Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

Dart, Eli

2014-01-01T23:59:59.000Z

2

Fusion Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

3

Fusion Energy Sciences Jobs  

Office of Science (SC) Website

Title: Administrative Support Specialist 15 DE SC HQ 013
Office: Fusion Energy Sciences
URL:

4

AFRD - Fusion Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Fusion Virtual National Laboratory Heavy Ion Fusion Virtual National Laboratory AFRD - Fusion Energy Sciences AFRD - Home Fusion - Home HIF-VNL Website Ion Beam Technology Group website Artist's conception of a heavy ion fusion power plant Artist's conception of an IFE powerplant We further inertial fusion energy as a future power source, primarily through R&D on heavy-ion induction accelerators. Our program is part of a "Virtual National Laboratory," headquartered in AFRD, that joins us with Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory in close collaboration on inertial fusion driven by beams of heavy ions. The related emergent science of high-energy-density physics (HEDP) has become a major focus. For further synergy, we have combined forces with the former Ion Beam

5

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

Division, and the Office of Fusion Energy Sciences. This isEnergy Sciences, DOE Office of Science Energy SciencesDepartment of Energy, Office of Science, Office of Advanced

Dart, Eli

2014-01-01T23:59:59.000Z

6

Fusion Energy Sciences Program Mission  

E-Print Network (OSTI)

Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion power has the long-range potential to serve as an abundant and clean source of energy and recommends

7

Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences  

E-Print Network (OSTI)

. Benefits Total world energy consumption has increased by more than 50% during the past 25 years, and given,182 31,317 Total, Fusion Energy Sciences 280,683a 318,950 427,850 Public Law Authorizations: Public LawScience/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile

8

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

program to achieve ignition, to provide laser facility timeIgnition Facility National Institute for Fusion Science National LaserIgnition Facility (NIF). In support of the OMEGA Laser

Dart, Eli

2014-01-01T23:59:59.000Z

9

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

in Heavy Ion Fusion Science, Magnetic Fusion Energy, andin Heavy Ion Fusion Science, Magnetic Fusion Energy, and

Kwan, J.W.

2008-01-01T23:59:59.000Z

10

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

Network Research) C.S. Chang, PPPL (Fusion Simulations) EliGreenwald, MIT PSFC (Alcator C-Mod) Paul Henderson, PPPL (PPPL Networking) Steve Jardin, PPPL (Fusion Simulations)

Dart, Eli

2014-01-01T23:59:59.000Z

11

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

the world’s first reactor-scale fusion device in Cadarache,vital to fusion research, as the newest reactors are those

Dart, Eli

2014-01-01T23:59:59.000Z

12

http://science.energy.gov/fes Establishing the scien.fic basis for fusion energy  

E-Print Network (OSTI)

http://science.energy.gov/fes Establishing the scien.fic basis for fusion energy and plasma science goals · Office of Science role regarding fusion energy: establish university engagement and leadership. Fusion materials science will be an increasing

13

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network (OSTI)

19   8   Magnetic  Fusion  Energy  Science  (MFES)  Case  2017   8 Magnetic  Fusion  Energy  Science  (MFES)  Case  and   NERSC   Senior  Science  Advisor   Magnetic   Fusion  

Gerber, Richard

2014-01-01T23:59:59.000Z

14

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

General Plasma Science Magnetic Fusion Energy Magneticfor  Fusion  Energy  Sciences   Magnetic  Fusion  Plasma  from the crosscutting science of magnetic reconnection and

Gerber, Richard

2012-01-01T23:59:59.000Z

15

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network (OSTI)

the Office of Science— started as the Magnetic Fusion EnergyRequirements and Science Process All U.S. magnetic fusionMagnetic Fusion Energy Program 11 MIT Plasma Science &

Dart, Eli

2008-01-01T23:59:59.000Z

16

Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Programs » FES Home Programs » FES Home Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Fusion Energy Sciences Plasma science forms the basis for research that is needed to establish our ability to harness the power of the stars in order to generate fusion energy on earth. The research required for fusion energy's success is intimately tied to rich scientific questions about some of nature's most extreme environments, inside and outside of stars, and has practical

17

A Strategic Program Plan for Fusion Energy Sciences Fusion Energy Sciences  

E-Print Network (OSTI)

, while creating manageable waste and little risk to public safety and health. Making fusion energy a part control a burning plasma that shares the characteris- tic intensity and power of the sun? · How can we use capable of producing a self-sustain- ing fusion reaction, called a "burning plasma." It is the next

18

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network (OSTI)

Fusion  Energy  Sciences:  Target  2017   4 Meeting  Background  and  Structure   In   support   of   its   mission   to   provide  

Gerber, Richard

2014-01-01T23:59:59.000Z

19

SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH  

E-Print Network (OSTI)

SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH RESTORE FUNDING FOR THE DOMESTIC FUSION PROGRAM AND MAINTAIN OUR COMMITMENT TO ITER the goals of the U.S. fusion program. To realize the promise of participation in ITER, cultivate future

20

Multi-University Research to Advance Discovery Fusion Energy Science using a  

E-Print Network (OSTI)

Dept of Applied Physics and Applied Math, Columbia University, New York, NY Plasma Science and FusionMulti-University Research to Advance Discovery Fusion Energy Science using a Superconducting Center, MIT, Cambridge, MA Outline · Intermediate scale discovery fusion energy science needs support

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fusion Energy Sciences User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

FES User Facilities FES User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 FES User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences program supports the operation of the following national scientific user facilities: DIII-D Tokamak Facility: External link DIII-D, located at General Atomics in San Diego, California, is the largest magnetic fusion facility in the U.S. and is operated as a DOE national user facility. DIII-D has been a major contributor to the world fusion program

22

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

mp288 Magnetic Fusion Energy Materials High Energy Densitymaterials science, experimental validation enabled by targeted validation platforms, and high energymaterials needed to support a burning plasma environment; Pursue scientific opportunities and grand challenges in high energy

Gerber, Richard

2012-01-01T23:59:59.000Z

23

Critical Science Issues for Direct Drive Inertial Fusion Energy  

Science Journals Connector (OSTI)

There are several topics that require resolution prior to the construction of an Inertial Fusion Energy [IFE] laboratory Engineering Test Facility [ETF ... driver; a practical target injection system that provides

Jill P. Dahlburg; John H. Gardner; Andrew J. Schmitt…

1998-09-01T23:59:59.000Z

24

Fusion Energy Sciences Advisory Committee (FESAC) Homepage | U.S. DOE  

Office of Science (SC) Website

FESAC Home FESAC Home Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors FES Home Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences Advisory Committee (FESAC) has been Chartered .pdf file (140KB) pursuant to Section 14(a)(2)(A) of the Federal Advisory Committee Act Public Law 92-463, and Section 101-6.1015, title 41 Code of Federal Regulations. The committee provides independent advice to the Director of the Office of Science on complex scientific and technological issues that arise in the planning, implementation, and management of the fusion energy sciences program. The current charter is in effect until August 2015. Committee Members .pdf file (28KB) are drawn from universities, national

25

Fusion energy  

SciTech Connect

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-02T23:59:59.000Z

26

Fusion energy  

ScienceCinema (OSTI)

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-23T23:59:59.000Z

27

Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program  

SciTech Connect

This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

None

2000-12-01T23:59:59.000Z

28

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

Logan, B.G.

2007-01-01T23:59:59.000Z

29

Energy Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and Sequestration Activities at NERSC Novel Methods for Harvesting Solar Energy Engineering Science Environmental Science Fusion Science Math & Computer Science...

30

Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Fusion Nuclear Science Facility (FNSF) ­ Motivation, Role, Required Capabilities YK Martin Peng;1 Managed by UT-Battelle for the Department of Energy Example: fusion nuclear-nonnuclear coupling effects-composites; Nano-structure alloy; PFC designs, etc. · Nuclear-nonnuclear coupling in PFC: - Plasma ion flux induces

31

Congress and the Fusion Energy Sciences Program: A Historical Analysis  

Science Journals Connector (OSTI)

This report reviews and analyzes the 42-year history of congressional deliberations over funding of the magnetic fusion research and development (R&D) program. That analysis provides the basis for an assessment a...

Richard E. Rowberg

1999-03-01T23:59:59.000Z

32

June 21, 2014 1 Fusion Energy Sciences: Workforce Development Needs  

E-Print Network (OSTI)

represent a vibrant component of plasma science research and likely will remain so in the foreseeable future

33

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network (OSTI)

damage   in   fusion  reactors  is  tritium  retention.  a   reliable   fusion   energy   reactor,   small-­?scale  reactor   components   and   ultimately   the   development   of   high-­? performance,   radiation   resistant   materials   for   advanced   nuclear   fission   and   fusion  

Gerber, Richard

2014-01-01T23:59:59.000Z

34

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

SciTech Connect

The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

Gerber, Richard

2014-05-02T23:59:59.000Z

35

Fusion Energy  

Science Journals Connector (OSTI)

Nuclear fusion was discovered in 1932, which is earlier ... than 400 fission power plants are operated to provide base load of electricity worldwide now. In contrast, nuclear fusion was used for a hydrogen bomb i...

Prof. Hiroshi Yamada

2012-01-01T23:59:59.000Z

36

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

provide more guidance and support. Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  provide much-needed additional resources there remains a need to employ codes Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  provide large gains with little application porting effort. Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  

Gerber, Richard

2012-01-01T23:59:59.000Z

37

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

38

US ITER - Why Fusion?  

NLE Websites -- All DOE Office Websites (Extended Search)

US Fusion Research Sites US Fusion Research Sites DOE Office of Science: US Fusion Energy Sciences Program Fusion Power Associates General Atomics DIIII-D National Fusion Facility...

39

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network (OSTI)

U.S. Dept. of Energy, Office of Science, Advanced Scientificthe Directors of the Office of Science, Office of AdvancedProgram Office, DOE Office of Science Energy Sciences

Dart, Eli

2008-01-01T23:59:59.000Z

40

On the program, vision, and budget for the fusion and plasma sciences  

E-Print Network (OSTI)

-reaching and is poised for a transformation Ambition: Fusion contributes to energy and climate solutions by mid- century Director, Office of Science For Fusion Energy Sciences U.S. Department of Energy Presented to the Fusion Energy Sciences Advisory Committee February 28, 2012 #12;The science at the heart of fusion energy is far

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fusion Education | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits of FES » Fusion Benefits of FES » Fusion Education Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Benefits of FES Fusion Education Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences Program includes a diverse set of disciplines - from modern plasma physics theories dealing with chaotic systems of energetic particles and waves to more conventional engineering problems of applied electromagnetism. Throughout the scientific programs supported by

42

2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Fusion Science and Technology, Vol.64, No.2, August 2013,  

E-Print Network (OSTI)

© 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Fusion Science on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 Pulsed DEMO design of energy storage issues, and fatigue life improvements in Nb3Sn CICC superconductors. I. BACKGROUND In 2011

43

Fusion Electricity A roadmap to the realisation of fusion energy  

E-Print Network (OSTI)

Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed association EURaToM ­ University of latvia LATVIA lithuanian Energy Institute LITHUANIA Ministry of Education and Research ROMANIA Ministry of Education, science, culture and sport SLOVENIA centro de Investigaciones

44

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network (OSTI)

plasmas   for   thermonuclear   fusion.   Because  of  the  Thermonuclear  Research  (CTR)  and  the  National  Magnetic   Fusion  

Gerber, Richard

2014-01-01T23:59:59.000Z

45

Science-Driven Network Requirements for ESnet  

E-Print Network (OSTI)

Magnetic Fusion Energy Science.Magnetic Fusion Energy Science..data sets Magnetic Fusion Energy Science Executive Summary

2006-01-01T23:59:59.000Z

46

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Panel  

E-Print Network (OSTI)

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Marshall Rosenbluth, H,~3 William Tang, 12 and Ernest Valeo 12 Dr. Robert W. Conn, Chair Fusion Energy on a specific recommendation made by your Committee in its report, "A Restructured Fusion Energy Sciences Pro

Abdou, Mohamed

47

Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009  

SciTech Connect

Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

None

2009-06-08T23:59:59.000Z

48

Before the House Science and Technology Subcommittee on Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science Subject: DOE Fusion Energy Program 10-29-09FinalTestimony(Synakowski).pdf More...

49

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network (OSTI)

MIT (Fusion – Alcator C-Mod) Paul Henderson, PPPL (Fusion – PPPLNetworking, PPPL) Daniel Hitchcock, DOE/SC/ASCR (ASCR

Dart, Eli

2008-01-01T23:59:59.000Z

50

ITER Fusion Energy  

ScienceCinema (OSTI)

ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

Dr. Norbert Holtkamp

2010-01-08T23:59:59.000Z

51

Alternative pathways to fusion energy (focus on Department of Energy  

E-Print Network (OSTI)

Alternative pathways to fusion energy (focus on Department of Energy Innovative Confinement for a restructured fusion energy science program [5] 1996 | FESAC: Opportunities in Alternative Confinement Concepts, suggests program for Innovative Concepts [1] 1995 | OTA TPX and the Alternates [2] 1995 | PCAST (given flat

52

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network (OSTI)

to build a demonstration fusion reactor following successfulthe world’s first reactor scale fusion device located infull-scale reactor modeling for the U.S. fusion program and

Dart, Eli

2008-01-01T23:59:59.000Z

53

N.P. Basse1 Plasma Science and Fusion Center  

E-Print Network (OSTI)

of multiscale density fluctuations Work supported by US DoE Office of Fusion Energy Sciences #12;Introduction 33rd IEEE International Conference on Plasma Science, Traverse City, Michigan, USA (2006) A study are presented. The comparative study is carried out between fusion plasma measurements and cosmological data1

Basse, Nils Plesner

54

Breakthrough: Neutron Science for the Fusion Mission  

SciTech Connect

How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

McGreevy, Robert

2012-04-24T23:59:59.000Z

55

Before the House Subcommittee on Energy- Committee on Science, Space, and Technology  

Energy.gov (U.S. Department of Energy (DOE))

Subject: Fusion Energy Sciences Program By: Dr. Patricia Dehmer, Acting Director of the Office of Science

56

Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program  

E-Print Network (OSTI)

, Livermore, CA 94551. 6 University of Wisconsin, Madison, WI 53706. 7 Columbia University, New York, NY 10027Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion

Abdou, Mohamed

57

HOUSE ENERGY AND WATER DEVELOPMENT SUBCOMMITTEE ACTION on FY 2009 Budget for fusion related items  

E-Print Network (OSTI)

the domestic fusion energy sciences program. Given the tremendous potential of fusion energy to provide a longHOUSE ENERGY AND WATER DEVELOPMENT SUBCOMMITTEE ACTION on FY 2009 Budget for fusion related items of a Continuing Resolution this year. ____________________________ "FUSION ENERGY SCIENCES The Committee

58

Fusion Energy Sciences Priorities Over the Next 1020 years C. E. Kessel, PPPL  

E-Print Network (OSTI)

of ITER, and the subsequent pursuit of a demonstration power plant (DEMO). The US fusion program has, simply because we have virtually no experimental database on which to design, construct and operate

59

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

60

Fast track to fusion energy  

Science Journals Connector (OSTI)

... Nuclear fusion powers our Sun, the stars and ... powers our Sun, the stars and thermonuclear weapons, so what's stopping it being used as an energy source? The answer ...

Michael H. Key

2001-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Signs U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.21.06 U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction Print Text Size: A A A Subscribe FeedbackShare Page Large-Scale, Clean Fusion Energy Project to Begin Construction November 21, 2006 PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the

62

Discovery Research in Magnetic Fusion Energy  

E-Print Network (OSTI)

magnetic tori? � Fundamental study � Confinement science, heating, sustainment, heat flux to boundariesDiscovery Research in Magnetic Fusion Energy or "How we learn about magnetic containment the shape of the magnetic field � What can we learn by changing magnetic topology? Examples... � Stellarator

Mauel, Michael E.

63

Realization of Fusion Energy: An alternative fusion roadmap  

E-Print Network (OSTI)

Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

64

Path toward fusion energy  

SciTech Connect

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

65

Fusion Energy Research Presentation to  

E-Print Network (OSTI)

, other ICCs 14-MeV neutron source Base fusion power technologies Base Plasma Support technologies Decision point DEMO Volumetric neutron source Theory & Simulation ICC ETR DEMO #12;Advanced Computing, Bioremediation Fusion Energy CombustionMaterials #12;#12;Microwave Imaging Reflectometry Laboratory tests

66

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

Energy Stephane Ethier Princeton Plasma Physics Laboratoryof New Hampshire MIT Princeton Plasma Physics LaboratoryLudlow Auburn University Princeton Plasma Physics Laboratory

Gerber, Richard

2012-01-01T23:59:59.000Z

67

Magnetic Confinement Fusion Science Status and Challenges  

E-Print Network (OSTI)

Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin February, 2005 #12;Two approaches to fusion Inertial confinement extremely dense, short-lived Magnetic ·Control plasma disruptions ·Develop new magnetic configurations ·Control the plasma-wall interaction

68

Course: FUSION SCIENCE AND ENGINEERING Universit degli Studi di Padova  

E-Print Network (OSTI)

the subject of controlled thermonuclear fusion in magnetically confined plasmas. Both fusion science of Controlled Thermonuclear Fusion, b) Engineering of a Magnetically Confined Fusion Reactor, c) ExperimentalCourse: FUSION SCIENCE AND ENGINEERING Università degli Studi di Padova in agreement

Cesare, Bernardo

69

Fusion and Plasmas | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion and Fusion and Plasmas Fusion Energy Sciences (FES) FES Home About Staff Organization Chart .pdf file (104KB) FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » About Fusion and Plasmas Print Text Size: A A A RSS Feeds FeedbackShare Page WHAT IS FUSION? a Fusion the process that powers the sun and the stars. In one type of this reaction, two atoms of hydrogen combine together, or , to form an atom of helium. In the process some of the mass of the hydrogen is converted into energy. The easiest fusion reaction to make happen combines (or "heavy hydrogen") with (or "heavy-heavy hydrogen") to make and a . Deuterium is plentifully available in ordinary water. Tritium can be produced by combining the fusion neutron with the abundant light metal . Thus fusion has the potential to be an inexhaustible source of energy.

70

Inertial fusion energy studies in the UK  

E-Print Network (OSTI)

#12;The types of research - Fusion ·Absorption and partition of laser energy ­ effects of laserInertial fusion energy studies in the UK Dr Kate Lancaster #12;Inertial Confinement Fusion #12 burns because the alpha particles produced deposit more energy and make more fusion reactions happen

71

MIT's Plasma Science Fusion Center: Tokamak Experiments Come...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tokamak Experiments Come Clean about Impurity Transport American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: Tokamak...

72

Vintage DOE: What is Fusion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vintage DOE: What is Fusion Vintage DOE: What is Fusion Vintage DOE: What is Fusion January 10, 2011 - 12:45pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs As our team works to build our new website and new content features over the coming months, we're also reviewing the Department's video archives. In the below piece, a narrator ask people on the street "what is fusion?" and then, around the 2-minute mark, kicks off a nice introduction to fusion science. It's worth a watch if you could use a brush up on the basic science, or if you'd just enjoy a reminder of what Americans were wearing a couple decades ago. With much research and development, scientists at the Department of Energy have done a great deal to advance our knowledge of fusion since the time

73

Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Science Energy Science Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbon-neutral energy technologies. To establish the scientific foundations for the kind of transformative breakthroughs needed to build a 21st-century energy economy, we must address fundamental questions involving matter and energy. Below is a sampling of such questions that can be addressed by light-source facilities:

74

Laser Fusion Energy The High Average Power  

E-Print Network (OSTI)

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

75

Paths to Magne,c Fusion Energy (nature ignores budget austerity)  

E-Print Network (OSTI)

Base Research Program Plasma confinement Materials science/engineering 2020 to fusion energy present DIII-D NSTX CMOD Plasma confinement research program #12

76

Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century  

E-Print Network (OSTI)

Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century Carlos Matos FerreiraInstituto SuperiorSuperior TTéécnicocnico,, LisboaLisboa, Portugal, Portugal 20th International Atomic Energy Agency, Fusion Energy Conference, Vilamoura, Portugal #12;OutlineOutline ·· World Energy ConsumptionWorld Energy

77

DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...  

Office of Scientific and Technical Information (OSTI)

and scientific research data related to advanced systems for fusion energy and nuclear power, primary scientific challenges addressed through the Incite Program. Fusion...

78

The Path to Magnetic Fusion Energy  

SciTech Connect

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL) [PPPL

2011-05-04T23:59:59.000Z

79

EPRI Fusion Energy Assessment July 19, 2011  

E-Print Network (OSTI)

Building Blocks Come in Two Types Major Integration Facilities · Nuclear (e.g., ITER, Demo, Fusion NuclearEPRI Fusion Energy Assessment July 19, 2011 Palo Alto, CA Roadmapping an MFE Strategy R.J. Fonck Department of Engineering Physics University of Wisconsin-Madison #12;US MFE PROGRAM CAN MOVE TO A FUSION

80

Journal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report  

E-Print Network (OSTI)

.2. A Brief History of Heavy Ion Fusion The heavy ion fusion approach to inertial fusion energy (IFEJournal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report on Inertial Fusion Energy 1 Ronald Davidson,2 Barrett Ripin, Mohamed Abdou, David E. Baldwin

Abdou, Mohamed

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Basic Energy Sciences Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can...

82

U.S. Signs International Fusion Energy Agreement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs International Fusion Energy Agreement Signs International Fusion Energy Agreement U.S. Signs International Fusion Energy Agreement November 21, 2006 - 9:25am Addthis Large-Scale, Clean Fusion Energy Project to Begin Construction PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the Republic of Korea and the Russian Federation to sign an agreement to build the international fusion energy project known as ITER. "The energy that powers the stars is moving closer to becoming a new source of energy for the Earth through the technology represented by ITER," U.S. Secretary of Energy Samuel W. Bodman said. "The ITER Members represent over

83

Grid Support for Collaborative Control Room in Fusion Science  

Science Journals Connector (OSTI)

The National Fusion Collaboratory project seeks to enable fusion scientists to exploit Grid capabilities in support of experimental science. To this end we are exploring the concept of a collaborative control room that harnesses Grid and collaborative ...

K. Keahey; M. E. Papka; Q. Peng; D. Schissel; G. Abla; T. Araki; J. Burruss; E. Feibush; P. Lane; S. Klasky; T. Leggett; D. Mccune; L. Randerson

2005-10-01T23:59:59.000Z

84

JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER  

E-Print Network (OSTI)

Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergyJJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges without green house gashouse gas #12;JJ, IAP Cambridge January 20103 3 D + T + He ++ n U235 n n Neutrons

85

Benefits of FES | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Benefits of FES Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities Fusion Energy Sciences...

