National Library of Energy BETA

Sample records for fusion energy science

  1. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  2. Fusion Energy Sciences Jobs

    Office of Science (SC) Website

    fesaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

  3. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  4. Applying physics, teamwork to fusion energy science | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  5. Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Programs FES Home Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory ...

  6. Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences.

    Office of Scientific and Technical Information (OSTI)

    Long Duration Directional Drives for Star Formation and Photoionization (Technical Report) | SciTech Connect Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences. Long Duration Directional Drives for Star Formation and Photoionization Citation Details In-Document Search Title: Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences. Long Duration Directional Drives for Star Formation and Photoionization Due to the iconic status of the pillars of the

  7. NERSC Role in Fusion Energy Science Research Katherine Yelick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Science Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. New Type of Nonlinear Plasma Instability Discovered Objective: Study large periodic instabilities called Edge Localized Modes (ELMs) in

  8. Fusion Energy Sciences Network Requirements Review Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12-13, 2014 ESnet is funded by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research. Vince Dattoria is the ESnet Program Manager. ...

  9. Fusion Energy Sciences Advisory Committee (FESAC) Homepage | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) FESAC Home Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Print Text Size: A A A FeedbackShare Page The Fusion Energy Sciences Advisory Committee (FESAC) has been Chartered .pdf file (140KB) pursuant to Section 14(a)(2)(A) of the Federal Advisory Committee Act Public Law 92-463, and Section 101-6.1015, title 41 Code of Federal

  10. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    SciTech Connect (OSTI)

    Friedman, A.; Grote, D. P.; Vay, J. L.

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  11. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  12. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  13. Fusion Institutions | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Institutions Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research Fusion

  14. Fusion Links | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Links Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research Fusion Links Print

  15. Fusion Science to Prepare

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Recent DIII-D research has provided significant new in- formation for the physics basis of key scientific issues for successful operation of ITER and future steady state fu- sion tokamaks, including control of edge localized modes (ELMs), plasma

  16. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    SciTech Connect (OSTI)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  17. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    SciTech Connect (OSTI)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote collaboration with the control room of a Tokamak running an experiment. This is especially important since the current plans for ITER assume that this problem will be solved.

  18. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  19. Science DMZ Fuels Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ Fuels Fusion Research General Atomics remote controls fusion experiments, bridges...

  20. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    1999-06-30

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  1. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  2. Large Scale Computing and Storage Requirements for Fusion Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Science at NERSC HPC Requirements Reviews Requirements Reviews: Target 2014 Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion ...

  3. Response to FESAC survey, Non-Fusion Connections to Fusion Energy...

    Office of Scientific and Technical Information (OSTI)

    Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences. Long Duration Directional Drives for Star Formation and Photoionization Citation Details In-Document ...

  4. Before the House Science and Technology Subcommittee on Energy and Environment

    Broader source: Energy.gov [DOE]

    Subject: DOE Fusion Energy Program BY: Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science

  5. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

  6. How Fusion Energy Works

    Broader source: Energy.gov [DOE]

    Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

  7. Fusion Nuclear Science Pathways Assessment

    SciTech Connect (OSTI)

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  8. Fusion and Plasmas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion and Plasmas Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (78KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301)

  9. Fusion Nuclear Science and Technology Program - Status and plans for

    Office of Environmental Management (EM)

    tritium research | Department of Energy plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. PDF icon Fusion Nuclear Science and Technology Program - Status and plans for tritium research More Documents & Publications Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research Overview of tritium

  10. How Fusion Energy Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as ...

  11. Large Scale Production Computing and Storage Requirements for Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences" is organized by the Department of Energy's Office of Fusion Energy Sciences (FES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to

  12. Lab Breakthrough: Neutron Science for the Fusion Mission | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Neutron Science for the Fusion Mission Lab Breakthrough: Neutron Science for the Fusion Mission May 16, 2012 - 9:52am Addthis An accelerator team lead by Robert McGreevy at Oak Ridge National Laboratory is testing material - a critical role in building an experimental fusion reactor for commercial use. As part of the international coalition, they expect to have an operational reactor by 2050. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital

  13. Breakthrough: Neutron Science for the Fusion Mission

    ScienceCinema (OSTI)

    McGreevy, Robert

    2014-06-03

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  14. Breakthrough: Neutron Science for the Fusion Mission

    SciTech Connect (OSTI)

    McGreevy, Robert

    2012-04-24

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  15. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  16. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  17. DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIII-D National Fusion Facility (DIII-D) Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington,

  18. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Print Our current fossil-fuel-based system ... X-Ray Microscopy Reveals How Crystal Mechanics Drive ... Breakthrough Research on Platinum-Nickel Alloys Hydrogen Storage ...

  19. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    Fusion Nuclear Science and Technology Program - Status and plans for tritium research ... May 05-07, 2015. PDF icon Fusion Nuclear Science and Technology Program - Status and plans ...

  20. Fusion Nuclear Science and Technology Program - Status and Plans...

    Office of Environmental Management (EM)

    Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and ... 23-25, 2014. PDF icon Fusion Nuclear Science and Technology Program - Status and Plans ...

  1. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Heating Systems » Furnaces and Boilers Furnaces and Boilers Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via

  2. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  3. Biological Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  4. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ... The DOE Office of Science's Basic Energy Sciences program equips scientists with a ...

  5. Before the House Science and Technology Subcommittee on Energy...

    Broader source: Energy.gov (indexed) [DOE]

    BY: Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science Subject: DOE Fusion Energy Program PDF icon 10-29-09FinalTestimony(Synakowski)....

  6. Glossary of fusion energy

    SciTech Connect (OSTI)

    Whitson, M.O.

    1982-01-01

    This glossary gives brief descriptions of approximately 400 terms used by the fusion community. Schematic diagrams and photographs of the major US experiments are also included. (MOW)

  7. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Fusion Research Sites US Fusion Research Sites DOE Office of Science: US Fusion Energy Sciences Program Fusion Power Associates General Atomics DIIII-D National Fusion Facility Georgia Tech: Fusion Research Center Lawrence Livermore National Laboratory: National Ignition Facility Los Alamos National Laboratory: Fusion Energy Sciences MIT: Plasma Science and Fusion Center Naval Research Laboratory: Plasma Physics Division Oak Ridge National Laboratory: Fusion Energy Division Princeton Plasma

  8. Fusion Technologies for Laser Inertial Fusion Energy (LIFE) ...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: 7th International Conference on Inertial Fusion Sciences and Applications, Bordeaux, France, Sep 12 - Sep 16, 2011 Research Org: ...

  9. MIT's Plasma Science Fusion Center: Tokamak Experiments Come...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tokamak Experiments Come Clean about Impurity Transport American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: Tokamak...

  10. Lasers, Photonics, and Fusion Science: Bringing Star Power to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inertial confinement fusion experiments. Questions About NIF? Here Are the Answers A virtual library of information about NIF is in a special issue of Fusion Science & Technology. ...

  11. Office of Basic Energy Sciences program to meet high priority nuclear data needs of the Office of Fusion Energy 1983 review

    SciTech Connect (OSTI)

    Haight, R.C.; Larson, D.C.

    1983-11-01

    This review was prepared during a coordination meeting held at Oak Ridge National Laboratory on September 28-29, 1983. Participants included research scientists working for this program, a representative from the OFE's Coordination of Magnetic Fusion Energy (MFE) Nuclear Data Needs Activities, and invited specialists.

  12. Fusion energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse ... DOE's Ed Synakowski traces key discoveries in the quest for fusion energy The path to ...

  13. (Fusion energy research)

    SciTech Connect (OSTI)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  14. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  15. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Chemical Sciences Division Chemistry is the study of matter and the changes it can undergo. Chemical Sciences Division researchers tackle critical scientific issues in chemistry at both the theoretical and experimental levels. Materials Sciences Division Materials Scientists are advancing the fundamental science of

  16. Advanced energy conversion methods for cold fusion

    SciTech Connect (OSTI)

    Prelas, M.A. )

    1989-09-01

    If cold fusion is verified, then the next important question deals with how it can be used to produce energy. Several direct energy conversion concepts for use with cold fusion are discussed.

  17. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the Subcommittee on Facing

  18. U.S. Signs International Fusion Energy Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Signs International Fusion Energy Agreement U.S. Signs International Fusion Energy Agreement November 21, 2006 - 9:25am Addthis Large-Scale, Clean Fusion Energy Project to Begin Construction PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the Republic of Korea and the Russian Federation to sign an agreement to build the international

  19. Fusion Technologies for Laser Inertial Fusion Energy (LIFE) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Fusion Technologies for Laser Inertial Fusion Energy (LIFE) Citation Details In-Document Search Title: Fusion Technologies for Laser Inertial Fusion Energy (LIFE) Authors: Kramer, K J ; Latkowski, J F ; Abbott, R P ; Anklam, T P ; Dunne, A M ; El-Dasher, B S ; Flowers, D L ; Fluss, M J ; Lafuente, A ; Loosmore, G A ; Morris, K R ; Reyes, S Publication Date: 2011-11-22 OSTI Identifier: 1107297 Report Number(s): LLNL-CONF-516112 DOE Contract Number: W-7405-ENG-48

  20. Overview of the RFX fusion science program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 (2011) 094023 (12pp) doi:10.1088/0029-5515/51/9/094023 Overview of the RFX fusion science program P. Martin 1 , J. Adamek 2 , P. Agostinetti 1 , M. Agostini 1 , A. Alfier 1 , C. Angioni 3 , V. Antoni 1 , L. Apolloni 1 , F. Auriemma 1 , O. Barana 1 , S. Barison 4 , M. Baruzzo 1 , P. Bettini 1 , M. Boldrin 1 , T. Bolzonella 1 , D. Bonfiglio 1 , F. Bonomo 1 , A.H. Boozer 5,6 , M. Brombin 1 , J. Brotankova 2 , A. Buffa 1 , A. Canton 1 , S. Cappello 1 , L. Carraro 1 , R. Cavazzana 1 , M. Cavinato

  1. The Heavy Ion Fusion Science Virtual National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Heavy Ion Fusion Science Virtual National Laboratory Python in a Parallel Environment Dave Grote - LLNL & LBNL NUG2013 User Day Wednesday, February 15, 2013 Slide 2 The Heavy Ion Fusion Science Virtual National Laboratory Outline * Why we use Python * How we use Python * Parallel Python with pyMPI * Our graphics model with Pygist * Parallel Python drawbacks and resolutions - Start up time - Static building * Conclusions Slide 3 The Heavy Ion Fusion Science Virtual National Laboratory 3

  2. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Saving Do-It-Yourself Projects Just Got Easier Energy Saving Do-It-Yourself Projects Just Got Easier September 3, 2014 - 12:34pm Q&A What has been your experience with DIY energy saving projects? Tell Us Addthis Energy saving DIY projects improve home energy-efficiency and save you money. | Photos courtesy of iStockphoto.com Energy saving DIY projects improve home energy-efficiency and save you money. | Photos courtesy of iStockphoto.com Paige Terlip Paige Terlip Former

  3. Scientists discuss progress toward magnetic fusion energy at 2013 AAAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual meeting | Princeton Plasma Physics Lab Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in the worldwide effort to develop magnetic fusion energy for generating electricity gave progress reports to the 2013 annual meeting of the American Association for the Advancement of Science in Boston. Speaking were physicists George "Hutch" Neilson of the U.S.

  4. Z-Pinch Fusion for Energy Applications

    SciTech Connect (OSTI)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  5. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  6. Site map for the E-print Network -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Technologies Fossil Fuels Geosciences Materials Science Mathematics Physics Plasma Physics and Fusion Power Transmission, Distribution and Plants Renewable Energy ...

  7. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    SciTech Connect (OSTI)

    2008-09-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.

  8. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program

  9. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, ... to record the following data: Water temperature before: ...

  10. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect (OSTI)

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  11. Basic Energy Sciences Update

    Broader source: Energy.gov (indexed) [DOE]

    Operations Office of Science Vacant Patricia Dehmer (A) Nuclear Physics Tim Hallman Advanced Scientific Computing Research Steve Binkley Nuclear Energy Pete Lyons Fossil Energy...

  12. MIT Plasma Science & Fusion Center: research>alcator>research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology Useful Links Collaborations at Alcator...

  13. MIT Plasma Science & Fusion Center: research>alcator>introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter Magnet Laboratoroy Useful Links The links...

  14. ScienceLive chat page: on the future of fusion research | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab ScienceLive chat page: on the future of fusion research American Fusion News Category: U.S. Universities Link: ScienceLive chat page: on the future of fusion research

  15. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    Fusion Energy PowerPlant with Thick Liquid-Walls Citation Details In-Document Search Title: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick ...

  16. LIFE: The Case for Early Commercialization of Fusion Energy ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: LIFE: The Case for Early Commercialization of Fusion Energy Citation Details In-Document Search Title: LIFE: The Case for Early Commercialization of Fusion Energy ...

  17. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    Magnetic Fusion Energy Power Plant with Thick Liquid-Walls Citation Details In-Document Search Title: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick ...

  18. Summary of Assessment of Prospects for Inertial Fusion Energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Summary of Assessment of Prospects for Inertial Fusion Energy American Fusion News Category: National Ignition Facility Link: Summary of Assessment of Prospects for Inertial Fusion Energy

  19. Climate & Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  20. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab DOE's Ed Synakowski traces key discoveries in the quest for fusion energy By Jeanne Jackson DeVoe March 9, 2016 Tweet Widget Google Plus One Share on Facebook The DOE's Associate Director of Science for Fusion Energy Sciences Ed Synakowski discusses the "aha" moments in the development of fusion energy at a March 5 Ronald E. Hatcher Science on Saturday lecture. (Photo by Elle Starkman/PPPL Office of Communications) The DOE's Associate Director of

  1. Fusion energy development: Breakeven and beyond: Keynote address

    SciTech Connect (OSTI)

    Furth, H.P.

    1988-02-01

    The scientific feasibility, technological inevitability, and economic necessity of fusion as an energy source are discussed.

  2. A Fusion Development Facility on the Critical Path to Fusion Energy

    SciTech Connect (OSTI)

    Chan, V. S.; Stambaugh, R

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  3. A fusion development facility on the critical path to fusion energy

    SciTech Connect (OSTI)

    Chan, Dr. Vincent; Canik, John; Peng, Yueng Kay Martin

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  4. HEDP and new directions for fusion energy

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  5. Workshop Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Resources Workshop Reports Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences ...

  6. Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Science Education Science Education May 4, 2016 Debra Rowe, Oakland Community College, California Meet the Women Leading the Clean Energy Revolution These ...

  7. Posters | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Posters Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding ...

  8. Review of the Inertial Fusion Energy Program

    SciTech Connect (OSTI)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of drivers for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  9. Visualization and Analysis in Support of Fusion Science

    SciTech Connect (OSTI)

    Sanderson, Allen R.

    2012-10-01

    This report summarizes the results of the award for “Visualization and Analysis in Support of Fusion Science.” With this award our main efforts have been to develop and deploy visualization and analysis tools in three areas 1) magnetic field line analysis 2) query based visualization and 3) comparative visualization.

