Sample records for fusion energy science

  1. Fusion Energy Sciences Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01T23:59:59.000Z

    Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

  2. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

  3. Fusion Energy Sciences Program Mission

    E-Print Network [OSTI]

    Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion-heated) plasma, and the Fusion Energy Sciences Advisory Committee (FESAC) has concluded that the fusion program

  4. Fusion Power Associates Fusion Energy Sciences Program

    E-Print Network [OSTI]

    Fusion Power Associates Fusion Energy Sciences Program www.ofes.fusion.doe.gov U.S. Department for ITER Decision Making (IAEA, November 8-9, 2004) Delegations from China, European Union, Japan

  5. Science/Fusion Energy Sciences FY 2006 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    community. Benefits Fusion is the energy source that powers the sun and stars. In the fusion process, formsScience/Fusion Energy Sciences FY 2006 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2005 Comparable Appropriation FY 2006 Request Fusion Energy Sciences Science

  6. Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

  7. Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

  8. Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile by Subprogram (dollars in thousands) FY 2006 Current Appropriation FY 2007 Request FY 2008 Request Fusion Energy,182 31,317 Total, Fusion Energy Sciences 280,683a 318,950 427,850 Public Law Authorizations: Public Law

  9. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities High

  10. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities High Large Scale

  11. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for FES along with supporting narratives, illustrated by specific science-based case studies Findings from the review will guide NERSC procurements and service offerings;...

  12. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from discovery plasma science to high-power, long-pulse, and foundational burning plasma research. Current major collaborations include: divertor and edge plasma diagnostics on...

  13. Sean Finnegan & Ann Satsangi Fusion Energy Sciences

    E-Print Network [OSTI]

    Energy (IFE) science. #12;HEDLP definition "High-energy-density laboratory plasma (HEDLP) physicsSean Finnegan & Ann Satsangi Fusion Energy Sciences Program Management Team for HEDLP Fusion Power Associates15 December 2011 Comments on the DOE-SC Program in High Energy Density Laboratory Plasma Science

  14. A Strategic Program Plan for Fusion Energy Sciences Fusion Energy Sciences

    E-Print Network [OSTI]

    A Strategic Program Plan for Fusion Energy Sciences 1 Fusion Energy Sciences #12;2 Bringing independence. Fusion power plants will provide economical and abundant energy without greenhouse gas emissions, while creating manageable waste and little risk to public safety and health. Making fusion energy a part

  15. Fusion Energy Sciences Advisory Committee Strategic Planning

    E-Print Network [OSTI]

    D R A F T Fusion Energy Sciences Advisory Committee Report on Strategic Planning: Priorities ............................................................................................................... 68 #12; iii Preface Fusion, the energy source that powers our sun and the stars. Fusion energy could therefore fulfill one of the basic needs of modern civili- zation: abundant energy

  16. Fusion Energy Sciences Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,ofOpportunities Biological andOpportunitiesOffice

  17. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01T23:59:59.000Z

    drive targets for inertial fusion energy. 1. Introduction Adensity matter and fusion energy. Previously, experiments inHeavy ion fusion science research for high energy density

  18. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    E-Print Network [OSTI]

    Kwan, J.W.

    2008-01-01T23:59:59.000Z

    Fusion Science, Magnetic Fusion Energy, and Related Fieldsof Science, Office of Fusion Energy Sciences, of the U.S.Fusion Science, Magnetic Fusion Energy, and Related Fields

  19. Sandia Energy - Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergy Storage ComponentsFuel

  20. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    E-Print Network [OSTI]

    Gerber, Richard

    2014-01-01T23:59:59.000Z

    Requirements  for  Fusion  Energy  Sciences:  Target  2017  Requirements  for  Fusion  Energy  Sciences:  Target  and  Context   DOE’s  Fusion  Energy  Sciences  program  

  1. Fusion Energy Sciences Network Requirements Review Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Items 10 Review Background and Structure 11 Office of Fusion Energy Sciences Overview 14 Case Studies 17 1 Fusion Facilities: International Perspective 17 2 General Atomics:...

  2. Update and Outlook for the Fusion Energy Sciences Program

    E-Print Network [OSTI]

    Update and Outlook for the Fusion Energy Sciences Program E.J. Synakowski Associate Director, Office of Science Fusion Energy Sciences Fusion Power Associates Annual Meeting Washington, D.C. December Energy Sciences 3D topologies Samuel Barish, Lead,: Validation Platforms, Stellarators Steve Eckstrand

  3. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    E-Print Network [OSTI]

    Dart, Eli

    2008-01-01T23:59:59.000Z

    Division, and the Office of Fusion Energy Sciences.Requirements Report of the Fusion Energy Sciences NetworkRequirements Workshop Fusion Energy Sciences Program Office,

  4. Virtual Laboratory for Technology For Fusion Energy Science

    E-Print Network [OSTI]

    VLT Virtual Laboratory for Technology For Fusion Energy Science Stan Milora, ORNL Director, Virtual and ITER #12;VLT Virtual Laboratory for Technology For Fusion Energy Science The Technology Program Virtual Laboratory for Technology For Fusion Energy Science The VLT is the steward of burning plasma

  5. Virtual Laboratory for Technology For Fusion Energy Science

    E-Print Network [OSTI]

    VLT Virtual Laboratory for Technology For Fusion Energy Science Stan Milora, ORNL Director, Virtual for Technology For Fusion Energy Science VLT Research MissionVLT Research Mission To contribute to the national;VLT Virtual Laboratory for Technology For Fusion Energy Science OutlineOutline · VLT contributions

  6. FUSION ENERGY SCIENCES SUMMER STUDY 2002 Gerald Navratil

    E-Print Network [OSTI]

    PLANS FOR FUSION ENERGY SCIENCES SUMMER STUDY 2002 Gerald Navratil Columbia University American-steps in the fusion energy sciences program, and will provide crucial community input to the long range planning to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated

  7. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01T23:59:59.000Z

    simulations of fusion and energy systems with unprecedentedRequirements  for  Fusion  Energy  Sciences   14 General  and  Storage  Requirements  for  Fusion  Energy  Sciences  

  8. U.S. Heavy Ion Beam Science towards inertial fusion energy

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    Science towards Inertial Fusion Energy B.G. Logan 1), D.activities for inertial fusion energy at Lawrence LivermoreIon Fusion in the U.S. Fusion Energy Sciences Program [25].

  9. Fusion Energy Sciences Advisory Committee Meeting January 31, 2013

    E-Print Network [OSTI]

    Fusion Energy Sciences Advisory Committee Meeting January 31, 2013 Agenda Time Topic Speaker 9 Energy Sciences 10:15 Break 10:45 Briefing from the Subcommittee on Magnetic Fusion Energy Program with the New Charge on Scientific Facilities Prioritization Dr.JohnSarff,Chairof theSubcommitteeon Scientific

  10. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    SciTech Connect (OSTI)

    None

    2001-01-01T23:59:59.000Z

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.

  11. Snowmass 2002: The Fusion Energy Sciences Summer Study

    SciTech Connect (OSTI)

    N. Sauthoff; G. Navratil; R. Bangerter

    2002-01-31T23:59:59.000Z

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will present a uniform technical assessment of the benefits of the three approaches. The draft report will be presented and extensively discussed during the July meeting, leading to a final report. This report will provide critical fusion community input to the decision process of FESAC and DOE in 2002-2003, and to the review of burning plasma science by the National Academy of Sciences called for by FESAC and Energy Legislation which was passed by the House of Representatives [H.R. 4]. Members of the fusion community are encouraged to participate in the Snowmass working groups.

  12. Fusion Energy Sciences Review Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities High

  13. Multi-University Research to Advance Discovery Fusion Energy Science using a

    E-Print Network [OSTI]

    Dept of Applied Physics and Applied Math, Columbia University, New York, NY Plasma Science and FusionMulti-University Research to Advance Discovery Fusion Energy Science using a Superconducting Center, MIT, Cambridge, MA Outline · Intermediate scale discovery fusion energy science needs support

  14. Senator Dianne Feinstein Statement on the Fusion Energy Sciences Act of 2001

    E-Print Network [OSTI]

    Senator Dianne Feinstein Statement on the Fusion Energy Sciences Act of 2001 June 28, 2001 Mr to accelerate the development of fusion energy as a practical and realistic alternative to fossil fuels for our introduced the "Fusion Energy Sciences Act of 2001" on the House side as H.R. 1781. Since the beginning

  15. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect (OSTI)

    None, None

    2003-03-05T23:59:59.000Z

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  16. DOE/SC-0041 Fusion Energy Sciences Advisory Committee

    E-Print Network [OSTI]

    plasma physics experiment and its major supporting elements? What are the different levels of self-heating of strong self- heating, the burning plasma regime. This is the regime in which the internal nuclear fusion transfer their energy to the background plasma. When this self-heating of the plasma by fusion alpha

  17. LANL Fusion Energy Sciences ResearchLANL Fusion Energy Sciences Research G. A. Wurden

    E-Print Network [OSTI]

    for the U.S. Department of Energy's NNSA UNCLASSIFIED #12;| Los Alamos National Laboratory | Abstract mitigation (US-ITER) Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED April 2013

  18. DOE/SC-0041 Fusion Energy Sciences Advisory Committee

    E-Print Network [OSTI]

    major supporting elements? What are the different levels of self-heating that are needed to contribute is the development of a basic understanding of plasma behavior in the regime of strong self- heating, the burning their energy to the background plasma. When this self-heating of the plasma by fusion alpha particles is large

  19. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01T23:59:59.000Z

    cost direct plasma MHD direct conversion [38], as well as toT-lean targets and direct conversion for heavy ion fusion. [conversion loss of beam energy into x-rays. High ablation velocities with heavy ion direct

  20. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23T23:59:59.000Z

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  1. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02T23:59:59.000Z

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  2. Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences

    SciTech Connect (OSTI)

    Kulcinski, G.L.

    2002-12-01T23:59:59.000Z

    A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

  3. The 2002 Fusion Summer Study will be a forum for the critical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to

    E-Print Network [OSTI]

    in the fusion energy sciences program, and will provide crucial community input to the long range planning to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy

  4. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

  5. Fusion Energy Sciences Network Requirements Review Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities High LargeSciences

  6. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01T23:59:59.000Z

    1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

  7. Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Fusion Nuclear Science Facility (FNSF) ­ Motivation, Role, Required Capabilities YK Martin Peng;1 Managed by UT-Battelle for the Department of Energy Example: fusion nuclear-nonnuclear coupling effects-composites; Nano-structure alloy; PFC designs, etc. · Nuclear-nonnuclear coupling in PFC: - Plasma ion flux induces

  8. Large Scale Computing and Storage Requirements for Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShadeEnvironmental

  9. REPORT FROM THE PLANNING WORKSHOP FUSION ENERGY SCIENCES PROGRAM

    E-Print Network [OSTI]

    research recognizes the utility of plasma research to the nation's science and technology base beyond

  10. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    SciTech Connect (OSTI)

    Gerber, Richard

    2014-05-02T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  11. CNN.com -Bush to fund fusion energy machine -Jan. 30, 2003 Thursday, January 30, 2003 http://www.cnn.com/2003/TECH/science/01/30/fusion.science/index.html Page: 1

    E-Print Network [OSTI]

    ://www.cnn.com/2003/TECH/science/01/30/fusion.science/index.html Page: 1 The Web CNN.com Home Page World U.S. Weather Reports SERVICES Video Newswatch E-Mail Services CNN To Go SEARCH Web CNN.com Bush to fund fusion energy

  12. June 21, 2014 1 Fusion Energy Sciences: Workforce Development Needs

    E-Print Network [OSTI]

    This report has been prepared in response to the charge from the Acting Director of the Office of Science) identify disciplines in high demand, nationally and/or internationally, resulting in difficulties in recruitment and retention at U.S. universities and DOE national labs; (3) of the disciplines identified

  13. Fusion Energy Sciences User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Questions Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 FES User Facilities...

  14. Taylor/FESAC Priorities/July 18, 2012 Fusion Energy Science Program Priorities

    E-Print Network [OSTI]

    Base Plasma science Engineering Science Innovative Experiments, Theory/modeling Students Workforce #12 materials fuel cycle ITER high gain BP Physics DEMO net electricity Excellent Science and Innovation are strengths of the U. S. Magnetic Fusion Program Strong Scientific Base Plasma science Engineering Science

  15. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25T23:59:59.000Z

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  16. NERSC Role in Fusion Energy Science Research Katherine Yelick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events

  17. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederal Facility Agreement andKevinApply NowPhysics

  18. FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF)

    E-Print Network [OSTI]

    FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF): UPDATE · It was well recognized there were also critical materials and technology issues that needed to be addressed in order to apply the knowledge we gained about burning plasma state #12;FUSION NUCLEAR SCIENCE PROGRAM

  19. Fusion Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity fromFusion Links Fusion Energy

  20. Journal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review Panel

    E-Print Network [OSTI]

    Abdou, Mohamed

    participation in the of the Fusion Energy Sciences Program of the Office of International Thermonuclear ReactorJournal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review. S. Department of Energy Fusion Energy Advisory Committee (FEAC) review of its Inertial Fusion Energy

  1. Fusion Science to Prepare

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity fromFusion Links FusionDIII-D

  2. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    None

    1999-06-01T23:59:59.000Z

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  3. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    none,

    1999-06-30T23:59:59.000Z

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  4. Heavy-Ion-Fusion-Science: Summary of U.S. Progress

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    IAEA-06 Topic IF Heavy-Ion-Fusion-Science: Summary of U.S.W.L. Waldron, U.S. Heavy Ion Fusion Science Virtual NationalExperiment at PPPL. [1] Fusion Energy Sciences Advisory

  5. Fusion Electricity A roadmap to the realisation of fusion energy

    E-Print Network [OSTI]

    Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed association EURaToM ­ University of latvia LATVIA lithuanian Energy Institute LITHUANIA Ministry of Education and Research ROMANIA Ministry of Education, science, culture and sport SLOVENIA centro de Investigaciones

  6. MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division

    E-Print Network [OSTI]

    Fusion Technology & Engineering Division 1. Costing of 4 "Reference" Options 2. Equalization of TF;MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division Total Cost (M$) vs. A; MMIT Plasma Science and Fusion Center Fusion Technology & Engineering Division J.H. Schultz M

  7. How Fusion Energy Works

    Broader source: Energy.gov [DOE]

    Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

  8. SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH

    E-Print Network [OSTI]

    impact of discouraging future fusion researchers from entering the field; · Contraction in plasma research and a jeopardized ability to design and build future fusion systems in this country; · The U

  9. On the program, vision, and budget for the fusion and plasma sciences

    E-Print Network [OSTI]

    relevant to clean energy with near-term payoff. With this as backdrop, the Administration affirms a strong Director, Office of Science For Fusion Energy Sciences U.S. Department of Energy Presented to the Fusion Energy Sciences Advisory Committee February 28, 2012 #12;The science at the heart of fusion energy is far

  10. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  11. Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Panel

    E-Print Network [OSTI]

    Abdou, Mohamed

    Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Marshall Rosenbluth, H,~3 William Tang, 12 and Ernest Valeo 12 Dr. Robert W. Conn, Chair Fusion Energy on a specific recommendation made by your Committee in its report, "A Restructured Fusion Energy Sciences Pro

  12. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    None

    2009-06-08T23:59:59.000Z

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

  13. Fusion Energy Program Presentation to

    E-Print Network [OSTI]

    International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced MaterialsFusion Energy Program Presentation to Field Work Proposals Washington, D.C. N. Anne Davies Associate Director for Fusion energy Office of Energy Research March23, 1994 #12;FUSION ENERGY PROGRAM FYI

  14. Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and Methane |

  15. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

  16. Fusion Nuclear Science Pathways Assessment

    SciTech Connect (OSTI)

    C.E. Kessel, et. al.

    2012-02-23T23:59:59.000Z

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  17. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08T23:59:59.000Z

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  18. Before the House Science and Technology Subcommittee on Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science Subject: DOE Fusion Energy Program 10-29-09FinalTestimony(Synakowski).pdf More...

  19. LBNL perspective on inertial fusion energy

    E-Print Network [OSTI]

    Bangerter, Roger O.