86

THE U.S. ADVANCED TOKAMAK FUSION SCIENCE PROGRAM A White Paper  

E-Print Network (OSTI)

Version 14 5/20/99 THE U.S. ADVANCED TOKAMAK FUSION SCIENCE PROGRAM A White Paper Executive Overview Tokamak research shows that magnetic fusion energy deserves serious consideration as a viable and pursue greater understanding of the new advanced-tokamak (AT) regimes to increase the economic

87

MIT Plasma Science & Fusion Center: research>alcator>introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology...

88

MIT Plasma Science & Fusion Center: research> alcator> computers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter...

89

MIT Plasma Science & Fusion Center: research, alcator, pubs,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology...

90

Ch. 37, Inertial Fusion Energy Technology  

SciTech Connect

Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

Moses, E

2010-06-09T23:59:59.000Z

91

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

1 and J. W. Kwan 2 Princeton Plasma Physics Laboratory, P.California 94720 and Princeton Plasma Physics Laboratory P.Department of Energy by Princeton Plasma Physics Laboratory

Kwan, J.W.

2008-01-01T23:59:59.000Z

92

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

and Environmental Research · Fusion Energy Sciences · High Energy Physics · Nuclear Physics Science ­ they carry many types of traffic ­ Desktop machines, laptops, wireless ­ VOIP ­ HVAC control systems

93

Fusion for Energy: A new European organization for the development of fusion energy  

Science Journals Connector (OSTI)

The European Joint Undertaking for ITER and the Development of Fusion Energy or (“Fusion for Energy” of F4E for short) is a new organisation that has been established with the main objective of providing Europe's contribution to the ITER International Organisation (IO) as its Domestic Agency. Fusion for Energy is also the Implementing Agency for the Broader Approach projects being carried out with Japan and, in the longer term, will prepare a programme for the construction of demonstration fusion reactors (DEMO). The threefold mission of Fusion for Energy is consistent with the fast track strategy for the realisation of fusion energy. This paper aims to provide an overview of the current status of Fusion for Energy and highlight some of the opportunities available for research organisations and industry to participate.

Didier Gambier

2009-01-01T23:59:59.000Z

94

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network (OSTI)

discuss scenarios for fusion energy deployment in the energy market. 1.2. The strategic role of fusion1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RÃ?LE DE L'Ã?NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one

Najmabadi, Farrokh

95

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network (OSTI)

discuss scenarios for fusion energy deployment in the energy market. 1.2. The strategic role of fusion1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RÃ? LE DE L'Ã?NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one

96

Fusion energy | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

energy energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Two PPPL-led teams win increased supercomputing time to study conditions

97

Views on inertial fusion energy development  

Science Journals Connector (OSTI)

A memorial lecture reviews the inertial fusion developments. The issues of the world energy consumption the atmospheric concentration of carbon dioxide and the necessity of an advanced nuclear fission technology are considered. A real world wide collaboration is very important for the inertial confinement fusion program. (AIP)

S. Nakai

1994-01-01T23:59:59.000Z

98

Lab Breakthrough: Neutron Science for the Fusion Mission | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Science for the Fusion Mission Neutron Science for the Fusion Mission Lab Breakthrough: Neutron Science for the Fusion Mission May 16, 2012 - 9:52am Addthis An accelerator team lead by Robert McGreevy at Oak Ridge National Laboratory is testing material - a critical role in building an experimental fusion reactor for commercial use. As part of the international coalition, they expect to have an operational reactor by 2050. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is the difference between fusion and fission? Fission pulls molecules apart. This type of reactor runs nuclear power plants. Fusion puts molecules together. This type of reaction powers the Sun. Oak Ridge National Laboratory scientist Robert McGreevy explains the

99

A Fusion Development Facility on the Critical Path to Fusion Energy  

SciTech Connect

A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

Chan, V. S. [General Atomics, San Diego; Stambaugh, R [General Atomics, San Diego

2011-01-01T23:59:59.000Z

100

A fusion development facility on the critical path to fusion energy  

SciTech Connect

A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

Chan, Dr. Vincent [General Atomics; Canik, John [ORNL; Peng, Yueng Kay Martin [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008  

SciTech Connect

Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.

None

2008-09-01T23:59:59.000Z

102

MIT Plasma Science & Fusion Center: research>alcator>introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter Magnet...

103

Fusion power: a challenge for materials science  

Science Journals Connector (OSTI)

...schematic representation of a fusion power plant is shown in figure-1...the harshest environments in fusion power plants are those that...broadly classified into three types. The conditions experienced...materials The first wall of a fusion power plant must contain the...

2010-01-01T23:59:59.000Z

104

Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the...

105

A social science data-fusion tool and the Data Management through e-Social Science (DAMES) infrastructure  

Science Journals Connector (OSTI)

...common social science data-management tasks such as data fusion; the approach taken to solve...relevant to social science applications...common social science data-management tasks such as data fusion; the approach taken to solve...

2010-01-01T23:59:59.000Z

106

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates  

E-Print Network (OSTI)

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates Stephanie in human immunodeficiency virus (HIV) infection is fusion between the viral envelope and the T x-ray scattering is that the bending modulus KC is greatly reduced upon addition of the HIV fusion

Nagle, John F.

107

Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials Science Subcommittee  

E-Print Network (OSTI)

1 Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials, Columbia University 2 Plasma Science and Fusion Center, MIT December 19, 2011 Summary The proposal for tritium-suppressed D-D fusion and the understanding of the turbulent pinch in magnetically confined plasma

108

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Energy Science Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering...

109

Fusion Engineering and Design 41 (1998) 393400 Economic goals and requirements for competitive fusion energy  

E-Print Network (OSTI)

fusion energy Ronald L. Miller Fusion Energy Research Program, Uni6ersity of California, San Diego, La Jolla, CA 92093-0417, USA Abstract Future economic competitiveness, coupled to and constrained market-penetration context and also influence the near-term funding climate for fusion R&D. With concept

California at San Diego, University of

110

Department of Energy Office of Science Transportation Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy (DOE) Department of Energy (DOE) Office of Science (SC) Transportation Overview Jon W. Neuhoff, Director N B i k L b t New Brunswick Laboratory 1 DOE National Transportation Stakeholders Forum May 26, 2010 About the Office of Science The Office of Science (SC) with a budget of approximately $5 Billion...  Single largest supporter of basic research in the physical sciences in the U.S. (> 40% of the total funding) ( g)  Principal Federal funding agency for the Nation's research programs in high energy physics, nuclear physics, and fusion energy sciences  Manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science

111

Chapter 6 - The fusion - hydrogen energy system  

Science Journals Connector (OSTI)

Publisher Summary This chapter shows that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. It addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. The nations that implement the Fusion–Hydrogen energy system will experience a powerful surge of growth as companies, new and old, compete to product the supporting equipment. The Fusion–hydrogen energy system will provide the means for dramatically reducing all forms of soil, water, and air pollution resulting from the extraction and use of fossil fuels. Hydrogen fuel use will stop the addition of carbon dioxide to the atmosphere and the attendant warming of the earth. It will stop atmospheric pollution by materials responsible for acid rain. It will also provide a reliable energy source with an inconsequential potential for generation of new types of pollution. The hydrogen energy carrier can be easily transported throughout the world without damage to the environment. It provides a safe and highly reliable energy distribution system for use by all the sectors of the economy.

Laurence O. Williams

2002-01-01T23:59:59.000Z

112

Muon-Catalyzed Nuclear Fusion for Energy Production  

Science Journals Connector (OSTI)

The physics of muon-catalyzed fusion is summarized and discussed in the perspective of energy production.

S. Eliezer

1987-01-01T23:59:59.000Z

113

The Path to Magnetic Fusion Energy  

E-Print Network (OSTI)

1 The Path to Magnetic Fusion Energy: Crossing the Next Frontier Rob Goldston, Jon Menard with contributions from J. Brooks, R. Doerner, D. Gates, J. Harris, G.-Y. Fu, N. Gorelenkov, R. Kaita, S. Kaye, M. Kotschenreuther, G. Kramer, H. Kugel, R. Maingi, R. Majeski, C. Neumeyer, R. Nygren, M. Ono, D. Ruzic, S. Sabbagh

Princeton Plasma Physics Laboratory

114

Science Museum Exhibition on Controlled Nuclear Fusion  

Science Journals Connector (OSTI)

... 18 until the end of March 1959, illustrates British research in the field of controlled nuclear fusion. The centre-piece of the exhibition is a one-third scale model of Zeta, ...

1958-12-20T23:59:59.000Z

115

Liquid Vortex Shielding for Fusion Energy Applications  

SciTech Connect

Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

2005-05-15T23:59:59.000Z

116

Fusion Engineering and Design 83 (2008) 842849 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Fusion Engineering and Design 83 (2008) 842­849 Contents lists available at ScienceDirect Fusion-ku 113-6654, Japan d National Institute for Fusion Science, Toki 509-5292, Japan e U.S. Department is to study the elemental technology in macroscopic system integration for advanced fusion blankets based

Ghoniem, Nasr M.

117

MIT Plasma Science & Fusion Center: research, alcator, publications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversal and Energy Confinement Saturation in Alcator C-Mod (APS 2011) Getting a Fusion Plasma to Take Out the Trash (APS 2011) Hot and Dense Plasmas with Low Power Loads on...

118

The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy  

E-Print Network (OSTI)

-consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

119

How low-energy fusion can occur  

E-Print Network (OSTI)

Fusion of two deuterons of room temperature energy is discussed. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. The wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

B. Ivlev

2012-11-03T23:59:59.000Z

120

Fusion power: a challenge for materials science  

Science Journals Connector (OSTI)

...large-scale power generation. Nuclear power is not...clean power generation, with a plentiful...of fuel in the reactor vessel, which...continue for future generation thermo-nuclear power plants...directly in a fusion reactor. Not only does...

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual  

E-Print Network (OSTI)

@sandia.gov) LTD Cavity Recyclable Transmission Line Hohlraum #12;2 Outline · Refurbished Z · Pulsed power fusion 82 kV #12;7 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z Ray Lemke Strip-line geometry: S ~ Strip Width + AK "equivalent" AK gap d(t) from 1-D simulatio

122

Visualization and Analysis in Support of Fusion Science  

SciTech Connect

This report summarizes the results of the award for “Visualization and Analysis in Support of Fusion Science.” With this award our main efforts have been to develop and deploy visualization and analysis tools in three areas 1) magnetic field line analysis 2) query based visualization and 3) comparative visualization.

Sanderson, Allen R. [Scientific Computing and Imaging Institute] [Scientific Computing and Imaging Institute

2012-10-01T23:59:59.000Z

123

Peter A. Norreys Professor of Inertial Fusion Science,  

E-Print Network (OSTI)

Campaign · "Science of Ignition on the NIF" Workshop · Central Laser Facility / ORION #12;Universities experimental checks #12;$4 Billion US National Ignition Facility 2009 Laser system completed 2010 National Leader Central Laser Facility, Rutherford Appleton Laboratory Inertial Fusion Plasmas #12;Thanks

124

MIT Plasma Science & Fusion Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Technology & Engineering Fusion Technology & Engineering Plasma Technology Useful Links Alcator C-Mod 5 Year Program Plan Review, May 13 - 14, 2003, PSFC NW17-218 Agenda Tuesday, May 13, 2003 8:00 Executive Session 8:30 Welcome M. Porkolab 8:40 Introduction I. Hutchinson 8:50 Charge J. Willis/R. Dagazian 9:00 Program Overview E. Marmar 10:15 Break 10:30 Advanced Tokamak Program A. Hubbard 11:20 Burning Plasma Support Program S. Wolfe 12:10 Lunch (on-site) 1:00 Facility Tour 1:30 Transport A. Hubbard 2:15 RF S. Wukitch 3:00 Break 3:15 Divertor and Edge Physics B. Lipschultz 4:00 MHD and Stability Research R. Granetz 4:30 Executive Session Wednesday, May 14, 2003 8:00 Executive Session 8:30 PPPL Collaboration G. Schilling 9:00 Operations and Facilities J. Irby

125

Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense...  

Office of Science (SC) Website

Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot Plasma Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES...

126

Laser Inertial Fusion Energy Control Systems  

SciTech Connect

A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

2011-03-18T23:59:59.000Z

127

The role of the National Ignition Facility in energy production from inertial fusion  

Science Journals Connector (OSTI)

...in IFE attractive. inertial fusion energy|laser fusion|ignition (lasers)|thermonuclear gain|National Ignition Facility...inertial fusion energy; laser fusion; ignition (lasers); thermonuclear gain; National Ignition Facility...

1999-01-01T23:59:59.000Z

128

Presented by Information Fusion  

E-Print Network (OSTI)

Presented by Information Fusion: Science and Engineering of Combining Information from Multiple's Office of Science #12;2 Managed by UT-Battelle for the U.S. Department of Energy Rao_InfoFusion_SC10 Information Fusion at ORNL � ORNL Instrumental in formulating and fostering this multi-disciplinary area

129

Basic Energy Sciences Jobs  

Office of Science (SC) Website

General EngineerPhysical Scientist
15 DE SC HQ 011
Office: Basic Energy Sciences
URL:

130

Status of Research on Fusion Energy and Plasma Turbulence  

E-Print Network (OSTI)

1020 6 X 1030 R (m) ~ 108 1 10-4 E (sec) > 1013 2 10-10 Three Types of Fusion PowerThree TypesStatus of Research on Fusion Energy and Plasma Turbulence Candy, Waltz (General Atomics) Greg://www.cmpd.umd.edu & Plasma Microturbulence Project http://fusion.gat.com/theory/pmp (General Atomics, U. Maryland, LLNL, PPPL

Hammett, Greg

131

Fusion Engineering and Design 85 (2010) 969973 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Fusion Engineering and Design 85 (2010) 969­973 Contents lists available at ScienceDirect Fusion workshop on the topic of fusion power W.R. Meiera, , A.R. Raffrayb , R.J. Kurtzc , N.B. Morleyd , W Alamos, NM, USA a r t i c l e i n f o Article history: Available online 8 December 2009 Keywords: Fusion

Raffray, A. René

132

Scientists discuss progress toward magnetic fusion energy at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in...

133

Fusion Energy Greg Hammett & Russell Kulsred Princeton University  

NLE Websites -- All DOE Office Websites (Extended Search)

Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell Kulsred Princeton University Wednesday, Dec 4, 2013 - 4:15PM MBG AUDITORIUM Refreshments at...

134

International Atomic Energy Agency holds conference on fusion...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Atomic Energy Agency holds conference on fusion roadmap By John Greenwald November 8, 2012 Tweet Widget Google Plus One Share on Facebook Hutch Neilson, third from...

135

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Journals Connector (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

136

NREL: Energy Sciences - Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Materials Science Learn about our...

137

DOE and Fusion Links | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE and Fusion Links United States Department of Energy U.S. Department of Energy Office of Science Office of Fusion Energy Sciences U.S. D.O.E. Princeton Site Office Map showing...

138

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

Example of NIF fusion target hohlraum with multiple beamsimilar to those used on NIF. . . . . Overview of LFFHNES Nuclear Energy System NIF National Ignition Facility ODS

Kramer, Kevin James

2010-01-01T23:59:59.000Z

139

MIT's Plasma Science Fusion Center: I-Mode Powers Up on Alcator...  

NLE Websites -- All DOE Office Websites (Extended Search)

I-Mode Powers Up on Alcator C-Mod Tokamak American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: I-Mode Powers Up on...

140

Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets  

SciTech Connect

Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.

Woolley, R.D.

1998-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Computational Energy Sciences Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational EnErgy SCiEnCES program Computational EnErgy SCiEnCES program Description Led by the National Energy Technology Laboratory (NETL), the Advanced Research (AR) Computational Energy Sciences (CES) Program provides high-performance computational modeling and simulation resources to the Office of Fossil Energy (FE) and other programs of the U.S. Department of Energy (DOE). These resources are dedicated to speeding development and reducing costs associated with advanced power system design and performance modeling. CES research is focused on developing a set of complex but flexible computational tools that allow more rapid and efficient scale-up of new subsystems, devices, and components, thereby reducing the need for large and expensive demonstration-scale testing of integrated energy systems,

142

Fusion Energy: Visions of the Future  

E-Print Network (OSTI)

worldwide · X-ray/neutron applications · US teams at KSU, NSTec 2009: LPP Focus Fusion-1 lab begins

143

To: ! Members of the National Academy of Sciences Committee on the Prospects for Inertial Confinement Fusion Energy Systems, and the Panel  

E-Print Network (OSTI)

, retired, former head of the laser fusion program at the Naval Research Laboratory Date: ! December 9, 2011 Koonin, it was told to assume that the NIF (National Ignition Facility) would reach ignition. Over the past year, Dr. Koonin periodically reviewed the progress towards ignition at the NIF. In his

144

Fusion Energy [Corrosion and Mechanics of Materials] - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Fusion Energy Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Fusion Energy Bookmark and Share Since 1995, Argonne has had primary responsibility for the development of new design rules regarding various components in a fusion reactor, particularly those subject to irradiation embrittlement. During 1998, Argonne issued the final draft of the structural design criteria for in-vessel components in the International Thermonuclear Reactor (ITER).

145

A US Strategy to Explore the Science and Technology of Energy-Producing Plasmas  

E-Print Network (OSTI)

the fusion process. The specific objectives of the fusion program are to: (1) advance plasma science

146

Expanding Science and Energy Literacy with America's Science...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expanding Science and Energy Literacy with America's Science and Technology Centers Expanding Science and Energy Literacy with America's Science and Technology Centers October 20,...

147

A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION  

SciTech Connect

This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

Allen R. Sanderson; Christopher R. Johnson

2006-08-01T23:59:59.000Z

148

LIFE: The Case for Early Commercialization of Fusion Energy  

SciTech Connect

This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

Anklam, T; Simon, A J; Powers, S; Meier, W R

2010-11-30T23:59:59.000Z

149

World population and energy demand growth: the potential role of fusion energy in an efficient world  

Science Journals Connector (OSTI)

...growth: the potential role of fusion energy in an efficient world...fossil-replacement value in 2050. Fusion energy can, then, have a role...2) the deployment of all types of energy source to meet the...nuclear power, both fission and fusion, can play a very important...

1999-01-01T23:59:59.000Z

150

Science Education | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Science & Innovation » Science Education Science & Innovation » Science Education Science Education Learn more about Thomas Edison and Nikola Tesla, two of history's most important energy inventors, and how their rivalry and scientific innovations still impact the way we use energy today. | Photo illustration by Sarah Gerrity, Energy Department. Learn more about Thomas Edison and Nikola Tesla, two of history's most important energy inventors, and how their rivalry and scientific innovations still impact the way we use energy today. | Photo illustration by Sarah Gerrity, Energy Department. For kids of all ages, there is always something new to learn about science and technology. The Energy Department supports science education through

151

Multimodal options for materials research to advance the basis for fusion energy in the ITER era  

Science Journals Connector (OSTI)

Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. Due to differences in national timelines and fusion device concepts, a parallel-track (multimodal) approach is currently being used for developing fusion energy. An overview is given of the current state-of-the-art of major candidate materials systems for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high-temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: (1) understanding materials science phenomena in the demanding DT fusion energy environment, and (2) application of this knowledge to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high-performance fusion materials are discussed along with recent research results and planned activities of the international materials research community.

S.J. Zinkle; A. Möslang; T. Muroga; H. Tanigawa

2013-01-01T23:59:59.000Z

152

Energy Efficiency and Renewable Energy Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Graduate & Postdoctoral Opportunities Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships Energy Efficiency and Renewable Energy Science and...

153

Thermonuclear Fusion Energy : Assessment and Next Step Ren Pellat  

E-Print Network (OSTI)

Thermonuclear Fusion Energy : Assessment and Next Step René Pellat High Commissioner at the French 2000, Rome Abstract Fifty years of thermonuclear fusion work with no insurmountable road blocks have is well advanced through the International Thermonuclear Experimental Reactor (ITER) programme, which has

154

05/23/2006 08:53 PMInnovation & Technology News -Fusion reactor shows its metal -22/05/2006 Page 1 of 3http://abc.net.au/cgi-bin/common/printfriendly.pl?/science/news/tech/InnovationRepublish_1644106.htm  

E-Print Network (OSTI)

05/23/2006 08:53 PMInnovation & Technology News - Fusion reactor shows its metal - 22/05/2006 Page) News in Science Innovation & Technology News - Fusion reactor shows its metal - 22/05/2006 [This a problem facing nuclear fusion, touted as the cheap, safe, clean and almost limitless energy source

155

Fusion through the eyes of a veteran science journalist | Princeton Plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion through the eyes of a veteran science journalist Fusion through the eyes of a veteran science journalist July 15, 2013 Tweet Widget Facebook Like Google Plus One Daniel Clery (Photo by Sadie Windscheffel-Clarke) Daniel Clery Gallery: Author Daniel Clery recently published "A Piece of the Sun," a 320-page narrative of the history of fusion research and the personalities who have devoted their careers to it. Clery is a United Kingdom-based reporter for Science magazine who holds a bachelor's degree in theoretical physics from York University and has covered fusion for more than a decade. While hardly an uncritical flag-waver for fusion, he recognizes its vast potential. He discussed his new book and the future of fusion with PPPL Science Writer John Greenwald. How did you gather your detailed information from labs like PPPL?

156

Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures  

E-Print Network (OSTI)

Fusion energy · Fusion powers the Sun, and all stars, in which light nuclei fuse together at high in excess of 100 million degrees, much higher than in the Sun. The hot hydrogen gas (known as a `plasma

157

The National Ignition Facility: A New Era in High Energy Density Science  

SciTech Connect

The National Ignition Facility, the world's most energetic laser system, is now operational. This talk will describe NIF, the ignition campaign, and new opportunities in fusion energy and high energy density science enabled by NIF.