  10. Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science March 7, 2014 - 2:20pm Addthis Science fiction has envisioned many ways that mankind might be able to explore distant galaxies, like the spiral galaxy M106 pictured here, but what is science fiction and what could one day be science fact? | Photo Credit: NASA. Science fiction has envisioned many ways that mankind might be able to

  11. LIFE: The Case for Early Commercialization of Fusion Energy (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: LIFE: The Case for Early Commercialization of Fusion Energy Citation Details In-Document Search Title: LIFE: The Case for Early Commercialization of Fusion Energy This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production

  12. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Educational Resources Fusion Educational Resources DOE Office of Science Fusion Energy Programs Education Links FuseNet: The European Fusion Education Network General Atomics Fusion Education PPPL Science Education Program PPPL FusEdWeb Educational Outreach: US ITER staff members are available for presentations on fusion energy and the ITER project to technical, civic, community, and student groups. To make arrangements for a speaker, please contact Mark Uhran, Communications Manager,

  13. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QA & What is fusion? Fusion, the energy source of the sun and stars, is the most efficient process for converting mass into energy (E = mc 2 ). The fusion process is environmentally benign and does not emit gases that contribute to global warming or acid rain. Abundant fuel supplies for fusion are available that could meet the needs of the world's population for more than 10,000 years if the fusion process is harnessed successfully. When will fusion successfully produce useable energy? The

  14. Science & Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Student Programs and Internships Scholarships and Fellowships More about Science Education Energy Tomorrow Electrofuels: Tiny Organisms Making a Big Impact Science & Innovation ...

  15. MIT's Plasma Science Fusion Center: I-Mode Powers Up on Alcator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I-Mode Powers Up on Alcator C-Mod Tokamak American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: I-Mode Powers Up on...

  16. Energy, information science, and systems science

    SciTech Connect (OSTI)

    Wallace, Terry C; Mercer - Smith, Janet A

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  17. NREL: Energy Analysis - Energy Sciences Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sciences Technology Analysis To help meet the nation's needs for clean energy, inexpensive alternative fuels, and a healthy environment, researchers in NREL's Energy Sciences are improving our understanding of the science behind renewable energy and energy-efficient technologies. These technologies include photovoltaics (solar cells), fuels and energy systems made from biomass (plants and waste products) and hydrogen, and advanced energy storage and transmission systems. In this work, our

  18. Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science /science-innovation/_assets/images/icon-science.jpg Office of Science Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Advanced Scientific Computing Research» Basic Energy Sciences» Biological and Environmental Research» Fusion Energy Sciences» High Energy Physics» Nuclear Physics» Fusion Energy Science Research LANL fusion materials researchers use Titan supercomputer to

  19. The Science and Energy Plan

    Broader source: Energy.gov [DOE]

    The FY 2016 Science and Energy Plan (SEP) describes the major programs, performers, and processes involved in the Department’s science and energy functions, and the essential role that each plays across the Department.

  20. Directions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Directions Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (78KB) ... Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy ...

  1. Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education Science Education Energy is a physical quantity that follows precise natural laws. Check out our NEW Energy Literacy Video Series, which highlights the 7 Essential Principles of Energy to help engage students in energy. | Energy Department Video. For kids of all ages, there is always something new to learn about science and technology. The Energy Department supports science education through educational online content, resources for parents and teachers, internships and student

  2. Exploring Plasma Science Advances from Fusion Findings to Astrophysical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievements | Princeton Plasma Physics Lab Exploring Plasma Science Advances from Fusion Findings to Astrophysical Achievements By John Greenwald December 4, 2012 Tweet Widget Google Plus One Share on Facebook The latest advances in plasma physics were the focus of more than 1,000 scientists from around the world who gathered in Providence, R.I., from Oct. 29 through Nov. 2 for the 54th Annual Meeting of the American Physical Society's Division of Plasma Physics (APS-DPP). Papers, posters

  3. Magnet design considerations for Fusion Nuclear Science Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  4. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect (OSTI)

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  5. Laser fusion experiment yields record energy at NIF | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  6. Sandia National Labs: PCNSC: Departments: Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor & Optical Sciences Energy Sciences > CINT User Program > CINT Science Small Science Cluster Business Office News Partnering Research Neal Shinn Neal D. Shinn Sr....

  7. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick

    Office of Scientific and Technical Information (OSTI)

    Liquid-Walls (Conference) | SciTech Connect Conference: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick Liquid-Walls Citation Details In-Document Search Title: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick Liquid-Walls A fusion power plant is described that utilizes a new version of the tandem mirror device including spinning liquid walls. The magnetic configuration is evaluated with an axisymmetric equilibrium code predicting an average

  8. Fusion-fission energy systems evaluation

    SciTech Connect (OSTI)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  9. DOE and Fusion Links | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE and Fusion Links United States Department of Energy U.S. Department of Energy Office of Science Office of Fusion Energy Sciences U.S. D.O.E. Princeton Site Office Map showing ...

  10. FESAC Agenda - February 2001 | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    February 2001 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings ... Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee ...

  11. Scientific and technological advancements in inertial fusion energy

    SciTech Connect (OSTI)

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  12. Scientific and technological advancements in inertial fusion energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  13. Environmental Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Science & Technology » Environmental Science Environmental Science A revolutionary new turbine technology for hydropower plants is one step closer to its first commercial deployment. At peak performance, an Alden turbine should convert about 94 percent of the water’s energy into usable electricity, comparable or superior to the efficiency of traditional turbines; the overall wildlife survival rate should be over 98 percent, up from 80-85 percent for a

  14. Fusion Education | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Fusing the Audacity of Imagination with Pathways to Excellence Fusing the Audacity of Imagination with Pathways to Excellence April 6, 2016 - 1:39pm Addthis Awardees and distinguished guests at PNNL’s Pathway to Excellence Celebration are (left to right) Jud Virden, Associate Laboratory Director, Energy and Environment, Malin Young, Deputy Director for Science and Technology, Jetta Wong, Director for the Office of Technology Transitions, Shari Li, Distinguished Inventor of

  15. Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy By Argonne National Laboratory March 31, 2014 Tweet Widget Google Plus One Share on Facebook Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of California, Davis; Stephane Ethier, Princeton Plasma Physics Laboratory) Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of

  16. MIT- Energy Science and Engineering Laboratory | Open Energy...

    Open Energy Info (EERE)

    Science and Engineering Laboratory Jump to: navigation, search Logo: MIT- Energy Science and Engineering Laboratory Name: MIT- Energy Science and Engineering Laboratory Address: 77...

  17. MIT Plasma Science & Fusion Center: research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research Fusion Technology & Engineering Plasma Technology Waves & Beams Useful...

  18. Fusion Energy Greg Hammett & Russell Kulsred Princeton University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell Kulsred Princeton University Wednesday, Dec 4, 2013 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Lyman Spitzer, Jr. made major contributions in several fields of astrophysics, plasma physics, and fusion energy. He invented the novel stellarator concept for confining plasmas for fusion, and was an early proponent of

  19. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  20. Inertial fusion: an energy-production option for the future

    SciTech Connect (OSTI)

    Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

    1982-05-01

    The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

  1. Statement of Bernard Bigot Director-General ITER International Fusion Energy Organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bernard Bigot Director-General ITER International Fusion Energy Organization Before the Subcommittee on Energy Committee on Science, Space and Technology U.S House of Representatives The ITER Project: Moving Forward April 20, 2016 Thank you Chairman Weber, Ranking Member Grayson, and distinguished members of the Committee. I am grateful for this opportunity to present to you the status of progress on the ITER Project. Introduction Today we are at a critical time in the history of the ITER

  2. International Atomic Energy Agency holds conference on fusion roadmap |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab International Atomic Energy Agency holds conference on fusion roadmap By John Greenwald November 8, 2012 Tweet Widget Google Plus One Share on Facebook Hutch Neilson, third from left, chaired the four-day International Atomic Energy Agency Conference at the University of California at Los Angeles in mid-October, which drew 70 participants from 16 countries and international groups. Pictured here from left to right are Keeman Kim, National Fusion Research

  3. Science and Energy Town Hall

    Broader source: Energy.gov [DOE]

    Watch a live broadcast of the Science & Energy Town Hall on Wednesday, January 20, 2016 from 2:30 p.m. to 3:30 p.m. EST.

  4. Materials Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Science Materials Science The unique internal construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. <a href="http://energy.gov/articles/berkeley-labs-gas-filled-insulation-rivals-fiber-buildings-sector">Learn more about this cost-effective, energy-efficient insulation</a>. The unique internal construction of the

  5. MIT Plasma Science & Fusion Center: research>alcator>

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of harnessing the nuclear process that powers our sun. This stellar process, called fusion, produces minimal waste and offers the hope of an almost limitless supply of safe,...

  6. MIT Plasma Science & Fusion Center: research>alcator>information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Beams Technology & Engineering Francis Bitter Magnet Laboratory Useful Links What is Fusion? The nucleus of an atom consists of protons, which have a positive electrical charge,...

  7. Professor and Director of the Fusion Science Center of Extreme...

    National Nuclear Security Administration (NNSA)

    models for inertial fusion implosions and scaling laws for ignition. These scaling laws are the basis for present experiments on the OMEGA laser and future research on NIF

  8. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Photons & Fusion Newsletter - 2014 February Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question. Nature Article Reports on Fuel Gain Achieved In NIF High-Foot Experiments A key step on the way to ignition on NIF is for the energy generated through fusion reactions in an inertially confined fusion plasma to exceed the amount of energy deposited into the

  9. Renewable Energy: science, politics, and economics (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics You are ...

  10. About NIF & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF users include scientists from the U.S. Department of Energy national laboratories, worldwide fusion energy and high energy density science research centers, academia, and other ...

  11. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect (OSTI)

    Kramer, K

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive Mesh Refinement (AMR) adjusts the depletion zone size according to the variation in flux across the zone or fractional contribution to total absorption or fission. A parametric analysis on a fully mixed fuel core was performed using the LNC and ABL code suites. The resulting system parameters are found to optimize performance metrics using a 20 MT DU fuel load with a 20% TRISO packing and a 300 {micro}m kernel radius operated with a fusion input power of 500 MW and a fission blanket gain of 4.0. LFFH potentially offers a proliferation resistant technology relative to other nuclear energy systems primarily because of no need for fuel enrichment or reprocessing. A figure of merit of the material attractiveness is examined and it is found that the fuel is effectively contaminated to an unattractive level shortly after the system is started due to fission product and minor actinide build up.

  12. Fusion scientists gear up to learn how to harness plasma energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living on the edge Fusion scientists gear up to learn how to harness plasma energy By ... Researchers working on an advanced experimental fusion reactor are readying experiments ...

  13. A Pilot Plant: The Fastest Path to Commercial Fusion Energy

    SciTech Connect (OSTI)

    Robert J. Goldston

    2010-03-03

    Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ? 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

  14. Science Highlights | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter

  15. Basic Energy Sciences (BES) at LLNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences at LLNL Eric Schwegler is the Point-of-Contact for DOE Office of Science Programs - Basic Energy Sciences (BES) at LLNL. Highlights Mesoscale Simulations of ...

  16. Fusion Simulation Project. Workshop sponsored by the U.S. Department of Energy Rockville, MD, May 16-18, 2007

    SciTech Connect (OSTI)

    2007-05-16

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  17. Fusion Simulation Project. Workshop Sponsored by the U.S. Department of Energy, Rockville, MD, May 16-18, 2007

    SciTech Connect (OSTI)

    Kritz, A.; Keyes, D.

    2007-05-18

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  18. NREL: Energy Sciences - Biosciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Illustration shows photosynthetic cycle. At the top left are the labels solar energy, H2O, and CO2; an arrow points down to Lignocellulosic Biomass. An arrow from this...

  19. Sandia Energy Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wins Funding for Two DOE-EERE Computer-Aided Battery-Safety R&D Projects http:energy.sandia.govsandia-wins-funding-for-two-doe-eere-computer-aided-battery-safety-rd-proje...

  20. Building Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Building Science This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures?Ž PDF icon issue1_highr_enclosures.pdf More Documents & Publications Issue #1: How Do We First Do No Harm with High-R Enclosures? ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes Basement Insulation Systems - Building America Top Innovation

  1. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photons fusion 2012 Photons & Fusion Newsletter August 2012 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science ...

  2. Weihai International Renewable Energy Science Park | Open Energy...

    Open Energy Info (EERE)

    Science Park Jump to: navigation, search Name: Weihai International Renewable Energy Science Park. Place: Weihai, Shandong Province, China Sector: Renewable Energy Product:...

  3. Wuxi Erquan Solar Energy Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Erquan Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Wuxi Erquan Solar Energy Science& Technology Co Ltd Place: Wuxi, Jiangsu Province, China Zip: 214128...

  4. Wuxi Shangpin Solar Energy Science Technology Co | Open Energy...

    Open Energy Info (EERE)

    Shangpin Solar Energy Science Technology Co Jump to: navigation, search Name: Wuxi Shangpin Solar Energy Science & Technology Co Place: Wuxi, Jiangsu Province, China Product:...

  5. Energy BioSciences Institute | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Energy BioSciences Institute Name: Energy BioSciences Institute Place: Berkeley, California Zip: 94720 Region: Bay Area Website: www.energybiosciencesinstitute...

  6. Interdisciplinary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    offices: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics and Nuclear Physics. ...

  7. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  8. Supercomputers Predict New Turbulent Interactions in Fusion Plasmas | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Supercomputers Predict New Turbulent Interactions in Fusion Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information »

  9. Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma | U.S. DOE Office of Science (SC) Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot Plasma Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  10. Elevance Renewable Sciences Inc | Open Energy Information

    Open Energy Info (EERE)

    Elevance Renewable Sciences Inc Jump to: navigation, search Name: Elevance Renewable Sciences Inc Place: Bolingbrook, Illinois Zip: 60440 Sector: Biofuels, Renewable Energy...

  11. Recent U.S. advances in ion-beam-driven high energy densityphysics and heavy ion fusion

    SciTech Connect (OSTI)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy,P.K.; Seidl, P.A.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, Qin H.; Sefkow, A.B.; Startsev,E.A.; Welch, D.; Olson, C.

    2006-07-05

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by > 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

  12. Koel applies science of surface chemistry to fusion research at PPPL |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Koel applies science of surface chemistry to fusion research at PPPL By Catherine Zandonella March 26, 2012 Tweet Widget Google Plus One Share on Facebook To study the interactions of lithium under conditions similar to what might be found in a fusion reactor, lithium on a sample of TZM molybdenum, which is an alloy of molybdenum, titanium, zirconium and carbon known for its high strength and temperature properties, is heated inside an ultrahigh vacuum chamber

  13. Energy Department Requests Proposals for Advanced Scientific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biology, fusion science, groundwater modeling, high energy physics, nuclear physics, quantum chromodynamics, materials sciences, radiation transport and turbulence. Research ...

  14. Find Funding | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Biological & Environmental Research (BER) funding opportunities information Fusion Energy Sciences (FES) funding opportunities information High Energy Physics (HEP) ...

