Construction Techniques; Applications of Advanced Computer Technologies; International and Domestic Construction Advances; Management Challenges of Fossil Projects; and Retrofit and Repowering Construction Experience. Individual projects are processed separately for the data bases.

Armor, A.F.; Divakaruni, S.M. (eds.)

1991-07-01T23:59:59.000Z

326

The Mercury Laser System-A scaleable average-power laser for fusion and beyond  

DOE Green Energy (OSTI)

Nestled in a valley between the whitecaps of the Pacific and the snowcapped crests of the Sierra Nevada, Lawrence Livermore National Laboratory (LLNL) is home to the nearly complete National Ignition Facility (NIF). The purpose of NIF is to create a miniature star-on demand. An enormous amount of laser light energy (1.8 MJ in a pulse that is 20 ns in duration) will be focused into a small gold cylinder approximately the size of a pencil eraser. Centered in the gold cylinder (or hohlraum) will be a nearly perfect sphere filled with a complex mixture of hydrogen gas isotopes that is similar to the atmosphere of our Sun. During experiments, the laser light will hit the inside of the gold cylinder, heating the metal until it emits X-rays (similar to how your electric stove coil emits visible red light when heated). The X-rays will be used to compress the hydrogen-like gas with such pressure that the gas atoms will combine or 'fuse' together, producing the next heavier element (helium) and releasing energy in the form of energetic particles. 2010 will mark the first credible attempt at this world-changing event: the achievement of fusion energy 'break-even' on Earth using NIF, the world's largest laser! NIF is anticipated to eventually perform this immense technological accomplishment once per week, with the capability of firing up to six shots per day - eliminating the need for continued underground testing of our nation's nuclear stockpile, in addition to opening up new realms of science. But what about the day after NIF achieves ignition? Although NIF will achieve fusion energy break-even and gain, the facility is not designed to harness the enormous potential of fusion for energy generation. A fusion power plant, as opposed to a world-class engineering research facility, would require that the laser deliver drive pulses nearly 100,000 times more frequently - a rate closer to 10 shots per second as opposed to several shots per day.

Ebbers, C A; Moses, E I

2008-03-26T23:59:59.000Z

327

Interactive Trouble Condition Sign Discovery for Hydroelectric Power Plants  

Science Conference Proceedings (OSTI)

Kyushu Electric Power Co.,Inc. collects different sensor data and weather information (hereafter, operation data) to maintain the safety of hydroelectric power plants while the plants are running. It is very rare to occur trouble condition in the plants. ... Keywords: Data Mining, Hydroelectric Power Plant, Support Vector Machine, Trouble Condition Detection

Takashi Onoda; Norihiko Ito; Hironobu Yamasaki

2009-07-01T23:59:59.000Z

328

DIRECT FUELCELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

Hossein Shezel-Ayagh

2005-05-01T23:59:59.000Z

329

DIRECT FUELCELL/TURBINE POWER PLANT  

SciTech Connect

This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

Hossein Shezel-Ayagh

2005-05-01T23:59:59.000Z

330

On Line Power Plant Performance Monitoring  

E-Print Network (OSTI)

Maintaining efficient and reliable plant operation is a prime objective in the generation of power. These are important considerations for utilities and particularly for Independent Power Producers as they become a more significant factor in the energy supply. On Line Performance Monitoring is an effective method to improve operating efficiency, detect and correct off nominal operation and expediently analyze cause and effect component performance relationships. The heart of a Performance Monitor is a modular collection of calculations used to determine performance indices in the power plant. Calculated performance indices are used in numerous applications: 1. To measure actual component performance compared to guaranteed or expected performance 2. To identify controllable operating problems and provide operator guidance in achieving the best operation of the plant 3. To evaluate component performance and deterioration for use in a maintenance program 4. To develop cost data and incremental cost characteristics for the economic operation or dispatch of the unit with other system energy sources 5. To document plant performance compared to base line data for the demonstration of efficient operation and improved availability. This paper will discuss the many advantages associated with a Performance Monitor system, their application, the benefits which may be realized and the potential of this concept with advanced diagnostic capability.

Ahner, D. J.; Priestley, R. R.

1990-06-01T23:59:59.000Z

331

Apparatus and method for extracting power from energetic ions produced in nuclear fusion  

DOE Patents (OSTI)

An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

Fisch, N.J.; Rax, J.M.

1994-12-20T23:59:59.000Z

332

Apparatus and method for extracting power from energetic ions produced in nuclear fusion  

DOE Patents (OSTI)

An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

Fisch, Nathaniel J. (Princeton, NJ); Rax, Jean M. (Paris, FR)

1994-01-01T23:59:59.000Z

333

Apparatus and method for extracting power from energetic ions produced in nuclear fusion  

DOE Patents (OSTI)

This invention is comprised of an apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

Fisch, N.J.; Rax, J.M.

1993-12-31T23:59:59.000Z

334

July 3, 2005 Fusion Power, Elusive and Alluring  

E-Print Network (OSTI)

over where to site an experimental nuclear fusion reactor. It will be in southern France, with Japan nuclear reactor does, are undeniably alluring. They would produce no greenhouse gases, would rely on abundant sources of fuel and would be safer than current nuclear reactors, and their radioactive waste

335

Ahuachapan Geothermal Power Plant, El Salvador  

DOE Green Energy (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

336

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

it is unlikely that nuclear fission power plants willIn the case of nuclear fission reactions, the fundamentalaspects of nuclear fusion and fission. This approach, termed

Kramer, Kevin James

2010-01-01T23:59:59.000Z

337

2 nature physics | VOL 2 | JANUARY 2006 | www.nature.com/naturephysics A high-power laser fusion  

E-Print Network (OSTI)

-power laser fusion facility for Europe MIKE DUNNE is at the Central Laser Facility, CCLRC Rutherford Appleton committed to fusion research facilities around the world, yet there is a distinct danger that key application to fusion-energy production. We are entering a period of huge investment in facilities that should