Moses, E

2009-06-10T23:59:59.000Z

158

Laser fusion experiment yields record energy at NIF | National Nuclear  

National Nuclear Security Administration (NNSA)

Laser fusion experiment yields record energy at NIF | National Nuclear Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Laser fusion experiment yields record energy at NIF Laser fusion experiment yields record energy at NIF Posted By Office of Public Affairs Lawrence Livermore's National Ignition Facility (NIF) recently focused all

159

Laser fusion experiment yields record energy at NIF | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser fusion experiment yields record energy at NIF | National Nuclear Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Laser fusion experiment yields record energy at NIF Laser fusion experiment yields record energy at NIF Posted By Office of Public Affairs Lawrence Livermore's National Ignition Facility (NIF) recently focused all

160

The Fusion Hybrid as a Response to William Parkins' Letter to Science Magazine Wallace Manheimer  

E-Print Network (OSTI)

the kinetic energy of the neutron to boil water, it uses the neutron's potential energy to create about ten advocated that the fusion project shift its focus from pure fusion to the fusion hybrid (4- 7). These paper uranium with a once through fuel cycle (and of course more than can be supplied by oil or natural gas

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MIT Plasma Science & Fusion left: research>alctor>meetings scheduled  

NLE Websites -- All DOE Office Websites (Extended Search)

of larger Directory of Plasma Conferences list with some additions (see also the Nuclear Fusion calendar). ITPA meetings schedule Fusion meetings calendars Conference, Workshop,...

162

Exploring Plasma Science Advances from Fusion Findings to Astrophysica...  

NLE Websites -- All DOE Office Websites (Extended Search)

confinement fusion experiments at the National Ignition Facility (NIF) at the DOE's Lawrence Livermore National Laboratory. Speakers noted that producing fusion by heating a...

163

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Education Science Education Science Education Learn more about Thomas Edison and Nikola Tesla, two of history's most important energy inventors, and how their rivalry and scientific innovations still impact the way we use energy today. | Photo illustration by Sarah Gerrity, Energy Department. Learn more about Thomas Edison and Nikola Tesla, two of history's most important energy inventors, and how their rivalry and scientific innovations still impact the way we use energy today. | Photo illustration by Sarah Gerrity, Energy Department. For kids of all ages, there is always something new to learn about science and technology. The Energy Department supports science education through

164

Genomic Sciences | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

the fundamental principles that control complex biological systems important to clean energy and environmental applications. Multidisciplinary genomic science research and...

165

NREL: Energy Sciences - William Tumas  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical & Nanoscale Science Theoretical Materials Science Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version William Tumas Associate Laboratory Director, Materials and Chemical Science and Technology Photo of William Tumas Phone: (303) 384-7955 Email: Bill.Tumas@nrel.gov At NREL Since: 2009 Dr. William Tumas is the Associate Laboratory Director for Materials and Chemical Science and Technology, National Renewable Energy Laboratory (NREL). He is responsible for overall leadership, management, technical direction, and workforce development of the materials and chemical science and technology capabilities at NREL spanning fundamental and applied R&D for renewable energy and energy efficiency. Key program areas include solar

166

Photon Science for Renewable Energy  

E-Print Network (OSTI)

Photon Science for renewable Energy at Light-Sourceour planet. The quest for renewable, nonpolluting sources ofa global revolution in renewable and carbon- neutral energy

Hussain, Zahid

2010-01-01T23:59:59.000Z

167

Low radioactive and hybrid fusion – A path to clean energy  

Science Journals Connector (OSTI)

Abstract Aneutronic/low radioactive fuel is the way to clean and cheap energy of the future. An alternative scheme using compact toroids – field-reversed configuration or spheromak – may be applied for the reactor based on any magnetic confinement system. Even more, any fusion concept, including hybrid magneto-inertial fusion might use advantages of D–3He fuel. Advanced fuel, including helium-3 – based fusion plasma and alternative systems are reviewed. Different schemes of reactors, near-term technology and non-electric applications are discussed.

Sergei V. Ryzhkov

2015-01-01T23:59:59.000Z

168

Fusion dynamics of symmetric systems near barrier energies  

E-Print Network (OSTI)

The enhancement of the sub-barrier fusion cross sections was explained as the lowering of the dynamical fusion barriers within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model. The numbers of nucleon transfer in the neck region are appreciably dependent on the incident energies, but strongly on the reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions $^{58}$Ni+$^{58}$Ni and $^{64}$Ni+$^{64}$Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of neutron to proton in the neck region at initial collision stage is observed and obvious for neutron-rich systems, which can reduce the interaction potential of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared them with the available experimental data.

Zhao-Qing Feng; Gen-Ming Jin

2009-09-06T23:59:59.000Z

169

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020 (12pp) doi:10.1088/0029-5515/49/9/095020  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020, which assumes the anisotropic energetic particle distribution function accelerated by ICRH as input

Zonca, Fulvio

170

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13511356 PII: S0029-5515(02)54166-1  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion input of converging driver beams. Requirements and key issues related to target injection and tracking

Najmabadi, Farrokh

171

Climate & Environmental Sciences | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate & Environment Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy-Water Resource Systems Human...

172

Climate Change Science Institute | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate & Environment Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy-Water Resource Systems Human...

173

A social science data-fusion tool and the Data Management through e-Social Science (DAMES) infrastructure  

Science Journals Connector (OSTI)

...research-article Articles 1003 193 Theme Issue 'e-Science: past, present and future I' compiled...Trefethen and Elizabeth Vander Meer A social science data-fusion tool and the Data Management through e-Social Science (DAMES) infrastructure Guy C. Warner...

2010-01-01T23:59:59.000Z

174

Timely Delivery of Laser Inertial Fusion Energy Presentation prepared for  

E-Print Network (OSTI)

plant design · Delivery soon enough to make a difference to global energy imperatives. · Design basedTimely Delivery of Laser Inertial Fusion Energy Presentation prepared for Town Hall meeting must directly address the end-user requirement for commercial power 3 Plant Primary Criteria (partial

175

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

176

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) 412418 doi:10.1088/0029-5515/46/4/002  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion to reach high values of Q (the ratio between fusion power and input power) can be carried out in existing

Zonca, Fulvio

177

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 44 (2004) S254S265 PII: S0029-5515(04)88685-X  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion is a target that has been compressed and heated to fusion conditions by the energy input of the driver been compressed and heated to fusion conditions by the energy input of the driver beams. A target

Tillack, Mark

178

2002 Fusion Summer Study Executive Summary  

E-Print Network (OSTI)

2002 Fusion Summer Study Executive Summary 31 July 2002 #12;page 2 of 15 2002 Fusion Summer Study Executive Summary The 2002 Fusion Summer Study was conducted from July 8-19, 2002, in Snowmass, CO, and carried out a critical assessment of major next-steps in the fusion energy sciences program in both

179

Fusion Materials Science Overview of Challenges and Recent Progress  

E-Print Network (OSTI)

resistance generally have very good high temperature capability (high thermal creep resistance) due to high, high fusion neutron flux) arguably makes fusion materials development the greatest challenge ever approach used to develop candidate materials for fusion reactors ­ Materials with high neutron radiation

180

MIT Plasma Fusion Sciences Center IAP Seminar! Jan 10th, 2012!  

E-Print Network (OSTI)

MIT Plasma Fusion Sciences Center IAP Seminar! Jan 10th, 2012! ! ! ! ! ! Otto Landen! Associate-07NA27344 Inertial Confinement Fusion Physics and Challenges*! #12;The NIF ignition experiments-degenerate fuel Spherical collapse of the shell produces a central hot spot surrounded by cold, dense main fuel

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fusion: A necessary component of US energy policy  

SciTech Connect

US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs.

Correll, D.L. Jr.

1989-01-11T23:59:59.000Z

182

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

183

Fusion Energy Sciences Review Meeting Logistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Logistics Logistics Location and Schedule The day-and-a-half workshop was held all day Tuesday, March 19 and on the morning of Wednesday, March 20, 2013. Hotel Hilton Washington...

184

ITER Project Status Fusion Energy Sciences  

E-Print Network (OSTI)

% of Port-based Diagnostics ORNL 100% Ion Cyclotron Transmission Lines ORNL 100% Electron Cyclotron Transmission Lines ORNL Blanket/Shield (design support) ORNL 100% Roughing Pumps, Vacuum Auxiliary System SRNL (produced in up to 910 m lengths), plus pre-compression structure · 13 Tesla · 5.5 GJ · 30 kV · 1.2 T/s · 45

185

Programs | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Programs Programs Programs Home Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics...

186

Theoretical Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory Department The fusion energy sciences mission of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) is to help provide the scientific foundations...

187

Harnessing Nuclear Fusion  

Science Journals Connector (OSTI)

... as a source of energy, only the future will show. Meanwhile the control of nuclear fusion will be welcomed both as a great advance in science and as a factor of ...

1958-01-25T23:59:59.000Z

188

Solar Energy without Neutrinos: Fusion Catalysis by Quarks  

Science Journals Connector (OSTI)

... some features of fusion catalysis by quarks and the consequences relating to release of stellar energy. In particular, the recent non-observation8 of ... . In particular, the recent non-observation8 of solar neutrinos which rules out9-12 the carbon cycle as the main mechanism for ...

L. MARSHALL LIBBY; F. J. THOMAS

1969-06-28T23:59:59.000Z

189

Fusion Energy An Industry-Led Initiative  

E-Print Network (OSTI)

- Sunlight and its derivatives - Fission energy based on breeders - Clean coal (several hundreds of years

190

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 3, 2013 May 3, 2013 Panelists discuss the role of colleges and universities in helping to further clean-energy research and entrepreneurship during a forum at Stanford University. | Photo courtesy of Stanford Energy Club. Energy Wrap-Up: Charging Students To Take the Lead in Energy Innovation Students, academics and entrepreneurs came together at Stanford University to discuss how the next generation can lead the way in creating the next big breakthroughs in sustainable energy. April 23, 2013 The Final Match at the U.S Department of Energy National Science Bowl in Washington, DC on April 30, 2012. | Photograph by Dennis Brack, U.S. Department of Energy, Office of Science Upcoming Science Bowl Championship is a Competition like No Other The Finals of the Department of Energy's 2013 National Science Bowl, set to

191

ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program  

E-Print Network (OSTI)

ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program Stephen O. Dean for an expanded effort on the development of inertial fusion as an energy source is dis- cussed. It is argued that there should be a two-pronged, complementary approach to fusion energy development over the next two to three

192

Journal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion  

E-Print Network (OSTI)

Office of Fusion Energy (OFE). One might take as a reasonable assumption that first generation fusionJournal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion Technology Research energy program. Based on the new program plan, the parameters are a broad scientific and technology

Abdou, Mohamed

193

The Fusion Energy Program: The Role of TPX and Alternate Concepts  

E-Print Network (OSTI)

The Fusion Energy Program: The Role of TPX and Alternate Concepts February 1995 OTA-BP-ETI-141 GPO, The Fusion Energy Program: The Role of TPX and Alternate Concepts, OTA-BP-ETI-141 (Washington, DC: U of alternate concept research as conducted in the U.S. fusion energy program. While the focus of the study

194

Environmental Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Science & Technology » Environmental Science & Innovation » Science & Technology » Environmental Science Environmental Science A revolutionary new turbine technology for hydropower plants is one step closer to its first commercial deployment. At peak performance, an Alden turbine should convert about 94 percent of the water’s energy into usable electricity, comparable or superior to the efficiency of traditional turbines; the overall wildlife survival rate should be over 98 percent, up from 80-85 percent for a traditional turbine. Read more. A revolutionary new turbine technology for hydropower plants is one step closer to its first commercial deployment. At peak performance, an Alden

195

ESCEnergy Science Center Energy Strategy  

E-Print Network (OSTI)

ESCEnergy Science Center Energy Strategy for ETH Zurich ETH Zurich Energy Science Center K. Boulouchos (Chair), ETH Zurich C. Casciaro, ETH Zurich K. Fröhlich, ETH Zurich S. Hellweg, ETH Zurich HJ. Leibundgut, ETH Zurich D. Spreng, ETH Zurich Layout null-oder-eins.ch Design Corporate

Imamoglu, Atac

196

Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth  

E-Print Network (OSTI)

Driver Laser h=5-10% Heavy ion Accelerator h=15-40% Z-pinch h~15% Ignition by stagnation of convergent good progress toward achieving fusion ignition and high gain for energy applications We are making good progress toward achievingWe are making good progress toward achieving fusion ignition and high gain

197

LA-UR-98-2413 Magnetized Target Fusion  

E-Print Network (OSTI)

to the Office of Fusion Energy Sciences May 19, 1998 PoP Program Leaders and Editors: K. F. Schoenberg and R. E, Massey University, New Zealand; R. D. Milroy, U. Washington; L. Green, Westinghouse Science APPENDIX A: Why Magnetized Target Fusion Offers A Low-Cost Development Path for Fusion Energy

198

FES Budget | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Budget Fusion Energy Sciences (FES) FES Home About Staff Organization Chart .pdf file (104KB) FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research...

199

Staff | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Staff Fusion Energy Sciences (FES) FES Home About Staff Edmund J Synakowski Organization Chart .pdf file (104KB) FES Budget FES Committees of Visitors Directions Jobs Fusion and...

200

COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY  

SciTech Connect

A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE.

GOODIN,D.T; NOBILE,A; SCHROEN,D.G; MAXWELL,J.L; RICKMAN,W.S

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fiscal Year 1985 Department of Energy Authorization: magnetic fusion energy. Volume V. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Eighth Congress, Second Session, February 23, 29, 1984  

SciTech Connect

Volume V of the hearing record covers two days of testimony on the fusion energy program, with a focus on the Tokamak fusion core experiment (TFCX) and the need for the US to retain leadership in the field. DOE Research Director Trivelpiece reviewed the program on the first day. Progress reports from research laboratories and associated industries supported the request for additional funding for the TFCX. The threat of funding cuts due to the federal deficit was a major point of concern, while the potential for industrial participation was seen as a positive development. Two appendices with additional statements and responses to questions follow the testimony of 13 witnesses.

Not Available

1984-01-01T23:59:59.000Z

202

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 (8pp) doi:10.1088/0029-5515/50/1/014003  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 Nuclear Fusion Institute, RRC 'Kurchatov Institute', Moscow, Russia Received 8 June 2009, accepted, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues

203

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy  

E-Print Network (OSTI)

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy Applications: from the "Very Cold, CA January 25, 2008 #12;January 25, 2008/ARR 2 Unique Set of Conditions Associated with Fusion · Realization of fusion energy imposes considerable challenges in the areas of engineering, physics and material

Raffray, A. René

204

Peak Oil and Fusion Energy Development  

Science Journals Connector (OSTI)

If industrial civilization does not figure out how to survive and thrive without cheap fossil energy, then technological civilization will be a short blip in the history of our species. A child born in 1990, if s...

Chang Shuk Kim

2008-01-01T23:59:59.000Z

205

Low-energy fusion caused by an interference  

E-Print Network (OSTI)

Fusion of two deuterons of room temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

B. Ivlev

2012-07-05T23:59:59.000Z

206

THE PATH TOWARD MAGNETIC FUSION ENERGY DEMONSTRATON AND THE ROLE OF ITER  

E-Print Network (OSTI)

and component scale phenomena. FNST testing in fusion facilities prior to DEMO can be classified into three conducting magnets. 1. Introduction: Fusion has great potential to be a sustainable energy source. There are five pillar

Abdou, Mohamed

207

Ignition on the National Ignition Facility: a path towards inertial fusion energy  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8?MJ, 500?TW of light at the third-harmonic, ultraviolet light of 351?nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0?MJ of light at the fundamental wavelength of 1053?nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium–tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications.The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization.Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 1626–34, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science.This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusion–fission energy (LIFE) as a path to achieve carbon-free sustainable energy.

Edward I. Moses

2009-01-01T23:59:59.000Z

208

Professor and Director of the Fusion Science Center of Extreme States of  

National Nuclear Security Administration (NNSA)

Professor and Director of the Fusion Science Center of Extreme States of Professor and Director of the Fusion Science Center of Extreme States of Matter and Fast Ignition, University of Rochester | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Riccardo Betti Professor and Director of the Fusion Science Center of Extreme States of

209

Finding Fusion  

Science Journals Connector (OSTI)

Finding Fusion ... Study of these reactions will advance understanding of the workings of stars and giant planets, fusion energy, and nuclear weapon stockpiles. ...

JYLLIAN KEMSLEY

2012-09-10T23:59:59.000Z

210

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

211

Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics  

SciTech Connect

The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

Stelmack, Larry

2003-11-17T23:59:59.000Z

212

Designing Radiation Resistance in Materials for Fusion Energy  

SciTech Connect

Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

Zinkle, Steven J [University of Tennessee (UT)] [University of Tennessee (UT); Snead, Lance Lewis [ORNL] [ORNL

2014-01-01T23:59:59.000Z

213

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 Introduction to Panel Discussions  

E-Print Network (OSTI)

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 -- Introduction to Panel Discussions Whither Fusion Research? Robert L. Hirsch' . An unnamed former fusion program director retired and felt he needed some friend appeared before the major monk for his annual two words, which were, " Room cold." The monk nodded

214

Climate Change Science Institute | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate & Environment Climate & Environment Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy, Water and Ecosystem Engineering Human Health Risk and Environmental Analysis Renewable Energy Systems Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Climate & Environment | Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and inform policy on the outcomes of climate change responses. The Climate Change Science Institute is an inter-disciplinary, cross-directorate research organization created in 2009 to advance climate change science research. More than 100 researchers from the Computing and

215

Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980  

SciTech Connect

Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research.

Truhan, J.J.; Hopper, R.W.; Gordon, K.M. (eds.)

1980-10-28T23:59:59.000Z

216

Advances in materials science, Metals and Ceramics Division. Triannual progress report, February-May 1980  

SciTech Connect

Research is reported in the magnetic fusion energy and laser fusion energy programs, aluminium-air battery and vehicle research, geothermal research, nuclear waste management, basic energy science, and chemistry and materials science. (FS)

Truhan, J.J.; Gordon, K.M. (eds.)

1980-08-01T23:59:59.000Z

217

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13821392 PII: S0029-5515(02)55646-5  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion of alpha parameters, along with the qMHD profiles and MHD equilibria are being used as inputs to codes

Budny, Robert

218

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 075024 (10pp) doi:10.1088/0029-5515/49/7/075024  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 075024 from classical NB deposition as input give rise to strong EPM activity, resulting in relaxed EP radial

Zonca, Fulvio

219

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 10911100 PII: S0029-5515(03)67571-X  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion at low values of B. The RMF drive sustains particles as well as flux, and resistive input powers can

Washington at Seattle, University of

220

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 (3pp) doi:10.1088/0029-5515/53/4/042001  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 this analysis. Plasma shot probe etc data input to WBC includes exposure times, and per canonical shot Te, Ne

Harilal, S. S.

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 44 (2004) L1L4 PII: S0029-5515(04)72941-5  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion­2 MHz) (the uncertainty is due to the error bar of the kinetic input profiles). This result has been

Vlad, Gregorio

222

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) 15881597 doi:10.1088/0029-5515/47/11/022  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) 1588 of the LH power input. These results are directly relevant to the investigation of trapped alpha particle

Zonca, Fulvio

223

Hydrogen Hydrogen FusionFusionFusionFusionFusionFusion  

E-Print Network (OSTI)

100.000 years LNGS Laboratori Nazionali del Gran Sasso Borexino THE THERMONUCLEAR FUSION REACTIONHydrogen Hydrogen Fusion Deuterium FusionFusionFusionFusionFusionFusion THE SUN AS BOREXINO SEES

Heiz, Ulrich

224

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 23, 2009 April 23, 2009 103 Teams to Head to DOE's National Science Bowl in Washington, D.C. High School and Middle School Regional Champions from Around the Country to Compete at National Championship April 3, 2009 Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Science and Engineering Fellowships and Scholarships The U.S. Department of Energy (DOE) today issued a new Funding Opportunity Announcement (FOA) to provide approximately $2.4 million in university nuclear science and engineering fellowships and scholarships. March 11, 2009 Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Research Infrastructure Needs The U.S. Department of Energy (DOE) today issued a new Funding Opportunity

225

Fusion roadmapping | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion roadmapping Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design Read more about PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design

226

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network (OSTI)

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

I. Casinos

2008-05-22T23:59:59.000Z

227

Beryllium pressure vessels for creep tests in magnetic fusion energy  

SciTech Connect

Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

Neef, W.S.

1990-07-20T23:59:59.000Z

228

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 12, 2010 March 12, 2010 Department of Energy Issues Requests for Applications for Nuclear-Related Science and Engineering Scholarships and Fellowships Washington, D.C. - The Department of Energy today issued two Request for Applications (RFA) for scholarships and fellowships as part of its efforts to recruit and train the next generation of nuclear scientists and engineers. The Department's Nuclear Energy University Programs (NEUP) will provide approximately $5 million for scholarships and fellowships for students enrolled in two-year, four-year and graduate engineering and science programs related to nuclear energy at accredited U.S. universities and colleges. October 9, 2009 Department of Energy Issues Request for Pre-Applications to U.S. Universities for Nuclear Energy Research and Development Proposals

229

Fusion Energy Division progress report, 1 January 1990--31 December 1991  

SciTech Connect

The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1994-03-01T23:59:59.000Z

230

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Science Education Science & Innovation » Science Education Science Education January 15, 2014 Dr. Adam Weber oversees the work of intern Sara Kelly at Lawrence Berkeley National Laboratory in California. Dr. Weber was recently named one of the winners of the Presidential Early Career Awards for Scientists and Engineers. | Photo by Roy Kaltschmidt, Lawrence Berkeley National Laboratory 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National Laboratory Dr. Adam Weber of the Energy Department's Lawrence Berkeley National Laboratory was recently honored for his cutting edge work to help make hydrogen fuel cells and their components more efficient and durable. Dr. Weber talks to us about what inspired him to become a scientist, why he loves Lord of the Rings, and gives some advice to future scientists.

231

Prospects for inertial fusion as an energy source  

SciTech Connect

Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

Hogan, W.J.

1989-06-26T23:59:59.000Z

232

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 22, 2013 October 22, 2013 The deadline to register for the Home Energy Education Challenge is November 15. America's Home Energy Education Challenge: Teaching Kids to Save Energy and Money America's Home Energy Education Challenge, or AHEEC, is a competition developed by the Energy Department and the National Science Teachers Association designed to show students how they can save energy at home. October 22, 2013 Video: Training Clean Energy Leaders of the Future Solar Decathlon 2013 might have ended, but it is having a lasting effect on sustainable design and our nation's clean energy leaders. October 22, 2013 Solar Decathlon 2013 October 18, 2013 "Energize" Your Neighborhood with Energy-Themed Pumpkins Now through Halloween, we're highlighting scarily effective ways to save

233

Lasers, Photonics, and Fusion Science: Bringing Star Power to...  