  15. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  16. DOE National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE National Science Bowl DOE National Science Bowl April 28, 2016 8:00AM EDT to May 2, 2016 5:00PM EDT Washington, D.C. Contact http://science.energy.gov/wdts/nsb/

  17. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    matter and materials; fusion and plasma sciences; high energy and nuclear ... SLAC National Accelerator Laboratory: for his work advancing fusion and plasma sciences. ...

  18. Funding Opportunities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW

  19. International Activities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Activities Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research

  20. Research | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research Print Text Size: A A A

  1. Origins | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Origins Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » International Activities Origins

  2. Fusion through the eyes of a veteran science journalist | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Fusion through the eyes of a veteran science journalist July 15, 2013 Tweet Widget Google Plus One Share on Facebook Daniel Clery (Photo by Sadie Windscheffel-Clarke) Daniel Clery Gallery: Author Daniel Clery recently published "A Piece of the Sun," a 320-page narrative of the history of fusion research and the personalities who have devoted their careers to it. Clery is a United Kingdom-based reporter for Science magazine who holds a bachelor's degree in theoretical

  3. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect (OSTI)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  4. American Fusion News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 5, 2013 Applying physics, teamwork to fusion energy science February 22, 2013 A Tour of Plasma Physics in Downtown Cambridge December 4, 2012 Placing Fusion Power on a ...

  5. Center for Electrochemical Energy Science | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their...

  6. Los Alamos Lab: Science Program Office, Energy Security Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Program Office: Fossil Energy & Environment (SPO-FE) SPO FE Science AEI Nuclear Fossil Energy & Environment Home Office of Science Home Alternative Energy & Infrastructure ...

  7. Building Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Building America » Building Science Education Building Science Education The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. The Building Science Education Roadmap, developed by DOE and leaders of the building science community,

  8. Photon Science for Renewable Energy

    SciTech Connect (OSTI)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-03-31

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  9. The Effects of Neutron Transfer on Nuclear Fusion at Low Energies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Neutron Transfer on Nuclear Fusion at Low Energies Nuclear fusion produces heavier nuclei in stars and in laboratories. At energies so low that a classical particle could not penetrate the Coulomb repulsion of the nucleus, the Coulomb barrier, fusion takes place by quantum tunneling. At these energies, fusion rates can be sensitive to the interplay between nuclear structure and nuclear reactions. This talk presents experimental studies of the influence of neutron transfer on

  10. Energy Efficiency and Renewable Energy Science and Technology Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fellowships | Department of Energy Education & Professional Development » Graduate & Postdoctoral Opportunities » Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships Program Description The Energy Efficiency and Renewable Energy (EERE) Science and Technology Policy (STP) Fellowships serve as a next step in the educational and professional development of scientists and

  11. MIT Plasma Science & Fusion Center: research, alcator, publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering...

  12. COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FNSF | Princeton Plasma Physics Lab December 10, 2013, 11:00am to 12:30pm Colloquia MBG Auditorium COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics, DIII-D Presentation: File Presentation Abstract: PDF icon COLL.12.10.13.pdf Recent DIII-D research has provided significant new information for the physics basis of key scientific issues for successful operation of ITER and future steady state fusion tokamaks, including control of

  13. Department of Energy National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you,...

  14. MIT Plasma Science & Fusion Center: research>alcator>publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering Useful Links APS Presentations New Orleans...

  15. Science and Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F-16 (865) 574-6694 kelsey.mandel@hc.doe.gov Science Headquarters - HR Advisory Office GARDNER, WALT SR HR BUSINESS PARTNER 301-903-0994 waltrunette.gardner@science.doe.gov Science ...

  16. Zhuhai Oil Energy Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    it. Zhuhai Oil Energy Science and Technology is a company based in Zhuhai, China. Zhuai Oil Energy produces biofuels and recently increased its production capacity to 60 metric...

  17. DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Citations Database DOE R&D Accomplishments DOE R&D Project Summaries DOE Data Explorer Nuclear Power and Advanced Systems Information Bridge Energy Citations Database DOE R&D ...

  18. MIT Plasma Science & Fusion Center: research, alcator, publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2nd Annual Meeting of the APS Division of Plasma Physics, Chicago, 2010 Invited Orals A. Hubbard I-mode regime with an edge energy transport barrier but no particle barrier in...

  19. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  20. Fusion Materials Science and Technology Research Opportunities now and during the ITER Era

    SciTech Connect (OSTI)

    Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

    2014-03-13

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  1. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect (OSTI)

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  2. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  3. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  4. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in...

  5. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental...

  6. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Clean Energy Science and Innovation Clean Energy Hydrogen Production and Storage Nuclear Fuel Cycle Research and Development Renewable Energy Research Among the most critical future challenges for our nation is the development of abundant, reliable and sustainable energy sources. Providing the energy security fix in America will require an energy mix - a variety of energy sources. The expertise of the Savannah River National Laboratory (SRNL), located at the Department of Energy's

  7. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal hydrides Science and Innovation Clean Energy - Hydrogen Production and Storage ... radioactive isotope of hydrogen that is a vital component of modern nuclear defense. ...

  8. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office (BTO) stated needs for the new program in Waste to Energy (WTE) initiative. SRNL is leveraging its nuclear core competencies in chemistry, material science and ...

  9. NREL: Energy Sciences - Jun-Wei Luo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factors." Energy Environmental & Science (4); p. 2546. Luo, J.-W.; Zunger, A. (2010). "Design Principles and Coupling Mechanisms in the 2D Quantum Well Topological Insulator...

  10. FES Budget | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (78KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  11. Jobs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (78KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  12. About | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (78KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  13. Science and Technology Review December 2011 (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    AND FUSION TECHNOLOGY; 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; COMPUTER CALCULATIONS; COMPUTER CODES; COMPUTERIZED SIMULATION; ENERGY; ...

  14. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F:

  15. Staff | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Staff Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (78KB) Staff Edmund J Synakowski FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  16. Fusion Nuclear Science and Technology Program - Status and Plans for

    Office of Environmental Management (EM)

    Fukushima: Looking Back, Looking Ahead Fukushima: Looking Back, Looking Ahead March 11, 2016 - 3:47pm Addthis John Kotek John Kotek Acting Assistant Secretary for the Office of Nuclear Energy On March 11, 2011, a magnitude 9.0 earthquake struck Japan. It was one of the most powerful earthquakes on record, unleashing a tsunami that ravaged 430 miles of coastline, destroying communities, and killing nearly 16,000 people. The combined effects of the earthquake and tsunami overwhelmed on and offsite

  17. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  18. Solar Energy Education. Renewable energy activities for earth science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect earth science Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for earth science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  19. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect (OSTI)

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  20. Fusion materials high energy-neutron studies. A status report

    SciTech Connect (OSTI)

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made in a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections.

  1. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy...

  2. Primary Science of Energy Student Guide (42 Activities) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Student Guide (42 Activities) Primary Science of Energy Student Guide (42 Activities) Information about Primary Science of Energy, 42 student activities on energy basics for grades...

  3. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  4. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  5. ACCESS: Argonne Collaborative Center for Energy Storage Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCESS: Argonne Collaborative Center for Energy Storage Science Share Topic Energy Energy usage Energy storage Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative ...

  6. Interim report of the Cold Fusion Panel of the Energy Research Advisory Board

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This report reviews the current status of cold fusion and makes some preliminary conclusions and recommendations, as requested by the Secretary of Energy.

  7. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  8. Rising Solar Energy Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Rising Solar Energy Science and Technology Co Ltd Place: Qinhuangdao, Hebei Province, China Zip: 66600 Sector: Solar Product: Chinese solar module laminator manufacturer...

  9. Energy Efficiency and Renewable Energy Science and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gain deep insight into the federal government's role in the ... field of science, engineering or other highly ... Buildings Vehicles Geothermal Water Government Energy ...

  10. Fusion and Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science Fusion and Ignition What is Fusion? Fusion is the process that powers the sun and the stars. Fusion describes what happens when the nuclei of light atoms overcome the ...

  11. Ion Deflection for Final Optics In Laser Inertial Fusion Power...

    Office of Scientific and Technical Information (OSTI)

    Ion Deflection for Final Optics In Laser Inertial Fusion Power Plants Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  12. Ab Initio Calculations of Light-Ion Fusion Reactions (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ab Initio Calculations of Light-Ion Fusion Reactions Citation Details In-Document Search ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  13. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  14. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  15. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  16. Experimental demonstration of fusion-relevant conditions in magnetized

    Office of Scientific and Technical Information (OSTI)

    liner inertial fusion (Journal Article) | DOE PAGES Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion « Prev Next » Title: Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion × You are accessing a document from the Department of Energy's (DOE) Public Access Gateway for Energy & Science (PAGES). This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a

  17. Great Lakes Science Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind...

  18. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect (OSTI)

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  19. 2016 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    6 Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Science Highlights 2016 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press

  20. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    2 Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Science Highlights 2012 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press

  1. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    5 Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Science Highlights 2015 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press

  2. Sharlene Weatherwax | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    fusion energy sciences, materials and chemical sciences biological and environmental ... and plant feedstocks for the production of biofuels or renewable chemical feedstocks. ...

  3. Background: Energy's holy grail. [The quest for controlled fusion

    SciTech Connect (OSTI)

    Not Available

    1993-01-22

    This article presents a brief history of the pursuit and development of fusion as a power source. Starting with the 1950s through the present, the research efforts of the US and other countries is highlighted, including a chronology of hey developments. Other topics discussed include cold fusion and magnetic versus inertial fusion issues.

  4. NREL: Energy Sciences - Joongoo Kang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    his Ph.D. in physics from the KAIST, South Korea, under the supervision of Prof. K. J. Chang. His background is in solid-state physics and materials science based on...

  5. NREL: Energy Sciences - Tim Snow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Materials Science Center. Since graduating in 1987, he has worked within the semiconductor field for Intel, LSI Logic, Atmel, and ZettaCore, Inc. He holds a U.S. patent for...

  6. NREL: Energy Sciences - Yufeng Zhao

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Zhao graduated from the physics department of Harbin University of Science & Technology and earned his Ph.D. degree from Peking University in 1998. After two years at the...

  7. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  8. Science for Our Nation's Energy Future | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements ...

  9. Before the Subcommittee on Energy - House Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Before the Subcommittee on Energy - House Committee on Science, Space, and Technology ...

  10. Shanghai Chaori Solar Energy Science Technology Development Co...

    Open Energy Info (EERE)

    Chaori Solar Energy Science Technology Development Co Ltd Jump to: navigation, search Name: Shanghai Chaori Solar Energy Science & Technology Development Co Ltd Place: Shanghai,...

  11. Qinhuangdao Rising Solar Energy Science and Technology Co Ltd...

    Open Energy Info (EERE)

    Rising Solar Energy Science and Technology Co Ltd Jump to: navigation, search Name: Qinhuangdao Rising Solar Energy Science and Technology Co., Ltd Place: Qinhuadao, Hebei...

  12. Shanshan Ulica Solar Energy Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Ulica Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Shanshan Ulica Solar Energy Science&Technology Co Ltd Place: Shanghai, Shanghai Municipality, China...

  13. Khazanah Nasional Berhad Beijing China Sciences General Energy...

    Open Energy Info (EERE)

    Khazanah Nasional Berhad Beijing China Sciences General Energy JV Jump to: navigation, search Name: Khazanah Nasional Berhad & Beijing China Sciences General Energy JV Place: China...

  14. Beijing China Sciences General Energy Environment GEE | Open...

    Open Energy Info (EERE)

    Sciences General Energy Environment GEE Jump to: navigation, search Name: Beijing China Sciences General Energy&Environment (GEE) Place: Beijing Municipality, China Zip: 100080...

  15. Mesa Energy formerly called Mesa Environmental Sciences | Open...

    Open Energy Info (EERE)

    Energy formerly called Mesa Environmental Sciences Jump to: navigation, search Name: Mesa Energy (formerly called Mesa Environmental Sciences) Place: Pennsylvania Zip: 19355...

  16. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Committee on Science, Space and Technology Before the House Subcommittee on Energy, Committee on Science, Space and Technology Testimony of Dr. Peter Lyons, Assistant ...

  17. FES Committees of Visitors | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committees of Visitors Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (78KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301)

  18. Benefits of FES | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefits of FES Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Benefits of FES Print Text Size: A A A FeedbackShare Page The

  19. Basic Energy Sciences Materials Sciences programs: FWP executive summaries

    SciTech Connect (OSTI)

    Vook, F.L.; Samara, G.A.

    1989-02-01

    The goals of our Basic Energy Sciences (BES) Materials Science Program at Sandia are: (1) Perform basic, forefront interdisciplinary research using the capabilities of several organizations. (2) Choose programs broadly complementary to Sandia's weapons laboratory mission, but separably identifiable. (3) Perform research in a setting which enhances technological impact because of Sandia's spectrum of basic research, applied research and development engineering. (4) Use large, capital-intensive research facilities not usually found at universities. The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics, and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes ion-implantation-modified materials, physics and chemistry of ceramics, tailored surfaces for materials applications, strained-layer semiconductors, chemical vapor deposition, surface photo kinetics, organic and high-temperature superconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors.

  20. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  1. Harnessing the Energy of the Stars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Progress and Former Under Secretary for Science These are exciting times for fusion energy. Today I'm sharing that excitement with several hundred scientists at a...

  2. Sandia Energy Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eronautics-and-astronauticsfeed 0 Detecting rare, abnormally large grains by x-ray diffraction http:energy.sandia.govdetecting-rare-abnormally-large-grains-by-x-ray-diffractio...

  3. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

  4. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes the physics and chemistry of ceramics, the use of energetic particles for the synthesis and study of materials, high-temperature and organic superconductors, tailored surfaces for materials applications, chemical vapor deposition sciences, strained-layer semiconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors. A new start just getting underway deals with the atomic level science of interfacial adhesion. Our interdisciplinary program utilizes a broad array of sophisticated, state-of-the-art experimental capabilities provided by other programs. The major capabilities include several molecular-beam epitaxy and chemical-vapor-deposition facilities, electron- and ion-beam accelerators, laser-based diagnostics, advanced surface spectroscopies, unique combined high-pressure/low-temperature/high-magnetic-field facilities, and the soon to be added scanning tunneling and atomic force microscopies.

  5. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  6. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  7. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    SciTech Connect (OSTI)

    Hawryluk, R J

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  8. FES Presentations | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentations Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Community Resources FES

  9. Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Facilities Print Text Size: A A A FeedbackShare Page

  10. Community Resources | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Community Resources Print Text

  11. Solar energy education. Renewable energy activities for general science

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  12. Department of Energy National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Ray. And thanks to our Office of Science for all the work that went into organizing this year's National Science Bowl. In particular, I'd like to recognize Sue Ellen Walbridge, who has orchestrated this important event for the past 17 years. Sue Ellen, thank you for your devotion to America's scientific future. I'm glad to have my wife

  13. Energy Innovation Hubs: Achieving Our Energy Goals with Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hubs: Achieving Our Energy Goals with Science Energy Innovation Hubs: Achieving Our Energy Goals with Science March 2, 2012 - 6:44pm Addthis Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Secretary Chu stops at Oak Ridge

  14. 10 Facts You Should Know About Fusion Energy | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tritium can be produced from lithium, which is available from land deposits or from seawater. It's industrial scale. Fusion can power cities 24 hours a day regardless of weather. ...

