National Library of Energy BETA

Sample records for fusion energy science

  1. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  2. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation needed to develop a fusion energy source. Get Expertise Don Rej (505) 665-1883 Email Building the scientific foundation needed to develop a fusion energy source The mission of the DOE Office of Science's Fusion Energy Sciences (FES) program is to expand the fundamental understanding of matter at very high temperatures and

  3. Fusion Energy Sciences Advisory Committee (FESAC) Homepage |...

    Office of Science (SC) Website

    FESAC Home Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members ... Print Text Size: A A A FeedbackShare Page The Fusion Energy Sciences Advisory Committee ...

  4. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  6. Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Programs FES Home Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory ...

  7. Large Scale Computing and Storage Requirements for Fusion Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 High Energy Physics (HEP) Nuclear Physics (NP) Overview Published Reports Case Study FAQs NERSC HPC Achievement Awards Share Your Research User Submitted Research Citations NERSC Citations Home » Science at NERSC » HPC Requirements Reviews » Requirements Reviews: Target 2014 » Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2014 FESFrontcover.png An FES / ASCR / NERSC Workshop August 3-4, 2010 Final Report Large

  8. Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences.

    Office of Scientific and Technical Information (OSTI)

    Long Duration Directional Drives for Star Formation and Photoionization (Technical Report) | SciTech Connect Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences. Long Duration Directional Drives for Star Formation and Photoionization Citation Details In-Document Search Title: Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences. Long Duration Directional Drives for Star Formation and Photoionization Due to the iconic status of the pillars of the

  9. NERSC Role in Fusion Energy Science Research Katherine Yelick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Science Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. New Type of Nonlinear Plasma Instability Discovered Objective: Study large periodic instabilities called Edge Localized Modes (ELMs) in

  10. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    SciTech Connect (OSTI)

    Friedman, A.; Grote, D. P.; Vay, J. L.

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  11. Fusion Institutions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fusion Institutions Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research Fusion

  12. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  13. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  14. Fusion Science to Prepare

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Recent DIII-D research has provided significant new in- formation for the physics basis of key scientific issues for successful operation of ITER and future steady state fu- sion tokamaks, including control of edge localized modes (ELMs), plasma

  15. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    SciTech Connect (OSTI)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  16. Fusion and Plasmas | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fusion and Plasmas Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf ... Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy ...

  17. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    SciTech Connect (OSTI)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote collaboration with the control room of a Tokamak running an experiment. This is especially important since the current plans for ITER assume that this problem will be solved.

  18. Science DMZ Fuels Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ Fuels Fusion Research General Atomics remote controls fusion experiments, bridges...

  19. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  20. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  1. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    1999-06-30

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  2. Fusion Nuclear Science Pathways Assessment

    SciTech Connect (OSTI)

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  3. Before the House Science and Technology Subcommittee on Energy and Environment

    Broader source: Energy.gov [DOE]

    Subject: DOE Fusion Energy Program BY: Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science

  4. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

  5. Large Scale Production Computing and Storage Requirements for Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences" is organized by the Department of Energy's Office of Fusion Energy Sciences (FES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to

  6. Lab Breakthrough: Neutron Science for the Fusion Mission | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Neutron Science for the Fusion Mission Lab Breakthrough: Neutron Science for the Fusion Mission May 16, 2012 - 9:52am Addthis An accelerator team lead by Robert McGreevy at Oak Ridge National Laboratory is testing material - a critical role in building an experimental fusion reactor for commercial use. As part of the international coalition, they expect to have an operational reactor by 2050. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital

  7. Breakthrough: Neutron Science for the Fusion Mission

    SciTech Connect (OSTI)

    McGreevy, Robert

    2012-04-24

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  8. Breakthrough: Neutron Science for the Fusion Mission

    ScienceCinema (OSTI)

    McGreevy, Robert

    2014-06-03

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  9. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  10. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  11. U.S. Signs International Fusion Energy Agreement; Large-Scale...

    Office of Science (SC) Website

    U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction News News Home Featured Articles Science Headlines 2015 2014 2013 ...

  12. Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences. Long Duration Directional Drives for Star Formation and Photoionization

    SciTech Connect (OSTI)

    Kane, J. O.; Martinez, D. A.; Pound, M. W.; Heeter, R. F.; Villette, B.; Casner, A.; Mancini, R. C.

    2015-06-19

    Due to the iconic status of the pillars of the Eagle Nebula, this research will bring popular attention to plasma physics, HED laboratory physics, and fundamental science at NIF and other experimental facilities. The result will be to both to bring new perspectives to the studies of hydrodynamics in inertial confinement fusion and HED scenarios in general, and to promote interest in the STEM disciplines.

  13. DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    DIII-D National Fusion Facility (DIII-D) Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington,

  14. Fusion Nuclear Science and Technology Program - Status and Plans...

    Office of Environmental Management (EM)

    Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and ... Idaho on September 23-25, 2014. PDF icon Fusion Nuclear Science and Technology Program - ...

  15. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    plans for tritium research Fusion Nuclear Science and Technology Program - Status and ... New Jersey on May 05-07, 2015. PDF icon Fusion Nuclear Science and Technology Program - ...

  16. Fusion Nuclear Science and Technology Program - Status and Plans for

    Office of Environmental Management (EM)

    Tritium Research | Department of Energy Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research More Documents & Publications Tritium Operation Improvements at the Idaho National Laboratory (INL) Safety and Tritium Applied Research

  17. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Scientists are advancing the fundamental science of materials within the context of global energy-related challenges. They are developing experimental and theoretical...

  18. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure

  19. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  20. How Fusion Energy Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fusion Energy Works How Energy Works 33 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as opposed to fission where the nucleus of an atom is split apart). The scientific basis underlying fusion energy is known as plasma physics. Plasma is one of the one of the four fundamental states of matter and makes up 99 percent of the visible universe. On a basic level, a plasma is a

  1. Biological Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  2. Fusion Energy Sciences Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  3. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Fusion Research Sites US Fusion Research Sites DOE Office of Science: US Fusion Energy Sciences Program Fusion Power Associates General Atomics DIIII-D National Fusion Facility Georgia Tech: Fusion Research Center Lawrence Livermore National Laboratory: National Ignition Facility Los Alamos National Laboratory: Fusion Energy Sciences MIT: Plasma Science and Fusion Center Naval Research Laboratory: Plasma Physics Division Oak Ridge National Laboratory: Fusion Energy Division Princeton Plasma

  4. Chapter 9: Enabling Capabilities for Science and Energy | High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Biophysics, Nuclear Physics, High Energy Physics, Fusion and Plasma Energy, and Computer And Data Science Science Area Project Title Institution Molecular Biophysics ...

  5. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion ... Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences ...

  6. Before the House Science and Technology Subcommittee on Energy...

    Broader source: Energy.gov (indexed) [DOE]

    BY: Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science Subject: DOE Fusion Energy Program PDF icon 10-29-09FinalTestimony(Synakowski)....

  7. Glossary of fusion energy

    SciTech Connect (OSTI)

    Whitson, M.O.

    1982-01-01

    This glossary gives brief descriptions of approximately 400 terms used by the fusion community. Schematic diagrams and photographs of the major US experiments are also included. (MOW)

  8. How Fusion Energy Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as opposed to fission where the nucleus of an atom is split apart). The scientific basis underlying fusion energy is known as plasma physics. Plasma is one of the one of the four fundamental states of matter and makes up 99 percent of the visible universe. On a basic level, a plasma is a hot ionized gas. The ultimate goal of

  9. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure of matter. As

  10. Before the House Subcommittee on Energy - Committee on Science...

    Energy Savers [EERE]

    Before the House Science and Technology Subcommittee on Energy and Environment Microsoft Word - Second ITER Council Press Release.doc Fusion Nuclear Science and Technology Program ...

  11. DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Fusion Power Search Results from DOE Databases View research documents, ... related to advanced systems for fusion energy and nuclear power, primary scientific challenges ...

  12. (Fusion energy research)

    SciTech Connect (OSTI)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  13. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  14. MIT's Plasma Science Fusion Center: Tokamak Experiments Come Clean about

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impurity Transport | Princeton Plasma Physics Lab Tokamak Experiments Come Clean about Impurity Transport American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: Tokamak Experiments Come Clean about Impurity Transport

  15. Overview of the RFX fusion science program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 (2011) 094023 (12pp) doi:10.1088/0029-5515/51/9/094023 Overview of the RFX fusion science program P. Martin 1 , J. Adamek 2 , P. Agostinetti 1 , M. Agostini 1 , A. Alfier 1 , C. Angioni 3 , V. Antoni 1 , L. Apolloni 1 , F. Auriemma 1 , O. Barana 1 , S. Barison 4 , M. Baruzzo 1 , P. Bettini 1 , M. Boldrin 1 , T. Bolzonella 1 , D. Bonfiglio 1 , F. Bonomo 1 , A.H. Boozer 5,6 , M. Brombin 1 , J. Brotankova 2 , A. Buffa 1 , A. Canton 1 , S. Cappello 1 , L. Carraro 1 , R. Cavazzana 1 , M. Cavinato

  16. The Heavy Ion Fusion Science Virtual National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Heavy Ion Fusion Science Virtual National Laboratory Python in a Parallel Environment Dave Grote - LLNL & LBNL NUG2013 User Day Wednesday, February 15, 2013 Slide 2 The Heavy Ion Fusion Science Virtual National Laboratory Outline * Why we use Python * How we use Python * Parallel Python with pyMPI * Our graphics model with Pygist * Parallel Python drawbacks and resolutions - Start up time - Static building * Conclusions Slide 3 The Heavy Ion Fusion Science Virtual National Laboratory 3

  17. Fusion energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more DOE's Ed Synakowski traces key discoveries in the quest for fusion energy The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with "aha moments" that have led to a point in history when the international fusion experiment, ITER, is poised to produce more fusion energy

  18. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the Subcommittee on Facing

  19. Scientists discuss progress toward magnetic fusion energy at 2013 AAAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual meeting | Princeton Plasma Physics Lab Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in the worldwide effort to develop magnetic fusion energy for generating electricity gave progress reports to the 2013 annual meeting of the American Association for the Advancement of Science in Boston. Speaking were physicists George "Hutch" Neilson of the U.S.

  20. Z-Pinch Fusion for Energy Applications

    SciTech Connect (OSTI)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  1. Summary of Assessment of Prospects for Inertial Fusion Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary of Assessment of Prospects for Inertial Fusion Energy American Fusion News Category: National Ignition Facility Link: Summary of Assessment of Prospects for Inertial Fusion...

  2. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  3. Benefits of FES | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Benefits of FES Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities Fusion Energy Sciences ...

  4. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade Level: ...

  5. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect (OSTI)

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  6. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    SciTech Connect (OSTI)

    2008-09-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.

  7. ScienceLive chat page: on the future of fusion research | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab ScienceLive chat page: on the future of fusion research American Fusion News Category: U.S. Universities Link: ScienceLive chat page: on the future of fusion research

  8. Sandia Energy - Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science Home Energy Research Advanced Scientific Computing Research (ASCR) Computational Science Computational Sciencecwdd2015-03-26T13:35:2...

  9. MIT Plasma Science & Fusion Center: research>alcator>research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology Useful Links Collaborations at Alcator...

  10. MIT Plasma Science & Fusion Center: research>alcator>introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter Magnet Laboratoroy Useful Links The links...

  11. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program

  12. Scientists discuss progress toward magnetic fusion energy at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting ... Scientists participating in the worldwide effort to develop magnetic fusion energy for ...

  13. Basic Energy Sciences Update

    Broader source: Energy.gov (indexed) [DOE]

    Operations Office of Science Vacant Patricia Dehmer (A) Nuclear Physics Tim Hallman Advanced Scientific Computing Research Steve Binkley Nuclear Energy Pete Lyons Fossil Energy...

  14. Climate & Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  15. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QA & What is fusion? Fusion, the energy source of the sun and stars, is the most efficient process for converting mass into energy (E mc 2 ). The fusion process is ...

  16. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab DOE's Ed Synakowski traces key discoveries in the quest for fusion energy By Jeanne Jackson DeVoe March 9, 2016 Tweet Widget Google Plus One Share on Facebook The DOE's Associate Director of Science for Fusion Energy Sciences Ed Synakowski discusses the "aha" moments in the development of fusion energy at a March 5 Ronald E. Hatcher Science on Saturday lecture. (Photo by Elle Starkman/PPPL Office of Communications) The DOE's Associate Director of

  17. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab DOE's Ed Synakowski traces key discoveries in the quest for fusion energy By Jeanne Jackson DeVoe March 9, 2016 Tweet Widget Google Plus One Share on Facebook The DOE's Associate Director of Science for Fusion Energy Sciences Ed Synakowski discusses the "aha" moments in the development of fusion energy at a March 5 Ronald E. Hatcher Science on Saturday lecture. (Photo by Elle Starkman/PPPL Office of Communications) The DOE's Associate Director of

  18. A Fusion Development Facility on the Critical Path to Fusion Energy

    SciTech Connect (OSTI)

    Chan, V. S.; Stambaugh, R

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  19. A fusion development facility on the critical path to fusion energy

    SciTech Connect (OSTI)

    Chan, Dr. Vincent; Canik, John; Peng, Yueng Kay Martin

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  20. Fusion energy development: Breakeven and beyond: Keynote address

    SciTech Connect (OSTI)

    Furth, H.P.

    1988-02-01

    The scientific feasibility, technological inevitability, and economic necessity of fusion as an energy source are discussed.

  1. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  2. Funding Opportunities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Opportunities Fusion Energy Sciences (FES) FES Home About Research Facilities Science ... for Digital Data Management Fusion Energy Sciences Advisory Committee (FESAC) ...

  3. Workshop Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Resources Workshop Reports Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences ...

  4. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences ...

  5. HEDP and new directions for fusion energy

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  6. Visualization and Analysis in Support of Fusion Science

    SciTech Connect (OSTI)

    Sanderson, Allen R.

    2012-10-01

    This report summarizes the results of the award for “Visualization and Analysis in Support of Fusion Science.” With this award our main efforts have been to develop and deploy visualization and analysis tools in three areas 1) magnetic field line analysis 2) query based visualization and 3) comparative visualization.

  7. Review of the Inertial Fusion Energy Program

    SciTech Connect (OSTI)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of drivers for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  8. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Educational Resources Fusion Educational Resources DOE Office of Science Fusion Energy Programs Education Links FuseNet: The European Fusion Education Network General Atomics Fusion Education PPPL Science Education Program PPPL FusEdWeb Educational Outreach: US ITER staff members are available for presentations on fusion energy and the ITER project to technical, civic, community, and student groups. To make arrangements for a speaker, please contact Mark Uhran, Communications Manager,

  9. Closed Lab Announcements | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lab Announcements Fusion Energy Sciences (FES) FES Home About Research Facilities Science ... for Digital Data Management Fusion Energy Sciences Advisory Committee (FESAC) ...