NLE Websites -- All DOE Office Websites (Extended Search)

to our News Alerts * Your Email Address: * Preferred Format: HTML Text Subscribe Latest NIF & Photon Science News Simulating the Birth of Giant Planets Laser-driven compression...

234

Fusion Energy Division annual progress report, period ending December 31, 1989  

SciTech Connect

The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1991-07-01T23:59:59.000Z

235

NREL: Energy Sciences - Biosciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Illustration shows photosynthetic cycle. At the top left are the labels solar energy, H2O, and CO2; an arrow points down to Lignocellulosic Biomass. An arrow from this...

236

Science Energy Literacy and Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Energy Literacy and Activities Elementary School Curriculum Created by National Renewable Energy Laboratory (NREL) Click on the links below to take you to the Chapter heading: Circuit Electromagnetism Electrolysis Potato Power Fermentation Volcanoes Kites Wind Tower Solar Cars Solar Ovens and Beads Tie Dye Vanishing Resources Standards Circuits Objective: We will learn about electricity by making a simple circuit with your own bodies! Science Background Electricity is a versatile form of energy. Windmills, water wheels and coal power plants, all have generators, which convert energy from the wind, water, or coal into electricity. The electricity can then be used to make light bulbs glow and electric heaters warm. It can make the sound in speakers and the

237

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 45 (2005) 685693 doi:10.1088/0029-5515/45/7/018  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 1 Associazione EURATOM-ENEA sulla Fusione, Centro Ricerche di Frascati, C.P. 65-00044 Frascati, Rome, Italy 2 Institute of Plasma Physics and Laser Microfusion, PO Box 49, PL-00-908, Warsaw, Poland Received

Vlad, Gregorio

238

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006  

E-Print Network (OSTI)

, it is expected that the laser fusion ignition will be demonstrated in the next few years. If this does indeed to solve the energy problem. The laser implosion for the fusion ignition and burn was opened up and simulations, it is now expected that laser fusion ignition will be demonstrated by the NIF (National Ignition

239

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 012002 (7pp) doi:10.1088/0029-5515/54/1/012002  

E-Print Network (OSTI)

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 012002 (7pp) doi:10 loads and particle bombardment is a key issue for the nuclear fusion community. Currently high current.1088/0029-5515/54/1/012002 LETTER Experimental simulation of materials degradation of plasma-facing components using lasers N. Farid

Harilal, S. S.

240

Role of nuclear fusion in future energy systems and the environment under future uncertainties  

Science Journals Connector (OSTI)

Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050–2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO2 concentration constraint.

Koji Tokimatsu; Jun’ichi Fujino; Satoshi Konishi; Yuichi Ogawa; Kenji Yamaji

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Exploring Fusion at Extreme Sub-Barrier Energies with Weakly Bound Nuclei  

SciTech Connect

Results of measurement of residues formed in fusion of {sup 6}Li with {sup 198}Pt in the energy range of 0.68fusion excitation function and the derived average angular momenta do not indicate a change of slope at deep sub-barrier energies, contrary to recent observations. The present results for a system with weakly bound projectile confront the current understanding of the fusion hindrance at these low energies, underlying the role of internal reorganization on the dynamical path towards fusion.

Shrivastava, A. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); GANIL, CEA/DSM-CNRS/IN2P3, Boulevard Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Navin, A.; Lemasson, A.; Rejmund, M. [GANIL, CEA/DSM-CNRS/IN2P3, Boulevard Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Ramachandran, K.; Chatterjee, A.; Kailas, S.; Mahata, K.; Rout, P. C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Nanal, V.; Pillay, R. G. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Hagino, K. [Department of Physics, Tohuku University, Sendai 980-8578 (Japan); Ichikawa, T. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Parkar, V. V. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India)

2009-12-04T23:59:59.000Z

242

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 21, 2011 April 21, 2011 It Starts with Science... March 30, 2011 Mentoring Our Future Generation of STEM Professionals A program aimed at introducing the students to successful women in science and technology. March 10, 2011 Morgan State alumnus and PNNL electrical engineer Jewel Adgerson | Courtesy of Pacific Northwest National Laboratory From Gadgets to Labs: Morgan State Alum Jewel Adgerson Jewel Adgerson is an electrical engineer at the Energy Department's Pacific Northwest National Laboratory (PNNL) and Morgan State University alum. We got to talk with her about her work with the Department's Energy Innovation Hub and her passion for building up the next generation of scientists and engineers through STEM education. February 9, 2011 Multimedia and Visualization Innovations for Science

243

Energy Sciences Network (ESnet)  

NLE Websites -- All DOE Office Websites

ESnet ESnet ESnet ESnet ESnet ESnet » MyESnet search... Go Home Network Overview Tools Peering Information Interactive Network Map Network Maps Connected Sites Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) DOE Grids Service Transition R&D Overview 100G Testbed Virtual Circuits (OSCARS) Performance (perfSONAR) Tools Development Green Networking Authentication & Trust Federation (ATF) Partnerships News & Publications ESnet in the News ESnet News Publications and Presentations Galleries ESnet Awards and Honors About ESnet Overview ESnet Staff Governance Our Network Case Studies ESnet Strategic Plan ESnet Organizational Chart ESnet History Science Requirements Careers Contact Us

244

Laser fusion experiment yields record energy at Lawrence Livermore's  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 08/26/2013 | NR-13-08-04 High Resolution Image All NIF experiments are controlled and orchestrated by the integrated computer control system in the facility's control room. It consists of 950 front-end processors attached to about 60,000 control points, including mirrors, lenses, motors, sensors, cameras, amplifiers, capacitors and diagnostic instruments. Laser fusion experiment yields record energy at Lawrence Livermore's National Ignition Facility Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image The preamplifiers of the National Ignition Facility are the first step in increasing the energy of laser beams as they make their way toward the target chamber. LIVERMORE, Calif. -- In the early morning hours of Aug.13, Lawrence

245

Los Alamos Lab: Science Program Office, Energy Security Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Program Office: Fossil Energy & Environment (SPO-FE) SPO FE Science AEI Nuclear Fossil Energy & Environment Home Office of Science Home Alternative Energy & Infrastructure...

246

Primary Science of Energy Student Guide (42 Activities) | Department...  

Energy Savers (EERE)

Primary Science of Energy Student Guide (42 Activities) Primary Science of Energy Student Guide (42 Activities) Information about Primary Science of Energy, 42 student activities...

247

Climate & Environmental Sciences | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy, Water and Ecosystem Engineering Human Health Risk and Environmental Analysis Renewable Energy Systems Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Climate & Environment SHARE Climate and Environmental Sciences Scientists Scott Brooks and Carrie Miller collect water quality data, East Fork Poplar Creek, November 15, 2012. Sampling site for mercury. Climate and environmental scientists at ORNL conduct research, develop technology and perform analyses to understand and predict how environmental systems respond to global and regional changes - including

248

FWP executive summaries: Basic energy sciences materials sciences programs  

SciTech Connect

This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

Samara, G.A.

1996-02-01T23:59:59.000Z

249

Science Headlines  

Office of Science (SC) Website

is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en ACBFAD0E-6C01-4559-9833-E1AA...

250

Status of the US program in magneto-inertial fusion  

Science Journals Connector (OSTI)

A status report of the current U.S. program in magneto-inertial fusion (MIF) conducted by the Office of Fusion Energy Sciences (OFES) of the U.S. Department of Energy is given. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. The program is part of the OFES program in high energy density laboratory plasmas (HED-LP).

Y C F Thio

2008-01-01T23:59:59.000Z

251

Extensive remote handling and conservative plasma conditions to enable fusion nuclear science R&D using a component testing facility  

E-Print Network (OSTI)

nuclear science R&D using a component testing facility Y.K.M. Peng 1), T.W. Burgess 1), A.J. Carroll 1), C. This use aims to test components in an integrated fusion nuclear environment, for the first time@ornl.gov Abstract. The use of a fusion component testing facility to study and establish, during the ITER era

Princeton Plasma Physics Laboratory

252

1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle  

E-Print Network (OSTI)

1 1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle transport in D-T plasmas) is a central issue in fusion reactor de- velopment. Important effects dependent on fp transport-7 are concerned with fp wall bombardment and focus on two types of charged, high-energy fp losses from

Hively, Lee M.

253

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Webby Honoree graphic graphic Key Resource Snap editors choice new scientist DrMatrix Webby Awards Honoree, April 10, 2007 The Alchemist - WebPick, January 29, 1999 Links2Go - Fusion, November 9, 1998 October 19, 1998 - October 19, 1999 Site of the Day, September 24, 1998. Hot spot. Student Science Resource, April 16, 1997

254

Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Science newsroomassetsimagesscience-icon.png Science Cutting edge, multidisciplinary national-security science. Health Space Computing Energy Earth Materials Science...

255

fusion  

National Nuclear Security Administration (NNSA)

7%2A en ICF Facilities http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicffacilities

256

Graduate Handbook Energy Science and Engineering Program  

E-Print Network (OSTI)

Graduate Handbook Energy Science and Engineering Program Bredesen Center for Interdisciplinary Examinations ......................................................... 7 Course Requirements.......................................................................... 8 Approved Courses .............................................................................. 9

Tennessee, University of

257

NREL: Energy Sciences - Theoretical Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Science Solid-State Theory Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Theoretical Materials Science Learn about our research staff including staff profiles, publications, and contact information. Using modern computational techniques, the Theoretical Materials Science Group, within NREL's Chemical and Materials Science Center, applies quantum mechanics to complex materials, yielding quantitative predictions to guide and interact with experimental explorations. Current research focuses on the following efforts: Design new photovoltaic materials that can improve solar cell efficiency and reduce its cost. Explain the underlying physics of new

258

MIT Plasma Science & Fusion Center: research>alcator>information  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering Francis Bitter Magnet...

259

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 of nuclear energy in the form of nuclear fission were established with the nuclear powered submarine Research and Energy®, 48 Oakland Street, Princeton, NJ 08540, USA E-mail: dmeade@pppl.gov Received 6 August

260

Amplifying Magnetic Fields in High Energy Density Plasmas | U...  

Office of Science (SC) Website

Amplifying Magnetic Fields in High Energy Density Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities...

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fusion materials science and technology research opportunities now and during the ITER era  

SciTech Connect

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

2014-10-01T23:59:59.000Z

262

Fusion Materials Science and Technology Research Opportunities now and during the ITER Era  

SciTech Connect

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

2014-02-22T23:59:59.000Z

263

MIT Plasma Science & Fusion Center: research>alcator>  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Research Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering Useful Links earl marmar head of alcator reviewing data Dr. Earl Marmar, leader of the Alcator Project, studies C-Mod data. Today, we are closer than ever to realizing the dream of harnessing the nuclear process that powers our sun. This stellar process, called fusion, produces minimal waste and offers the hope of an almost limitless supply of safe, dependable energy. Among fusion research groups, MIT's Alcator C-Mod project is unique in its dedication to compact size and high performance. It is the world's highest magnetic field tokamak plasma confinement experiment. As a result, Alcator experiments have performed at levels rivaling the largest fusion experiments in the world.

264

Fusion Energy Division progress report, January 1, 1992--December 31, 1994  

SciTech Connect

The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

1995-09-01T23:59:59.000Z

265

MIT Plasma Science & Fusion Center: research>alcator>publications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Information Computer & Data Systems Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density...

266

MIT Plasma Science & Fusion Center: research, alcator, pubs,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Density Physics Waves & Beams Technology & Engineering Useful Links Program Advisory Committee Meeting Agenda, February 23 - 25, 2004 Monday, February 23, 2004 1:00 pm...

267

Fusion Links | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

of hyperlinks does not constitute endorsement by the Department of Energy of these web sites or the information, products or services contained therein. Last modified: 318...

268

Fusion Institutions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

of hyperlinks does not constitute endorsement by the Department of Energy of these web sites or the information, products or services contained therein. Last modified: 516...

269

2012 Science Alliance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Alliance Science Alliance 2012 Science Alliance Addthis Science Alliance 1 of 5 Science Alliance Students arrive at the welcome tent during the beginning of the two-day Science Alliance, in which more than 900 area high school juniors enjoyed presentations in 14 separate areas on a midway in the X-2207A parking lot. Image: Energy Department's Office of Environmental Management Date taken: 2012-09-25 08:59 Science Alliance 2 of 5 Science Alliance DOE Site Lead Joel Bradburne, Site Director Dr. Vince Adams and Science Alliance team member John Zangri of Fluor-B&W join students in watching one of the presentations during the Science Alliance. Image: Energy Department's Office of Environmental Management Date taken: 2012-09-25 10:16 Science Alliance 3 of 5 Science Alliance

270

NREL: Energy Sciences - Pawel Zawadzki  

NLE Websites -- All DOE Office Websites (Extended Search)

Pawel Zawadzki Pawel Zawadzki Postdoctoral Researcher Phone: (303) 384-6444 Email: pawel.zawadzki@nrel.gov At NREL Since: 2012 Dr. Pawel Zawadzki joined the Chemical and Materials Science team at NREL in 2012 as a Postdoctoral Researcher. He is a graduate of Warsaw University of Technology and Jules Verne University. He received his Ph.D. in Physics from the Technical University of Denmark, where he worked on first-principles photocatalysis. Research Interests Amorphous materials Thin-film solar cells Photocatalysis Materials for energy storage and conversion Selected Publications Zawadzki P.; Laursen A. B.; Jacobsen K. W.; Dahl S.; Rossmeisl J. (2012). "Oxidative trends of TiO2 - hole trapping at anatase and rutile surfaces." Energy & Environmental Science (Advance Article:2012); Accessed November

271

NREL: Energy Sciences - Lin Simpson  

NLE Websites -- All DOE Office Websites (Extended Search)

Lin Simpson Lin Simpson Senior Scientist Photo of Lin Simpson Phone: (303) 384-6625 Email: lin.simpson@nrel.gov At NREL Since: 2005 Lin Simpson has a broad background in research, development, and program management. This includes extensive experience in nanotechnology, materials science, physics, and surface science. At NREL, he was the director of the Department of Energy's Hydrogen Sorption Center of Excellence and performs associated advanced materials development and testing. Previously, Dr. Simpson was the Manager of Advanced Programs at ITN Energy Systems, Inc., where he planned, implemented, and managed R&D activities to produce the next generation of enabling technologies for a broad range of commercial applications in technology areas that included: nanotechnology,

272

Posters | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Posters Posters Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » International Activities Posters Print Text Size: A A A RSS Feeds FeedbackShare Page IEA Fusion Exhibit Fusion Research Team .pdf file (1.2MB) Fusion is way ahead .pdf file (1.5MB) What is Fusion? .pdf file (1.7MB) Why Fusion? .pdf file (1.3MB) ITER (1) .pdf file (1.5MB) ITER (2) .pdf file (2.0MB)

273

Ignition on the National Ignition Facility: A Path Towards Inertial Fusion Energy  

E-Print Network (OSTI)

to Arial 18 pt bold Name here Title or division here Date 00, 2008 LLNL-PRES-407907 #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 2 Two major possibilities for fusion energy #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 3 The NIF is nearing completion and will be conducting

274

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10.1088/0029-5515/50/9/095005  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 of these papers can be found in issue 3 2010 of Nuclear Fusion http://iopscience.iop.org/0029-5515/50/3/039901. b) in the energy range 0.5�1 MeV. The total power input will be in the 30�40 MW range under different plasma

Vlad, Gregorio

275

Fusion Engineering and Design 84 (2009) 21582166 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed fusion reactor would allow harnessing the source of the sun's energy in a way that will either eliminate

Harilal, S. S.

276

AM Garofalo, MFE Roadmapping, 2011 A Fusion Nuclear Science Facility Based on the  

E-Print Network (OSTI)

to What We Learn in ITER, What Else Do We Need to Learn to Build an Electricity Producing DEMO? ITER High and potential activities to address them #12;AM Garofalo, MFE Roadmapping, 2011 US MFE Leadership ­ A Vision and structures ­ Harnessing fusion power E.J. Synakowski, U.S. Department of Energy December 2010 #12;AM Garofalo

277

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 25, 2013 January 25, 2013 AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. National Lab Helping to Train Operators for Next Generation of Power Plants Students in West Virginia are receiving hands-on experience for careers at cleaner-burning coal-fired power plants. January 19, 2013 Bill Nye (Energy All Stars Presentation) Bill Nye the Science Guy delivered this presentation on space and the lessons about climate change that can be gleaned from the other planets in our solar system at the Energy All Stars event on January 19, 2013, at the US Department of Energy in Washington, DC. January 11, 2013

278

NREL: Energy Sciences - Kara Podkaminer  

NLE Websites -- All DOE Office Websites (Extended Search)

Kara Podkaminer Kara Podkaminer Postdoctoral Researcher Photo of Kara Podkaminer Phone: (303) 384-7970 Email: Kara.Podkaminer@nrel.gov At NREL Since: 2011 Kara Podkaminer received her Ph.D. in Engineering Sciences from the Thayer School of Engineering at Dartmouth College in 2011. For her dissertation work, she studied the thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum ALK2 and its application in a thermophliic SSF process. At NREL, Dr. Podkaminer is working on heterologous protein expression in T. reesei, looking to better understand the bottlenecks and increase protein production. This work will serve as the foundation for future expression of NREL's chimera proteins. Printable Version NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

279

The Heavy Ion Fusion Science Virtual National Laboratory Heavy Ion Fusion*  

E-Print Network (OSTI)

under the auspices of the U.S. Department of Energy by the Lawrence Berkeley and Lawrence Livermore Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics for dynamic vacuum/e-cloud accelerator R&D @ 5 Hz; 4. Defer down-selections on HIF target options until NIF

280

NREL: Energy Sciences - Chemical and Nanoscale Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Science Nanoscale Science Learn about our research staff including staff profiles, publications, and contact information. The primary goal of the Chemical and Nanoscale Science Group, within NREL's Chemical and Materials Science Center, is to understand photoconversion processes in nanoscale, excitonic photoconversion systems, such as semiconductor quantum dots, molecular dyes, conjugated molecules and polymers, nanostructured oxides, and carbon nanotubes. Closely associated with this goal are efforts to gain an understanding of how to use chemistry and physical tools to control and maximize the photoconversion process. The innovative chemistry and physics that evolve from these fundamental studies are used on a number of applied projects, maximizing the benefits from these discoveries.

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies  

E-Print Network (OSTI)

Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

2011-06-10T23:59:59.000Z

282

Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Efficiency and Renewable Energy (EERE) Science and Technology Policy (STP) Fellowships serve as a next step in the educational and professional development of scientists and engineers...

283

Current state of magnetic-fusion energy research  

SciTech Connect

With the improved understanding of plasma physics, progress is being made on several approaches to magnetic confinement for controlled thermonuclear fusion.

Johnson, J.L.; Weimer, K.E.

1983-02-01T23:59:59.000Z

284

Magnetic Fusion Energy Research: A Summary of Accomplishments  

DOE R&D Accomplishments (OSTI)

Some of the more important contributions of the research program needed to establish the scientific and technical base for fusion power production are discussed. (MOW)

1986-12-00T23:59:59.000Z

285

The Fusion Advanced Studies Torus (FAST): a proposal for an ITER satellite facility in support of the development of fusion energy  

E-Print Network (OSTI)

and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10) in the energy range 0.5­1 MeV. The total power input will be in the 30­40 MW range under different plasma

Zonca, Fulvio

286

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 982988 PII: S0029-5515(03)66862-6  

E-Print Network (OSTI)

. For the out-shifted, shaped plasma, ripple loss of high energy ions during neutral beam injection (NBIINSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion is analysed. PACS numbers: 52.55.Fa, 52.55.Wq, 52.25.Fi 1. Introduction The construction of HL-2A [1

Budny, Robert

287

Department of Energy Office of Science Transportation Overview...  

Office of Environmental Management (EM)

Department of Energy Office of Science Transportation Overview Department of Energy Office of Science Transportation Overview Overview of the Office of Science for Transportation....

288

Before the House Science and Technology Subcommittee on Energy...  

Office of Environmental Management (EM)

House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and...

289

23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC  

SciTech Connect

An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

Richard J. Hawryluk

2011-01-05T23:59:59.000Z

290

White Paper on Magnetic Fusion Energy Priorities by Paul M. Bellan, Professor of Applied Physics, Caltech  

E-Print Network (OSTI)

White Paper on Magnetic Fusion Energy Priorities by Paul M. Bellan, Professor of Applied Physics, Caltech It is important to make ITER work (surpass fusion breakeven) and it is equally important for ITER there will be problems with plasmawall interactions or materials. There are many possible types of problems or there may

291

Fusion Energy Division annual progress report period ending December 31, 1986  

SciTech Connect

This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

1987-10-01T23:59:59.000Z

292

Status of the US National Inertial Fusion ProgramSNL Z Facility UR/LLE OMEGA  

E-Print Network (OSTI)

Status of the US National Inertial Fusion ProgramSNL Z Facility UR/LLE OMEGA Presentation to the Fusion Energy Sciences Advisory Committee Meeting by: Dr. Allan A. Hauer Director, Office of Inertial Confinement Fusion March 1, 2006 #12;2 The US Inertial Fusion Program has 3 principal components · The first

293

The little bang theory—Energy from inertial fusion  

Science Journals Connector (OSTI)

Calculations show that it may be possible to ignite small thermonuclear explosions with an ion accelerator or laser. The process involves the implosion of small targets to achieve extreme temperatures and densities. The implosion can be described as a sequence of shock waves followed by adiabatic compression. The strength and timing of the shock waves are important in achieving proper conditions for thermonuclear burn. Other important issues include the uniformity of the converging shock waves and the influence of these shock waves on fluid instabilities. These issues are not fully understood and constitute an important area of research in inertial fusion. In order to produce commercial energy it will be necessary to develop combustion chambers target fabrication factories and efficient drivers (accelerators or lasers). These will be briefly discussed. In particular acoustical phenomena will play an important role in combustion chamber design. [Research performed under the auspices of the U.S. Energy Research and Development Administration under Contract No. W?7405?Eng?48.