Loss, Daniel

338

Channeling of Fusion Alpha-Particle Power Using Minority Ion Catalysis A. I. Zhmoginov and N. J. Fisch  

E-Print Network (OSTI)

, with electrons kept cold, so that the effective fusion reactivity can be increased [9­11]. The meansChanneling of Fusion Alpha-Particle Power Using Minority Ion Catalysis A. I. Zhmoginov and N. J greatly facilitate controlled nuclear fusion. The parameter range for achieving this temperature disparity

339

Capacity Value of Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

340

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Sources NOx Sources Coal-Fired Power Plants (CFPPs) Causes of greenhouse gases, Including NOx What is NOx? Environmental Impacts NOx Sources Reduction Efforts Several greenhouse gases, including NOx, are increasing due to human activities in the following areas: Burning of fossil fuel (for example, coal-fired power plants), Logging (mainly contributes to carbon monoxide), Agriculture processes, Use of chlorofluorocarbons (CFC) in holon fire suppression and refrigeration The chart below shows the three major gases contributing to greenhouse gas emissions along with their source by sector. Annual Greenhouse Gas Emissions by Sector Note: This figure was created and copyrighted by Robert A. Rohde from published data and is part of the Global Warming Art project. This image is an original work created for Global Warming Art Permission is granted to copy, distribute and/or modify this image under either:

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal gasification power plant and process  

DOE Patents (OSTI)

In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

Woodmansee, Donald E. (Schenectady, NY)

1979-01-01T23:59:59.000Z

342

Seismic Isolation of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

With increasing public concern for seismic safety in general and research findings that indicate that seismic hazards may be larger than expected in many parts of the world, it would be prudent for the nuclear industry to consider more fully the potential benefits, costs, and impediments associated with applying seismic isolation more widely and to identify actions needed to develop practical and cost-effective guidelines for the application of seismic isolation to nuclear power plants (NPPs) and ...

2013-10-28T23:59:59.000Z

343

Damage to Power Plants Due to Cycling  

Science Conference Proceedings (OSTI)

The duty cycle for power plants ranges from baseloading or consistently operating at or near fully rated capacity to two-shifting or shutting down during off-peak demand periods. Quantifying the cost of cycling and finding ways to mitigate and control those costs are critical to profitability. European Technology Development Ltd. (ETD) originally prepared and published this report and has agreed to the current revision by EPRI. The report evaluates the effects and implications of cyclic operation on equi...

2001-07-27T23:59:59.000Z

344

Nuclear power plant construction activity, 1986  

SciTech Connect

Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

1987-07-24T23:59:59.000Z

345

Metallurgical Guidebook for Fossil Power Plant Boilers  

Science Conference Proceedings (OSTI)

A wide range of steels has been used to manufacture boilers and associated piping components for fossil power plants. Detailed information on the various alloys and component design considerations is contained in applicable specifications and standards, but utility personnel often need to access basic metallurgical information to support decision making for various projects. This guidebook, developed to meet this need, provides information on all of the most common boiler and piping materials.

2008-03-25T23:59:59.000Z

346

Advanced Power Plant Development and Analyses Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

347

Advanced Power Plant Development and Analysis Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

348

Fossil Power Plant Components Failure Analysis Guideline  

Science Conference Proceedings (OSTI)

The goal of engineering design is to obviate failures. However, this goal is only partially achievable because of the balance between cost and risk, potential deterioration during service, and the departure of actual operation from design assumptions. Thus, utility engineers are periodically faced with failures that span the gamut of power plant equipment and economic and safety consequences. Reaching a proper conclusion about the failure mechanism and the associated root cause is central to the post-fai...

2009-03-31T23:59:59.000Z

349

NREL: TroughNet - Parabolic Trough Power Plant Market, Economic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant Market, Economic Assessment and Deployment Parabolic trough technology is the most commercially mature, large-scale solar power technology in the...

350

NETL: News Release - Advanced Coal Dryer Boosts Power Plant Performanc...  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Date: May 24, 2006 Advanced Coal Dryer Boosts Power Plant Performance Latest Project in President's Clean Coal Power Initiative Begins Operations in North Dakota...

351

Fibrominn Biomass Power Plant Biomass Facility | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fibrominn Biomass Power Plant Biomass Facility Jump to: navigation, search Name Fibrominn Biomass Power...

352

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS  

E-Print Network (OSTI)

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi between those used to monitor the reactor coolant pump of a Pressurized Water Reactor (PWR) is considered Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

353

Electric Power Reliability in Chemical Plants  

E-Print Network (OSTI)

The quality and reliability of utility-generated electric power is presently receiving a great deal of attention from the chemical and refining industry. What changes have taken place to make electric power reliability a major topic of discussion at plants across the country? Has the quality and reliability of utility-generated power deteriorated over the past five or ten years? Or, has the perception of what constitutes reliable power changed with the advent, installation, and increasing usage of microprocessor-based equipment and controllers? The differing views held by both parties tend to make their relationship adversarial. Both parties have problems with their individuals views and the associated monetary costs, which can be either a loss or a gain. Improved reliability for the chemical plant means less "off spec" product, thereby resulting in more product to sell. Improved reliability for the utility means less customer downtime, thereby resulting in more KWH sales and a higher capacity factor. The biggest limiting factor to solving the actual problems is the dollar cost associated with that solution. Each solution must have a payback period that meets the economic criteria for return on investment for either the industry or the utility.

Cross, M. B.

1989-09-01T23:59:59.000Z

354

Decommissioning Handbook for Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This handbook lays out the steps necessary to fully decommission a coal-fired power plant. The handbook includes ways to handle permitting, environmental cleanup, site dismantlement, and site remediation, and discusses overall decommissioning costs. It is based on three actual case studies of coal plants recently decommissioned: the Arkwright coal-fired plant of Georgia Power, the Watts Bar coal-fired plant of TVA, and the Port Washington coal-fired plant of Wisconsin Electric Power.