  10. Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science March 7, 2014 - 2:20pm Addthis Science fiction has envisioned many ways that mankind might be able to explore distant galaxies, like the spiral galaxy M106 pictured here, but what is science fiction and what could one day be science fact? | Photo Credit: NASA. Science fiction has envisioned many ways that mankind might be able to

  11. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QA & What is fusion? Fusion, the energy source of the sun and stars, is the most efficient process for converting mass into energy (E = mc 2 ). The fusion process is environmentally benign and does not emit gases that contribute to global warming or acid rain. Abundant fuel supplies for fusion are available that could meet the needs of the world's population for more than 10,000 years if the fusion process is harnessed successfully. When will fusion successfully produce useable energy? The

  12. Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science /science-innovation/_assets/images/icon-science.jpg Office of Science Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Advanced Scientific Computing Research» Basic Energy Sciences» Biological and Environmental Research» Fusion Energy Sciences» High Energy Physics» Nuclear Physics» Fusion Energy Science Research LANL fusion materials researchers use Titan supercomputer to

  13. Jobs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Jobs Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (80KB) Staff ... Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy ...

  14. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (80KB) ... Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy ...

  15. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About Staff Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file ... Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy ...

  16. Directions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Directions Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (80KB) ... Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy ...

  17. Exploring Plasma Science Advances from Fusion Findings to Astrophysical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievements | Princeton Plasma Physics Lab Exploring Plasma Science Advances from Fusion Findings to Astrophysical Achievements By John Greenwald December 4, 2012 Tweet Widget Google Plus One Share on Facebook The latest advances in plasma physics were the focus of more than 1,000 scientists from around the world who gathered in Providence, R.I., from Oct. 29 through Nov. 2 for the 54th Annual Meeting of the American Physical Society's Division of Plasma Physics (APS-DPP). Papers, posters

  18. Magnet design considerations for Fusion Nuclear Science Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  19. Energy, information science, and systems science

    SciTech Connect (OSTI)

    Wallace, Terry C; Mercer - Smith, Janet A

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  20. NREL: Energy Analysis - Energy Sciences Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sciences Technology Analysis To help meet the nation's needs for clean energy, inexpensive alternative fuels, and a healthy environment, researchers in NREL's Energy Sciences are improving our understanding of the science behind renewable energy and energy-efficient technologies. These technologies include photovoltaics (solar cells), fuels and energy systems made from biomass (plants and waste products) and hydrogen, and advanced energy storage and transmission systems. In this work, our

  1. Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education Science Education Energy is a physical quantity that follows precise natural laws. Check out our NEW Energy Literacy Video Series, which highlights the 7 Essential Principles of Energy to help engage students in energy. | Energy Department Video. For kids of all ages, there is always something new to learn about science and technology. The Energy Department supports science education through educational online content, resources for parents and teachers, internships and student

  2. Laser fusion experiment yields record energy at NIF | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  3. Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Science Education Science Education January 7, 2016 Carbon capture is an important part of the Energy Department's Fossil Energy research and development efforts, but it can be hard to understand. This infographic breaks it down for you. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. INFOGRAPHIC: Carbon Capture 101 Carbon capture is an important part of the Energy Department's Fossil Energy research and development

  4. Basic Energy Sciences Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basic Energy Sciences Overview Basic Energy Sciences Overview 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary PDF icon pl002_kung_joint_plenary_2011_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Basic Energy Sciences Overview BES Energy Storage Research Grid Storage and the Energy Frontier Research Centers

  5. Fusion-fission energy systems evaluation

    SciTech Connect (OSTI)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  6. MIT Plasma Science & Fusion Center: research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research Fusion Technology & Engineering Plasma Technology Waves & Beams Useful...

  7. About the Office of Science | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Science for energy and the environment - advancing a clean energy agenda through fundamental ... Environmental Research Fusion Energy Sciences High Energy Physics, and Nuclear Physics. ...

  8. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect (OSTI)

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  9. Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy By Argonne National Laboratory March 31, 2014 Tweet Widget Google Plus One Share on Facebook Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of California, Davis; Stephane Ethier, Princeton Plasma Physics Laboratory) Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of

  10. MIT's Plasma Science Fusion Center: I-Mode Powers Up on Alcator C-Mod

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tokamak | Princeton Plasma Physics Lab I-Mode Powers Up on Alcator C-Mod Tokamak American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: I-Mode Powers Up on Alcator C-Mod Tokamak

  11. Expanding Science and Energy Literacy with America's Science and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Centers | Department of Energy Science and Energy Literacy with America's Science and Technology Centers Expanding Science and Energy Literacy with America's Science and Technology Centers October 20, 2014 - 3:48pm Addthis This new partnership with the Association of Science and Technology Centers aims to increase energy literacy and promote STEM education. | Photo courtesy of the Department of Energy. This new partnership with the Association of Science and Technology Centers

  12. Environmental Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Science & Technology » Environmental Science Environmental Science A revolutionary new turbine technology for hydropower plants is one step closer to its first commercial deployment. At peak performance, an Alden turbine should convert about 94 percent of the water’s energy into usable electricity, comparable or superior to the efficiency of traditional turbines; the overall wildlife survival rate should be over 98 percent, up from 80-85 percent for a

  13. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photons fusion / 2012 Photons & Fusion Newsletter August 2012 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information , submit a question. Preparing the NIF Beamlines for Routine High-Energy Operations Much more went into NIF's record-breaking two-megajoule (MJ), 500-terawatt (TW)-plus shot on July 5 than just turning up the energy of NIF's 192 powerful lasers (see the LLNL News Release). In

  14. MIT Plasma Science & Fusion Center: research>alcator>

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of harnessing the nuclear process that powers our sun. This stellar process, called fusion, produces minimal waste and offers the hope of an almost limitless supply of safe,...

  15. MIT Plasma Science & Fusion Center: research>alcator>information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Beams Technology & Engineering Francis Bitter Magnet Laboratory Useful Links What is Fusion? The nucleus of an atom consists of protons, which have a positive electrical charge,...

  16. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Photons & Fusion Newsletter - 2014 February Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question. Nature Article Reports on Fuel Gain Achieved In NIF High-Foot Experiments A key step on the way to ignition on NIF is for the energy generated through fusion reactions in an inertially confined fusion plasma to exceed the amount of energy deposited into the

  17. Fusion Energy Greg Hammett & Russell Kulsred Princeton University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell Kulsred Princeton University Wednesday, Dec 4, 2013 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Lyman Spitzer, Jr. made major contributions in several fields of astrophysics, plasma physics, and fusion energy. He invented the novel stellarator concept for confining plasmas for fusion, and was an early proponent of

  18. The Science and Energy Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Science and Energy Plan The Science and Energy Plan The Science and Energy Plan Download the Science and Energy Plan [PDF] FY 2016 Science and Energy Plan The FY 2016 Science and Energy Plan (SEP) is aimed at improving the overall effectiveness of the Science and Energy enterprise by: Creating awareness and transparency about how DOE performs its science and energy functions Demonstrating how the Department operates as a coordinated system to address complex challenges Providing a baseline

  19. Inertial fusion: an energy-production option for the future

    SciTech Connect (OSTI)

    Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

    1982-05-01

    The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

  20. MIT- Energy Science and Engineering Laboratory | Open Energy...

    Open Energy Info (EERE)

    Science and Engineering Laboratory Jump to: navigation, search Logo: MIT- Energy Science and Engineering Laboratory Name: MIT- Energy Science and Engineering Laboratory Address: 77...

  1. Sandia National Labs: PCNSC: Departments: Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor & Optical Sciences Energy Sciences > CINT User Program > CINT Science Small Science Cluster Business Office News Partnering Research Neal Shinn Neal D. Shinn Sr. Manager Lupita Serna Lupita Serna Admin. Asst. Resources P. J. Feibelman Departments Energy Sciences The Energy Sciences Department oversees the operations of the following departments providing oversight in the areas of: Basic Energy Sciences/Materials Science Center for Integrated Nanotechnology (CINT), a

  2. U.S. Signs International Fusion Energy Agreement | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Large-Scale, Clean Fusion Energy Project to Begin Construction PARIS, FRANCE - ... The U.S. is proud to be part of this partnership, and to join in the pursuit of nuclear ...

  3. International Atomic Energy Agency holds conference on fusion roadmap |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab International Atomic Energy Agency holds conference on fusion roadmap By John Greenwald November 8, 2012 Tweet Widget Google Plus One Share on Facebook Hutch Neilson, third from left, chaired the four-day International Atomic Energy Agency Conference at the University of California at Los Angeles in mid-October, which drew 70 participants from 16 countries and international groups. Pictured here from left to right are Keeman Kim, National Fusion Research

  4. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science Highlights Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter

  5. PPPL to launch major upgrade of key fusion energy test facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to launch major upgrade of key fusion energy test facility NSTX project will produce most ... of nuclear fusion as a clean, safe and abundant fuel for generating electricity. ...

  6. Fusion scientists gear up to learn how to harness plasma energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living on the edge Fusion scientists gear up to learn how to harness plasma energy By ... Researchers working on an advanced experimental fusion reactor are readying experiments ...

  7. Science and Energy Town Hall

    Broader source: Energy.gov [DOE]

    Watch a live broadcast of the Science & Energy Town Hall on Wednesday, January 20, 2016 from 2:30 p.m. to 3:30 p.m. EST.

  8. Renewable Energy: science, politics, and economics (Technical...

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics Authors: Migliori, Albert 1 + ...

  9. Materials Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Science Materials Science The unique internal construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. <a href="http://energy.gov/articles/berkeley-labs-gas-filled-insulation-rivals-fiber-buildings-sector">Learn more about this cost-effective, energy-efficient insulation</a>. The unique internal construction of the

  10. Fusion Simulation Project. Workshop sponsored by the U.S. Department of Energy Rockville, MD, May 16-18, 2007

    SciTech Connect (OSTI)

    2007-05-16

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  11. Fusion Simulation Project. Workshop Sponsored by the U.S. Department of Energy, Rockville, MD, May 16-18, 2007

    SciTech Connect (OSTI)

    Kritz, A.; Keyes, D.

    2007-05-18

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  12. A Pilot Plant: The Fastest Path to Commercial Fusion Energy

    SciTech Connect (OSTI)

    Robert J. Goldston

    2010-03-03

    Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ? 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

  13. A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion

    Office of Science (SC) Website

    Plasmas | U.S. DOE Office of Science (SC) A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E:

  14. Better Fusion Plasma Operating Scenarios are Being Explored and Extended on

    Office of Science (SC) Website

    the Alcator C-Mod Tokamak | U.S. DOE Office of Science (SC) Better Fusion Plasma Operating Scenarios are Being Explored and Extended on the Alcator C-Mod Tokamak Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585

  15. New Theoretical Model of the Complex Edge Region of Fusion Plasmas Proves

    Office of Science (SC) Website

    Accurate | U.S. DOE Office of Science (SC) New Theoretical Model of the Complex Edge Region of Fusion Plasmas Proves Accurate Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584

  16. Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot

    Office of Science (SC) Website

    Plasma | U.S. DOE Office of Science (SC) Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot Plasma Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  17. Koel applies science of surface chemistry to fusion research at PPPL |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Koel applies science of surface chemistry to fusion research at PPPL By Catherine Zandonella March 26, 2012 Tweet Widget Google Plus One Share on Facebook To study the interactions of lithium under conditions similar to what might be found in a fusion reactor, lithium on a sample of TZM molybdenum, which is an alloy of molybdenum, titanium, zirconium and carbon known for its high strength and temperature properties, is heated inside an ultrahigh vacuum chamber

  18. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  19. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect (OSTI)

    Kramer, K

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive M

  20. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Clean Energy Science and Innovation Clean Energy Hydrogen Production and Storage Nuclear Fuel Cycle Research and Development Renewable Energy Research Among the most ...

  1. Energy Sciences Building | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Argonne's Energy Sciences Building Resources Energy Sciences Building (ESB) brochure Energy Sciences Building The Energy Sciences Building is a world-class scientific facility and a shining example of sustainable design. Argonne's Energy Sciences Building (ESB) contains a nexus of interdisciplinary research in basic materials design, fundamental chemistry and energy systems research designed to address the nation's most pressing challenge of the 21st century - clean, affordable, and

  2. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    and Environmental Research, Fusion Energy Sciences, High Energy Physics and Nuclear Physics. ... Science for National Need Advancing a clean energy agenda through basic research ...

  3. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  4. Fusion through the eyes of a veteran science journalist | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Fusion through the eyes of a veteran science journalist July 15, 2013 Tweet Widget Google Plus One Share on Facebook Daniel Clery (Photo by Sadie Windscheffel-Clarke) Daniel Clery Gallery: Author Daniel Clery recently published "A Piece of the Sun," a 320-page narrative of the history of fusion research and the personalities who have devoted their careers to it. Clery is a United Kingdom-based reporter for Science magazine who holds a bachelor's degree in theoretical

  5. Biological Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Science Biological Science The protozoan Plasmodium falciparum gliding through a cell in the gut of a mosquito, its primary host. Although five different species of Plasmodium can cause malaria, Plasmodium falciparum causes the most severe disease. | Photo courtesy of Wikipedia Commons. <a href="http://energy.gov/articles/malaria-researchers-find-weakness-global-killer">Read more</a> The protozoan Plasmodium falciparum gliding through a cell in the gut of a

  6. Origins | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Origins Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » International Activities Origins

  7. Posters | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Posters Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » International Activities Posters

  8. International Activities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Activities Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research

  9. Sandia Energy Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wins Funding for Two DOE-EERE Computer-Aided Battery-Safety R&D Projects http:energy.sandia.govsandia-wins-funding-for-two-doe-eere-computer-aided-battery-safety-rd-proje...

  10. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David...

  11. NREL: Energy Sciences - Biosciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Illustration shows photosynthetic cycle. At the top left are the labels solar energy, H2O, and CO2; an arrow points down to Lignocellulosic Biomass. An arrow from this...

  12. Weihai International Renewable Energy Science Park | Open Energy...

    Open Energy Info (EERE)

    Science Park Jump to: navigation, search Name: Weihai International Renewable Energy Science Park. Place: Weihai, Shandong Province, China Sector: Renewable Energy Product:...

  13. Wuxi Erquan Solar Energy Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Erquan Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Wuxi Erquan Solar Energy Science& Technology Co Ltd Place: Wuxi, Jiangsu Province, China Zip: 214128...