Roger O. Bangerter

1980-01-01T23:59:59.000Z

294

NREL: Energy Sciences - Junyi Zhu  

NLE Websites -- All DOE Office Websites (Extended Search)

Junyi Zhu Junyi Zhu Research Associate Photo of Junyi Zhu Phone: (303) 384-6294 Email: junyi.zhu@nrel.gov At NREL Since: 2009 Dr. Zhu joined NREL in Sep. 2009 as a postdoctoral researcher in the Computational Materials Science Team. He received his B.A. in physics from the Beijing University, China, and gained his Ph.D. in materials science and engineering in 2009 at University of Utah, under the supervision of Prof. Feng Liu and Prof. G. B. Stringfellow. He is experienced in modeling and simulating of surface related problems, strain and stress effects, and doping in semiconductor materials. Research Interests Doping properties in semiconductors and insulators Stress induced effects Thermal energy storage materials Selected Publications Zhu, J.; Wei, S.-H. (2011). "Tuning doping site and type by strain:

295

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 15, 2010 December 15, 2010 Environmental Justice Starts with Education Hundreds gathered at the White House Summit on Environmental Justice to discuss green jobs and clean energy, and open up a dialogue on these and other issues. December 8, 2010 Middle school girls attending the Argonne National Laboratory's "Introduce a Girl to Engineering Day." Tomorrow's Women Engineers Middle school girls in Argonne, Illinois, will meet with women engineers to work together on hands-on projects. December 3, 2010 Calling Excellent Math and Science Teachers -- Einstein Fellowship Deadline is January 4 Elementary and secondary math and science teachers are eligible the fellowship that bring them to DC to share their teaching expertise with policy makers. October 26, 2010

296

TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

Dunne, A M

2010-11-30T23:59:59.000Z

297

National Science Bowl 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Science Bowl 2013 National Science Bowl 2013 National Science Bowl 2013 Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center, Thursday, April 25, 2013 in Chevy Chase, Maryland. | Photo courtesy of Sarah Gerrity, Department of Energy. Date taken: 2013-04-26 15:20 National Science Bowl 2013 2 of 16 National Science Bowl 2013 The high school students participated in a team challenge competition, which prompted them to solve problems by conducting experiments and collecting data. | Photo courtesy of Sarah Gerrity, Department of Energy. Date taken: 2013-04-26 15:19 National Science Bowl 2013 3 of 16 National Science Bowl 2013 The high school students participated in a team challenge competition, which prompted them to solve problems by conducting experiments and

298

Fusion Cross-Section Measurements with Deuterons of Low Energy  

Science Journals Connector (OSTI)

5 December 1961 research-article Fusion Cross-Section Measurements with Deuterons...theory and to calculations of the rate of thermonuclear reactions. Until now reliable values...cross-sections. The method of measuring the fusion cross-sections made use of an intense...

1961-01-01T23:59:59.000Z

299

Pathways to Inertial Fusion Energy Laser Direct Drive  

E-Print Network (OSTI)

(NRL) Smoothing by Spectral Dispersion ­ SSD (LLE) DT ice preheated ablator (lower density) DT ice "Gain" = Fusion power OUT / laser power IN 143/572 = 25% Recirculating power (Nuclear reactions (electricity) Target "Gain" = Fusion power OUT / laser power IN 143/880 = 16% Recirculating power (Nuclear

300

News ScienceInsider Physics Fusion "Breakthrough" at NIF? Uh, Not Really ... AAAS.ORG FEEDBACK HELP LIBRARIANS  

E-Print Network (OSTI)

on a report on the BBC News website. The National Ignition Facility (NIF) at Lawrence Livermore National ... 15 Comments Lawrence Livermore National Laboratory/Wikimedia Science reporting breakdown? PressNews » ScienceInsider » Physics » Fusion "Breakthrough" at NIF? Uh, Not Really ... AAAS

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nuclear Fusion  

Science Journals Connector (OSTI)

Although not yet developed at the commercial stage, nuclear fusion technology is still being considered as a ... used in nuclear warfare. Since research in nuclear fusion for the production of energy started abou...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

302

Geospatial Science Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geospatial Science Program Geospatial Science Program Geospatial Science Program June 21, 2011 - 3:50pm Addthis The overarching mission of the Department of Energy (DOE) is to discover solutions to power and secure America's future. DOE's Geospatial Science Program was established to optimize geospatial investments across our complex and to enable prudent stewardship of the resources provided by the American taxpayer. The term 'geospatial science' encompasses both the concepts of geographic information science and geographic information systems. Geographic information science is the study of spatially-referenced data, including geographic theory, technological design, and analytical algorithms. Geographic Information Systems (GIS) are specialized software and hardware used to manage, manipulate, query, and

303

NREL: Energy Sciences - Liping Yu  

NLE Websites -- All DOE Office Websites (Extended Search)

Liping Yu Liping Yu Postdoctoral Researcher Photo of Liping Yu Phone: (303) 384-6455 Email: liping.yu@nrel.gov At NREL Since: 2009 Dr. Yu joined NREL in August 2009 as a postdoctoral researcher in the Solid State Theory Team. He received his Ph.D. in physics from North Carolina State University in 2009 under the supervision of Dr. Jerry Bernholc. His research in computational materials science focuses on first principles (DFT) studies of defect, electronic, optical, and dielectric properties of real materials. Currently he works on the computational design and theoretical modeling of renewable energy materials for the Center of Inverse Design, a DOE Energy Frontier Research Center (EFRC). Research Interests High-throughput calculations Solar photovoltaic and solid state lighting

304

Nuclear Fusion as an Energy Option for the 21st Century  

Science Journals Connector (OSTI)

For more than 50 years, controlled nuclear fusion has been promised as a safe, clean...Bethe 1939). Yet, after several decades of work by researchers in several countries, producing more energy than is invested i...

Julio E Herrera-Velázquez

2007-01-01T23:59:59.000Z

305

Origins | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Origins Origins Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » International Activities Origins Print Text Size: A A A RSS Feeds FeedbackShare Page ORIGINS OF U.S. INTERNATIONAL FUSION COLLABORATIONS Fusion can be said to have been born internationally, at PPPL, in 1951 when Lyman Spitzer read about fusion being accomplished in Argentina and wondered how that was done, starting the U.S. fusion program. On May

306

January 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research  

E-Print Network (OSTI)

14, 2014 MIT PSFC IAP Seminar Series 9 Units to measure energy and power "Joule" or "J" is a unit of Energy "Watt" or "W" is a unit of power Power is energy used per second 1 Watt = Your 60 Watt light bulbJanuary 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research Prospects

307

House Energy and Water Appropriations Subcommittee Report on FY 2013 Budget April 25, 2012  

E-Print Network (OSTI)

House Energy and Water Appropriations Subcommittee Report on FY 2013 Budget April 25, 2012 FUSION-year plan for Fusion Energy Sciences directed in the fiscal year 2012 appropriations conference report ENERGY SCIENCES The Fusion Energy Sciences program supports basic research and experimentation aiming

308

Fusion cross sections for the Be9+Sn124 reaction at energies near the Coulomb barrier  

Science Journals Connector (OSTI)

The complete and incomplete fusion cross sections for Be9+Sn124 reaction have been deduced using the online ?-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by ~28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a Sn124 target shows that, for Be9 nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

V. V. Parkar, R. Palit, Sushil K. Sharma, B. S. Naidu, S. Santra, P. K. Joshi, P. K. Rath, K. Mahata, K. Ramachandran, T. Trivedi, and A. Raghav

2010-11-03T23:59:59.000Z

309

Mesa Energy formerly called Mesa Environmental Sciences | Open Energy  

Open Energy Info (EERE)

called Mesa Environmental Sciences called Mesa Environmental Sciences Jump to: navigation, search Name Mesa Energy (formerly called Mesa Environmental Sciences) Place Pennsylvania Zip 19355 Sector Services, Solar Product Environmental and energy services company focused on solar PV design and installation. References Mesa Energy (formerly called Mesa Environmental Sciences)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mesa Energy (formerly called Mesa Environmental Sciences) is a company located in Pennsylvania . References ↑ "Mesa Energy (formerly called Mesa Environmental Sciences)" Retrieved from "http://en.openei.org/w/index.php?title=Mesa_Energy_formerly_called_Mesa_Environmental_Sciences&oldid=34874

310

Requested Information Provided by the Three Major United States Toroidal Magnetic Fusion Facilities: Report of the 2005 FESAC Facilities Panel, Vol. 2  

Science Journals Connector (OSTI)

This is Volume 2 of a report of a panel established by the U.S. Department of Energy Fusion Energy Sciences Advisory Committee (FESAC) charged to review the three major U.S. fusion facilities. The Panel requested...

Jill Dahlburg; Steven L. Allen; Riccardo Betti…

2005-12-01T23:59:59.000Z

311

SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion  

SciTech Connect

This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large portion of national program efforts are organized around coordinated efforts to develop promising operational scenarios. Substantial efforts to develop integrated plasma modeling codes are also underway in the U.S., Europe and Japan. As a result of the highly collaborative nature of FES research, the community is facing new and unique challenges. While FES has a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of available tools. The NFC Project was initiated to address these challenges by creating and deploying collaborative software tools. The original objective of the NFC project was to develop and deploy a national FES 'Grid' (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

2006-08-31T23:59:59.000Z

312

Muon catalysis for energy production by nuclear fusion  

Science Journals Connector (OSTI)

... mesic molecular ion (dt?-)+. It takes a short time tf for an exothermic nuclear fusion reaction d + t 4 He-hn to occur. When the probability is tdt, ...

Yu. V. Petrov

1980-06-12T23:59:59.000Z

313

The National Ignition Facility and Laser Fusion Energy  

Science Journals Connector (OSTI)

This talk provides an update of the NIC on the National Ignition Facility at the Lawrence Livermore National Laboratory and the roadmap to demonstrate laser fusion as a viable source...

Moses, E I

314

A Plan for the Deveiopment of Magnetic Fusion Energy  

E-Print Network (OSTI)

and to enable the US to benefitfromits commercialization. Executive Summary Fusionenergy should be a long, controlof plasma-wall interactions, tritium processing, developmentof low basisforfusion commercialization. 4. Constructa fusion power demonstrationfacility (DEMO)in the US,which would

315

Nuclear Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Science Accelerator Science Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Home » Science at NERSC » Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of matter. This includes discovering the origins of nuclei and identifying the forces that transform matter. Specific topics include: Nuclear astrophysics and the synthesis of nuclei in stars and elsewhere in the cosmos; Nuclear forces and quantum chromodynamics (QCD), the quantum field

316

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) 1723 doi:10.1088/0029-5515/46/1/002  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion of the flux at points on the plasma boundary, which are used as input to a shape control algorithm known physics, since realistic solutions to the plasma force balance can be used as inputs to feedback loops

Princeton Plasma Physics Laboratory

317

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10.1088/0029-5515/54/2/023004  

E-Print Network (OSTI)

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10 Tatyana Sizyuk and Ahmed Hassanein Center for Materials under Extreme Environment, School of Nuclear for publication 17 December 2013 Published 21 January 2014 Abstract The plasma shielding effect is a well

Harilal, S. S.

318

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 125009 (8pp) doi:10.1088/0029-5515/49/12/125009  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 125009 of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic surface [29]. GTC simulations of a small amplitude GAM recover the analytic linear dispersion relation

Lin, Zhihong

319

Fusion-A Potential Power Source  

Science Journals Connector (OSTI)

Fusion-A Potential Power Source ... Nuclear energy, fusion reactions, magnetic confinement, and tokamaks. ...

Torkil H. Jensen

1994-01-01T23:59:59.000Z

320

NREL: Energy Sciences - Chemical and Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and conducts theoretical studies and fundamental experimental research on optoelectronic materials. The center is led by Acting Director Jao van de Lagemaat. The Center...

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Energy Sciences - Chemical and Materials Science Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Materials Science Staff Chemical and Materials Science Staff The Chemical and Materials Science staff members at the National Renewable Energy Laboratory work within one of five groups: the Chemical and Nanoscale Science Group, the Theoretical Materials Science Group, the Materials Science Group, the Process Technology and Advanced Concepts Group, and the Fuel Cells Group. Access the staff members' background, areas of expertise, and contact information below. Jao van de Lagemaat Director Marisa Howe Project Specialist Chemical & Nanoscale Science Group Nicole Campos Administrative Professional Paul Ackerman Natalia Azarova Brian Bailey Matthew C. Beard Matt Bergren Raghu N. Bhattacharya Julio Villanueva Cab Rebecca Callahan Russ Cormier Ryan Crisp Alex Dixon Andrew J. Ferguson Arthur J. Frank

322

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

323

NREL: Energy Sciences - Daniel Ruddy  

NLE Websites -- All DOE Office Websites (Extended Search)

Ruddy Ruddy Scientist III Photo of Daniel Ruddy Phone: (303) 384-6322 Email: dan.ruddy@nrel.gov At NREL Since: 2010 Dan Ruddy received a Ph.D. degree in Inorganic Chemistry from the University of California, Berkeley in 2008. His research combined synthetic molecular and materials chemistry with detailed characterization to study novel heterogeneous catalysts. He then worked on a variety of catalyst development projects at the Dow Chemical Company in the Renewable Feedstocks & Process Catalysis Group before joining the Chemical and Nanoscale Science Group at NREL in 2010. Dr. Ruddy's research at NREL integrates the synthesis and characterization of functional molecules and materials for advanced energy technologies including solar fuels production, biomass conversion catalysis, and next-generation PV materials.

324

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say  

E-Print Network (OSTI)

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say A crystal with a strange property is at the heart of a clever method for inducing nuclear fusion in a tabletop-sized device-rays for medical therapies. Although the field of room-temperature fusion is littered with scandals and dubious

325

American Fusion News | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

American Fusion News American Fusion News General Atomics (GA) December 4, 2012 The Scorpion's Strategy: "Catch and Subdue" December 4, 2012 Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment February 15, 2012 General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement See All Massachusetts Institute of Technology (MIT) April 5, 2013 Applying physics, teamwork to fusion energy science February 22, 2013 A Tour of Plasma Physics in Downtown Cambridge December 4, 2012 Placing Fusion Power on a Pedestal September 21, 2012 MASSACHUSETTS INSTITUTUE OF TECHNOLOGY See All National Ignition Facility February 22, 2013 Summary of Assessment of Prospects for Inertial Fusion Energy February 16, 2012 National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes

326

Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions  

E-Print Network (OSTI)

Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.

Kai Wen; Fumihiko Sakata; Zhu-Xia Li; Xi-Zhen Wu; Ying-Xun Zhang; Shan-Gui Zhou

2014-07-22T23:59:59.000Z

327

Building Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Building Science Residential Buildings » Building America » Building Science Education Building Science Education The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to: Increase awareness of high performance home benefits Build a solid infrastructure for delivering building science

328

Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei  

SciTech Connect

The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

Wang Ning; Scheid, Werner [Institute for Theoretical Physics at Justus-Liebig-University, D-35392 Giessen (Germany); Wu Xizhen; Liu Min [China Institute of Atomic Energy, Beijing 102413 (China); Li Zhuxia [China Institute of Atomic Energy, Beijing 102413 (China); Institute of Theoretical Physics, Chinese Academic of Science, Beijing 100080 (China); Nuclear Theory Center of National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China)

2006-10-15T23:59:59.000Z

329

It Starts with Science... | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It Starts with Science... It Starts with Science... It Starts with Science... Addthis Description Secretary Chu sits down with a journalism student at Carnegie Mellon's Education City campus in Qatar to discuss the value of science in education and what attracted him to the study of Physics. Speakers Secretary Steven Chu, Thouria Mahmoud Duration 3:09 Topic Science Education Energy Economy Credit Energy Department Video THOURIA MAHMOUD: And I'm a student in Northwestern in Qatar, a sophomore in journalism. And now we're in Carnegie Mellon University in Qatar, and I'm talking to Mr. Secretary. If you had any advice for students who are, like, looking forward to pursue any science major, what would you tell them? SECRETARY OF ENERGY STEVEN CHU: In universities they call a liberal arts

330

Snowflake Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Snowflake Science Snowflake Science January 12, 2012 - 2:08pm Addthis Snowflakes always have six sides, their form and shape depend on temperature and moisture -- and they may have...

331

Science (WFP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science (WFP) Science (WFP) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy. This will enable the agency to have the right...

332

Fusion Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Intro Fusion Education Research DIII-D Internal Site Opportunities Virtual DIII-D Collaborators Countries Physics Eng Physics Operations Diagnostics Computing IFT IFT Site ITER ITER Site FDF Theory Collaborators Conferences GA-Hosted Room Reservations Fusion Meetings Plasma Publications Presentations Images Brochures Posters Movies Corporate General Atomics Products Visitor GA Fusion Hotels Internal Users GA Internal Site DIII-D General Experimental Science Experimental Science Home 2013 Experimental Campaign Burning Plasma Physics Dynamics & Control Boundary and Pedestal ELM Control Operations Diagnostics Computing Support Visitors DIII-D Web Access Help IFT ITER-GA Theory Research Highlights Personnel Links Policies Safety Comp Support Trouble Ticket Eng/Design Fusion Webmail Phone Book

333

Clean Energy | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Energy SHARE Clean Energy '' Download the Clean Energy Newsletter Driven by the goal of reducing fossil fuel use and pollution, ORNL's clean energy research plays a pivotal...

334

Graduate School of Energy Science Outlines of Laboratories Department of ENERGY CONVERSION SCIENCE  

E-Print Network (OSTI)

Graduate School of Energy Science ­ Outlines of Laboratories Department of ENERGY CONVERSION SCIENCE 1 / 2 Group Code: H-1 Group Name: Thermal Energy Conversion Takuji ISHIYAMA, Professor; Hiroshi energy conversion systems with high efficiency and safety while protecting the environment

Takada, Shoji

335

Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier  

E-Print Network (OSTI)

The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

2007-02-16T23:59:59.000Z

336

Fusion Energy in Context: Its Fitness for the Long Term  

Science Journals Connector (OSTI)

...of activation products with long half-lives means that some fusion reactor structural...grow for a time in some regions while remaining steady or falling in others. For example...an-nual use of coal, oil, natural gas, hydropower, nuclear fission,, geothermal...

John P. Holdren

1978-04-14T23:59:59.000Z

337

Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets  

E-Print Network (OSTI)

for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum maintenance cost To put the capital cost issue into perspective, consider the following comparison, which incorporate niobium, a rare and expensive material compared to copper or aluminum. In addition to the direct

338

A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » October 2012 A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion Plasmas Recent experiments have confirmed the great potential of a novel plasma-material interface concept. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo

339

NIF achieves record laser energy in pursuit of fusion ignition | National  

NLE Websites -- All DOE Office Websites (Extended Search)

achieves record laser energy in pursuit of fusion ignition | National achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF achieves record laser energy in pursuit ... NIF achieves record laser energy in pursuit of fusion ignition Posted By Office of Public Affairs NNSA Blog The NNSA's National Ignition Facility (NIF) surpassed a critical

340

Fusion Energy Division annual progress report period ending December 31, 1983  

SciTech Connect

The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

Not Available

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Scientific Issues and Gaps for High-Performance Steady-State Burning-Plasmas Fusion Innovation Research and Energy  

E-Print Network (OSTI)

Innovation Research and Energy Princeton, NJ 08540 Introduction Fusion energy is a potential energy source for an electricity producing power plant. Recently, the FESAC Priorities, Gaps and Opportunities Panel identified, and extracting plasma exhaust power) Theme C ­ Harnessing the Power of Fusion (extracting neutron power, breeding

342

Before the House Subcommittee on Energy, Committee on Science...  

Office of Environmental Management (EM)

Energy, Committee on Science, Space and Technology Before the House Subcommittee on Energy, Committee on Science, Space and Technology Testimony of Dr. Peter Lyons, Assistant...

343

Office of the Under Secretary for Science and Energy | Department...  

Energy Savers (EERE)

Office of the Under Secretary for Science and Energy Office of the Under Secretary for Science and Energy Grid Modernization Laboratory Consortium Launch Grid Modernization...

344

Before the House Science and Technology Subcommittee on Energy...  

Energy Savers (EERE)

Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Statement Before the Committee On...

345

Before the Subcommittee on Energy -- House Science, Space, and...  

Office of Environmental Management (EM)

on Energy -- House Science, Space, and Technology Committee Testimony of Christopher Smith, Acting Assistant Secretary Before the Subcommittee on Energy -- House Science, Space,...

346

Fusion Power  

Science Journals Connector (OSTI)

...present cost of coal, on a per-unit-of-energy basis. Nuclear fusion is nuclear combustion, the process that heats the sun and...enough for the release of fusion energy to exceed the heat input; and third, convert the energy released to useful form...

R. F. Post

1971-01-01T23:59:59.000Z

347

PPPL Races Ahead with Fusion Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the Power... the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science-two topics of vital interest to the United States and the world. Fusion powers the sun and stars, and harnessing this power on Earth could provide a safe, clean and virtually limitless way to meet global electricity needs.

348

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences Computational Energy Sciences Advanced Research Computational Energy Sciences Virtual Plant Simulating the complex processes occurring inside a coal gasifier, or across an entire chemical or power plant, is an incredible tool made possible by today's supercomputers and advanced simulation software. The Computational Energy Sciences (CES) Focus Area provides such tools to the Fossil Energy program at NETL. The goal is to help scientists and engineers to better understand the fundamental steps in a complex process so they can optimize the design of the equipment needed to run it. Not only is this less costly than performing a long series of experiments under varying conditions to try to isolate important variables, but it also provides more information than such experiments can provide. Of course, the data is

349

Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmasa...  

E-Print Network (OSTI)

, Albuquerque, New Mexico, 87185-1196, USA 2 University of Nevada, Reno, Nevada 89557, USA 3 Lawrence Livermore for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion more energy and the backlight must be bright enough to overwhelm the plasma self-emission

350

Fusion of light proton-rich exotic nuclei at near-barrier energies  

E-Print Network (OSTI)

We study theoretically fusion of the light proton-rich exotic nuclei $^{17}$F and $^8$B at near-barrier energies in order to investigate the possible role of breakup processes on their fusion cross sections. To this end, coupled channel calculations are performed considering the couplings to the breakup channels of these projectiles. In case of $^{17}$F, the coupling arising out of the inelastic excitation from the ground state to the bound excited state and its couplings to the continuum have also been taken into consideration. It is found that the inelastic excitation/breakup of $^{17}$F affect the fusion cross sections very nominally even for a heavy target like Pb. On the other hand, calculations for fusion of the one-proton halo nucleus $^8$B on a Pb target show a significant suppression of the complete fusion cross section above the Coulomb barrier. This is due to the larger breakup probability of $^8$B as compared to that of $^{17}$F. However, even for $^8$B, there is little change in the complete fusion cross sections as compared to the no-coupling case at sub-barrier energies.