    1995-01-01T23:59:59.000Z

    LBNL Perspective on Inertial Fusion Energy Roger Bangerter1990) and the last Fusion Energy Advisory Committee (1993)year 2005, the Inertial Fusion Energy Program must grow to

  20. Course: FUSION SCIENCE AND ENGINEERING Universit degli Studi di Padova

    E-Print Network [OSTI]

    Cesare, Bernardo

    the subject of controlled thermonuclear fusion in magnetically confined plasmas. Both fusion science of Controlled Thermonuclear Fusion, b) Engineering of a Magnetically Confined Fusion Reactor, c) ExperimentalCourse: FUSION SCIENCE AND ENGINEERING Università degli Studi di Padova in agreement

  1. Alternative pathways to fusion energy (focus on Department of Energy

    E-Print Network [OSTI]

    Alternative pathways to fusion energy (focus on Department of Energy Innovative Confinement for a restructured fusion energy science program [5] 1996 | FESAC: Opportunities in Alternative Confinement Concepts, suggests program for Innovative Concepts [1] 1995 | OTA TPX and the Alternates [2] 1995 | PCAST (given flat

  2. Fusion Nuclear Science and Technology Research Needed Now for Magnetic

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology Research Needed Now for Magnetic Fusion Energy Neil B. Morley;Outline Introduction Nuclear science and technology research needed now to enable the construction Conclusions What we are missing out on by eliminating long term technology programs? Opportunities in the Age

  3. Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology (FNST) Challenges and Facilities on the Pathway to DEMO Princeton,NJ 7-10 September 2011 1 #12;Fusion Nuclear Science and Technology (FNST) must be the Central and Technology Center (UCLA) President, Council of Energy Research and Education Leaders, CEREL (USA) With input

  4. Report of the FESAC Inertial Fusion Energy Review Panel

    SciTech Connect (OSTI)

    Sheffield, J.; Abdou, M.; Briggs, R. [and others

    1996-12-01T23:59:59.000Z

    This article is a response to the Office of Energy Research of the US DOE from the Fusion Energy Advisory Committee on a review of the Inertial Fusion Energy Program. This response was solicited in response to one of the suggestions made as part of the advisory report `A Restructured Fusion Energy Sciences Program` submitted to the US DOE in early 1996. The charge directed that the committee provide an assessment of the content of an inertial fusion energy program that advances the scientific elements of the program and is consistent with the Fusion Energy Sciences Program, and budget projections over the next several years.

  5. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges on MFE Roadmapping in the ITER Era Princeton, NJ 7-10 September 2011 1 #12;Fusion Nuclear Science never done any experiments on FNST in a real fusion nuclear environment we must be realistic on what

  6. Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II

    E-Print Network [OSTI]

    Logan, B.G.

    2010-01-01T23:59:59.000Z

    MATTER AND INERTIAL FUSION ENERGY APPLICATIONS ON NDCX-II Byof Science, Office of Fusion Energy Sciences, of the U.S.matter and inertial fusion energy applications on NDCX-II J.

  7. Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program

    E-Print Network [OSTI]

    Abdou, Mohamed

    , Livermore, CA 94551. 6 University of Wisconsin, Madison, WI 53706. 7 Columbia University, New York, NY 10027Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion

  8. Breakthrough: Neutron Science for the Fusion Mission

    ScienceCinema (OSTI)

    McGreevy, Robert

    2014-06-03T23:59:59.000Z

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  9. Breakthrough: Neutron Science for the Fusion Mission

    SciTech Connect (OSTI)

    McGreevy, Robert

    2012-04-24T23:59:59.000Z

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  10. U.S. Department of Energy's Office of Science

    E-Print Network [OSTI]

    Davies Associate Director for Fusion Energy Sciences May 5, 2003 Fusion Energy Sciences Program www.ofes.fusion.doe.gov including China and U.S. #12;U.S. Delegation at ITER Negotiating Meeting in Russia (next to Academician

  11. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01T23:59:59.000Z

    basic plasma science, including both burning plasma and low temperature plasma science and engineering, to enhance economic

  12. 50 Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    , .... · Controlled Thermonuclear Fusion had great potential ­ Uncontrolled Thermonuclear fusion demonstrated in 19521 50 Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ SOFE 2009 June 1, 2009 San Diego, CA 92101 #12;2 #12;2 #12;3 Fusion Prior to Geneva 1958 · A period of rapid

  13. Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Abdou, Mohamed

    Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

  14. Fusion Energy Sciences Priorities Over the Next 1020 years C. E. Kessel, PPPL

    E-Print Network [OSTI]

    of ITER, and the subsequent pursuit of a demonstration power plant (DEMO). The US fusion program has surface behavior under particle and heat loading is quite limited. Even further, our simulation #12

  15. EURATOM/UKAEA Fusion Association Culham Science Centre

    E-Print Network [OSTI]

    data above 20 MeV. Further, earlier intermediate energy activation libraries, MENDL-2, WIND and IEAF UKAEA EURATOM/UKAEA Fusion Association Culham Science Centre Abingdon Oxfordshire OX14 3DB United Kingdom Telephone: +44 1235 466586 Facsimile: +44 1235 466435 UKAEA FUS 529 EURATOM/UKAEA Fusion

  16. Overview of the DIII-D Fusion Science Program

    SciTech Connect (OSTI)

    Luxon, J.L.; Simonen, T.C.; Stambaugh, R.D. [General Atomics (United States)

    2005-10-15T23:59:59.000Z

    This overview of the DIII-D fusion program provides an introduction to the research program carried out on the DIII-D tokamak since its inception in 1986. It serves as the introduction and summary of this special issue of Fusion Science and Technology on the DIII-D program. Special emphasis is given to the contributions of the program to the world fusion energy program and progress toward a burning plasma.

  17. N.P. Basse1 Plasma Science and Fusion Center

    E-Print Network [OSTI]

    Basse, Nils Plesner

    ) The energy spectrum E(k) is related to P(k) through E(k) = Ad × P(k), where Ad is the surface area 33rd IEEE International Conference on Plasma Science, Traverse City, Michigan, USA (2006) A study of multiscale density fluctuations Work supported by US DoE Office of Fusion Energy Sciences #12;Introduction

  18. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    Fusion Nuclear Science and Technology Program - Status and plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research...

  19. and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 (13pp) doi:10.1088/0029-5515/48/2/024016

    E-Print Network [OSTI]

    Solna, Knut

    2008-01-01T23:59:59.000Z

    and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 Vinca, Belgrade, Serbia 2 National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu

  20. Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual

    E-Print Network [OSTI]

    82 kV #12;7 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z-pinch;10 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z-pinch IFE Linear1 Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual Meeting and Symposium December 4

  1. "50" Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    Classified US Program on Controlled Thermonuclear Fusion (Project Sherwood) carried out until 1958 when"50" Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ Fi P th SFusion Fire Powers the Sun "W d t if k f i k ""We need to see if we can make fusion work

  2. Realization of Fusion Energy: An alternative fusion roadmap

    E-Print Network [OSTI]

    Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

  3. Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century

    E-Print Network [OSTI]

    Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century Carlos Matos Ferreira, Fusion Energy Conference, Vilamoura, Portugal #12;OutlineOutline ·· World Energy ConsumptionWorld Energy Consumption ·· Global WarmingGlobal Warming ·· Advantages of Fusion energyAdvantages of Fusion energy

  4. Fusion Energy 101 Jeff Freidberg

    E-Print Network [OSTI]

    : · Huge resources ­ a renewable · No CO2 emissions · No pollution · Inherently safe · No proliferation be in the future? 2 #12;Consumption of Energy by Sector Transportation Electricity Heating EIA ­ DOE 2010 3 #12;Where does fusion fit in? · Goal of fusion: make electricity · Lots of it! · Base load electricity ­ 24

  5. THE PATH TOWARD MAGNETIC FUSION ENERGY DEMONSTRATON AND THE ROLE OF ITER

    E-Print Network [OSTI]

    Abdou, Mohamed

    1 THE PATH TOWARD MAGNETIC FUSION ENERGY DEMONSTRATON AND THE ROLE OF ITER ABDOU, M. A. Center to enable a transition to fusion energy demonstration (DEMO). Fusion Nuclear Science and Technology (FNST conducting magnets. 1. Introduction: Fusion has great potential to be a sustainable energy source

  6. Fusion Energy Sciences Advisory Committee Meeting April 9-10, 2014

    E-Print Network [OSTI]

    , including the FY 2015 President's Budget Request Dr. Patricia Dehmer, Acting Director Office of Science 10:00 a.m. Break 10:15 a.m. DOE/FES Perspectives, including the FY 2015 President's Budget Request Dr. Ed

  7. Heavy Ion Fusion Science Virtual National Laboratory

    E-Print Network [OSTI]

    progress with more modest near-term budgets. #12;Slide 5 Heavy Ion Fusion Science Virtual National requirement: modest growth of HIFS-VNL budget from present 7.7 M$/yr to ~16M$/yr, including suppo

  8. Building Consensus in the Formation of Science Strategy: Reflections on the U.S. Fusion Science Program

    E-Print Network [OSTI]

    . Energy Imports at 30% U.S. Energy Imports Decline to 16% DOE Approves LNG Export from Cove Point EnergyBuilding Consensus in the Formation of Science Strategy: Reflections on the U.S. Fusion Science consensus #12;Examples of UFA Action: Facilitating Consensus through Letters and Forums · U.S. fusion

  9. M. Abdou April 2013 Fusion Nuclear Science and Technology

    E-Print Network [OSTI]

    Abdou, Mohamed

    M. Abdou April 2013 Fusion Nuclear Science and Technology Challenges and Required R&D Mohamed Fusion Nuclear Science and Technology Challenges and Required R&D Presentation Outline Introduction to realizing fusion power and the Central Role of Fusion Nuclear Science and Technology (FNST) 4 #12;M. Abdou

  10. Fusion Energy Sciences Advisory Committee (FESAC) Homepage | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,ofOpportunities Biological andOpportunitiesOffice of

  11. DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of Energy, Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART IScientific andOffice of Scientific andof

  12. Introduction to Fusion Energy Jerry Hughes

    E-Print Network [OSTI]

    Introduction to Fusion Energy Jerry Hughes IAP @ PSFC January 8, 2013 Acknowledgments: Catherine) a practical energy source on earth 2 mcE #12;Fusion is a form of nuclear energy · A huge amount of energy;Terrestrial energy sources have their origin in the nuclear fusion reactions of stars Supernova produces

  13. (Fusion energy research)

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1988-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  14. JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER

    E-Print Network [OSTI]

    JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergy Fusion fuel: deuterium et tritium Deuterium: plenty in the ocean Tritium: made in situ from Lithium

  15. A Roadmap to Laser Fusion Energy

    E-Print Network [OSTI]

    the radioactive environment, for easier maintenance. · No ultra-high vacuum or superconducting magnets. LaserA Roadmap to Laser Fusion Energy Stephen E. Bodner Retired (former head of the NRL laser fusion Energy Systems January 30, 2011 #12;In 1971-1972 LLNL announced that they had an idea for laser fusion

  16. Fusion Energy Advisory Committee (FEAC): Panel 7 report on Inertial Fusion Energy

    SciTech Connect (OSTI)

    Davidson, R.; Ripin, B.; Abdou, M.; Baldwin, D.E.; Commisso, R.; Dean, S.O.; Herrmannsfeldt, W.; Lee, E.; Lindl, J.; McCrory, R. [Princeton Univ., NJ (United States)] [and others

    1994-09-01T23:59:59.000Z

    The charge to FEAC Panel 7 on inertial fusion energy (IFE) is encompassed in the four articles of correspondence. To briefly summarize, the scope of the panel`s review and analysis adhered to the following guidelines. (1) Consistent with previous recommendations by the Fusion Policy Advisory Committee (FPAC) and the National Academy of Science (NAS) panel on inertial fusion, the principal focus of FEAC Panel 7`s review and planning activities for next-generation experimental facilities in IFE was limited to heavy ions. (2) The panel considered the three budget cases: $5M, $10M, and $15M annual funding at constant level-of-effort (FY92 dollars), with a time horizon of about five years. (3) While limiting the analysis of next-generation experimental facilities to heavy ions, the panel assessed both the induction and rf linac approaches, and factored European plans into its considerations as well. (4) Finally, the panel identified high-priority areas in system studies and supporting IFE technologies, taking into account how IFE can benefit from related activities funded by the Office of Fusion Energy and by Defense Programs. This report presents the technical assessment, findings, and recommendations on inertial fusion energy prepared by FEAC Panel 7.

  17. Z-Pinch Fusion for Energy Applications

    SciTech Connect (OSTI)

    SPIELMAN,RICK B.

    2000-01-01T23:59:59.000Z

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  18. The Path to Magnetic Fusion Energy

    SciTech Connect (OSTI)

    Prager, Stewart (PPPL) [PPPL

    2011-05-04T23:59:59.000Z

    When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

  19. Fusion energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities HighFusion Power

  20. Sandia National Laboratories: DOE Office of Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sandia-UC Davis Collaboration Funded by DOE Office of Fusion Energy On March 4, 2014, in Energy, News, News & Events, Nuclear Energy, Partnership, Research &...

  1. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

  2. Energy Sources Used for Fusion Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Energy Sources Used for Fusion Welding Thomas W. Eagar, Massachusetts Institute of Technology reliability. The Section "Fusion Welding Processes" in this Volume provides details about equipment and systems for the major fusion welding proc- esses. The purpose of this Section of the Volume is to discuss

  3. Distribution Category: Magnetic Fusion Energy

    E-Print Network [OSTI]

    Abdou, Mohamed

    . Abdou Fusion Power Program October 1982 Invited paper presented at the International Conference by Mohamed A. Abdou ABSTRACT Key technological problems that influence tritium breeding in fusion blankets

  4. EPRI Fusion Energy Assessment July 19, 2011

    E-Print Network [OSTI]

    parallelization and increased risk management (from FESAC "Plan for Development of Fusion Energy" DOE/SC-0074EPRI Fusion Energy Assessment July 19, 2011 Palo Alto, CA Roadmapping an MFE Strategy R.J. Fonck ENERGY DEVELOPMENT PROJECT · The U.S. MFE program can break out into a directed energy development

  5. An Assessment of the Department of Energy's Office of Fusion Energy

    E-Print Network [OSTI]

    competences and with regard for appropriate balance. This project was supported by the Department of Energy reserved. Printed in the United States of America #12;The National Academy of Sciences is a privateAn Assessment of the Department of Energy's Office of Fusion Energy Sciences Program NATIONAL

  6. THE U.S. ADVANCED TOKAMAK FUSION SCIENCE PROGRAM A White Paper

    E-Print Network [OSTI]

    Version 14 5/20/99 THE U.S. ADVANCED TOKAMAK FUSION SCIENCE PROGRAM A White Paper Executive Overview Tokamak research shows that magnetic fusion energy deserves serious consideration as a viable and pursue greater understanding of the new advanced-tokamak (AT) regimes to increase the economic

  7. Role of Fusion Energy in a Sustainable Global Energy Strategy

    SciTech Connect (OSTI)

    Sheffield, J.

    2001-03-07T23:59:59.000Z

    Fusion can play an important role in sustainable global energy because it has an available and unlimited fuel supply and location not restricted by climate or geography. Further, it emits no greenhouse gases. It has no potential for large energy releases in an accident, and no need for more than about 100 years retention for radioactive waste disposal. Substantial progress in the realization of fusion energy has been made during the past 20 years of research. It is now possible to produce significant amounts of energy from controlled deuterium and tritium (DT) reactions in the laboratory. This has led to a growing confidence in our ability to produce burning plasmas with significant energy gain in the next generation of fusion experiments. As success in fusion facilities has underpinned the scientific feasibility of fusion, the high cost of next-step fusion facilities has led to a shift in the focus of international fusion research towards a lower cost development path and an attractive end product. The increasing data base from fusion research allows conceptual fusion power plant studies, of both magnetic and inertial confinement approaches to fusion, to translate commercial requirements into the design features that must be met if fusion is to play a role in the world's energy mix; and identify key R and D items; and benchmark progress in fusion energy development. This paper addresses the question, ''Is mankind closer or farther away from controlled fusion than a few decades ago?'' We review the tremendous scientific progress during the last 10 years. We use the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements of an attractive fusion system with present achievements and to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the energy market.

  8. Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as

    E-Print Network [OSTI]

    Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has as fusion energy produced divided the external energy incident on the fusion reaction chamber. Typical fusion power plant design concepts require a fusion gain of 30 for MFE and 70 for IFE. Fusion energy

  9. Distribution Categories: Magnetic Fusion Energy (UC-20)

    E-Print Network [OSTI]

    Harilal, S. S.

    Schematic illustrating ion or electron electron beam target interaction 4 2 Flow chart of A8THERMAL-2Distribution Categories: Magnetic Fusion Energy (UC-20) Inertia! Confinement Fusion (UC-21) ANL and square time pulse 16 11 The effect of higher initial temperatures and energy densities on the melting

  10. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    1.1.3.2 Fusion Energy . . . . . . . . . 1.1.3.3 Fission-Laser Inertial Fusion-based Energy 2.1 Potentialaspects of magnetic fusion energy, September 1989. 1.1.3.2 [

  11. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    aspects of a hybrid fusion-fission energy system called theof a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevin

  12. Fusion: an energy source for synthetic fuels

    SciTech Connect (OSTI)

    Fillo, J A; Powell, J; Steinberg, M

    1980-01-01T23:59:59.000Z

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  13. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy DutyDistrictofEnergy SaverEnergySciences

  14. Culham Centre for Fusion Energy Fusion -A clean future

    E-Print Network [OSTI]

    , scientists and engineers are working to make fusion a real option for our electricity supply.At the forefront consumption is expected to grow dramatically over the next fifty years as the world's population expands; Governments are divided over whether to include nuclear fission in their energy portfolios; and renewable

  15. The Heavy Ion Fusion Science Virtual National Laboratory

    E-Print Network [OSTI]

    Gilson, Erik

    and collaborators. P. K. Roy et al., Nucl. Instr. and Meth. in Phys. Res. A 606 22, (2009). The four CAPS produce current through each of the four sources. P. K. Roy #12;The Heavy Ion Fusion Science Virtual National P. Gilson Princeton Plasma Physics Laboratory #12;The Heavy Ion Fusion Science Virtual National

  16. Structures in high-energy fusion data

    E-Print Network [OSTI]

    H. Esbensen

    2012-06-05T23:59:59.000Z

    Structures observed in heavy-ion fusion cross sections at energies above the Coulomb barrier are interpreted as caused by the penetration of centrifugal barriers that are well-separated in energy. The structures are most pronounced in the fusion of lighter, symmetric systems, where the separation in energy between successive angular momentum barriers is relatively large. It is shown that the structures or peaks can be revealed by plotting the first derivative of the energy weighted cross section. It is also shown how an orbital angular momentum can be assign to the observed peaks by comparing to coupled-channels calculations. This is illustrated by analyzing high-energy fusion data for $^{12}$C+$^{16}$O and $^{16}$O+$^{16}$O, and the possibility of observing similar structures in the fusion of heavier systems is discussed.