  14. Wuxi Shangpin Solar Energy Science Technology Co | Open Energy...

    Open Energy Info (EERE)

    Shangpin Solar Energy Science Technology Co Jump to: navigation, search Name: Wuxi Shangpin Solar Energy Science & Technology Co Place: Wuxi, Jiangsu Province, China Product:...

  15. Energy BioSciences Institute | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Energy BioSciences Institute Name: Energy BioSciences Institute Place: Berkeley, California Zip: 94720 Region: Bay Area Website: www.energybiosciencesinstitute...

  16. DOE and Fusion Links | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE and Fusion Links United States Department of Energy U.S. Department of Energy Office of Science Office of Fusion Energy Sciences U.S. D.O.E. Princeton Site Office Map showing U.S. Fusion Program Participants U.S. D.O.E. Science Laboratories U.S. D.O.E. User Facilities U.S. D.O.E. Funding Opportunities Other Fusion Research Sites United States Sites General Atomics (GA) MIT Plasma Science and Fusion Center U.S. ITER National Ignition Facility (NIF) American Fusion News International Sites

  17. Elevance Renewable Sciences Inc | Open Energy Information

    Open Energy Info (EERE)

    Elevance Renewable Sciences Inc Jump to: navigation, search Name: Elevance Renewable Sciences Inc Place: Bolingbrook, Illinois Zip: 60440 Sector: Biofuels, Renewable Energy...

  18. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect (OSTI)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  19. COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FNSF | Princeton Plasma Physics Lab December 10, 2013, 11:00am to 12:30pm Colloquia MBG Auditorium COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics, DIII-D Presentation: File Presentation Abstract: PDF icon COLL.12.10.13.pdf Recent DIII-D research has provided significant new information for the physics basis of key scientific issues for successful operation of ITER and future steady state fusion tokamaks, including control of

  20. MIT Plasma Science & Fusion Center: research, alcator, publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering...

  1. Lasers, Photonics, and Fusion Science: Bringing Star Power to Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Targeting Extreme Physics Get the story » Big Foot Target Shot Learn more » Studying Shocks on the Rebound Get the story » NIF Target Bay Learn more » ‹ › **** × Subscribe to our News Alerts * Your Email Address: * Preferred Format: HTML Text Subscribe Latest NIF & Photon Science News Controlling Hot Electrons in NIF Implosions Researchers study hot-electron directionality and the capsule preheat they can cause. Calling the Shots Tanza Lewis knows that working cohesively with others

  2. MIT Plasma Science & Fusion Center: research>alcator>publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering Useful Links APS Presentations New Orleans...

  3. Fusion Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The appearance of hyperlinks does not constitute endorsement by the Department of Energy of these web sites or the information, products or services contained therein. Last ...

  4. The Effects of Neutron Transfer on Nuclear Fusion at Low Energies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Neutron Transfer on Nuclear Fusion at Low Energies Nuclear fusion produces heavier nuclei in stars and in laboratories. At energies so low that a classical particle could not penetrate the Coulomb repulsion of the nucleus, the Coulomb barrier, fusion takes place by quantum tunneling. At these energies, fusion rates can be sensitive to the interplay between nuclear structure and nuclear reactions. This talk presents experimental studies of the influence of neutron transfer on

  5. Center for Electrochemical Energy Science | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their...

  6. Building Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Building America » Building Science Education Building Science Education The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. The Building Science Education Roadmap, developed by DOE and leaders of the building science community,

  7. MIT Plasma Science & Fusion Center: research, alcator, publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2nd Annual Meeting of the APS Division of Plasma Physics, Chicago, 2010 Invited Orals A. Hubbard I-mode regime with an edge energy transport barrier but no particle barrier in...

  8. Fusion Education | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ... At this Web site you can learn some new things about plasmas in our world, in our society, ... by the Department of Energy of these web sites or the information, products or ...

  9. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect (OSTI)

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  10. Professor and Director of the Fusion Science Center of Extreme States of

    National Nuclear Security Administration (NNSA)

    Matter and Fast Ignition, University of Rochester | National Nuclear Security Administration Professor and Director of the Fusion Science Center of Extreme States of Matter and Fast Ignition, University of Rochester | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History

  11. Photon Science for Renewable Energy

    SciTech Connect (OSTI)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-03-31

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  12. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  13. DOE's Office of Science Awards 95 Million Hours of Supercomputing...

    Energy Savers [EERE]

    ... cars, improving commercial aircraft design, advancing fusion energy, studying ... Laboratory in California, and the Molecular Science Computing Facility at Pacific ...

  14. FES Budget | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Budget Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (80KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  15. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F:

  16. Department of Energy National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you,...

  17. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in...

  18. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  19. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  20. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental...

  1. 2012 Science Alliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Alliance 2012 Science Alliance Addthis Science Alliance 1 of 5 Science Alliance Students arrive at the welcome tent during the beginning of the two-day Science Alliance, in which more than 900 area high school juniors enjoyed presentations in 14 separate areas on a midway in the X-2207A parking lot. Image: Energy Department's Office of Environmental Management Date taken: 2012-09-25 08:59 Science Alliance 2 of 5 Science Alliance DOE Site Lead Joel Bradburne, Site Director Dr. Vince Adams

  2. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  3. Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships

    Broader source: Energy.gov [DOE]

    The Energy Efficiency and Renewable Energy (EERE) Science and Technology Policy (STP) Fellowships serve as a next step in the educational and professional development of scientists and engineers...

  4. Zhuhai Oil Energy Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    it. Zhuhai Oil Energy Science and Technology is a company based in Zhuhai, China. Zhuai Oil Energy produces biofuels and recently increased its production capacity to 60 metric...

  5. NREL: Energy Sciences - Jun-Wei Luo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factors." Energy Environmental & Science (4); p. 2546. Luo, J.-W.; Zunger, A. (2010). "Design Principles and Coupling Mechanisms in the 2D Quantum Well Topological Insulator...

  6. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal hydrides Science and Innovation Clean Energy - Hydrogen Production and Storage ... radioactive isotope of hydrogen that is a vital component of modern nuclear defense. ...

  7. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office (BTO) stated needs for the new program in Waste to Energy (WTE) initiative. SRNL is leveraging its nuclear core competencies in chemistry, material science and ...

  8. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  9. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  10. Fusion materials high energy-neutron studies. A status report

    SciTech Connect (OSTI)

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made in a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections.

  11. 10 Facts You Should Know About Fusion Energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Facts You Should Know About Fusion Energy By Larry Bernard January 25, 2016 Tweet Widget Google Plus One Share on Facebook (Photo by Elle Starkman/ PPPL Office of Communications) Gallery: It's natural. In fact, it's abundant throughout the universe. Stars - and there are billions and billions of them - produce energy by fusion of light atoms. It's natural. In fact, it's abundant throughout the universe. Stars - and there are billions and billions of them - produce energy by fusion of light

  12. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    2 Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Science Highlights 2012 Print Text Size: A A A FeedbackShare Page Filter by Performer Or press

  13. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  14. House Committee on Science | Department of Energy

    Energy Savers [EERE]

    Science House Committee on Science February 16, 2005 - 10:25am Addthis Remarks by Secretary Samuel W. Bodman Chairman Boehlert, Congressman Gordon, members of the Committee, thank you for welcoming me back, this time in my new role as Secretary of Energy. I am grateful for the opportunity to discuss the President's fiscal year 2006 budget for science at the Department of Energy. I come before you this morning with tremendous enthusiasm for the Department's mission to maintain and enhance

  15. DOE's Ed Synakowski traces key discoveries in the quest for fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the quest for fusion energy By Jeanne Jackson DeVoe March 9, 2016 Tweet Widget Google Plus One Share on Facebook The DOE's Associate Director of Science for Fusion Energy ...

  16. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy...

  17. Primary Science of Energy Student Guide (42 Activities) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Student Guide (42 Activities) Primary Science of Energy Student Guide (42 Activities) Information about Primary Science of Energy, 42 student activities on energy basics for grades...

  18. Science for Energy Flow | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science for Energy Flow Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000

  19. Solar Energy Education. Renewable energy activities for earth science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect earth science Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for earth science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  20. ACCESS: Argonne Collaborative Center for Energy Storage Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCESS: Argonne Collaborative Center for Energy Storage Science Share Topic Energy Energy usage Energy storage Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative ...

  1. Solar energy education. Renewable energy activities for general science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect energy education. Renewable energy activities for general science Citation Details In-Document Search Title: Solar energy education. Renewable energy activities for general science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  2. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect (OSTI)

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  3. Sandia Energy - Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science, Research & Capabilities Sandia Research Featured on Journal of Physical Chemistry A Cover As part of Sandia's core geochemistry program funded by DOE Office of...

  4. Alcator C-Mod | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Alcator C-Mod Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941

  5. Edmund J Synakowski | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Staff » Edmund J Synakowski Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (80KB) Staff Edmund J Synakowski FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P:

  6. FES Committees of Visitors | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Committees of Visitors Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (80KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301)

  7. National Spherical Torus Experiment (NSTX) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) National Spherical Torus Experiment (NSTX) Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW

  8. American Fusion News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Fusion News General Atomics (GA) December 4, 2012 The Scorpion's Strategy: "Catch and Subdue" December 4, 2012 Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment February 15, 2012 General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement See All Massachusetts Institute of Technology (MIT) April 5, 2013 Applying physics, teamwork to fusion energy science February 22, 2013 A Tour of Plasma Physics in Downtown Cambridge December 4, 2012 Placing

  9. Great Lakes Science Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind...

  10. Rising Solar Energy Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Rising Solar Energy Science and Technology Co Ltd Place: Qinhuangdao, Hebei Province, China Zip: 66600 Sector: Solar Product: Chinese solar module laminator manufacturer...

  11. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments [OSTI]

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  12. NREL: Energy Sciences - Tim Snow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Materials Science Center. Since graduating in 1987, he has worked within the semiconductor field for Intel, LSI Logic, Atmel, and ZettaCore, Inc. He holds a U.S. patent for...

  13. NREL: Energy Sciences - Yufeng Zhao

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Zhao graduated from the physics department of Harbin University of Science & Technology and earned his Ph.D. degree from Peking University in 1998. After two years at the...

  14. NREL: Energy Sciences - Joongoo Kang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    his Ph.D. in physics from the KAIST, South Korea, under the supervision of Prof. K. J. Chang. His background is in solid-state physics and materials science based on...

  15. Science for Our Nation's Energy Future | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements ...

  16. Energy Sciences Network (ESnet) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Energy Sciences Network (ESnet) Advanced Scientific Computing Research (ASCR) ASCR Home ... Argonne Leadership Computing Facility (ALCF) Energy Sciences Network (ESnet) National ...

  17. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  18. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  19. Harnessing the Energy of the Stars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Progress and Former Under Secretary for Science These are exciting times for fusion energy. Today I'm sharing that excitement with several hundred scientists at a...

  20. Before the Subcommittee on Energy - House Committee on Science...

    Energy Savers [EERE]

    Subcommittee on Energy - House Committee on Science, Space, and Technology Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Testimony of David...

  1. Before the House Science and Technology, Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment Before the House Science and Technology,...

  2. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Statement Before the Committee On Science And Technology, Subcommittee on...

  3. Shanghai Chaori Solar Energy Science Technology Development Co...

    Open Energy Info (EERE)

    Chaori Solar Energy Science Technology Development Co Ltd Jump to: navigation, search Name: Shanghai Chaori Solar Energy Science & Technology Development Co Ltd Place: Shanghai,...

  4. Qinhuangdao Rising Solar Energy Science and Technology Co Ltd...

    Open Energy Info (EERE)

    Rising Solar Energy Science and Technology Co Ltd Jump to: navigation, search Name: Qinhuangdao Rising Solar Energy Science and Technology Co., Ltd Place: Qinhuadao, Hebei...

  5. Shanshan Ulica Solar Energy Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Ulica Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Shanshan Ulica Solar Energy Science&Technology Co Ltd Place: Shanghai, Shanghai Municipality, China...

  6. Mesa Energy formerly called Mesa Environmental Sciences | Open...

    Open Energy Info (EERE)

    Energy formerly called Mesa Environmental Sciences Jump to: navigation, search Name: Mesa Energy (formerly called Mesa Environmental Sciences) Place: Pennsylvania Zip: 19355...

  7. Basic Energy Sciences Advisory Committee (BESAC) Homepage | U...

    Office of Science (SC) Website

    BESAC Home Basic Energy Sciences Advisory Committee (BESAC) BESAC Home Meetings BESAC ... Print Text Size: A A A FeedbackShare Page The Basic Energy Sciences Advisory Committee ...

  8. Khazanah Nasional Berhad Beijing China Sciences General Energy...

    Open Energy Info (EERE)

    Khazanah Nasional Berhad Beijing China Sciences General Energy JV Jump to: navigation, search Name: Khazanah Nasional Berhad & Beijing China Sciences General Energy JV Place: China...

  9. Beijing China Sciences General Energy Environment GEE | Open...

    Open Energy Info (EERE)

    Sciences General Energy Environment GEE Jump to: navigation, search Name: Beijing China Sciences General Energy&Environment (GEE) Place: Beijing Municipality, China Zip: 100080...

  10. AVTA: 2010 Ford Fusion HEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ford Fusion HEV Testing Results AVTA: 2010 Ford Fusion HEV Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric

  11. Community Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Resources Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Community Resources Print Text

  12. Amplifying Magnetic Fields in High Energy Density Plasmas | U...

    Office of Science (SC) Website

    Amplifying Magnetic Fields in High Energy Density Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities ...

  13. Science Academy from Chevron Energy Technology Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receives $25,000 for Math and Science Academy from Chevron Energy Technology Company November 30, 2009 Academy program for teachers is demonstrating improvements in math proficiency scores among students Los Alamos, New Mexico, November 30, 2009-Los Alamos National Laboratory (LANL) recently accepted a $25,000 contribution from Chevron Energy Technology Company, a Chevron Corporation (NYSE:CVX) subsidiary, to the LANL Foundation to support the Northern New Mexico Math and Science Academy, a

  14. Magnetic Fusion Energy Research: A Summary of Accomplishments

    DOE R&D Accomplishments [OSTI]

    1986-12-01

    Some of the more important contributions of the research program needed to establish the scientific and technical base for fusion power production are discussed. (MOW)

  15. Basic Energy Sciences (BES) Homepage | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BES Home Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science for Energy Discovery science solves mysteries, sparks innovation, and stimulates

  16. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

  17. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    SciTech Connect (OSTI)

    Hawryluk, R J

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  18. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  19. PPPL Races Ahead with Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides

  20. Science Fair Project Ideas for Energy Savers | Department of Energy

    Energy Savers [EERE]

    Science Fair Project Ideas for Energy Savers Science Fair Project Ideas for Energy Savers February 12, 2016 - 11:43am Addthis Electricity usage monitors make it easy to measure the electricity consumed by any device that runs on 120 volts. Photo by Alexis Powers Electricity usage monitors make it easy to measure the electricity consumed by any device that runs on 120 volts. Photo by Alexis Powers Alexis Powers Communications Specialist at the National Renewable Energy Laboratory How can I

  1. Sandia Energy Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eronautics-and-astronauticsfeed 0 Detecting rare, abnormally large grains by x-ray diffraction http:energy.sandia.govdetecting-rare-abnormally-large-grains-by-x-ray-diffractio...