P. Banerjee; K. Krishan; S. Bhattacharya; C. Bhattacharya

2002-02-08T23:59:59.000Z

351

House Committee on Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Committee on Science Committee on Science House Committee on Science February 16, 2005 - 10:25am Addthis Remarks by Secretary Samuel W. Bodman Chairman Boehlert, Congressman Gordon, members of the Committee, thank you for welcoming me back, this time in my new role as Secretary of Energy. I am grateful for the opportunity to discuss the President's fiscal year 2006 budget for science at the Department of Energy. I come before you this morning with tremendous enthusiasm for the Department's mission to maintain and enhance America's leadership in science and technology. That responsibility is best illustrated by the Department's Office of Science stewardship of our nation's scientific infrastructure through a system of 10 world-class National Laboratories. In addition to the

352

Proliferation risks of magnetic fusion energy: clandestine production, covert production and breakout  

Science Journals Connector (OSTI)

Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material in a declared facility and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper, we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

A. Glaser; R.J. Goldston

2012-01-01T23:59:59.000Z

353

Science for Our Nation's Energy Future | U.S. DOE Office of Science...  

Office of Science (SC) Website

DOE Announcements Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

354

Can the future world energy system be free of nuclear fusion?  

Science Journals Connector (OSTI)

The available information on the dynamics of world population growth as well as global statistical data on today's energy production, consumption and distribution are presented. Natural restrictions on the modern world's fossil combustion energy system are discussed along with possible climatic and biospherical impacts for its part. Alternative energy sources capable of replacing the existing energy system are considered and prospects for controllable nuclear fusion are discussed.

Sergei V Putvinskii

1998-01-01T23:59:59.000Z

355

Before the Subcommittee on Energy -- House Science, Space, and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-- House Science, Space, and -- House Science, Space, and Technology Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Testimony of Christopher Smith, Acting Assistant Secretary Before the Subcommittee on Energy -- House Science, Space, and Technology Committee More Documents & Publications Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Energy and Power -- House Energy and Commerce Committee Before the Subcommittees on Energy and Environment - House Committee on

356

Climate Change Science Institute | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Science Institute Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and inform policy on the outcomes of climate change responses. The Climate Change Science Institute is an inter-disciplinary, cross-directorate research organization created in 2009 to advance climate change science research. More than 100 researchers from the Computing and Computational Sciences and the Energy and Environmental Sciences Directorates at ORNL actively participate in CCSI research. CCSI aims to understand the fate of carbon in the climate system-the central issue of greenhouse-gas-induced warming-so we can develop the predictive infrastructure to help answer questions about low-probability, high-impact

357

Energy Sciences Institute Talks at West Campus  

E-Print Network (OSTI)

such as pumped hydroelectric storage, compressed air energy storage (CAES), flywheels, and electrochemical electric storage devices, but viable battery technology able to store large amounts of electric energyEnergy Sciences Institute Talks at West Campus Jaephil Cho Professor at SAMSUNG SDI-UNIST Future

358

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks  

E-Print Network (OSTI)

of routing tree establishment, transmission energy planninglarge gap of energy between the single-hop tree and theThe routing tree ?nding and the transmission energy planning

Huang, Yi

2010-01-01T23:59:59.000Z

359

INTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE  

E-Print Network (OSTI)

Integrated Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting & Air FlowINTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems

360

Impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants  

SciTech Connect

Sisolak et al. defined two methods for the approximation of pulsed irradiation: the steady-state (SS) and the equivalent steady-state (ESS) methods. Both methods have been shown to greatly simplify the process of calculating radionuclide inventories. However, they are not accurate when applied to magnetic fusion energy (MFF) and inertial fusion energy (IFE) experimental facilities. In the work reported here, an attempt has been made to evaluate the accuracy of the SS and ESS methods as they might be applied to typical MFE and IFE power plants. 18 refs., 6 figs.

Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [Univ. of California, Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Journal of Fusion Energy, Vol. 20, No. 3, September 2001 ( 2002) Report of the FESAC Panel on a Burning Plasma Program  

E-Print Network (OSTI)

- ence, although it is not designed to be the sole burning plasma facility in the world.Fusion energy methods of energy production, are strong reasons to pursue fusion energy now. vened for this purposeJournal of Fusion Energy, Vol. 20, No. 3, September 2001 ( 2002) Report of the FESAC Panel

Najmabadi, Farrokh

362

Biological Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biological Science Biological Science Biological Science The protozoan Plasmodium falciparum gliding through a cell in the gut of a mosquito, its primary host. Although five different species of Plasmodium can cause malaria, Plasmodium falciparum causes the most severe disease. | Photo courtesy of Wikipedia Commons. Read more The protozoan Plasmodium falciparum gliding through a cell in the gut of a mosquito, its primary host. Although five different species of Plasmodium can cause malaria, Plasmodium falciparum causes the most severe disease. | Photo courtesy of Wikipedia Commons. Read more Featured Your Density Isn't Your Destiny: The Future of Bad Cholesterol

363

Edmund J Synakowski | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Staff » Edmund J Staff » Edmund J Synakowski Fusion Energy Sciences (FES) FES Home About Staff Edmund J Synakowski Organization Chart .pdf file (104KB) FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Staff Edmund J Synakowski Print Text Size: A A A RSS Feeds FeedbackShare Page Associate Director of Science for Fusion Energy Sciences Edmund J. Synakowski Edmund J. Synakowski Dr. Synakowski is the Associate Director of Science for Fusion Energy

364

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 18, 2011 July 18, 2011 National Science Bowl DOE's National Science Bowl competition is a way to encourage students, who excel in math and science, to pursue careers in those fields. Teams of four or five students compete in a "Jeopardy" style question and answer format. Similar to the FIFA World Cup, the Science Bowl competitions are set up in a round robin format followed by a single or double elimination final tournament. August 5, 2010 The Next Generation of Scientists 150 graduate students will receive a three-year graduate fellowship, which includes tuition, living expenses, and research support. October 8, 2010 Make Your Mark in the 2011 Hydrogen Student Design Contest The contest is challenges undergraduate and graduate students worldwide to plan and design a residential hydrogen fueling system for a home, apartment

365

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2, 2011 February 2, 2011 This Month's Feature on .EDU Connections: Iowa State University Iowa State University's vision is to lead the world in advancing the land-grant ideas of putting science, technology and human creativity to work. February 4, 2011 Geek-Up [2.4.2011]: Mars Hoppers and InSynC Designs for a nuclear-powered Mars hopper that could cover 9 miles every five to seven days and students and teachers submit proposals to use Brookhaven's National Synchrotron Light Source. February 17, 2011 The Virginia winners: coach Sharon Webb, Alexander Yang, Steve Qian, Alec Brenner, Owen Gray, Zeming Lin and Ollie, the Virginia Regional Science Bowl puppy | Photo Courtesy of National Science Bowl More Regional Science Bowl Winners By March 25, 2011, thousands of students will have competed in more than

366

Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science  

SciTech Connect

Compact wedge-range-filter proton spectrometers cover proton energies {approx}3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D{sup 3}He protons in D{sup 3}He implosions, secondary D{sup 3}He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

Seguin, F. H.; Sinenian, N.; Rosenberg, M.; Zylstra, A.; Manuel, M. J.-E.; Sio, H.; Waugh, C.; Rinderknecht, H. G.; Johnson, M. Gatu; Frenje, J.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sangster, T. C.; Roberts, S. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2012-10-15T23:59:59.000Z

367

National Science Bowl | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Science Bowl National Science Bowl National Science Bowl April 25, 2013 11:15AM EDT to April 27, 2013 5:00PM EDT Washington, DC The U.S. Department of Energy (DOE) National Science Bowl is a nationwide academic competition that tests students' knowledge in all areas of science. High school and middle school students are quizzed in a fast paced question-and-answer format similar to Jeopardy. Competing teams from diverse backgrounds are comprised of four students, one alternate, and a teacher who serves as an advisor and coach. A featured event at the National Finals for middle school students, the Model Car Challenge invites students to design, build, and race model cars. This competition tests the creative engineering skills of many of the brightest math and science students in the nation as they gain hands-on

368

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

369

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

2.1.1 Energy Production . . . . . . . . . 2.1.2 Spentof Figures Current World Energy Production Broken Down byCurrent US Energy Production Broken Down by

Kramer, Kevin James

2010-01-01T23:59:59.000Z

370

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Energy.gov (U.S. Department of Energy (DOE))

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

371

Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields  

SciTech Connect

An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

Thio, Francis Y.C.

2008-01-01T23:59:59.000Z

372

Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier  

E-Print Network (OSTI)

Measurement of fusion cross sections for the 6,7Li + 24Mg reactions by the characteristic gamma-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these gamma-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The decrease of fusion cross sections with increase of energy is consistent with the fact that other channels, in particular breakup open up with increase of bombarding energy. This shows that there is neither inhibition nor enhancement of fusion cross sections for these systems at above or below the barrier. The critical angular momenta (lcr) deduced from the fusion cross sections are found to have an energy dependence similar to other Li - induced reactions.

M. Ray; A. Mukherjee; M. K. Pradhan; Ritesh Kshetri; M. Saha Sarkar; R. Palit; I. Majumdar; P. K. Joshi; H. C. Jain; B. Dasmahapatra

2008-05-07T23:59:59.000Z

373

Chemical Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Science Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. Read more. Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty

374

NREL: Energy Sciences - Jie Ma  

NLE Websites -- All DOE Office Websites (Extended Search)

Jie Ma Jie Ma Postdoctoral Researcher Photo of Jie Ma Phone: (303) 384-6511 Email: jie.ma@nrel.gov At NREL Since: 2010 Dr. Ma graduated from the University of Science and Technology of China in 2004 and received a Ph.D. degree from Institute of Physics, Chinese Academy of Sciences in 2009. Jie joined the Computational Materials Science Team at NREL as a postdoctoral researcher in March, 2010. He is currently working on computational design and characterization of nanoscale materials for doping, water splitting, and solar cells, using quantum mechanical electronic structure calculation and molecular dynamics simulation techniques. Research Interests Low-dimensional systems (quantum dots, nanotube and nanowires, and surfaces) Doping in semiconductors. Solar cell and water splitting.

375

NREL: Energy Sciences - Qiang Xu  

NLE Websites -- All DOE Office Websites (Extended Search)

Qiang Xu Qiang Xu Postdoctoral Researcher Photo of Qiang Xu Phone: (303) 384-7929 Email: Qiang.Xu@nrel.gov At NREL Since: 2009 Dr. Xu graduated from the physics department of East China University of Science & Technology and earned his Ph.D. degree from Institute of Semiconductors, Chinese Academy of Science in 2008. Qiang worked as a research fellow at Nanyang Technological University for two years. His research is focused on calculating and simulating the fundamental properties and electronic structures of materials using the first-principles method, such as doping in quantum dot and wires, band offset and deformation potential of semiconductors, and strain distribution in quantum dot. Qiang joined the Computational Materials Science Team at NREL as a postdoctoral researcher in March of 2010. Dr. Xu is currently

376

Specially Conditioned EM Fields to Reduce Nuclear Fusion Input Energy Needs  

Science Journals Connector (OSTI)

Ordinary electromagnetic (EM) fields possess relatively simple \\{U1gauge\\} symmetry, and their angular momentum is analogous to that of spin1 particles whose likecharges attract and unlike charges repel. This manifests in coulomb repulsion between free electrons or ions and coulomb attraction between free electrons and ions. By contrast, angular momentum of SU(2) fields that describe the shortrange Weak Nuclear Force in atomic nuclei is analogous to that of spin2 particles whose likecharges attract. So, free ions that enter such small SU(2) field regions attract each other until their separation becomes so small that their fusion occurs. In this respect, Barrett has derived EM fields with the same SU(2) gauge symmetry and spin2 angular momentum as SU(2) matter fields in atomic nuclei. It is conceivable, therefore, that SU(2) EM fields might cause fuel ions inside nuclear fusion reactors to attract (rather than repel) each other. This paper, therefore, explores the possibility of SU(2) EM fields reducing the electrical compression energies these SU(2) EM fields must exert on fuel ions before fusion of the ions by the SU(2) matter fields of the weak nuclear force then occurs. A specific conditioning of U(1) EM field energy into SU(2) EM field energy was selected; a given type of fusion was assumed; and preliminary, parametric estimates of input electrical energy reductions were made.

H. David Froning Jr.; Terence W. Barrett; George H. Miley

2012-01-01T23:59:59.000Z

377

Fusion Energy for Power Production: Status Assessment, Identification of Challenges and Strategic Plan for Commercialization  

E-Print Network (OSTI)

1 Fusion Energy for Power Production: Status Assessment, Identification of Challenges and Strategic in the Technical Assessment Committee (TAC) and 4) EPRI being the Program Manager for the project. Establish Plan for Commercialization March 2011 Phase I. Status Assessment and Identification of Challenges

378

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network (OSTI)

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

379

MIT- Energy Science and Engineering Laboratory | Open Energy Information  

Open Energy Info (EERE)

Energy Science and Engineering Laboratory Energy Science and Engineering Laboratory Jump to: navigation, search Logo: MIT- Energy Science and Engineering Laboratory Name MIT- Energy Science and Engineering Laboratory Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Age distribution of scientists at the MIT Plasma Science and Fusion Center.  

E-Print Network (OSTI)

. #12;[1]Edward Thomas, Jr., et al., Fusion in the era of burning plasma studies: workforce planning engineering are rapidly declining. This situation is unfolding in the context of an aging US fusion workforce, retirement age. I believe the workforce distribution for the entire US fusion program is not very different

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fusion Engineering and Design 89 (2014) 19891994 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual blanket have been examined in several US design studies. These studies identify the largest radiological A leading power reactor breeding blanket design candidate for a fusion demonstration power plant (DEMO

Abdou, Mohamed

382

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks  

E-Print Network (OSTI)

energy cost of consensus estimation with that of progressive estimation under the same sensor constellation and

Huang, Yi

2010-01-01T23:59:59.000Z

383

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 19, 2013 August 19, 2013 Students from the University of Maryland's Designing a Sustainable World course, a class based on the Energy Department's Energy 101 Course Framework, present their end-of-year design projects. | Photo courtesy of the University of Maryland. Class Is Now in Session: Energy 101 This week, energy.gov is going back to school. Our first stop: a look at how the Energy Department's Energy 101 Course Framework is helping colleges and universities offer energy-related classes. July 3, 2013 The Solar Classroom Lesson Plan Summer activities for parents, teachers and kids to expand their solar energy knowledge. June 21, 2013 Did you know: Incandescent light bulbs only convert about 10 percent of the energy they consume into light and the rest is released as heat. The Energy Department's Energy Bike demonstrates the physical effort it takes to power incandescent, compact fluorescent and LED light bulbs. Students from Churchill Road Elementary School in Virginia recently pedaled for power at their Earth Day assembly, learning firsthand about energy efficiency. | Photo courtesy of the Energy Department.

384

Science for Energy Flow | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Science for Energy Flow Science for Energy Flow Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » News & Resources Science for Energy Flow Print Text Size: A A A RSS Feeds FeedbackShare Page Powering the Future with a New Era of Science Click to enlarge photo. Enlarge Photo Energy Flow 2010

385

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage  

E-Print Network (OSTI)

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage Pre-Solicitation Meeting, June 19, 2003 Report on Hydrogen Storage Panel Findings inReport on Hydrogen Storage Panel Findings,Basic Research for Hydrogen Production, Storage and UseStorage and Use A follow-on workshop to BESAC

386

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 28, 2012 August 28, 2012 More than 750 students and teachers (and Energy Ant!) visited Washington D.C. for the 32nd Annual NEED Youth Awards for Energy Achievement to receive awards for outstanding energy education efforts in their local communities. | Photo courtesy National Energy Education Development Project Back to School with Energy Ant Learn about some of the extraordinary - and free - resources available for teachers and students on the U.S. Energy Information Administrations's Energy Kids page. August 24, 2012 An LBNL scientist explains the properties of liquid nitrogen to students on Bring Your Sons and Daughters to Work Day. | Courtesy of Lawrence Berkeley National Lab | Credit: Roy Kaltschmidt. Top 7 Things You Didn't Know About Energy: Back-to-School Edition

387

Complete Fusion of Weakly Bound Cluster-Type Nuclei at Near Barrier Energies  

E-Print Network (OSTI)

We consider the influence of breakup channels on the complete fusion of weakly bound cluster-type systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the Dynamic Polarization Potential approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of $^7$Li followed by the breakup of $^6$Li.

M. S. Hussein; P. R. S. Gomes; J. Lubian; R. Linares; L. F. Canto

2013-03-19T23:59:59.000Z

388

Complete Fusion of Weakly Bound Cluster-Type Nuclei at Near Barrier Energies  

E-Print Network (OSTI)

We consider the influence of breakup channels on the complete fusion of weakly bound cluster-type systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the Dynamic Polarization Potential approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of $^7$Li followed by the breakup of $^6$Li.

Hussein, M S; Lubian, J; Linares, R; Canto, L F

2013-01-01T23:59:59.000Z

389

Members | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Members Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members ChargesReports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory...

390

Studies of fast electron transport in the problems of inertial fusion energy  

E-Print Network (OSTI)

In the existing natural fusion reactors, stars, the gravityto the construction of the fusion reactor. In the magneticwould be for real fusion reactor conditions. The analysis of

Frolov, Boris K.

2006-01-01T23:59:59.000Z

391

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

of Figures Current World Energy Production Broken Down byUnited States and world energy production could be suppliedFigure 1.1: Current World Energy Production Broken Down by

Kramer, Kevin James

2010-01-01T23:59:59.000Z

392

Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions  

E-Print Network (OSTI)

Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD), the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is ...

Wen, Kai; Li, Zhu-Xia; Wu, Xi-Zhen; Zhang, Ying-Xun; Zhou, Shan-Gui

2014-01-01T23:59:59.000Z

393

Design, fabrication and measurement of a novel cooling arm for fusion energy source  

E-Print Network (OSTI)

The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the MEMS technologies are employed to fabricate the micro-size cooling arm structure with high vertical sidewall. Finally, the mechanical test of cooling arm is taken, and the result can meet the requirement of positioning TMP assembly.

Shui-Dong Jiang; Jing-Quan Liu; Jia-Bin Mei; Bin Yang; Chun-Sheng Yang

2012-07-05T23:59:59.000Z

394

Weaving Community and Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weaving Community and Science Weaving Community and Science Weaving Community and Science October 22, 2013 - 5:41pm Addthis What does this project do? Goal 4. Optimize the use of land and assets Weaving Community and Science: Former Summer Intern Is Investigating Plant Uptake of Contaminants on Disposal Cell Covers Carrie Nuva Joseph, a former U.S. Department of Energy (DOE) summer intern at the Grand Junction, Colorado, office; current graduate student in the University of Arizona's Department of Soil, Water, and Environmental Science; and a Native American community stakeholder, is helping the Office of Legacy Management (LM) understand the effects of plant growth on engineered disposal cell covers. Mother Nature fills a vacuum-plant encroachment happens! Cover designers spread and compacted thick layers of clayey soil over

395

Department of Energy - Science Education  

396

MIT Plasma Science & Fusion Center: research>alcator>research program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Program Information & Program Information Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology Useful Links Collaborations at Alcator C-Mod Collaborations form an integral and important part of the Alcator C-Mod research effort. Among the major facilities, C-Mod has a relatively small scientific staff, and collaborations provide a high leverage avenue to increase our productivity. Opportunities for collaboration can be found across the entire spectrum of our research activities. Education is a primary mission of MIT, and we particularly welcome and encourage student participation in our program. The Alcator program is centered around the overall theme of: Compact

397

ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy  

SciTech Connect

LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. (Lawrence Berkeley Lab., CA (United States)); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. (Lawrence Liver

1992-07-01T23:59:59.000Z

398

ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy  

SciTech Connect

LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ``drive`` inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. [Lawrence Berkeley Lab., CA (United States); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. [Lawrence Livermore National Lab., CA (United States)

1992-07-01T23:59:59.000Z

399

Energy Frontier | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Energy Frontier High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Cosmic Frontier Theoretical Physics...

400

Science Highlights | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Science Highlights Science Highlights Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter by Performer Or press Esc Key to close. close Select all that apply. University DOE Laboratory Industry SC User Facilities ASCR User Facilities [+] Options « ASCR User Facilities National Energy Research Scientific Computing Center (NERSC) Argonne Leadership Computing Facility (ALCF)

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Department of Energy National Science Bowl | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Science Bowl National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Ray. And thanks to our Office of Science for all the work that went into organizing this year's National Science Bowl. In particular, I'd like to recognize Sue Ellen Walbridge, who has orchestrated this important event for the past 17 years. Sue Ellen, thank you for your devotion to America's scientific future. I'm glad to have my wife Diane with me here today. It's no secret; we are both big supporters of this competition and of all of you its participants. You are America's future. And as I look out here today on many of our best and brightest students in science, technology, engineering and mathematics, it is clear to me that our future is bright indeed.

402

International Activities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

International International Activities Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Research International Activities Print Text Size: A A A RSS Feeds FeedbackShare Page International Organizations International Atomic Energy Agency International Atomic Energy Agency (IAEA) External link in Vienna, Austria Meetings External link Celebrating 50 Years of Fusion External link (FEC 2008 in Geneva)

403

Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion  

SciTech Connect

Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

Nuckolls, J.H.

1994-06-01T23:59:59.000Z

404

NREL: Energy Sciences - Bing Huang  

NLE Websites -- All DOE Office Websites (Extended Search)

Bing Huang Bing Huang Postdoctoral Researcher Photo of Bing Huang Phone: (303) 384-6465 Email: Bing.Huang@nrel.gov At NREL Since: 2010 Dr. Huang joined the Computational Materials Science Team at NREL in 2010. He received his Ph.D. in physics from Tsinghua University, Beijing, China, in 2010 under the supervision of Prof. Wenhui Duan. His background is in solid-state physics and materials science based on first-principles electronic and transport calculations. Until now, he has published 20-plus peer-reviewed papers with a total citation of approximately 350 times. Research Interests Low dimensional systems, such as nanotubes, nanowires and graphene. Physical and chemical properties of surfaces, interfaces and superlattices. Mechanical properties and stabilities of low dimensional systems.

405

Before the House Subcommittee on Energy - Committee on Science...  

Office of Environmental Management (EM)

- Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting...

406

Contacts for Geospatial Science Program | Department of Energy  

Energy Savers (EERE)

Geospatial Science Program Contacts for Geospatial Science Program LeAnn Oliver Associate Chief Information Officer for IT Policy and Governance US Department of Energy...