  17. RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET

    E-Print Network [OSTI]

    RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET A group called the Energy Efficiency Education-effective and environmentally sound energy- efficiency and renewable energy programs." Rep. Philip R. Sharp (D-IN) and chair the resolution, H. Con. Res. 188). Sharp said "For too long, cost-effectiveefficiencyand renewable energy

  18. Peter A. Norreys Professor of Inertial Fusion Science,

    E-Print Network [OSTI]

    The Target Gain InputEnergyDriver OutputEnergyNuclear G Driver nuclear output E E G LIFE fusion reactor Credit: Lawrence Livermore National Laboratory #12;EEE n output nuclear Nuclear energy output from plasma -heating due to slowing down in plasma External thermal energy input to the fusion plasma 5 Q E E

  19. Pulsed Power Driven Fusion Energy

    SciTech Connect (OSTI)

    SLUTZ,STEPHEN A.

    1999-11-22T23:59:59.000Z

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  20. MSc in Plasma Physics & Applications Laser Fusion Energy

    E-Print Network [OSTI]

    Paxton, Anthony T.

    . Thermonuclear fusion provides unlimited energy for all the world which is clean from long lived radioactiveMSc in Plasma Physics & Applications Laser Fusion Energy Why laser fusionDescription of the course fusion for energy production. This unique training scheme involves eight leading European centres

  1. A roadmap to the realiza/on of fusion energy

    E-Print Network [OSTI]

    A roadmap to the realiza/on of fusion energy Francesco Romanelli, EFDA STAC #12;Why a roadmap · The need for a long-term strategy on energy Strategic Energy Technology plan, Energy Roadmap 2050 · In this context, Fusion must

  2. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    4.3.3.4 Chamber Radius and Fusion Neutron Flux . . . . .1.1.3.2 Fusion Energy . . . . . . . . .1.1.3.3 Fission-Fusion Hybrids . . . . 1.2 Scope and Purpose

  3. Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy CrisisEnergy Crisis

    E-Print Network [OSTI]

    Strathclyde, University of

    Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy Crisis.maclellan@strath.ac.uk Introduction and Motivation What is Nuclear Fusion? Laser Plasma Interactions The world, and particularly is harnessing the power of nuclear fusion. It is however, extremely difficult to sustain a fusion reaction

  4. HEDP and new directions for fusion energy

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  5. Fusion cross sections at deep subbarrier energies

    E-Print Network [OSTI]

    K. Hagino; N. Rowley; M. Dasgupta

    2003-02-12T23:59:59.000Z

    A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisingly large surface diffusenesses required to fit recent high-precision fusion data.

  6. MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY

    E-Print Network [OSTI]

    MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY Mission Gerald Navratil Need Mohamed Abdou (Deputy Chair, Oak Ridge National Laboratory) Ron Stambaugh (Deputy Chair, General Atomics) Mohamed Abdou

  7. Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials Science Subcommittee

    E-Print Network [OSTI]

    1 Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials, Columbia University 2 Plasma Science and Fusion Center, MIT December 19, 2011 Summary The proposal for tritium-suppressed D-D fusion and the understanding of the turbulent pinch in magnetically confined plasma

  8. ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE

    E-Print Network [OSTI]

    1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RÔ LE DE L'ÉNERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion

  9. ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RÔLE DE L'ÉNERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion

  10. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    heavy ion inertial fusion energy. ACKNOWLEDGEMENTS Thisheavy ion inertial fusion energy. These include: neutralizedto drift axially). For fusion energy applications, either

  11. Progress in heavy ion drivers inertial fusion energy: From scaled experiments to the integrated research experiment

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    ION DRIVEN INERTIAL FUSION ENERGY: FROM SCALED EXPERIMENTSThe promise of inertial fusion energy driven by heavy ionleading to an inertial fusion energy power plant. The focus

  12. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    SciTech Connect (OSTI)

    None

    2008-09-01T23:59:59.000Z

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.

  13. Fusion Nuclear Science and Technology (FNST) Strategic Issues, challenges, and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST) Strategic Issues, challenges, and Facilities Nuclear Science & Technology (FNST) The nuclear environment also affects Tritium Fuel Cycle separation PFC & Blanket T processing design dependent optics 3 #12;Fusion Nuclear Science and Technology

  14. Reflections on Fusion's History and Implications for Fusion's Future*

    E-Print Network [OSTI]

    Reflections on Fusion's History and Implications for Fusion's Future* Robert Conn Fusion Energy, "Opportunities and Directions in Fusion Energy Science for the Next Decade", held July 11-23, 1999 in Snowmass, Colorado. #12;2 Abstract History shows that all the major opportunities to advance fusion research were

  15. Recent U.S. advances in ion-beam-driven high energy density physics and heavy ion fusion

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    physics and heavy ion fusion energy drivers, including bothoptions towards inertial fusion energy. Acknowledgements:fusion drivers for inertial fusion energy. 1. Introduction A

  16. Fast Introduction to Fusion Nuclear Science and Technology

    E-Print Network [OSTI]

    Abdou, Mohamed

    of Energy Research and Education Leaders, CEREL (USA) Seminar at Shanghai Jiao Tong University Shanghai energy can be used to produce electricity and hydrogen, and for desalination. #12;The World Fusion

  17. Fusion Power Associates Annual Meeting and Symposium Fusion and Energy Policy

    E-Print Network [OSTI]

    Laboratory, UK 10:00 Break 10:30 European Fusion Development Strategy - R. Andreani, EFDA, Garching 11Fusion Power Associates Annual Meeting and Symposium Fusion and Energy Policy October 11-12, 2005. Dean, President, FPA 8:40 Overview of Energy Policies at the USDOE ­ Robert C. Marlay, USDOE Office

  18. Taming turbulence in magnetized plasmas: from fusion energy to

    E-Print Network [OSTI]

    occurs (fusion of particle beams will not work...) Thermonuclear fusion in a confined plasma (T~10 keTaming turbulence in magnetized plasmas: from fusion energy to black hole accretion disks Troy?: In fusion plasmas turbulent leakage of heat and particles is a key issue. Sheared flow can suppress

  19. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    24 Department of Advanced Energy Nuclear Fusion Research Education Program 23 8 23 to Nuclear Fusion Research Education Program 277-8561 5-1-5 1 04-7136-4092 http://www.k.u-tokyo.ac.jp/fusion: nemoto@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12

  20. Bold Step by the World to Fusion Energy: ITER

    E-Print Network [OSTI]

    DnT v #12;FUSION "SELF-HEATING" POWER BALANCE 274-01/rs FUSION POWER DENSITY: pf = Rf = n f for n FUSION Fission initiated by electrically neutral particle [neutron] and can occur at room temperature electrically charged particles at very high energy: Threshold temperature for most reactive fusion reaction

  1. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    providing the significant funds needed for rapid progress in fusion or in any new carbon-free energy source. Major progress toward fusion energy was made in the 1980s and 1990s as...

  2. Fusion Energy Sciences Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01T23:59:59.000Z

    the Institute for Plasma Research (IPR), in Gujarat, India.Physics Institute for Plasma Research International Tokamak

  3. Edmund J. Synakowski Fusion Power Associates Meeting

    E-Print Network [OSTI]

    Edmund J. Synakowski Fusion Power Associates Meeting September 27 - 28, 2006 The LLNL Fusion Energy Fusion Energy Program: leadership roles in both MFE and IFE, buoyed by ITER, NIF science, and LLNL

  4. House Appropriations Subcommittee on Energy and Water FY 2015 Budget Hearing, DOE Office of Science

    E-Print Network [OSTI]

    House Appropriations Subcommittee on Energy and Water FY 2015 Budget Hearing that that is affirmed by the budget request which is lower for Fusion Energy Sciences

  5. MIT Plasma Science & Fusion Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveM od BeforeMira,

  6. MIT Plasma Science & Fusion Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveM od

  7. Liquid Vortex Shielding for Fusion Energy Applications

    SciTech Connect (OSTI)

    Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

    2005-05-15T23:59:59.000Z

    Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

  8. Energy Scaling Laws for Distributed Inference in Random Fusion Networks

    E-Print Network [OSTI]

    Yukich, Joseph E.

    the minimum spanning tree, and above by a suboptimal policy, referred to as Data Fusion for Markov Random, the policy with the minimum average energy consumption is bounded below by the average energy of fusion along models, Eu- clidean random graphs, stochastic geometry and data fusion. I. INTRODUCTION WE consider

  9. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    E-Print Network [OSTI]

    Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

    2006-01-25T23:59:59.000Z

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

  10. Vintage DOE: What is Fusion | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Vintage DOE: What is Fusion Vintage DOE: What is Fusion January 10, 2011 - 12:45pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public...

  11. How low-energy fusion can occur

    E-Print Network [OSTI]

    B. Ivlev

    2012-12-04T23:59:59.000Z

    Fusion of two deuterons of room temperature energy is discussed. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. The wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

  12. Sandia Energy - Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science Home Energy Research Advanced Scientific Computing Research (ASCR) Computational Science Computational Sciencecwdd2015-03-26T13:35:2...

  13. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy DutyDistrictofEnergy SaverEnergy

  14. Visualization and Analysis in Support of Fusion Science

    SciTech Connect (OSTI)

    Sanderson, Allen R. [Scientific Computing and Imaging Institute] [Scientific Computing and Imaging Institute

    2012-10-01T23:59:59.000Z

    This report summarizes the results of the award for “Visualization and Analysis in Support of Fusion Science.” With this award our main efforts have been to develop and deploy visualization and analysis tools in three areas 1) magnetic field line analysis 2) query based visualization and 3) comparative visualization.

  15. Fusion Materials Science Overview of Challenges and Recent Progress

    E-Print Network [OSTI]

    Fusion Materials Science Overview of Challenges and Recent Progress Steven J. Zinkle Oak Ridge: Development of new materials for structural applications is historically a long process ­ Ni3Al intermetallic alloys commercialization ­ Superalloy turbine blade development ­ Cladding and duct materials for fast

  16. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmergingPartnershipBio-Inspired

  17. Sub-barrier Fusion Cross Sections with Energy Density Formalism

    E-Print Network [OSTI]

    F. Muhammad Zamrun; K. Hagino; N. Takigawa

    2006-06-07T23:59:59.000Z

    We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

  18. Sub-barrier Fusion Cross Sections with Energy Density Formalism

    SciTech Connect (OSTI)

    Zamrun, Muhammad; Hagino, F. K.; Takigawa, N. [Department of Physics, Tohoku University, 980-8578 (Japan)

    2006-08-14T23:59:59.000Z

    We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of 16O with 154,144Sm, 186W and 208Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two 64Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

  19. Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures

    E-Print Network [OSTI]

    Fusion energy · Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures (15 million degrees) releasing a large amount of energy. · The aim of fusion research is to use of hydrogen). In the plasma the deuterium and tritium fuse to produce energy. · Fusion is a very efficient

  20. Laser Inertial Fusion Energy Control Systems

    SciTech Connect (OSTI)

    Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

    2011-03-18T23:59:59.000Z

    A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

  1. Thermonuclear Fusion Energy : Assessment and Next Step Ren Pellat

    E-Print Network [OSTI]

    Thermonuclear Fusion Energy : Assessment and Next Step René Pellat High Commissioner at the French 2000, Rome Abstract Fifty years of thermonuclear fusion work with no insurmountable road blocks have allowed to continuously progress towards the fusion reactor which stays a physics and technology ambitious

  2. China To Build Its Own Fusion Reactor ENERGY TECH

    E-Print Network [OSTI]

    Thermonuclear Experimental Reactor project reached agreement in Moscow Tuesday to construct the first fusion devices in thermonuclear reaction," and that "Chinese scientists started to develop a fusion operationChina To Build Its Own Fusion Reactor ENERGY TECH by Edward Lanfranco Beijing (UPI) July 1, 2005

  3. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    23 Department of Advanced Energy Nuclear Fusion Research Education Program 22 8 24) (1) (2) (3) (4) (5) (6) (7) (8) #12;- 7 - 23 Guide to Nuclear Fusion Research Education@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12;- 3 - (1) TOEFL TOEIC

  4. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    26 Department of Advanced Energy Nuclear Fusion Research Education Program 25 8 20) #12; 26 Guide to Nuclear Fusion Research Education Program 03-5841-6563 E-mail : ae: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 , 7 12 http://www. k.u-tokyo.ac.jp/fusion

  5. Is nuclear fusion a sustainable energy form? A. M. Bradshaw

    E-Print Network [OSTI]

    Is nuclear fusion a sustainable energy form? A. M. Bradshaw Max Planck Institute for Plasma Physics million years. The fuels for nuclear fusion ­ lithium and deuterium ­ satisfy this condition because multipliers foreseen for fusion power plants, in particular beryllium, represent a major supply problem

  6. Fusion Engineering and Design 85 (2010) 969973 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Raffray, A. René

    2010-01-01T23:59:59.000Z

    , the question posed was, "What R&D, in addition to ITER, is require to prepare for a demonstration power plant and top level R&D needs for each Panel is summa- rized here. 2.1. Fusion Fuel Cycle Fusion power plantsFusion Engineering and Design 85 (2010) 969­973 Contents lists available at ScienceDirect Fusion

  7. Fusion Engineering and Design 89 (2014) 19891994 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Abdou, Mohamed

    2014-01-01T23:59:59.000Z

    candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual A leading power reactor breeding blanket design candidate for a fusion demonstration power plant (DEMOFusion Engineering and Design 89 (2014) 1989­1994 Contents lists available at ScienceDirect Fusion

  8. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect (OSTI)

    Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

    2006-10-01T23:59:59.000Z

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  9. Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological

    E-Print Network [OSTI]

    Supporting Advanced Scientific Computing Research · Basic Energy Sciences · Biological and Environmental Research · Fusion Energy Sciences · High Energy Physics · Nuclear Physics What my students Code ­http://code.google.com/p/net-almanac/ ­Beta release this week #12;Contact Information Jon Dugan

  10. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30T23:59:59.000Z

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  11. The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy

    E-Print Network [OSTI]

    , describes R&D needs for heavy-ion accelerator, target and chamber R&D. 44 pages. Defines goals and criteria tasks) - ion accelerator technologies - chamber and maintenance technologies - pulsed power technologiesThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan

  12. Paths to Magne,c Fusion Energy (nature ignores budget austerity)

    E-Print Network [OSTI]

    Paths to Magne,c Fusion Energy (nature ignores budget austerity) S. Prager fusion problems should be solved in parallel with ITER Energy confinement to fusion energy present DIII-D NSTX CMOD Plasma confinement research program #12

  13. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    E-Print Network [OSTI]

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-01-01T23:59:59.000Z

    A. Moses, “Inertial fusion energy target output and chamberA. J. Schmitt, et al. , “Fusion energy research with lasers,o?s for inertial fusion energy power plants,” presented at

  14. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    E-Print Network [OSTI]

    Barnard, J.J.

    2008-01-01T23:59:59.000Z

    PHYSICS AND INERTIAL FUSION ENERGY J. J. Barnard 1 , J.dense matter and inertial fusion energy related beam-targetas drivers for inertial fusion energy (IFE), for their high

  15. Self-pinched beam transport experiments Relevant to Heavy Ion Driven inertial fusion energy

    E-Print Network [OSTI]

    1998-01-01T23:59:59.000Z

    C. L . Olson, J. Fusion Energy 1, 309 (1982). "FilamentationHeavy Ion Driven Inertial Fusion Energy January 30, 1998 W.Agency Sixteenth I A E A Fusion Energy Conference (Montreal,

  16. How Fusion Energy Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Works 32 likes Every four minutes, another American home or business goes solar, but how do solar panels turn sunlight into energy? We'll answer that question and more Learn...