  2. Sandia Energy - Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Fuel Cell Technology Office, cut the ribbon to initiate the Maritime Hydrogen Fuel Cell project to test a hydrogen-fuel-cell-powered generator at Young...

  3. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  4. Physicist Zoe Martin's fusion quest: a stellar future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoe Martin's fusion quest: a stellar future Physicist Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. August 27, 2013 Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. She also pursues gravity-defying dance in her spare time. Martin said her mentor, physicist Leslie Sherrill, takes the time to

  5. Science & Innovation Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Reports Science & Innovation Reports August 12, 2014 Audit Report: OAS-M-14-09 Office of Science's Management of Research Misconduct Allegations May 22, 2014 Audit Report: DOE/IG-0912 The Department of Energy's Public Dissemination of Research Results September 30, 2011 Audit Report: OAS-RA-L-11-13 The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility March 8, 2011 Audit Letter Report: OAS-RA-L-11-05 Recovery Act Funded Projects at the

  6. Science & Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Science & Innovation Mars Rover Curiosity Mars Rover Curiosity Mars Rover Curiosity landed safely on the planet's surface with an array of equipment powered with technology developed at the National Labs. Read more Dark Energy Cam Dark Energy Cam Fermilab's 570-megapixels, five-ton Dark Energy camera is expanding our understanding of the universe. Read more Celebrating the Higgs boson Celebrating the Higgs boson Scientists recently found evidence of the elusive particle that fills

  7. Solar energy education. Renewable energy activities for general science

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  8. Department of Energy National Science Bowl | Department of Energy

    Energy Savers [EERE]

    National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Ray. And thanks to our Office of Science for all the work that went into organizing this year's National Science Bowl. In particular, I'd like to recognize Sue Ellen Walbridge, who has orchestrated this important event for the past 17 years. Sue Ellen, thank you for your devotion to America's scientific future. I'm glad to have my wife

  9. Science and Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... HR BUSINESS PARTNER 202-287-5907 jennifer.watson@hq.doe.gov Energy Headquarters - HR Advisory Office WOODSON, LYNDA HR BUSINESS PARTNER 202-586-2300 lynda.woodson@hc.doe.gov NETL - ...

  10. Fusion Energy Sciences Network Requirements Review Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For example, running large-scale simulations concurrently on HPC resources during an experiment can help answer ... those used at the CERN Large Hadron Collider. 51 5.6 Medium-term ...

  11. Before the Subcommittee on Energy - House Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Committee on Science, Space and Technology Before the Subcommittee on Energy - House Committee on Science, Space and Technology Testimony of Adam Sieminiski, Administrator,...

  12. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific ...

  13. Wuhan Guoce Science Technology Co Ltd Guoce | Open Energy Information

    Open Energy Info (EERE)

    Guoce Science Technology Co Ltd Guoce Jump to: navigation, search Name: Wuhan Guoce Science & Technology Co., Ltd (Guoce) Place: Wuhan, Hubei Province, China Sector: Wind energy...

  14. Goldwind Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Science Technology Co Ltd Jump to: navigation, search Name: Goldwind Science & Technology Co Ltd Place: Urumqi, Xinjiang Autonomous Region, China Zip: 830000 Sector: Wind energy...

  15. Feng Fa Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    Feng Fa Science and Technology Jump to: navigation, search Name: Feng Fa Science and Technology Place: Shenzhen, Guangdong Province, China Sector: Wind energy Product: A VCPE...

  16. Zhejiang Sunflower Light Energy Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Sunflower Light Energy Science & Technology Co Ltd Place: Shaoxing, Zhejiang Province, China Zip: 312071...

  17. Jiuquan Xinmao Science and Technology Wind Power | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Wind Power Jump to: navigation, search Name: Jiuquan Xinmao Science and Technology Wind Power Place: Gansu Province, China Sector: Wind energy Product: Gansu...

  18. Before the House Subcommittee on Energy - Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting...

  19. Energy Innovation Hubs: Achieving Our Energy Goals with Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hubs: Achieving Our Energy Goals with Science Energy Innovation Hubs: Achieving Our Energy Goals with Science March 2, 2012 - 6:44pm Addthis Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Secretary Chu stops at Oak Ridge

  20. Chapter 9 - Enabling Capabilities for Science and Energy | Department of

    Office of Environmental Management (EM)

    Energy 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Basic science expands our understanding of the natural world and forms the foundation for future technology. Energy systems that meet our energy security, economic, and environmental objectives require a new generation of materials that may not be naturally available. However, creating these new materials requires a level of

  1. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Energy, Committee on Science, Space and Technology Testimony of Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House Subcommittee on Energy,...

  2. Response to FESAC survey, Non-Fusion Connections to Fusion Energy...

    Office of Scientific and Technical Information (OSTI)

    Due to the iconic status of the pillars of the Eagle Nebula, this research will bring popular attention to plasma physics, HED laboratory physics, and fundamental science at NIF ...

  3. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect (OSTI)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

  4. Fermilab | Science | Particle Physics 101 | Science of Matter, Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space and Time Science of Matter, Energy, Space and Time Standard Model and Higgs Illustration What is the world made of? The building blocks Physicists have identified 13 building blocks that are the fundamental constituents of matter. Our everyday world is made of just three of these building blocks: the up quark, the down quark and the electron. This set of particles is all that's needed to make protons and neutrons and to form atoms and molecules. The electron neutrino, observed in the

  5. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2013 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question....

  6. Science for Our Nation's Energy Future | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 11.18.10 Science for Our Nation's Energy Future Print Text Size: A A A Subscribe FeedbackShare Page May 25-27, 2011 :: Science for Our Nation's Energy Future, the inaugural Energy Frontier Research Centers Summit and Forum on May 25 - 27, 2011 at the Renaissance Penn Quarter

  7. DOE Science Showcase - Read about Energy-Efficient Lighting ...

    Office of Scientific and Technical Information (OSTI)

    Science Cinema Science and the Energy Security Challenge: The Example of Solid-State Lighting WorldWideScience.org Recent advances in conjugated polymers for light emitting devices ...

  8. FES Program Documents | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Program Documents Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Community Resources FES

  9. Controlling Plasmas for a Cleaner World | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Plasmas for a Cleaner World Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » 10.01.12 Controlling Plasmas for a Cleaner World New

  10. Fusion scientists gear up to learn how to harness plasma energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 30, 2011 Tweet Widget Google Plus One Share on Facebook Researchers working on an advanced experimental fusion machine are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National

  11. Fusion scientists gear up to learn how to harness plasma energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 28, 2011 Tweet Widget Google Plus One Share on Facebook Researchers working on an advanced experimental fusion reactor are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National

  12. National Science Bowl 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl 2013 National Science Bowl 2013 Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center,...

  13. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  14. FESAC Reports Archive | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ChargesReports FESAC Reports Archive Fusion Energy Sciences Advisory Committee (FESAC) ... "Review .pdf file (4.1MB) of the Inertial Fusion Energy Program", DOESC-0087, March 2004. ...

  15. A Statement from Under Secretary for Science and Energy Franklin...

    Energy Savers [EERE]

    Under Secretary for Science and Energy Franklin Orr on New Leadership at PNNL A Statement from Under Secretary for Science and Energy Franklin Orr on New Leadership at PNNL March...

  16. EFRC Newsletter | Bringing Energy Science into the Classroom |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photosynthetic Antenna Research Center EFRC Newsletter | Bringing Energy Science into the Classroom June 19, 2015 EFRC Newsletter | Bringing Energy Science into the Classroom Featuring PARC Outreach Coordinator Rachel Ruggirello View Article Here

  17. Argonne Energy Sciences Building achieves LEED Gold | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    natural light. (Click to view larger.) Argonne Energy Sciences Building achieves LEED Gold By Diana Anderson * May 21, 2015 Tweet EmailPrint The Energy Sciences Building (ESB) at...

  18. National Science Bowl Regional Roundup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Roundup National Science Bowl Regional Roundup March 18, 2015 - 2:33pm Addthis Photo courtesy of National Renewable Energy Laboratory. Photo courtesy of National Renewable Energy Laboratory. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs National Science Bowl Regional Roundup It's like March Madness for science students. Storified by Energy Department * Tue, May 05 2015 15:08:26 2015ScienceBowl125 * National Renewable Energy Lab To quote President Obama,

  19. Before the House Science and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy Subcommittee on Energy and Environment By: Dr. Anna Palmisano, Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science Research Applications PDF icon 9-10-09_Final_Testimony_(Palmisano).pdf More Documents & Publications Before the House Science and Technology Subcommittee on Energy and Environment Chapter 9 - Enabling Capabilities for Science and Energy Biosystems Design Before the House

  20. Fusion energy division annual progress report, period ending December 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  1. Proliferation Risks of Magneetic Fusion Energy: Clandestine Production, Covert Production and Breakout

    SciTech Connect (OSTI)

    A. Glaser and R.J. Goldston

    2012-03-13

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material inn a declared facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  2. Argonne Collaborative Center for Energy Storage Science | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Collaborative Center for Energy Storage Science ACCESS: Bridging the gap between industry and Argonne energy storage expertise The Argonne Collaborative Center for Energy Storage Science (ACCESS) is a powerful collaborative of scientists and engineers from across Argonne that helps public and private-sector customers turn science into solutions. PDF icon Argonne_ACCESS

  3. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect (OSTI)

    Latkowski, J.F.

    1996-11-01

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  4. Sandia Energy - Materials Science and Engineering Support for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Home Renewable Energy Energy...

  5. U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE 2016 NATIONAL SCIENCE BOWLP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFICE OF SCIENCE 2016 NATIONAL SCIENCE BOWLP ® PARENTAL CONSENT / MEDIA RELEASE FOR STUDENT PARTICIPATION School______________________________________ I, (Mr., Mrs., Ms.) ________________________________________________, the parent or legal guardian, as appropriate, of _____________________________________, give my consent for him/her to participate in all activities associated with the 2016 U.S. Department of Energy Office of Science Regional and/or National Science Bowl ® competitions. I

  6. Science Programs Organization | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science Programs Organization Deputy Director for Science Programs Deputy Director Home Mission & Functions Deputy Director Biography Organization Organization Chart .pdf file (79KB) Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Staff

  7. US ITER | Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why Fusion? US Fusion Research Educational Resources Why Fusion? Home > Why Fusion? What is Fusion? Fusion is a key element in long-term US energy plans. ITER will allow scientists to explore the physics of a burning plasma at energy densities close to that of a commercial power plant. This is a critical step towards producing and delivering electricity from fusion to the grid. Nuclear fusion occurs naturally in stars, like our sun. When hydrogen gets hot enough, the process of fusion

  8. NETL Science & Engineering Ambassadors Guide Next Generation of Energy

    Energy Savers [EERE]

    Decision-Makers | Department of Energy Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers NETL Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers March 7, 2016 - 12:06pm Addthis NETL Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers A trio of scientists and engineers from the National Energy Technology Laboratory (NETL) are using their research skills and experience to prepare future

  9. National Lab Celebrates a Century of Science | Department of Energy

    Office of Environmental Management (EM)

    Lab Celebrates a Century of Science National Lab Celebrates a Century of Science October 13, 2010 - 1:00pm Addthis Washington, DC - On the occasion of its 100th anniversary, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) today launched its Regional University Alliance (NETL-RUA) and dedicated the Energy Challenge, an interactive energy exhibit for kids, with an event at the Carnegie Science Center. Energy Challenge is an interactive kiosk that quizzes players on

  10. The National Ignition Facility: Ushering in a new age for high energy density science

    SciTech Connect (OSTI)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-04-15

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  11. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect (OSTI)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  12. Center for Bio-Inspired Energy Science (CBES) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Bio-Inspired Energy Science (CBES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Bio-Inspired Energy Science (CBES) Print Text Size: A A A FeedbackShare Page CBES Header Director Samuel Stupp Lead Institution Northwestern University Year Established 2009 Mission To discover and develop bio-inspired systems that reveal new connections between energy

  13. Expanding Science and Energy Literacy with America's Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at museums. These visits created lasting impressions, inspiring us to discover more about the world around us. It's no wonder that science and technology museums around the ...

  14. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect (OSTI)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  15. Energy Department and National Institute of Building Sciences Release

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Workforce Guidelines | Department of Energy and National Institute of Building Sciences Release Better Buildings Workforce Guidelines Energy Department and National Institute of Building Sciences Release Better Buildings Workforce Guidelines March 9, 2015 - 1:37pm Addthis As a part of the Obama Administration's effort to support greater energy efficiency through the Better Buildings Initiative, the U.S. Department of Energy and the National Institute of Building Sciences

  16. Contacts for Geospatial Science Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geospatial Science Program Contacts for Geospatial Science Program LeAnn Oliver Associate Chief Information Officer for IT Policy and Governance US Department of Energy 202-586-0166 Geospatial

  17. 2011 Annual Planning Summary for Science (SC) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science (SC) 2011 Annual Planning Summary for Science (SC) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Science (SC). PDF icon 2011 Annual Planning Summary for Science (SC) More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2011 Annual Planning Summary for Brookhaven Site Office (BHSO) 2011 Annual Planning

  18. Frontiers in Science Lectures focus on saving energy through

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    superconductivity Frontiers in Science Lectures Frontiers in Science Lectures focus on saving energy through superconductivity Dean Peterson discusses the science of high-temperature superconductivity in a series of Frontiers in Science lectures. June 12, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  19. California Academy of Sciences | Open Energy Information

    Open Energy Info (EERE)

    Academy of Sciences Jump to: navigation, search Name: California Academy of Sciences Place: San Francisco, California Zip: 94103-3009 Product: Set up to explore, explain and...

  20. Lighting Science Group | Open Energy Information

    Open Energy Info (EERE)

    Science Group Jump to: navigation, search Name: Lighting Science Group Place: Dallas, Texas Zip: 75201 Product: LED design company, with multiple patents pending in power...

  1. Area Science Park | Open Energy Information

    Open Energy Info (EERE)

    Area Science Park Jump to: navigation, search Name: Area Science Park Place: Italy Sector: Services Product: General Financial & Legal Services ( Government Public sector )...