407

Department of Energy Cites Brookhaven Science Associates, LLC...  

Energy Savers (EERE)

Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations...

408

Before the Subcommittee on Energy - House Committee on Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- House Committee on Science, Space and Technology Before the Subcommittee on Energy - House Committee on Science, Space and Technology Testimony of Adam Sieminiski, Administrator,...

409

Science to Energy Solutions | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

high-temperature superconducting technology licensed and in production to make energy efficient electrical transmission lines Ductile Ni3Al superalloys licensed Mass spectrometry...

410

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences > APECS Computational Energy Sciences > APECS Advanced Research Computational Energy Sciences APECS APECS Virtual Plant APECS (Advanced Process Engineering Co-Simulator) is the first simulation software to combine the disciplines of process simulation and computational fluid dynamics (CFD). This unique combination makes it possible for engineers to create "virtual plants" and to follow complex thermal and fluid flow phenomena from unit to unit across the plant. Advanced visualization software tools aid in analysis and optimization of the entire plant's performance. This tool can significantly reduce the cost of power plant design and optimization with an emphasis on multiphase flows critical to advanced power cycles. A government-industry-university collaboration (including DOE, NETL, Ansys/

411

Expanding Science and Energy Literacy with America’s Science and Technology Centers  

Energy.gov (U.S. Department of Energy (DOE))

The Department's new partnership with the Association of Science and Technology Centers is advancing energy literacy through museums and science centers.

412

Fusion scientists gear up to learn how to harness plasma energy | Princeton  

NLE Websites -- All DOE Office Websites (Extended Search)

Living on the edge Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 30, 2011 Tweet Widget Facebook Like Google Plus One Researchers working on an advanced experimental fusion machine are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National Spherical Torus Experiment (NSTX) at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have mapped out a list of experiments to start in July and run for eight months. The experimental machine is designed to deepen understanding of how plasmas can be mined for energy. A major topic of investigation by scientists for the coming round of

413

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 22, 2013 November 22, 2013 WHO SAID IT: Tesla or Edison? Test your knowledge of energy inventors Thomas Edison and Nikola Tesla with our downloadable quote quiz cards. November 22, 2013 History of the Light Bulb The History of the Light Bulb From incandescent bulbs to fluorescents to LEDs, we're exploring the long history of the light bulb. November 20, 2013 Education and Professional Development To pursue a clean energy career, you may need general as well as specialized training. A number of colleges and universities now offer specializations in various clean energy fields, or even full degree

414

Energy Innovation Hubs: Achieving Our Energy Goals with Science |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Hubs: Achieving Our Energy Goals with Science Innovation Hubs: Achieving Our Energy Goals with Science Energy Innovation Hubs: Achieving Our Energy Goals with Science March 2, 2012 - 6:44pm Addthis Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Michael Hess Michael Hess

415

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 10, 2010 September 10, 2010 High School Students Build Their Own Supercomputer (Almost) The students went about building a computer cluster, a group of computers communicating with one another to operate as a single machine, out of Mac mini CPUs. While the students' setup obviously did not compute nearly as fast as ORNL's "Jaguar" cluster, which is officially reco August 12, 2010 This Year's MEISPP Interns One of the key programs of the Department of Energy's Office of Economic Impact and Diversity is our Minority Educational Institution Student Partnership Program (MEISPP). August 11, 2010 Strengthening America's Energy Future through Education and Workforce Development To have a strong clean energy revolution we need a strong energy workforce. Learn more about what the Department has done to learn about potential

416

Photon Science for Renewable Energy  

E-Print Network (OSTI)

and durability of lithium-ion batteries to maintain per-Sunlight to fuel Batteries Fuel cells CO 2 capture &15 (2008). ] Energy Storage: Batteries Batteries give us the

Hussain, Zahid

2010-01-01T23:59:59.000Z

417

Security Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Border Security Comprehensive...

418

Journal of Fusion Energy, Vol. /1, No.2, 1992 Pilot Plant: An Affordable Step Toward Fusion Power  

E-Print Network (OSTI)

that fusion be an option for this market, since the other major alternatives (coal, fission, and solar) could, but unique, uni- versity-national laboratory-electric utility-industry part- nership. It is also a U the first opportunity for utilities and industry to playa lead role in defining and designing a fusion

419

Basic Energy Sciences (BES) Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

BES Home BES Home Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Science for Energy Discovery science solves mysteries, sparks innovation, and stimulates future technologies. This principle provides the inspiration for the fundamental energy research and the remarkable collection of major scientific user facilities supported by Basic Energy Sciences.Read More Discovery Science Materials Sciences and Engineering Understanding, predicting, and controlling materials and their

420

Physicist Zoe Martin's fusion quest: a stellar future  

NLE Websites -- All DOE Office Websites (Extended Search)

Zoe Martin's fusion quest: a stellar future Zoe Martin's fusion quest: a stellar future Physicist Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. August 27, 2013 Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. She also pursues gravity-defying dance in her spare time. Martin said her mentor, physicist Leslie Sherrill, takes the time to explain and teaches her relevant and applicable science-and she's helping her get published, a rare but career-changing feat for an undergrad. » Return to homepage From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries Today, internships are a valuable career launching tool; but many college

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy BioSciences Institute | Open Energy Information  

Open Energy Info (EERE)

BioSciences Institute BioSciences Institute Jump to: navigation, search Logo: Energy BioSciences Institute Name Energy BioSciences Institute Place Berkeley, California Zip 94720 Region Bay Area Coordinates 37.8744633°, -122.2526269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8744633,"lon":-122.2526269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 22, 2012 February 22, 2012 Energy Department Makes a Difference Helping Students' Careers To stay a top competitor in today's global economy, we need to make sure that students who aspire to be the next generation of America's scientists, engineers and entrepreneurs can get the hands-on experience and training they need to lead our industries and businesses. January 26, 2012 Orange County Great Park in Irvine, California -- venue for the 2013 U.S. Department of Energy Solar Decathlon. | Image credit: Richard King. Solar Decathlon 2013: New Teams! New Location! In addition to welcoming 20 new collegiate teams and hundreds of new student decathletes to our 2013 competition, we are announcing a new site. January 18, 2012 Secretary Chu and former Governor of California Arnold Schwarzenegger speak with students at the 2011 Energy Innovation Summit. | Photo courtesy of ARPA-E.

423

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 17, 2010 August 17, 2010 Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky Launches State-Wide School Energy Manager Program In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. August 13, 2010 Campers at Camp Discovery put the finishing touches on a newly assembled electric vehicle they built to learn more about EV technology while sharing their experiences with battling cancer. | Photo courtesy of Craig Egan Kids at Camp Discovery Bond Over Building Electric Vehicle Each year, about 150 kids gather during the summer at Camp Discovery in Kerrville, Texas, to learn new things and have fun. But this isn't an

424

NREL: Energy Sciences - Roman Brunecky  

NLE Websites -- All DOE Office Websites (Extended Search)

Roman Brunecky Roman Brunecky Research Scientist Photo of Roman Brunecky Phone: (303) 384-6878 Email: roman.brunecky@nrel.gov At NREL Since: 2007 Roman Brunecky received his Ph.D. in Pharmacology from the University of Colorado Health Sciences Center in 2007. His advisors were Tatiana Kutateladze and Michael Overduin. He worked on characterizing the interaction between a-synuclein and the C-terminus of the dopamine transporter. At NREL, Dr. Brunecky's research has focused on the development of high-throughput robotic assays for testing the efficacy of biomass conversion enzymes. He has also developed novel robotic methods for both mass spectrometry and x-ray crystallography. Furthermore, he has used his experience in protein expression and purification to identify and characterize novel bioconversion enzymes in conjunction with industrial

425

NREL: Energy Sciences - Calvin Curtis  

NLE Websites -- All DOE Office Websites (Extended Search)

Calvin Curtis Calvin Curtis Senior Scientist Photo of Calvin Curtis At NREL Since: 1980 Calvin Curtis has worked at NREL since 1980. He is a member of the Carbon-Based Nanoscience Team in the Center for Basic Sciences and the Advanced Concepts Team in the National Center for Photovoltaics (NCPV). He was previously on the Catalysis Team, where his work involved development of new electrocatalysts for CO reduction and for alcohol and H2 oxidation. Recent major accomplishments of this team include development of the first methods to measure the thermodynamic hydricity of transition metal hydride complexes and the synthesis of a nickel-based electrocatalyst for H2 oxidation. On the Advanced Concepts Team in the NCPV, he has used his experience with the synthesis of nanoparticles and organometallic materials precursors to

426

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 4, 2012 April 4, 2012 New York Times technology correspondent David Pogue -- host of NOVA's popular "Making Stuff" series -- takes viewers on a quest to understand chemistry and all of the materials of life: the 118 unique elements that make up the amazing periodic table, including the 90 naturally-occurring elements and those created by scientists. | Photo courtesy of PBS. Ames Lab Plays Elemental Role in New PBS Special The periodic table (and Ames Lab) is the focus of David Pogue's newest NOVA special, Hunting the Elements, which premieres on PBS this Wednesday night at 9 p.m. EST (check your local listings). March 22, 2012 Join the Conversation - Get on #STEM on Twitter.com at 2:30ET Today If you're joining our Tweet Up on Women in STEM (that's science,

427

NREL: Energy Sciences - Xiuwen Zhang  

NLE Websites -- All DOE Office Websites (Extended Search)

Xiuwen Zhang Xiuwen Zhang Subcontractor Photo of Xiuwen Zhang Phone: (303) 384-6442 Email: xiuwen.zhang@nrel.gov At NREL Since: 2008 Dr. Zhang joined NREL in March 2008 as a postdoctoral researcher in the Solid State Theory Team. He received his B.E. in Electrical Engineering from Tsinghua University, China, and, in 2008, was granted his Ph.D. in physics from the Institute of Semiconductors in Chinese Academy of Science, Beijing, China, under the supervision of Prof. Jian-Bai Xia. His research subject was the electrical and magnetic properties of semiconductor quantum dots and wires. During his doctoral study, Xiuwen gained experience as a project officer in the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. Dr. Zhang currently

428

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 26, 2011 August 26, 2011 A map of the August 23, 2011, Mineral, Virginia, earthquake that shook the east coast of the United States. | Image courtesy of the U.S. Geological Service The Science of Earthquakes The rare, powerful 5.8-magnitude earthquake that shook the east coast United States on Tuesday, August 23, 2011, caused minimal damage but surprised and unnerved millions of people. The quake occurred near Mineral, Virginia, about 100 miles southwest of Washington, D.C., and was recorded all along the Appalachians, from Georgia to New England. August 23, 2011 This wind turbine, along with a solar photovoltaic system, will be used to power the school's off-grid greenhouse. | Image courtesy of Wind Powering America Ask Yourself -- What Kind of Projects Have You Done in School?

429

NREL: Energy Sciences - Thomas Gennett  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Gennett Thomas Gennett Senior Scientist Photo of Thomas Gennett Phone: (303) 384-6628 Email: thomas.gennett@nrel.gov Thomas Gennett is currently a senior scientist at NREL and holds Professor Emeritus of Chemistry and Materials Science status with the Rochester Institute of Technology (RIT). At NREL, Dr. Gennett leads three distinct projects. One focuses on the mechanism of room temperature hydrogen adsorption for carbon based sorbents, the second on the development of advanced materials for direct methanol fuel cell anode catalysts, and the third on development of next generation transparent conductive oxides (TCOs) for photovoltaic applications. Previously, while a Professor at RIT, he was co-founder and director (2001-2003) of the highly successful NanoPower Research Laboratory. Dr. Gennett has had a strong collaboration

430

NREL: Energy Sciences - Klara Maturova  

NLE Websites -- All DOE Office Websites (Extended Search)

Klara Maturova Klara Maturova Postdoctoral Researcher Photo of Klara Maturova Phone: (303) 384-7909 Email: klara.maturova@nrel.gov At NREL Since: 2010 Dr. Klara Maturova joined the Chemical and Nanoscale Science Group at NREL in April 2010. Dr. Maturova obtained her M.Sc. degree (cum laude) in July 2005 at the Brno University of Technology, Czech Republic. She did research in the field of scanning probe microscopy and surface plasmon polaritons in the Solid State Physics and Surfaces Group. During her master study, she interned at the Eindhoven University of Technology in The Netherlands, where she researched fullerene molecules on graphite and diamond surfaces. One year later, she bacame a Ph.D. student in Eindhoven's Molecular Materials and Nanosystems Group under the supervision of M. Kemerink and R.

431

NREL: Energy Sciences - Larry Taylor  

NLE Websites -- All DOE Office Websites (Extended Search)

Larry Taylor Larry Taylor Research Scientist Phone: (303) 384-7784 Email: larry.taylor@nrel.gov At NREL Since: 2007 Larry Taylor received his Ph.D. in Environmental Molecular Biology and Biotechnology from the Marine and Estuarine Environmental Sciences department at the University of Maryland, College Park. His dissertation work focused on the functional genomics of the plant cell wall degrading enzyme systems of the marine bacterium Saccharophagus degradans 2-40, which was isolated from decaying salt marsh grass the Chesapeake Bay watershed in 1988. Preliminary genomic analyses revealed that the S. degradans encodes more than 180 predicted carbohydrases. Under the direction of Prof. Ronald M. Weiner, and in collaboration with Dr. Bernard Henrisaat, Dr. Taylor identified the predicted cellulase system of S. degradans through sequence

432

NREL: Energy Sciences - Carrie Eckert  

NLE Websites -- All DOE Office Websites (Extended Search)

Carrie Eckert Carrie Eckert Scientist III Photo of Carrie Eckert Phone: (303) 384-6891 Email: carrie.eckert@nrel.gov At NREL Since: 2008 Carrie Eckert received her B.S. in Biology in 1999 from the University of South Dakota, where she was involved in research on heat shock proteins in maize. She received her Ph.D. in Molecular Biology in 2006 from the University of Colorado Health Sciences Center. Under the supervision of Paul Megee, she studied chromosome cohesion in the budding yeast Saccharomyces cerevisiae. After graduation, she worked under the supervision of James Maller, with whom she investigated kinases and phosphatases involved in meiosis using Xenopus laevis oocytes. Her current research interests involve genetic manipulation of the bidirectional hydrogenase of the cyanobacteria Synechocystis to further

433

NREL: Energy Sciences - Hui Wei  

NLE Websites -- All DOE Office Websites (Extended Search)

Hui Wei Hui Wei Research Scientist Photo of Hui Wei Phone: (303) 384-6620 Email: hui.wei@nrel.gov At NREL Since: 2008 Hui Wei joined NREL in 2008, and is a Research Scientist in the Biomolecular Sciences Team, the Bioscience Center. His main research interest and current research activities at NREl are focused on (1) the genetic modification of plants to increase their biomas digestibility, (2) the efficient microbial conversion of bimass to biofuels, including biodiesel and other long-chain hydrocarbons, and (3) the plant-microbe interactions. In 2003, he earned a Ph.D. in Plant and Microbial Physiology from Queen's University in Canada. During his Ph.D. studies, he worked on the metabolism of carbon, nitrogen and oxygen, and the ion transport in the bacteria-infected plant cells. He also earned an M.S. in Microbiology from

434

NREL: Energy Sciences - Ashutosh Mittal  

NLE Websites -- All DOE Office Websites (Extended Search)

Ashutosh Mittal Ashutosh Mittal Research Scientist Photo of Ashutosh Mittal Phone: (303) 384-6136 Email: ashutosh.mittal@nrel.gov At NREL Since: 2008 Ashutosh Mittal received his Ph.D. in Paper and Bioprocess Engineering from the Department of Paper and Bioprocess Engineering at the State University of New York, Empire State College of Environmental Science and Forestry, Syracuse. His dissertation work was focused on studying the kinetics of hemicellulose (sugars) extraction from hardwoods (sugar maple and aspen) during hot water extraction (autohydrolysis). To describe the concentrations of the residual xylan, xylooligomers, xylose, and degradation product (furfural) obtained in the autohydrolysis of wood chips, a mass-transfer model based on first-order kinetics with Arrhenius-type temperature dependence of the rate coefficients was

435

Science & Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Innovation Science & Innovation Mars Rover Curiosity Mars Rover Curiosity landed safely on the planet's surface with an array of equipment powered with technology developed at the National Labs. Read more Dark Energy Cam Fermilab's 570-megapixels, five-ton Dark Energy camera is expanding our understanding of the universe. Read more Celebrating the Higgs boson Scientists recently found evidence of the elusive particle that fills the space between subatomic particles. Read more Energy Today From R&D to You: A Thriving Innovation Engine From advanced battery technologies and new biofuel technologies to clean energy generation and energy efficient products and buildings, the Department's Office of Energy Efficiency and Renewable Energy (EERE) has played an important role in bringing novel technologies from lab to market.

436

Oak Ridge National Laboratory - Energy and Environmental Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets & Brochures Fact Sheets & Brochures Organization Charts Contact Us Divisions Biosciences Electrical and Electronics Systems Research Energy & Transportation Science Environmental Sciences Programs Advanced Manufacturing Bioenergy Program Center for BioEnergy Sustainability Energy Efficiency & Electricity Technologies Transportation Technology Areas Advanced Manufacturing Sensors & Signal Processing Electronics & Electric Machines Energy Supply & Distribution Systems Energy Efficiency Engineering User Facilities News & Highlights Advisory Committee Contact Us Staff Only ORNL Research Areas Advanced Computing Advanced Materials Biological Systems Energy Science Nanotechnology National Security Neutron Sciences Research Facilities Additional Areas Energy and Environmental Sciences Directorate

437

Zhuhai Oil Energy Science and Technology | Open Energy Information  

Open Energy Info (EERE)

Zhuhai Oil Energy Science and Technology Zhuhai Oil Energy Science and Technology Jump to: navigation, search Name Zhuhai Oil Energy Science and Technology Place Zhuhai, China Sector Biofuels Stock Symbol BMGP Coordinates 22.27094°, 113.577261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.27094,"lon":113.577261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Shanshan Ulica Solar Energy Science Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Shanshan Ulica Solar Energy Science Technology Co Ltd Shanshan Ulica Solar Energy Science Technology Co Ltd Jump to: navigation, search Name Shanshan Ulica Solar Energy Science&Technology Co Ltd Place Shanghai, Shanghai Municipality, China Sector Solar Product A solar PV cell and PV module manufacturer Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

National Research Council AssessmentNational Research Council Assessment --Prospects for Inertial Fusion EnergyProspects for Inertial Fusion Energy  

E-Print Network (OSTI)

engineering Laser systems Beam systems Safety & environment Construction of large-scale energy systems Beam direct drive. Understand underlying high Wall materials and design. Implementation Environment and safety.Understand underlying high energy density (HED) physical processes. Environment and safety. Cost competitiveness. Public

440

NREL: Energy Sciences - Yixin Zhao  

NLE Websites -- All DOE Office Websites (Extended Search)

Yixin Zhao Yixin Zhao Postdoc Phone: (303) 384-6403 Email: yixin.zhao@nrel.gov Yixin Zhao received his BS and MS degree in Chemistry from Shanghai Jiao Tong University at China in 2002 and 2005. He joined Case Western Reserve University in 2005 and studied as a graduate student in the laboratories of Professor Clemens Burda, focusing on nanomaterials for energy conversion. After receiving his PhD in 2010, he worked as a postdoctoral fellow in the Department of Chemistry at Penn State University, where he works with Professor Thomas E. Mallouk on solar energy conversion. Currently, Yixin Zhao worked as a postdoctoral fellow at NREL with Dr. Frank on sensitized metal oxide for photovoltaics and water splitting. Selected Publications Zhao, Y.X.; Burda, C. (2011). "Development of Plasmonic Semiconductor

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MODEL FUSION: A NEW APPROACH TO PROCESSING HETEROGENOUS DATA Department of Computer Science  

E-Print Network (OSTI)

MODEL FUSION: A NEW APPROACH TO PROCESSING HETEROGENOUS DATA OMAR OCHOA Department of Computer. Flores, Ph.D. Dean of the Graduate School #12;cCopyright by Omar Ochoa 2013 #12;MODEL FUSION: A NEW;Abstract In many practical situations, it is necessary to extract information from data of different types

Kreinovich, Vladik

442

Fusion Engineering and Design 85 (2010) 14881491 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

efficiency of a Fusion facility to Burn Fission Waste (FBFW) based on a Spherical Tokamak (ST) neutron source- like parameters and conventional tokamak technology to burn UOX waste TRUs has been extensively of burning waste in a small fusion facility and the usefulness of a Corresponding author at: Mechanical

Abdou, Mohamed

443

Office of the Under Secretary for Science and Energy | Department...  

Office of Environmental Management (EM)

Science and Energy Office of the Under Secretary for Science and Energy 2014 JASON Report: State of Stress in Engineered Subsurface Systems 2014 JASON Report: State of Stress in...

444

NREL: Computational Science - Wind Energy Simulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Simulations Wind Energy Simulations Scientists in the Computational Science Center at the National Renewable Energy Laboratory (NREL) are performing wind-farm computational fluid dynamics (CFD) and structural dynamics simulations that will provide a better understanding of the interactions of wind turbine wakes with one another, with the surrounding winds, and with the loads they impose on turbine blades and other components. Large-scale wind power generation deployment is a realistic and largely inevitable proposition as energy security, supply uncertainties, and global climate concerns drive the U.S. to develop diverse sources of domestic, clean, and renewable energy. The U.S. is currently on a path to produce 20% of its electricity from wind energy by 2030, which is a 10-fold increase

445

Our Partners : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Bringing the best and the brightest together. Bringing the best and the brightest together. The mission of the Department of Energy BioEnergy Science Center is to revolutionize how Bioenergy is processed within five years. To reach this goal, we have assembled a world-class team of some of the world's leading experts and facilities. We are working together to develop alternative fuel solutions that are a viable and affordable option to petroleum-based fuels. To accomplish this mission, The BioEnergy Science Center is backed by more than $80 million in investments from state and private-sector sources. This includes $30 million toward research and equipment and a $40 million, 250,000 gallons-a-year switchgrass-to-ethanol demonstration facility. View the INTERACTIVE MAP to learn more about the specific contributions we

446

Fusion Energy in Context: Its Fitness for the Long Term  

Science Journals Connector (OSTI)

...pel-let equal to the laser energy incident on the...handle tens of thousands of laser pulses of dev-astating...instru-mentation and control technology, ener-gy...neces-sary (20). In the laser approach, convert-ing...solar-thermal-electric conver-sion, wind, hydropower, and combus-tion...