  17. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    SciTech Connect (OSTI)

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01T23:59:59.000Z

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

  18. Key Points of STFC and EPSRC's Fusion for Energy EPSRC and STFC Councils have agreed a revised strategy for fusion for energy

    E-Print Network [OSTI]

    Key Points of STFC and EPSRC's Fusion for Energy Strategy EPSRC and STFC Councils have agreed a revised strategy for fusion for energy research: 1) EPSRC and STFC will support fusion research as a long and demonstrating leadership to realise the goal of fusion energy. 2) EPSRC will develop a long term base funding

  19. Overview of the RFX fusion science program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and BiofuelsOversight Board TheOverview of the

  20. Fusion-fission energy systems evaluation

    SciTech Connect (OSTI)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01T23:59:59.000Z

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  1. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect (OSTI)

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30T23:59:59.000Z

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  2. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    25 Department of Advanced Energy Nuclear Fusion Research Education Program 24 8 21.Yasuhiro@jaxa.jp tel: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 12 http://www. k.u-tokyo.ac.jp/fusion 15 (1) (2) (1) (2) (3) (4) (5) (6) (7) (8) (9) #12;- 8 - 25 Guide to Nuclear

  3. Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets

    E-Print Network [OSTI]

    for cryogenic refrigeration plants needed to maintain the magnets' temperature near absolute zero, direct costsImproved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets Robert D. Woolley for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum

  4. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Harnessing the energy of thermonuclear fusion reactions is one of the greatest challenges of our time. FusionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002 ITER on the road to fusion energy Kaname Ikeda Director

  5. Adiabatic Heavy Ion Fusion Potentials for Fusion at Deep Sub-barrier Energies

    E-Print Network [OSTI]

    S. V. S. Sastry; S. Kailas; A. K. Mohanty; A. Saxena

    2003-11-12T23:59:59.000Z

    The fusion cross sections from well above barrier to extreme sub-barrier energies have been analysed using the energy (E) and angular momentum (L) dependent barrier penetration model ({\\small{ELDBPM}}). From this analysis, the adiabatic limits of fusion barriers have been determined for a wide range of heavy ion systems. The empirical prescription of Wilzynska and Wilzynski has been used with modified radius parameter and surface tension coefficient values consistent with the parameterization of the nuclear masses. The adiabatic fusion barriers calculated from this prescription are in good agreement with the adiabatic barriers deduced from {\\small{ELDBPM}} fits to fusion data. The nuclear potential diffuseness is larger at adiabatic limit, resulting in a lower $\\hbar\\omega$ leading to increase of "logarithmic slope" observed at energies well below the barrier. The effective fusion barrier radius and curvature values are anomalously smaller than the predictions of known empirical prescriptions. A detailed comparison of the systematics of fusion barrier with and without L-dependence has been presented.

  6. Placing Fusion in the spectrum of energy development

    E-Print Network [OSTI]

    Exponential growth phase: energy production irrelevant My observations based on this graph. · First of all: since the exponential growth stops at typically 1% of the final capacity, the energy production during is irrelevant for energy production. #12;Niek Lopes Cardozo, Placing fusion in the energy development spectrum

  7. FES Science Network Requirements

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    FES Science Network Requirements Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008 #12;FES Science Network Requirements Workshop Fusion Energy Sciences Program Office, DOE Office of Science Energy Sciences Network Gaithersburg, MD ­ March 13 and 14, 2008 ESnet

  8. Journal of Fusion Energy, Vol. 17, No. 4, 1998 Status and Objectives of Tokamak Systems for Fusion

    E-Print Network [OSTI]

    Journal of Fusion Energy, Vol. 17, No. 4, 1998 Status and Objectives of Tokamak Systems for Fusion). It was the first comprehensive survey of the status of the tokamak fusion research concept, which was to become buildup of the U.S. tokamak program during the latter half of the 1970's and is published now to archive

  9. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    Code MFE Magnetic Fusion Energy MOX Mixed Oxide NES Nuclearreprocessing mixed oxide (MOX) fuels, as will be discussedbegun using Mixed ox- ide or MOX fuel as a means of both

  10. Fusion at near-barrier energies within quantum diffusion approach

    E-Print Network [OSTI]

    V. V. Sargsyan; G. G. Adamian; N. V. Antonenko; W. Scheid; H. Q. Zhang

    2013-11-20T23:59:59.000Z

    The nuclear deformation and neutron-transfer process have been identified as playing a major role in the magnitude of the sub-barrier fusion (capture) cross sections. There are a several experimental evidences which confirm the importance of nuclear deformation on the fusion. The influence of nuclear deformation is straightforward. If the target nucleus is prolate in the ground state, the Coulomb field on its tips is lower than on its sides, that then increases the capture or fusion probability at energies below the barrier corresponding to the spherical nuclei. The role of neutron transfer reactions is less clear. The importance of neutron transfer with positive Q-values on nuclear fusion (capture) originates from the fact that neutrons are insensitive to the Coulomb barrier and therefore they can start being transferred at larger separations before the projectile is captured by target-nucleus. Therefore, it is generally thought that the sub-barrier fusion cross section will increase because of the neutron transfer. The fusion (capture) dynamics induced by loosely bound radioactive ion beams is currently being extensively studied. However, the long-standing question whether fusion (capture) is enhanced or suppressed with these beams has not yet been answered unambiguously. The study of the fusion reactions involving nuclei at the drip-lines has led to contradictory results.

  11. Fusion barrier distributions in systems with finite excitation energy

    E-Print Network [OSTI]

    K. Hagino; N. Takigawa; A. B. Balantekin

    1997-06-24T23:59:59.000Z

    Eigen-channel approach to heavy-ion fusion reactions is exact only when the excitation energy of the intrinsic motion is zero. In order to take into account effects of finite excitation energy, we introduce an energy dependence to weight factors in the eigen-channel approximation. Using two channel problem, we show that the weight factors are slowly changing functions of incident energy. This suggests that the concept of the fusion barrier distribution still holds to a good approximation even when the excitation energy of the intrinsic motion is finite. A transition to the adiabatic tunneling, where the coupling leads to a static potential renormalization, is also discussed.

  12. Journal of Fusion Energy, VoL 10, No. 2. 1991 An Accelerated Fusion Power Development Plan1

    E-Print Network [OSTI]

    considerably since the 1970's energy crisis. Once-vigorous energy programs have been cut to subcritical fundingJournal of Fusion Energy, VoL 10, No. 2. 1991 An Accelerated Fusion Power Development Plan1 Stephen O. Dean,2Charles C. Baker,3 Daniel R. Cohn,4 and Susan D. Kinkead5 Energy for electricity

  13. Fusion dynamics of symmetric systems near barrier energies

    E-Print Network [OSTI]

    Zhao-Qing Feng; Gen-Ming Jin

    2009-09-06T23:59:59.000Z

    The enhancement of the sub-barrier fusion cross sections was explained as the lowering of the dynamical fusion barriers within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model. The numbers of nucleon transfer in the neck region are appreciably dependent on the incident energies, but strongly on the reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions $^{58}$Ni+$^{58}$Ni and $^{64}$Ni+$^{64}$Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of neutron to proton in the neck region at initial collision stage is observed and obvious for neutron-rich systems, which can reduce the interaction potential of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared them with the available experimental data.

  14. Developing inertial fusion energy - Where do we go from here?

    SciTech Connect (OSTI)

    Meier, W.R.; Logan, G.

    1996-06-11T23:59:59.000Z

    Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

  15. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect (OSTI)

    Wang Zhehui; Wurden, Glen A. [Los Alamos National Laboratory (United States); Mansfield, Dennis K.; Roquemore, Lane A. [Princeton Plasma Physics Laboratory (United States); Ticos, Catalin M. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania)

    2008-09-07T23:59:59.000Z

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  16. The Path to Magnetic Fusion Energy

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    for U.S. fusion research. This presentation proposes a mission for a major new U.S. facility, leading-even behind us, it is now time to address the logically first of the combined physics and technology% Japan 13% U.S. 10% China 10% India 10% Russia 10% S. Korea China Europe India Japan (w/EU) South Korea U

  17. Energy Efficiency and Renewable Energy Science and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Graduate & Postdoctoral Opportunities Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships Energy Efficiency and Renewable Energy Science and...

  18. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmasa...

    E-Print Network [OSTI]

    Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion more energy and the backlight must be bright enough to overwhelm the plasma self

  19. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01T23:59:59.000Z

    Lithium- Injection Fusion-Energy (HYLIFE)Reactor," UCRL-Aspects of Magnetic Fusion Energy," Lawrence Livermorefor the Inertial Fusion Energy Experiments," proceedings of

  20. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2003-01-01T23:59:59.000Z

    INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 1693­1709 PII: S0029-5515(03)67272-8 Fusion energy with lasers, direct drive targets.iop.org/NF/43/1693 Abstract A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy

  1. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004.iop.org/NF/50/014004 Abstract Fusion energy research began in the early 1950s as scientists worked to harness at demonstrating fusion energy producing plasmas. PACS numbers: 52.55.-s, 52.57.-z, 28.52.-s, 89.30.Jj (Some

  2. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect (OSTI)

    Kramer, K

    2010-04-08T23:59:59.000Z

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive M

  3. To: ! Members of the National Academy of Sciences Committee on the Prospects for Inertial Confinement Fusion Energy Systems, and the Panel

    E-Print Network [OSTI]

    : either a shift primarily to non-ignition nuclear weapons research ("high energy density physics different indirect-drive target designs that could be quickly developed and tested. For others, Plan B would for a proper direct-drive test. Also, the chamber portholes that would be needed for direct-drive were covered

  4. Fusion Engineering and Design 88 (2013) 317326 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Abdou, Mohamed

    2013-01-01T23:59:59.000Z

    fusion power plants, includ- ing self-cooled lead­lithium (SCLL) [1], dual-coolant lead­lithium (DCLL) [2Fusion Engineering and Design 88 (2013) 317­326 Contents lists available at SciVerse Science. Sketchley Fusion Science & Technology Center, University of California at Los Angeles, USA h i g h l i g h

  5. Fusion Engineering and Design 89 (2014) 876881 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Abdou, Mohamed

    2014-01-01T23:59:59.000Z

    , and is on a direct path to an attractive target power plant. · Near term research focus on specific tasks can enable to an attractive target power plant. The standard aspect ratio provides space for a solenoid, assuring robustFusion Engineering and Design 89 (2014) 876­881 Contents lists available at ScienceDirect Fusion

  6. the fusion trend line Stan Milora (ORNL)

    E-Print Network [OSTI]

    ­materials and fusion nuclear science and technology ReNeW findings VLT Virtual Laboratory for Technology://vlt.ornl.gov/ VLT Virtual Laboratory for Technology For Fusion Energy Science #12;2 Managed by UT-Battelle for the U: Greenwald report on Priorities, Gaps and Opportunities identifies glaring gaps in materials, fusion nuclear

  7. The National Ignition Facility (NIF) A Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2006-11-27T23:59:59.000Z

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

  8. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing...

  9. Energy Sciences Network (ESnet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹ ›Energy.gov

  10. Energy Sciences Building | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Argonne's Energy Sciences Building Energy Sciences Building The Energy Sciences Building is a world-class scientific facility and a shining example of sustainable design....

  11. Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies Indiana University: M in the outer crust · Superbursts observed for accreting neutron stars · Fusion of neutron-rich light nuclei as a possible heat source in neutron star crust Fusion cross-section · Dynamics of fusion reaction with neutron

  12. Lab Breakthrough: Neutron Science for the Fusion Mission | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedureof EnergyEnergy

  13. Lasers, Photonics, and Fusion Science: Bringing Star Power to Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshow

  14. Basic Energy Sciences Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESAC Home Basic Energy

  15. Thursday, January 30, 2003 Energy Secretary Abraham Announces U.S. to Join Negotiations on Major International Fusion

    E-Print Network [OSTI]

    of a major international magnetic fusion research project, U.S. Secretary of Energy Spencer Abraham announced feasibility of fusion energy. "This international fusion project is a major step towards a fusion demonstration power plant that could usher in commercial fusion energy," Secretary Abraham said. "ITER also

  16. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004

    SciTech Connect (OSTI)

    PROJECT STAFF

    2004-12-01T23:59:59.000Z

    The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES).

  17. Technology spinoffs from the Magnetic Fusion Energy Program

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    This document briefly describes eight new spin-offs from the fusion program: (1) cray timesharing system, (2) CRT touch panel, (3) magneform, (4) plasma separation process, (5) homopolar resistance welding, (6) plasma diagnostic development, (7) electrodeless microwave lamp, and (8) superconducting energy storage. (MOW)

  18. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect (OSTI)

    Reader, J.

    2013-06-11T23:59:59.000Z

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  19. Science/Fusion Energy Sciences FY 2012 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    . This is accomplished by studying plasma and its interactions with its surroundings across wide ranges of temperature and density, developing advanced diagnostics to make detailed measurements of its properties and dynamics and from plentiful supplies of lithium in the earth, whose resulting radioactivity is modest, and which

  20. MEASURING FUSION CROSS-SECTIONS FOR THE C SYSTEM AT NEAR BARRIER ENERGIES

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    MEASURING FUSION CROSS-SECTIONS FOR THE 20 O + 12 C SYSTEM AT NEAR BARRIER ENERGIES Michael Rudolph Michael Rudolph MEASURING FUSION CROSS-SECTIONS FOR THE 20 O + 12 C SYSTEM AT NEAR BARRIER ENERGIES The fusion of neutron-rich 20 O on 12 C at energies in the range of 20 MeV Elab 41 MeV was measured

  1. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Micro-engineered first wall tungsten armor for high average power laser fusion energy systems is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first is a coordinated effort to develop laser inertial fusion energy [1]. The first stage of the HAPL program

  2. The Fusion Energy Program: The Role of TPX and Alternate Concepts

    E-Print Network [OSTI]

    The Fusion Energy Program: The Role of TPX and Alternate Concepts February 1995 OTA-BP-ETI-141 GPO, The Fusion Energy Program: The Role of TPX and Alternate Concepts, OTA-BP-ETI-141 (Washington, DC: U of alternate concept research as conducted in the U.S. fusion energy program. While the focus of the study

  3. An evaluation of fusion energy R&D gaps using Technology Readiness Levels

    E-Print Network [OSTI]

    for prioritization. #12;The topic of fusion energy R&D gaps is receiving increased attention page 2 of 16 In EUAn evaluation of fusion energy R&D gaps using Technology Readiness Levels M. S. Tillack to develop and apply this technology assessment approach to fusion energy are reported here. #12;We adopted

  4. Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 1 The hybrid scenario in JET

    E-Print Network [OSTI]

    Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 1 The « hybrid » scenario in JET burning plasma for the hybrid scenario #12;Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 2 4 5 #12;Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 3 JET hybrid regime (1.7T, 1

  5. Ion beam heated target simulations for warm dense matter physics and inertial fusion energy$

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Ion beam heated target simulations for warm dense matter physics and inertial fusion energy$ J Keywords: Ion beam heating Warm dense matter Inertial fusion energy targets Hydrodynamic simulation a b fusion energy-related beam-target coupling. Simulations of various target materials (including solids

  6. Energy, information science, and systems science

    SciTech Connect (OSTI)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-02-01T23:59:59.000Z

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  7. ITER Project Status Fusion Energy Sciences

    E-Print Network [OSTI]

    to capped value) ORNL 100% Tokamak Cooling Water System PPPL 75% Steady State Electrical Network PPPL 14 Project Office April 9, 2014 #12;Major Progress: Construction Site 04/09/14 FESAC/Sauthoff 2 Photo: ITER Organization · September 2013 #12;Major Progress: ITER Headquarters Building 04/09/14 FESAC/Sauthoff 3 #12

  8. Fusion Energy Sciences Review Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Logistics Logistics Location and Schedule The day-and-a-half workshop was held all day Tuesday, March 19 and on the morning of Wednesday, March 20, 2013. Hotel Hilton Washington...

  9. Fusion Energy An Industry-Led Initiative

    E-Print Network [OSTI]

    - Sunlight and its derivatives - Fission energy based on breeders - Clean coal (several hundreds of years

  10. The "Science First" Approach to Fusion Research Bruno Coppi

    E-Print Network [OSTI]

    argument." And he too went down sheep-like with the rest. *Trilussa was a popular poet in the vernacular construction of these experiments. (Here , Kf = P/ Ploss, P is the power emitted as ­ particles by DT fusion proven scientific practice, cannot find credibility. Without denying the goal to construct actual fusion

  11. A US Strategy to Explore the Science and Technology of Energy-Producing Plasmas

    E-Print Network [OSTI]

    1 A US Strategy to Explore the Science and Technology of Energy-Producing Plasmas Discussion Draft strategy to explore the science and technology of energy-producing plasmas must change in the post September 16, 1997 Introduction Last year, the Department of Energy redirected the fusion program from

  12. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BES PrincipalBasic Energy Sciences

  13. Climate & Environmental Sciences | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy-Water Resource Systems Human Health Risk and...