  2. PSE Science Park | Open Energy Information

    Open Energy Info (EERE)

    PSE Science Park Jump to: navigation, search Name: PSE Science Park Place: Switzerland Sector: Services Product: General Financial & Legal Services ( Private family-controlled )...

  3. Before the House Science and Technology, Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment By: Steve Chalk, Principal Deputy Assistant Secretary, Office of Energy Efficiency and Renewable Energy Subject: Examining Federal Vehicle Technology Research and Development Programs PDF icon 3-24-09_Final_Testimony_Steve_Chalk.pdf More Documents

  4. Congratulations, 2013 National Science Bowl Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congratulations, 2013 National Science Bowl Winners Congratulations, 2013 National Science Bowl Winners April 29, 2013 - 6:31pm Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center, Thursday, April 25, 2013 in Chevy Chase, Maryland. | Photo courtesy of Sarah Gerrity, Department of Energy. Date taken: 2013-04-26 15:20 National Science Bowl 2013 2 of 16 National Science Bowl 2013 The high school students participated in a

  5. Fusion Power Associates Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Power Associates Awards Fusion Power Associates is "a non-profit, tax-exempt research and educational foundation, providing information on the status of fusion development and other applications of plasma science and fusion research". The Association makes awards in four categories: Distinguished Career Awards, Leadership Awards, Excellence in Fusion Engineering, and Special Awards. Since 1987, Distinguished Career Awards have been presented "to individuals who have made

  6. Science on Saturday: Reimagining the Possible: Scientific Transformations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shaping the Path Towards Fusion Energy | Princeton Plasma Physics Lab March 5, 2016, 9:30am Science On Saturday MBG Auditorium at PPPL Science on Saturday: Reimagining the Possible: Scientific Transformations Shaping the Path Towards Fusion Energy Dr. Edmund Synakowski Department of Energy, Office of Science Abstract: PDF icon Synakowski.pdf Science_on_Saturday05Mar2016_ESynakowski Contact Information Coordinator(s): Ms. Deedee Ortiz-Arias dortiz@pppl.gov Host(s): Dr. Andrew Zwicker

  7. Department of Energy Cites Brookhaven Science Associates, LLC for Worker

    Energy Savers [EERE]

    Safety and Health Violations | Department of Energy Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations August 29, 2013 - 3:30pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Department of Energy (DOE) has issued a Preliminary Notice of Violation (PNOV) to Brookhaven Science Associates, LLC (BSA) for two violations of the Department's worker safety

  8. Department of Energy Advances Geothermal Science through Collegiate

    Office of Environmental Management (EM)

    Competition | Department of Energy Advances Geothermal Science through Collegiate Competition Department of Energy Advances Geothermal Science through Collegiate Competition February 25, 2013 - 2:33pm Addthis Emphasizing the Obama Administration's pledge to accelerate science, technology, engineering, and math (STEM) education, the U.S. Department of Energy today kicked off the 2013 National Geothermal Student Competition. The intercollegiate contest among America's leading universities is

  9. Department of Energy Advances Geothermal Science through Collegiate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emphasizing the Obama Administration's pledge to accelerate science, technology, engineering, and math (STEM) education, the U.S. Department of Energy today kicked off the 2013 ...

  10. DOE Zero Energy Home Webinar: Comprehensive Building Science (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, DOE Zero Energy Ready Home - Comprehensive Building Science, presented in March 2014. Watch the presentation.

  11. Primary Science of Energy Teacher and Student Guides (42 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Teacher and Student Guides (42 Activities) Primary Science of Energy Teacher and Student Guides (42 Activities) Below is information about the student activitylesson plan from...

  12. E-print Network home page -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community Enter Search Terms Search Advanced Search The E-print Network is . . . . . . a vast, integrated network of electronic ...

  13. Energy Frontier | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Energy Frontier High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Experiments Intensity Frontier Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator R&D Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW

  14. FES Committees of Visitors | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    FES Committees of Visitors Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home FES Committees of Visitors Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee (FESAC) » The links below provide an archive of Fusion Energy Sciences (FES) Committees of Visitors (COV) reports and responses. 2014 FESAC COV Report on FES Program .pdf file

  15. FESAC Agenda - February 2001 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    February 2001 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - February 2001 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda February 27-28, 2001 Bethesda, Maryland Tuesday, February 27, 2001 Date/Time Topic Speaker 0900 Welcome/Logistics Hazeltine 0905 Office of Fusion Energy Sciences

  16. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of energy atmospheric radiation measurement program ARM ARM The ... of Science created the Atmospheric Radiation Measurement (ARM) Program within the ...

  17. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    SciTech Connect (OSTI)

    Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  18. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science on NIF: Exploring the Physics of Star Formation Article on MOIRE Optics on Cover of Applied Optics Mode 1 Drive Asymmetry in NIF Inertial Confinement Fusion...

  19. NREL: Energy Sciences - Kirstin M. Alberi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a B.S. in Materials Science and Engineering from the Massachusetts Institute of Technology in 2003 and a PhD in Materials Science and Engineering from the University of...

  20. Nuclear Science and Engineering Education Sourcebook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science and Engineering Education Sourcebook Nuclear Science and Engineering Education Sourcebook The Nuclear Science and Engineering Education Sourcebook is a repository of critial information on nuclear engineering programs at U.S. colleges and universities. It includes detailed information such as nuclear engineering enrollments, degrees, and faculty expertise. In this latest edition, science faculty and programs relevant to nuclear energy are also included. PDF icon

  1. Consent Order, Brookhaven Science Associates, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consent Order, Brookhaven Science Associates, LLC Consent Order, Brookhaven Science Associates, LLC December 2015 Worker Safety and Health Enforcement Consent Order issued to Brookhaven Science Associates, LLC relating to an electrical shock event that occurred at the Brookhaven National Laboratory. On November 23, 2015, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued a Consent Order (WCO-2015-02) to Brookhaven Science Associates, LLC, relating

  2. Chuck Kessel Wins the 2015 Fusion Technology Award | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Chuck Kessel Wins the 2015 Fusion Technology Award By Raphael Rosen July 13, 2015 Tweet Widget Google Plus One Share on Facebook Chuck Kessel, a principal engineer at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), has won the 2015 Fusion Technology Award. The honor, from the Institute of Electrical and Electronics Engineers' (IEEE) Nuclear and Plasma Sciences Society, recognizes outstanding contributions to fusion engineering and technology.

  3. Energy Flow Diagram | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science for Energy Flow » Energy Flow Diagram Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown

  4. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Director, Office of High Energy Physics, Office of Science Subject: Investigating the Nature of Matter Energy, Space and Time PDF icon 10-1-09FinalTestimony(Kovar).pdf More...

  5. Adam Cohen becomes Deputy Under Secretary for Science and Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), Adam Cohen has been named Deputy Under Secretary for Science and Energy in Washington D.C....

  6. DOE Zero Energy Ready Home Webinar: Comprehensive Building Science

    Broader source: Energy.gov [DOE]

    DOE Zero Energy Homes aren’t just really efficient – they’re also designed and built using solid building science principles. Version 3 of the ENERGY STAR Certified Homes program, a prerequisite...

  7. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House Subcommittee on Energy, Committee on Science, Space and Technology 12-11-14Peter Lyons FT HSST.pdf More...

  8. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    SciTech Connect (OSTI)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.; Crocker, J.G.; Delene, J.G.; Endicott, R.D.; Kazimi, M.S.; Krakowski, R.A.; Logan, B.G.; Schultz, K.R.

    1987-09-10

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs.

  9. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  10. PPPL to launch major upgrade of key fusion energy test facility | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab to launch major upgrade of key fusion energy test facility NSTX project will produce most powerful spherical torus in the world By John Greenwald January 9, 2012 Tweet Widget Google Plus One Share on Facebook NSTX-U cross section. NSTX-U cross section. Gallery: (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of

  11. DOE Science Showcase - Hydrogen Production | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Scientific and Technical Information Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org More information Making molecular hydrogen more efficiently Breaking Up (Hydrogen) No Longer As Hard To Do Hydrogen and Our Energy Future Fuel Cell Animation Hydrogen & Fuel Cells Increase your Hydrogen IQ Visit the Science Showcase homepage. Last updated on Monday 29 July

  12. Chapter 9: Enabling Capabilities for Science and Energy

    Office of Environmental Management (EM)

    9: Enabling Capabilities for Science and Energy September 2015 Quadrennial Technology Review 9 Enabling Capabilities for Science and Energy Tools for Scientific Discovery and Technology Development  Investment in basic science research is expanding our understanding of how structure leads to function-from the atomic- and nanoscale to the mesoscale and beyond-in natural systems, and is enabling a transformation from observation to control and design of new systems with properties tailored to

  13. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    SciTech Connect (OSTI)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  14. Fusion cross sections for the {sup 9}Be+{sup 124}Sn reaction at energies near the Coulomb barrier

    SciTech Connect (OSTI)

    Parkar, V. V.; Palit, R.; Sharma, Sushil K.; Naidu, B. S.; Santra, S.; Mahata, K.; Ramachandran, K.; Joshi, P. K.; Rath, P. K.; Trivedi, T.; Raghav, A.

    2010-11-15

    The complete and incomplete fusion cross sections for {sup 9}Be+{sup 124}Sn reaction have been deduced using the online {gamma}-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by {approx}28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a {sup 124}Sn target shows that, for {sup 9}Be nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

  15. Overview of Japanese activities on tritium research for fusion reactors and Research activities at The University of Tokyo and Shizuoka University

    Office of Environmental Management (EM)

    tritium activity in Japan Yasuhisa Oya Graduate School of Science, Shizuoka University Tritium Focus Group Meeting @INL 2014.9.23 Research Subjects and Institutes for Tritium Issues Research Subjects - Fusion (Processing, Blanket, First Wall, Safety, Licensing) - Fission Reactor (Heavy Water Reactor) - Waste Management - Environmental Behavior - Biological Effects - Fundamental Science Institutes - Universities - Japan Atomic Energy Agency - National Institute for Fusion Science (NIFS) -

  16. Los Alamos Lab: Science Program Office, Energy Security Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Program Office: Fossil Energy & Environment (SPO-FE) SPO FE Science AEI Nuclear Fossil Energy & Environment Home Office of Science Home Alternative Energy & Infrastructure Home Civilian Nuclear Programs All Issues Summer 2006 Winter 2006 Fall 2005 Spring 2005 Summer 2006 , Volume 2, Number 2 Download the Current Issue For Print (8.9 MB PDF--clear images but slower download) For Screen Viewing (1.2 MB PDF--quick download but low-quality images) Inside this Issue: Energy

  17. Department of Energy Announces 20th Annual National Science Bowl |

    Office of Environmental Management (EM)

    Department of Energy th Annual National Science Bowl Department of Energy Announces 20th Annual National Science Bowl April 23, 2010 - 12:00am Addthis WASHINGTON, D.C. - US Energy Secretary Steven Chu announced that students from sixty-eight high school teams and thirty-seven middle school teams will compete next weekend for championship titles in the U.S. Department of Energy's 20th annual National Science Bowl in Washington, D.C. The participating teams - ranging from forty-two states, the

  18. NREL: Energy Sciences - Chemistry and Nanoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and comprises the Chemical and Material Sciences Center and the National Center for Photovoltaics. Printable Version NREL is a national laboratory of the U.S. Department of...

  19. NREL: Energy Sciences - Solid-State Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Printable Version Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell....

  20. Bayer MaterialScience | Open Energy Information

    Open Energy Info (EERE)

    Leverkusen, Germany Website: www.bayermaterialscience.comi References: Bayer Material Science1 Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  1. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    SciTech Connect (OSTI)

    Jones, R.H. ); Lucas, G.E. )

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.

  2. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  3. Department of Energy Issues Requests for Nuclear Science and Engineering

    Office of Environmental Management (EM)

    Scholarships and Fellowships Applications | Department of Energy Nuclear Science and Engineering Scholarships and Fellowships Applications Department of Energy Issues Requests for Nuclear Science and Engineering Scholarships and Fellowships Applications May 7, 2009 - 1:46pm Addthis The U.S. Department of Energy (DOE) today announced two new Requests for Application (RFA) as part of the Department's efforts to recruit and train the next generation of nuclear scientists and engineers - a

  4. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics /science-innovation/_assets/images/icon-science.jpg High Energy Physics Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering accelerator technology to improve the intensity of

  5. Renewable Energy: science, politics, and economics (Technical...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: LDRD Country of Publication: United States Language: English Subject: Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  6. Energy Department Announces Prizes for 2013 National Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Prizes for 2013 National Science Bowl Energy Department Announces Prizes for 2013 National Science Bowl April 8, 2013 - 4:35pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington D.C. - The U.S. Department of Energy today announced the prizes for which middle and high school teams from across the nation will compete at this year's National Science Bowl, held from April 25 to April 29 in Washington, D.C. From a total of 1,894 high school teams that competed in regional

  7. West Kentucky Regional High School Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School Science Bowl West Kentucky Regional High School Science Bowl February 19, 2016 8:00AM to 5:00PM CST West Kentucky Community & Technical College 4810 Alben Barkley Dr Paducah County, KY 42001 Contact Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov Phone: 270-441-6821 Event Website Info: http://science.energy.gov/wdts/nsb/high-school/high-school-regionals/ken

  8. West Kentucky Regional Middle School Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School Science Bowl West Kentucky Regional Middle School Science Bowl February 5, 2016 8:00AM to 5:00PM CST West Kentucky Community & Technical College 4810 Alben Barkley Dr Paducah County, KY 42001 Contact Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov Phone: 270-441-6821 Event Website Info: http://science.energy.gov/wdts/nsb/middle-school/middle-school-regionals

  9. Building America Building Science Education Roadmap | Department of Energy

    Energy Savers [EERE]

    Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take to develop a robust building science education curriculum in coming years. PDF icon ba_bldg_science_education_roadmap.pdf More Documents & Publications DOE Challenge Home Student Competition Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher

  10. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect (OSTI)

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  11. Coal Utilization Science | Department of Energy

    Energy Savers [EERE]

    Crosscutting Research » Coal Utilization Science Coal Utilization Science Computer scientists at FE's NETL study a visualization of a power plant component. Computer scientists at FE's NETL study a visualization of a power plant component. Traditionally the process of taking a new power plant system from the drawing board to a first-of-a-kind prototype has involved a series of progressively larger engineering test facilities and pilot plants, leading ultimately to a full-scale demonstration.

  12. DOE Zero Energy Home Webinar: Comprehensive Building Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Webinar: Comprehensive Building Science (Text Version) DOE Zero Energy Home Webinar: ... So let's say that Dan Brown is doing a book reading, so there are lots of people inside, ...