2004-11-04T23:59:59.000Z

355

Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE))

NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

356

Aerosol nucleation in coal-fired power-plant plumes  

Science Conference Proceedings (OSTI)

New-particle nucleation within coal-fired power-plant plumes can have large effects on particle number concentrations

2013-01-01T23:59:59.000Z

357

Engineering Fundamentals - Nuclear Power Plant Materials, Version 2.0  

Science Conference Proceedings (OSTI)

The Engineering Fundamentals - Nuclear Power Plant Materials (EF-Materials) Version 2.0 computer-based training module provides new-hire engineering personnel with an overview of the basic concepts of nuclear power plant materials. Graphics and interactive features are used to enhance learning.EF-Materials covers the basic terms and concepts related to nuclear power plant materials and provides information about the significance of material degradation issues in nuclear power plants. ...

2012-11-30T23:59:59.000Z

358

Analysis of Power Quality Concerns at an Automobile Assembly Plant  

Science Conference Proceedings (OSTI)

This report summarizes the findings of a general power quality (PQ) study for an automobile assembly plant.

2003-12-31T23:59:59.000Z

359

Computer application for design activity in power plants  

Science Conference Proceedings (OSTI)

Software for Design Activity in Power Plants' helps the Power Plant engineers and managers to manage the development and design activities of equipments in the field of power plants. This paper is basically concerned with the computerization of the design activity of Condenser, vital equipment in Heat Exchanger Unit of Thermal Power Plant required for condensing the steam and for further reclaimable purposes to achieve economy. This software will also provide facilities to maintain user profile and the respective work details.

Giri, Parimal Kumar; Srivastava, Sonam [Apeejay College of Engineering, Sohna, Gurgaon (India)

2010-10-26T23:59:59.000Z

360

Advanced Condenser Boosts Geothermal Power Plant Output (Fact ...  

... Indonesia, and Turkey. Promising greater efficiency and reduced costs ADCC technology holds great promise for geothermal power plants seeking ...

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hybrid Wet/Dry Cooling for Power Plants (Presentation)  

DOE Green Energy (OSTI)

This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

Kutscher, C.; Buys, A.; Gladden, C.

2006-02-01T23:59:59.000Z

362

Fusion power production from TFTR plasmas fueled with deuterium and tritium  

Science Conference Proceedings (OSTI)

Peak fusion power production of 6.2[plus minus]0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2[times]10[sup 17] m[sup [minus]3] without the appearance of either disruptive magnetohydrodynamics events or detectable changes in Alfven wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits.

Strachan, J.D.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Ashcroft, D.; Barnes, C.W.; Barnes, G.; Batha, S.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N.L.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Cauffman, S.; Chang, Z.; Cheng, C.Z.; Collins, J.; Coward, G.; Darrow, D.S.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Fisher, R.; Fonck, R.J.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Gentile, C.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kugel, H.; Lam, N.T.; LaMarche, P.H.; Loughlin, M.J.; LeBlanc, B.; Leonard, M.; Levinton, F.M.; Machuzak, J.; Mansfield, D.K.; Martin, A.; Mazzucato, E.; Majeski, R.; Marmar, E.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkels

1994-05-30T23:59:59.000Z

363

Accelerators for heavy ion fusion  

SciTech Connect

Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

Bangerter, R.O.

1985-10-01T23:59:59.000Z

364

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

365

Proceedings: EPRI/ESEERCO Workshop on Power Plant Optimization  

Science Conference Proceedings (OSTI)

The growing impetus to reduce costs of NOx compliance and electricity production has accelerated deployment of power plant optimization software in the utility industry. The EPRI/ESEERCO Workshop on Power Plant Optimization provided a forum for utilities to assess available power plant optimization software and review the application experience to date.

1997-08-21T23:59:59.000Z

366

Analysis of nuclear power plant construction costs  

SciTech Connect

The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

1986-01-01T23:59:59.000Z

367

Summary for FT, IT and SE 20th IAEA Fusion Energy Conference  

E-Print Network (OSTI)

Aspects of Fusion Energy; ITER Activities Fusion Technology and Power Plant Design Summary and Conclusion of electricity generation; Through ITER the economically acceptable first generation fusion power plants could growing rapidly Predictions suggest strong growth will continue FPM/1 by C.M.Ferreira #12;Carbon dioxide

368

HRSG design method optimizes power plant efficiency  

SciTech Connect

Heat recovery steam generators (HRSGs) are widely used in cogeneration and combined-cycle power plants. simulating the performance of the HRSG system at design and off-design conditions helps the designer optimize the overall plant efficiency. It also helps in the selection of major auxiliary equipment. Conventional simulation of HRSG design and off-design performance is a tedious task, since there are several variables involved. However, with the simplified approach presented in this article, the engineer can acquire information on the performance of the HRSG without actually doing the mechanical design. The engineer does not need to size the tubes or determine the fin configuration. This paper reports that the method also can be used for heat balance studies and in the preparation of the HRSG specification.

Ganapathy, V. (ABCO (US))

1991-05-01T23:59:59.000Z

369

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk-emission and efficient gas turbine technology made combined-cycle gas turbine power plants the "resource of choice

370

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network (OSTI)

2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

371

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submittedConcentrated Solar Thermal Power Plants by Corey Lee Hardin

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

372

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

STORAGE FOR CONCENTRATING SOLAR POWER PLANTS, Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

373

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

374

Steam turbines for cogeneration power plants  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of one of the largest cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. Problems associated with the retrofitting of existing condensing type turbines for cogeneration applications are identified. 4 refs.

Oliker, I.

1980-04-01T23:59:59.000Z

375

Permitting Guidance for Biomass Power Plants  

Science Conference Proceedings (OSTI)

Biomass power plants could contribute significantly to reaching U.S. targets for renewable energy and greenhouse gas emissions reduction. Achieving these goals will require the construction of many new biomass-fired units, as well as the conversion of existing coal-fired units to biomass combustion or co-fired units. New biomass units will require air, water use, wastewater, and, in some cases, solid waste permits. Existing fossil fuel-fired units that will be converted to dedicated biomass-fired units o...