  14. U.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted=

    E-Print Network [OSTI]

    States plan to build a $5 billion fusion reactor, called the International Thermonuclear ExperimentalU.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted= print&position=top Page: 1 January 30, 2003 U.S. to Participate in Fusion Project By THE ASSOCIATED

  15. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010 (12pp) doi:10.1088/0029-5515/49/10/104010

    E-Print Network [OSTI]

    École Normale Supérieure

    2009-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010. Zwingmann CEA, IRFM, F-13108 St Paul-lez-Durance, France 1 Associazione EURATOM-ENEA sulla Fusione, C;Nucl. Fusion 49 (2009) 104010 G. Giruzzi et al 9 LJAD, U.M.R. C.N.R.S. No 6621, Universit´e de Nice

  16. ROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL THERMONUCLEAR EXPERIMENTAL

    E-Print Network [OSTI]

    THERMONUCLEAR EXPERIMENTAL REACTOR Rôle de l'énergie de fusion dans la production énergétique du 21 e siècle etROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL be improved to contribute to this issue. Fusion is an energy source of the Sun and the Star. It is a quite

  17. Chamber technology concepts for inertial fusion energy: Three recent examples

    SciTech Connect (OSTI)

    Meier, W.R.; Moir, R.W. [Lawrence Livermore National Lab., CA (United States); Abdou, M.A. [California Univ., Los Angeles, CA (United States)

    1997-02-27T23:59:59.000Z

    The most serious challenges in the design of chambers for inertial fusion energy (IFE) are 1) protecting the first wall from fusion energy pulses on the order of several hundred megajoules released in the form of x rays, target debris, and high energy neutrons, and 2) operating the chamber at a pulse repetition rate of 5-10 Hz (i.e., re-establishing, the wall protection and chamber conditions needed for beam propagation to the target between pulses). In meeting these challenges, designers have capitalized on the ability to separate the fusion burn physics from the geometry and environment of the fusion chamber. Most recent conceptual designs use gases or flowing liquids inside the chamber. Thin liquid layers of molten salt or metal and low pressure, high-Z gases can protect the first wall from x rays and target debris, while thick liquid layers have the added benefit of protecting structures from fusion neutrons thereby significantly reducing the radiation damage and activation. The use of thick liquid walls is predicted to 1) reduce the cost of electricity by avoiding the cost and down time of changing damaged structures, and 2) reduce the cost of development by avoiding the cost of developing a new, low-activation material. Various schemes have been proposed to assure chamber clearing and renewal of the protective features at the required pulse rate. Representative chamber concepts are described, and key technical feasibility issues are identified for each class of chamber. Experimental activities (past, current, and proposed) to address these issues and technology research and development needs are discussed.

  18. January 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research

    E-Print Network [OSTI]

    ; to build a fusion reactor, and build a fusion power plant There has been tremendous progress in fusion energy research is an exciting, fast-moving international research area #12;January 14, 2014 MIT PSFC IAP car's gas engine · Your fireplace ·Gravitational force: Falling water transforms potential energy

  19. Feb15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION

    E-Print Network [OSTI]

    Feb­15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION NEUTRONS by D.L. JASSBY the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides must utilize one blanket neutron for tritium breeding. The ATW and fusion plants are found to have

  20. Feb-15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION

    E-Print Network [OSTI]

    Feb-15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION NEUTRONS by D.L. JASSBY the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides must utilize one blanket neutron for tritium breeding. The ATW and fusion plants are found to have

  1. 4/20/14 12:35 PMSenators Request GAO Investigation of Costs at Experimental Fusion React...tems -Newsroom -U.S. Senate Committee on Energy and Natural Resources Page 1 of 2http://www.energy.senate.gov/public/index.cfm/featured-items?ID=854ad0a0-fe2a-4a04-

    E-Print Network [OSTI]

    Thermonuclear Experimental Reactor and its effect on U.S. fusion programs. Senators Ron Wyden, D-Ore., Lisa4/20/14 12:35 PMSenators Request GAO Investigation of Costs at Experimental Fusion React.S. fusion energy science programs and user facilities have, and may continue to be, cut to pay

  2. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30T23:59:59.000Z

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  3. Suggested Path to Develop Inertial Fusion Energy

    E-Print Network [OSTI]

    #12;As discussed before, our FTF final amp design is modest scale-up of Nike's 60-cm amp. using high performance at modest energy KrF based FTF parameters 0.5 MJ energy @ 5 Hz (e.g. thirty 18-k

  4. MIT Plasma Science & Fusion Center: research, alcator, pubs,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveM odresearch

  5. MIT Plasma Science & Fusion Center: research, alcator, pubs,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveM

  6. MIT Plasma Science & Fusion Center: research, alcator, research program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveMinfo, work

  7. MIT's Plasma Science Fusion Center: Tokamak Experiments Come Clean about

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love YouTokamak | Princeton

  8. Low-energy fusion caused by an interference

    E-Print Network [OSTI]

    B. Ivlev

    2012-11-30T23:59:59.000Z

    Fusion of two deuterons of room temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

  9. NREL: Energy Sciences - Biosciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaff Webmaster Photobiology

  10. Rep-Rated Target Injection for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Frey, D.T.; Goodin, D.T.; Stemke, R.W.; Petzoldt, R.W.; Drake, T.J.; Egli, W.; Vermillion, B.A.; Klasen, R.; Cleary, M.M

    2005-05-15T23:59:59.000Z

    Inertial Fusion Energy (IFE) with laser drivers is a pulsed power generation system that relies on repetitive, high-speed injection of targets into a fusion reactor. To produce an economically viable IFE power plant the targets must be injected into the reactor at a rate between 5 and 10 Hz.To survive the injection process, direct drive (laser fusion) targets (spherical capsules) are placed into protective sabots. The sabots separate from the target and are stripped off before entering the reactor chamber. Indirect drive (heavy ion fusion) utilizes a hohlraum surrounding the spherical capsule and enters the chamber as one piece.In our target injection demonstration system, the sabots or hohlraums are injected into a vacuum system with a light gas gun using helium as a propellant. To achieve pulsed operation a rep-rated injection system has been developed. For a viable power plant we must be able to fire continuously at 6 Hz. This demonstration system is currently set up to allow bursts of up to 12 targets at 6 Hz. Using the current system, tests have been successfully run with direct drive targets to show sabot separation under vacuum and at barrel exit velocities of {approx}400 m/s.The existing revolver system along with operational data will be presented.

  11. Nuclear Fusion Energy Research Ghassan Antar

    E-Print Network [OSTI]

    Shihadeh, Alan

    to address these issues. In particular there has been consistent emphasis on nuclear reactor accidents since the Chernobyl accident by the International Atomic Energy Agency (IAEA) and the World Meteorological

  12. Thermonuclear fusion

    E-Print Network [OSTI]

    Thermonuclear fusion is a way to achieve nuclear fusion by using extremely high temperatures. There are two forms of thermonuclear fusion: uncontrolled, in which the resulting energy is released in an uncontrolled manner, as it is in thermonuclear weapon...

  13. Large Scale Computing and Storage Requirements for Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological and Environmental Science (BER) Fusion Energy Sciences (FES) High Energy Physics (HEP) Nuclear Physics (NP) Overview Published Reports Case Study FAQs Home Science at...

  14. Hydrogen Hydrogen FusionFusionFusionFusionFusionFusion

    E-Print Network [OSTI]

    Heiz, Ulrich

    100.000 years LNGS Laboratori Nazionali del Gran Sasso Borexino THE THERMONUCLEAR FUSION REACTIONHydrogen Hydrogen Fusion Deuterium FusionFusionFusionFusionFusionFusion THE SUN AS BOREXINO SEES

  15. Sandia Energy - Fusion Instabilities Lessened by Unexpected Effect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy StorageFirst-Ever AsianCommercialFusion

  16. Princeton Plasma Physics Lab - Fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.7 348,016.0 336,514.0 350,723.3fact-sheets en PPPL

  17. NREL: Energy Sciences - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletterAcademy AlumniNews BelowMaterials

  18. Laser Fusion Energy The High Average Power

    E-Print Network [OSTI]

    constant Fluctuation due to calorimeter cooling system Electra's main oscillator has produced > 400J foil lifetime @ 5 Hz ·Deflecting laser gas or mist cooling promising Electra progress on Phase I goals Nd:glass Yb:crystals Increased energy storage and efficiency boule slab Gas Vanes Convective cooling

  19. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006

    E-Print Network [OSTI]

    .57.-z, 89.30.Ji 1. Laser and laser fusion from past and present to future In 1917, Albert EinsteinIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 energized implosion could be utilized for energy generation. Today, there are many facilities worldwide

  20. The Fusion Advanced Studies Torus (FAST): a proposal for an ITER satellite facility in support of the development of fusion energy

    E-Print Network [OSTI]

    Zonca, Fulvio

    of the development of fusion energy This article has been downloaded from IOPscience. Please scroll down to see and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10/IPPLM Association, Warsaw, Poland E-mail: Pizzuto@frascati.enea.it Received 5 January 2009, accepted for publication

  1. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    SciTech Connect (OSTI)

    Stelmack, Larry

    2003-11-17T23:59:59.000Z

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  2. Designing Radiation Resistance in Materials for Fusion Energy

    SciTech Connect (OSTI)

    Zinkle, Steven J [University of Tennessee (UT)] [University of Tennessee (UT); Snead, Lance Lewis [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  3. Fusion Energy Greg Hammett & Russell Kulsred Princeton University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity from NOAA'sFusionBenefits

  4. Chamber and target technology development for inertial fusion energy

    SciTech Connect (OSTI)

    Abdou, M; Besenbruch, G; Duke, J; Forman, L; Goodin, D; Gulec, K; Hoffer, J; Khater, H; Kulcinsky, G; Latkowski, J F; Logan, B G; Margevicious, B; Meier, W R; Moir, R W; Morley, N; Nobile, A; Payne, S; Peterson, P F; Peterson, R; Petzoldt, R; Schultz, K; Steckle, W; Sviatoslavsky, L; Tillack, M; Ying, A

    1999-04-07T23:59:59.000Z

    Fusion chambers and high pulse-rate target systems for inertial fusion energy (IFE) must: regenerate chamber conditions suitable for target injection, laser propagation, and ignition at rates of 5 to 10 Hz; extract fusion energy at temperatures high enough for efficient conversion to electricity; breed tritium and fuel targets with minimum tritium inventory; manufacture targets at low cost; inject those targets with sufficient accuracy for high energy gain; assure adequate lifetime of the chamber and beam interface (final optics); minimize radioactive waste levels and annual volumes; and minimize radiation releases under normal operating and accident conditions. The primary goal of the US IFE program over the next four years (Phase I) is to develop the basis for a Proof-of-Performance-level driver and target chamber called the Integrated Research Experiment (IRE). The IRE will explore beam transport and focusing through prototypical chamber environment and will intercept surrogate targets at high pulse rep-rate. The IRE will not have enough driver energy to ignite targets, and it will be a non-nuclear facility. IRE options are being developed for both heavy ion and laser driven IFE. Fig. 1 shows that Phase I is prerequisite to an IRE, and the IRE plus NIF (Phase II) is prerequisite to a high-pulse rate. Engineering Test Facility and DEMO for IFE, leading to an attractive fusion power plant. This report deals with the Phase-I R&D needs for the chamber, driver/chamber interface (i.e., magnets for accelerators and optics for lasers), target fabrication, and target injection; it is meant to be part of a more comprehensive IFE development plan which will include driver technology and target design R&D. Because of limited R&D funds, especially in Phase I, it is not possible to address the critical issues for all possible chamber and target technology options for heavy ion or laser fusion. On the other hand, there is risk in addressing only one approach to each technology option. Therefore, in the following description of these specific feasibility issues, we try to strike a balance between narrowing the range of recommended R&D options to minimize cost, and keeping enough R&D options to minimize risk.

  5. Technical Feasibility of Fusion Energy Extension of the Fusion Program and Basic

    E-Print Network [OSTI]

    of the Radiological Toxic Hazard Potential between Light-Water Reactor Plant, Fusion Reactor Plant, and Coal-Fired

  6. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01T23:59:59.000Z

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  7. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01T23:59:59.000Z

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  8. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002

    SciTech Connect (OSTI)

    PROJECT STAFF

    2002-12-01T23:59:59.000Z

    OAK B202 THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002. The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance the scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES).

  9. Convective Cell Formation in a Z-Pinch Plasma Science and Fusion Center

    E-Print Network [OSTI]

    Convective Cell Formation in a Z-Pinch J. Kesner Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 PSFC Report PSFC/JA-02-27 Abstract Closed field line confinement given by Eq. (1). These equations were then applied to a hard core z pinch which can be considered

  10. Porkolab_FPA_12.4.2008 Plasma Science and Fusion Center

    E-Print Network [OSTI]

    engineers, 1 technician and 4 graduate students #12;Porkolab_FPA_12.4.2008 The LDX is located at MITPorkolab_FPA_12.4.2008 Plasma Science and Fusion Center Highlights of Some Research Activities and the C-Mod Team Compact high- performance divertor tokamak research to establish the plasma physics

  11. Fusion Engineering and Design 85 (2010) 17111715 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Abdou, Mohamed

    2010-01-01T23:59:59.000Z

    permeation in solid breeder blankets Hongjie Zhang , Alice Ying, Mohamed A. Abdou Fusion Science convection Breeding blanket 3D Model a b s t r a c t Numerical simulation of co-permeation of tritium and hydrogen from breeding zones to the coolant in the helium cooled pebble-bed blanket is performed

  12. On the nuclear interaction. Potential, binding energy and fusion reaction

    E-Print Network [OSTI]

    I. Casinos

    2008-05-22T23:59:59.000Z

    The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

  13. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01T23:59:59.000Z

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  14. Energy Department Announces 61 Scientists to Receive Early Career...

    Energy Savers [EERE]

    Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Addthis Related Articles...

  15. The role of the NIF in the development of inertial fusion energy

    SciTech Connect (OSTI)

    Logan, B.G.

    1995-03-16T23:59:59.000Z

    Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-{micro}m-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE.

  16. Recent EFDA work on Pulsed DEMO, August 2012, TOFE T N Todd Culham Centre for Fusion Energy, Oxfordshire

    E-Print Network [OSTI]

    Energy, Oxfordshire The Future of Nuclear Power: Fusion Recent EFDA work on pulsed DEMO The UK fusion) · Start-up power requirements, energy storage strategy · Energy storage systems available

  17. Development and validation of compressible mixture viscous fluid algorithm applied to predict the evolution of inertial fusion energy chamber gas and the impact of gas on direct-drive target survival

    E-Print Network [OSTI]

    Martin, Robert Scott

    2011-01-01T23:59:59.000Z

    and technologies for fusion energy with lasers and direct-direct drive inertial fusion energy targets. Report 06-02,Improved Inertial Fusion Energy Chamber Inter-Shot

  18. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Fusion Hydrogen Fusion - Mark Uhran Safe, Clean and Virtually Unlimited Energy Hydrogen fusion, the process that powers our sun and the stars, is the most fundamental...

  19. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    PROJECT STAFF

    2001-09-01T23:59:59.000Z

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

  20. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 034007 (8pp) doi:10.1088/0029-5515/50/3/034007

    E-Print Network [OSTI]

    Morrison, Philip J.,

    2010-01-01T23:59:59.000Z

    -dimensional (2D), two-field version of this model has been intensively investigated in [4­6] and a 3D extensionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 034007 for obtaining 0029-5515/10/034007+08$30.00 1 © 2010 IAEA, Vienna Printed in the UK #12;Nucl. Fusion 50 (2010

  1. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001 (13pp) doi:10.1088/0029-5515/48/8/084001

    E-Print Network [OSTI]

    Heidbrink, William W.

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001] and created a vacuum leak in the tokamak fusion test reactor (TFTR) [4]. The damage was explained comparisons between theory and experiment [5­7], wave amplitudes an order of magnitude larger than

  2. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research along with supporting narratives, illustrated by specific science-based case studies. Findings from the review will guide NERSC procurements and service offerings...

  3. Section on Fusion page 57-58 (printed version) of House Science and Technology Committee Report America Competes Act HR 5116

    E-Print Network [OSTI]

    fusion power plant. (f) FUSION SIMULATION PROJECT.--In collaboration with the Office of Science plant and a competitive fusion power industry in the United States. As part of this program materials that can endure the neutron, plasma, and heat fluxes expected in a commercial fusion power plant

  4. analysis program energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the characteristics of the resource and its potential for generating electric power. Authors, Various 2013-01-01 100 Fusion Power Associates Fusion Energy Sciences...