  13. BPA offering grants in science and energy education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offering grants in science and energy education 462015 12:00 AM Tweet Page Content Students from East Valley Central School in Yakima, Washington took a field trip to the Cle...

  14. Middle School Energy and Nuclear Science Curriculum Now Available

    Broader source: Energy.gov [DOE]

    A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers...

  15. Before the Subcommittee on Energy -- House Science, Space, and...

    Broader source: Energy.gov (indexed) [DOE]

    Christopher Smith, Acting Assistant Secretary Before the Subcommittee on Energy -- House Science, Space, and Technology Committee PDF icon 7-25-13ChristopherSmith FT HSST.pdf ...

  16. Center for Electrochemical Energy Science (CEES) | U.S. DOE Office...

    Office of Science (SC) Website

    Center for Electrochemical Energy Science (CEES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events ...

  17. Large Scale Computing and Storage Requirements for Basic Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2014 BESFrontcover.png Final Report Large Scale Computing and Storage Requirements for Basic Energy Sciences, Report of the Joint BES/ ASCR / NERSC Workshop conducted February 9-10, 2010 Workshop Agenda The agenda for this workshop is presented here: including presentation times and speaker information. Read More » Workshop Presentations Large Scale Computing and Storage Requirements for Basic

  18. Energy Frontier Research Center Center for Materials Science of Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  19. Before the House Science and Technology Committee | Department of Energy

    Energy Savers [EERE]

    Arun Majumdar, Director Advanced Research Projects Agency - Energy (ARPA-E) Subject: Oversight Hearing: Status of ARPA-E Program and Path Forward PDF icon 1-27-10_Final_Testimony_(Majumdar).pdf More Documents & Publications Before the House Subcommittee on Investigations and Oversight Committee on Science, Space and Technology Before the House Science, Space, and Technology Committee Advanced Research Projects Agency - Energy Program Specific Recovery Plan

  20. DOE Taps Universities for Turbine Technology Science | Department of Energy

    Office of Environmental Management (EM)

    Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science July 16, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy announced the selection of three projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. University researchers will investigate the chemistry and physics of advanced turbines, with the goal of promoting clean and efficient operation when fueled with coal-derived synthesis gas

  1. Department of Energy Office of Science Transportation Overview

    Office of Environmental Management (EM)

    Department of Energy (DOE) Office of Science (SC) Transportation Overview Jon W. Neuhoff, Director N B i k L b t New Brunswick Laboratory 1 DOE National Transportation Stakeholders Forum May 26, 2010 About the Office of Science The Office of Science (SC) with a budget of approximately $5 Billion...  Single largest supporter of basic research in the physical sciences in the U.S. (> 40% of the total funding) ( g)  Principal Federal funding agency for the Nation's research programs in high

  2. Office of the Under Secretary for Science and Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science and Energy Office of the Under Secretary for Science and Energy Innovating for Nuclear Energy Innovating for Nuclear Energy Last week, we gathered 125 nuclear energy experts from academia, industry, the public sector, and the National Laboratories at the Nuclear Innovation Workshop to brainstorm ways the Federal government can employ innovative ideas for utilizing nuclear energy technologies. Read more Working with Cities to Light our Streets Better Working with Cities to Light our

  3. Photo of the Week: The Mirror Fusion Test Facility | Department of Energy

    Energy Savers [EERE]

    Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and

  4. New Science for a Secure and Sustainable Energy Future

    SciTech Connect (OSTI)

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  5. #SpaceWeek: Science of the Cosmos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Cosmos #SpaceWeek: Science of the Cosmos June 16, 2015 - 10:57am Addthis #SpaceWeek: Science of the Cosmos Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs How can I participate? Missed the "Energy of Star Wars" Google+ Hangout? You can watch the whole event here. And take a look at all of our other #SpaceWeek content. #SpaceWeek: Science of the Cosmos During #SpaceWeek we covered the Department of Energy's space expertise, from nuclear-powered spacecraft

  6. COLLOQUIUM: The Many Faces of Fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 14, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: The Many Faces of Fusion Mr. Dan Clery Science Magazine Dan Clery, a veteran journalist for Science magazine and author of "A Piece of the Sun," a wide-ranging account of the quest for fusion energy, will provide a whirlwind tour of the history of fusion from the 1850s to the present day and the people who made it happen. The journey will take in atom spies, superpower summits, hijackings by Palestinian terrorists,

  7. Experimental Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS Experimental Physical Sciences Developing and applying materials science and experimental physics capabilities to programs and problems of national importance. Advancing physics and materials science for problems of national importance Neutrons find "missing" magnetism of plutonium Neutrons find "missing" magnetism of plutonium READ MORE Los Alamos among new DOE projects Create new technology pathways for low-cost fusion energy development READ MORE Combined methods

  8. Strategic Energy Science Plan for Research, Education, and Extension

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Agriculture Research, Education, and Economics Mission Area TRATEGIC ENERGY SCIENCE PLAN FOR RESEARCH, EDUCATION, AND EXTENSION March 2008 Role: Lead Research, Education, and Extension programs for sustainable production of agriculture-based and natural resource-based renewable energy and effi cient use and conservation of energy - for the benefit of rural communities and the Nation S Vision: "Growing a clean, efficient, sustainable energy future for America" We have a

  9. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Office of Science * * * Office of Science Office of * * * * * Office of Science Office of Science * * * Office of Science * * * * 287 115...

  10. Ocean Power: Science Projects in Renewable Energy and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and technology" Science in Personal and Social Perspectives - Content Standard F: ... Tidal power stations utilize the twice- daily movements of the tides. Various devices use ...

  11. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  12. Science & Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Science & Technology This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run

  13. nano-energy | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanotechnology: Energizing our Future Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence

  14. Before the House Science and Technology Committee | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    House Science and Technology Committee By: Secretary Steven Chu Subject: Department of Energy's FY 2011 Budget Request PDF icon Final_Testimony_3-3_HST__CHU_.pdf More Documents & Publications FY16 Budget Rollout Fact Sheet DOE FY 2012 Budget Overview presentation Before the Senate Energy and Natural Resources

  15. Energy Department Science Education Initiative Launched - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Energy Department Science Education Initiative Launched July 8, 2004 Palo Alto, Calif. - U.S. Secretary of Energy Spencer Abraham announced today that the U.S. Department of Energy (DOE) and its national laboratories are launching an initiative to promote science literacy and help develop the next generation of scientists and engineers. "It is critical that we leverage the resources of this Department-and of all our national labs-to help create a new generation of scientists who

  16. Sandia Energy Earth Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participate in 46th Annual American Geophysical Union (AGU) Conference http:energy.sandia.govsandians-participate-in-46th-annual-american-geophysical-union-agu-conference...

  17. Fermilab | Science at Fermilab | Experiments & Projects | Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator & Detector Physics Computing CMS Detector Intensity Frontier Cosmic Frontier Works in Progress Energy Frontier Large Hadron Collider The LHC at CERN, the European ...

  18. Basic Energy Sciences (BES) at LLNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coherency Does Not Equate to Stability Laser Crystallization of Phase Change Material Extraction of Equilibrium Energy and Kinetic Parameters from Single Molecule Force...

  19. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based

  20. Department of Energy Science Offices, Programs and Allocation Managers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Allocation Managers Department of Energy Science Offices, Programs and Allocation Managers NERSC is overseen by the DOE NERSC Program Manager, Dave Goodwin (Dave.Goodwin@science.doe.gov; 301-903-6474). He is assisted by the DOE Allocation Managers in each of the six offices. They are listed in the table below. The DOE Allocation Managers are responsible for managing the NERSC allocations. To find your Allocation Manager, check under the Office and Program which sponsors your work and find

  1. NREL: Energy Systems Integration - Computational Science and Visualization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Visualization Computational science and visualization capabilities at NREL propel technology innovation as a research tool by which scientists and engineers find new ways to tackle our nation's energy challenges-challenges that cannot be addressed through traditional experimentation alone. These efforts will save time and money, significantly improve the likelihood of breakthroughs and useful advances, and reduce risks and uncertainties that are often barriers to

  2. The Science Behind Cheaper Biofuels | Department of Energy

    Energy Savers [EERE]

    The Science Behind Cheaper Biofuels The Science Behind Cheaper Biofuels August 15, 2011 - 11:50am Addthis Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of biologically stored sunlight, and have great potential as renewable resources for fuel and industrial

  3. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect (OSTI)

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  4. Frontiers In Science public lectures: Harvesting energy from air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harvesting energy from air lectures Frontiers In Science public lectures: Harvesting energy from air Includes a discussion on research that engineers are conducting to increase turbine power output and make them last longer. March 10, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  5. NREL Science Central to Success of New Biofuels Projects: - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Biomass and Biofuels Return to Search NREL Science Central to Success of New Biofuels Projects: DuPont-NREL Partnership Delivered Key Innovations for Large Scale Cellulosic Ethanol Facility in Iowa National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date DuPont Delaware Other February 23, 2015 Summary The Energy Department's National Renewable Energy Laboratory (NREL) played crucial roles in developing

  6. DOE Science Showcase - Energy Department Scientists and Engineers Honored

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Presidential Early Career Awards (PECASE) | OSTI, US Dept of Energy, Office of Scientific and Technical Information Energy Department Scientists and Engineers Honored with Presidential Early Career Awards (PECASE) Researchers funded by the U.S. Department of Energy (DOE) Office of Science were recently honored with the Presidential Early Career Award for Scientists and Engineers (PECASE)-the highest honor bestowed by the U.S. government on outstanding scientists and engineers who are

  7. NREL: Energy Sciences - Su-Huai Wei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wei, S.-H. (2013). "Origin of the variation of exciton binding energy in semiconductors." Phys. Rev. Lett. (110); p. 016402. http:prl.aps.orgabstractPRLv110i1e016402. Huang,...

  8. Science projects in renewable energy and energy efficiency

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources -- both nationally and locally -- we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as one-liners'' following each group of projects.

  9. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from ...

  10. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect (OSTI)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  11. Calling Science Stars in Middle and High Schools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Stars in Middle and High Schools Calling Science Stars in Middle and High Schools November 10, 2010 - 10:03am Addthis 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office

  12. Studies in Low-Energy Nuclear Science

    SciTech Connect (OSTI)

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  13. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    SciTech Connect (OSTI)

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  14. Energy Recovery Linac cavity at BNL | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Energy Recovery Linac cavity at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear ...

  15. U.S. Department of Energy Office of Nuclear Energy, Science and Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for

  16. Before the House Subcommittee on Energy - Committee on Science, Space, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy - Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting Director of the Office of Science Before the House Subcommittee on Energy - Committee on Science, Space, and Technology PDF icon 7-11-14_Patricia_Dehmner FT HSST.pdf More Documents & Publications Before the House Science and Technology Subcommittee on Energy and Environment Microsoft

  17. Automatic Mesh Adaptivity for Hybrid Monte Carlo/Deterministic Neutronics Modeling of Fusion Energy Systems

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M; Wilson, P.; Sawan, M.; Mosher, Scott W; Peplow, Douglas E.; Grove, Robert E

    2013-01-01

    Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer.

  18. Taming Plasma Fusion Snakes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image credit: Linda Sugiyama Controlled nuclear fusion has held the promise of a safe, clean, sustainable energy resource for decades. Now, with concerns over global climate change ...

  19. Scientific Societies, E-print Network -- Energy, science, and technology

    Office of Scientific and Technical Information (OSTI)

    for the research community -- Hosted by the Office of Scientific and Technical Information, U.S. Department of Energy Scientific Societies The Scientific Societies Page provides access to websites of scientific societies and professional associations whose focus is in the natural sciences as well as other related disciplines of interest to the Department of Energy research and development programs, projects, and initiatives. Chinese Dutch English French German Italian Japanese Nordic Russian

  20. COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density Perspective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab January 13, 2016, 4:15pm to 5:30pm Colloquia MBG AUDITORIUM COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density Perspective Dr. Bruce A. Remington Lawrence Livermore National Laboratory The potential for ground-breaking research in plasma physics in high energy density (HED) regimes is compelling. The combination of HED facilities around the world spanning microjoules to megajoules, with time scales ranging from femtoseconds to microseconds enables

  1. Energy & Science at the State of the Union Tonight

    Broader source: Energy.gov [DOE]

    When the President begins his third State of the Union address this evening at 9pm EST, several important women and men in the fields of energy, science and technology will be sitting in the Capitol Building alongside First Lady Michelle Obama.

  2. Expectations for {sup 12}C and {sup 16}O induced fusion cross sections at energies of astrophysical interest.

    SciTech Connect (OSTI)

    Jiang, C. L.; Rehm, K. E.; Back, B. B.; Janssens, R.V.F; Physics

    2007-01-12

    The extrapolations of cross sections for fusion reactions involving {sup 12}C and {sup 16}O nuclei down to energies relevant for explosive stellar burning have been reexamined. Based on a systematic study of fusion in heavier systems, it is expected that a suppression of the fusion process will also be present in these light heavy-ion systems at extreme sub-barrier energies due to the saturation properties of nuclear matter. Previous phenomenological extrapolations of the S factor for light heavy-ion fusion based on optical model calculations may therefore have overestimated the corresponding reaction rates. A new 'recipe' is proposed to extrapolate S factors for light heavy-ion reactions to low energies taking the hindrance behavior into account. It is based on a fit to the logarithmic derivative of the experimental cross section which is much less sensitive to overall normalization discrepancies between different data sets than other approaches. This method, therefore, represents a significant improvement over other extrapolations. The impact on the astrophysical reaction rates is discussed.

  3. Expectations for {sup 12}C and {sup 16}O induced fusion cross sections at energies of astrophysical interest

    SciTech Connect (OSTI)

    Jiang, C. L.; Rehm, K. E.; Back, B. B.; Janssens, R. V. F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2007-01-15

    The extrapolations of cross sections for fusion reactions involving {sup 12}C and {sup 16}O nuclei down to energies relevant for explosive stellar burning have been reexamined. Based on a systematic study of fusion in heavier systems, it is expected that a suppression of the fusion process will also be present in these light heavy-ion systems at extreme sub-barrier energies due to the saturation properties of nuclear matter. Previous phenomenological extrapolations of the S factor for light heavy-ion fusion based on optical model calculations may therefore have overestimated the corresponding reaction rates. A new ''recipe'' is proposed to extrapolate S factors for light heavy-ion reactions to low energies taking the hindrance behavior into account. It is based on a fit to the logarithmic derivative of the experimental cross section which is much less sensitive to overall normalization discrepancies between different data sets than other approaches. This method, therefore, represents a significant improvement over other extrapolations. The impact on the astrophysical reaction rates is discussed.