  15. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the year 2025. This would establish the scientific basis for a fusion power plant that could be built in the 2040s for the large-scale production of carbon-free electricity. ...

  16. Scientists discuss progress toward magnetic fusion energy at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Following are summaries of their presentations. Previewing the next steps on the path to a magnetic fusion power plant By John Greenwald Scientists around the world have crossed a ...

  17. "Mug Handles" Help Get a Grip on Lower-Cost, Controllable Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab "Mug Handles" Help Get a Grip on Lower-Cost, Controllable Fusion Energy American Fusion News Category: U.S. Universities Link: "Mug Handles" Help Get a Grip on Lower-Cost, Controllable Fusion Energy

  18. Energy Sciences Network (ESnet) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sciences Network (ESnet) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Argonne Leadership Computing Facility (ALCF) Energy Sciences Network (ESnet) National Energy Research Scientific Computing Center (NERSC) Oak Ridge Leadership Computing Facility (OLCF) Accessing ASCR Facilities Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced

  19. Expanding Science and Energy Literacy with America’s Science and Technology Centers

    Broader source: Energy.gov [DOE]

    The Department's new partnership with the Association of Science and Technology Centers is advancing energy literacy through museums and science centers.

  20. Basic Energy Sciences Network Requirements Review Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... meeting our critical energy challenges. ... the California Institute of Technology ... Life Science Physics Materials Science 0 500 1000 1500 2000 FY10: 2032 FY11: 1931 ...

  1. Before the Subcommittee on Energy - House Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - House Committee on Science, Space and Technology Before the Subcommittee on Energy - House Committee on Science, Space and Technology Testimony of Adam Sieminiski, Administrator, ...

  2. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of ...

  3. Wuhan Guoce Science Technology Co Ltd Guoce | Open Energy Information

    Open Energy Info (EERE)

    Guoce Science Technology Co Ltd Guoce Jump to: navigation, search Name: Wuhan Guoce Science & Technology Co., Ltd (Guoce) Place: Wuhan, Hubei Province, China Sector: Wind energy...

  4. Goldwind Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Science Technology Co Ltd Jump to: navigation, search Name: Goldwind Science & Technology Co Ltd Place: Urumqi, Xinjiang Autonomous Region, China Zip: 830000 Sector: Wind energy...

  5. Feng Fa Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    Feng Fa Science and Technology Jump to: navigation, search Name: Feng Fa Science and Technology Place: Shenzhen, Guangdong Province, China Sector: Wind energy Product: A VCPE...

  6. Zhejiang Sunflower Light Energy Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Sunflower Light Energy Science & Technology Co Ltd Place: Shaoxing, Zhejiang Province, China Zip: 312071...

  7. Jiuquan Xinmao Science and Technology Wind Power | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Wind Power Jump to: navigation, search Name: Jiuquan Xinmao Science and Technology Wind Power Place: Gansu Province, China Sector: Wind energy Product: Gansu...

  8. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Energy and Environment By: Dr. Anna Palmisano, Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science ...

  9. Before the House Subcommittee on Energy - Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting...

  10. american museum of science and energy | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    american museum of science and energy | National Nuclear Security Administration Facebook ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home american museum of science and ...

  11. Before the House Subcommittee on Energy - Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting Director of the Office of Science Before the House ...

  12. Chapter 9 - Enabling Capabilities for Science and Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Basic science expands our understanding of the natural world and forms the foundation for future technology. Energy systems that meet our energy security, economic, and environmental objectives require a new generation of materials that may not be naturally available. However, creating these new materials requires a level of

  13. Beam Propagation For The Laser Inertial Confinement Fusion-Fission Energy

    Office of Scientific and Technical Information (OSTI)

    Engine (Conference) | SciTech Connect Conference: Beam Propagation For The Laser Inertial Confinement Fusion-Fission Energy Engine Citation Details In-Document Search Title: Beam Propagation For The Laser Inertial Confinement Fusion-Fission Energy Engine Several potential issues concerning laser-beam propagation thorough the LIFE target chambers are addressed. It is found that the absorption due to inverse Bremsstrahlung limits the gas density to approximately 2 {micro}g/cc of xenon gas. A

  14. PPPL Races Ahead with Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides

  15. National Science Bowl Regional Roundup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl Regional Roundup National Science Bowl Regional Roundup March 18, 2015 - 2:33pm Addthis Photo courtesy of National Renewable Energy Laboratory. Photo courtesy of National Renewable Energy Laboratory. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs National Science Bowl Regional Roundup It's like March Madness for science students. Storified by Energy Department * Tue, May 05 2015 15:08:26 2015ScienceBowl125 * National Renewable Energy Lab To quote President

  16. Physicist Zoe Martin's fusion quest: a stellar future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoe Martin's fusion quest: a stellar future Physicist Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. August 27, 2013 Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. She also pursues gravity-defying dance in her spare time. Martin said her mentor, physicist Leslie Sherrill, takes the time to

  17. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect (OSTI)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

  18. Science for Our Nation's Energy Future | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 11.18.10 Science for Our Nation's Energy Future Print Text Size: A A A Subscribe FeedbackShare Page May 25-27, 2011 :: Science for Our Nation's Energy Future, the inaugural Energy Frontier Research Centers Summit and Forum on May 25 - 27, 2011 at the Renaissance Penn Quarter

  19. Response to FESAC survey, Non-Fusion Connections to Fusion Energy...

    Office of Scientific and Technical Information (OSTI)

    Due to the iconic status of the pillars of the Eagle Nebula, this research will bring popular attention to plasma physics, HED laboratory physics, and fundamental science at NIF ...

  20. National Science Bowl 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl 2013 National Science Bowl 2013 Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center,...

  1. EFRC Newsletter | Bringing Energy Science into the Classroom |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photosynthetic Antenna Research Center EFRC Newsletter | Bringing Energy Science into the Classroom June 19, 2015 EFRC Newsletter | Bringing Energy Science into the Classroom Featuring PARC Outreach Coordinator Rachel Ruggirello View Article Here

  2. Office of the Under Secretary for Science and Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Franklin (Lynn) Orr Under Secretary for Science and Energy More about Franklin (Lynn) Orr Adam Cohen Deputy Under Secretary for Science and Energy More about Adam Cohen Tarak Shah ...

  3. Argonne Energy Sciences Building achieves LEED Gold | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    natural light. (Click to view larger.) Argonne Energy Sciences Building achieves LEED Gold By Diana Anderson * May 21, 2015 Tweet EmailPrint The Energy Sciences Building (ESB) at...

  4. Fusion scientists gear up to learn how to harness plasma energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 30, 2011 Tweet Widget Google Plus One Share on Facebook Researchers working on an advanced experimental fusion machine are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National

  5. Fusion scientists gear up to learn how to harness plasma energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 28, 2011 Tweet Widget Google Plus One Share on Facebook Researchers working on an advanced experimental fusion reactor are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National

  6. Before the House Science and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy Subcommittee on Energy and Environment By: Dr. Anna Palmisano, Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science Research Applications PDF icon 9-10-09_Final_Testimony_(Palmisano).pdf More Documents & Publications Before the House Science and Technology Subcommittee on Energy and Environment Chapter 9 - Enabling Capabilities for Science and Energy Biosystems Design Before the House

  7. Before the House Science and Technology, Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Science and Technology, Subcommittee on Energy and Environment By: Steve Chalk, Principal Deputy Assistant Secretary, Office of Energy Efficiency and Renewable ...

  8. Sandia Energy - Materials Science and Engineering Support for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Home Renewable Energy Energy...

  9. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  10. FES Program Documents | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Documents Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Community Resources FES

  11. Closed Lab Announcements | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Announcements Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW

  12. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2013 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question....

  13. Proliferation Risks of Magneetic Fusion Energy: Clandestine Production, Covert Production and Breakout

    SciTech Connect (OSTI)

    A. Glaser and R.J. Goldston

    2012-03-13

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material inn a declared facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  14. Fusion energy division annual progress report, period ending December 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  15. National Lab Celebrates a Century of Science | Department of Energy

    Energy Savers [EERE]

    Lab Celebrates a Century of Science National Lab Celebrates a Century of Science October 13, 2010 - 1:00pm Addthis Washington, DC - On the occasion of its 100th anniversary, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) today launched its Regional University Alliance (NETL-RUA) and dedicated the Energy Challenge, an interactive energy exhibit for kids, with an event at the Carnegie Science Center. Energy Challenge is an interactive kiosk that quizzes players on

  16. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect (OSTI)

    Latkowski, J.F.

    1996-11-01

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  17. U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shale Gas and Shale Oil Plays Review of Emerging Resources: July 2011 www.eia.gov U.S. Depa rtment of Energy W ashington, DC 20585 This page inTenTionally lefT blank The information presented in this overview is based on the report Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays, which was prepared by INTEK, Inc. for the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. The full report is attached. By law,

  18. Physicist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It oversees and is the principal federal funding agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science ...

  19. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect (OSTI)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  20. The National Ignition Facility: Ushering in a new age for high energy density science

    SciTech Connect (OSTI)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-04-15

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  1. The rhetoric of science: A case study of the cold fusion controversy

    SciTech Connect (OSTI)

    Hatfield, D.L.

    1992-01-01

    This dissertation examines the circumstances surrounding and the rhetoric involved in the cold fusion controversy begun on March 23, 1989, when two University of Utah electrochemists, Martin Fleischmann and Stanley Pons, announced by press conference the discovery of room-temperature nuclear fusion. The dissertation seeks to determine to what extent a rhetorical analysis of cold fusion discourse may increase understanding of the controversy; the success of Fleischmann and Pons as scientific rhetors; the ways in which scientists' attitudes, values, and assumptions manifest themselves in the discourse; and finally, what may be learned about scientific discourse by examining the cold fusion controversy in particular. Examined were Fleischmann and Pon's initial publication announcing the cold fusion discovery in the Journal of Electroanalytical Chemistry; Steven E. Jones's initial publication of his cold fusion discovery and several representative discourse samples from the journal Nature; and Fleischmann and Pons's latest article in the Journal of Fusion Technology. Cold fusion discourse addressed evidential issues, questioning the existence of the cold fusion phenomenon. Several lines of argument were evoked to address this issue, including experimental competence, experimental replication, external consistency, communality, and disinterestedness. Also discovered is division between electrochemists and physicists over what constitutes valid evidence: electrochemists looked to excess heat production as proof of fusion; physicists looked to neutron production. The study concludes that Fleischmann and Pons followed an unsuccessful rhetorical strategy in their initial published paper. An alternative rhetorical strategy was available to Fleischmann and Pons, one in which they could have interpreted their evidence, thereby evoking a less confrontational response from the scientific community.

  2. Federal Advisory Committee Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Environmental Management Advisory Board (EMAB) Environmental Management Site-Specific Advisory Boards (EM SSAB) Fusion Energy Sciences Advisory Committee (FESAC) High Energy ...

  3. Center for Bio-Inspired Energy Science (CBES) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Bio-Inspired Energy Science (CBES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Bio-Inspired Energy Science (CBES) Print Text Size: A A A FeedbackShare Page CBES Header Director Samuel Stupp Lead Institution Northwestern University Year Established 2009 Mission To discover and develop bio-inspired systems that reveal new connections between energy

  4. DOE Zero Energy Home Webinar: Comprehensive Building Science (Text Version)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Home Webinar: Comprehensive Building Science (Text Version) DOE Zero Energy Home Webinar: Comprehensive Building Science (Text Version) Below is the text version of the webinar, DOE Zero Energy Ready Home - Comprehensive Building Science, presented in March 2014. Watch the presentation. Lindsay Parker: Hi, everyone. Thanks for joining us for the Department of Energy Challenge Home technical webinar. We'll be starting in a couple minutes. Waiting for people to come on

  5. Expanding Science and Energy Literacy with America's Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at museums. These visits created lasting impressions, inspiring us to discover more about the world around us. It's no wonder that science and technology museums around the ...

  6. Complete Fusion and Break-up Fusion Reactions in Light Ion Interactions at Low Energies

    SciTech Connect (OSTI)

    Cerutti, F.; Ferrari, A.; Gadioli, E.; Mairani, A.; Foertsch, S. V.; Buthelezi, E. Z.; Fujita, H.; Neveling, R.; Smit, F. D.; Dlamini, J.; Cowley, A. A.; Connell, S. H.

    2007-10-26

    Experimental spectra of intermediate mass fragments (IMFs) produced in the interaction of two {sup 12}C ions at incident energy of 200 MeV and their reproduction by a binary fragmentation model and the Boltzmann Master Equation theory as implemented into the Monte Carlo transport and interaction code FLUKA are shown.

  7. Renewable energy is focus of New Science on Wheels programs offered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Wheels Renewable energy is focus of New Science on Wheels programs offered by Bradbury Science Museum The classes are designed to generate interest in science and ...

  8. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science /newsroom/_assets/images/science-icon.png Science Cutting edge, multidisciplinary national-security science. Health Space Computing Energy Earth Materials Science Technology The Lab All Jonathan Ward Engle Physicist wins early-career award for isotope work Jonathan Ward Engle, is among 49 winners, of the US Department of Energy's Early Career Research Program awards for 2016. - 5/12/16 Adaptive design framework. Machine learning accelerates the discovery of new materials Researchers

  9. Lighting Science Group | Open Energy Information

    Open Energy Info (EERE)

    Science Group Jump to: navigation, search Name: Lighting Science Group Place: Dallas, Texas Zip: 75201 Product: LED design company, with multiple patents pending in power...

  10. Area Science Park | Open Energy Information

    Open Energy Info (EERE)

    Area Science Park Jump to: navigation, search Name: Area Science Park Place: Italy Sector: Services Product: General Financial & Legal Services ( Government Public sector )...

  11. PSE Science Park | Open Energy Information

    Open Energy Info (EERE)

    PSE Science Park Jump to: navigation, search Name: PSE Science Park Place: Switzerland Sector: Services Product: General Financial & Legal Services ( Private family-controlled )...

  12. California Academy of Sciences | Open Energy Information

    Open Energy Info (EERE)

    Academy of Sciences Jump to: navigation, search Name: California Academy of Sciences Place: San Francisco, California Zip: 94103-3009 Product: Set up to explore, explain and...