  5. Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    for electricity generation; worldwide ~ 66% for electricity use (~75% by 2025) ! Coal Consumption (Billion Tons is imported ­ almost completely relying on world energy supply. · Taiwan electricity supply: ~75% by fossil · How will Taiwan get adequate energy supply? - Taiwan government aims to achieve ~30% energy supply

  6. Fusion Engineering and Design 87 (2012) 777781 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Abdou, Mohamed

    2012-01-01T23:59:59.000Z

    Li) loop at UCLA, including testing and calibration of its components (electro- magnetic (EM) pump, EM flow-meterFusion Engineering and Design 87 (2012) 777­781 Contents lists available at SciVerse ScienceDirect Fusion Engineering and Design journal homepage: www.elsevier.com/locate/fusengdes Status of "TITAN" Task

  7. ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    FOR ELECTRICAL ENERGY PRODUCTION IN THE NEXT CENTURY AND FUSION'S POTENTIAL FOR PENETRATING THIS ENERGY MARKET. 1, global warming, etc. The question then arose as to whether or not the community should account for Fusion Power considered the following four questions: 1. What is the projected market for electrical

  8. The European Joint Undertaking for ITER and the Development of Fusion Energy

    E-Print Network [OSTI]

    1 The European Joint Undertaking for ITER and the Development of Fusion Energy (Fusion for Energy Agreement · Last meeting of negotiators took place in Jeju, China in November 2005 · Meeting of legal experts in Barcelona last week resolved most remaining issues #12;3 Tentative ITER Timetable · Political

  9. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01T23:59:59.000Z

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  10. Sandia Energy - Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied & Computational Math HomeBasic

  11. Support the President's FY07 Budget Level for DOE Science and Fusion Fusion is the process that powers the sun and the stars. A decades-long scientific effort has brought profoundly

    E-Print Network [OSTI]

    Support the President's FY07 Budget Level for DOE Science and Fusion Fusion is the process of fusion power for pulses of up to an hour. The President's budget, through the American Competitiveness construction, the President's budget provides increased funding for a number of very important domestic

  12. Fusion Materials Science and Technology Research Opportunities now and during the ITER Era

    SciTech Connect (OSTI)

    Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

    2014-02-22T23:59:59.000Z

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  13. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect (OSTI)

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01T23:59:59.000Z

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  14. Photon Science for renewable energy

    E-Print Network [OSTI]

    Knowles, David William

    Photon Science for renewable energy at Light-Source Facilities of Today andTomorrow Lawrence revolution in renewable and carbon- neutral energy technologies. in these pages, we outline and illustrate is causing potentially catastrophic changes to our planet.The quest for renewable, nonpolluting sources

  15. Study of fusion dynamics using Skyrme energy density formalism with different surface corrections

    E-Print Network [OSTI]

    Ishwar Dutt; Narinder K. Dhiman

    2010-11-19T23:59:59.000Z

    Within the framework of Skyrme energy density formalism, we investigate the role of surface corrections on the fusion of colliding nuclei. For this, the coefficient of surface correction was varied between 1/36 and 4/36, and its impact was studied on about 180 reactions. Our detailed investigations indicate a linear relationship between the fusion barrier heights and strength of the surface corrections. Our analysis of the fusion barriers advocate the strength of surface correction of 1/36.

  16. Starpower: The U.S. and the International Quest for Fusion Energy

    E-Print Network [OSTI]

    of this report) #12;. Foreword Fusion research, offering the hope of an energy technology with an essentially un with the requirements for develop- ment of a usefuI energy technology. The report does not analyze inertial confinement

  17. Atomic Physics in the Quest for Fusion Energy and ITER

    SciTech Connect (OSTI)

    Charles H. Skinner

    2008-02-27T23:59:59.000Z

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

  18. fusion

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 |0/%2A0/%2A

  19. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaff Webmaster Photobiology

  20. Fusion Engineering and Design 84 (2009) 21582166 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Harilal, S. S.

    Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor zones, then a two-dimensional heat conduction calculation is created to predict the temperature fusion reactor would allow harnessing the source of the sun's energy in a way that will either eliminate

  1. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13511356 PII: S0029-5515(02)54166-1

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    2002-01-01T23:59:59.000Z

    in an inertial fusion energy power plant R.W. Petzoldt1 , D.T. Goodin1 , A. Nikroo1 , E. Stephens1 , N. Siegel2 (IFE) power plant designs, the fuel is a spherical layer of frozen DT contained in a target fusion energy (IFE) power plant, the fuel is solid DT at 18 K encapsulated inside a target

  2. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S608S621 doi:10.1088/0029-5515/47/10/S10

    E-Print Network [OSTI]

    Martín-Solís, José Ramón

    2007-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S608­S, EURATOM Association, 01-497, Warsaw, Poland E-mail: pericoli@frascati.enea.it Received 30 January 2007 of turbulence suppression and energy transport. At the highest densities the ion thermal conductivity remains

  3. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10.1088/0029-5515/50/9/095005

    E-Print Network [OSTI]

    Vlad, Gregorio

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005, Warsaw, Poland E-mail: Pizzuto@frascati.enea.it Received 5 January 2009, accepted for publication 15 June) in the energy range 0.5­1 MeV. The total power input will be in the 30­40 MW range under different plasma

  4. AVTA: Ford Fusion HEV 2010 Testing Results | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. The baseline performance testing provides a point of comparison...

  5. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    SciTech Connect (OSTI)

    Hawryluk, R J [PPPL

    2011-01-05T23:59:59.000Z

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  6. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01T23:59:59.000Z

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  7. Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber

    E-Print Network [OSTI]

    Raffray, A. René

    -cooled lithium blanket, a helium-cooled solid breeder blanket, and a dual-coolant lithium lead blanket of the reference blanket. Keywords-Laser fusion; lithium blanket; solid breeder; lithium lead; tritium breedingNeutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber M

  8. Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies

    E-Print Network [OSTI]

    M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

    2011-06-10T23:59:59.000Z

    Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

  9. Fusion of {sup 6}Li with {sup 159}Tb at near-barrier energies

    SciTech Connect (OSTI)

    Pradhan, M. K.; Mukherjee, A.; Basu, P.; Goswami, A.; Kshetri, R.; Roy, Subinit; Chowdhury, P. Roy; Sarkar, M. Saha; Palit, R.; Parkar, V. V.; Santra, S.; Ray, M. [Nuclear Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata-700064 (India); Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005 (India); Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Department of Physics, Behala College, Parnasree, Kolkata-700060 (India)

    2011-06-15T23:59:59.000Z

    Complete and incomplete fusion cross sections for {sup 6}Li + {sup 159}Tb have been measured at energies around the Coulomb barrier by the {gamma}-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by {approx}34% compared to coupled-channel calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data for {sup 11,10}B + {sup 159}Tb and {sup 7}Li + {sup 159}Tb shows that the extent of suppression is correlated with the {alpha} separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction {sup 6}Li + {sup 159}Tb at below-barrier energies are primarily due to the d transfer to unbound states of {sup 159}Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

  10. Energy Science at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmergingPartnershipBio-Inspired Using

  11. Sandia Energy - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMary Crawford Home Mary

  12. Sandia Energy - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMary Crawford Home

  13. Energy chief tells Jersey: Fusion's back Secretary, at top research lab in Plainsboro, says country resuming international effort

    E-Print Network [OSTI]

    plan to build a $5 billion fusion reactor, called the International Thermonuclear Experimental ReactorEnergy chief tells Jersey: Fusion's back Secretary, at top research lab in Plainsboro, says country States plans to resume participation in an international collaboration to develop fusion energy

  14. Exploring Plasma Science Advances from Fusion Findings to Astrophysical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,Energy

  15. The Heavy Ion Fusion Science Virtual National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafetyTed5,AuditThe FiveBiofuelsGEThe The Heavy

  16. Fusion Education | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefits of FES

  17. Fusion Institutions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefits of

  18. Fusion Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefits

  19. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30T23:59:59.000Z

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

  20. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    it is unlikely that nuclear fission power plants willIn the case of nuclear fission reactions, the fundamentalaspects of nuclear fusion and fission. This approach, termed

  1. Science Education | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office ofScience Education Group

  2. Science Energy Literacy and Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office ofScience Education Group

  3. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou areInnovationPriority |GoingSolar - *

  4. Sandia Energy - Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied & ComputationalBriefChemical

  5. Sandia Energy - Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &Climate

  6. Sandia Energy - Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailure Mode andFinance HomeFire

  7. EURATOM/UKAEA Fusion Association Culham Science Centre

    E-Print Network [OSTI]

    of corrosion elements in the IFMIF lithium loop. Consequently futher work was carried out to improve this libra beams of high energy (40 MeV) deuterons which will strike a flowing lithium target producing an intense structure and in the lithium target. The importance of such activation was confirmed using the preliminary

  8. Nuclear Data for Fusion Energy Technologies: Requests, Status and Development Needs

    SciTech Connect (OSTI)

    Fischer, U. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Postfach 3640, D-76021 Karlsruhe (Germany); Batistoni, P. [Associazione Euratom-ENEA sulla Fusione, ENEA Fusion Divison, Via E. Fermi 27, I-00044 Frascati (Italy); Cheng, E. [TSI Research, Inc., P.O. Box 2754, Rancho Santa Fe, CA 92067 (United States); Forrest, R.A. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Nishitani, T. [Fusion Neutronics Laboratory, JAERI, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2005-05-24T23:59:59.000Z

    The current status of nuclear data evaluations for fusion technologies is reviewed. Well-qualified data are available for neutronics and activation calculations of fusion power reactors and the next-step device ITER, the International Thermonuclear Experimental Reactor. Major challenges for the further development of fusion nuclear data arise from the needs of the long-term fusion programme. In particular, co-variance data are required for uncertainty assessments of nuclear responses. Further, the nuclear data libraries need to be extended to higher energies above 20 MeV to enable neutronics and activation calculations of IFMIF, the International Fusion Material Irradiation Facility. A significant experimental effort is required in this field to provide a reliable and sound database for the evaluation of cross-section data in the higher energy range.

  9. Energy: Science, Policy, and the Pursuit of Sustainability

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2004-01-01T23:59:59.000Z

    Energy: Science, Policy, and the Pursuit of SustainabilityEnergy: Science, Policy and the Pursuit of Sustainability.Energy: Science, Policy and the Pursuit of Sustainability is

  10. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect (OSTI)

    Samara, G.A.

    1996-02-01T23:59:59.000Z

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  11. Fusion Power Associates Annual Meeting and Symposium Fusion Energy: Preparing for the NIF and ITER Era

    E-Print Network [OSTI]

    Materials Labs ­ S. Zinkle Fusion Technology ­ S. Milora 5:30 Depart ORNL 6:00 Reception 7:30 Board:50 Preparations for NIF Ignition Campaign ­ John Lindl, LLNL 9:10 Status of Z-Pinch Research ­ Keith Matzen Technology Program­ Stan Milora, ORNL 1:40 Issues and Opportunities from ITER Review ­ R. Hawryluk, PPPL 2

  12. CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Fusion Technology at

    E-Print Network [OSTI]

    more of an engineering challenge than a scientific one, is to build economically viable nuclear fusion self-sufficiency is vital to viable power station operation · The Test Blanket Programme of components will be inevitable · Manned access to in-vessel components and support systems

  13. Fusion Nuclear Science and Technology Program - Status and Plans for

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM RevisedFunding Opportunities FundingFurnaces

  14. Fusion Nuclear Science and Technology Program - Status and plans for

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM RevisedFunding Opportunities FundingFurnacestritium

  15. MIT Plasma Science & Fusion Center: research, alcator, pubs,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, Inapril apsaps quebec

  16. PPPL to launch major upgrade of key fusion energy test facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to launch major upgrade of key fusion energy test facility NSTX project will produce most powerful spherical torus in the world By John Greenwald January 9, 2012 Tweet Widget...

  17. Summary for FT, IT and SE 20th IAEA Fusion Energy Conference

    E-Print Network [OSTI]

    and should be moved to the ultimat goal of utilizing fusion energy for human being in near future from existing experiments and these projections give confidence that ITER will meet it's goal of long

  18. Materials Science | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials ScienceMaterials

  19. Sandia Energy - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdatesDevelopment

  20. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BES Principal Investigators[2 +

  1. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BES Principal Investigators[2 +

  2. Neutralinos in Vector Boson Fusion at High Energy Colliders

    E-Print Network [OSTI]

    Berlin, Asher; Low, Matthew; Wang, Lian-Tao

    2015-01-01T23:59:59.000Z

    Discovering dark matter at high energy colliders continues to be a compelling and well-motivated possibility. Weakly interacting massive particles are a particularly interesting class in which the dark matter particles interact with the standard model weak gauge bosons. Neutralinos are a prototypical example that arise in supersymmetric models. In the limit where all other superpartners are decoupled, it is known that for relic density motivated masses, the rates for neutralinos are too small to be discovered at the Large Hadron Collider (LHC), but that they may be large enough for a 100 TeV collider to observe. In this work we perform a careful study in the vector boson fusion channel for pure winos and pure higgsinos. We find that given a systematic uncertainty of 1% (5%), with 3000 fb$^{-1}$, the LHC is sensitive to winos of 240 GeV (125 GeV) and higgsinos of 125 GeV (55 GeV). A future 100 TeV collider would be sensitive to winos of 1.1 TeV (750 GeV) and higgsinos of 530 GeV (180 GeV) with a 1% (5%) uncert...

  3. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005

    E-Print Network [OSTI]

    Farge, Marie

    #12;IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained, but the associated vessel erosion also impairs the awaited viability of long lasting discharges. It is thus

  4. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10.1088/0029-5515/54/4/043016

    E-Print Network [OSTI]

    Harilal, S. S.

    . Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10 becomes well coupled to the melt motion. Under the plasma impact with high velocity of 5000 m s-1 , the W

  5. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 033008 (8pp) doi:10.1088/0029-5515/54/3/033008

    E-Print Network [OSTI]

    Harilal, S. S.

    . Miloshevsky and A. Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 033008 (8pp) doi:10 is observed on the melt surface in the absence of plasma impact. The magnetic field of 5 T that is parallel

  6. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013001 (13pp) doi:10.1088/0029-5515/52/1/013001

    E-Print Network [OSTI]

    Budny, Robert

    2012-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013001 using the PTRANSP code. The baseline toroidal field (5.3 T), plasma current ramped to 15 MA and a flat are predicted assuming GLF23 and boundary parameters. Conservatively low temperatures ( 0.6 keV) and v 400 rad s

  7. SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    SciTech Connect (OSTI)

    SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

    2006-08-31T23:59:59.000Z

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large portion of national program efforts are organized around coordinated efforts to develop promising operational scenarios. Substantial efforts to develop integrated plasma modeling codes are also underway in the U.S., Europe and Japan. As a result of the highly collaborative nature of FES research, the community is facing new and unique challenges. While FES has a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of available tools. The NFC Project was initiated to address these challenges by creating and deploying collaborative software tools. The original objective of the NFC project was to develop and deploy a national FES 'Grid' (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  8. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and StorageandQuarterly Coal

  9. Code of a Tokamak Fusion Energy Facility ITER

    SciTech Connect (OSTI)

    Yasuhide Asada [Central Research Institute of Electric Power Industry - CRIEPI (Japan); Kenzo Miya [Keio University (Japan); Kazuhiko Hada; Eisuke Tada [Japan Atomic Energy Research Institute (Japan)

    2002-07-01T23:59:59.000Z

    The technical structural code for ITER (International Thermonuclear Experimental Fusion Reactor) and, as more generic applications, for D-T burning fusion power facilities (hereafter, Fusion Code) should be innovative because of their quite different features of safety and mechanical components from nuclear fission reactors, and the necessity of introducing several new fabrication and examination technologies. Introduction of such newly developed technologies as inspection-free automatic welding into the Fusion Code is rationalized by a pilot application of a new code concept of {sup s}ystem-based code for integrity{sup .} The code concept means an integration of element technical items necessary for construction, operation and maintenance of mechanical components of fusion power facilities into a single system to attain an optimization of the total margin of these components. Unique and innovative items of the Fusion Code are typically as follows: - Use of non-metals; - Cryogenic application; - New design margins on allowable stresses, and other new design rules; - Use of inspection-free automatic welding, and other newly developed fabrication technologies; - Graded approach of quality assurance standard to cover radiological safety-system components as well as non-safety-system components; - Consideration on replacement components. (authors)

  10. Science Education | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland Science Stockpile2015 Annual Conference

  11. Expanding Science and Energy Literacy with America's Science...

    Energy Savers [EERE]

    visitors to ASTC member facilities Igniting long-term interest in science, technology, engineering and math (STEM) fields among underrepresented groups. The need for energy...

  12. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    E-Print Network [OSTI]

    E. I. Moses

    2001-11-09T23:59:59.000Z

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  13. New material for thermonuclear fusion reactors | EurekAlert! Science News

    E-Print Network [OSTI]

    ... Jan-2012 New material for thermonuclear fusion reactors ... to develop new materials for thermonuclear fusion reactors. Their research focuses ... to develop new materials for thermonuclear fusion reactors. Their research focuses ...

  14. Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    E-Print Network [OSTI]

    C. L. Jiang; B. B. Back; H. Esbensen; R. V. F. Janssens; abd K. E. Rehm

    2005-08-01T23:59:59.000Z

    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the "stiffness" of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the $Q$-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

  15. Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies.