2011-05-12T23:59:59.000Z

376

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

377

Heavy Ion Fusion Systems Assessment study  

SciTech Connect

The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of a fusion system to identify favored areas in the multidimensional parameter space. The resulting cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 100 MWe.

Dudziak, D.J.; Herrmannsfeldt, W.B.

1986-07-01T23:59:59.000Z

378

Fuel Cell Power Plant Experience Naval Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

379

NSR and the Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

SOURCE REVIEW (NSR) and the CLEAN COAL SOURCE REVIEW (NSR) and the CLEAN COAL POWER INITIATIVE (CCPI) Summary Changes which result in increases in emissions of air pollutants from existing industrial facilities, such as power plants, can invoke stringent and costly new regulations. However, it is not the intent of such requirements to present a barrier to the installation of environmentally beneficial pollution control projects, or to projects demonstrating new methods to burn coal cleanly under the DOE Clean Coal Technology Program. Special provisions are included in the Clean Air Act and its implementing regulations to address potential exemptions of such projects from new source review regulations. This paper provides a general review of those provisions, and encourages project managers to

380

Optimization of Auxiliaries Consumption in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Operators of nuclear power plants face significant challenges to produce power more cost-effectively. One approach to producing power more cost-effectively is to reduce power consumption by auxiliary systems in the plant, leading to more power available for the grid. This report provides guidance for assessing auxiliary system performance and recommends approaches to reduce their power consumption. The report also presents results from questionnaires on auxiliary system consumption and, in some cases, ac...

2005-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Preparation for Ignition Experiments on the NIF Fusion Power Associates Annual Meeting  

E-Print Network (OSTI)

Preparation for Ignition Experiments on the NIF Fusion Power Associates Annual Meeting December 4-5, 2007 John Lindl NIF and Photon Science Directorate Chief Scientist Lawrence Livermore National chance for ignition in early NIF operations · The initial ignition experiments only scratch the surface

382

EU could go it alone on nuclear fusion plant 29.11.2004 -10:02 CET | By Richard Carter  

E-Print Network (OSTI)

research ministers. Talks over the world's first nuclear fusion reactor have stalled because Japan to house the ITER project", said the official. Whereas today's nuclear reactors work by smashing atomsEU could go it alone on nuclear fusion plant 29.11.2004 - 10:02 CET | By Richard Carter The EU

383

Productivity Improvement for Fossil Steam Power Plants, 2008  

Science Conference Proceedings (OSTI)

EPRI's Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products successfully applied and tested. Many of these have been described in the other EPRI publications: Productivity Improvement for Fossil Steam Power Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fossil Steam Power Plants, 2006, (1014598), and Productivity Improvement for Fossil Steam Power Plants, 2007 (10154...

2008-12-24T23:59:59.000Z

384

Nuclear power plant performance assessment pertaining to plant aging in France and the United States  

E-Print Network (OSTI)

The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

Guyer, Brittany (Brittany Leigh)

2013-01-01T23:59:59.000Z

385

Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets  

SciTech Connect

Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.

Woolley, R.D.

1998-08-19T23:59:59.000Z

386

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

387

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

388

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

389

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

390

Power supply requirements for a tokamak fusion reactor  

DOE Green Energy (OSTI)

The power supply requirements for a 7-M major radius commercial tokamak reactor have been examined, using a system approach combining models of the reactor and poloidal coil set, plasma burn cycle and MHD calculations, and power supply characteristics and cost data. A conventional system using an MGF set and solid-state rectifier/inverter power supplies was studied in addition to systems using a homopolar generator, superconducting energy storage inductor, and dump resistors. The requirements and cost of the power supplies depend on several factors but most critically on the ohmic heating ramp time used for startup. Long ramp times (approx. > 8 s) seems to be feasible, from the standpoint of resistive volt-second losses, and would appear to make conventional systems quite competitive with nonconventional ones, which require further research and development.

Brooks, J.N.; Kustom, R.L.

1979-02-01T23:59:59.000Z

391

Physics Optimization of the ARIES-RS Fusion Power Plant  

E-Print Network (OSTI)

Bull. Am. Phys. Soc. 44, 79 (1999)41st American Physical Society Annual Meeting of Division of Plasma Physics Seattle Washington, US, 1999945102922

Chan, V.S.

1999-11-15T23:59:59.000Z

392

Mechanical properties of materials for fusion power plants  

E-Print Network (OSTI)

induced plasticity wppm Weight partspermillion vii Nomenclature Chapter 2 at% Atomic percentage D Deuterieum eV Electronvolt Z AM Metallic atom with a mass number Z and an atomic number A n Neutron T Tritium wt% Weight percentage ? Alpha particle (helium ion...

Forsik, Stphane Alexis Jacques

393

THE ARIES-CS COMPACT STELLARATOR FUSION POWER PLANT  

E-Print Network (OSTI)

, Fliederweg 3, D 76351 Linkenheim-Hochstetten, Germany k Idaho National Laboratory, Idaho Falls, Idaho l

California at San Diego, University of

394

Sustaining neutral beam power supply system for the Mirror Fusion Test Facility  

SciTech Connect

In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year.

Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

1980-01-01T23:59:59.000Z

395

Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems  

SciTech Connect

A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2008-09-30T23:59:59.000Z

396

Using auxiliary gas power for CCS energy needs in retrofitted coal power plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

Bashadi, Sarah (Sarah Omer)

2010-01-01T23:59:59.000Z

397

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

398

Response to "Fusion Power: Will It Come?" By W. E. Parkins Farrokh Najmabadi, University of California, San Diego  

E-Print Network (OSTI)

. The latest US study, ARIES-AT1 , arrives at a cost of electricity of ~5 ¢/kWh, comparable to that of coal-fired plants. Mr. Parkins overestimates the cost of blanket/shield in a fusion device by a factor of ten temperature and not applicable to fusion). Higher heat fluxes are handled routinely in many industries

399

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks  

E-Print Network (OSTI)