  4. H-Sensors and Fusion Work at SNL-CA | Department of Energy

    Office of Environmental Management (EM)

    Sensors and Fusion Work at SNL-CA H-Sensors and Fusion Work at SNL-CA Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon H-Sensors and Fusion Work at SNL-CA More Documents & Publications 2015 Advanced Sensors and Instrumentation Webinar Tritium Plasma Experiment and Its Role in PHENIX Program CX-000567: Categorical Exclusion Determination

  5. Proliferation Risks of Fusion Energy: Clandestine Production, Covert Production, and Breakout

    SciTech Connect (OSTI)

    R.J. Goldston, A. Glaser, A.F. Ross

    2009-08-13

    Nuclear proliferation risks from fusion associated with access to weapon-usable material can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risk from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if commercial fusion systems are designed to accommodate appropriate safeguards.

  6. NO SCIENCE ON SATURDAY LECTURE- Department of Energy New Jersey Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Science Bowl | Princeton Plasma Physics Lab 0, 2016 (All day) PPPL NO SCIENCE ON SATURDAY LECTURE- Department of Energy New Jersey Regional High School Science Bowl

  7. Fusion and Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science Fusion and Ignition What is Fusion? Fusion is the process that powers the sun and the stars. Fusion describes what happens when the nuclei of light atoms overcome the electrical resistance that keeps them apart and get close enough to activate the strong nuclear force that holds them together, or "fuse." When fused, they form a bigger nucleus; two elements combine to create a different element at the level of the nucleus. Making elements fuse requires an enormous amount of heat

  8. National Science Foundation, Lake Hoare, Antarctica | Department of Energy

    Office of Environmental Management (EM)

    Science Foundation, Lake Hoare, Antarctica National Science Foundation, Lake Hoare, Antarctica Photo of a Photovoltaic System Located at Lake Hoare, Antarctica Lake Hoare is a scientific research site located in Antarctica. Research at this large field site is conducted all summer and requires an energy source that does not cause pollution or engine noise. The photovoltaic system (PV) that was installed at this site is 1.2 kW PV and was one of 10 PV systems purchased for use in Antarctica. Each

  9. Center for Renewable Energy Science and Technology

    SciTech Connect (OSTI)

    Billo, Richard; Rajeshwar, Krishnan

    2013-01-15

    The CREST research team conducted research that optimized catalysts used for the conversion of southwestern lignite into synthetic crude oil that can be shipped to nearby Texas refineries and power plants for development of transportation fuels and power generation. Research was also undertaken to convert any potential by-products of this process such as CO2 to useful chemicals and gases which could be recycled and used as feedstock to the synthetic fuel process. These CO2 conversion processes used light energy to drive the endogonic reduction reactions involved. The project was divided into two tasks: A CO2 Conversion Task, and a Catalyst Optimization Task. The CO2 Conversion task was aimed at developing molecular and solid state catalysts for the thermal, electro- and photocatalytic reduction of CO2 to reduced products such as simple feedstock compounds (e.g. CO, H2, CHOOH, CH2O, CH3OH and CH4). For example, the research team recycled CO that was developed from this Task and used it as a feedstock for the production of synthetic crude in the Catalyst Optimization Task. In the Catalyst Optimization Task, the research team conducted bench-scale experiments with the goal of reducing overall catalyst cost in support of several synthetic crude processes that had earlier been developed. This was accomplished by increasing the catalyst reactivity thus reducing required concentrations or by using less expensive metals. In this task the team performed parametric experiments in small scale batch reactors in an effort to improve catalyst reactivity and to lower cost. They also investigated catalyst robustness by testing lignite feedstocks that vary in moisture, h, and volatile content.

  10. Physics (selected articles). [Nuclear fusion

    SciTech Connect (OSTI)

    Shiyao, Z.; Zesheng, C.; Xiaolung, X.; Qiang, H.

    1982-09-01

    Controlled nuclear fusion as a new energy source was investigated. It will be possible in the 1980's to obtain thermal nuclear ignition, and in the early 2000's nuclear fusion may be used to supplement the energy shortage. It is predicted that in the 2000's nuclear fusion will occupy an important position as a global source of energy.

  11. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect (OSTI)

    Leon, M.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  12. Fusion roadmapping | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with "aha moments" that have led to a point in history when the international fusion experiment, ITER, is poised to produce more

  13. Physical Sciences 2007 Science & Technology Highlights

    SciTech Connect (OSTI)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  14. PNNL Highlights for the Office of Basic Energy Sciences (July 2013-July 2014)

    SciTech Connect (OSTI)

    Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.

    2014-08-13

    This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.

  15. Department of Energy Science Education Enhancement Act in U.S...

    Office of Environmental Management (EM)

    Energy Science Education Enhancement Act in U.S.C. Department of Energy Science Education Enhancement Act in U.S.C. CITE: 42USC7381 TITLE 42--THE PUBLIC HEALTH AND WELFARE CITE:...

  16. FESAC Agenda - March 2004 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    4 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - March 2004 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda March 29-30, 2004 Gaithersburg, Maryland Date/Time Topic Speaker March 29 0900 Welcome/Logistics Richard Hazeltine 0905 Office of Science Perspective Ray Orbach .pdf file (52KB)

  17. FESAC Agenda - May 2001 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    May 2001 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - May 2001 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda May 15-16, 2001 Gaithersburg, Maryland Tuesday, May 15, 2001 Date/Time Topic Speaker 0900 Welcome/Logistics Dr. Richard Hazeltine 0905 FY 2002 Budget-Office of Science

  18. Diversity in Science and Technology Advances National Clean Energy in Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Photovoltaics » Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in Science and Technology Advances National Clean Energy in Solar (DISTANCE-Solar) program pairs science and technology research advances with the development of a diverse and innovative workforce. Launched in Octoboer 2013, DISTANCE-Solar aims to drive solar innovation among

  19. Simulation of X-ray Irradiation on Optics and Chamber Wall Materials for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Reyes, S; Latkowski, J F; Abbott, R P; Stein, W

    2003-09-10

    We have used the ABLATOR code to analyze the effect of the x-ray emission from direct drive targets on the optics and the first wall of a conceptual laser Inertial Fusion Energy (IFE) power plant. For this purpose, the ABLATOR code has been modified to incorporate the predicted x-ray spectrum from a generic direct drive target. We have also introduced elongation calculations in ABLATOR to predict the thermal stresses in the optic and first wall materials. These results have been validated with thermal diffusion calculations, using the LLNL heat transfer and dynamic structural finite element codes Topaz3d and Dyna3d. One of the most relevant upgrades performed in the ABLATOR code consists of the possibility to accommodate multi-material simulations. This new feature allows for a more realistic modeling of typical IFE optics and first wall materials, which may have a number of different layers. Finally, we have used the XAPPER facility, at LLNL, to develop our predictive capability and validate the results. The ABLATOR code will be further modified, as necessary, to predict the effects of x-ray irradiation in both the IFE real case and our experiments on the XAPPER facility.

  20. american museum of science and energy | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration american museum of science and energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  1. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    SciTech Connect (OSTI)

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0.6 atoms per 14.1 MeV neutron.

  2. Before the Subcommittee on Energy - House Committee on Science, Space, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Testimony of David Danielson, Assistant Secretary, Office of Energy Efficiency and Renewable Energy Before the Subcommittee on Energy - House Committee on Science, Space, and Technology PDF icon 3-24-15_David_Danielson FT HSST.pdf More Documents & Publications EERE Strategic Plan

  3. Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite; Foord, Mark N.; Wei, Mingsheng; Beg, Farhat N.; Schumacher, Douglass W.

    2013-10-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet of energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded, a self-consistent picture of the quasi-neutral plasma jet that is the proton beam that, for the first time, included the role of the hot electrons in shaping the jet. Controlling them?through design of the accelerating surface and its connection to the surrounding superstructure?is critical; their uniform spread across the proton accelerating area is vital, but their presence in the jet opposes focus; their electron flow away from the acceleration area reduces conversion efficiency but can also increase focusing ability. The understanding emerging from our work and the improved simulation tools we have developed allow designing structures that optimize proton beams for focused heating. Our findings include: ? The achievable focus of proton beams is limited by the thermal pressure gradient in the laser-generated hot electrons that drive the process. This bending can be suppressed using a controlled flow of hot electrons along the surrounding cone wall, which induces a local transverse focusing sheath electric field. The resultant (vacuum-focused) spot can meet IFE requirements. ? Confinement of laser-generated electrons to the proton accelerating area can be achieved by supporting targets on thin struts. That increases laser-to-proton conversion energy by ~50%. As noted above, confinement should not be total; necessary hot-electron leakage into the surrounding superstructure for proton focusing can be controlled by with the strut width/number. ? Proton jets are further modified as they enter the fuel through the superstructure?s end cap. They can generate currents during that transit that further focus the proton beams. We developed a new ion stopping module for LSP code that properly accounted for changes in stopping power with ionization (e.g. temperature), and will be using it in future studies. The improved understanding, new experimental platforms, and the self-consistent modeling capability allow researchers a new ability to investigate the interaction of large ion currents with warm dense matter. That is of direct importance to the creation and investiga

  4. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 National Ignition Facility & Photon Science limitless energy the Promise of Limitless energy harnessing the energy of the sun and stars to meet the earth's energy needs has been a decades-long scientific and engineering quest. While a self-sustaining fusion burn has been achieved for brief periods under experimental conditions, the amount of energy that went into creating it was greater than the amount of energy it generated. There was no energy gain, which is essential if fusion energy is

  5. Theoretical Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory & Computational Department Weekly Highlights Weekly Seminars Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Theory & Computational Department Weekly Highlights Weekly Seminars Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Theoretical Fusion Research About

  6. Department of Energy | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Department of Energy Project Assessment (OPA) OPA Home About Project Management Processes and Procedures Department of Energy Office of Science Various Project Management Reports ...

  7. Before the House Science and Technology Subcommittee on Energy and Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subject: Investigating the Nature of Matter Energy, Space and Time By: Dr. Dennis Kovar, Associate Director, Office of High Energy Physics, Office of Science

  8. Nanoscience at Work: Creating Energy from Sunlight (LBNL Science...

    Office of Scientific and Technical Information (OSTI)

    Friends of Science: Chabot Space and Science Center; The Exploratorium; Lawrence Hall of Science; Osher Lifelong Learning Institute; University of California - Berkeley,...

  9. The University of Rochester | OSTI, US Dept of Energy, Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information Rochester Spotlights Home DOE Applauds Rochester Science and Technical Programs Featured Research: High Energy Density Plasma Science DOE's Office of Fusion Energy Sciences supports basic research at the University of Rochester Fusion Science Center to explore and control the properties of magnetic fields in high energy density plasmas. Read more. Omega Laser Facility * Laboratory for Laser Energetics DOE National Nuclear Security Administration University of

  10. Programs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs Programs Programs Home Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 GE Dual Iso Mixed End Simulation of a

  11. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect (OSTI)

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  12. Science.gov 3.0 Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Jeff Sherwood (DOE), 202586-5806 Cathey Daniels (OSTI), 865576-9539 Addthis Related Articles Science.gov 3.0 Launched Science.gov? Try ciencia.science.gov Access to Science ...

  13. Science On Saturday Archive | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Events Events Calendar Colloquia Archive Science On Saturday Archive Research Education Organization Contact Us Upcoming Events Events Calendar Colloquia Archive Science On Saturday Archive Science On Saturday Archive Science on Saturday: Taking the Universe's Baby Picture March 12, 2016 Professor David Spergel Princeton University Science on Saturday: Reimagining the Possible: Scientific Transformations Shaping the Path Towards Fusion Energy March 5, 2016 Dr. Edmund Synakowski

  14. Before the House Subcommittee on Energy, Committee on Science, Space and

    Office of Environmental Management (EM)

    Technology | Department of Energy Energy, Committee on Science, Space and Technology Before the House Subcommittee on Energy, Committee on Science, Space and Technology Testimony of Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House Subcommittee on Energy, Committee on Science, Space and Technology PDF icon 12-11-14_Peter Lyons FT HSST.pdf More Documents & Publications Small Modular Reactor Report (SEAB) A Strategic Framework for SMR Deployment Advance Patent Waiver

  15. Career Map: Environmental Science Technician | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Technician Career Map: Environmental Science Technician An environmental science technician inspects the wing of a large brown and black bird of prey. Environmental Science Technician Position Title Environmental Science Technician Alternate Title Environmental Protection Technician Education & Training Level Mid-level, Bachelor's degree preferred, not always required Education & Training Level Description Most environmental science technicians need an associate's degree or 2

  16. Stimulated scattering in laser driven fusion and high energy density physics experiments

    SciTech Connect (OSTI)

    Yin, L. Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J.; Kirkwood, R. K.; Milovich, J.

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a k?{sub D} range of 0.15?

  17. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    SciTech Connect (OSTI)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm/sup 3/ are required for a practical fusion-based fission product transmutation system.

  18. Statements from Secretary of Energy Samuel W. Bodman on the Senate...

    Broader source: Energy.gov (indexed) [DOE]

    Secretary Bodman Statement on Dr. Orbach Swearing In as DOE Under Secretary for Science U.S. Signs International Fusion Energy Agreement DOE's Under Secretary for Science to Attend ...

  19. Fusion Energy Advisory Committee: Advice and recommendations to the US Department of Energy in response to the charge letter of September 1, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This document is a compilation of the written records that relate to the Fusion Energy Advisory Committee`s deliberations with regard to the Letter of Charge received from the Director of Energy Research, dated September 1, 1992. During its sixth meeting, held in March 1993, FEAC provided a detailed response to the charge contained in the letter of September 1, 1992. In particular, it responded to the paragraph: ``I would like the Fusion Energy Advisory Committee (FEAC) to evaluate the Neutron Interactive Materials Program of the Office of Fusion Energy (OFE). Materials are required that will satisfy the service requirements of components in both inertial and magnetic fusion reactors -- including the performance, safety, economic, environmental, and recycle/waste management requirements. Given budget constraints, is our program optimized to achieve these goals for DEMO, as well as to support the near-term ITER program?`` Before FEAC could generate its response to the charge in the form of a letter report, one member, Dr. Parker, expressed severe concerns over one of the conclusions that the committee had reached during the meeting. It proved necessary to resolve the issue in public debate, and the matter was reviewed by FEAC for a second time, during its seventh meeting, held in mid-April, 1993. In order to help it to respond to this charge in a timely manner, FEAC established a working group, designated Panel No. 6, which reviewed the depth and breadth of the US materials program, and its interactions and collaborations with international programs. The panel prepared background material, included in this report as Appendix I, to help FEAC in its deliberations.

  20. Energy Recovery Linac cavity at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Energy Recovery Linac cavity at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  1. Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  2. High Current Energy Recovery Linac at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    High Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  3. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anna Palmisano, Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science Research Applications PDF icon ...