    SciTech Connect (OSTI)

    Jiang, C. L.; Back, B. B.; Esbensen, H.; Janssens, R. V. F.; Rehm, K. E.; Physics

    2006-01-01T23:59:59.000Z

    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the 'stiffness' of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

  16. Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    SciTech Connect (OSTI)

    Jiang, C.L.; Back, B.B.; Esbensen, H.; Janssens, R.V.F.; Rehm, K.E. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2006-01-15T23:59:59.000Z

    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the ''stiffness'' of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

  17. Energy dependence of potential barriers and its effect on fusion cross-sections

    E-Print Network [OSTI]

    A. S. Umar; C. Simenel; V. E. Oberacker

    2014-01-28T23:59:59.000Z

    Couplings between relative motion and internal structures are known to affect fusion barriers by dynamically modifying the densities of the colliding nuclei. The effect is expected to be stronger at energies near the barrier top, where changes in density have longer time to develop than at higher energies. Quantitatively, modern TDHF calculations are able to predict realistic fusion thresholds. However, the evolution of the potential barrier with bombarding energy remains to be confronted with the experimental data. The aim is to find signatures of the energy dependence of the barrier by comparing fusion cross-sections calculated from potentials obtained at different bombarding energies with the experimental data. This comparison is made for the $^{40}$Ca+$^{40}$Ca and $^{16}$O+$^{208}$Pb systems. Fusion cross-sections are computed from potentials calculated with the density-constrained TDHF method. The couplings decrease the barrier at low-energy in both cases. A deviation from the Woods-Saxon nuclear potential is also observed at the lowest energies. In general, fusion cross-sections around a given energy are better reproduced by the potential calculated at this energy. The coordinate-dependent mass plays a crucial role for the reproduction of sub-barrier fusion cross-sections. Effects of the energy dependence of the potential can be found in experimental barrier distributions only if the variation of the barrier is significant in the energy-range spanned by the distribution. It appears to be the case for $^{16}$O+$^{208}$Pb but not for $^{40}$Ca+$^{40}$Ca. These results show that the energy dependence of the barrier predicted in TDHF calculations is realistic. This confirms that the TDHF approach can be used to study the couplings between relative motion and internal degrees of freedom in heavy-ion collisions.

  18. Measurement of Energy Distribution of Deuterium-Tritium Fusion Alpha-particles and MeV Energy Knock-on Deuterons in JET Plasmas

    E-Print Network [OSTI]

    Measurement of Energy Distribution of Deuterium-Tritium Fusion Alpha-particles and MeV Energy Knock-on Deuterons in JET Plasmas

  19. Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible

    E-Print Network [OSTI]

    Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible Energy Source" John D. Moody, Lawrence Livermore National Laboratory" " Presented to: MIT ­ PSFC IAP 2014" " January 15, 2014" This work performed under the auspices of the U.S. Department of Energy

  20. MIT Plasma Science & Fusion Center: research, alcator, pubs, CMod_2004.html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, Inapril apsaps quebecEnergy-Fusion

  1. Fusion through the eyes of a veteran science journalist | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity fromFusion LinksPlasma

  2. Fusion and Plasmas | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefitsFusion

  3. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    E-Print Network [OSTI]

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-01-01T23:59:59.000Z

    neutralization on heavy-ion fusion chamber transport,” totechniques for heavy ion fusion chamber transport,” Nucl.liquid heavy-ion fusion target chambers,” Fusion Technol.

  4. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    E-Print Network [OSTI]

    Ning Wang; Xizhen Wu; Zhuxia Li; Min Liu; Werner Scheid

    2006-09-18T23:59:59.000Z

    The Skyrme energy-density functional approach has been extended to study the massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parameterized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with $Z_1Z_2fusion reactions, for example, the $^{238}$U-induced reactions and $^{48}$Ca+$^{208}$Pb the capture excitation functions have been reproduced remarkable well. The influence of structure effects in the reaction partners on the capture cross sections are studied with our parameterized barrier distribution. Through comparing the reactions induced by double-magic nucleus $^{48}$Ca and by $^{32}$S and $^{35}$Cl, the 'threshold-like' behavior in the capture excitation function for $^{48}$Ca induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with $^{36}$S, $^{37}$Cl, $^{48}$Ca and $^{50}$Ti bombarding on $^{248}$Cm, $^{247,249}$Bk, $^{250,252,254}$Cf and $^{252,254}$Es, and as well as the reactions lead to the same compound nucleus with Z=120 and N=182 are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  5. BioEnergy Science Center (BESC) | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Media News and Awards Supporting Organizations Redefining The Frontiers of Bioenergy Home | Science & Discovery | Clean Energy | Facilities and Centers | BioEnergy...

  6. Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions

    E-Print Network [OSTI]

    Kai Wen; Fumihiko Sakata; Zhu-Xia Li; Xi-Zhen Wu; Ying-Xun Zhang; Shan-Gui Zhou

    2014-11-08T23:59:59.000Z

    Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.

  7. Photon Science for Renewable Energy

    SciTech Connect (OSTI)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-03-31T23:59:59.000Z

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  8. A hybrid model for fusion at deep sub-barrier energies

    E-Print Network [OSTI]

    Ajit Kumar Mohanty

    2010-11-17T23:59:59.000Z

    A hybrid model where the tunneling probability is estimated based on both sudden and adiabatic approaches has been proposed to understand the heavy ion fusion phenomena at deep sub-barrier energies. It is shown that under certain approximations, it amounts to tunneling through two barriers: one while overcoming the normal Coulomb barrier (which is of sudden nature) along the radial direction until the repulsive core is reached and thereafter through an adiabatic barrier along the neck degree of freedom while making transition from a di-nuclear to a mono-nuclear regime through shape relaxation. A general feature of this hybrid model is a steep fall-off of the fusion cross section, sharp increase of logarithmic derivative L(E) with decreasing energy and the astrophysical S-factor showing a maxima at deep sub-barrier energies particularly for near symmetric systems. The model can explain the experimental fusion measurements for several systems ranging from near symmetric systems like $^{58}Ni+^{64}Ni, ^{58}Ni+^{58}Ni$ and $ ^{58}Ni+^{69}Y$ to asymmetric one like $^{16}O+^{208}Pb$ where the experimental findings are very surprising. Since the second tunneling is along the neck co-ordinate, it is further conjectured that deep sub-barrier fusion supression may not be observed for the fusion of highly asymmetric projectile target combinations where adiabatic transition occurs automatically without any hindrance. The recent deep sub-barrier fusion cross section measurements of $^{6}Li+^{198}Pt$ system supports this conjecture.

  9. Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier

    E-Print Network [OSTI]

    N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

    2007-02-16T23:59:59.000Z

    The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

  10. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-09-01T23:59:59.000Z

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  11. Status of the HAPL Program Laser Fusion Energy

    E-Print Network [OSTI]

    -optics Government Labs 1. NRL 2. LLNL 3. SNL 4. LANL 5. ORNL 6. PPPL 7. SRNL Industry 1. General Atomics 2. L3/PSD 3 still need to do Electricity or Hydrogen Generator Reaction chamber Spherical pellet Pellet factory* Threat spectra Fusion Test Facility: Gain > 50 @ 500 kJ 2 different simulations** Simulations Codes

  12. Science to Energy Solutions | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03, 2008 »Science

  13. on the Establishment of the ITER International Fusion Energy Organization for the Joint Implementation of the ITER Project

    E-Print Network [OSTI]

    AGREEMENT on the Establishment of the ITER International Fusion Energy Organization for the Joint Fusion Energy Organization Article 2 Purpose of the ITER Organization Article 3 Functions of the ITER://fusionforenergy.europa.eu/downloads/aboutf4e/l_35820061216en00620081.pdf #12;Preamble The European Atomic Energy Community (hereinafter

  14. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biological, environmental and computer sciences; condensed matter and materials; fusion and plasma sciences; high energy and nuclear physics; and national security and...

  15. Fusion of light proton-rich exotic nuclei at near-barrier energies

    E-Print Network [OSTI]

    P. Banerjee; K. Krishan; S. Bhattacharya; C. Bhattacharya

    2002-02-08T23:59:59.000Z

    We study theoretically fusion of the light proton-rich exotic nuclei $^{17}$F and $^8$B at near-barrier energies in order to investigate the possible role of breakup processes on their fusion cross sections. To this end, coupled channel calculations are performed considering the couplings to the breakup channels of these projectiles. In case of $^{17}$F, the coupling arising out of the inelastic excitation from the ground state to the bound excited state and its couplings to the continuum have also been taken into consideration. It is found that the inelastic excitation/breakup of $^{17}$F affect the fusion cross sections very nominally even for a heavy target like Pb. On the other hand, calculations for fusion of the one-proton halo nucleus $^8$B on a Pb target show a significant suppression of the complete fusion cross section above the Coulomb barrier. This is due to the larger breakup probability of $^8$B as compared to that of $^{17}$F. However, even for $^8$B, there is little change in the complete fusion cross sections as compared to the no-coupling case at sub-barrier energies.

  16. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect (OSTI)

    Latkowski, J.F.

    1996-11-01T23:59:59.000Z

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  17. anterior cervical fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  18. alkaline phosphatase fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  19. antibody fusion proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  20. abl fusion gene: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  1. acyltransferase gfp fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  2. albumin fusion proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  3. anatomical information fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  4. antigen fusion proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  5. affects myoblast fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  6. anterior spinal fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  7. anterior vertebral fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  8. anterior interbody fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  9. acquired motor fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  10. angiography fusion images: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  11. alloy fusion safety: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  12. altered fusion transcript: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  13. artificial gene fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  14. activate membrane fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  15. Ecosystem Science | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecosystem Science SHARE Ecosystem Science Project the fate and function of ecosystems as they respond to a variety of stresses, ranging from contamination to climate change to...

  16. Impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants

    SciTech Connect (OSTI)

    Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [Univ. of California, Berkeley, CA (United States)

    1996-12-31T23:59:59.000Z

    Sisolak et al. defined two methods for the approximation of pulsed irradiation: the steady-state (SS) and the equivalent steady-state (ESS) methods. Both methods have been shown to greatly simplify the process of calculating radionuclide inventories. However, they are not accurate when applied to magnetic fusion energy (MFF) and inertial fusion energy (IFE) experimental facilities. In the work reported here, an attempt has been made to evaluate the accuracy of the SS and ESS methods as they might be applied to typical MFE and IFE power plants. 18 refs., 6 figs.

  17. Federal Advisory Committee Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Advisory Board (EMAB) Environmental Management Site-Specific Advisory Boards (EM SSAB) Fusion Energy Sciences Advisory Committee (FESAC) High Energy Physics Advisory Panel...

  18. Recyclable transmission line concept for z-pinch driven inertial fusion energy.

    SciTech Connect (OSTI)

    De Groot, J. S. (University of California, Davis, CA); Olson, Craig Lee; Cochrane, Kyle Robert (Ktech Corporation, Albuquerque, NM); Slutz, Stephen A.; Vesey, Roger Alan; Peterson, Per F. (University of California, Berkeley, CA)

    2003-12-01T23:59:59.000Z

    Recyclable transmission lines (RTL)s are being studied as a means to repetitively drive z pinches to generate fusion energy. We have shown previously that the RTL mass can be quite modest. Minimizing the RTL mass reduces recycling costs and the impulse delivered to the first wall of a fusion chamber. Despite this reduction in mass, a few seconds will be needed to reload an RTL after each subsequent shot. This is in comparison to other inertial fusion approaches that expect to fire up to ten capsules per second. Thus a larger fusion yield is needed to compensate for the slower repetition rate in a z-pinch driven fusion reactor. We present preliminary designs of z-pinch driven fusion capsules that provide an adequate yield of 1-4 GJ. We also present numerical simulations of the effect of these fairly large fusion yields on the RTL and the first wall of the reactor chamber. These simulations were performed with and without a neutron absorbing blanket surrounding the fusion explosion. We find that the RTL will be fully vaporized out to a radius of about 3 meters assuming normal incidence. However, at large enough radius the RTL will remain in either the liquid or solid state and this portion of the RTL could fragment and become shrapnel. We show that a dynamic fragmentation theory can be used to estimate the size of these fragmented particles. We discuss how proper design of the RTL can allow this shrapnel to be directed away from the sensitive mechanical parts of the reactor chamber.

  19. DANCING WITH THE STARSDANCING WITH THE STARS QUEST FOR FUSION ENERGYQUEST FOR FUSION ENERGY

    E-Print Network [OSTI]

    of the Sun ?? How much energy is released in burning coal ?? #12;THE SUN AS A COAL POWER PLANTTHE SUN of the =Sun 264 10 Watts× Potential energy Solar power out Su pu n's lifetime t 14 6 10 .sec= ×= The Sun would last for about 20 million years.The Sun would last for about 20 million years. 2 3 5 Potential Energy M

  20. A Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage Images

    E-Print Network [OSTI]

    Abidi, Mongi A.

    dual-energy X-ray images for better object classification and threat detection. The fusion stepA Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage-based noise reduction technique which is very efficient in removing background noise from fused X-ray images

  1. Energy enhancement for deuteron beam fast ignition of a precompressed inertial confinement fusion target

    SciTech Connect (OSTI)

    Yang Xiaoling; Miley, George H. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Flippo, Kirk A. [P-24 Plasma Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hora, Heinrich [University of New South Wales, Sydney 2052 (Australia)

    2011-03-15T23:59:59.000Z

    Fast Ignition (FI) is recognized as a potentially promising approach to achieve the high-energy-gain target performance needed for commercial inertial confinement fusion. Here we consider deuteron beam driven FI which provides not only the 'hot spot' ignition spark, but also extra ''bonus'' fusion energy through reactions in the target. In this study, we estimate the impact of the added deposition energy due to the fusion reactions occurring, based on calculations using a modified energy multiplication factor F{sub c}. The deuteron beam energy deposition range and time are also evaluated in order to estimate the desired deuteron initial energy. It is shown that an average of 30% extra energy can be gained from deuterons with 1 MeV initial energy and 12% from deuterons with 3 MeV initial energy. These results indicate that the energy benefit of this approach could be significant, but a much more comprehensive calculation is needed to realize a full 3D design for realistic experimental studies.

  2. Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier

    E-Print Network [OSTI]

    M. Ray; A. Mukherjee; M. K. Pradhan; Ritesh Kshetri; M. Saha Sarkar; R. Palit; I. Majumdar; P. K. Joshi; H. C. Jain; B. Dasmahapatra

    2008-05-07T23:59:59.000Z

    Measurement of fusion cross sections for the 6,7Li + 24Mg reactions by the characteristic gamma-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these gamma-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The decrease of fusion cross sections with increase of energy is consistent with the fact that other channels, in particular breakup open up with increase of bombarding energy. This shows that there is neither inhibition nor enhancement of fusion cross sections for these systems at above or below the barrier. The critical angular momenta (lcr) deduced from the fusion cross sections are found to have an energy dependence similar to other Li - induced reactions.

  3. U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G. Theofanous, 1996ofDOE NationalEnergy

  4. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01T23:59:59.000Z

    California 9~516 This work explores the economy of scale for multi- unit inertial fusion energy power plants

  5. Fusion Engineering and Design 85 (2010) 18241828 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Abdou, Mohamed

    2010-01-01T23:59:59.000Z

    /martensitic (RAFM) steel-structured Helium-cooled quasi-static PbLi tritium breeder (SLL) blanket and the RAFM steel of coatings in fusion reactor blankets, depending on fusion blanket concepts. The water-cooled PbLi breeder and development of self-cooled liquid metal blanket including lead­lithium (PbLi) fusion blankets

  6. Fusion Engineering and Design 85 (2010) 93108 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Raffray, A. René

    2010-01-01T23:59:59.000Z

    --Readiness to proceed from near term fusion systems to power plants A.R. Raffraya, , R. Nygrenb , D.G. Whytec , S. Abdel September 2009 Keywords: Plasma-facing components Divertor ITER DEMO Fusion power plants a b s t r a c the different technologies needed in the designs being developed for fusion power plants. Critical material

  7. The Fusion Advanced Studies Torus (FAST): a Proposal for an ITER Satellite Facility in Support of the Development of Fusion Energy

    E-Print Network [OSTI]

    Zonca, Fulvio

    in Support of the Development of Fusion Energy A. Pizzuto 1) on behalf of the Italian Association 1 injection (NNBI) in the energy range of 0.5-1 MeV. The total power input is in the 30-40 MW range prioritize what the actual ITER needs are. Some apparently conflicting aspects must be carefully analyzed

  8. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .microparticles. Annals of Nuclear Energy, [96] F.B. Brown,In Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  9. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  10. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    2.1.1 Energy Production . . . . . . . . . 2.1.2 Spentof Figures Current World Energy Production Broken Down byCurrent US Energy Production Broken Down by

  11. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    E-Print Network [OSTI]

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01T23:59:59.000Z

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  12. 21st IAEA Fusion Energy Conference, Chengdu, 16 21 October 2006 1 Max-Planck-Institut

    E-Print Network [OSTI]

    7 Thermal Insulation of the Plasma Vessel Al-coated glass fibre panel with MLI Cu-braids for connection to He-cooling pipe MLI: 20 layers of crinkled, Al-coated Kapton foil Thermal insulation on a vacuum vessel sector 21st IAEA Fusion Energy Conference, Chengdu, 16 ­ 21 October 2006 8 Fabrication

  13. Fusion Engineering and Design 41 (1998) 393400 Economic goals and requirements for competitive fusion energy

    E-Print Network [OSTI]

    California at San Diego, University of

    1998-01-01T23:59:59.000Z

    by environmental and safety characteristics, continues to provide a central strategic motivation and concern, which, together with low fuel costs and financial assumptions, determine the projected life a competitive future energy-source technology and has implications for the direction and emphasis of appropriate

  14. Utility of the US National Ignition Facility for development of inertial fusion energy

    SciTech Connect (OSTI)

    Logan, B.G.; Anderson, A.T.; Tobin, M.T. [Lawrence Livermore National Lab., CA (United States); Schrock, V.E. [California Univ., Berkeley, CA (United States); Meier, W.R. [Schafer (W.J.) Associates, Inc., Livermore, CA (United States); Bangerter, R.O. [Lawrence Berkeley Lab., CA (United States); Tokheim, R.E. [SRI International, Menlo Park, CA (United States). Poulter Lab.; Abdou, M.A. [California Univ., Los Angeles, CA (United States); Schultz, K.R. [General Atomics, San Diego, CA (United States)

    1994-08-01T23:59:59.000Z

    The demonstration of inertial fusion ignition and gain in the proposed US National Ignition Facility (NIF), along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF), a facility for integrated testing of the technologies needed for inertial fusion-energy (IFE) power plants. A workshop was convened at the University of California, Berkeley on February 22--24, 1994, attended by 61 participants from 17 US organizations, to identify possible NIF experiments relevant to IFE. We considered experiments in four IFE areas: Target physics, target chamber dynamics, fusion power ethnology, and target systems, as defined in the following sections.