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks Pascal Richter1 of solar power for energy supply is of in- creasing importance. While technical development mainly takes introduce our tool for the optimisation of parameterised solar thermal power plants, and report

Ábrahám, Erika

400

Future of Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

Nuckolls, J H; Wood, L L

2002-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Investment Decisions for Baseload Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Investment Decisions for Investment Decisions for Baseload Power Plants January 29, 2010 402/012910 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

402

Small power plant reverse trade mission  

DOE Green Energy (OSTI)

This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

Not Available

1989-09-06T23:59:59.000Z

403

Solar power plant: study and design  

SciTech Connect

The main objective of this study is to determine the feasibility of producing electricity from solar energy in Thailand through steam generation using a heliostat, a receiver, and a thermal storage subsystem. The scope of the study covers steam generation from solar thermal energy but does not include site selection or the generation of electricity from the steam. The study included technical considerations, subsystems preliminary design, research experimental design, experimental results, economic study, and conclusions and discussion. Computer simulation is involved, and the results indicate that the simulation models are valid. Hence, design by simulation model is valid. The conclusion is that a solar thermal power plant of 100 KW sub th is technically feasible for Thailand, but not yet economically feasible.

Boonyubol, C.; Choonwatana, P.

1983-02-01T23:59:59.000Z

404

Report on Geothermal Power Plant Cost and Comparative Cost of Geothermal and Coal Fired Steam Power Plants  

DOE Green Energy (OSTI)

This report is to be used by Utah Power and Light Company (UP and L) in making studies of geothermal power plants. The dollars per kilowatt comparison between a geothermal plant and a UP and L coal-fired plant is to be developed. Geothermal gathering system costs and return to owner are to be developed for information.

None

1977-07-01T23:59:59.000Z

405

North Brawley Power Plant Asset Impairment Analysis | Open Energy  

Open Energy Info (EERE)

North Brawley Power Plant Asset Impairment Analysis North Brawley Power Plant Asset Impairment Analysis Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Asset Impairment Analysis Author Giza Singer Even Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Asset Impairment Analysis Citation Giza Singer Even. North Brawley Power Plant Asset Impairment Analysis [Internet]. [updated 2012;cited 2012]. Available from: http://www.sec.gov/Archives/edgar/data/1296445/000119312512118396/d316623dex991.htm Retrieved from "http://en.openei.org/w/index.php?title=North_Brawley_Power_Plant_Asset_Impairment_Analysis&oldid=682476" Categories: References

406

Florida Electrical Power Plant Siting Act (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Power Plant Siting Act (Florida) Electrical Power Plant Siting Act (Florida) Florida Electrical Power Plant Siting Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Buying & Making Electricity Solar Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection The Power Plant Siting Act (PPSA) is the state's centralized process for licensing large power plants. One license-a certification- replaces local and state permits. Local governments and state agencies within whose jurisdiction the power plant is to be built participate in the process. For

407

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process for Power Plant Flue Gas Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D)...

408

Risk-informed incident management for nuclear power plants  

E-Print Network (OSTI)

Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

Smith, Curtis Lee, 1966-

2002-01-01T23:59:59.000Z

409

Development of an Equivalent Wind Plant Power-Curve: Preprint  

SciTech Connect

Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.

Wan, Y. H.; Ela, E.; Orwig, K.

2010-06-01T23:59:59.000Z

410

and Enable Development of Fusions Energy Applications  

E-Print Network (OSTI)

Demonstrate advanced physics operation of a tokamak in steadystate with Burn Utilize conservative expressions of all elements of Advanced Tokamak physics to produce 100-250 MW fusion power with modest energy gain (Q 2 weeks Further develop all elements of Advanced Tokamak physics, qualifying them for an advanced performance DEMO Develop fusions nuclear technology Test materials with high neutron fluence (3-6 MW-yr/m 2) with duty factor 0.3 on a year Demonstrate Tritium self-sufficiency Develop fusion blankets that make both tritium and electricity at 1-2 MW/m 2 neutron fluxes Develop fusion blankets that produce hydrogen With ITER and IFMIF, provide the basis for a fusion DEMO Power Plant

R. D. Stambaugh

2007-01-01T23:59:59.000Z

411

New Theoretical Model of the Complex Edge Region of Fusion Plasmas...  

Office of Science (SC) Website

a high pedestal is required for copious fusion energy production in ITER or a fusion power plant, and (2) the large free energy in the pedestal region can drive instabilities...

412

Arsenic and Selenium Treatment Technology Summary for Power Plant Wastewaters  

Science Conference Proceedings (OSTI)

This report summarizes the most suitable technologies available for the removal of arsenic and selenium from power plant wastewaters. The information stems from literature searches and the authors' experience in wastewater treatment systems from generally non-power plant sources since there are limited operating experiences for power plant applications. The report lists existing and potential technologies that meet the treatment goals of reducing arsenic and selenium to the levels set for U.S. En...

2004-11-03T23:59:59.000Z

413

Productivity Improvement for Fossil Steam Power Plants, 2010  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fosiil Steam Power Plants 2006, (101459), Productivity Improvement for Fossil Steam Power Plants 2007 (1015445), Productivity Impro...

2011-01-31T23:59:59.000Z

414

Steam-Electric Power-Plant-Cooling Handbook  

SciTech Connect

The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

1982-02-01T23:59:59.000Z

415

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network (OSTI)

Solar Two is a concentrating solar power plant that can supply electric power "on demand time ever, a utility-scale solar power plant can supply elec- tricity when the utility needs it most achievement. The design is based on lessons learned at Solar One, this country's first power tower. Solar One

Laughlin, Robert B.

416

Next generation geothermal power plants. Draft final report  

DOE Green Energy (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

417

Designing geothermal power plants to avoid reinventing the corrosion wheel  

DOE Green Energy (OSTI)

This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

Conover, Marshall F.

1982-10-08T23:59:59.000Z

418

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas Gas Technology Institute (GTI) will develop a membrane separation technology to recover water...

419

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional-Scale Sandia National Laboratories (SNL) and the...

420

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

422

(USC) Power Plant Development and High Temperature Materials ...  