John P. Holdren

1978-04-14T23:59:59.000Z

447

NREL: Energy Sciences - Chunmei Ban  

NLE Websites -- All DOE Office Websites (Extended Search)

Chunmei Ban Chunmei Ban Scientist III Photo of Chunmei Ban Phone: (303) 384-6504 Email: Chunmei.Ban@nrel.gov At NREL Since: 2008 Chunmei Ban graduated from Tianjin University with Bachelor's and Master's degrees in Electrochemistry, and from State University of New York at Binghamton with a Ph.D. in Chemistry. Dr. Ban joined NREL in 2008 and has focused her research on developing new materials for energy storage and conversion. She has extensive experience in synthesis of nanostructured materials, employing electrochemical analytic methods, et-situ/in-situ X-ray diffraction, and electron microscopy for the investigation of electrochemical properties and structure. Her current research is focused on the synthesis and analysis of nano-materials with desirable structures

448

NREL: Energy Sciences - Chaiwat Engtrakul  

NLE Websites -- All DOE Office Websites (Extended Search)

Chaiwat Engtrakul Chaiwat Engtrakul Senior Scientist Photo of Chaiwat Engtrakul Phone: (303) 384-6646 Email: chaiwat.engtrakul@nrel.gov At NREL Since: 2003 Chaiwat Engtrakul received his Ph.D. in Inorganic/Materials Chemistry from the University of Maryland, College Park, in 2003, while studying the conduction physics of single molecules in the laboratory of Professor Lawrence Sita. Afterward, he began working at NREL as a postdoctoral researcher in the Nanostructured Materials Group with Dr. Michael Heben to develop new carbon nanotube-based materials for application in renewable energy technologies. During his three-year position his work included the synthesis, purification, and structural characterization of carbon nanotube-based materials. His interest in the physicochemical properties of

449

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 8, 2013 March 8, 2013 Photo courtesy of the National Nuclear Security Administration. 10 Questions for a Nuclear Physicist: Dr. Njema Frazier What drives someone to pursue a career in theoretical nuclear physics? Read the latest installment of our 10 Questions series to find out. March 8, 2013 Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. University Competition Leads to Geothermal Breakthroughs Learn how students are leading groundbreaking research to help expand the development of America's vast geothermal energy resources. March 5, 2013 Wrapping Up: Our Conversation on Increasing Diversity in STEM Education and

450

International Energy Science Course Application for Doctoral Program  

E-Print Network (OSTI)

International Energy Science Course Application for Doctoral Program Graduate School of Energy STATUS IN DETAIL (description of current job or studies, etc.) CONTACT INFORMATION (address for contact

Takada, Shoji

451

Jobs | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Jobs Jobs Fusion Energy Sciences (FES) FES Home About Staff Organization Chart .pdf file (104KB) FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » About Jobs Print Text Size: A A A Subscribe FeedbackShare Page Current Open Federal Positions The Office of Fusion Energy Sciences is located in Germantown, Maryland. All open federal positions listed below are posted on USAJobs.gov External link

452

Nuclear Science & Engineering  

E-Print Network (OSTI)

. 1 Nuclear Science & Engineering Nuclear Energy Present and Future Ian H. Hutchinson Head, Department of Nuclear Science and Engineering CoPrincipal, Alcator Tokamak Project, Plasma Science and Fusion Center Massachusetts Institute of Technology Outline: Nuclear Power in the US and the World Limitations

453

The National Ignition Facility and the Promise of Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

Moses, E I

2010-12-13T23:59:59.000Z

454

Dynamic Instruction Fusion  

E-Print Network (OSTI)

and energy efficient register file (Transient Register File) tightly coupled to the Fusion ALU in order to provide

Lee, Ian

2012-01-01T23:59:59.000Z

455

Elevance Renewable Sciences Inc | Open Energy Information  

Open Energy Info (EERE)

Elevance Renewable Sciences Inc Elevance Renewable Sciences Inc Jump to: navigation, search Name Elevance Renewable Sciences Inc Place Bolingbrook, Illinois Zip 60440 Sector Biofuels, Renewable Energy Product Illinois-based developer of biofuels and renewable chemicals from plant-based oils and animal fats. Coordinates 41.698175°, -88.081199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.698175,"lon":-88.081199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

long final-focus solenoid filled with plasma was modeled (final-focus solenoid. In this simulation, plasma is assumedplasma source (FEPS) which neutralizes the longitudinal drift compression region, 5T final focus

Logan, B.G.

2007-01-01T23:59:59.000Z

457

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

CA, 94551, USA Princeton Plasma Physics Laboratory,Laboratory, and Princeton Plasma Physics Laboratory (theEng-48, and by the Princeton Plasma Physics Laboratory under

Logan, B.G.

2007-01-01T23:59:59.000Z

458

The Future of Nuclear Energy: Facts and Fiction Chapter IV: Energy from Breeder Reactors and from Fusion?  

E-Print Network (OSTI)

The accumulated knowledge and the prospects for commercial energy production from fission breeder and fusion reactors are analyzed in this report. The publicly available data from past experimental breeder reactors indicate that a large number of unsolved technological problems exist and that the amount of "created" fissile material, either from the U238 --> Pu239 or from the Th232 --> U233 cycle, is still far below the breeder requirements and optimistic theoretical expectations. Thus huge efforts, including many basic research questions with an uncertain outcome, are needed before a large commercial breeder prototype can be designed. Even if such efforts are undertaken by the technologically most advanced countries, it will take several decades before such a prototype can be constructed. We conclude therefore, that ideas about near-future commercial fission breeder reactors are nothing but wishful thinking. We further conclude that, no matter how far into the future we may look, nuclear fusion as an energy ...

Dittmar, Michael

2009-01-01T23:59:59.000Z

459

Cluster-impact fusion  

Science Journals Connector (OSTI)

We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

P. M. Echenique; J. R. Manson; R. H. Ritchie

1990-03-19T23:59:59.000Z

460

Does the Sun Shine by pp or CNO Fusion Reactions? John N. Bahcall *  

E-Print Network (OSTI)

the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle­Kamiokande [13], provide information about neutrinos but only those that have energies well above the maximumDoes the Sun Shine by pp or CNO Fusion Reactions? John N. Bahcall * School of Natural Sciences

Bahcall, John

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Does the Sun Shine by pp or CNO Fusion Reactions? John N. Bahcall*  

E-Print Network (OSTI)

the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle-Kamiokande [13], provide information about neutrinos but only those that have energies well above the maximumDoes the Sun Shine by pp or CNO Fusion Reactions? John N. Bahcall* School of Natural Sciences

Bahcall, John

462

ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets  

E-Print Network (OSTI)

The affordable, robust, compact (ARC) reactor conceptual design study aims to reduce the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q_p~13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ~63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ~23 T peak field on coil with newly available REBCO superconductor technology. External cu...

Sorbom, B N; Palmer, T R; Mangiarotti, F J; Sierchio, J M; Bonoli, P; Kasten, C; Sutherland, D A; Barnard, H S; Haakonsen, C B; Goh, J; Sung, C; Whyte, D G

2014-01-01T23:59:59.000Z

463

Nuclear Science and Engineering Education Sourcebook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science and Engineering Education Sourcebook Science and Engineering Education Sourcebook Nuclear Science and Engineering Education Sourcebook The Nuclear Science and Engineering Education Sourcebook is a repository of critial information on nuclear engineering programs at U.S. colleges and universities. It includes detailed information such as nuclear engineering enrollments, degrees, and faculty expertise. In this latest edition, science faculty and programs relevant to nuclear energy are also included. NuclearScienceEngineeringSourcebook2013.pdf More Documents & Publications University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee The Future of University Nuclear Engineering Programs and University Research and Training Reactors Clark Atlanta Universities (CAU) Energy Related Research Capabilities

464

Science & Innovation Reports | Department of Energy  

Energy Savers (EERE)

Science & Innovation Reports Science & Innovation Reports August 12, 2014 Audit Report: OAS-M-14-09 Office of Science's Management of Research Misconduct Allegations May 22, 2014...

465

Science for Our Nation's Energy Future | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DOE Announcements » Science for Our Nation's Energy Future DOE Announcements » Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications Contact BES Home 11.18.10 Science for Our Nation's Energy Future Print Text Size: A A A Subscribe FeedbackShare Page May 25-27, 2011 :: Science for Our Nation's Energy Future, the inaugural Energy Frontier Research Centers Summit and Forum on May 25 - 27, 2011 at the Renaissance Penn Quarter Hotel in Washington, DC, will explore the challenges and opportunities in applying America's extraordinary scientific and technical resources to critical energy needs. It will highlight early successes of the Office of Science Energy Frontier Research Centers, and promote collaboration across the national energy enterprise.

466

Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as  

E-Print Network (OSTI)

scientific breakeven." E. Moses, Status of the NIF Project, Lawrence Livermore National Laboratory Report: "Laser fusion experiments, facilities, and diagnostics at Lawrence Livermore National Laboratory", by H of 1 defines scientific breakeven. (This is therefore a Livermore definition!) The recent National

467

E-Print Network 3.0 - advanced fusion material Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics and Fusion 5 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

468

E-Print Network 3.0 - advanced deuterium fusion Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics and Fusion 2 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

469

About | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

About About Fusion Energy Sciences (FES) FES Home About Staff Organization Chart .pdf file (104KB) FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » About Print Text Size: A A A RSS Feeds FeedbackShare Page Mission The FES program mission is to expand the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation needed to develop a fusion energy source. This is accomplished

470

Coal Utilization Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crosscutting Research » Coal Crosscutting Research » Coal Utilization Science Coal Utilization Science Computer scientists at FE's NETL study a visualization of a power plant component. Computer scientists at FE's NETL study a visualization of a power plant component. Traditionally the process of taking a new power plant system from the drawing board to a first-of-a-kind prototype has involved a series of progressively larger engineering test facilities and pilot plants, leading ultimately to a full-scale demonstration. The process can take over 20 years or more and cost billions of dollars. Because of the significant efforts by DOE in the design and construction of advanced energy systems, traditions have changed. Engineers using sophisticated computer modeling and simulation are capable of "engineering"

471

FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).  

SciTech Connect

This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

Samara, George A.; Simmons, Jerry A.

2006-07-01T23:59:59.000Z

472

Ion beam fusion  

Science Journals Connector (OSTI)

...that converts the fusion and blanket energy into...target gain G is the thermonuclear energy produced by the...Most concep- tual fusion power plants have a...and the International Thermonuclear Experimental Reactor...situation, the inertial fusion com- munity in the...

1999-01-01T23:59:59.000Z

473

DC High School Science Bowl Regionals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC High School Science Bowl Regionals DC High School Science Bowl Regionals February 22, 2014 1:15PM to 8:15PM EST Department of Energy headquarters - 1000 Independence Ave SW,...

474

Middle School Energy and Nuclear Science Curriculum Now Available |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available October 30, 2013 - 1:18pm Addthis Andrea Duskas Public Affairs Specialist for the Office of Nuclear Energy A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The essential principles and fundamental concepts in The Harnessed Atom address the latest science standards for crosscutting concepts about energy and matter. The Harnessed Atom teacher's kit is an updated and expanded edition of the

475

National Lab Celebrates a Century of Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab Celebrates a Century of Science National Lab Celebrates a Century of Science National Lab Celebrates a Century of Science October 13, 2010 - 1:00pm Addthis Washington, DC - On the occasion of its 100th anniversary, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) today launched its Regional University Alliance (NETL-RUA) and dedicated the Energy Challenge, an interactive energy exhibit for kids, with an event at the Carnegie Science Center. Energy Challenge is an interactive kiosk that quizzes players on sources of energy, the science behind energy, and ways to use it wisely in daily life. The exhibit will be located on the fourth floor of the Carnegie Science Center and will be included in general admission. NETL-RUA combines the best qualities of two fascinating worlds: NETL's

476

Elise - the next step in development of induction heavy ion drivers for inertial fusion energy  

SciTech Connect

LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or {open_quotes}drive{close_quotes} inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act.

Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S. [and others

1994-11-01T23:59:59.000Z

477

Long-range correlation studies at the SPS energies in MC model with string fusion  

E-Print Network (OSTI)

Studies of the ultrarelativistic collisions of hadrons and nuclei at different centrality and energy enable to explore the QCD phase diagram in a wide range of temperature and baryon density. Long-range correlation studies are considered as a tool, sensitive to the observation of phase transition and the critical point. In the present work, a Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions is applied to heavy and light ion collisions at the cms energy range from a few up to several hundred GeV per nucleon. The model describes the nuclear collisions at the partonic level through interaction of color dipoles and takes into account the effects of string fusion, which can be considered as an alternative to relativistic hydrodynamics way of describing the collective phenomena in heavy-ion collisions. The implementing of both the string fusion and the finite rapidity length of strings allowed to consider the particle production at non-zero baryochemical potential. We calculated the long-range correlation functions and correlation coefficients between multiplicities and transverse momentum at several energies for different colliding systems and obtained predictions for the experiment.

Vladimir Kovalenko; Vladimir Vechernin

2015-02-05T23:59:59.000Z

478

Congratulations, 2013 National Science Bowl Winners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congratulations, 2013 National Science Bowl Winners Congratulations, 2013 National Science Bowl Winners Congratulations, 2013 National Science Bowl Winners April 29, 2013 - 6:31pm Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center, Thursday, April 25, 2013 in Chevy Chase, Maryland. | Photo courtesy of Sarah Gerrity, Department of Energy. Date taken: 2013-04-26 15:20 National Science Bowl 2013 2 of 16 National Science Bowl 2013 The high school students participated in a team challenge competition, which prompted them to solve problems by conducting experiments and collecting data. | Photo courtesy of Sarah Gerrity, Department of Energy. Date taken: 2013-04-26 15:19 National Science Bowl 2013 3 of 16 National Science Bowl 2013 The high school students participated in a team challenge competition,

479

Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt  

Science Journals Connector (OSTI)

European activities on inertial fusion energy are coordinated by “keep in touch activities” of the European Fusion Programme coordinated by the European Commission. There is no general inertial fusion program in Europe. Instead, a number of activities relevant to inertial fusion are carried out by university groups and research centers. The Helmholtz-Research Center GSI-Darmstadt (Gesellschaft für Schwerionenforschung) operates accelerator facilities which provide the highest intensity for heavy ion beams and therefore key issues of ion beam driven fusion can be addressed. In addition to the accelerator facilities, one high-energy laser system is available (nhelix: nanosecond high-energy laser for ion experiments) and another one is under construction (PHELIX: petawatt high-energy laser for ion experiments). The heavy ion synchrotron facility, SIS18 (Schwer-Ionen-Synchrotron 18) recently delivered an intense uranium beam that deposits about 1 kJ/g specific energy in solid matter. Using this beam, experiments have been performed where solid Pb- and Ta-targets have been heated to the level of 1 eV. Experiments to study interaction mechanism of heavy ion beams with matter have been continued and are reported here.

D.H.H. Hoffmann; A. Blazevic; S. Korostiy; P. Ni; S.A. Pikuz; B. Rethfeld; O. Rosmej; M. Roth; N.A. Tahir; S. Udrea; D. Varentsov; K. Weyrich; B.Yu. Sharkov; Y. Maron

2007-01-01T23:59:59.000Z

480

Fusion News: 2002  

Science Journals Connector (OSTI)

This paper summarizes key news events in the development of fusion energy. Highlights include status of ITER negotiations, FESAC studies, NIF construction and fusion-related legislation. Also included are summ...

Stephen O. Dean

2003-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy sciences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy and Transportation Science Division (ETSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Working with Us Employment Opportunities Organization Chart ETSD Staff Only Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Energy and Transportation Science Division News and Events Studies quantify the effect of increasing highway speed on fuel economy WUFI ("Warme und Feuchte Instationar," or transient heat and moisture). A family of PC-based software tools jointly developed by Germany's Fraunhofer Institute for Building Physics and ORNL,...

482

Presentation to Dr. Anne Davies, 1/26/99 OVERVIEW OF ADVANCED FUSION SCIENCE AND  

E-Print Network (OSTI)

Simulation of Ablation Shocks in Thin Liquid Walls for IFE Reactors Training Students as future fusion Density · Higher Thermal Efficiency · Higher Reliability · Easier Maintanance · Reduction of radioactive from Nozzle (m) 2D Analysis of FW Flibe flow #12;Presentation to Dr. Anne Davies, 1/26/99 Gravity

California at Los Angeles, University of

483

Basics of Inertial Confinement Fusion NIF and Photon Science Directorate Chief Scientist  

E-Print Network (OSTI)

for ignition on the Nova and Omega laser · Final steps on the path to ignition - the National Ignition Campaign/Centurion Why do we believe that ignition will work on NIF? #12;Advances in laser performance, precision) MAGNETIC FIELD ELECTRON NUCLEUS + - SUN #12;The extreme conditions required for inertial fusion ignition

484

Chapter 7 - Fusion  

Science Journals Connector (OSTI)

Abstract This chapter briefly introduces the topic of fusing light nuclei such as deuterium (D) and tritium (T) together to release binding energy. Characteristics of a plasma in which thermonuclear fusion is carried out are described. Fusion reaction cross sections are graphed for the most promising reactions including D-D and D-T. The ignition temperature for fusion is shown as the cross over point between energy produced by fusion and radiation losses due to mechanisms such as bremsstrahlung.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

485

Roadmap: Engineering Technology Green and Alternative Energy Bachelor of Science  

E-Print Network (OSTI)

Roadmap: Engineering Technology ­ Green and Alternative Energy ­ Bachelor of Science [RE 26636 Project Management for Administrative Professionals 1 Green and Alternative Energy Elective 3 and Material Science 3 Green and Alternative Energy Elective 3 See note 2 on page 2 Kent Core Requirement 3

Sheridan, Scott

486

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

MFIX MFIX Advanced Research Computational Energy Sciences MFIX MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose computer code developed at the National Energy Technology Laboratory (NETL) for describing the hydrodynamics, heat transfer and chemical reactions in fluid-solids systems. It has been used for describing bubbling and circulating fluidized beds and spouted beds. MFIX calculations give transient data on the three-dimensional distribution of pressure, velocity, temperature, and species mass fractions. MFIX code is based on a generally accepted set of multiphase flow equations. The code is used as a "test-stand" for testing and developing multiphase flow constitutive equations. MFIX Virtual Plant Consider a fluidized bed coal gasification reactor, in which pulverized

487

Research | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs » FES Home » Research Programs » FES Home » Research Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Research Print Text Size: A A A RSS Feeds FeedbackShare Page The ITER Project is a seven-member international collaboration to design, build, and operate a first-of-a-kind international research facility in St. Paul lez Durance, France aimed at demonstrating the scientific and

488

Long-range correlation studies at the SPS energies in MC model with string fusion  

E-Print Network (OSTI)

Studies of the ultrarelativistic collisions of hadrons and nuclei at different centrality and energy enable to explore the QCD phase diagram in a wide range of temperature and baryon density. Long-range correlation studies are considered as a tool, sensitive to the observation of phase transition and the critical point. In the present work, a Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions is applied to heavy and light ion collisions at the cms energy range from a few up to several hundred GeV per nucleon. The model describes the nuclear collisions at the partonic level through interaction of color dipoles and takes into account the effects of string fusion, which can be considered as an alternative to relativistic hydrodynamics way of describing the collective phenomena in heavy-ion collisions. The implementing of both the string fusion and the finite rapidity length of strings allowed to consider the particle production at non-zero baryochemical potential. We calculated th...

Kovalenko, Vladimir

2015-01-01T23:59:59.000Z

489

COLLABORATIVE: FUSION SIMULATION PROGRAM  

SciTech Connect

New York University, Courant Institute of Mathematical Sciences, participated in the ���¢��������Fusion Simulation Program (FSP) Planning Activities���¢������� [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP���¢��������s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.

Chang, Choong Seock

2012-06-05T23:59:59.000Z

490

the fusion trend line Stan Milora (ORNL)  

E-Print Network (OSTI)

and create materials that can endure neutron, plasma and heat fluxes in a commercial power plant. ­Secretary and enabling technologies relevant to power plants and 2) the feasibility of a single new facility to address://vlt.ornl.gov/ VLT Virtual Laboratory for Technology For Fusion Energy Science #12;2 Managed by UT-Battelle for the U

491

Edmund J. Synakowski Fusion Power Associates Meeting  

E-Print Network (OSTI)

by the University of California, Lawrence Livermore National Laboratory, under contract W-7405-Eng-48 #12;10/2/06 11 capabilities · IFE opportunities: NIF and present research elements The LLNL FEP research & resources enable Fusion Energy Program: leadership roles in both MFE and IFE, buoyed by ITER, NIF science, and LLNL

492

E-print Network home page -- Energy, science, and technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, science, and technology for the research community Enter Search Terms Search Advanced Search The E-print Network is . . . . . . a vast, integrated network of electronic...

493

DOE Science Showcase - Biofuels | OSTI, US Dept of Energy, Office...  

Office of Scientific and Technical Information (OSTI)

Collections: Biofuels, Dr. William Watson Scitech Connect - search results from DOE science, technology and engineering research programs. National Library of Energy - search...

494

Department of Energy Awards $9 Million in Grants for Science...  

Office of Environmental Management (EM)

Awards 9 Million in Grants for Science and Technical Research to Historically Black Colleges and Universities in South Carolina and Georgia Department of Energy Awards 9 Million...

495

Computer-Based Energy Projects: Science Projects in Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

change over time. Computer-Based Energy Projects For the Teacher Although these are science fair projects, all three are easily adaptable to the regular classroom, provided you...

496

Alternative Energy Science and Policy: Biofuels as a Case Study.  

E-Print Network (OSTI)

??This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to… (more)

Ammous, Saifedean H.

2011-01-01T23:59:59.000Z

497

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network (OSTI)

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means

New Hampshire, University of

498

Virtual Science Fair | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virtual Science Fair Virtual Science Fair The Bioenergy Technology Office (BETO) is hosting a national virtual science fair that engages 9th-12th grade students in learning about...

499

California's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative  

E-Print Network (OSTI)

and, more broadly, clean energy technology, may well be theCASE FOR A CLEAN ENERGY SCIENCE AND TECHNOLOGY INITIATIVECase for a Clean Energy Science and Technology Initiative

Sperling, Dan

2004-01-01T23:59:59.000Z

500

California 's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative  

E-Print Network (OSTI)

and, more broadly, clean energy technology, may well be theCase for a Clean Energy Science and Technology Initiativea major clean energy science and technology initiative.

Sperling, Dan

2004-01-01T23:59:59.000Z