  4. Nanoscience at Work: Creating Energy from Sunlight (LBNL Science...

    Office of Scientific and Technical Information (OSTI)

    Science Dept; Oakland High School Science Dept Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; ELECTRICITY; NANOSTRUCTURES;...

  5. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By: Dr. Jehanne Gillo, Director Office of Facilities and Project Management, Office of Nuclear Physics, Office of Science Subject: DOE's Office of Science Research Applications...

  6. Lien Ze day Solar Hunan Science and Technology | Open Energy...

    Open Energy Info (EERE)

    day Solar Hunan Science and Technology Jump to: navigation, search Name: Lien Ze-day Solar Hunan Science and Technology Place: Xiangtan, Hunan Province, China Product: PV cell...

  7. American Science and Technology Corporation AST | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Corporation AST Jump to: navigation, search Name: American Science and Technology Corporation (AST) Place: Chicago, Illinois Zip: 60622 Sector: Services...

  8. High Resolution Imaging Science Experiment | Open Energy Information

    Open Energy Info (EERE)

    Resolution Imaging Science Experiment Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: High Resolution Imaging Science Experiment Author University of...

  9. James James Science Publishers Ltd now Earthscan | Open Energy...

    Open Energy Info (EERE)

    Science Publishers Ltd now Earthscan Jump to: navigation, search Name: James & James (Science Publishers) Ltd. (now Earthscan) Place: London, Greater London, United Kingdom Zip:...

  10. National Science and Technology Development Agency | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Development Agency Jump to: navigation, search Name: National Science and Technology Development Agency Place: Thailand Product: Thai national R&D agency....

  11. Sichuan Apollo Solar Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sichuan Apollo Solar Science Technology Co Ltd Jump to: navigation, search Name: Sichuan Apollo Solar Science & Technology Co Ltd Place: Chengdu, Sichuan Province, China Zip:...

  12. Zhenjiang Huantai Silicon Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Huantai Silicon Science Technology Co Ltd Jump to: navigation, search Name: Zhenjiang Huantai Silicon Science & Technology Co Ltd Place: Yangzhou, Jiangsu Province, China Zip:...

  13. Jiangxi Gemei Science and Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Gemei Science and Technology Inc Jump to: navigation, search Name: Jiangxi Gemei Science and Technology Inc Place: Fuzhou, Jiangxi Province, China Sector: Solar Product: Jiangxi...

  14. Guangxi Gettop Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guangxi Gettop Science Technology Co Ltd Jump to: navigation, search Name: Guangxi Gettop Science & Technology Co Ltd Place: Nanning, Guangxi Autonomous Region, China Zip: 530022...

  15. Qinhuangdao Orient Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Co Ltd Jump to: navigation, search Name: Qinhuangdao Orient Science and Technology Co., Ltd Place: Qinhuangdao, Hebei Province, China Zip: 660004 Product:...

  16. Zhangzhou Guolv Solar Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhangzhou Guolv Solar Science and Technology Co Ltd Jump to: navigation, search Name: Zhangzhou Guolv Solar Science and Technology Co Ltd Place: Fujian Province, China Zip: 363600...

  17. Crustal Geophysics and Geochemistry Science Center | Open Energy...

    Open Energy Info (EERE)

    Geophysics and Geochemistry Science Center Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Crustal Geophysics and Geochemistry Science Center Author...

  18. Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Cineng PV Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Cineng PV Science & Technology Co Ltd Place: Cixi, Zhejiang Province, China Sector: Solar Product: A...

  19. Shandong Jinjing Science Technology Stock Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jinjing Science Technology Stock Co Ltd Jump to: navigation, search Name: Shandong Jinjing Science & Technology Stock Co Ltd Place: Zibo, Shandong Province, China Zip: 255200...

  20. Masdar Institute of Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    Institute of Science and Technology Jump to: navigation, search Name: Masdar Institute of Science and Technology Place: United Arab Emirates Product: Cooperative agreement between...

  1. Beijing Corona Science Technology Co Ltd BCST | Open Energy Informatio...

    Open Energy Info (EERE)

    Corona Science Technology Co Ltd BCST Jump to: navigation, search Name: Beijing Corona Science & Technology Co Ltd (BCST) Place: Beijing Municipality, China Zip: 100083 Sector:...

  2. King Abdulaziz City for Science and Technology | Open Energy...

    Open Energy Info (EERE)

    Abdulaziz City for Science and Technology Jump to: navigation, search Name: King Abdulaziz City for Science and Technology Place: Riyadh, Saudi Arabia Zip: 11442 Sector: Solar...

  3. Guofu Bioenergy Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name: Guofu Bioenergy Science & Technology Co Ltd Place: Beijing Municipality, China Zip: 100101 Sector:...

  4. Sinoma Science Technology Co Ltd SSTCL | Open Energy Information

    Open Energy Info (EERE)

    Science Technology Co Ltd SSTCL Jump to: navigation, search Name: Sinoma Science & Technology Co Ltd (SSTCL) Place: Nanjing, Jiangsu Province, China Zip: 210012 Product: A...

  5. Vitale Nandan Biopharma Science Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vitale Nandan Biopharma Science Pvt Ltd Jump to: navigation, search Name: Vitale Nandan Biopharma Science Pvt Ltd Place: Gujarat, India Product: India-based JV between Nandan...

  6. DOE Science Showcase - Quantum Chaos | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Chaos Image courtesy Valerii Vinokur, Argonne National LaboratoryScience Image courtesy Valerii Vinokur, Argonne National LaboratoryScience Chaos is the nearly unpredictable ...

  7. Premiere issue of "Quest" magazine details PPPL's strides toward fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy and advances in plasma science | Princeton Plasma Physics Lab Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science September 5, 2013 Tweet Widget Google Plus One Share on Facebook Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research

  8. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect (OSTI)

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as tasks within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  9. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.

  10. U.S. DOE Energy Frontier Research Center Announcements

    Office of Science (SC) Website

    is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 2A18973D-0A61-4048-B130-1023...

  11. Magnetic fusion reactor economics

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  12. Rain or Shine: We Cycle for Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rain or Shine: We Cycle for Science Rain or Shine: We Cycle for Science July 2, 2015 - 10:39am Addthis Elizabeth and Rachel visit a YWCA in Waterloo, Iowa. | Photo courtesy of Cycle for Science. Elizabeth and Rachel visit a YWCA in Waterloo, Iowa. | Photo courtesy of Cycle for Science. Rachel Woods-Robinson Guest Blogger, Cycle for Science Elizabeth Case Guest Blogger, Cycle for Science Cycle for Science Read more about Elizabeth and Rachel's journey in their check-in blog posts from April and

  13. Science Education Blog | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "What is Fusion" features interviews with PPPL physicists on location and employs animation to allow the scientists to explain magnetic fusion. The eight-minute "Fusion Energy...

  14. Energy Materials and Processes, An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect (OSTI)

    Burk, Linda H.

    2014-12-16

    The report summarizes discussions at the Energy Materials and Process EMSL Science Theme Advisory Panel Workshop held July 7-8, 2014.

  15. Sandia Energy - New Project Is the ACME of Computer Science to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Is the ACME of Computer Science to Address Climate Change Home Climate Partnership News Global Climate & Energy News & Events Analysis Modeling Modeling & Analysis New...

  16. Department of Energy Issues Requests for Applications for Nuclear Science and Engineering Scholarships and Fellowships

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) today announced two new Requests for Applications (RFA) that will fund scholarships and fellowships for nuclear science and engineering students.

  17. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C o/er steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S ciences N etwork The D epartment o f E nergy's O ffice o f S cience i s o ne o f t he l argest s upporters o f basic r esearch i n t he p hysical s ciences i n t he U .S. * Directly s upports t he r esearch o f s ome 1 5,000 s cienDsts, p ostdocs a nd g raduate s tudents at D OE l aboratories, u niversiDes, o ther F

  18. Before the House Science, Space, and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy Testimony of Scott Klara, Deputy Director National Energy Technology Laboratory Before the House Science, Space, and Technology Subcommittee on Energy and Environment Subject: Coal Research and Development PDF icon 10-13-11 Final Testimony (Klara).pdf More Documents & Publications Before the House Energy and Commerce Subcommittee on Oversight and Investigations Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before

  19. FESAC Agenda - February 2006 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    6 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - February 2006 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting February 28 - March 1, 2006 Gaithersburg, Maryland Agenda Date/Time Topic Speaker February 28 830 a.m. Swearing-in of Members as Special Government Employees (Members Only) Karen

  20. FESAC Agenda - February 2008 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    8 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - February 2008 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Gaithersburg Hilton 620 Perry Parkway, Gaithersburg 301-977-8900 February 19-20, 2008 Agenda Time Topic Speaker February 19 9:00 Meeting Agenda and Logistics Prof. Stewart Prager,

  1. FESAC Agenda - January 2009 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    January 2009 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - January 2009 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Gaithersburg Hilton 620 Perry Parkway 301-977-8900 January 13, 2009 Time Duration Topic Speaker 8:00 5 Meeting Agenda and Logistics Professor Riccardo Betti, University of

  2. FESAC Agenda - July 2007 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    July 2007 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - July 2007 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Gaithersburg Hilton 620 Perry Parkway, Gaithersburg July 16-17, 2007 AGENDA Date/Time Topic Speaker July 16 09:00 Meeting Agenda and Logistics Professor Stewart Prager, FESAC Chair

  3. FESAC Agenda - June 2006 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    June 2006 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - June 2006 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting June 1, 2006 Gaithersburg, Maryland Agenda Date/Time Topic Speaker 830 a.m. Meeting Agenda and Logistics Prof. Stewart Prager, FESAC Chair 8:30 OFES Perspective Dr. James F. Decker

  4. FESAC Agenda - March 2010| U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    10 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - March 2010 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Gaithersburg Hilton March 9-10, 2010 Agenda Time Topic Speaker March 9 9:00 Welcome, Agenda, and Logistics Dr. Martin Greenwald, FESAC Chair, Massachusetts Institute of Technology 9:05

  5. FESAC Agenda - October 2007 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    October 2007 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - October 2007 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Gaithersburg Hilton 620 Perry Parkway, Gaithersburg October 23-24, 2007 Agenda Time Topic Speaker October 23 8:30 Meeting Agenda and Logistics Prof. Stewart Prager, UWisc,

  6. FESAC Agenda - April 2005 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    April 2005 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - April 2005 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting April 7-8, 2005 Gaithersburg, Maryland Date/Time Topic Speaker April 7 0900 Welcome/Logistics Richard Hazeltine, Chair, FESAC 0905 DOE Perspective Dr Raymond L. Orbach .pdf file

  7. FESAC Agenda - August 2001 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    August 2001 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - August 2001 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda August 1-2, 2001 Princeton Plasma Physics Laboratory Princeton, New Jersey Tuesday, August 1, 2001 Date/Time Topic Speaker 0900 Welcome/Logistics Hazeltine 0905 DOE

  8. FESAC Agenda - February 2002 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    2 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - February 2002 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda February 27-28, 2002 Gaitherburg, Maryland Wednesday, February 27, 2002 Date/Time Topic Speaker 0900 Welcome/Logistics Hazeltine 0905 DOE/SC Perspective Decker .pdf file (1.5MB)

  9. FESAC Agenda - July 2003 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    3 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - July 2003 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda July 31 - August 1, 2003 Gaitherburg, Maryland Date/Time Topic Speaker July 31 0900 Welcome/Logistics Richard Hazeltine 0905 OFES Perspective Anne Davies .pdf file (602KB) 945 Break

  10. FESAC Agenda - July 2004 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    4 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - July 2004 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting July 26-27, 2004 Gaithersburg, Maryland Date/Time Topic Speaker July 26 0900 Welcome/Logistics Richard Hazeltine 0905 OFES Perspective Anne Davies .pdf file (538KB) 0950 Break 1005

  11. FESAC Agenda - July 2005 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    5 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - July 2005 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting July 19, 2005 Gaithersburg, Maryland Agenda Tuesday, July 19, 2005 Date/Time Topic Speaker 0900 Welcome/Logistics Richard Hazeltine, Chair, FESAC 0905 OFES Perspective Anne Davies .pdf

  12. FESAC Agenda - March 2003 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    3 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - March 2003 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda March 5-6, 2003 Gaitherburg, Maryland Date/Time Topic Speaker March 5 0900 Welcome/Logistics Hazeltine 0905 DOE Perspective Orbach 1000 OFES Perspective Davies .pdf file (626KB)

  13. FESAC Agenda - November 2000 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    November 2000 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - November 2000 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda November 14-15, 2000 Bethesda, Maryland Tuesday, November 14, 2000 Date/Time Topic Speaker 0900 Welcome and Introduction of New Members Davies/Hazeltine 0905 The

  14. FESAC Agenda - November 2002 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    2 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - November 2002 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting November 25, 2002 Gaitherburg, Maryland Agenda Date/Time Topic Speaker 0830 Welcome/Logistics Hazeltine 0835 OFES Perspective Davies .pdf file (209KB) 0850 Report from the 35-Year

  15. FESAC Agenda - November 2003 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    3 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - November 2003 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda November 17 - 18, 2003 Gaithersburg, Maryland Monday, November 17, 2003 Date/Time Topic Speaker Nov 17 0900 Welcome/Logistics Richard Hazeltine 0905 Memorial to Marshall

  16. FESAC Agenda - September 2002 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    September 2002 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - September 2002 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting September 11-12, 2002 Gaitherburg, Maryland Agenda Date/Time Topic Speaker Sept 11 0930 Welcome/Logistics Hazeltine 0845 Report from the Burning Plasma Panel Prager .pdf

  17. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect (OSTI)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  18. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  19. Registration Now Open for 2013 Science Bowl Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Now Open for 2013 Science Bowl Teams Registration Now Open for 2013 Science Bowl Teams October 2, 2012 - 10:36am Addthis The National Science Bowl finals take place each year in the National Building Museum. The top regional teams come to Washington, D.C., in the spring as they as they advance to National Finals. Registration is now open at the <a href="http://science.energy.gov/nsb/">NSB website</a>. | Photo by Dennis Brack, Energy Department Office of Science The National

  20. Establishment of WorldWideScience Alliance | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Scientific and Technical Information Establishment of WorldWideScience Alliance Remarks by Jeffrey Salmon Associate Under Secretary for Science U.S. Department of Energy WorldWideScience Alliance Ceremony June 12, 2008 Seoul, Korea It is an honor to be here today and to join all of you in celebrating the establishment of the WorldWideScience Alliance. On behalf of Secretary of Energy Samuel Bodman and Under Secretary for Science Raymond Orbach, let me express my appreciation to our