Science Conference Proceedings (OSTI)

For further improvement of thermal efficiency and decreasing CO2 emission China intents to develop the advanced USC power plant with the...

423

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

including: assessment of the availability and proximity of impaired waters at twelve power plant locations spanning the major geographic regions of the continental 48 states;...

424

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

- Lehigh University This project determines the feasibility of using low grade power plant waste heat to dry lignite and sub-bituminous coals before they are burned in...

425

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

in Cooling Towers GE Global Research will develop treatment technologies to enable power plant use of non-traditional waters. Using effective treatment methods to make...

426

NETL: News Release - Abraham Announces Pollution-Free Power Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

February 27, 2003 Abraham Announces Pollution-Free Power Plant of the Future 1 Billion 'Living Prototype' to Showcase Cutting-Edge Technologies to Advance President's Climate...

427

Overview of Trends in Nuclear Power Plant Sensors and Instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Nuclear Power Plant Sensors and Instrumentation SASAN BAKTIARI Nuclear Engineering Division Argonne National Laboratory Ph: (630) 252-8982 bakhtiati@anl.gov Abstract -...

428

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification...

429

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

was to identify cost saving alternatives to the current coal- fired power plant cooling process using non-traditional water sources such as coal mine discharges....

430

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

431

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

432

Capturing Carbon from Existing Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

scrubbing technology (7, 8). The modifi cations are focused primarily on extensive thermal integration of the CO 2 -capture system with the power plant and develop- ment of...

433

North Brawley Power Plant Placed in Service; Currently Generating...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW;...

434

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

435

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

... decline during summer and winter as power plants burn through stocks to meet peak electricity demand for heating and cooling, ... overall heating load in ...

436

Virtual Power Plant Simulation and Control Scheme Design.  

E-Print Network (OSTI)

?? Virtual Power Plant (VPP) is a concept that aggregate Distributed Energy Resources (DER) together, aims to overcome the capacity limits of single DER and (more)

Chen, Zhenwei

2012-01-01T23:59:59.000Z

437

Magnetic Detection of Microstructure Change in Power Plant Steels  

E-Print Network (OSTI)

Pump Cooling water Cooling water Electrical output Condenser Reheat Coal Boiler Superheater Ash HP IP/LP Figure 2.1: Schematic of a power plant steam cycle. After Cole, 2000. towards further increases (Masuyama, 2001). Steam turbines may be expected... . 2 Chapter 2 Microstructural Evolution in Power Plant Steels 2.1 Power plant operation In power plant, heat energy from fuel combustion or nuclear fission is used to produce jets of steam. The kinetic energy of the steam is converted to electrical...

Yardley, Victoria Anne

2003-07-12T23:59:59.000Z

438

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

Alternative Fuels. Includes ... decline during summer and winter as power plants burn through stocks to meet peak electricity demand for heating and cooling, ...

439

Deep Geothermal Well and Power Plant Project Final Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole...

440

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network (OSTI)

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the...

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Predicting the Critical Temperatures in Power Plant Steels  

Science Conference Proceedings (OSTI)

Presentation Title, Predicting the Critical Temperatures in Power Plant Steels. Author(s), Lun Wang, ... Failure Analysis of Welded Backup Rolls Failure Mode of...

442

What is the efficiency of different types of power plants ...  

U.S. Energy Information Administration (EIA)

Average annual heat rates for specific types of fossil-fuel generators and nuclear power plants for most recent year available.

443

Changes related to "Geothermal/Power Plant" | Open Energy Information  

Open Energy Info (EERE)

pages linked to the given page instead Go 27 June 2013 (diff | hist) . . GRRSection 7 - Power Plant Siting, Construction, and Regulation Overview; 09:25 . . (+481) . ....

444

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... the program provided an economic incentive for coal-fired power plants to reduce emissions by installing pollution contro ...

445

Guideline for Online Monitoring of Nuclear Power Plants: Volume 2  

Science Conference Proceedings (OSTI)

This report continues a series of guidelines that assist member utilities in developing an online monitoring (OLM) program for equipment condition assessment at nuclear power plants.

2011-12-16T23:59:59.000Z

446

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

447

Need for process/radiochemists at nuclear power plants  

SciTech Connect

Viewgraphs are presented concerning the operating requirements for chemists at nuclear power plants. The number of positions available, job duties, and training requirements are reviewed.

Wymer, R.G.; Skrable, K.W.; Alexander, E.L.

1984-01-01T23:59:59.000Z

448

Simplified Methodology for Designing Parabolic Trough Solar Power Plants.  

E-Print Network (OSTI)

??The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for the (more)

Vasquez Padilla, Ricardo

2011-01-01T23:59:59.000Z

449

Simplified Methodology for Designing Parabolic Trough Solar Power Plants.  

E-Print Network (OSTI)

?? The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for (more)

Vasquez Padilla, Ricardo

2011-01-01T23:59:59.000Z

450

Transient Stability of the Grid with a Wind Power Plant  

Science Conference Proceedings (OSTI)

This paper reports on an investigation of the impact of wind power plant penetration on the transient stability of the grid. Transient stability for different faults is investigated via simulation. A wind power plant with 22 turbines operated in variable speed mode will be used as the subject of the study. As a comparison, we replace the wind power plant with a conventional wind power plant (synchronous generator) and compare the results for the same faults. We also consider the effect of different locations.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2009-03-15T23:59:59.000Z

451

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman,...

452

Technology qualification for IGCC power plant with CO2 Capture.  

E-Print Network (OSTI)

?? Summary:This thesis presents the technology qualification plan for the integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture based on DNV recommendations. (more)

Baig, Yasir

2011-01-01T23:59:59.000Z

453

MANAGING MODERNIZATION OF NUCLEAR POWER PLANT INSTRUMENTATION AND CONTROL SYSTEMS  

E-Print Network (OSTI)

Managing modernization of nuclear power plant instrumentation and control systems February 2004The originating Section of this publication in the IAEA was:

unknown authors

2003-01-01T23:59:59.000Z

454

Life cycle assessment of a pumped storage power plant.  