  13. Global Science Gateway Agreement Signed in London | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Signed in London Global Science Gateway Agreement Signed in London January 22, 2006 - 10:15am Addthis DOE Partners With British Library on "Science.world" Initiative LONDON, ENGLAND -- Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), yesterday signed an agreement with Lynne Brindley, Chief Executive, the British Library, to partner on the development of a global science gateway. The gateway would eventually make science information

  14. Global Science Gateway Now Open | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Now Open Global Science Gateway Now Open June 22, 2007 - 2:07pm Addthis WorldWideScience.org opens public access to more than 200 million pages of international research information WASHINGTON, DC-The U.S. Department of Energy (DOE) and the British Library, along with eight other participating countries, today opened an online global gateway to science information from 15 national portals. The gateway, WorldWideScience.org, gives citizens, researchers and anyone interested in science the

  15. Before the House Science and Technology, Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment By: Steve Chalk, Principal Deputy Assistant Secretary, Office of Energy Efficiency and Renewable Energy Subject: Examining Federal Vehicle Technology Research and Development Programs PDF icon 3-24-09_Final_Testimony_Steve_Chalk.pdf More Documents

  16. Science Programs Organization | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs Organization Deputy Director for Science Programs Deputy Director Home Mission & Functions Deputy Director Biography Organization Organization Chart .pdf file (149KB) Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Staff

  17. Cold fusion, Alchemist's dream

    SciTech Connect (OSTI)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  18. Diagnosing magnetized liner inertial fusion experiments on Z (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES Diagnosing magnetized liner inertial fusion experiments on Z « Prev Next » Title: Diagnosing magnetized liner inertial fusion experiments on Z × You are accessing a document from the Department of Energy's (DOE) Public Access Gateway for Energy & Science (PAGES). This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  19. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    SciTech Connect (OSTI)

    Schissel, David P.; Abla, G.; Burruss, J. R.; Feibush, E.; Fredian, T. W.; Goode, M. M.; Greenwald, M. J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D. C.; Papka, M. E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M. R.; Uram, T.; Wallace, G.

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES €œGrid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid'€™s resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  20. US ITER | Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why Fusion? US Fusion Research Educational Resources Why Fusion? Home > Why Fusion? What is Fusion? Fusion is a key element in long-term US energy plans. ITER will allow scientists to explore the physics of a burning plasma at energy densities close to that of a commercial power plant. This is a critical step towards producing and delivering electricity from fusion to the grid. Nuclear fusion occurs naturally in stars, like our sun. When hydrogen gets hot enough, the process of fusion

  1. Energy Department and National Institute of Building Sciences...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Workforce Guidelines Energy Department and National Institute of Building Sciences Release Better Buildings Workforce Guidelines March 9, 2015 - 1:37pm Addthis ...

  2. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement Before the Committee On Science And Technology, Subcommittee on Energy and Environment, U.S. House of Representatives By: Jacques Beaudry-Losique, Deputy Assistant ...

  3. E-print Network home page -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community Enter Search Terms Search Advanced Search The E-print Network is . . . . . . a vast, integrated network of electronic ...

  4. Primary Science of Energy Teacher and Student Guides (42 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Teacher and Student Guides (42 Activities) Primary Science of Energy Teacher and Student Guides (42 Activities) Below is information about the student activitylesson plan from...

  5. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  6. Energy Frontier | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Experiments Intensity Frontier Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC

  7. ACCESS: The Argonne Collaborative Center for Energy Storage Science |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory ACCESS: The Argonne Collaborative Center for Energy Storage Science The Argonne Collaborative Center for Energy Storage Science (ACCESS) is a high-impact collaboration of scientists and engineers from across the U.S. Department of Energy's Argonne National Laboratory. Together, these researchers are charged with solving pressing energy storage problems through multidisciplinary research. Argonne's energy storage portfolio captures every point on the spectrum from

  8. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect (OSTI)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  9. NREL: Energy Sciences - Kirstin M. Alberi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a B.S. in Materials Science and Engineering from the Massachusetts Institute of Technology in 2003 and a PhD in Materials Science and Engineering from the University of...

  10. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House Subcommittee on Energy, Committee on Science, Space and Technology 12-11-14Peter Lyons FT HSST.pdf More...

  11. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Director, Office of High Energy Physics, Office of Science Subject: Investigating the Nature of Matter Energy, Space and Time PDF icon 10-1-09FinalTestimony(Kovar).pdf More...

  12. Adam Cohen becomes Deputy Under Secretary for Science and Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), Adam Cohen has been named Deputy Under Secretary for Science and Energy in Washington D.C....

  13. DOE Zero Energy Ready Home Webinar: Comprehensive Building Science

    Broader source: Energy.gov [DOE]

    DOE Zero Energy Homes aren’t just really efficient – they’re also designed and built using solid building science principles. Version 3 of the ENERGY STAR Certified Homes program, a prerequisite...

  14. Energy Flow Diagram | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science for Energy Flow » Energy Flow Diagram Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown

  15. DOE Science Showcase - Hydrogen Production | OSTI, US Dept of Energy,

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org More information Making molecular hydrogen more efficiently Breaking Up (Hydrogen) No Longer As Hard To Do Hydrogen and Our Energy Future Fuel Cell Animation Hydrogen & Fuel Cells Increase your Hydrogen IQ Visit the Science Showcase homepage. Last updated on Monday 29 July

  16. Chapter 9: Enabling Capabilities for Science and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Enabling Capabilities for Science and Energy September 2015 Quadrennial Technology Review 9 Enabling Capabilities for Science and Energy Tools for Scientific Discovery and Technology Development  Investment in basic science research is expanding our understanding of how structure leads to function-from the atomic- and nanoscale to the mesoscale and beyond-in natural systems, and is enabling a transformation from observation to control and design of new systems with properties tailored to

  17. Science on Saturday: Reimagining the Possible: Scientific Transformations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shaping the Path Towards Fusion Energy | Princeton Plasma Physics Lab March 5, 2016, 9:30am Science On Saturday MBG Auditorium at PPPL Science on Saturday: Reimagining the Possible: Scientific Transformations Shaping the Path Towards Fusion Energy Dr. Edmund Synakowski Department of Energy, Office of Science Abstract: PDF icon Synakowski.pdf Science_on_Saturday05Mar2016_ESynakowski Contact Information Coordinator(s): Ms. Deedee Ortiz-Arias dortiz@pppl.gov Host(s): Dr. Andrew Zwicker

  18. A review of research in ``cold fusion`` and its impact on energy conservation

    SciTech Connect (OSTI)

    Hurtak, J.J.; Bailey, P.G.

    1995-12-31

    During the past six years, cold fusion enhancement through a variety of research techniques has grown at a rapid rate to the point where it now can be regarded as a major field of endeavor, a second generation heat transfer technology. Observations have been made of deuteron-deuteron (d-d) fusion at room temperature during low voltage electrolytic infusion of deuterons into metallic titanium or palladium electrodes. Neutrons with and energy of approximately 2.5 MeV were with a sensitive neutron spectrometer at a rate of 2 {times} 10{sup {minus}3} n/s, which cannot be accounted for by ambient-neutron background variations. These reactions have been known to yield an excited helium nucleus ({sup 4} He) with approximately 23.8 MeV excess energy, where d+d= {sup 4}He + energy. In most successful experiments, 1% to 50% more heat than the input of electric power into the electrolytic cells has been recorded. These experiments are being successfully repeated on an international basis. Some of these results and various theories proposed to explain this phenomena are presented. Possible applications of ``cold fusion`` technology are given, and its impact on energy conservation is discussed.

  19. Fusion Power Associates Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Power Associates Awards Fusion Power Associates is "a non-profit, tax-exempt research and educational foundation, providing information on the status of fusion development and other applications of plasma science and fusion research". The Association makes awards in four categories: Distinguished Career Awards, Leadership Awards, Excellence in Fusion Engineering, and Special Awards. Since 1987, Distinguished Career Awards have been presented "to individuals who have made

  20. Department of Energy Announces 20th Annual National Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy th Annual National Science Bowl Department of Energy Announces 20th Annual National Science Bowl April 23, 2010 - 12:00am Addthis WASHINGTON, D.C. - US Energy Secretary Steven Chu announced that students from sixty-eight high school teams and thirty-seven middle school teams will compete next weekend for championship titles in the U.S. Department of Energy's 20th annual National Science Bowl in Washington, D.C. The participating teams - ranging from forty-two states, the

  1. House Committee on Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of our nation's scientific infrastructure through a system of 10 world-class National Laboratories. ... and research supporting the President's climate change science program. ...

  2. Bayer MaterialScience | Open Energy Information

    Open Energy Info (EERE)

    Leverkusen, Germany Website: www.bayermaterialscience.comi References: Bayer Material Science1 Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  3. NREL: Energy Sciences - Solid-State Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Printable Version Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell....

  4. NREL: Energy Sciences - Chemistry and Nanoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and comprises the Chemical and Material Sciences Center and the National Center for Photovoltaics. Printable Version NREL is a national laboratory of the U.S. Department of...

  5. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    SciTech Connect (OSTI)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.; Crocker, J.G.; Delene, J.G.; Endicott, R.D.; Kazimi, M.S.; Krakowski, R.A.; Logan, B.G.; Schultz, K.R.

    1987-09-10

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs.

  6. PPPL to launch major upgrade of key fusion energy test facility | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab to launch major upgrade of key fusion energy test facility NSTX project will produce most powerful spherical torus in the world By John Greenwald January 9, 2012 Tweet Widget Google Plus One Share on Facebook NSTX-U cross section. NSTX-U cross section. Gallery: (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of

  7. FES Committees of Visitors | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FES Committees of Visitors Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home FES Committees of Visitors Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee (FESAC) » The links below provide an archive of Fusion Energy Sciences (FES) Committees of Visitors (COV) reports and responses. 2014 FESAC COV Report on FES Program .pdf file

  8. #SpaceWeek: Science of the Cosmos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #SpaceWeek: Science of the Cosmos #SpaceWeek: Science of the Cosmos June 16, 2015 - 10:57am Addthis #SpaceWeek: Science of the Cosmos Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs How can I participate? Missed the "Energy of Star Wars" Google+ Hangout? You can watch the whole event here. And take a look at all of our other #SpaceWeek content. #SpaceWeek: Science of the Cosmos During #SpaceWeek we covered the Department of Energy's space expertise, from

  9. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    SciTech Connect (OSTI)

    Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  10. Fusion cross sections for the {sup 9}Be+{sup 124}Sn reaction at energies near the Coulomb barrier

    SciTech Connect (OSTI)

    Parkar, V. V.; Palit, R.; Sharma, Sushil K.; Naidu, B. S.; Santra, S.; Mahata, K.; Ramachandran, K.; Joshi, P. K.; Rath, P. K.; Trivedi, T.; Raghav, A.

    2010-11-15

    The complete and incomplete fusion cross sections for {sup 9}Be+{sup 124}Sn reaction have been deduced using the online {gamma}-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by {approx}28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a {sup 124}Sn target shows that, for {sup 9}Be nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

  11. Energy Department Announces Prizes for 2013 National Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Prizes for 2013 National Science Bowl Energy Department Announces Prizes for 2013 National Science Bowl April 8, 2013 - 4:35pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington D.C. - The U.S. Department of Energy today announced the prizes for which middle and high school teams from across the nation will compete at this year's National Science Bowl, held from April 25 to April 29 in Washington, D.C. From a total of 1,894 high school teams that competed in regional

  12. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science on NIF: Exploring the Physics of Star Formation Article on MOIRE Optics on Cover of Applied Optics Mode 1 Drive Asymmetry in NIF Inertial Confinement Fusion...

  13. Energy Sciences Building | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Savings Tips on the Go: Check Out the New Energy Savers Mobile Site Energy Savings Tips on the Go: Check Out the New Energy Savers Mobile Site March 16, 2012 - 12:46pm Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For years, many of you have found energy-saving tips about how to save money and energy at home, in your vehicle, and at work on our EnergySavers desktop site. This month, we launched a new Energy Savers mobile

  14. Science-Driven Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 1-1 Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 Contributors Paul Adams, LBNL (Advanced Light Source) Shane Canon, ORNL (NLCF) Steven Carter, ORNL (NLCF) Brent Draney, LBNL (NERSC) Martin Greenwald, MIT (Magnetic Fusion Energy) Jason Hodges, ORNL (Spallation

  15. Coal Utilization Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Research » Coal Utilization Science Coal Utilization Science Computer scientists at FE's NETL study a visualization of a power plant component. Computer scientists at FE's NETL study a visualization of a power plant component. Traditionally the process of taking a new power plant system from the drawing board to a first-of-a-kind prototype has involved a series of progressively larger engineering test facilities and pilot plants, leading ultimately to a full-scale demonstration.

  16. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  17. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    SciTech Connect (OSTI)

    Jones, R.H. ); Lucas, G.E. )

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.

  18. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    SciTech Connect (OSTI)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  19. COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 13, 2016, 4:15pm to 5:30pm Colloquia MBG AUDITORIUM COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density Perspective Dr. Bruce A. Remington Lawrence Livermore ...

  20. Middle School Energy and Nuclear Science Curriculum Now Available

    Broader source: Energy.gov [DOE]

    A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers...

  1. Department of Energy Advances Geothermal Science through Collegiate Competition

    Broader source: Energy.gov [DOE]

    Emphasizing the Obama Administration's pledge to accelerate science, technology, engineering, and math (STEM) education, the U.S. Department of Energy today kicked off the 2013 National Geothermal Student Competition.

  2. Before the Subcommittee on Energy -- House Science, Space, and...

    Broader source: Energy.gov (indexed) [DOE]

    Christopher Smith, Acting Assistant Secretary Before the Subcommittee on Energy -- House Science, Space, and Technology Committee PDF icon 7-25-13ChristopherSmith FT HSST.pdf ...

  3. BPA offering grants in science and energy education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offering grants in science and energy education 462015 12:00 AM Tweet Page Content Students from East Valley Central School in Yakima, Washington took a field trip to the Cle...

  4. Before the House Science and Technology Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arun Majumdar, Director Advanced Research Projects Agency - Energy (ARPA-E) Subject: Oversight Hearing: Status of ARPA-E Program and Path Forward PDF icon 1-27-10_Final_Testimony_(Majumdar).pdf More Documents & Publications Before the House Subcommittee on Investigations and Oversight Committee on Science, Space and Technology Before the House Science, Space, and Technology Committee Advanced Research Projects Agency - Energy Program Specific Recovery Plan

  5. Renewable Energy: science, politics, and economics (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics Authors: Migliori, Albert [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2014-03-03 OSTI Identifier: 1122038 Report Number(s): LA-UR-14-21366 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL)

  6. Large Scale Computing and Storage Requirements for Basic Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2014 BESFrontcover.png Final Report Large Scale Computing and Storage Requirements for Basic Energy Sciences, Report of the Joint BES/ ASCR / NERSC Workshop conducted February 9-10, 2010 Workshop Agenda The agenda for this workshop is presented here: including presentation times and speaker information. Read More » Workshop Presentations Large Scale Computing and Storage Requirements for Basic

  7. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  8. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect (OSTI)

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  9. New Science for a Secure and Sustainable Energy Future

    SciTech Connect (OSTI)

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  10. Assessment of the basic energy sciences program. Volume II. Appendices

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    A list of experts reviewing the Basic Energy Sciences (BES) program and their organizations are given. The assessment plan is explained; the program examined the following: quality of science being conducted in the program, quality of performers supported by the Basic Energy Sciences (BES) program, and the impact of the research on mission oriented needs. The intent of the assessment is to provide an indication of general status relative to these questions for the BES divisions. The approach to the assessment is described. The sampling plan which was used as a guide in determining the sample size and selecting the sample to evaluate the research program of the Office of Basic Energy Sciences are discussed. Special analyses were conducted on the dispersion of reviewers' ratings, the ratings of the lower funded projects, and the amount of time the principal investigator devoted to the project. These are presented in the final appendix together with histograms for individual rating variables for each program area. (MCW)

  11. Science & Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Science & Technology This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run

  12. Sandia Energy Earth Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participate in 46th Annual American Geophysical Union (AGU) Conference http:energy.sandia.govsandians-participate-in-46th-annual-american-geophysical-union-agu-conference...