  15. Fusion of light exotic nuclei at near-barrier energies : effect of inelastic excitation

    E-Print Network [OSTI]

    P. Banerjee; K. Krishan; S. Bhattacharya; C. Bhattacharya

    2002-02-08T23:59:59.000Z

    The effect of inelastic excitation of exotic light projectiles (proton- as well as neutron-rich) $^{17}$F and $^{11}$Be on fusion with heavy target has been studied at near-barrier energies. The calculations have been performed in the coupled channels approach where, in addition to the normal coupling of the ground state of the projectile to the continuum, inelastic excitation of the projectile to the bound excited state and its coupling to the continuum have also been taken into consideration. The inclusion of these additional couplings has been found to have significant effect on the fusion excitation function of neutron-rich $^{11}$Be on $^{208}$Pb whereas the effect has been observed to be nominal for the case of proton-rich $^{17}$F on the same target. The pronounced effect of the channel coupling on the fusion process in case of $^{11}$Be is attributed to its well-developed halo structure.

  16. Before the House Science and Technology Subcommittee on Energy...

    Energy Savers [EERE]

    House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Statement Before the Committee On...

  17. Before the House Science and Technology, Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment Before the House Science and Technology,...

  18. U.S. Department of Energy's Office of Science

    E-Print Network [OSTI]

    Infrastructure................ 37,125 42,735 43,590 Science Program Direction........................... 149..................................................................241,100 257,310 246,882 257,310 Science Laboratories Infrastructure the Hydrogen Economy: Materials, Catalysis, Modeling, Electrochemistry, Genomes to Life, Fusion production, etc

  19. Science for Our Nation's Energy Future | U.S. DOE Office of Science...

    Office of Science (SC) Website

    DOE Announcements Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

  20. Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion

    SciTech Connect (OSTI)

    Nuckolls, J.H.

    1994-06-01T23:59:59.000Z

    Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

  1. Science Education | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics and Solar Energy (2 Activities) This module addresses issues dealing with the energy from the sun, the energy needs of students in the classroom and, ultimately, our...

  2. MIT Plasma Science & Fusion Center: research>alcator>

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item$alt TrinityPhysics

  3. Fusion Energy Sciences Network Requirements Review Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a web interface. Steady State Tokamak (SST-1) is located at the Institute for Plasma Research (IPR), in Bhat, India. It is the smallest of all the new superconducting...

  4. Hindrance of ^{16}O+^{208}Pb fusion at extreme sub-barrier energies

    E-Print Network [OSTI]

    Henning Esbensen; Serban Misicu

    2007-11-20T23:59:59.000Z

    We analyze the fusion data for $^{16}$O+$^{208}$Pb using coupled-channels calculations. We include couplings to the low-lying surface excitations of the projectile and target and study the effect of the ($^{16}$O,$^{17}$O) one-neutron pickup. The hindrance of the fusion data that is observed at energies far below the Coulomb barrier cannot be explained by a conventional ion-ion potential and defining the fusion in terms of ingoing-wave boundary conditions (IWBC). We show that the hindrance can be explained fairly well by applying the M3Y double-folding potential which has been corrected with a calibrated, repulsive term that simulates the effect of nuclear incompressibility. We show that the coupling to one-neutron transfer channels plays a crucial role in improving the fit to the data. The best fit is achieved by increasing the transfer strength by 25% relative to the strength that is required to reproduce the one-neutron transfer data. The larger strength is not unrealistic because the calculated inelastic plus transfer cross section is in good agreement with the measured quasielastic cross section. We finally discuss the problem of reproducing the fusion data at energies far above the Coulomb barrier. Here we do not account for the data when we apply the IWBC but the discrepancy is essentially eliminated by applying the M3Y+repulsion potential and a weak, short-ranged imaginary potential.

  5. Validity of the linear coupling approximation in heavy-ion fusion reactions at sub barrier energies

    E-Print Network [OSTI]

    K. Hagino; N. Takigawa; M. Dasgupta; D. J. Hinde; J. R. Leigh

    1996-07-26T23:59:59.000Z

    The role of higher order coupling of surface vibrations to the relative motion in heavy-ion fusion reactions at near-barrier energies is investigated. The coupled channels equations are solved to all orders, and also in the linear and the quadratic coupling approximations. Taking $^{64}$Ni + $^{92,96}$Zr reactions as examples, it is shown that all order couplings lead to considerably improved agreement with the experimentally measured fusion cross sections and average angular momenta of the compound nucleus for such heavy nearly symmetric systems. The importance of higher order coupling is also examined for asymmetric systems like $^{16}$O + $^{112}$Cd, $^{144}$Sm, for which previous calculations of the fusion cross section seemed to indicate that the linear coupling approximation was adequate. It is shown that the shape of the barrier distributions and the energy dependence of the average angular momentum can change significantly when the higher order couplings are included, even for systems where measured fusion cross sections may seem to be well reproduced by the linear coupling approximation.

  6. Development of Fusion Nuclear Technologies at Japan Atomic Energy Research Institute

    SciTech Connect (OSTI)

    Seki, Masahiro; Yamanishi, Toshihiko; Shu, Wataru; Nishi, Masataka; Hatano, Toshihisa; Akiba, Masato; Takeuchi, Hiroshi; Nakamura, Kazuyuki; Sugimoto, Masayoshi; Shiba, Kiyoyuki; Jitsukawa, Shiro; Ishitsuka, Etsuo; Tsuji, Hiroshi [Japan Atomic Energy Research Institute (Japan)

    2002-07-15T23:59:59.000Z

    An overview of the present status of development of fusion nuclear technologies at Japan Atomic Energy Research Institute is presented. A tritium handling system for the ITER was designed, and the technology for each component of this system was demonstrated successfully. An ultraviolet laser with a wavelength of 193 nm was found quite effective for removing tritium from in-vessel components of D-T fusion reactors. Blanket technologies have been developed for the test blanket module of the ITER and for advanced blankets for DEMO reactors. This blanket is composed of ceramic Li{sub 2}TiO{sub 3} breeder pebbles and neutron multiplier beryllium pebbles, whose diameter ranges from 0.2 to 2 mm, contained in a box structure made of a reduced-activation ferritic steel, F82H. Mechanical properties of F82H under a thermal neutron irradiation at up to 50 displacements per atom (dpa) were obtained in a temperature range from 200 to 500 deg. C. Design of the International Fusion Materials Irradiation Facility (IFMIF) has been developed to obtain engineering data for candidate materials for DEMO reactors under a simulated fusion neutron irradiation up to 100 to 200 dpa, and basic development of the key technologies to construct the IFMIF is now under way as an International Energy Agency international collaboration.

  7. A Hart Energy Publication When science crosses

    E-Print Network [OSTI]

    National Oceanography Centre, Southampton

    A Hart Energy Publication APRIL 2005 SeaQuest: When science crosses public/private boundaries support decisions GLOBAL EXPLORATION & PRODUCTION NEWS · TECHNOLOGY UPDATES · ANALYSIS SeaQuest: When ENGINEERING AWARDS #12;E&P | April 2005 SEA QUESTWHEN SCIENCE CROSSES PUBLIC/PRIVATE SECTOR BOUNDARIES, GOOD

  8. The Science of Global Warming Energy Balance

    E-Print Network [OSTI]

    Blais, Brian

    The Science of Global Warming ·Energy Balance ·Feedback Loops Global Warming can be understood complexities ·Introduce a Simple Model of Energy Balance ·Understand the Vocabulary ·Point out some units of energy input from the Sun = Temperature: 5.3 oC Greenhouse Effect 101: A Balance is Achieved

  9. House Appropriations Committee'Report FY04 Energy and Water Development Act

    E-Print Network [OSTI]

    House Appropriations Committee'Report FY04 Energy and Water Development Act Fusion-relevant Sections "FUSION ENERGY SCIENCES "The Committee recommendation for fusion energy sciences is $268 of the Administration's proposal to re-engage in the International Thermonuclear Experimental Reactor (ITER) project

  10. Systematics of threshold incident energy for deep sub-barrier fusion hindrance

    E-Print Network [OSTI]

    Takatoshi Ichikawa; Kouichi Hagino; Akira Iwamoto

    2007-04-21T23:59:59.000Z

    We systematically evaluate the potential energy at the touching configuration for heavy-ion reactions using various potential models. We point out that the energy at the touching point, especially that estimated with the Krappe-Nix-Sierk (KNS) potential, strongly correlates with the threshold incident energy for steep fall-off of fusion cross sections observed recently for several systems at extremely low energies. This clearly indicates that the steep fall-off phenomenon can be attributed to the dynamics after the target and projectile touch with each other, e.g., the tunneling process and the nuclear saturation property in the overlap region.

  11. Current Status of DiscussionCurrent Status of DiscussionCurrent Status of DiscussionCurrent Status of Discussion on Roadmap of Fusion Energyon Roadmap of Fusion Energy

    E-Print Network [OSTI]

    of fusion has dramatically changed since the accident of the Fukushima Dai-ichi nuclear power stationnuclear-ichi accident Exploration of ocean, telecommunication, space transportation and satellite, new energy atomic after the Fukushima Dai-ichi accident R&D for safety, prevention of disaster, proliferation and nuclear

  12. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014005 (5pp) doi:10.1088/0029-5515/50/1/014005

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    . is not significantly changed, the CO2 emission could increase by a factor of two within the next 20 years warming, since China has now become the second largest CO2 producing country. If its energy structure for another 50 years to generate electricity by fusion. A much more aggressive approach should be taken

  13. Fusion and Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and Methane |science Fusion

  14. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    SciTech Connect (OSTI)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.; Crocker, J.G.; Delene, J.G.; Endicott, R.D.; Kazimi, M.S.; Krakowski, R.A.; Logan, B.G.; Schultz, K.R.

    1987-09-10T23:59:59.000Z

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs.

  15. Breakthrough Science at NERSC Harvey Wasserman

    E-Print Network [OSTI]

    Biological & Environmental Research BES Basic Energy Sciences FES Fusion Energy Sciences HEP High Energy Physics NP Nuclear Physics NERSC 2008 Allocations By DOE Office #12;Science View of Workload NERSC 2008...) 10 #12;Six Breakthrough Science Stories · Nuclear Physics · Geochemistry · Plasma Turbulence

  16. Biological Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdleBiological Science Biological Science The protozoan

  17. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdleBiological ScienceCareers Careers ComeChemical Science

  18. Science Education | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    from Kateria Callahan, president of the Alliance to Save Energy. April 23, 2014 The Energy Department has several free resources that help educators teach students about...

  19. Optimizing Nested Loops with Loop Distribution and Loop Fusion Department of Computer Science and Engineering

    E-Print Network [OSTI]

    Sha, Edwin

    nodes so that the loop nodes inside one partition can be fused directly without transformation. Maximum and the power consumption [1, 5, 7, 8]. Direct loop fusion is to find the legal fusion partition of the loop of the fused loops is minimized. Loop distribution separates independent statements inside a single loop (or

  20. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    SciTech Connect (OSTI)

    Meier, W R; Abbott, R; Beach, R; Blink, J; Caird, J; Erlandson, A; Farmer, J; Halsey, W; Ladran, T; Latkowski, J; MacIntyre, A; Miles, R; Storm, E

    2008-10-02T23:59:59.000Z

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R&D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost.

  1. Scientists discuss progress toward magnetic fusion energy at 2013 AAAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysics Lab Scientist's QuestCorners

  2. Sandia Energy - Sandia Magnetized Fusion Technique Produces Significant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeterWave-Energyto Share

  3. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  4. CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Culham Materials Research Facility -for universities,

    E-Print Network [OSTI]

    McDonald, Kirk

    CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Culham Materials. · Operational with active materials early 2015. #12;#12;FAFNIR 14MeV Neutron Source · Prioritized list

  5. Journal of Fusion Energy, Vol. 12, No. 3, 1993 The Design of the Tokamak Physics Experiment (TPX)

    E-Print Network [OSTI]

    Journal of Fusion Energy, Vol. 12, No. 3, 1993 The Design of the Tokamak Physics Experiment (TPX) J plasma operation is made possible with an in-vessel remote maintenance system, a low- activation titanium

  6. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    including nuclear waste incineration and energy production.occurs, a ramp-down and incineration period begins. At thisduring the ramp up and incineration phases of a thermal

  7. Tutorial on the Physics of Inertial Confinement Fusion for energy applications

    E-Print Network [OSTI]

    Plasma += EEE n nuclear output thermal inputE If 's slow-down in the plasma, they self-heat the plasma E the level of self-heating of the fusion plasma. A better physics parameter is Q thermal inputE E Q = 5 Q Q instability (ignition) is triggered when the alpha self-heating exceeds all the energy losses in the hot spot

  8. Energy Sciences Network (ESnet) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Computing Facility (OLCF) Argonne Leadership Computing Facility (ALCF) National Energy Research Scientific Computing Center (NERSC) Energy Sciences Network (ESnet) Research...

  9. The role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions

    E-Print Network [OSTI]

    Ishwar Dutt; Rajeev K. Puri

    2010-05-06T23:59:59.000Z

    We discuss the effect of surface energy coefficients as well as nuclear surface diffuseness in the proximity potential and ultimately in the fusion of heavy-ions. Here we employ different versions of surface energy coefficients. Our analysis reveals that these technical parameters can influence the fusion barriers by a significant amount. A best set of these parameters is also given that explains the experimental data nicely.

  10. Laser fusion experiment yields record energy at NIF | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpacts |SecuritySecurity

  11. Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996) A213-A225. Printed in thePrinceton

  12. Energy Sciences Institute Talks at West Campus

    E-Print Network [OSTI]

    storage. Electrochemical storage such as batteries has the advantage of being more efficient compared electric storage devices, but viable battery technology able to store large amounts of electric energy Battery Research Center, School of Energy and Chemical Engineering, Ulsan National Institute of Science

  13. The National Ignition Facility and the Promise of Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E I

    2010-12-13T23:59:59.000Z

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  14. Slide03 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Federal funding. It oversees, and is the principal Federal funding agency of, the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences...

  15. Fermilab | Science | Particle Physics 101 | Science of Matter, Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab'sSpace and Time Science

  16. Energy and Transportation Science | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption SurveyEnergy Storage EnergyD Energy and

  17. Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUMEWORKFORCE DIVERSITY TOWNDepartment of

  18. International Atomic Energy Agency holds conference on fusion roadmap |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpinInteragency1Princeton Plasma Physics Lab

  19. Summary of Assessment of Prospects for Inertial Fusion Energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success Stories Touching The Lives

  20. actinide-based complete fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  1. aml1-eto fusion protein: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  2. antibody-photosensitizer fusion protein: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  3. antibody-gdnf fusion protein: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  4. akar2-akap12 fusion protein: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  5. active maltose-binding fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  6. Fusion scientists gear up to learn how to harness plasma energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity fromFusion LinksPlasma Physics

  7. Department of Energy Cites Brookhaven Science Associates, LLC...

    Energy Savers [EERE]

    Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations...

  8. Before the House Subcommittee on Energy - Committee on Science...

    Energy Savers [EERE]

    - Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting...

  9. Department of Energy Advances Geothermal Science through Collegiate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advances Geothermal Science through Collegiate Competition Department of Energy Advances Geothermal Science through Collegiate Competition February 25, 2013 - 2:33pm Addthis...

  10. Sandia Energy » Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergyTeachesSandia's

  11. Environmental Science | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches EnergyActive forEnvironmental PolicyERPScience

  12. MIT Plasma Science & Fusion Center: research, alcator, publications & news,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveM odresearch highlights

  13. MIT Plasma Science & Fusion Center: research> alcator>tokamak data &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveMinfo, workreal-time

  14. MIT Plasma Science & Fusion Center: research>alcator>Conference Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveMinfo,

  15. MIT Plasma Science & Fusion Center: research>alcator>contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveMinfo,Facility

  16. MIT Plasma Science & Fusion Center: research>alcator>facility info

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveMinfo,FacilityRemote

  17. MIT Plasma Science & Fusion Center: research>alcator>facility info

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveMinfo,FacilityRemote

  18. MIT Plasma Science & Fusion Center: research>alcator>information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back

  19. MIT Plasma Science & Fusion Center: research>alcator>introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You BackTechnology & Engineering

  20. MIT Plasma Science & Fusion Center: research>alcator>introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You BackTechnology &