E-Print Network (OSTI)

?? Wind and solar power plants are gaining increasing attention due to low green house gas emissions associated with electricity generation. The installed capacity of (more)

Torres, Octavio

2011-01-01T23:59:59.000Z

455

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

... (kWh). There were 65 nuclear power plants with 104 operating nuclear reactors that generated a total of 790 billion kilowatt-hours (kWh), ...

456

Losses of Offsite Power at U.S. Nuclear Power Plants - 2011  

Science Conference Proceedings (OSTI)

This report describes the loss of offsite power experience at U.S. nuclear power plants during the year 2011 and provides insights into the causes of offsite power losses during the period 20022011.

2012-06-11T23:59:59.000Z

457

DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg  

SciTech Connect

DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

Koshcheev, L. A. [JSC 'NIIPT' (Russian Federation); Shul'ginov, N. G. [JSC 'SO EES' (Russian Federation)

2011-05-15T23:59:59.000Z

458

Optimal operation of a virtual power plant with risk management  

Science Conference Proceedings (OSTI)

In the evolving smart power systems (or smart grids), distributed generators (DG) and virtual power plants (VPP) have major roles in providing electric energy for microgrids. This paper studies the optimal operation of a VPP in a microgrid considering ...

H. Taheri; A. Rahimi-Kian; H. Ghasemi; B. Alizadeh

2012-01-01T23:59:59.000Z

459

Recent Progress in U.S. Nuclear Power Plant Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Progress in U.S. Nuclear Power Plant Safety Speaker(s): Robert Budnitz Date: April 15, 2010 - 12:00pm Location: 90-3122 The U.S. commercial nuclear-power industry consists...

460

Modern Control System Design for Hydro-power Plant.  

E-Print Network (OSTI)

??This thesis addresses dynamic model and advance controller design for entire Hydro-power plant. Although hydro-power has the best payback ratio and the highest efficiency in (more)

Ding, Xibei

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Use of Alternate Water Sources for Power Plant Cooling  

Science Conference Proceedings (OSTI)

This report lays out a framework developed to evaluate the potential use of non-traditional water supplies for cooling new or existing power plants. The report will be of value to environment, generation, and planning managers within power companies.

2008-03-31T23:59:59.000Z

462

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Accessed May 2008 from www.sce.com 9. The California BiomassCollaborative, Biomass gasification / power generationECONOMIC ANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

463

Power Plant and Demo Studies in Europe  

E-Print Network (OSTI)

GA. I am pleased to report that the state of our Fusion Energy Division is strong; our membership has been steadily increasing and our financial balance sheet is in good order. I would like to take this opportunity to welcome our incoming Chair, Dr. Jeff Latkowski (Lawrence Livermore National Laboratory), who will assume the Chairmanship at the conclusion of the June annual meeting in Reno. I would also like to welcome all the newly elected members of the Executive Committee (see election results below), for their willingness to serve on behalf of the Division members. This letter summarizes some of the ongoing activities at ANS, plans for the 17 th ANS Topical Meeting on the Technology of Fusion Energy (TOFE), and activities related to the U.S. DOE Fusion Energy Sciences Advisory Committee (FESAC). FESAC As Chair of the ANS Fusion Energy Division, I am honored to serve as an Ex-Officio member of FESAC. During my tenure on the Committee, FESAC has met twice (July 19, 2005, and February 28 to March 1, 2006); a third meeting is scheduled for June 1 st, 2006. Among the matters discussed at the first two meetings are: (1) Report by the Facilities Panel (chaired by Dr. Jill Dahlberg of NRL) assessing the mission and the need for the three major U.S. toroidal fusion facilities (C-MOD, DIII-D, and NSTX); (2) Report by Dr. Ray Fonck (University of Wisconsin) on behalf of the U.S. Burning Plasma Organization, a fusion research community-based effort to advance burning

unknown authors

2006-01-01T23:59:59.000Z

464

Modular Trough Power Plant Cycle and Systems Analysis  

DOE Green Energy (OSTI)

This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

Price, H.; Hassani, V.

2002-01-01T23:59:59.000Z

465

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

466

Korea Hydro & Nuclear Power Co., Ltd. Nuclear Power Plants: Construction and Technology Experience  

Science Conference Proceedings (OSTI)

The Korean nuclear power industry has grown rapidly since Kori Unit 1, the first Korean nuclear power plant (NPP), which began operation in April 1978. Following the technology developments of the nuclear power industry in 1980s, the first standard Korean nuclear plants (Ulchin Units 3 and 4) were constructed in the 1990s. At present, 20 NPP units operate in Korea16 pressurized water reactor (PWR) plants and four pressurized heavy water reactor (PHWR) plants; eight PWR units are under construction. This ...

2011-09-21T23:59:59.000Z

467

Materials for Ultra-Supercritical Steam Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

468

Program Change Management During Nuclear Power Plant Decommissioning  

Science Conference Proceedings (OSTI)

Decommissioning a nuclear power plant is a complex project, which involves the coordination of several different departments and the management of changing plant conditions, programs, and regulations. As plants meet certain project Milestones, the evolution of such plant programs and regulations can help optimize project execution and cost. This report provides information about these Milestones and the plant departments and programs that change throughout a decommissioning project.

2009-12-11T23:59:59.000Z

469

Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vogtle Nuclear Power Plant Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Just over 60 years ago, scientists in Arco, Idaho, successfully used nuclear energy to power four light bulbs, laying the foundation for U.S.

470

Power Plant Research and Siting Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term solutions. The program manages a consolidated review of all issues related to power generation in Maryland: it reviews applications, evaluates impacts, and recommends conditions for

471

GRR/Section 7-CA-b - State Plant Commissioning Process, Small Power Plant  

Open Energy Info (EERE)

7-CA-b - State Plant Commissioning Process, Small Power Plant 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies California Code of Regulations, Title 20 - Public Utilities and Energy Triggers None specified Click "Edit With Form" above to add content 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

472

Inspection of Nuclear Power Plant Containment Structures  

SciTech Connect

Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

Graves, H.L.; Naus, D.J.; Norris, W.E.