  13. Energy Department Science Education Initiative Launched - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Energy Department Science Education Initiative Launched July 8, 2004 Palo Alto, Calif. - U.S. Secretary of Energy Spencer Abraham announced today that the U.S. Department of Energy (DOE) and its national laboratories are launching an initiative to promote science literacy and help develop the next generation of scientists and engineers. "It is critical that we leverage the resources of this Department-and of all our national labs-to help create a new generation of scientists who

  14. The Science of Earthquakes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earthquakes The Science of Earthquakes August 26, 2011 - 11:12am Addthis A map of the August 23, 2011, Mineral, Virginia, earthquake that shook the east coast of the United States. | Image courtesy of the U.S. Geological Service A map of the August 23, 2011, Mineral, Virginia, earthquake that shook the east coast of the United States. | Image courtesy of the U.S. Geological Service Kate Bannan Communications and Outreach Specialist The rare, powerful 5.8-magnitude earthquake that shook the east

  15. Energy science and technology database (on the internet). Online data

    SciTech Connect (OSTI)

    1997-12-01

    The Energy Science and Technology Database (EDB) is a multidisciplinary file containing worldwide references to basic and applied scientific and technical research literature. The information is collected for use by government managers, researchers at the national laboratories, and other research efforts sponsored by the U.S. Department of Energy, and the results of this research are transferred to the public. Abstracts are included for records from 1976 to the present. The EDB also contains the Nuclear Science Abstracts which is a comprehensive abstract and index collection to the international nuclear science and technology literature for the period 1948 through 1976. Included are scientific and technical reports of the U.S. Atomic Energy Commission, U.S. Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Approximately 25% of the records in the file contain abstracts. Nuclear Science Abstracts contains over 900,000 bibliographic records. The entire Energy Science and Technology Database contains over 3 million bibliographic records. This database is now available for searching through the GOV. Research-Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.

  16. Science projects in renewable energy and energy efficiency

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources -- both nationally and locally -- we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as one-liners'' following each group of projects.

  17. NREL: Energy Sciences - Su-Huai Wei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wei, S.-H. (2013). "Origin of the variation of exciton binding energy in semiconductors." Phys. Rev. Lett. (110); p. 016402. http:prl.aps.orgabstractPRLv110i1e016402. Huang,...

  18. Sisters in Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visit energy.govwomen to see more stories celebrating Women's History Month and learn ... I found a way to merge art and creativity with the more grounded applied knowledge of ...

  19. Science & Innovation Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy's Public Dissemination of Research Results September 30, 2011 Audit Report: OAS-RA-L-11-13 The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National ...

  20. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  1. Science Conference Proceedings | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Science Conference Proceedings The Science Conference Proceedings product has been discontinued. Please visit the OSTI homepage to search for Department of Energy R&D results. For more information on the streamlining of OSTI Products, please read the OSTIblog entitled "OSTI Is Re-Focusing and Re-Balancing Its Operations - And Refreshing Its Home Page - to Advance Public Access" by Dr. Jeffrey Salmon, Deputy Director for Resource Management

  2. The Science Behind Cheaper Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Science Behind Cheaper Biofuels The Science Behind Cheaper Biofuels August 15, 2011 - 11:50am Addthis Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of biologically stored sunlight, and have great potential as renewable resources for fuel and industrial

  3. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based

  4. NREL: Energy Systems Integration - Computational Science and Visualization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Visualization Computational science and visualization capabilities at NREL propel technology innovation as a research tool by which scientists and engineers find new ways to tackle our nation's energy challenges-challenges that cannot be addressed through traditional experimentation alone. These efforts will save time and money, significantly improve the likelihood of breakthroughs and useful advances, and reduce risks and uncertainties that are often barriers to

  5. DOE Science Showcase - Energy Department Scientists and Engineers Honored

    Office of Scientific and Technical Information (OSTI)

    with Presidential Early Career Awards (PECASE) | OSTI, US Dept of Energy, Office of Scientific and Technical Information Energy Department Scientists and Engineers Honored with Presidential Early Career Awards (PECASE) Researchers funded by the U.S. Department of Energy (DOE) Office of Science were recently honored with the Presidential Early Career Award for Scientists and Engineers (PECASE)-the highest honor bestowed by the U.S. government on outstanding scientists and engineers who are

  6. DOE Science Showcase - Renewable Energy Information from OSTI Collections |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information DOE Science Showcase - Renewable Energy Information from OSTI Collections Find government research information related to renewable energy through OSTI collections. Find full text technical reports, citations, project summaries and more. OSTI makes R&D information rapidly available to researchers and the public so that discovery can be accelerated. Featured Documents from Information Bridge Bioenergy Research Centers

  7. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect (OSTI)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  8. U.S.Statements on International Fusion Reactor (ITER) Siting Decision |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S.Statements on International Fusion Reactor (ITER) Siting Decision U.S.Statements on International Fusion Reactor (ITER) Siting Decision June 28, 2005 - 1:45pm Addthis WASHINGTON, DC - Today in Moscow, Russia, the ministers representing the six ITER parties, including Dr. Raymond L. Orbach, Director of the U.S. Department of Energy's Office of Science, announced the ITER international fusion reactor will be located at the EU site in Cadarache, France. Below are

  9. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Home/Transportation Energy Robert Kolasinki Permalink Gallery Robert Kolasinski wins DOE Early Career Award Transportation Energy Robert Kolasinski wins DOE Early Career Award By Michael Padilla Robert Kolasinski (8366) has received a $2.5 million, five-year Early Career Research Program award from the Department of Energy's (DOE) Office of Science to support his work on how intense fusion plasmas interact with the interior surfaces of fusion reactors. Robert's research will develop the

  10. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion device. The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations Database Georgia Tech's Tidal Energy

  11. Science and society test X: Energy conservation

    SciTech Connect (OSTI)

    Hafemeister, D.

    1987-04-01

    United States energy consumption has remained essentially constant at about 80 exajoules/year (75 quads/year) since the oil embargo of 1973--1974, while the GNP in constant dollars has increased by about 30%. This article will discuss the physics behind some of these improvements in end-use efficiency in such areas as: (I) buildings (scaling laws, ''free-heat,'' superinsulated houses, thermal storage in large buildings, off-peak cooling), (II) solar energy (passive, photovoltaics), (III) utility load management (''smart meters,'' capital recovery fees, voltage control), (IV) appliances (life-cycle costs, refrigerators), and (V) lighting (isotopic enhancement).

  12. Studies in Low-Energy Nuclear Science

    SciTech Connect (OSTI)

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  13. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Office of Science * * * Office of Science Office of * * * * * Office of Science Office of Science * * * Office of Science * * * * 287 115 ...

  14. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect (OSTI)

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  15. U.S. Department of Energy Office of Nuclear Energy, Science and Technology

    Energy Savers [EERE]

    One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for

  16. 2012 Science Alliance | Department of Energy

    Energy Savers [EERE]

    SPR Report to Congress 2012 SPR Report to Congress Highlights from the report include: Hurricane Isaac Exchange In August 2012, Hurricane Isaac hit the U.S. Gulf Coast and caused impacts to the commercial oil production, refining and distribution operations in the region. To address potential shortages of petroleum, the Secretary of Energy authorized the Strategic Petroleum Reserve to negotiate emergency exchanges of crude oil at the request of affected refiners. Ultimately, one company

  17. Effects of magnetization on fusion product trapping and secondary neutron

    Office of Scientific and Technical Information (OSTI)

    spectra (Journal Article) | DOE PAGES Effects of magnetization on fusion product trapping and secondary neutron spectra « Prev Next » Title: Effects of magnetization on fusion product trapping and secondary neutron spectra × You are accessing a document from the Department of Energy's (DOE) Public Access Gateway for Energy & Science (PAGES). This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  18. Calling Science Stars in Middle and High Schools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office

  19. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  20. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect (OSTI)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  1. High Energy Physics (HEP) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Programs HEP Home High Energy Physics (HEP) HEP Home About Research Facilities Science ... Resources Contact Information High Energy Physics U.S. Department of Energy SC-25...

  2. Nano-Composite Designs for Energy Storage | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano-Composite Designs for Energy Storage Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 02.01.13 Nano-Composite Designs for Energy Storage

  3. Before the House Subcommittee on Energy - Committee on Science, Space, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy - Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting Director of the Office of Science Before the House Subcommittee on Energy - Committee on Science, Space, and Technology PDF icon 7-11-14_Patricia_Dehmner FT HSST.pdf More Documents & Publications Before the House Science and Technology Subcommittee on Energy and Environment Microsoft

  4. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    SciTech Connect (OSTI)

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  5. Center for Renewable Energy Science and Technology

    SciTech Connect (OSTI)

    Billo, Richard; Rajeshwar, Krishnan

    2013-01-15

    The CREST research team conducted research that optimized catalysts used for the conversion of southwestern lignite into synthetic crude oil that can be shipped to nearby Texas refineries and power plants for development of transportation fuels and power generation. Research was also undertaken to convert any potential by-products of this process such as CO2 to useful chemicals and gases which could be recycled and used as feedstock to the synthetic fuel process. These CO2 conversion processes used light energy to drive the endogonic reduction reactions involved. The project was divided into two tasks: A CO2 Conversion Task, and a Catalyst Optimization Task. The CO2 Conversion task was aimed at developing molecular and solid state catalysts for the thermal, electro- and photocatalytic reduction of CO2 to reduced products such as simple feedstock compounds (e.g. CO, H2, CHOOH, CH2O, CH3OH and CH4). For example, the research team recycled CO that was developed from this Task and used it as a feedstock for the production of synthetic crude in the Catalyst Optimization Task. In the Catalyst Optimization Task, the research team conducted bench-scale experiments with the goal of reducing overall catalyst cost in support of several synthetic crude processes that had earlier been developed. This was accomplished by increasing the catalyst reactivity thus reducing required concentrations or by using less expensive metals. In this task the team performed parametric experiments in small scale batch reactors in an effort to improve catalyst reactivity and to lower cost. They also investigated catalyst robustness by testing lignite feedstocks that vary in moisture, h, and volatile content.

  6. Automatic Mesh Adaptivity for Hybrid Monte Carlo/Deterministic Neutronics Modeling of Fusion Energy Systems

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M; Wilson, P.; Sawan, M.; Mosher, Scott W; Peplow, Douglas E.; Grove, Robert E

    2013-01-01

    Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer.

  7. Ocean Power: Science Projects in Renewable Energy and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Build a model of and open- cycle OTEC plant. 4 Build a wave energy device Learning ... of waves is available, a wave making machine can be made with a wooden plank that one ...

  8. Cold fusion research

    SciTech Connect (OSTI)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  9. Wave-Energy/-Device Modeling: Developing A 1:17 Scaled Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Advanced Scientific Computing Research Biological and Environmental ... Basin at the Naval Surface Warfare Center's David Taylor Model Basin (see Figure 2). ...

  10. Expectations for {sup 12}C and {sup 16}O induced fusion cross sections at energies of astrophysical interest.

    SciTech Connect (OSTI)

    Jiang, C. L.; Rehm, K. E.; Back, B. B.; Janssens, R.V.F; Physics

    2007-01-12

    The extrapolations of cross sections for fusion reactions involving {sup 12}C and {sup 16}O nuclei down to energies relevant for explosive stellar burning have been reexamined. Based on a systematic study of fusion in heavier systems, it is expected that a suppression of the fusion process will also be present in these light heavy-ion systems at extreme sub-barrier energies due to the saturation properties of nuclear matter. Previous phenomenological extrapolations of the S factor for light heavy-ion fusion based on optical model calculations may therefore have overestimated the corresponding reaction rates. A new 'recipe' is proposed to extrapolate S factors for light heavy-ion reactions to low energies taking the hindrance behavior into account. It is based on a fit to the logarithmic derivative of the experimental cross section which is much less sensitive to overall normalization discrepancies between different data sets than other approaches. This method, therefore, represents a significant improvement over other extrapolations. The impact on the astrophysical reaction rates is discussed.

  11. Expectations for {sup 12}C and {sup 16}O induced fusion cross sections at energies of astrophysical interest

    SciTech Connect (OSTI)

    Jiang, C. L.; Rehm, K. E.; Back, B. B.; Janssens, R. V. F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2007-01-15

    The extrapolations of cross sections for fusion reactions involving {sup 12}C and {sup 16}O nuclei down to energies relevant for explosive stellar burning have been reexamined. Based on a systematic study of fusion in heavier systems, it is expected that a suppression of the fusion process will also be present in these light heavy-ion systems at extreme sub-barrier energies due to the saturation properties of nuclear matter. Previous phenomenological extrapolations of the S factor for light heavy-ion fusion based on optical model calculations may therefore have overestimated the corresponding reaction rates. A new ''recipe'' is proposed to extrapolate S factors for light heavy-ion reactions to low energies taking the hindrance behavior into account. It is based on a fit to the logarithmic derivative of the experimental cross section which is much less sensitive to overall normalization discrepancies between different data sets than other approaches. This method, therefore, represents a significant improvement over other extrapolations. The impact on the astrophysical reaction rates is discussed.

  12. Proliferation Risks of Fusion Energy: Clandestine Production, Covert Production, and Breakout

    SciTech Connect (OSTI)

    R.J. Goldston, A. Glaser, A.F. Ross

    2009-08-13

    Nuclear proliferation risks from fusion associated with access to weapon-usable material can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risk from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if commercial fusion systems are designed to accommodate appropriate safeguards.

  13. PPPL to launch major upgrade of key fusion energy test facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the NSTX as the world's most powerful spherical torus - or tokamak - a device that controls the superheated and electrically charged gases called plasmas that create fusion power. ...

  14. Taming Plasma Fusion Snakes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taming Plasma Fusion Snakes Taming Plasma Fusion Snakes Supercomputer simulations move fusion energy closer to reality January 24, 2014 Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov SugiSnakes_2.jpg Researchers have been able to see and measure plasma snakes - corkscrew-shaped concentrations of plasma density in the center of a fusion plasma -- for years. 3D nonlinear plasma simulations conducted at NERSC are providing new insights into the formation and stability of these structures. Image

  15. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect (OSTI)

    Leon, M.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  16. 2 BASIC ENERGY SCIENCES 2.1 Adenosine Triphosphate: The Energy Currency of Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 6/1/2011 2 BASIC ENERGY SCIENCES 2.1 Adenosine Triphosphate: The Energy Currency of Life The energy cycle of all living organisms involves the molecule adenosine triphosphate (ATP), which captures the chemical energy released by the metabolism of nutrients and makes it available for cellular functions such as muscle contraction and transmission of nerve messages. A hard-working human adult can convert almost a ton of ATP daily. From the early 1960s through 1994, the Office of Science supported

  17. Learn More about Fusion & Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn More about Fusion & Lasers How Lasers Work Learn how lasers were developed and how they work. Outreach NIF & Photon Science researchers take learning opportunities on the...