1998-12-01T23:59:59.000Z

473

Honey Lake Hybrid Power Plant Project. Volume 1. Executive summary  

DOE Green Energy (OSTI)

A technical and economic feasibility study of the engineering aspects of a hybrid wood-fired geothermal electrical generating plant is presented. The proposed plant location is in Lassen County, California, near the Wendel Amedee Known Geothermal Resource Area. This power plant uses moderate temperature geothermal fluid to augment the heat supplied from a wood waste fired boiler. This report defines major plant systems for implementation into the plant conceptual design and provides sufficient design information for development of budgetary cost estimates. Emphasis is placed on incorporation of geothermal heat into the power generation process. Plant systems are designed and selected based on economic justification and on proven performance. The culminating economic analysis provides the financial information to establish the incentives for construction of the plant. The study concludes that geothermal energy and energy from wood can be combined in a power generating plant to yield attractive project economics.

Not Available

1982-03-01T23:59:59.000Z

474

Fusion materials modeling: Challenges and opportunities  

E-Print Network (OSTI)

The plasma facing components, first wall, and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National ...

Wirth, B. D.

475

Energy Department Report Calculates Emissions and Costs of Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Calculates Emissions and Costs of Power Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. Grid operators typically cycle power plants to accommodate fluctuations in

476

Sensor Fault Detection in Power Plants Andrew Kusiak1  

E-Print Network (OSTI)

and Soroush 2003 . Any false reading could lead to di- sastrous outcomes. In a coal-fired power plant, faultySensor Fault Detection in Power Plants Andrew Kusiak1 and Zhe Song2 Abstract: This paper presents approach handles data from temporal processes by periodic updates of the knowledge base. An industrial

Kusiak, Andrew

477

Nuclear Power Plant Fire-Modeling Applications Guide  

Science Conference Proceedings (OSTI)

This report replaces EPRI 1002981, Fire Modeling Guide for Nuclear Power Plant Applications, August 2002, as guidance for fire-modeling practitioners in nuclear power plants (NPPs). The report has benefited from insights gained since 2002 on the predictive capability of selected fire models to improve confidence in the use of fire modeling in NPP decision-making.

2009-12-22T23:59:59.000Z

478

Multivariable model predictive control for a gas turbine power plant  

Science Conference Proceedings (OSTI)

In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet ... Keywords: ARX, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-05-01T23:59:59.000Z

479

Groundwater Quality at Power Plants in West Virginia  

Science Conference Proceedings (OSTI)

As states develop groundwater regulations, utilities are increasingly being required to examine the effects of all facets of power plant operations on groundwater quality. This report summarizes the results of a four-year study of groundwater quality at 12 power plants in West Virginia.

1999-12-10T23:59:59.000Z

480

Data Mining for Soft Sensing Modeling of Power Plant Parameters  

Science Conference Proceedings (OSTI)

As a new modeling thought, the accurate soft sensing model of power plant parameter was established by data mining method, which obtained effective information from the large number of real-time operation data and avoided low accuracy of conventional ... Keywords: data mining, soft sensing, mathematic modeling, power plant parameters, partial least-square regression

Tao Jin; Zhongguang Fu; Gang Liu

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion power plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-02-01T23:59:59.000Z

482

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

This technical progress report summarizes the objectives and progress on the following tasks associated with the project: Commercialization; Power plant development; Manufacturing facilities development; Testing facility development; Stack research; and Advanced research and technology development. The project will demonstrate a 250 kW molten carbonate fuel cell power plant based on the IMHEX stack design concept.

NONE

1998-01-01T23:59:59.000Z

483

Groundwater Sampling and Analysis Sourcebook for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This sourcebook provides technical guidance and best practices for groundwater sampling and analysis at nuclear power plants. Robust sampling and analysis protocols are required to ensure accurate characterization of radionuclides in groundwater.BackgroundNuclear power plants implement groundwater protection programs to minimize contamination of on-site soil and groundwater, and to prevent the off-site migration of licensed material through groundwater ...

2012-09-25T23:59:59.000Z

484

Optimization system for operation of gas cogeneration power plant  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, optimization, process control

Ion Miciu

2008-09-01T23:59:59.000Z

485

Baca geothermal demonstration project. Power plant detail design document  

DOE Green Energy (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

486

DOE Signs Cooperative Agreement for New Hydrogen Power Plant | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant November 6, 2009 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has signed a cooperative agreement with Hydrogen Energy California LLC (HECA) to build and demonstrate a hydrogen-powered electric generating facility, complete with carbon capture and storage, in Kern County, Calif. The new plant is a step toward commercialization of a clean technology that enables use of our country's vast fossil energy resources while addressing the need to reduce greenhouse gas emissions. HECA, which is owned by Hydrogen Energy International, BP Alternative Energy, and Rio Tinto, plans to construct an advanced integrated gasification combined cycle (IGCC) plant that will produce power by

487

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

488

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants GIS Catalog Graphic Arthur Langhus Layne, LLC will create an internet-based, geographic information system (GIS) catalog of non-traditional sources of cooling water for coal-fired power plants. The project will develop data to identify the availability of oil and gas produced water, abandoned coal mine water, industrial waste water, and low-quality ground water. By pairing non-traditional water sources to power plant water needs, the research will allow power plants that are affected by water shortages to continue to operate at full-capacity without adversely affecting local communities or the environment. The nationwide catalog will identify the location, water withdrawal, and

489

Burner Management System Maintenance Guide for Fossil Power Plant Personnel  

Science Conference Proceedings (OSTI)

Burner Management System Maintenance Guide for Fossil Power Plant Personnel provides fossil plant maintenance personnel with current maintenance information on this system. This report will assist plant maintenance personnel in improving the reliability of and reducing the maintenance costs associated with the burner management system.

2008-03-25T23:59:59.000Z