  18. Solar energy education. Renewable energy activities for general science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy and Wind Easements & Rights Laws & Local Option Solar Rights Law Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Solar Pool Heating

  19. USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow

    Broader source: Energy.gov [DOE]

    The Energy Department is helping the nation's future STEM workforce (science, technology, engineering, and mathematics) explore energy literacy at the USA Science and Engineering Festival in Washington, D.C. Learn more about the event and how you can participate.

  20. PNNL Highlights for the Office of Basic Energy Sciences (July 2013-July 2014)

    SciTech Connect (OSTI)

    Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.

    2014-08-13

    This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.

  1. Department of Energy Science Education Enhancement Act in U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Science Education Enhancement Act in U.S.C. Department of Energy Science Education Enhancement Act in U.S.C. CITE: 42USC7381 TITLE 42--THE PUBLIC HEALTH AND WELFARE CITE: ...

  2. Overview of Fusion-Fission Hybrid Blankets for Laser Inertial...

    Office of Scientific and Technical Information (OSTI)

    Conference: Overview of Fusion-Fission Hybrid Blankets for Laser Inertial Fusion Energy (LIFE) Engine Citation Details In-Document Search Title: Overview of Fusion-Fission Hybrid ...

  3. Overview of Fusion-Fission Hybrid Blankets for Laser Inertial...

    Office of Scientific and Technical Information (OSTI)

    Hybrid Blankets for Laser Inertial Fusion Energy (LIFE) Engine Citation Details In-Document Search Title: Overview of Fusion-Fission Hybrid Blankets for Laser Inertial Fusion ...

  4. Basic Energy Sciences Advisory Committee (BESAC) Homepage | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) BESAC Home Basic Energy Sciences Advisory Committee (BESAC) BESAC Home Meetings BESAC 2016-2017 Membership Charges/Reports Charter .pdf file (128KB) BES Committees of Visitors Federal Advisory Committees BES Home Print Text Size: A A A FeedbackShare Page The Basic Energy Sciences Advisory Committee (BESAC) - established on September 4, 1986 - provides valuable, independent advice to the Department of Energy on the Basic Energy Sciences program regarding the complex scientific

  5. Before the Subcommittee on Energy - House Committee on Science, Space, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Testimony of David Danielson, Assistant Secretary, Office of Energy Efficiency and Renewable Energy Before the Subcommittee on Energy - House Committee on Science, Space, and Technology PDF icon 3-24-15_David_Danielson FT HSST.pdf More Documents & Publications FY 2017 Congressional

  6. Surface science | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface science Subscribe to RSS - Surface science The study of the chemical and physical processes that occur in the interface between two phases of matter, such as solid to liquid or liquid to gas. Physicist Tyler Abrams models lithium erosion in tokamaks The world of fusion energy is a world of extremes. For instance, the center of the ultrahot plasma contained within the walls of doughnut-shaped fusion machines known as tokamaks can reach temperatures well above the 15 million degrees

  7. Nanoscience at Work: Creating Energy from Sunlight (LBNL Science...

    Office of Scientific and Technical Information (OSTI)

    Friends of Science: Chabot Space and Science Center; The Exploratorium; Lawrence Hall of Science; Osher Lifelong Learning Institute; University of California - Berkeley,...

  8. Before the House Science and Technology Subcommittee on Energy and Environment

    Broader source: Energy.gov [DOE]

    Subject: Investigating the Nature of Matter Energy, Space and Time By: Dr. Dennis Kovar, Associate Director, Office of High Energy Physics, Office of Science

  9. Department of Energy | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Department of Energy Project Assessment (OPA) OPA Home About Project Management Processes and Procedures Department of Energy Office of Science Various Project Management Reports ...

  10. Energy Recovery Linac cavity at BNL | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ... Applications of Nuclear Science Archives Energy Recovery Linac cavity at BNL Print Text ...

  11. Simulation of X-ray Irradiation on Optics and Chamber Wall Materials for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Reyes, S; Latkowski, J F; Abbott, R P; Stein, W

    2003-09-10

    We have used the ABLATOR code to analyze the effect of the x-ray emission from direct drive targets on the optics and the first wall of a conceptual laser Inertial Fusion Energy (IFE) power plant. For this purpose, the ABLATOR code has been modified to incorporate the predicted x-ray spectrum from a generic direct drive target. We have also introduced elongation calculations in ABLATOR to predict the thermal stresses in the optic and first wall materials. These results have been validated with thermal diffusion calculations, using the LLNL heat transfer and dynamic structural finite element codes Topaz3d and Dyna3d. One of the most relevant upgrades performed in the ABLATOR code consists of the possibility to accommodate multi-material simulations. This new feature allows for a more realistic modeling of typical IFE optics and first wall materials, which may have a number of different layers. Finally, we have used the XAPPER facility, at LLNL, to develop our predictive capability and validate the results. The ABLATOR code will be further modified, as necessary, to predict the effects of x-ray irradiation in both the IFE real case and our experiments on the XAPPER facility.

  12. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    SciTech Connect (OSTI)

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0.6 atoms per 14.1 MeV neutron.

  13. Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite; Foord, Mark N.; Wei, Mingsheng; Beg, Farhat N.; Schumacher, Douglass W.

    2013-10-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet of energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded, a self-consistent picture of the quasi-neutral plasma jet that is the proton beam that, for the first time, included the role of the hot electrons in shaping the jet. Controlling them?through design of the accelerating surface and its connection to the surrounding superstructure?is critical; their uniform spread across the proton accelerating area is vital, but their presence in the jet opposes focus; their electron flow away from the acceleration area reduces conversion efficiency but can also increase focusing ability. The understanding emerging from our work and the improved simulation tools we have developed allow designing structures that optimize proton beams for focused heating. Our findings include: ? The achievable focus of proton beams is limited by the thermal pressure gradient in the laser-generated hot electrons that drive the process. This bending can be suppressed using a controlled flow of hot electrons along the surrounding cone wall, which induces a local transverse focusing sheath electric field. The resultant (vacuum-focused) spot can meet IFE requirements. ? Confinement of laser-generated electrons to the proton accelerating area can be achieved by supporting targets on thin struts. That increases laser-to-proton conversion energy by ~50%. As noted above, confinement should not be total; necessary hot-electron leakage into the surrounding superstructure for proton focusing can be controlled by with the strut width/number. ? Proton jets are further modified as they enter the fuel through the superstructure?s end cap. They can generate currents during that transit that further focus the proton beams. We developed a new ion stopping module for LSP code that properly accounted for changes in stopping power with ionization (e.g. temperature), and will be using it in future studies. The improved understanding, new experimental platforms, and the self-consistent modeling capability allow researchers a new ability to investigate the interaction of large ion currents with warm dense matter. That is of direct importance to the creation and investiga

  14. Physics (selected articles). [Nuclear fusion

    SciTech Connect (OSTI)

    Shiyao, Z.; Zesheng, C.; Xiaolung, X.; Qiang, H.

    1982-09-01

    Controlled nuclear fusion as a new energy source was investigated. It will be possible in the 1980's to obtain thermal nuclear ignition, and in the early 2000's nuclear fusion may be used to supplement the energy shortage. It is predicted that in the 2000's nuclear fusion will occupy an important position as a global source of energy.

  15. Fusion: The controversy continues

    SciTech Connect (OSTI)

    1989-07-01

    Nuclear fusion-the power of the stars that promises mankind an inexhaustible supply of energy-seems concurrently much closer and still distant this month. The recent flurry of announcements concerning the achievement of a cold fusion reaction has-if nothing else-underscored the historic importance of the basic fusion reaction which uses hydrogen ions to fuel an energy-producing reaction.

  16. Physical Sciences 2007 Science & Technology Highlights

    SciTech Connect (OSTI)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  17. Before the House Subcommittee on Energy, Committee on Science, Space and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Energy, Committee on Science, Space and Technology Before the House Subcommittee on Energy, Committee on Science, Space and Technology Testimony of Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House Subcommittee on Energy, Committee on Science, Space and Technology PDF icon 12-11-14_Peter Lyons FT HSST.pdf More Documents & Publications Small Modular Reactor Report (SEAB) A Strategic Framework for SMR Deployment Assessment of Small

  18. Before the Subcommittee on Energy - House Committee on Science, Space and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy - House Committee on Science, Space and Technology Before the Subcommittee on Energy - House Committee on Science, Space and Technology Testimony of Adam Sieminiski, Administrator, Energy Information Administration Before the Subcommittee on Energy - House Committee on Science, Space and Technology PDF icon 2-13-13_Adam_Sieminski FT HSS&T.pdf More Documents & Publications Before the Senate Energy and Natural Resources Committee Before the

  19. THE SECRETARY OF ENERGY ADVISORY BOARD (SEAB) TASK FORCE ON BIOMEDICAL SCIENCES

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) Task Force on Biomedical Sciences is comprised of SEAB members and experts from, for example, universities, the NIH intramural program, DOE National Laboratories, and various components of industry, and charged with identifying new areas for research by DOE investigators that could, over time, significantly advance the pace of progress in biomedical sciences, and new mechanisms for conducting research in coordination with scientists from government laboratories (both DOE and the National Institutes of Health [NIH]), universities, academic medical centers, and industry. The Task Force is not expected to address possible DOE and NIH funding arrangements to support this initiative. PURPOSE OF THE TASK FORCE: For more than 60 years, the DOE and its predecessor agencies have used their potent and unique scientific capabilities to advance several facets of the biomedical sciences. These include, most notably, radiochemistry and nuclear medicine; instrumentation for diagnostic and therapeutic radiology; structural biology; and recently, genomics, as highlighted by the human genome project. Advances in science and technology -- particularly genomics, mass spectroscopy, informatics, and various forms of imaging -- have led to widespread recognition today that biomedical sciences are poised to seize new opportunities that could vastly improve the health of Americans and other peoples of the world while significantly lowering risks and costs over time, maintaining U.S. leadership in the life sciences, and providing new knowledge for applications in the commercial sector. Areas particularly ripe for the application of new technologies include: Precision medicine, in which diagnosis, prevention, and therapy are based on a description of disease at the molecular level; Brain science that promises to advance understanding of normal circuitry and its aberrations in neurological and psychiatric diseases; Bioinformatics for storage, retrieval, and analysis of enormous sets of molecular and structural data; Near real time imaging, fusion, and processing of molecules, cells, and tissues; New forms of therapy involving delivery and modification of genes and their functions; and Reengineering of biological systems for better understanding of cells and organisms and for more effective analysis and control of many diseases. DOE has core competencies that could greatly accelerate progress in these areas, including: Sensors and high speed data acquisition from many sensors Imaging devices operating at a wide range of scales Instruments and methods for observing and measuring the functions and dynamics of large biomolecules, including multi-molecular complexes Material sciences and nanotechnology Multi-scale modeling and simulation Exascale computing The NIH has a long history of using a variety of mechanisms to promote biomedically relevant work at DOE laboratories, taking advantage of DOE's unique capabilities in many fields of science, including several of those mentioned above. Presently, the NIH sponsors or helps to support over 150 projects in DOE laboratories at an annual cost of over $250 million. These activities result from direct collaborations between NIH­-supported scientists and scientists at DOE laboratories, not from a top-down driven directive to cooperate. Leaders at NIH and DOE have long recognized and publicly acknowledged the importance of such cooperation, and current leaders of both agencies want it to continue to prosper. Indeed, in October a joint DOE-NIH workshop was held to discuss the President's BRAIN initiative -- a research effort into new ways to treat, prevent, and cure brain disorders -- and seek ways in which the agencies might work together to achieve its goals. SCHEDULE: By September 2016, the Task Force should produce a report to identify new research areas for DOE in the area of biomedical sciences and proposals for DOE initiatives that would advance the Nation's progress in the health-related sciences. This report would be available to the public, Congress, and the current and next Administrations. DESIGNATED FEDERAL OFFICER: Matthew Schaub, Deputy Director, Office of Secretarial Boards and Councils.

  20. Center for Electrochemical Energy Science (CEES) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Center for Electrochemical Energy Science (CEES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Electrochemical Energy Science (CEES) Print Text Size: A A A FeedbackShare Page CEES Header Director Paul Fenter Lead Institution Argonne National Laboratory Year Established 2009 Mission To create a robust fundamental understanding of the

  1. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect (OSTI)

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  2. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 National Ignition Facility & Photon Science limitless energy the Promise of Limitless energy harnessing the energy of the sun and stars to meet the earth's energy needs has been a decades-long scientific and engineering quest. While a self-sustaining fusion burn has been achieved for brief periods under experimental conditions, the amount of energy that went into creating it was greater than the amount of energy it generated. There was no energy gain, which is essential if fusion energy is

  3. Stimulated scattering in laser driven fusion and high energy density physics experiments

    SciTech Connect (OSTI)

    Yin, L. Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J.; Kirkwood, R. K.; Milovich, J.

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a k?{sub D} range of 0.15?

  4. Programs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs Programs Programs Home Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 GE Dual Iso Mixed End Simulation of a

  5. Theoretical Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory & Computational Department Weekly Highlights Weekly Seminars Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Theory & Computational Department Weekly Highlights Weekly Seminars Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Theoretical Fusion Research About

  6. Diversity in Science and Technology Advances National Clean Energy in Solar

    Broader source: Energy.gov [DOE]

    The SunShot Diversity in Science and Technology Advances National Clean Energy in Solar (DISTANCE-Solar) program pairs science and technology research advances with the development of a diverse and...

  7. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    SciTech Connect (OSTI)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm/sup 3/ are required for a practical fusion-based fission product transmutation system.

  8. Lien Ze day Solar Hunan Science and Technology | Open Energy...

    Open Energy Info (EERE)

    day Solar Hunan Science and Technology Jump to: navigation, search Name: Lien Ze-day Solar Hunan Science and Technology Place: Xiangtan, Hunan Province, China Product: PV cell...

  9. American Science and Technology Corporation AST | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Corporation AST Jump to: navigation, search Name: American Science and Technology Corporation (AST) Place: Chicago, Illinois Zip: 60622 Sector: Services...

  10. High Resolution Imaging Science Experiment | Open Energy Information

    Open Energy Info (EERE)

    Resolution Imaging Science Experiment Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: High Resolution Imaging Science Experiment Author University of...

  11. James James Science Publishers Ltd now Earthscan | Open Energy...

    Open Energy Info (EERE)

    Science Publishers Ltd now Earthscan Jump to: navigation, search Name: James & James (Science Publishers) Ltd. (now Earthscan) Place: London, Greater London, United Kingdom Zip:...

  12. National Science and Technology Development Agency | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Development Agency Jump to: navigation, search Name: National Science and Technology Development Agency Place: Thailand Product: Thai national R&D agency....

  13. Sichuan Apollo Solar Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sichuan Apollo Solar Science Technology Co Ltd Jump to: navigation, search Name: Sichuan Apollo Solar Science & Technology Co Ltd Place: Chengdu, Sichuan Province, China Zip:...

  14. Zhenjiang Huantai Silicon Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Huantai Silicon Science Technology Co Ltd Jump to: navigation, search Name: Zhenjiang Huantai Silicon Science & Technology Co Ltd Place: Yangzhou, Jiangsu Province, China Zip:...

  15. Jiangxi Gemei Science and Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Gemei Science and Technology Inc Jump to: navigation, search Name: Jiangxi Gemei Science and Technology Inc Place: Fuzhou, Jiangxi Province, China Sector: Solar Product: Jiangxi...

  16. Guangxi Gettop Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guangxi Gettop Science Technology Co Ltd Jump to: navigation, search Name: Guangxi Gettop Science & Technology Co Ltd Place: Nanning, Guangxi Autonomous Region, China Zip: 530022...

  17. Qinhuangdao Orient Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Co Ltd Jump to: navigation, search Name: Qinhuangdao Orient Science and Technology Co., Ltd Place: Qinhuangdao, Hebei Province, China Zip: 660004 Product:...

  18. Zhangzhou Guolv Solar Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhangzhou Guolv Solar Science and Technology Co Ltd Jump to: navigation, search Name: Zhangzhou Guolv Solar Science and Technology Co Ltd Place: Fujian Province, China Zip: 363600...

  19. Crustal Geophysics and Geochemistry Science Center | Open Energy...

    Open Energy Info (EERE)

    Geophysics and Geochemistry Science Center Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Crustal Geophysics and Geochemistry Science Center Author...

  20. Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Cineng PV Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Cineng PV Science & Technology Co Ltd Place: Cixi, Zhejiang Province, China Sector: Solar Product: A...

  1. Shandong Jinjing Science Technology Stock Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jinjing Science Technology Stock Co Ltd Jump to: navigation, search Name: Shandong Jinjing Science & Technology Stock Co Ltd Place: Zibo, Shandong Province, China Zip: 255200...

  2. Masdar Institute of Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    Institute of Science and Technology Jump to: navigation, search Name: Masdar Institute of Science and Technology Place: United Arab Emirates Product: Cooperative agreement between...

  3. Beijing Corona Science Technology Co Ltd BCST | Open Energy Informatio...

    Open Energy Info (EERE)

    Corona Science Technology Co Ltd BCST Jump to: navigation, search Name: Beijing Corona Science & Technology Co Ltd (BCST) Place: Beijing Municipality, China Zip: 100083 Sector:...

  4. King Abdulaziz City for Science and Technology | Open Energy...

    Open Energy Info (EERE)

    Abdulaziz City for Science and Technology Jump to: navigation, search Name: King Abdulaziz City for Science and Technology Place: Riyadh, Saudi Arabia Zip: 11442 Sector: Solar...

  5. Guofu Bioenergy Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name: Guofu Bioenergy Science & Technology Co Ltd Place: Beijing Municipality, China Zip: 100101 Sector:...

  6. Sinoma Science Technology Co Ltd SSTCL | Open Energy Information

    Open Energy Info (EERE)

    Science Technology Co Ltd SSTCL Jump to: navigation, search Name: Sinoma Science & Technology Co Ltd (SSTCL) Place: Nanjing, Jiangsu Province, China Zip: 210012 Product: A...

  7. Vitale Nandan Biopharma Science Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vitale Nandan Biopharma Science Pvt Ltd Jump to: navigation, search Name: Vitale Nandan Biopharma Science Pvt Ltd Place: Gujarat, India Product: India-based JV between Nandan...

  8. Nanoscience at Work: Creating Energy from Sunlight (LBNL Science...

    Office of Scientific and Technical Information (OSTI)

    Science Dept; Oakland High School Science Dept Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; ELECTRICITY; NANOSTRUCTURES;...

  9. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By: Dr. Jehanne Gillo, Director Office of Facilities and Project Management, Office of Nuclear Physics, Office of Science Subject: DOE's Office of Science Research Applications...

  10. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect (OSTI)

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  11. Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P:

  12. High Current Energy Recovery Linac at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  13. Electropionics and fusion

    SciTech Connect (OSTI)

    Kenny, J.P. )

    1991-05-01

    This paper reports on the electropionic mass formula which does not differentiate between nuclei and elementary particles, but gives the deuteron a unique bifurcated space-time description. This hints at fusion products produced by anomalous intermediate mass states of 3026, 3194, and 3515 MeV/c{sup 2} that then decay to produce energy. Another unique possibility in electropionics is that no fusion of deuterons occurs, but the deuteron is changed by electron capture into a D-meson that then decays to produce observed cold fusion energies. All these cold fusion electropionic reactions violate baryon conservation but do produce energy yields consistent with reported cold fusion decay products and energy levels.

  14. Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Picture of Z Machine Z machine contributes to clean-energy technologies The importance of Z in solving the world's energy challenges is directly connected to its fusion potential. Inertial confinement fusion for peaceful production of electricity has always been of interest to Sandia's pulsed power sciences. But today, in light of growing concern about the health of our planet and considering our escalating energy needs, the development of fusion technology is especially promising for

  15. Fusion Energy Advisory Committee: Advice and recommendations to the US Department of Energy in response to the charge letter of September 1, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This document is a compilation of the written records that relate to the Fusion Energy Advisory Committee`s deliberations with regard to the Letter of Charge received from the Director of Energy Research, dated September 1, 1992. During its sixth meeting, held in March 1993, FEAC provided a detailed response to the charge contained in the letter of September 1, 1992. In particular, it responded to the paragraph: ``I would like the Fusion Energy Advisory Committee (FEAC) to evaluate the Neutron Interactive Materials Program of the Office of Fusion Energy (OFE). Materials are required that will satisfy the service requirements of components in both inertial and magnetic fusion reactors -- including the performance, safety, economic, environmental, and recycle/waste management requirements. Given budget constraints, is our program optimized to achieve these goals for DEMO, as well as to support the near-term ITER program?`` Before FEAC could generate its response to the charge in the form of a letter report, one member, Dr. Parker, expressed severe concerns over one of the conclusions that the committee had reached during the meeting. It proved necessary to resolve the issue in public debate, and the matter was reviewed by FEAC for a second time, during its seventh meeting, held in mid-April, 1993. In order to help it to respond to this charge in a timely manner, FEAC established a working group, designated Panel No. 6, which reviewed the depth and breadth of the US materials program, and its interactions and collaborations with international programs. The panel prepared background material, included in this report as Appendix I, to help FEAC in its deliberations.

  16. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications

    SciTech Connect (OSTI)

    Zinkle, Steven J

    2014-06-01

    The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HPTM CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of ~0.7 displacements per atom (dpa) at temperatures between 100 and 240 C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of ~3.3% observed at 240 C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250 C, and may be an attractive candidate for certain fusion energy structural applications. Conversely, CuNiBe may not be preferred at intermediate temperatures of 250-500 C due to the poor ductility and fracture toughness of CuNiBe alloys at temperatures >250 C. The potential deformation mechanisms responsible for the transition from transgranular to intergranular fracture are discussed. The possible implications for other precipitation hardened alloys such as nickel based superalloys are briefly discussed.

  17. Science.gov 3.0 Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science.gov 3.0 Launched Science.gov 3.0 Launched November 15, 2005 - 2:46pm Addthis Offers Increased Precision Searches of Federal Science Database WASHINGTON, DC - The latest version of Science.gov was launched today allowing more refined queries for searches of federal science databases. While Science.gov 3.0 is available to everyone, these improvements will be especially helpful to scientists and information specialists in their searches. "In these wonderful times for science, the tools

  18. Rain or Shine: We Cycle for Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rain or Shine: We Cycle for Science Rain or Shine: We Cycle for Science July 2, 2015 - 10:39am Addthis Elizabeth and Rachel visit a YWCA in Waterloo, Iowa. | Photo courtesy of Cycle for Science. Elizabeth and Rachel visit a YWCA in Waterloo, Iowa. | Photo courtesy of Cycle for Science. Rachel Woods-Robinson Guest Blogger, Cycle for Science Elizabeth Case Guest Blogger, Cycle for Science Cycle for Science Read more about Elizabeth and Rachel's journey in their check-in blog posts from April and

  19. Enhancing the Energy Harvest | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Enhancing the Energy Harvest News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 02.01.12 Enhancing the Energy Harvest EFRC researchers fashion solar cells with greater than 100% "Quantum Efficiency."

  20. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C o/er steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S ciences N etwork The D epartment o f E nergy's O ffice o f S cience i s o ne o f t he l argest s upporters o f basic r esearch i n t he p hysical s ciences i n t he U .S. * Directly s upports t he r esearch o f s ome 1 5,000 s cienDsts, p ostdocs a nd g raduate s tudents at D OE l aboratories, u niversiDes, o ther F

  1. nuclear fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear fusion

  2. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.

  3. Sandia Energy - New Project Is the ACME of Computer Science to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Is the ACME of Computer Science to Address Climate Change Home Climate Partnership News Global Climate & Energy News & Events Analysis Modeling Modeling & Analysis New...

  4. Energy Materials and Processes, An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect (OSTI)

    Burk, Linda H.

    2014-12-16

    The report summarizes discussions at the Energy Materials and Process EMSL Science Theme Advisory Panel Workshop held July 7-8, 2014.

  5. A Statement from Under Secretary for Science and Energy Franklin Orr on New Leadership at PNNL

    Broader source: Energy.gov [DOE]

    Dr. Franklin Orr, Under Secretary for Science and Energy welcomes Dr. Steven Ashby as the new Director of Pacific Northwest National Laboratory.

  6. U.S. DOE Energy Frontier Research Center Announcements

    Office of Science (SC) Website

    is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 2A18973D-0A61-4048-B130-1023...

  7. Before the House Science, Space, and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy Testimony of Scott Klara, Deputy Director National Energy Technology Laboratory Before the House Science, Space, and Technology Subcommittee on Energy and Environment Subject: Coal Research and Development PDF icon 10-13-11 Final Testimony (Klara).pdf More Documents & Publications Before the House Energy and Commerce Subcommittee on Oversight and Investigations Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before

  8. Higher temperature reactor materials workshop sponsored by the Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES).

    SciTech Connect (OSTI)

    Allen, T.; Bruemmer, S.; Kassner, M.; Odette, R.; Stoller, R.; Was, G.; Wolfer, W.; Zinkle, S.; Elmer, J.; Motta, A.

    2002-08-12

    On March 18-21, 2002, the Department of Energy, Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES) sponsored a workshop to identify needs and opportunities for materials research aimed at performance improvements of structural materials in higher temperature reactors. The workshop focused discussion around the reactor concepts proposed as part of the Generation IV Nuclear Energy System Roadmap. The goal of the Generation IV initiative is to make revolutionary improvements in nuclear energy system design in the areas of sustainability, economics, safety and reliability. The Generation IV Nuclear Energy Systems Roadmap working groups have identified operation at higher temperature as an important step in improving economic performance and providing a means for nuclear energy to support thermochemical production of hydrogen. However, the move to higher operating temperatures will require the development and qualification of advanced materials to perform in the more challenging environment. As part of the process of developing advanced materials for these reactor concepts, a fundamental understanding of materials behavior must be established and the data-base defining critical performance limitations of these materials under irradiation must be developed. This workshop reviewed potential reactor designs and operating regimes, potential materials for application in high-temperature reactor environments, anticipated degradation mechanisms, and research necessary to understand and develop reactor materials capable of satisfactory performance while subject to irradiation damage at high temperature. The workshop brought together experts from the reactor materials and fundamental materials science communities to identify research and development needs and opportunities to provide optimum high temperature nuclear energy system structural materials.

  9. Metrology Challenges for High Energy Density Science Target Manufacture

    SciTech Connect (OSTI)

    Seugling, R M; Bono, M J; Davis, P

    2009-02-19

    Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

  10. COLLOQUIUM: The Many Faces of Fusion | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Fusion Mr. Dan Clery Science Magazine Dan Clery, a veteran journalist for Science magazine and author of "A Piece of the Sun," a wide-ranging account of the quest for fusion ...

  11. Tianjin B M Science Technology Joint Stock Ltd | Open Energy...

    Open Energy Info (EERE)

    Science Technology Joint Stock Ltd Jump to: navigation, search Name: Tianjin B&M Science & Technology Joint Stock, Ltd Place: China Product: China-based maker of cathode material...

  12. Hunan Shenzhou Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shenzhou Science Technology Co Ltd Jump to: navigation, search Name: Hunan Shenzhou Science & Technology Co, Ltd Place: China Sector: Vehicles Product: A China-based maker of NiMh...

  13. London School of Economics and Political Science | Open Energy...

    Open Energy Info (EERE)

    Economics and Political Science Jump to: navigation, search Name: London School of Economics and Political Science Place: United Kingdom Zip: WC2A 2AE Product: Centre for research...

  14. Office of Science Recovery Plan | Department of Energy

    Office of Environmental Management (EM)

    Office of Science Recovery Plan Office of Science Recovery Plan PDF icon PSRP SC Updated More Documents & Publications Microsoft Word - PSRP Updates 6-25-10v2 Audit Letter Report: ...

  15. Building Science: Getting Enclosures Right in Zero Energy Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science ZERH Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com What is a Building? Building Science Corporation Joseph Lstiburek 2 A Building is an ...

  16. Establishment of WorldWideScience Alliance | OSTI, US Dept of Energy,

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Establishment of WorldWideScience Alliance Remarks by Jeffrey Salmon Associate Under Secretary for Science U.S. Department of Energy WorldWideScience Alliance Ceremony June 12, 2008 Seoul, Korea It is an honor to be here today and to join all of you in celebrating the establishment of the WorldWideScience Alliance. On behalf of Secretary of Energy Samuel Bodman and Under Secretary for Science Raymond Orbach, let me express my appreciation to our

  17. Registration Now Open for 2013 Science Bowl Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Registration Now Open for 2013 Science Bowl Teams Registration Now Open for 2013 Science Bowl Teams October 2, 2012 - 10:00am Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington - Today, U.S. Energy Secretary Steven Chu announced that registration is now open for the 2013 National Science Bowl (NSB). This marks the beginning of the 23rd year of the nation's largest science competition, which is sponsored by the Department of Energy's (DOE's) Office of Science. Local middle school and high

  18. Registration Now Open for 2013 Science Bowl Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Now Open for 2013 Science Bowl Teams Registration Now Open for 2013 Science Bowl Teams October 2, 2012 - 10:36am Addthis The National Science Bowl finals take place each year in the National Building Museum. The top regional teams come to Washington, D.C., in the spring as they as they advance to National Finals. Registration is now open at the <a href="http://science.energy.gov/nsb/">NSB website</a>. | Photo by Dennis Brack, Energy Department Office of Science The National

  19. Basic Energy Sciences (BES) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Chemical Sciences, Geosciences, and Biosciences Understanding and controlling complex chemical, geological, and biochemical processes across vast spatial and temporal scales ...

  20. Office of Science User facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty