Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

(Fusion energy research)  

SciTech Connect

This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

Phillips, C.A. (ed.)

1988-01-01T23:59:59.000Z

2

NERSC Role in Fusion Energy Science Research Katherine Yelick  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Science Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC)...

3

"50" Years of Fusion Research Fusion Innovation Research and Energy  

E-Print Network (OSTI)

· Steady-state operation is a highly desirable characteristic for a magnetic fusion power plant with toroidal multipole at GA 1966 #12;Four New Superconducting Tokamaks will Address Steady- State Advanced by Sakharov in the early 50s). ­ Wave propagation became basis for RF heating · Experimental Progress (some

4

Magnetic Fusion Energy Research: A Summary of Accomplishments  

DOE R&D Accomplishments (OSTI)

Some of the more important contributions of the research program needed to establish the scientific and technical base for fusion power production are discussed. (MOW)

1986-12-00T23:59:59.000Z

5

Magnetic fusion energy research: A summary of accomplishments  

SciTech Connect

Some of the more important contributions of the research program needed to establish the scientific and technical base for fusion power production are discussed. (MOW)

1986-12-01T23:59:59.000Z

6

Data management in a fusion energy research experiment  

SciTech Connect

Present-day fusion research requires extensive support for the large amount of scientific data generated, bringing about three distinct problems computer systems must solve: (1) the processing of large amounts of data in very small time frames; (2) the archiving, analyzing and managing of the entire data output for the project's lifetime; (3) the standardization of data for the exchange of information between laboratories. The computer system supporting General Atomic's Doublet III tokamak, a project funded by the United States Department of Energy, is the first to encounter and address these problems through a system-wide data base structure.

Glad, A.; Drobnis, D.; McHarg, B.

1981-07-01T23:59:59.000Z

7

July 31,2008 Dear members of the U.S. fusion energy sciences research community  

E-Print Network (OSTI)

July 31,2008 Dear members of the U.S. fusion energy sciences research community: I will be leaving for Science Programs, Office of Science, U.S. Department of Energy (patricia -------------------------------------------------------------------------------- Dr. Raymond J. Fonck, Associate Director Office of Fusion Energy Sciences, U.S. Department Of Energy

8

Princeton University -Energy secretary announces U.S. participation in fusion research effort  

E-Print Network (OSTI)

Princeton University - Energy secretary announces U.S. participation in fusion research effort a tour of the lab facilities as Spencer Abraham, U.S. secretary of energy, looks on. photo: Elle Starkman feedback © 2002 The Trustees of Princeton University #12;Princeton - News - Energy secretary announces U.S

9

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

Logan, B.G.

2007-01-01T23:59:59.000Z

10

Fusion energy  

Science Conference Proceedings (OSTI)

The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

Not Available

1990-09-01T23:59:59.000Z

11

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

strategic plans. Large Scale Computing and Storage Requirements for Fusion Energy Sciences DOE

Gerber, Richard

2012-01-01T23:59:59.000Z

12

FUSION ENERGY Position Statement  

E-Print Network (OSTI)

The American Nuclear Society (ANS) supports a vigorous research and development program for fusion energy. Fusion represents a potential energy source that is sustainable and has favorable safety and environmental features. Like fission, fusion offers the opportunity to generate substantial quantities of energy while producing no CO2 or other greenhouse gases that may contribute to global warming. Even with substantial conservation efforts and improvements in end-use efficiency, the future world demand for energy is expected to increase as a result of population growth and economic development. The timely advent of fusion as a practical energy source may be crucial. In particular, the ANS believes the following: 1. The long-term benefits of fusion energy warrant a sustained effort aimed at advancing fusion science and technology. International cooperation is a cost-effective complement to strong national programs. 2. Recent scientific progress in fusion research has been encouraging and warrants an enhanced and expanded fusion engineering and technology development program. 3. Based on the continuing success of physics and technology development programs, it appears

unknown authors

2008-01-01T23:59:59.000Z

13

Multimodal Options for Materials Research to Advance the Basis for Fusion Energy in the ITER Era  

SciTech Connect

Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. An overview is given of the current state-of-the-art of major materials systems that are candidates for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: 1) understanding materials science phenomena in the demanding DT fusion energy environment, and 2) Using this improved understanding to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high performance fusion materials are discussed along with recent research results and planned activities of the international materials research community.

Zinkle, Steven J [ORNL; Mslang, Anton [Karlsruhe Institute of Technology, Karlsruhe, Germany; Muroga, Takeo [National Institute for Fusion Science, Toki, Japan; Tanigawa, H. [Japan Atomic Energy Agency (JAEA)

2013-01-01T23:59:59.000Z

14

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Fusion Technology at  

E-Print Network (OSTI)

· Fusion first wall and blanket technology · Remote handling · Diagnostics for DEMO · Advanced magnet of 11 Focus on: Remote Handling · Reliability, Availability, Maintainability, and Inspectability · The lifetime in-vessel of current sensing systems and cameras is insufficient. Summary: Remote handling must

15

Brief Historical Overview and Future Trends Ongoing Fusion Research: Evaluating Gaps in Fusion Energy Research Using Technology Readiness Levels  

E-Print Network (OSTI)

Firstly, the officers of the Fusion Energy Division (FED) and I would like to extend our warm wishes for a happy 2008 holiday season to all. Professional societies exist to serve their members and I have dedicated my tenure as the Chair of the FED to strongly champion our cause within the American Nuclear Society (ANS). I would like to discuss some of our initiatives below. ANS Fellows A longstanding tradition in any professional society is to recognize the hard work and effort of its members by electing them as a Fellow. Unfortunately, the number of Fusion Fellows in the ANS has been dwindling in recent years. In addition, there had been some instances that nominations of deserving individuals were rejected by the ANS Honors and Awards Committee (some other ANS divisions have had similar experience). Several ANS Division Chairs and I raised this issue in the ANS Profession Division meeting as well as in a meeting with the ANS President. Subsequently, we had several interactions with members of the ANS Honors and Awards (H&A) Committee. I am happy to report that the ANS H&A Committee has taken several steps to streamline

unknown authors

2008-01-01T23:59:59.000Z

16

RESEARCH HIGHLIGHTS State of fusion  

E-Print Network (OSTI)

RESEARCH HIGHLIGHTS State of fusion In the 1950s,the promise of controlled nuclear fusion, although there is still some way to go to realize the dream,the latest status report on fusion research compiled by the International Fusion Research Council (Nucl. Fusion 45,A1­A28; 2005) provides good reason

Loss, Daniel

17

Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009  

SciTech Connect

Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

None

2009-06-08T23:59:59.000Z

18

Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009  

SciTech Connect

Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

2009-06-08T23:59:59.000Z

19

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80  

E-Print Network (OSTI)

11, 1980, p. 725. MAGNETIC FUSION ENERGY Staff W. Kunkel andsupport) Accelerator and Fusion Research Division N.Abt Y.Wong J. Zatver HEAVY ION FUSION Work continued during FY80

Authors, Various

2010-01-01T23:59:59.000Z

20

Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council  

Science Conference Proceedings (OSTI)

Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

Bayramian, A J; Deri, R J; Erlandson, A C

2011-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Path toward fusion energy  

SciTech Connect

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

22

AFRD - Fusion Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Fusion Virtual National Laboratory Heavy Ion Fusion Virtual National Laboratory AFRD - Fusion Energy Sciences AFRD - Home Fusion - Home HIF-VNL Website Ion Beam Technology Group website Artist's conception of a heavy ion fusion power plant Artist's conception of an IFE powerplant We further inertial fusion energy as a future power source, primarily through R&D on heavy-ion induction accelerators. Our program is part of a "Virtual National Laboratory," headquartered in AFRD, that joins us with Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory in close collaboration on inertial fusion driven by beams of heavy ions. The related emergent science of high-energy-density physics (HEDP) has become a major focus. For further synergy, we have combined forces with the former Ion Beam

23

Fusion Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

24

Fusion Energy Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Division http:www.ornl.govscinseddivisionfed.shtml Please click link above if you were not already redirected to the page....

25

PPPL Races Ahead with Fusion Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the Power... the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science-two topics of vital interest to the United States and the world. Fusion powers the sun and stars, and harnessing this power on Earth could provide a safe, clean and virtually limitless way to meet global electricity needs.

26

Future of Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

Nuckolls, J H; Wood, L L

2002-09-04T23:59:59.000Z

27

Magnetic fusion energy. [Lectures on status of tokamak and magnetic mirror research  

SciTech Connect

A brief review of fusion research during the last 20 years is given. Some highlights of theoretical plasma physics are presented. The role that computational plasma physics is playing in analyzing and understanding the experiments of today is discussed. The magnetic mirror program is reviewed. (MOW)

McNamara, B.

1977-06-14T23:59:59.000Z

28

Accelerator and Fusion Research Division 1989 summary of activities  

SciTech Connect

This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

Not Available

1990-06-01T23:59:59.000Z

29

Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research  

DOE Green Energy (OSTI)

Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low- to intermediate-energy regime. We summarize here some of our recent work.

Schultz, D.R.; Krstic, P.S.

1996-12-31T23:59:59.000Z

30

Accelerator and fusion research division. 1992 Summary of activities  

Science Conference Proceedings (OSTI)

This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

Not Available

1992-12-01T23:59:59.000Z

31

Research on fusion neutron sources  

SciTech Connect

The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

2012-06-19T23:59:59.000Z

32

Fusion research: the past is prologue  

SciTech Connect

At this juncture fusion research can be viewed as being at a turning point, a time to review its past and to imagine its future. Today, almost 50 years since the first serious attempts to address the daunting problem of achieving controlled fusion, we have both an opportunity and a challenge. Some predictions place fusion research today at a point midway between its first inception and its eventual maturation - in the middle of the 21st century - when fusion would become a major source of energy. Our opportunity therefore is to assess what we have learned from 50 years of hard work and use that knowledge as a starting point for new and better approaches to solving the fusion problem. Our challenge is to prove the "50 more years" prophesy wrong, by finding ways to shorten the time when fusion power becomes a reality. The thesis will be advanced that in the magnetic confinement approach to fusion open-ended magnetic confinement geometries offer much in responding to the challenge. A major advantage of open systems is that, owing to their theoretically and experimentally demonstrated ability to suppress plasma instabilities of both the MHD and the high-frequency wave-particle variety, the confinement becomes predictable from "classical," i.e., Fokker-Planck-type analysis. In a time of straitened budgetary circumstances for magnetic fusion research now being faced in the United States, the theoretical tractability of mirror-based systems is a substantial asset. In pursuing this avenue it is also necessary to keep an open mind as to the forms that mirror-based fusion power plants might take. For example, one can look to the high-energy physics community for a possible model: This community has shown the feasibility of constructing large and complex particle accelerators using superconducting magnets, vacuum chambers and complicated particle-handling technology, housed in underground tunnels that are 20 or more kilometers long. In the paper examples of mirror-based fusion power systems resembling long "linear colliders" will be discussed. It is not the intent of this paper to present detailed proposals for next-generation experiments in magnetic fusion research, but rather to encourage a return to the ambiance of an earlier era of fusion research, when innovative thinking and a spirit of scientific adventure prevailed. In that way we can realistically build a new era of fusion research, an era that would be firmly undergirded by the scientific and technological foundation that was laid in fusion's first half-century.

Post, R F

1998-10-14T23:59:59.000Z

33

Maintenance FUSION IGNITION RESEARCH EXPERIMENT  

E-Print Network (OSTI)

to refine the system details, interfaces and the requirements for remote handling. Table 1. FIRE RadialInsulation Enclosure Remote Maintenance Module FUSION IGNITION RESEARCH EXPERIMENT SYSTEM objectives and subsystem requirements in an arrangement that allows remote maintenance of in

34

The Path to Magnetic Fusion Energy  

Science Conference Proceedings (OSTI)

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL)

2011-05-04T23:59:59.000Z

35

RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET  

E-Print Network (OSTI)

RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET A group called the Energy Efficiency Education Project (1333 H St. NW, Suite 700, Washington, DC 20005-4707; 202-682-1270), claiming to represent over 80 billion in the DOE budget out of fusion, fission and fossil energy research and into "more cost

36

Investing in Fusion Research Crucial to U.S. Competitiveness...  

NLE Websites -- All DOE Office Websites (Extended Search)

Investing in Fusion Research Crucial to U.S. Competitiveness An Interview with Stewart Prager, Director of the U.S. Department of Energy's Princeton Plasma Physics Laboratory...

37

MIT Plasma Science & Fusion Center: research, alcator, pubs,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Information Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma...

38

MIT Plasma Science & Fusion Center: research> alcator> computers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Useful Links Computer & Data...

39

Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program  

E-Print Network (OSTI)

in expected un-served energy; how an increase in reserves would reduce the likelihood of a forced outage), the consequences of which are a reduction in the value of expected un-served energy based on a customer's outage cost. System reliability benefits were analyzed using a range of values for outage costs

Abdou, Mohamed

40

Accelerator and Fusion Research Division: Summary of activities, 1986  

SciTech Connect

This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

Not Available

1987-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ch. 37, Inertial Fusion Energy Technology  

DOE Green Energy (OSTI)

Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

Moses, E

2010-06-09T23:59:59.000Z

42

Fusion energy | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

energy energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Two PPPL-led teams win increased supercomputing time to study conditions

43

Heavy-ion accelerator research for inertial fusion  

SciTech Connect

Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program.

1987-08-01T23:59:59.000Z

44

Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as  

E-Print Network (OSTI)

NIF Project definition of Scientific Breakeven was given by the NIF Project Head Ed Moses when describing the NIF goal as : "..producing more energy than the energy in the laser pulse and achieving scientific breakeven." E. Moses, Status of the NIF Project, Lawrence Livermore National Laboratory Report

45

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

Act of 2009 Advanced Scientific Computing Research Courseof Science, Advanced Scientific Computing Research (ASCR)and for Advanced Scientific Computing Research, Facilities

Gerber, Richard

2012-01-01T23:59:59.000Z

46

Praise and suggestions for fusion research from a utility industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Select and View High Resolution Images to Download Learn More Engineering Fusion energy Fusion reactor design Inertial confinement fusion Nuclear energy Plasma physics Tokamaks...

47

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

Energy Sciences 8.2.3.4 Computational and Storage Energy Sciences 13.1.1.4 Computational and Storage Energy Sciences 8.2.4.4 Computational and Storage

Gerber, Richard

2012-01-01T23:59:59.000Z

48

Discovery Research in Magnetic Fusion Energy Science A Public Comment to the  

E-Print Network (OSTI)

to concentrate funding for experimental plasma research on tokamak and stellarator projects has had negative functioning and highly productive experiments. At several universities, experimental plasma research have been, like LDX, sends a discouraging message to the university plasma research community. Today is a critical

Mauel, Michael E.

49

Fusion Energy Division  

NLE Websites -- All DOE Office Websites (Extended Search)

and engineering activities. Our plasma theorists develop the fundamental plasma theory and computational base needed to understand plasma behavior in fusion devices, to...

50

PPPL Races Ahead with Fusion Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Princeton Plasma Physics Laboratory. A Collaborative National Center for Fusion & Plasma Research. All rights reserved. NONDISCRIMINATION STATEMENT In compliance with Title IX of...

51

Experimental Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

52

Theoretical Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

53

: Fusion Wall Development Research by Neutron Depth ...  

Science Conference Proceedings (OSTI)

... nano-sized cavities with the theory that the ... Formation, Transaction of America Nuclear Society Summer ... in an Inertial Fusion Energy Reactor, Nucl. ...

2012-11-16T23:59:59.000Z

54

Discovery Research in Magnetic Fusion Energy Science A Public Comment to the  

E-Print Network (OSTI)

to concentrate funding for experimental plasma research on tokamak and stellarator projects has had negative functioning and highly productive experiments. At several universities, experimental plasma research have been significantly reduced or eliminated entirely. At my own university, Columbia University, experimental plasma

Mauel, Michael E.

55

Role of Fusion Energy in a Sustainable Global Energy Strategy  

DOE Green Energy (OSTI)

Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion energy research program has been to develop a viable means of harnessing the virtually unlimited energy stored in the nuclei of light atoms--the primary fuel deuterium is present as one part in 6,500 of all hydrogen. This vision grew out of the recognition that the immense power radiated by the sun is fueled by nuclear fusion in its hot core. Such high temperatures are a prerequisite for driving significant fusion reactions. The fascinating fourth state of matter at high temperatures is known as plasma. It is only in this fourth state of matter that the nuclei of two light atoms can fuse, releasing the excess energy that was needed to separately bind each of the original two nuclei. Because the nuclei of atoms carry a net positive electric charge, they repel each other. Hydrogenic nuclei, such as deuterium and tritium, must be heated to approximately 100 million degrees Celsius to overcome this electric repulsion and fuse. There have been dramatic recent advances in both the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. For this reason, the general thrust of fusion research has focused on configuration improvements leading to an economically competitive product. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities [1]. In this paper we review the tremendous scientific progress in fusion during the last 10 years. We utilize the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements of an attractive fusion system with present achievements to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the energy market.

Meier, W; Najmabadi, F; Schmidt, J; Sheffield, J

2001-03-07T23:59:59.000Z

56

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81  

E-Print Network (OSTI)

were derived from a MAGNETIC FUSION ENERGY STAFF W, Kunkel (H. 1. F. Staff, Heavy Ion Fusion Half-year Report October 1,LBL-12594 (1981). Heavy Ion Fusion Staff, Heavy Ion Fusion

Johnson Ed, R.K.

2010-01-01T23:59:59.000Z

57

Pulsed energy storage in fusion devices  

DOE Green Energy (OSTI)

Research and development on pulsed energy technologies, primarily for pulsed high-beta fusion systems, is described. Systems studies at Los Alamos and elsewhere have served to define these required technologies, which include fast discharging homopolar machines, pulsed superconducting coils, and the associated switching technology. Programs at the Los Alamos Scientific Laboratory, Westinghouse, and The University of Texas are described here.

Thomassen, K.I.; Rogers, J.D.; Ribe, F.L.

1976-01-01T23:59:59.000Z

58

U. S. Fusion Energy Future  

SciTech Connect

Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

2000-10-12T23:59:59.000Z

59

Alcator C-Mod Fusion Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

preferred. C-Mod provides high power-density plasmas for broadly-based fusion plasma research. 5 CHAPTER 1. EXECUTIVE SUMMARY Alcator C-Mod is not specifically an engineering...

60

Some implications for mirror research of the coupling between fusion economics and fusion physics  

SciTech Connect

The thesis is made that physics understanding and innovation represent two of the most important ingredients of any program to develop fusion power. In this context the coupling between these and the econmics of yet-to-be realized fusion power plants is explored. The coupling is two-way: realistic evaluations of the economic (and environmental) requirements for fusion power systems can influence the physics objectives of present-day fusion research programs; physics understanding and innovative ideas can favorably impact the future economics of fusion power systems. Of equal importance is the role that physics/innovation can have on the time scale for the first practical demonstration of fusion power. Given the growing worldwide need for long-term solutions to the problem of energy it is claimed to be crucial that fusion research be carried out on a broad base and in a spirit that both facilitates the growth of physics understanding and fosters innovation. Developing this theme, some examples of mirror-based fusion system concepts are given that illustrate the coupling here described.

Post, R.F.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The international magnetic fusion energy program  

SciTech Connect

In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs.

Fowler, T.K.

1988-10-06T23:59:59.000Z

62

International information exchange in fusion research  

SciTech Connect

Formal and informal agreements exist between the US and several other countries, assuring the unrestricted exchange of magnetic fusion information. The Fusion Energy Library at Oak Ridge National Laboratory uses the US Department of Energy standard distribution system and exchange agreements to ensure the receipt of current reports. Selective dissemination of information, computer networks, and exchange programs are additional means for information gathering. The importance of these means as they relate to the fusion program in the US and specifically at ORNL is discussed.

Strickler, C.S.

1979-01-01T23:59:59.000Z

63

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences  

E-Print Network (OSTI)

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

64

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences  

E-Print Network (OSTI)

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

65

Fusion energy for hydrogen production  

SciTech Connect

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

Fillo, J.A.; Powell, J.R.; Steinberg, M.

1978-01-01T23:59:59.000Z

66

Applying physics, teamwork to fusion energy science | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy...

67

Magnetic fusion energy, 1988  

SciTech Connect

This report discusses the following topics in plasma research: Ion Sources; Accelerators for Negative Ions; and Plasma Theory.

1989-05-01T23:59:59.000Z

68

Fusion Energy Sciences  

Office of Science (SC) Website

http:science.energy.govfesaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the...

69

Hydrogen fusion-energy reactions  

SciTech Connect

At the Los Alamos Ion Beam Facility we have installed a low-energy fusion cross section (LEFCS) apparatus specifically designed to measure cross sections to high accuracy for the various fusion-energy reactions among the hydrogen isotopes in the bombarding-energy range 10 to 120 keV. To date, we have completed and published our study of the D(t,..cap alpha..)n reaction, have finished data-taking for the D(d,p)T and D(d,/sup 3/He)n reactions, and have nearly finished data-taking for the T(t,..cap alpha..)nn reaction. Here we describe the LEFCS facility, present final and preliminary results for these reactions, and compare them with R-matrix calculations. 16 refs., 10 figs.

Brown, R.E.; Jarmie, N.

1985-01-01T23:59:59.000Z

70

and Enable Development of Fusions Energy Applications  

E-Print Network (OSTI)

Demonstrate advanced physics operation of a tokamak in steadystate with Burn Utilize conservative expressions of all elements of Advanced Tokamak physics to produce 100-250 MW fusion power with modest energy gain (Q 2 weeks Further develop all elements of Advanced Tokamak physics, qualifying them for an advanced performance DEMO Develop fusions nuclear technology Test materials with high neutron fluence (3-6 MW-yr/m 2) with duty factor 0.3 on a year Demonstrate Tritium self-sufficiency Develop fusion blankets that make both tritium and electricity at 1-2 MW/m 2 neutron fluxes Develop fusion blankets that produce hydrogen With ITER and IFMIF, provide the basis for a fusion DEMO Power Plant

R. D. Stambaugh

2007-01-01T23:59:59.000Z

71

Z-Pinch Fusion for Energy Applications  

SciTech Connect

Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

SPIELMAN,RICK B.

2000-01-01T23:59:59.000Z

72

Accelerator and Fusion Research Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Historical photo of Laboratory founder and cyclotron inventor Ernest Orlando Lawrence at his desk OUR SCIENTIFIC PROGRAMS Accelerator Physics for the ALS Center for Beam Physics LOASIS Laboratory Fusion Science and Ion Beam Technology Superconducting Magnets Free Electron Laser R&D News: AFRD's Jean-Luc Vay and former AFRD scientist Kwang-Je Kim share the US Particle Accelerator School Prize. Andre Anders places two articles among the year's top 30 in the Journal of Applied Physics. AFRD personnel win an R&D 100 in a joint project with industry; the laser at the heart of BELLA sets a world record for laser power. Employees: Safety tips regarding the mountain lion are available. The results from our two most recent Self-Assessment Focus Groups are up, covering emergency preparedness and ergonomics while working offsite.

73

Fusion Ignition Research Experiment Engineering Status Report  

E-Print Network (OSTI)

in an environment of limited energy research funding. (2) Development of a minimum cost burning plasma research

74

Overview of the Magnetic Fusion Energy Devlopment and Technology Program  

SciTech Connect

This publication gives a comprehensive introduction to controlled fusion research. Topics covered in the discussion include the following: (1) fusion system engineering and advanced design, (2) plasma engineering, (3) magnetic systems, (4) materials, (5) environment and safety, and (6) alternate energy applications. (MOW)

1978-03-01T23:59:59.000Z

75

Snowmass 2002: The Fusion Energy Sciences Summer Study  

SciTech Connect

The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will present a uniform technical assessment of the benefits of the three approaches. The draft report will be presented and extensively discussed during the July meeting, leading to a final report. This report will provide critical fusion community input to the decision process of FESAC and DOE in 2002-2003, and to the review of burning plasma science by the National Academy of Sciences called for by FESAC and Energy Legislation which was passed by the House of Representatives [H.R. 4]. Members of the fusion community are encouraged to participate in the Snowmass working groups.

N. Sauthoff; G. Navratil; R. Bangerter

2002-01-31T23:59:59.000Z

76

Accelerator & Fusion Research Division: 1993 Summary of activities  

SciTech Connect

The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

Chew, J.

1994-04-01T23:59:59.000Z

77

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

Fusion Science, Magnetic Fusion Energy, and Related FieldsFusion Science, Magnetic Fusion Energy, and Related Fieldscalled, in the magnetic fusion energy community, a tandem

Kwan, J.W.

2008-01-01T23:59:59.000Z

78

Accelerator and Fusion Research Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Research Highlights Intramural Resources Links Gallery History People Glenna J. Rogers, principal resource analyst Stephen A. Gourlay, director, AFRD Peter Seidl, deputy...

79

Vintage DOE: What is Fusion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vintage DOE: What is Fusion Vintage DOE: What is Fusion Vintage DOE: What is Fusion January 10, 2011 - 12:45pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs As our team works to build our new website and new content features over the coming months, we're also reviewing the Department's video archives. In the below piece, a narrator ask people on the street "what is fusion?" and then, around the 2-minute mark, kicks off a nice introduction to fusion science. It's worth a watch if you could use a brush up on the basic science, or if you'd just enjoy a reminder of what Americans were wearing a couple decades ago. With much research and development, scientists at the Department of Energy have done a great deal to advance our knowledge of fusion since the time

80

Demonstrating a Target Supply for Inertial Fusion Energy (A24816)  

E-Print Network (OSTI)

Fusion Science And Technology 47, 1131 (2005)16th Topical Meeting on Technology Fusion Energy Madison Wisconsin, US, 2004999609940

Goodin, D.T.

2004-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Basics of Fusion-Fission Research Facility (FFRF) as a Fusion Neutron Source  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Leonid E. Zakharov

82

Fusion: an energy source for synthetic fuels  

DOE Green Energy (OSTI)

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

Fillo, J A; Powell, J; Steinberg, M

1980-01-01T23:59:59.000Z

83

Large Scale Computing and Storage Requirements for Fusion Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion Energy...

84

Fusion research at General Atomics annual report, October 1, 1993-- September 30, 1994  

SciTech Connect

In FY94, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the controlled fusion power program. The work was supported by the Office of Fusion Energy, Advanced Physics and Technology Division and ITER and Technology Division, of the US Department of Energy. The work is reported in the following sections on Fusion Power Plant Studies, Plasma Interactive Materials, RF Technology, and Diagnostics. Meetings attended and publications are listed in their respective sections. The overall objective of GA`s fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to the next-generation fusion reactor experiments, Tokamak Physics Experiment (TPX) and ITER, and ultimately to fusion power plants. To achieve this overall objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power reactors, and we conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. We continue to be committed to the development of fusion power and its commercialization by US industry.

1995-11-01T23:59:59.000Z

85

Past, present and future of laser fusion research  

SciTech Connect

The concept of laser fusion was devised very shortly after the invention of laser. In 1972, the Institute of Laser Engineering, Osaka University was established by the author in accordance with the Edward Teller{close_quote}s special lecture on {open_quote}{open_quote}New Internal Combustion Engine{close_quote}{close_quote} for IQEC at Montreal which predicted the implosion fusion. In 1975 we invented the so called indirect drive fusion concept {open_quote}{open_quote}Cannonball Target{close_quote}{close_quote} which became later to be recognize as a same concept of {open_quote}{open_quote}Hohlraum Target{close_quote}{close_quote} from Livermore. As well known, ICF research in the US had been veiled for a long time due to the defense classification. While researchers from Japan, Germany and elsewhere have concentrated the efforts to investigate the inertial fusion energy which seems to be very interesting for a future civil energy. They were publishing their own works not only on the direct implosion scheme but also the indirect implosion experiment. These advanced results often frustrated the US researchers who were not allowed to talk about the details of their works. In 1988, international members of the ICF research society including the US scientists gathered together at ECLIM to discuss the necessity of freedom in the ICF research and concluded to make a statement {open_quote}{open_quote}Madrid Manifest{close_quote}{close_quote} which requested the declassification of the ICF research internationally. After 6 years of halt, the US DOE decided to declassify portions of the program as a part of secretary Hazel O{close_quote}Leary{close_quote}s openness initiative. The first revealed presentation from the US was done at Seville 1994, which however were well known already. Classification impeded the progress by restricting the flow of information and did not allow the ICF work to compete by the open scientific security. (Abstract Truncated)

Yamanaka, C. [Institute for Laser Technology, Yamadaoka Suita, Osaka 565, Himeji Institute of Technology, Shosha Himeji 671 (Japan)

1996-05-01T23:59:59.000Z

86

Fusion Energy Division Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

of Agreement with UT-Battelle to collaborate with Japan's National Institute for Fusion Science. Division Director Stanley L. Milora Oak Ridge National Laboratory P.O. Box...

87

Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs  

SciTech Connect

A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

1980-08-01T23:59:59.000Z

88

Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Programs » FES Home Programs » FES Home Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Fusion Energy Sciences Plasma science forms the basis for research that is needed to establish our ability to harness the power of the stars in order to generate fusion energy on earth. The research required for fusion energy's success is intimately tied to rich scientific questions about some of nature's most extreme environments, inside and outside of stars, and has practical

89

Accelerated plan to develop magnetic fusion energy  

SciTech Connect

We have shown that, despite funding delays since the passage of the Magnetic Fusion Engineering Act of 1980, fusion development could still be carried to the point of a demonstration plant by the year 2000 as called for in the Act if funding, now about $365 million per year, were increased to the $1 billion range over the next few years (see Table I). We have also suggested that there may be an economic incentive for the private sector to become in accelerating fusion development on account of the greater stability of energy production costs from fusion. Namely, whereas fossil fuel prices will surely escalate in the course of time, fusion fuel will always be abundantly available at low cost; and fusion technology poses less future risk to the public and the investor compared to conventional nuclear power. In short, once a fusion plant is built, the cost of generating electricity mainly the amortization of the plant capital cost - would be relatively fixed for the life of the plant. In Sec. V, we found that the projected capital cost of fusion plants ($2000 to $4000 per KW/sub e/) would probably be acceptable if fusion plants were available today.

Fowler, T.K.

1986-05-28T23:59:59.000Z

90

Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Fusion Sun Plasma The ultimate energy source Fusion occurs when two atomic nuclei are joined together. To fuse the atoms, the force that repels them as they come together must be overcome. Accelerators accomplish this by forcing molecules to collide with one another at very high temperatures (high temperatures are simply molecules moving at high speeds). When light nuclei are involved, fusion can produce more energy than was required to start the reaction. This process is the force that powers the Sun, whose source of energy is an ongoing fusion chain reaction. As an unconfined event, fusion was first developed for use in nuclear weapons. Fusion's great potential as a new energy source depends on scientists' ability to harness its power in laboratory events. The Z

91

Fusion energy development: Breakeven and beyond: Keynote address  

SciTech Connect

The scientific feasibility, technological inevitability, and economic necessity of fusion as an energy source are discussed.

Furth, H.P.

1988-02-01T23:59:59.000Z

92

Particle beam fusion research at Sandia National Laboratories  

SciTech Connect

Sandia`s Particle Beam Fusion Program is investigating several driver options, based on pulsed power technology, with the goal of demonstrating a practical ignitor for Inertial Confinement Fusion (ICF) Reactors. The interrelated aspects of power conditioning and compression, beam-target interaction, and target ignition are being studied. The issues of efficiency, reliability and multiple pulse capability are being integrated into the program to provide a viable approach to an experimental power reactor. On a shorter time scale the authors expect to derive important military-related benefits from attendant research and facility development. The two most important advantages of pulsed power driven fusion are the inherent low cost and high efficiency of high current particle accelerators. However, comparison of the relative merits of particle beams and focused laser beams must include many other factors such as beam transport, and target coupling, as well as target design and fabrication. These issues are being investigated to determine if the perceived practical benefits of particle beam fusion can indeed be realized. The practical considerations are exemplified in a comparison of the leading ICF drivers. The plan being followed by Sandia involves using the Electron Beam Fusion Accelerator (EBFA) to meet three objectives by 1985: significant burn using EBFA 1, net energy gain based on an upgrade of EBFA to the 2 megajoule (MJ) level (EBFA 2), and demonstration of a single module of EBFA 2 operated in the repetitive pulse mode. These goals are dependent, of course, on success in solving several key technical problems under investigation. If these technical problems can be solved, then practical applications to fusion power could be considered. The potential for these applications has been studied using economic models that allow one to derive the cost of power based on various assumptions.

1978-12-31T23:59:59.000Z

93

Neutronics issues and inertial fusion energy: a summary of findings  

Science Conference Proceedings (OSTI)

We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES&H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES&H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions.

Latkowski, J. F., LLNL

1998-05-29T23:59:59.000Z

94

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

95

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 Introduction to Panel Discussions  

E-Print Network (OSTI)

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 -- Introduction to Panel Discussions Whither Fusion Research? Robert L. Hirsch' . An unnamed former fusion program director retired and felt he needed some friend appeared before the major monk for his annual two words, which were, " Room cold." The monk nodded

96

Understanding and accepting fusion as an alternative energy source  

SciTech Connect

Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

Goerz, D.A.

1987-12-10T23:59:59.000Z

97

Understanding and accepting fusion as an alternative energy source  

SciTech Connect

Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

Goerz, D.A.

1987-12-10T23:59:59.000Z

98

Findings of the US research needs workshop on the topic of fusion power  

SciTech Connect

The US Department of Energy, Office of Fusion Energy Sciences (OFES) conducted a Research Needs Workshop, referred to as ReNeW, in June 2009. The information developed at this workshop will help OFES develop a plan for US fusion research during the ITER era, roughly the next two decades. The workshop was organized in five Themes, one of which was Harnessing Fusion Power (or Fusion Power for short). The top level goal of the Fusion Power Theme was to identify the research needed to develop the knowledge to design and build, with high confidence, robust and reliable systems that can convert fusion products to useful forms of energy in a reactor environment, including a self-sufficient supply of tritium fuel. Each Theme was subsequently subdivided into Panels to address specific topics. The Fusion Power Panel topics were: Fusion Fuel Cycle; Power Extraction; Materials Science; Safety and Environment; and Reliability, Availability, Maintainability and Inspectability (RAMI). Here we present the key findings of the Fusion Power Theme.

W. R. Meier; A. R. Raffray; R. J. Kurtz; N. B. Morley; W. T. Reiersen; Phil Sharpe; S. Willms

2010-12-01T23:59:59.000Z

99

Findings of the US Research Needs Workshop on the Topic of Fusion Power  

SciTech Connect

The US Department of Energy, Office of Fusion Energy Sciences (OFES) conducted a Research Needs Workshop, referred to as ReNeW, in June 2009. The information developed at this workshop will help OFES develop a plan for US fusion research during the ITER era, roughly the next two decades. The workshop was organized in five Themes, one of which was Harnessing Fusion Power (or Fusion Power for short). The top level goal of the Fusion Power Theme was to identify the research needed to develop the knowledge to design and build, with high confidence, robust and reliable systems that can convert fusion products to useful forms of energy in a reactor environment, including a self-sufficient supply of tritium fuel. Each Theme was subsequently subdivided into Panels to address specific topics. The Fusion Power Panel topics were: fusion fuel cycle; power extraction; materials science; safety and environment; and reliability, availability, maintainability and inspectability (RAMI). Here we present the key findings of the Fusion Power Theme.

Meier, W R; Raffray, A R; Kurtz, R J; Morley, N B; Reiersen, W T; Sharpe, P; Willms, S

2009-09-16T23:59:59.000Z

100

Findings of the US research needs workshop on the topic of fusion power  

SciTech Connect

The US Department of Energy, Of?ce of Fusion Energy Sciences (OFES) conducted a Research Needs Workshop, referred to as ReNeW, in June 2009. The information developed at this workshop will help OFES develop a plan for US fusion research during the ITER era, roughly the next two decades. The workshop was organized in ?ve Themes, one of which was Harnessing Fusion Power (or Fusion Power for short). The top level goal of the Fusion Power Theme was to identify the research needed to develop the knowledge to design and build, with high con?dence, robust and reliable systems that can convert fusion products to useful forms of energy in a reactor environment, including a self-suf?cient supply of tritium fuel. Each Theme was subsequently subdivided into Panels to address speci?c topics. The Fusion Power Panel topics were: Fusion Fuel Cycle; Power Extraction; Materials Science; Safety and Environment; and Reliability, Availability, Maintainability and Inspectability (RAMI). Here we present the key ?ndings of the Fusion Power Theme.

Meier, Wayne R.; Raffray, R.; Kurtz, Richard J.; Morley, Neil B.; Reiersen, Wayne T.; Sharpe, Phil; Willms, Scott

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Institute of Plasma and Fusion Research  

E-Print Network (OSTI)

for fusion accumulated over 40 years of CANDU reactors operation will peak at 27 kg in the year 2027 and

102

Current Status of DiscussionCurrent Status of DiscussionCurrent Status of DiscussionCurrent Status of Discussion on Roadmap of Fusion Energyon Roadmap of Fusion Energy  

E-Print Network (OSTI)

) Basic research of plasma science (small & med exp theory) acad Basic research of reactor eng. (advanced of fusion has dramatically changed since the accident of the Fukushima Dai-ichi nuclear power stationnuclear energy of fast breeder reactor and fusion highnew energy, atomic energy of fast breeder reactor

103

An important challenge in magnetic fusion research is to obtain high energy confinement in a stationary plasma that will be co  

NLE Websites -- All DOE Office Websites (Extended Search)

Ways to reduce your tokamak heating bill: Gaining control of edge transport Ways to reduce your tokamak heating bill: Gaining control of edge transport barriers on Alcator C-Mod A crucial challenge in magnetic fusion is to obtain high energy confinement in a stationary plasma that is compatible with the engineering requirements of a fusion reactor. The triggering of edge transport barriers at the boundary of confined plasma is a common approach to obtaining high energy confinement, in a regime known as H-mode, which extrapolates to high performance in ITER and other burning plasma devices. However, barriers to energy transport can sometimes be self-defeating, since they also provide a strong barrier to particle transport. This can lead to enhanced confinement of impurities in the plasma core, excessive radiated power and deterioration of performance for a given

104

HEDP and new directions for fusion energy  

SciTech Connect

The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

Kirkpatrick, Ronald C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

105

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

4.3.3.4 Chamber Radius and Fusion Neutron Flux . . . . .1.1.3.2 Fusion Energy . . . . . . . . .1.1.3.3 Fission-Fusion Hybrids . . . . 1.2 Scope and Purpose

Kramer, Kevin James

2010-01-01T23:59:59.000Z

106

The National Ignition Facility (NIF) A Path to Fusion Energy  

SciTech Connect

Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

Moses, E

2006-11-27T23:59:59.000Z

107

Energy Research and Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research and Development Energy Research and Development Energy Research and Development 1. In General GC-52 provides legal advice to DOE regarding energy research and development projects supported by DOE for the advancement of basic and applied science in a variety of subject-matter areas including nuclear energy, fusion energy, and climate change research. GC-52 attorneys provide advice on matters related to scientific conduct and activities, review program reports and activities for compliance with applicable provisions of law, and provide support for federal interagency research and development activities. Applicable Laws Atomic Energy Act of 1954 Further Information Office of Science Office of Nuclear Energy (NE) 2. Isotope Production and Sales GC-52 provides legal advice to DOE's Office of Isotope Production and

108

Reviewers Comments on the 5th Symposium and the Status of Fusion Research 2003  

DOE Green Energy (OSTI)

Better to understand the status of fusion research in the year 2003 we will first put the research in its historical context. Fusion power research, now beginning its sixth decade of continuous effort, is unique in the field of scientific research. Unique in its mixture of pure and applied research, unique in its long-term goal and its promise for the future, and unique in the degree that it has been guided and constrained by national and international governmental policy. Though fusion research's goal has from the start been precisely defined, namely, to obtain a net release of energy from controlled nuclear fusion reactions between light isotopes (in particular those of hydrogen and helium) the difficulty of the problem has spawned in the past a very wide variety of approaches to the problem. Some of these approaches have had massive international support for decades, some have been pursued only at a ''shoestring'' level by dedicated groups in small research laboratories or universities. In discussing the historical and present status of fusion research the implications of there being two distinctly different approaches to achieving net fusion power should be pointed out. The first, and oldest, approach is the use of strong magnetic fields to confine the heated fuel, in the form of a plasma and at a density typically four or five orders of magnitude smaller than the density of the atmosphere. In steady state this fusion fuel density is still sufficient to release fusion energy at the rate of many megawatts per cubic meter. The plasma confinement times required for net energy release in this regime are long--typically a second or more, representing an extremely difficult scientific challenge --witness the five decades of research in magnetic fusion, still without having reaching that goal. The second, more recently initiated approach, is of course the ''inertial'' approach. As its name implies, the ''confinement'' problem is solved ''inertially,'' that is by compressing and heating a tiny pellet of frozen fusion fuel in nanoseconds, such that before disassembly the pellet fuses and releases its energy as a micro-explosion. The first, and most thoroughly investigated means to create this compression and heating is to use multiple laser beams, with total energies of megajoules, focused down to impinge uniformly on the pellet target. To illustrate the extreme difference between the usual magnetic confinement regime at that of inertial fusion, there are twenty orders of magnitude in fusion power density (ten orders of magnitude in plasma density) between the two regimes. In principle fusion power systems could operate at any density between these extremes, if means were to be found to exploit this possibility.

Post, R F

2005-02-03T23:59:59.000Z

109

Target Tracking and Engagement for Inertial Fusion Energy - A Tabletop Demonstration  

Science Conference Proceedings (OSTI)

Technical Paper / The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers

Lane Carlson; Mark Tillack; Thomas Lorentz; Jon Spalding; Neil Alexander; Graham Flint; Dan Goodin; Ronald Petzoldt

110

Systems Modeling for the Laser Fusion-Fission Energy (LIFE) Power Plant  

Science Conference Proceedings (OSTI)

Laser Fusion-Fission Hybrid / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

W. R. Meier et al.

111

Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)  

Science Conference Proceedings (OSTI)

Laser Fusion-Fission Hybrid / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

R. W. Moir; H. F. Shaw; A. Caro; Larry Kaufman; J. F. Latkowski; J. Powers; P. E. A. Turchi

112

Converting energy from fusion into useful forms  

E-Print Network (OSTI)

If fusion power reactors are to be feasible, it will still be necessary to convert the energy of the nuclear reaction into usable form. The heat produced will be removed from the reactor core by a primary coolant, which might be water, helium, molten lithium-lead, molten lithium-containing salt, or CO2. The heat could then be transferred to a conventional Rankine cycle or Brayton (gas turbine) cycle. Alternatively it could be used for thermochemical processes such as producing hydrogen or other transport fuels. Fusion presents new problems because of the high energy neutrons released. These affect the selection of materials and the operating temperature, ultimately determining the choice of coolant and working cycle. The limited temperature ranges allowed by present day irradiated structural materials, combined with the large internal power demand of the plant, will limit the overall thermal efficiency. The operating conditions of the fusion power source, the materials, coolant, and energy conversion system w...

Kovari, M; Jenkins, I; Kiely, C

2014-01-01T23:59:59.000Z

113

Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source  

SciTech Connect

FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

Leonid E. Zakharov

2011-06-03T23:59:59.000Z

114

Fusion Energy Division: Annual progress report, period ending December 31, 1987  

Science Conference Proceedings (OSTI)

The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

1988-11-01T23:59:59.000Z

115

Fusion Energy Division progress report, 1 January 1990--31 December 1991  

Science Conference Proceedings (OSTI)

The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1994-03-01T23:59:59.000Z

116

Particle-beam fusion research facilities at Sandia National Laboratories  

SciTech Connect

Sandia research in inertial-confinement fusion (ICF) is based on pulse-power capabilities that grew out of earlier developments of intense relativistic electron-beam (e-beam) radiation sources for weapon effects studies. ICF involves irradiating a deuterium-tritium pellet with either laser light or particle beams until the center of the pellet is compressed and heated to the point of nuclear fusion. This publication focuses on the use of particle beams to achieve fusion, and on the various facilities that are used in support of the particle-beam fusion (PBF) program.

1980-12-31T23:59:59.000Z

117

Fusion: A necessary component of US energy policy  

SciTech Connect

US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs.

Correll, D.L. Jr.

1989-01-11T23:59:59.000Z

118

Distribution Categories: Magnetic Fusion Energy (UC-20)  

E-Print Network (OSTI)

Distribution Categories: Magnetic Fusion Energy (UC-20) MFE--Plasma Systems (UC-20a) MFE Temperature Response 4-7 4.6 Thermal Storage Requirements 4-16 4.6.1 Pressurized Water/Steam System 4-19 4

Harilal, S. S.

119

A Conceptual Study for a Feasible Fusion Energy Utilization Plant  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

Jung Hoon Han et al.

120

Timely Delivery of Laser Inertial Fusion Energy (LIFE)  

Science Conference Proceedings (OSTI)

IFE - NIF & LIFE / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1)

M. Dunne et al.

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LIFE: The Case for Early Commercialization of Fusion Energy  

Science Conference Proceedings (OSTI)

IFE - NIF & LIFE / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1)

Thomas M. Anklam; Mike Dunne; Wayne R. Meier; Sarah Powers; Aaron J. Simon

122

Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine  

Science Conference Proceedings (OSTI)

IFE - NIF & LIFE / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1)

Jeffery F. Latkowski et al.

123

Compact, Efficient Laser Systems Required for Laser Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

IFE - NIF & LIFE / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1)

A. Bayramian et al.

124

Fusion Energy Division annual progress report, period ending December 31, 1989  

SciTech Connect

The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1991-07-01T23:59:59.000Z

125

Assessment of the Fusion Energy Sciences Program. Final Report  

SciTech Connect

An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study.

2001-05-01T23:59:59.000Z

126

Fusion reactors as future energy sources  

SciTech Connect

From conference on energy policies and the international system; New, Delhi, India (4 Dec 1973). The need is now apparent for a global energy policy with the following characteristics: Compatibility with environmental and economic factors; large fuel resources, the recovery and exploration of which have minimal environmental impact and which do not introduce disturbing factors into the world political situation. Fusion power in this context is discussed, including assessments of its potential and of the problems yet to be solved in achieving its realization. The proposition is advanced that fusion should be considered as the ultimate source of energy, and that other sources of energy, including conventional nuclear power, should be considered as interim sources. (auth)

Post, R.F.; Ribe, F.L.

1973-01-01T23:59:59.000Z

127

Controlled fusion and plasma research. A literature search  

SciTech Connect

This bibliography contains 4584 references to journal and report literature that cover information on various aspects of controlled fusion research. Corporate author, personal author, report number, and subject indexes are included. (auth)

Whitson, M.O.

1975-10-01T23:59:59.000Z

128

MIT Plasma Science & Fusion Center: research, alcator, publications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Review Whyte, D. The Role of the Boundary in Defining the Viability of Magnetic Fusion Energy Invited Orals Cziegler, I. Fluctuating Zonal Flows in I-Mode in Alcator...

129

MIT Plasma Science & Fusion Center: research, alcator, publications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma to Take Out the Trash (APS 2011) Hot and Dense Plasmas with Low Power Loads on Reactor Walls: A Hurdle to Fusion Energy Overcome in Alcator C-Mod (APS 2010) How Big is...

130

ScienceLive chat page: on the future of fusion research | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

ScienceLive chat page: on the future of fusion research American Fusion News Category: U.S. Universities Link: ScienceLive chat page: on the future of fusion research...

131

Fusion Energy Division progress report, January 1, 1992--December 31, 1994  

Science Conference Proceedings (OSTI)

The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

1995-09-01T23:59:59.000Z

132

Energy Research at the UW Crea ng sustainable energy sources  

E-Print Network (OSTI)

Energy Research at the UW Genera on Crea ng sustainable energy sources from alterna ve low environmental- impact materials and natural processes Energy harves ng: powering small devices from their surroundings Bioenergy: energy from, or enabled by living organisms Fusion: energy from the stars Protein

Washington at Seattle, University of

133

Fusion Education | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Benefits of FES Fusion Education Fusion Energy Sciences (FES) FES Home About FES Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities...

134

Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers  

E-Print Network (OSTI)

The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

2005-09-26T23:59:59.000Z

135

Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source  

Science Conference Proceedings (OSTI)

Introduction / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

J. Ongena; G. Van Oost

136

Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source  

Science Conference Proceedings (OSTI)

Introduction / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

J. Ongena; G. Van Oost

137

Strategic plan for the restructured US fusion energy sciences program  

SciTech Connect

This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970`s, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department`s planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date.

1996-08-01T23:59:59.000Z

138

Fusion Energy Division annual progress report period ending December 31, 1986  

SciTech Connect

This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

1987-10-01T23:59:59.000Z

139

U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Signs U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.21.06 U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction Print Text Size: A A A Subscribe FeedbackShare Page Large-Scale, Clean Fusion Energy Project to Begin Construction November 21, 2006 PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the

140

Lab Breakthrough: Fusion Research Leads to Antiterrorism Device |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fusion Research Leads to Antiterrorism Device Fusion Research Leads to Antiterrorism Device Lab Breakthrough: Fusion Research Leads to Antiterrorism Device June 26, 2012 - 12:17pm Addthis Researchers at the Princeton Plasma Physics Laboratory developed an antiterrorism device that can detect and identify sources of dangerous radiation that could be used in a dirty bomb. See the other Lab Breakthrough videos on the YouTube playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is MINDS? MINDS stands for Miniature Integrated Nuclear Detection System The system detects and identifies radiological conditions under a variety of real-world environments - for instance in a shipping yard, at an airport, or public building. Princeton Plasma Physics Laboratory's Charles Gentile, Lead Developer of

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

E-Print Network (OSTI)

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

F. Muhammad Zamrun; K. Hagino; N. Takigawa

2006-06-07T23:59:59.000Z

142

MIT Plasma Science & Fusion Center: research>alcator>  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Research Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering Useful Links earl marmar head of alcator reviewing data Dr. Earl Marmar, leader of the Alcator Project, studies C-Mod data. Today, we are closer than ever to realizing the dream of harnessing the nuclear process that powers our sun. This stellar process, called fusion, produces minimal waste and offers the hope of an almost limitless supply of safe, dependable energy. Among fusion research groups, MIT's Alcator C-Mod project is unique in its dedication to compact size and high performance. It is the world's highest magnetic field tokamak plasma confinement experiment. As a result, Alcator experiments have performed at levels rivaling the largest fusion experiments in the world.

143

Center at plasma laboratory wins $12 million grant for fusion research |  

NLE Websites -- All DOE Office Websites (Extended Search)

Center at plasma laboratory wins $12 million grant for fusion research Center at plasma laboratory wins $12 million grant for fusion research By John Greenwald October 10, 2012 Tweet Widget Facebook Like Google Plus One C.S. Chang, who heads the Center for Edge Physics Simulation at the Princeton Plasma Physics Lab, stands by a high-performance computer cluster at the laboratory. With a $12.25 million grant from the U.S. Department of Energy, Chang and other researchers will develop computer codes to simulate a key component of the plasma that fuels fusion energy. (Photo by Elle Starkman, PPPL Office of Communications) C.S. Chang, who heads the Center for Edge Physics Simulation at the Princeton Plasma Physics Lab, stands by a high-performance computer cluster at the laboratory. With a $12.25 million grant from the U.S. Department of

144

Fusion-supported decentralized nuclear energy system  

SciTech Connect

A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors.

Jassby, D.L.

1979-04-01T23:59:59.000Z

145

Laser Inertial Fusion Energy Control Systems  

Science Conference Proceedings (OSTI)

A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

2011-03-18T23:59:59.000Z

146

Optimized Data Fusion in Bandwidth and Energy Constrained Sensor Networks  

E-Print Network (OSTI)

Optimized Data Fusion in Bandwidth and Energy Constrained Sensor Networks Xianren Wu and Zhi Tian Abstract-- This paper considers the problem of decentralized data fusion (DDF) for large wireless sensor this setting, we derive the maximum likelihood (ML) data fusion rule for decentralized parameter estimation

Tian, Zhi "Gerry"

147

REP-Rated Target Injection for Inertial Fusion Energy (A24820)  

E-Print Network (OSTI)

Fusion Sci. And Technol. 47, 1143 (2005)16th Topical Meeting on Technology Fusion Energy Madison Wisconsin, US, 2004999609950

Frey, D.T.

2004-11-05T23:59:59.000Z

148

Electrical Energy Requirements for Accelerator and Fusion Neutrons  

SciTech Connect

The electrical energy requirements and costs of accelerator transmutation of waste (ATW) and fusion plants designed to transmute nuclides of fission wastes are compared. Both systems use the same blanket concept, but tritium breeding is taken into account for the fusion system. The ATW and fusion plants are found to have the same electrical energy requirement per available blanket neutron when the blanket coverage is comparable and the fusion energy gain is near breakeven (Q {approx}1), but the fusion plant has only a fraction of the energy requirement when Q >> 1. If the blanket thermal energy is converted to electricity, the fusion plant and ATW have comparable net electrical energy outputs per available neutron when Q {approx}1.5 and the blanket neutron multiplication is large.

Jassby, Daniel L.; Schmidt, John A. [Princeton Plasma Physics Laboratory (United States)

2001-07-15T23:59:59.000Z

149

Summary of Assessment of Prospects for Inertial Fusion Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

content emergency.pppl.gov Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting...

150

Reviewers Comments on the 5th Symposium and the Status of Fusion Research 2003  

SciTech Connect

Better to understand the status of fusion research in the year 2003 we will first put the research in its historical context. Fusion power research, now beginning its sixth decade of continuous effort, is unique in the field of scientific research. Unique in its mixture of pure and applied research, unique in its long-term goal and its promise for the future, and unique in the degree that it has been guided and constrained by national and international governmental policy. Though fusion research's goal has from the start been precisely defined, namely, to obtain a net release of energy from controlled nuclear fusion reactions between light isotopes (in particular those of hydrogen and helium) the difficulty of the problem has spawned in the past a very wide variety of approaches to the problem. Some of these approaches have had massive international support for decades, some have been pursued only at a ''shoestring'' level by dedicated groups in small research laboratories or universities. In discussing the historical and present status of fusion research the implications of there being two distinctly different approaches to achieving net fusion power should be pointed out. The first, and oldest, approach is the use of strong magnetic fields to confine the heated fuel, in the form of a plasma and at a density typically four or five orders of magnitude smaller than the density of the atmosphere. In steady state this fusion fuel density is still sufficient to release fusion energy at the rate of many megawatts per cubic meter. The plasma confinement times required for net energy release in this regime are long--typically a second or more, representing an extremely difficult scientific challenge --witness the five decades of research in magnetic fusion, still without having reaching that goal. The second, more recently initiated approach, is of course the ''inertial'' approach. As its name implies, the ''confinement'' problem is solved ''inertially,'' that is by compressing and heating a tiny pellet of frozen fusion fuel in nanoseconds, such that before disassembly the pellet fuses and releases its energy as a micro-explosion. The first, and most thoroughly investigated means to create this compression and heating is to use multiple laser beams, with total energies of megajoules, focused down to impinge uniformly on the pellet target. To illustrate the extreme difference between the usual magnetic confinement regime at that of inertial fusion, there are twenty orders of magnitude in fusion power density (ten orders of magnitude in plasma density) between the two regimes. In principle fusion power systems could operate at any density between these extremes, if means were to be found to exploit this possibility.

Post, R F

2005-02-03T23:59:59.000Z

151

Kinetic Simulations of Fusion Energy Dynamics at the Extreme...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetic Simulations of Fusion Energy Dynamics at the Extreme Scale PI Name: William Tang PI Email: tang@pppl.gov Institution: Princeton Plasma Physics Laboratory Allocation...

152

International Atomic Energy Agency holds conference on fusion...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Atomic Energy Agency holds conference on fusion roadmap By John Greenwald November 8, 2012 Tweet Widget Facebook Like Google Plus One Hutch Neilson, third from left,...

153

Fusion Energy Greg Hammett & Russell Kulsred Princeton University  

NLE Websites -- All DOE Office Websites (Extended Search)

Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell Kulsred Princeton University Wednesday, Dec 4, 2013 - 4:15PM MBG AUDITORIUM Refreshments at...

154

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Conference Proceedings (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 1519, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

155

In-Situ MHD Energy Conversion for Fusion  

Science Conference Proceedings (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 1519, 1986)

R. B. Campbell; M. A. Hoffman; B. G. Logan

156

NIF achieves record laser energy in pursuit of fusion ignition...  

National Nuclear Security Administration (NNSA)

achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

157

Ceramic Matrix Composites for Nuclear and Fusion Energy  

Science Conference Proceedings (OSTI)

Abstract Scope, Ceramic matrix composites are considered among the key enabling materials for advanced nuclear reactors and fusion energy systems. Silicon...

158

Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine  

Science Conference Proceedings (OSTI)

Laser Fusion-Fission Hybrid / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

Kevin J. Kramer; Jeffery F. Latkowski; Ryan P. Abbott; John K. Boyd; Jeffrey J. Powers; Jeffrey E. Seifried

159

Thursday, January 30, 2003 Energy Secretary Abraham Announces U.S. to Join Negotiations on Major International Fusion  

E-Print Network (OSTI)

Thursday, January 30, 2003 Energy Secretary Abraham Announces U.S. to Join Negotiations on Major of a major international magnetic fusion research project, U.S. Secretary of Energy Spencer Abraham announced of the laboratory. The Bush administration believes that fusion is a key element in U.S. long-term energy plans

160

Electrical energy requirements for ATW and fusion neutrons  

SciTech Connect

This note compares the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides of fission wastes. Both systems use the same blanket concept but for each source neutron the fusion system must utilize one blanket neutron for tritium breeding. The ATW and fusion plants are found to have the same electrical energy requirement per available blanket neutron when the blanket coverage is comparable and fusion Q {approx} 1, but the fusion plant has only a fraction of the energy requirement when Q {much{underscore}gt} 1. If the blanket thermal energy is converted to electricity, the fusion plant and ATW have comparable net electrical energy outputs per available neutron when Q {>=} 2.

Jassby, D.L.; Schmidt, J.A.

2000-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Structural Materials for Fission and Fusion Energy  

SciTech Connect

Structural materials represent the key for containment of nuclear fuel and fission products as well as reliable and thermodynamically efficient production of electrical energy from nuclear reactors. Similarly, high-performance structural materials will be critical for the future success of proposed fusion energy reactors, which will subject the structures to unprecedented fluxes of high-energy neutrons along with intense thermomechanical stresses. Advanced materials can enable improved reactor performance via increased safety margins and design flexibility, in particular by providing increased strength, thermal creep resistance and superior corrosion and neutron radiation damage resistance. In many cases, a key strategy for designing highperformance radiation-resistant materials is based on the introduction of a high, uniform density of nanoscale particles that simultaneously provide good high temperature strength and neutron radiation damage resistance.

Zinkle, Steven J [ORNL; Busby, Jeremy T [ORNL

2009-01-01T23:59:59.000Z

162

Overview of US heavy ion fusion research  

E-Print Network (OSTI)

Albuquerque, NM, USA Sandia National Laboratories, USAMission Research Corporation, Sandia National Laboratories,targets are underway on the Sandia National Laboratories Z-

2004-01-01T23:59:59.000Z

163

MIT Plasma Science & Fusion Center: research>alcator>research program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Program Information & Program Information Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology Useful Links Collaborations at Alcator C-Mod Collaborations form an integral and important part of the Alcator C-Mod research effort. Among the major facilities, C-Mod has a relatively small scientific staff, and collaborations provide a high leverage avenue to increase our productivity. Opportunities for collaboration can be found across the entire spectrum of our research activities. Education is a primary mission of MIT, and we particularly welcome and encourage student participation in our program. The Alcator program is centered around the overall theme of: Compact

164

Implications of NSTX Lithium Results for Magnetic Fusion Research  

Science Conference Proceedings (OSTI)

Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ~ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

M. Ono, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.M. Canik, S. Diem, S.P.. Gerhardt, J. Hosea, S. Kaye, D. Mansfield, R. Maingi, J. Menard, S. F. Paul, R. Raman, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, G. Taylor, and the NSTX Research Team

2010-01-14T23:59:59.000Z

165

Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine  

Science Conference Proceedings (OSTI)

The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

2010-11-30T23:59:59.000Z

166

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

Example of NIF fusion target hohlraum with multiple beamsimilar to those used on NIF. . . . . Overview of LFFHNES Nuclear Energy System NIF National Ignition Facility ODS

Kramer, Kevin James

2010-01-01T23:59:59.000Z

167

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

1.1.3.1 Fission Energy . . . . . . . . . 1.1.3.21.1.3.3 Fission-Fusion Hybrids . . . . 1.2 Scope and Purposei CONTENTS Fission Blanket . . . . . . . . . . . . . . . . .

Kramer, Kevin James

2010-01-01T23:59:59.000Z

168

Energy Frontier Research Center News  

Office of Science (SC) Website

news/ The Office of news/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {9CB101D3-8765-47D6-A2DB-D5E8979B3C9B}http://science.energy.gov/bes/efrc/news-and-events/efrc-news/observing-the-sparks-of-life/ Observing the Sparks of Life EFRC researchers isolate a photosynthetic complex — arguably the most important bit of organic chemistry on the planet — in its complete functioning state. This work, featured in the Office of Science’s

169

Energy research network management workshop  

Science Conference Proceedings (OSTI)

This report contains presentations on computer network management. The list of presentations are: ESNET Steering Committee; Site Access Coordinator Group; Magnetic Fusion Energy; HEPNET Review Committee; High Energy Physics Technical Coordinating Committee; Energy Research DECnet Working Group; A Research and Development Strategy for High Performance Computing; Compare Functionality of DECNET, MFENET, TCP/IP; Video Movie Making Using The LBL/MFE Experimental Link; Research in Distributed Computing over Long Haul Networks; Performance Improvements and Transport Protocols; HRC Report; Panel Discussion: ESNET Management Issues; NMFECC Operations Summary; Large Systems Overview File Storage and POSIX Interface; User Support Services; Overview of the MFENET II; and Access to Supercomputers at FSU Hardware, Software Status, and Remote Access.

Not Available

1988-06-01T23:59:59.000Z

170

Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets  

SciTech Connect

Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.

Woolley, R.D.

1998-08-19T23:59:59.000Z

171

Fusion utilization projections in the United States energy economy  

DOE Green Energy (OSTI)

The following topics are discussed in some detail in this report: (1) applications of fusion energy, (2) fusion implementation in the US energy system, (3) reactor performance requirements, (4) technology for electric applications, and (5) technology for synthetic fuel/chemical applications. (MOW)

Powell, J.R.; Fillo, J.A.

1979-11-01T23:59:59.000Z

172

Fusion Energy [Corrosion and Mechanics of Materials] - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Fusion Energy Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Fusion Energy Bookmark and Share Since 1995, Argonne has had primary responsibility for the development of new design rules regarding various components in a fusion reactor, particularly those subject to irradiation embrittlement. During 1998, Argonne issued the final draft of the structural design criteria for in-vessel components in the International Thermonuclear Reactor (ITER).

173

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81  

E-Print Network (OSTI)

Beamlines and Other fusion Reactor Components, M.S. Thesis,Future fusion experiments and reactors may require the

Johnson Ed, R.K.

2010-01-01T23:59:59.000Z

174

Fusion-fission energy systems evaluation  

SciTech Connect

This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

1980-01-01T23:59:59.000Z

175

Solar Energy Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Research Center PROJECT DESCRIPTION SERC rendering The SERC building will be a 39,000 gsf building designed to house research laboratories and offices devoted to...

176

Fusion technology development. Annual report to the US Department of Energy, October 1, 1996--September 30, 1997  

SciTech Connect

In FY97, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work was supported by the Office of Fusion Energy Sciences, International and Technology Division, of the US Department of Energy. The work is reported in the following sections on Fusion Power Plant Studies (Section 2), Plasma Interactive Materials (Section 3), Magnetic Diagnostic Probes (Section 4) and RF Technology (Section 5). Meetings attended and publications are listed in their respective sections. The overall objective of GA`s fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and we conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. We continue to be committed to the development of fusion power and its commercialization by US industry.

1998-03-01T23:59:59.000Z

177

Z-inertial fusion energy: power plant final report FY 2006.  

SciTech Connect

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

2006-10-01T23:59:59.000Z

178

Energy Frontier Research Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

Frontier Research Centers Science for our Nation's Energy Future US Department of Energy Office of Science www.energyfrontier.us 43 ABOVE: CFSES addresses safe, secure and...

179

LIFE: The Case for Early Commercialization of Fusion Energy  

SciTech Connect

This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

Anklam, T; Simon, A J; Powers, S; Meier, W R

2010-11-30T23:59:59.000Z

180

Diode-Pumped Solid-State Lasers for Internal Fusion Energy  

SciTech Connect

We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule and megajoule energy levels for fusion energy applications. The primary near-term performance goals include 10% electrical efficiencies at 10 Hz and 100J with a 2-10 ns pulse length at 1.047 mm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple chambers for high energy density physics research.

Payne, S A; Bibeau, C; Beach, R J; Bayramian, A; Chanteloup, J C; Ebbers, C A; Emanuel, M A; Orth, C D; Rothenberg, J. E; Schaffers, K I; Skidmore, J A; Sutton, S B; Zapata, L E; Powell, H T

1999-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mercury and Beyond: Diode-Pumped Solid-State Lasers for Inertial Fusion Energy  

SciTech Connect

We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule energy levels for fusion energy applications. The primary performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 pm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple target chambers for high energy density physics research.

Bibeau, C.; Beach, R.J.; Bayramian, A.; Chanteloup, J.C.; Ebbers, C.A.; Emanuel, M.A.; Orth, C.D.; Rothenberg, J.E.; Schaffers, K.I.; Skidmore, J.A.; Sutton, S.B.; Zapata, L.E.; Payne, S.A.; Powell, H.T.

1999-10-19T23:59:59.000Z

182

Energy Research Group Homepage  

Science Conference Proceedings (OSTI)

Energy Research Group. Welcome. The newest Group in the CNST develops instruments designed to reveal the nanoscale ...

2012-10-02T23:59:59.000Z

183

Bold Step by the World to Fusion Energy: ITER  

E-Print Network (OSTI)

HISTORY OF INT'L COLLABORATION · 1958: WORLD-WIDE DECLASSIFICATION OF MAGNETICALLY CONFINED FUSIONV TEMPERATURES [20 MILLION DEGREES F] · 1970'S: OIL CRISIS PROPELS MAJOR INVESTMENT IN FUSION RESEARCH FACILITIES HISTORY AND KEY FUSION SCIENCE ADVANCES 85 90 95 00 05 85 90 95 00 05 CDA EDA EDA -ext US out AT

184

Culham Centre for Fusion Energy Fusion -A clean future  

E-Print Network (OSTI)

be expected, even if energy can be used more efficiently. At the same time, we need to find new ways; Governments are divided over whether to include nuclear fission in their energy portfolios; and renewable, lithium, which is abundant in the earth's crust; · An efficient way of making energy. Just one kilogram

185

SOLAR ENERGY RESEARCH ENCLAVE  

E-Print Network (OSTI)

1 SOLAR ENERGY RESEARCH ENCLAVE submitted to Indian Institute of Technology Kanpur R.S. Anand (EE......................................................................................................................46 SOLAR ENERGY: ECONOMICS AND PROJECT IMPLEMENTATION the many bottle necks are cost of technology, energy storage, distribution of solar power and daily

Srivastava, Kumar Vaibhav

186

Energy Frontier Research Center Events  

Office of Science (SC) Website

events/ The Office events/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {7ED2520F-2DB2-435D-8CBE-DEC18A03F324}http://science.energy.gov/bes/efrc/news-and-events/efrc-events/princeton-cefrc-summer-program-on-combustion-2013-session/ Princeton-CEFRC Summer Program on Combustion: 2013 Session The Combustion Energy Frontier Research Center at Princeton University will host a summer program on Combustion. Mon, 11 Mar 2013 00:00:00 -0400 {0C172CD4-47D1-4231-A89B-7C7C4F0CA5E4}http://science.energy.gov/bes/efrc/news-and-events/efrc-events/approaches-to-ultrahigh-efficiency-solar-energy-conversion-webinar/

187

Applications of fusion thermal energy to industrial processes  

DOE Green Energy (OSTI)

The feasibility of applying fusion thermal energy as process heat in the iron-steel industry, petrochemical industry, cement industry, and in the production of acetylene fom coal via calcium carbide are discussed. These four industries were selected for analysis because they require massive amounts of energy. This preliminary study concludes that the production of synthetic fuels using fusion heat appears to be the most promising method of storing and transporting this heat. Of the four industries studied, the iron-steel and the petrochemical industries appear to be the most promising because they consume substantial amounts of hydrogen and oxygen as feedstocks. These can be produced from water using the high-temperature fusion heat. The production of hydrogen and oxygen using fusion heat will also reduce the capital investment required for these industries. These two industries also consume tremendous amounts of heat at temperatures which can be delivered from a fusion blanket via chemical heat pipes.

Bowman, R.M.; Jody, B.J.; Lu, K.C.

1980-01-01T23:59:59.000Z

188

Inertial fusion: an energy-production option for the future  

SciTech Connect

The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

1982-05-01T23:59:59.000Z

189

Adiabatic Heavy Ion Fusion Potentials for Fusion at Deep Sub-barrier Energies  

E-Print Network (OSTI)

The fusion cross sections from well above barrier to extreme sub-barrier energies have been analysed using the energy (E) and angular momentum (L) dependent barrier penetration model ({\\small{ELDBPM}}). From this analysis, the adiabatic limits of fusion barriers have been determined for a wide range of heavy ion systems. The empirical prescription of Wilzynska and Wilzynski has been used with modified radius parameter and surface tension coefficient values consistent with the parameterization of the nuclear masses. The adiabatic fusion barriers calculated from this prescription are in good agreement with the adiabatic barriers deduced from {\\small{ELDBPM}} fits to fusion data. The nuclear potential diffuseness is larger at adiabatic limit, resulting in a lower $\\hbar\\omega$ leading to increase of "logarithmic slope" observed at energies well below the barrier. The effective fusion barrier radius and curvature values are anomalously smaller than the predictions of known empirical prescriptions. A detailed comparison of the systematics of fusion barrier with and without L-dependence has been presented.

S. V. S. Sastry; S. Kailas; A. K. Mohanty; A. Saxena

2003-11-12T23:59:59.000Z

190

ANNUAL REPORT, ACCELERATOR and FUSION RESEARCH DIVISION. FISCAL YEAR 1978  

E-Print Network (OSTI)

Target of a Heavy Ion Fusion Reactor: Summary of a meetingTarget of a Heavy Ion Fusion Reactor: Summary of a Meetingor more economical fusion reactor. A. BASIC PLASMA THEORY

Lofgren, E.J.

2010-01-01T23:59:59.000Z

191

emergency.pppl.gov Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research  

E-Print Network (OSTI)

emergency.pppl.gov Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search News Room News Archive American Fusion News Press Releases Publications Princeton Journal

192

Laser fusion experiment yields record energy at NIF | National Nuclear  

National Nuclear Security Administration (NNSA)

Laser fusion experiment yields record energy at NIF | National Nuclear Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Laser fusion experiment yields record energy at NIF Laser fusion experiment yields record energy at NIF Posted By Office of Public Affairs Lawrence Livermore's National Ignition Facility (NIF) recently focused all

193

Laser fusion experiment yields record energy at NIF | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser fusion experiment yields record energy at NIF | National Nuclear Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Laser fusion experiment yields record energy at NIF Laser fusion experiment yields record energy at NIF Posted By Office of Public Affairs Lawrence Livermore's National Ignition Facility (NIF) recently focused all

194

The National Ignition Facility and the Promise of Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

Plenary / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1)

E. I. Moses

195

Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas  

SciTech Connect

A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

2008-02-27T23:59:59.000Z

196

Bartlesville Energy Research Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bartlesville Energy Research Center Bartlesville Energy Research Center The Federal Government in Petroleum Research, 1918-1983 The following is a study of a single research...

197

Fusion energy division annual progress report, period ending December 31, 1980  

SciTech Connect

The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

Not Available

1981-11-01T23:59:59.000Z

198

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving Fusion Conditions Achieving Fusion Conditions CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Achieving Fusion Conditions EXPERIMENTAL RESULTS IN FUSION RESEARCH Both inertial and magnetic confinement fusion research have focused on understanding plasma confinement and heating. This research has led to increases in plasma temperature, T, density, n, and energy confinement

199

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

Code MFE Magnetic Fusion Energy MOX Mixed Oxide NES Nuclearreprocessing mixed oxide (MOX) fuels, as will be discussedbegun using Mixed ox- ide or MOX fuel as a means of both

Kramer, Kevin James

2010-01-01T23:59:59.000Z

200

Fusion breeder  

SciTech Connect

The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

Moir, R.W.

1982-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fusion breeder  

SciTech Connect

The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

Moir, R.W.

1982-04-20T23:59:59.000Z

202

Fusion energy science: Clean, safe, and abundant energy through innovative science and technology  

SciTech Connect

Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.

2001-01-01T23:59:59.000Z

203

Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems  

SciTech Connect

A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated.

Gohar, Y.

1980-01-01T23:59:59.000Z

204

Fusion Energy Sciences Advisory Committee Dr. N. Anne Davies  

E-Print Network (OSTI)

of Energy's Office of Science #12;Fusion is part of SC's part of the American Competitiveness Initiative is improved." - Energy Policy Act of 2005, Sec. 972(b)(1)(E) Outreach to S&T Communities #12;Outreach to S of science and technology ­ No direct incentive for broader communities to initiate ­ Energy Policy Act

205

Thermonuclear Fusion Energy : Assessment and Next Step Ren Pellat  

E-Print Network (OSTI)

, will have to be properly considered in tokamak reactor design. MHD theory and modelling have been Atomic Energy Chairman of the CCE-FU Energy and environment. Nuclear and renewable energies 8 ­ 9 March allowed to continuously progress towards the fusion reactor which stays a physics and technology ambitious

206

Energy Research Group Staff Page  

Science Conference Proceedings (OSTI)

Energy Research Group Staff. ... Nikolai Zhitenev, Group Leader Nikolai Zhitenev is the Group Leader of the CNST Energy Research Group. ...

2013-11-08T23:59:59.000Z

207

A Pilot Plant: The Fastest Path to Commercial Fusion Energy  

SciTech Connect

Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ? 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

Robert J. Goldston

2010-03-03T23:59:59.000Z

208

Fossil energy research meeting  

DOE Green Energy (OSTI)

U.S. ERDA's research programs in fossil energy are reviewed with brief descriptions, budgets, etc. Of general interest are discussions related to the capabilities for such research of national laboratories, universities, energy centers, etc. Of necessity many items are treated briefly, but a general overview of the whole program is provided. (LTN)

Kropschot, R.H.; Phillips, G.C.

1977-12-01T23:59:59.000Z

209

Fusion dynamics of symmetric systems near barrier energies  

E-Print Network (OSTI)

The enhancement of the sub-barrier fusion cross sections was explained as the lowering of the dynamical fusion barriers within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model. The numbers of nucleon transfer in the neck region are appreciably dependent on the incident energies, but strongly on the reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions $^{58}$Ni+$^{58}$Ni and $^{64}$Ni+$^{64}$Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of neutron to proton in the neck region at initial collision stage is observed and obvious for neutron-rich systems, which can reduce the interaction potential of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared them with the available experimental data.

Zhao-Qing Feng; Gen-Ming Jin

2009-09-06T23:59:59.000Z

210

Fusion Energy Research with Lasers, Direct Drive Targets, and Dry Wall J.D. SETHIAN, S.P. OBENSCHAIN, M. MYERS, A J. SCHMITT, D. COLOMBANT, J.  

E-Print Network (OSTI)

. GIULIANI, P. KEPPLE, and S. SWANEKAMP Plasma Physics Division, Naval Research Laboratory, Washington, DC D in development of chamber operating windows (target survival plus no wall erosion), final optics (aluminum optical windows. Electra should produce 400-700 J in 100 nsec. The technologies will be directly scalable

Najmabadi, Farrokh

211

National Research Council Study on Frontiers in High-Energy-Density Physics  

E-Print Network (OSTI)

of Fusion Fusion Power Associates Washington, DC 19­21 November 2003 #12;E12541 High-energy-density physicsNational Research Council Study on Frontiers in High-Energy-Density Physics David D. Meyerhofer (HEDP) is a rapidly growing research area · Pressures in excess of 1 Mbar constitute high-energy

212

Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program  

SciTech Connect

This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

None

2000-12-01T23:59:59.000Z

213

Why and how of fusion  

SciTech Connect

The potential advantages of fusion power are listed. The approaches to plasma containment are mentioned and the status of the fusion program is described. The ERDA and EPRI programs are discussed. The Fusion Energy Foundation's activities are mentioned. Fusion research at the U. of Ill. is described briefly. (MHR)

Miley, G.H.

1977-01-01T23:59:59.000Z

214

U.S. Signs International Fusion Energy Agreement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs International Fusion Energy Agreement Signs International Fusion Energy Agreement U.S. Signs International Fusion Energy Agreement November 21, 2006 - 9:25am Addthis Large-Scale, Clean Fusion Energy Project to Begin Construction PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the Republic of Korea and the Russian Federation to sign an agreement to build the international fusion energy project known as ITER. "The energy that powers the stars is moving closer to becoming a new source of energy for the Earth through the technology represented by ITER," U.S. Secretary of Energy Samuel W. Bodman said. "The ITER Members represent over

215

Application of small-signal fusion energy gain  

SciTech Connect

The measured burnup fraction of the 1-MeV tritons produced in a deuterium tokamak plasma, multiplied by 17.5, is essentially the small-signal fusion energy gain g/sub T/ for an ideal 1-MeV triton beam injected into the deuterium plasma. The measured g/sub T/ can be converted directly into the two-component fusion energy gain that would be realized if a lower energy tritium beam were injected into the plasma, or if a deuterium beam were injected into a tritium target plasma having the same parameters as the acutal deuterium plasma. Under certain conditions, g/sub T/ greater than or equal to 1 can be obtained by injection of a low-current 225-keV tritium beam into a hot deuterium plasma, thereby verifying that the plasma has the essential characteristics needed for achieving macroscopic fusion energy ''break-even.''

Jassby, D.L.

1986-11-01T23:59:59.000Z

216

doe seeks early career researchers  

Science Conference Proceedings (OSTI)

... Basic Energy Sciences: Fusion Energy Sciences; High Energy Physics; Nuclear Physics. Proposed research topics must fall within the programmatic priorities...

217

Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

SciTech Connect

This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive M

Kramer, K

2010-04-08T23:59:59.000Z

218

U.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted=  

E-Print Network (OSTI)

U.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-range international collaboration to develop fusion energy as a commercial power source, U.S. Energy Secretary Spencer-Plan.html?pagewanted= print&position=top Page: 1 January 30, 2003 U.S. to Participate in Fusion Project By THE ASSOCIATED

219

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

220

Inertial and inductive energy storage for fusion systems  

DOE Green Energy (OSTI)

Energy storage is necessary for all proposed fusion reactor systems. The plasma physics for confinement and primarily the energy transfer time determine the nature of the storage system. Discharge times vary from 0.7 ms for theta-pinch reactors to one to two seconds for tokamak reactors. Three classes of devices are available for energy storage--inductors, capacitors, and rotating machines. The transfer of the energy from the store imposes unusual switching requirements. The broad requirements for reactor energy stores and more specifically those for tokamak experimental power reactors (EPR) and for the Scyllac fusion test reactor (SFTR) will be presented. Assessments and comparisons of alternative energy storage and transfer systems for these devices are to be discussed. The state of the pulsed superconducting inductive energy storage coils and homopolar development programs will be emphasized. Plans for tokamak ohmic-heating systems will be discussed briefly.

Rogers, J.D.

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

National Energy Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Computing Center Scientific Computing Center 2004 annual report Cover image: Visualization based on a simulation of the density of a fuel pellet after it is injected into a tokamak fusion reactor. See page 40 for more information. National Energy Research Scientific Computing Center 2004 annual report Ernest Orlando Lawrence Berkeley National Laboratory * University of California * Berkeley, California 94720 This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098. LBNL-57369, April 2005 ii iii The Year in Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Advances in Computational Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

222

NREL: Photovoltaics Research - Solar Energy Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Research Facility Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic energy sciences are two major research areas conducted in the Solar Energy Research Facility (SERF). The building incorporates a multitude of energy saving features that make it one of the government's most energy efficient buildings with 40 percent lower energy costs than similar buildings designed to meet federal energy standards. The SERF houses three adjoining modules each containing a laboratory pod and an office pod. Laboratories in the west module are used to develop semiconductor material for high-efficiency crystalline solar cells. Laboratories in the center module are used to fabricate prototype solar

223

Perspective on Fusion Energy Presentation at TWAS-ARO Meeting Bibliotheca Alexandria  

E-Print Network (OSTI)

major new (clean) energy sources (e.g. fusion) · Expand use of existing "clean" energy sources (e;Incentives for Developing Fusion Sustainable energy source (for DT cycle: provided that Breeding BlanketsPerspective on Fusion Energy Presentation at TWAS-ARO Meeting Bibliotheca Alexandria December 21

Abdou, Mohamed

224

Inertial fusion energy: A clearer view of the environmental and safety perspectives  

Science Conference Proceedings (OSTI)

If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

Latkowski, J.F.

1996-11-01T23:59:59.000Z

225

Superconducting magnetic energy storage for electric utilities and fusion systems  

DOE Green Energy (OSTI)

Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

1978-01-01T23:59:59.000Z

226

Controlled thermonuclear fusion research in Europe -- Competence in advanced physics and technologies  

SciTech Connect

Development of Fusion power is being pursued in all major industrial countries. The European Union, together with countries associated to the EURATOM-Framework Program undertakes an integrated RTD program for the development of magnetic fusion. The Key Action Controlled Thermonuclear Fusion has the objectives to develop the capacity to construct and operated a Next Step device for which the design is being pursued in international collaboration (ITER EDA, International Thermonuclear Experimental Reactor Engineering Design Activities); to undertake structured activities for concept improvements for a fusion power station; to develop technologies needed in the longer term for a prototype fusion reactor. Work on the socio-economic aspects of fusion and a keep in touch activity coordinating national civil research activities in inertial confinement fusion complement the program.

Bruhns, H.

2000-03-01T23:59:59.000Z

227

Concepts for fabrication of inertial fusion energy targets  

SciTech Connect

Future inertial fusion energy (IFE) power plants will have a Target Fabrication Facility (TFF) that must produce approximately 500,000 targets per day. To achieve a relatively low cost of electricity, the cost to produce these targets will need to be less than approximately $0.25 per target. In this paper the status on the development of concepts for a TFF to produce targets for a heavy ion fusion (HIF) reactor, such as HYLIFE II, and a laser direct drive fusion reactor such as Sombrero, is discussed. The baseline target that is produced in the HIF TFF is similar to the close-coupled indirect drive target designed by Callahan-Miller and Tabak at Lawrence Livermore Laboratory. This target consists of a cryogenic hohlraum that is made of a metal case and a variety of metal foams and metal-doped organic foams. The target contains a DT-filled CH capsule. The baseline direct drive target is the design developed by Bodner and coworkers at Naval Research Laboratory. HIF targets can be filled with DT before or after assembly of the capsule into the hohlraum. Assembly of targets before filling allows assembly operations to be done at room temperature, but tritium inventories are much larger due to the large volume that the hohlraum occupies in the fill system. Assembly of targets cold after filling allows substantial reduction in tritium inventory, but this requires assembly of targets at cryogenic temperature. A model being developed to evaluate the tritium inventories associated with each of the assembly and fill options indicates that filling targets before assembling the capsule into the hohlraum, filling at temperatures as high as possible, and reducing dead-volumes in the fill system as much as possible offers the potential to reduce tritium inventories to acceptable levels. Use of enhanced DT ice layering techniques, such as infrared layering can reduce tritium inventories significantly by reducing the layering time and therefore the number of capsules being layered. Current processes for fabrication of ICF capsules can most likely be easily scaled up to produce capsules at rates needed for an IFE plant.

Nobile, A. (Arthur), Jr.; Hoffer, J. K. (James K.); Gobby, P. L. (Peter L.); Steckle, W. P. (Warren P.), Jr.; Goodin, D. T. (Daniel T.); Besenbruch, G. E. (Gottfried E.); Schultz, K. R. (Kenneth R.)

2001-01-01T23:59:59.000Z

228

MIT Plasma Science & Fusion Center: research>alcator>information  

NLE Websites -- All DOE Office Websites (Extended Search)

Density Physics Waves & Beams Technology & Engineering Useful Links What is Fusion? The nucleus of an atom consists of protons, which have a positive electrical charge,...

229

MIT Plasma Science & Fusion Center: research>alcator>introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Density Physics Waves & Beams Fusion Technology & Engineering Useful Links The links below explain what the main objectives of the project are, and what are the unique aspects of...

230

MIT Plasma Science & Fusion left: research>alctor>meetings scheduled  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Science and Fusion Center Massachusetts Institute of Technology Upcoming Meetings Workshops, conferences, meetings will be announced on this page as information becomes...

231

Fusion Nuclear Science and Technology Research Needed Now for Magnetic  

E-Print Network (OSTI)

Year ProjectedOntario(OPG)TritiumInventory(kg) CANDU Supply w/o Fusion ITER-FEAT (2004 start) 1000 MW

232

An important challenge in magnetic fusion research is to obtain...  

NLE Websites -- All DOE Office Websites (Extended Search)

in a stationary plasma that is compatible with the engineering requirements of a fusion reactor. The triggering of edge transport barriers at the boundary of confined...

233

Princeton Plasma Physics Lab - Fusion energy  

NLE Websites -- All DOE Office Websites (Extended Search)

signed by former Energy Secretary Steven Chu and presented by Energy Secretary Ernest Moniz, cited Hawryluk for "applying his wealth of big-science project management experience...

234

Fusion Engineering and Design 42 (1998) 537548 Chamber technology concepts for inertial fusion energy--three  

E-Print Network (OSTI)

to 650°C and has a low enough vapor pressure. Li and Li17Pb83 would also work but must be 1.5 m thick and increased pumping power features required by use of Li or Li17Pb83 suggest Flibe might be the lowest cost to a large variety of chamber design concepts for inertial fusion energy (IFE). Refs. [1­8] provide

Abdou, Mohamed

235

Determination of Atomic Data Pertinent to the Fusion Energy Program  

Science Conference Proceedings (OSTI)

We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

None

2013-06-11T23:59:59.000Z

236

An Evaluation of Fusion Energy R&D Gaps Using Technology Readiness Levels  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

M. S. Tillack et al.

237

The Project of Fusion-Fission Hybrid Energy Reactor in China  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Maosheng Li; Rong Liu; Xueming Shi; Weiwei Yi; Yaosong Shen; Xianjue Peng

238

Fusion Energy An Industry-Led Initiative  

E-Print Network (OSTI)

;Energy Supply and Needs Global per capita energy usage Global Per Capita energy usage will increase even will continueto bethe dominant sources of energy inthe U.S. during the next thirty years - Coal for electrical power production - Oil for transportation - Natural gas for heating/electrical power - Nuclear fission

239

Fusion scientists gear up to learn how to harness plasma energy | Princeton  

NLE Websites -- All DOE Office Websites (Extended Search)

Living on the edge Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 30, 2011 Tweet Widget Facebook Like Google Plus One Researchers working on an advanced experimental fusion machine are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National Spherical Torus Experiment (NSTX) at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have mapped out a list of experiments to start in July and run for eight months. The experimental machine is designed to deepen understanding of how plasmas can be mined for energy. A major topic of investigation by scientists for the coming round of

240

Use of Polycarbonate Vacuum Vessels in High-Temperature Fusion-Plasma Research  

Science Conference Proceedings (OSTI)

Magnetic fusion energy (MFE) research requires ultrahigh-vacuum (UHV) conditions, primarily to reduce plasma contamination by impurities. For radiofrequency (RF)-heated plasmas, a great benefit may accrue from a non-conducting vacuum vessel, allowing external RF antennas which avoids the complications and cost of internal antennas and high-voltage high-current feedthroughs. In this paper we describe these and other criteria, e.g., safety, availability, design flexibility, structural integrity, access, outgassing, transparency, and fabrication techniques that led to the selection and use of 25.4-cm OD, 1.6-cm wall polycarbonate pipe as the main vacuum vessel for an MFE research device whose plasmas are expected to reach keV energies for durations exceeding 0.1 s

B. Berlinger, A. Brooks, H. Feder, J. Gumbas, T. Franckowiak and S.A. Cohen

2012-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Senator Dianne Feinstein Statement on the Fusion Energy Sciences Act of 2001  

E-Print Network (OSTI)

and polluting. Beyond expanding renewable energy sources such as those from the sun and the wind, fusion holdsSenator Dianne Feinstein Statement on the Fusion Energy Sciences Act of 2001 June 28, 2001 Mr to accelerate the development of fusion energy as a practical and realistic alternative to fossil fuels for our

242

Clean Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Alain Bonneville Alain Bonneville Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by an memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly

243

Some Simple Arguments about Cost Externalization and its Relevance to the Price of Fusion Energy  

Science Conference Proceedings (OSTI)

The primary goal of fusion energy research is to develop a source of energy that is less harmful to the environment than are the present sources. A concern often expressed by critics of fusion research is that fusion energy will never be economically competitive with fossil fuels, which in 1997 provided 75% of the world's energy. And in fact, studies of projected fusion electricity generation generally project fusion costs to be higher than those of conventional methods. Yet it is widely agreed that the environmental costs of fossil fuel use are high. Because these costs aren't included in the market price, and furthermore because many governments subsidize fossil fuel production, fossil fuels seem less expensive than they really are. Here we review some simple arguments about cost externalization which provide a useful background for discussion of energy prices. The collectively self-destructive behavior that is the root of many environmental problems, including fossil fuel use, was termed ''the tragedy of the commons'' by the biologist G. Hardin. Hardin's metaphor is that of a grazing commons that is open to all. Each herdsman, in deciding whether to add a cow to his herd, compares the benefit of doing so, which accrues to him alone, to the cost, which is shared by all the herdsmen using the commons, and therefore adds his cow. In this way individually rational behavior leads to the collective destruction of the shared resource. As Hardin pointed out, pollution is one kind of tragedy of the commons. CO{sub 2} emissions and global warming are in this sense classic tragedies.

Budny, R.; Winfree, R.

1999-09-27T23:59:59.000Z

244

FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I  

SciTech Connect

The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

Abdou, M.

1984-10-01T23:59:59.000Z

245

Relativistic Laser Plasma Research for Fast Ignition Laser Fusion  

E-Print Network (OSTI)

Reviewed are the present status and future prospects of the laser fusion research at the ILE (Institute of Laser Engineering) Osaka. The Gekko XII and Peta Watt laser system have been operated for investigating the fast ignition, the relativistic laser plasma interactions and so on. In particular, the fast ignition experiments with cone shell target have been in progress as the UK and US-Japan collaboration programs. In the experiments, the imploded high density plasmas are heated by irradiating 500 J level peta watt laser pulse. The thermal neutron yield is found to increase by three orders of magnitude by injecting the peta watt laser into the cone shell target. Transport of relativistic high density electron is the critical issue as the basic physics for understanding the dense plasma heating process. By the theory, simulation and experiment, the collective phenomena in the interactions of intense relativistic electron current with dense plasmas has been investigated to find the formation of self organized flow as the result of filamentation (Weibel) instability. Through the present understanding, the new project, FIREX-I has started recently to prove the principle of the fast ignition scheme. Keywords: fast ignition, peta watt laser, relativistic electron, weibel instability

Mima Kunioki; Tanaka Kazuo. A; Kodama Ryosuke; Johzaki Tomohiro; Nagatomo Hideo; Shiraga Hiroyuki; Miyanaga Noriaki; Azechi Hiroshi; Nakai Mitsuo; Norimatsu Takayoshi; Nagai Keiji; Sunahara Atsushi; Nishihara Katsunobu; Taguchi Toshihiro; Sakagami Hitoshi; Sentoku Yasuhiko; Ruhl Hartmut

2003-01-01T23:59:59.000Z

246

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

32] E. Greenspan. Fusion reactors blanket nucleonics. Intemperature windows for fusion reactor structural materials.steels for magnetic fusion reactors and IFMIF. Journal of

Kramer, Kevin James

2010-01-01T23:59:59.000Z

247

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

for magnetic fusion reactors and IFMIF. Journal of NuclearFusion reactors blanket nucleonics. In Progress in NuclearFusion-Fission hybrid reactors. In Advances in Nuclear

Kramer, Kevin James

2010-01-01T23:59:59.000Z

248

Inertial Fusion Energy and its Materials Challenges  

Science Conference Proceedings (OSTI)

Symposium, IOMMMS Global Materials Forum: Materials in a Green Economy: An International ... Recent Development of Materials for Green Energy in Korea.

249

Koel applies science of surface chemistry to fusion research...  

NLE Websites -- All DOE Office Websites (Extended Search)

To study the interactions of lithium under conditions similar to what might be found in a fusion reactor, lithium on a sample of TZM molybdenum, which is an alloy of molybdenum,...

250

Fusion Energy Division annual progress report, period ending December 31, 1988  

Science Conference Proceedings (OSTI)

This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety.

Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

1990-02-01T23:59:59.000Z

251

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy  

E-Print Network (OSTI)

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy Applications: from the "Very Cold, CA January 25, 2008 #12;January 25, 2008/ARR 2 Unique Set of Conditions Associated with Fusion · Realization of fusion energy imposes considerable challenges in the areas of engineering, physics and material

Raffray, A. René

252

Energy Frontier Research Centers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis from Atoms to Systems Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Center for Defect Physics in Structural Materials Fluid Interface Reactions, Structure and Transport Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Energy Frontier Research Centers SHARE Energy Frontier Research Centers Advanced Materials research at ORNL is home to two Department of Energy-Office of Basic Energy Sciences' Energy Frontier Research Centers, the Fluid Interface Reaction, Structure, and Transport Center (FIRST), which focuses on understanding interfacial processes critical to electrical energy storage and catalysis, and the Center for Defect Physics, (CDP)

253

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

DOE Green Energy (OSTI)

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

254

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

SciTech Connect

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

255

Appliances Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Appliances Research Emerging Technologies » Appliances Research Appliances Research The Emerging Technology team conducts research into residential and commercial appliances. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst in driving research in energy efficient technologies, with the goal of realizing 20% energy savings relative to a 2010 baseline. Appliance research focuses on refrigerators, washers, and dryers. Refrigerators Photo of a stainless steel refrigerator. Refrigerators have become substantially more energy efficient over the years, using less energy while also providing more space. While appliance standards for refrigerators have helped, continued research into new ways of improving refrigerators in the

256

Application of controlled thermonuclear reactor fusion energy for food production  

SciTech Connect

Food and energy shortages in many parts of the world in the past two years raise an immediate need for the evaluation of energy input in food production. The present paper investigates systematically (1) the energy requirement for food production, and (2) the provision of controlled thermonuclear fusion energy for major energy intensive sectors of food manufacturing. Among all the items of energy input to the ''food industry,'' fertilizers, water for irrigation, food processing industries, such as beet sugar refinery and dough making and single cell protein manufacturing, have been chosen for study in detail. A controlled thermonuclear power reactor was used to provide electrical and thermal energy for all these processes. Conceptual design of the application of controlled thermonuclear power, water and air for methanol and ammonia synthesis and single cell protein production is presented. Economic analysis shows that these processes can be competitive. (auth)

Dang, V.D.; Steinberg, M.

1975-06-01T23:59:59.000Z

257

Accelerator and Fusion Research Division annual report, fiscal year 1980, October 1979-September 1980  

SciTech Connect

Research during October 1979 to September 1980 is summarized. Areas covered include: accelerator operations; positron-electron project; stochastic beam cooling; high-field superconducting magnets; accelerator theory; neutral beam sources; and heavy ion fusion. (GHT)

Not Available

1981-03-01T23:59:59.000Z

258

RENEWABLE ENERGY RESEARCH August 2010  

E-Print Network (OSTI)

RENEWABLE ENERGY RESEARCH August 2010 CERTS Smart Grid Demonstration with Renewable Energy Integration PIER Renewable Energy Research The Issue Researchers at the Santa Rita Jail, in Dublin, California will be demonstated. This demonstration will enable future applications under a Renewable-Based Energy Secure

259

China to strengthen joint research in fusion power www.chinaview.cn 2005-02-06 23:29:49  

E-Print Network (OSTI)

China to strengthen joint research in fusion power www.chinaview.cn 2005-02-06 23:29:49 BEIJING cooperation in research on fusion power plants, one of China's top science and technology decision makers said of Sciences (CAS), said fusion power plants will be final result of today's studies of plasma physics. China

260

Use of Polycarbonate Vacuum Vessels in High-Temperature Fusion-Plasma Research  

Science Conference Proceedings (OSTI)

Divertor and High-Heat-Flux Components / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012

B. Berlinger; A. Brooks; H. Feder; J. Gumbas; T. Franckowiak; S. A. Cohen

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Efficiency and Renewable Energy Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

213 June 2010 Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate...

262

Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense...  

Office of Science (SC) Website

Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot Plasma Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES...

263

Exploring the Fast Ignition Approach to Fusion Energy  

DOE Green Energy (OSTI)

Probably the most famous equation in physics is Einstein's E=mc{sup 2}, which was contained within his fifth and final paper that was published in 1905. It is this relationship between energy ( E) and mass ( m) that the fusion process exploits to generate energy. When two isotopes of hydrogen (normally Deuterium and Tritium (DT)) fuse they form helium and a neutron. In this process some of the mass of the hydrogen is converted into energy. In the fast ignition approach to fusion a large driver (such as the NIF laser) is used to compress the DT fuel to extremely high densities and then is ''sparked'' by a high intensity, short-pulse laser. The short-pulse laser energy is converted to an electron beam, which then deposits its energy in the DT fuel. The energy of the electrons in this beam is so large that the electron's mass is increased according to Einstein theory of relativity. Understanding the transport of this relativistic electron beam is critical to the success of fast ignition and is the subject of this poster.

Town, R J; Chung, H; Cottrill, L A; Foord, M; Hatchett, S P; Key, M H; Langdon, A B; Lasinski, B F; Lund, S; Mackinnon, A J; McCandless, B C; Patel, P K; Sharp, W L; Snavely, R A; Still, C H; Tabak, M

2005-04-18T23:59:59.000Z

264

Distributed and Asynchronous Bees Algorithm Applied to Nuclear Fusion Research  

Science Conference Proceedings (OSTI)

Recently, there have been several developments in the scientific community to model and solve complex optimization problems by employing natural metaphors. In some cases, due to their distributed schema, these algorithms can be adapted to distributed ... Keywords: Metaheuristics, Distributed Computing, Nuclear Fusion

Antonio Gomez-Iglesias; Miguel A. Vega-Rodriguez; Francisco Castejon; Miguel Cardenas-Montes

2011-02-01T23:59:59.000Z

265

Clean Energy Research Areas | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Research Highlights Facilities and Centers...

266

Lithium As Plasma Facing Component for Magnetic Fusion Research  

SciTech Connect

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

267

Lithium As Plasma Facing Component for Magnetic Fusion Research  

Science Conference Proceedings (OSTI)

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

268

Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics  

Science Conference Proceedings (OSTI)

The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

Stelmack, Larry

2003-11-17T23:59:59.000Z

269

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81  

E-Print Network (OSTI)

Studies Neutral Beam Plasma Research Basic Plasma Theoryand tempera- NEUTRAL BEAM PLASMA RESEARCH We are conducting

Johnson Ed, R.K.

2010-01-01T23:59:59.000Z

270

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER  

E-Print Network (OSTI)

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER Don Steiner, Jeffrey Freidberg Farrokh Najmabadi William Nevins , and John Perkins The Energy Issues Working Group on Long-Term Visions energy production in the next century? 2. What is fusion's potential for penetrating the energy market

Najmabadi, Farrokh

271

Summary for FT, IT and SE 20th IAEA Fusion Energy Conference  

E-Print Network (OSTI)

Aspects of Fusion Energy; ITER Activities Fusion Technology and Power Plant Design Summary and Conclusion of electricity generation; Through ITER the economically acceptable first generation fusion power plants could growing rapidly Predictions suggest strong growth will continue FPM/1 by C.M.Ferreira #12;Carbon dioxide

272

Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine  

SciTech Connect

The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

2010-12-07T23:59:59.000Z

273

(MSIB) Examination of Inertial Fusion Energy Candidate Materials  

Science Conference Proceedings (OSTI)

There is no source of fusion neutrons of adequate intensity currently available. Instead ... Evolution in High Purity Reference V-4Cr-4Ti Alloy for Fusion Reactor.

274

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80  

E-Print Network (OSTI)

34 in Biological and Medical Research with Accelerated Heavyin Biological and Medical Research with Accelerated Heavyin Biological and Medical Research with Accelerated Heavy

Authors, Various

2010-01-01T23:59:59.000Z

275

Energy Crossroads: Research Institutions | Environmental Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Institutions Research Institutions Suggest a Listing American Council for an Energy-Efficient Economy (ACEEE) The ACEEE is a nonprofit organization dedicated to advancing energy efficiency as a means of promoting both economic prosperity and environmental protection. California Institute for Energy Efficiency (CIEE) CIEE plans, coordinates, and implements applied research to advance productivity and competitiveness through energy efficiency. As a University of California research unit administered by the Lawrence Berkeley Laboratory, CIEE was established in 1988 in cooperation with the California utilities, the California Public Utilities Commission, the California Energy Commission, and the U.S. Department of Energy.

276

Overview of Fusion Research at Los Alamos G. A. Wurden  

E-Print Network (OSTI)

-4, 2008 U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA LA Security, LLC for the DOE/NNSA Slide 2 #12;Magnetized Target Fusion, liner compression of FRC, physics test A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA IAEA Paper IC/P4

277

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network (OSTI)

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

I. Casinos

2008-05-22T23:59:59.000Z

278

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network (OSTI)

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

Casinos, I

2008-01-01T23:59:59.000Z

279

Research Highlights | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Energy Clean Energy Research Areas Research Highlights Facilities and Centers Tools & Resources News and Awards Supporting Organizations Clean Energy Home | Science & Discovery | Clean Energy | Research Highlights SHARE Research Highlights 1-20 of 48 Results Advances in Understanding Durability of the Building Envelope: ORNL Research November 22, 2013 - Moisture, and its accompanying outriders - things like mold, corrosion, freeze damage, and decay - present powerful threats to the durability and long-term performance of a building envelope. First Annual Housing Innovation Award Winners Announced November 22, 2013 - On October 4, 2013, the US Department of Energy (DOE) presented the inaugural winners of the firstever Housing Innovation Awards.

280

Bartlesville Energy Research Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bartlesville Energy Research Center Bartlesville Energy Research Center Bartlesville Energy Research Center The Federal Government in Petroleum Research, 1918-1983 The following is a study of a single research facility, the Bartlesville Energy Research Center, and showcases how petroleum technology, petroleum policy, and national political priorities have interacted through seven decades of the twentieth century. Download entire document Introduction and Table of Contents Chapter 2 - Search for a Role, 1919-1930 Chapter 3 - Emergence of Scientific Research, 1930-1941 Chapter 4 - World War II and the Response of Oil Technology, 1941-1946 Chapter 5 -Petroleum Research Under Siege, 1946-1959 Chapter 6 - Petroleum Science as a National Resource, 1959-1967 Chapter 7 - Government Energy Research: Emerging Definitions, 1968-1975

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80  

E-Print Network (OSTI)

iizI/-l4. Neutral team Plasma Research K. F. Schoenberg, "Studies Neutral Beam Plasma Research Neutral Beam Theory25%). Neutral Beam Plasma Research W are conducting research

Authors, Various

2010-01-01T23:59:59.000Z

282

Taylor/FESAC Priorities/July 18, 2012 Fusion Energy Science Program Priorities  

E-Print Network (OSTI)

/FESAC Priorities/July 18, 2012 Burning Plasma Research In ITER Is the Top Priority On the Path to Magnetic Fusion

283

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ FAQ FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Answers to Frequently Asked Questions about Fusion Research An updated, searchable Fusion FAQ is being prepared. In the meantime, the incomplete public-domain Fusion FAQ from 1994-1995 is still available

284

The Future of Nuclear Energy: Facts and Fiction Chapter IV: Energy from Breeder Reactors and from Fusion?  

E-Print Network (OSTI)

The accumulated knowledge and the prospects for commercial energy production from fission breeder and fusion reactors are analyzed in this report. The publicly available data from past experimental breeder reactors indicate that a large number of unsolved technological problems exist and that the amount of "created" fissile material, either from the U238 --> Pu239 or from the Th232 --> U233 cycle, is still far below the breeder requirements and optimistic theoretical expectations. Thus huge efforts, including many basic research questions with an uncertain outcome, are needed before a large commercial breeder prototype can be designed. Even if such efforts are undertaken by the technologically most advanced countries, it will take several decades before such a prototype can be constructed. We conclude therefore, that ideas about near-future commercial fission breeder reactors are nothing but wishful thinking. We further conclude that, no matter how far into the future we may look, nuclear fusion as an energy ...

Dittmar, Michael

2009-01-01T23:59:59.000Z

285

The Virtual Control Room for Fusion Energy Sciences (V3) (A24771)  

E-Print Network (OSTI)

Proc. Of The Virtual Control Room For Fusion Energy Sciences (V3)US DOE National Collaboratories Program Meeting(2004) Champaign Illinois, US, 2004999610460

Schissel, D.P.

2004-07-23T23:59:59.000Z

286

Krypton Fluoride (KrF) Laser Driver for Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

IFE / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012

Matthew F. Wolford; John D. Sethian; Matthew C. Myers; Frank Hegeler; John L. Giuliani; Stephen P. Obenschain

287

CFES RESEARCH THRUSTS: Energy Storage  

E-Print Network (OSTI)

CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our industrial partners, the Energy Scholars program is an opportunity to connect with the talent of Rensselaer. Sponsoring a Rensselaer Polytechnic Institute undergraduate as an Energy Scholar enables a company

Lü, James Jian-Qiang

288

U.S. DOE Energy Frontier Research Center Announcements  

Office of Science (SC) Website

doe-announcements/ The doe-announcements/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {2FC67298-672C-476B-B645-000DED9B5398}http://science.energy.gov/bes/efrc/news-and-events/doe-announcements/doe-to-award-$100-million-for-energy-frontier-research-centers/ DOE to Award $100 Million for Energy Frontier Research Centers U.S. Energy Secretary Ernest Moniz today announced a proposed $100 million in FY2014 funding for Energy Frontier Research Centers to accelerate the scientific

289

Evaluation of irradiation facility options for fusion materials research and development  

SciTech Connect

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium-tritium (D-T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50-200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. The intense neutron source(s) is needed to address two complimentary missions: 1) Scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and 2) Engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D-Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Zinkle, Steven J [ORNL; Mslang, Anton [Karlsruhe Institute of Technology, Karlsruhe, Germany

2013-01-01T23:59:59.000Z

290

Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids  

SciTech Connect

The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.

L. Zakharov, J. Li and Y. Wu

2010-11-18T23:59:59.000Z

291

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001 (13pp) doi:10.1088/0029-5515/48/8/084001  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001] and created a vacuum leak in the tokamak fusion test reactor (TFTR) [4]. The damage was explained comparisons between theory and experiment [5­7], wave amplitudes an order of magnitude larger than

Heidbrink, William W.

292

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 45 (2005) 271275 doi:10.1088/0029-5515/45/4/008  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion, 52.55.H 1. Introduction An economically viable fusion reactor must sustain high- pressure, stable discrepancy between theory and experiment is that slight variations in the boundary geometry can sufficiently

Hudson, Stuart

293

Inertial Fusion Energy Studies on an Earth Simulator-Class Computer  

SciTech Connect

The U.S. is developing fusion energy based on inertial confinement of the burning fusion fuel, as a complement to the magnetic confinement approach. DOE's Inertial Fusion Energy (IFE) program within the Office of Fusion Energy Sciences (OFES) is coordinated with, and gains leverage from, the much larger Inertial Confinement Fusion program of the National Nuclear Security Administration (NNSA). Advanced plasma and particle beam simulations play a major role in the IFE effort, and the program is well poised to benefit from an Earth Simulator-class resource. Progress in all key physics areas of IFE, including heavy-ion ''drivers'' which impart the energy to the fusion fuel, the targets for both ion- and laser-driven approaches, and an advanced concept known as fast ignition, would be dramatically accelerated by an Earth Simulator-class resource.

Friedman, A; Stephens, R

2002-08-13T23:59:59.000Z

294

Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009  

Science Conference Proceedings (OSTI)

Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison. Another important issue addressed at the conference was the time scale on which long-term sustainability issues must be solved. There was a wide diversity of opinion and no consensus was possible. One group, primarily composed of members of the fission community, argued that the present strategies with respect to waste management (on-site storage) and fuel supply (from natural uranium) would suffice for at least 50 years, with the main short-term problem being the economics of light water reactors (LWRs). Many from the fusion community believed that the problems, particularly waste management, were of a more urgent nature and that we needed to address them sooner rather than later. There was rigorous debate on all the issues before, during, and after the workshop. Based on this debate, the workshop participants developed a set of high-level Findings and Research Needs and a companion set of Technical Findings and Research Needs. In the context of the Executive Summary it is sufficient to focus on the high-level findings which are summarized.

None

2009-09-30T23:59:59.000Z

295

Renewable Energy Research | Open Energy Information  

Open Energy Info (EERE)

Research Jump to: navigation, search Name Renewable Energy Research Address 2113 C Boulevard St Regis Place Dollard des Ormeaux Zip H9B 2M9 Sector Marine and Hydrokinetic Year...

296

Fusion Power: A Strategic Choice for the Future Energy Provision. Why is So Much Time Wasted for Decision Making?  

Science Conference Proceedings (OSTI)

From a general analysis of the world energy issue, it is argued that an affordable, clean and reliable energy supply will have to consist of a portfolio of primary energy sources, a large fraction of which will be converted to a secondary carrier in large baseload plants. Because of all future uncertainties, it would be irresponsible not to include thermonuclear fusion as one of the future possibilities for electricity generation.The author tries to understand why nuclear-fusion research is not considered of strategic importance by the major world powers. The fusion programs of the USA and Europe are taken as prime examples to illustrate the 'hesitation'. Europe is now advocating a socalled 'fast-track' approach, thereby seemingly abandoning the 'classic' time frame towards fusion that it has projected for many years. The US 'oscillatory' attitude towards ITER in relation to its domestic program is a second case study that is looked at.From the real history of the ITER design and the 'siting' issue, one can try to understand how important fusion is considered by these world powers. Not words are important, but deeds. Fast tracks are nice to talk about, but timely decisions need to be taken and sufficient money is to be provided. More fundamental understanding of fusion plasma physics is important, but in the end, real hardware devices must be constructed to move along the path of power plant implementation.The author tries to make a balance of where fusion power research is at this moment, and where, according to his views, it should be going.

D'haeseleer, William D

2005-04-15T23:59:59.000Z

297

X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons  

Science Conference Proceedings (OSTI)

In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

2005-01-15T23:59:59.000Z

298

Laser fusion experiment yields record energy at Lawrence Livermore's  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 08/26/2013 | NR-13-08-04 High Resolution Image All NIF experiments are controlled and orchestrated by the integrated computer control system in the facility's control room. It consists of 950 front-end processors attached to about 60,000 control points, including mirrors, lenses, motors, sensors, cameras, amplifiers, capacitors and diagnostic instruments. Laser fusion experiment yields record energy at Lawrence Livermore's National Ignition Facility Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image The preamplifiers of the National Ignition Facility are the first step in increasing the energy of laser beams as they make their way toward the target chamber. LIVERMORE, Calif. -- In the early morning hours of Aug.13, Lawrence

299

Energy Department - Electric Power Research Institute Cooperation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy...

300

Durham Energy Institute 107 Researchers  

E-Print Network (OSTI)

Challenges in Energy Networks Project (Total £3.3M) Supergen wind £4.85M ­ working on reliability FlexNet (flexible networks) 2003- 2011. Wind and energy markets, power system dynamics Dong EnergyDurham Energy Institute 107 Researchers Focus on society and key technologies World leading

Wirosoetisno, Djoko

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ANNUAL REPORT FOR ACCELERATOR & FUSION RESEARCH DIVISION. FISCAL YEAR 1979 OCTOBER 1978 - SEPTEMBER 1979  

E-Print Network (OSTI)

more eco nomical fusion reactor. NEUTRAL BEAM DEVELOPMENTTopical Meeting on Fusion Reactor Materials, Miami Beach,

Authors, Various

2010-01-01T23:59:59.000Z

302

EBIT Shines New Light on Nuclear Fusion  

Science Conference Proceedings (OSTI)

... of highly ionized particles in nuclear fusion reactors ... researchers recently confirmed a theory which predicted ... lead to more efficient energy production ...

303

Clean Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

304

Jointly Sponsored Research Program Energy Related Research  

DOE Green Energy (OSTI)

Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. This report summarizes the accomplishments of the JSR Program.

Western Research Institute

2009-03-31T23:59:59.000Z

305

U.S. DEPARTMENT OF ENERGY NUCLEAR ENGINEERING EDUCATION RESEARCH: HIGHLIGHTS  

E-Print Network (OSTI)

U.S. DEPARTMENT OF ENERGY NUCLEAR ENGINEERING EDUCATION RESEARCH: HIGHLIGHTS OF RECENT AND CURRENT RESEARCH--III Sponsored by the Education and Training Division Cosponsored by the Fusion Energy Division! emitted with various energies at different positions with respect to the crystal. These PXR have several

Danon, Yaron

306

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

307

Crosscutting Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crosscutting Research Crosscutting Research Crosscutting Research Crosscutting Research The Crosscutting Research program serves as a bridge between basic and applied research by fostering the development of innovative systems for improving availability, efficiency, and environmental performance of fossil energy systems with carbon capture and storage. This crosscutting effort is implemented through the research and development of sensors, controls, and advanced materials. This program area also develops computation, simulation, and modeling tools focused on optimizing plant design and shortening developmental timelines. In addition, the Crosscutting Research program area supports science and engineering education in minority colleges and universities. Plant Optimization Technologies

308

Photo of the Week: The Mirror Fusion Test Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Mirror Fusion Test Facility The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory. This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an

309

Nuclear Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and environmental security. Full development of a science-based approach for nuclear reactor and fuel cycle technology and systems is a "grand challenge" well suited to...

310

Department of Energy Hosts Inaugural Energy Frontier Research...  

Office of Science (SC) Website

Department of Energy Hosts Inaugural Energy Frontier Research Center Summit Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

311

Advanced Research Projects Agency - Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Advanced Research Projects Agency - Energy recovery act Advanced Research Projects Agency - Energy More Documents & Publications Advanced...

312

MIT Plasma Science & Fusion Center: research>alcator>introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Nathan Howard Advisor: Dr. Martin Greenwald Updated: 071406 Transport, the loss of energy, particles, momentum, etc. from a plasma, is perhaps the most significant problem left...

313

MIT Plasma Science & Fusion Center: research>alcator>introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

of both energy and particles, often lowering the confinement time by more than an order of magnitude as compared to the values predicted by neoclassical transport theory....

314

Inertial fusion target development for ignition and energy  

SciTech Connect

The target needs of the next ICF experiments that will lead toward ignition and energy are different from those of today`s experiments. The future experiments on OMEGA Upgrade, GEKKO XII Upgrade, the National Ignition Facility and Megajoule will need large, precise, cryogenic targets. Development is needed on a number of aspects of these targets, including shell fabrication, characterization, cryogenic layering and target handling. However, coordinated R and D programs are in place and work is in process to carry out the needed development. It is vital to the success of inertial fusion that this work be sustained. Coordinated effort, like the National Cryogenic Target Program in the USA, will help make the development activities as efficient and effective as possible, and should be encouraged.

Schultz, K.R. [General Atomics, San Diego, CA (United States); Norimatsu, T. [Osaka Univ. (Japan). Inst. of Laser Engineering

1994-12-01T23:59:59.000Z

315

J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Flibe-Tritium Research for Fission or Fusion Reactors at Kyushu University  

E-Print Network (OSTI)

There is increasing interest in using ionic molten-salt Flibe not only as self-cooled tritium(T)-breeding material in a fusion reactor blanket but also as fuel solvent of molten-salt fission reactors. Application of Flibe to T-breeding fluid for a stellarator-type fusion reactor operated at a high magnetic field brings large simplification of its blanket structure, allowing continuous operation under high-beta plasma conditions. Using mixed Flibe-ThF 4+UF 4 fuel in molten salt fission reactors permits stable long-term operation without fuel exchange. When Flibe or Flinak is irradiated by neutrons, however, acid and corrosive TF is generated, and some T permeates through structural walls. In order to solve these problems, chemical conditions of Flibe are changed using the redox-control reaction, Be+2TF=BeF 2+T 2. In addition, permeation of hydrogen isotopes is lowered by enhancing T recovery rates. Part of Flibe-tritium researches are performed at Idaho National Laboratory (INL) under the Japan-US collaboration work of JUPITER-II. Our own contributions to the topics are shortly introduced in this paper.

Satoshi Fukada

2012-01-01T23:59:59.000Z

316

Research Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Opportunities Research Opportunities Research Opportunities Research opportunities at Energy Department labs and facilities: Argonne Nuclear Science Educational Programs The mission of Innovate to Educate is to take a leadership role to champion Argonne's mission to transform scientific discovery into innovation, develop and enable education programs that reflect Argonne's strategic engineering, science, and computational initiatives, and to develop new educational programs based on transformative scientific discovery. Faculty and Student Teams Program The Faculty and Student Teams (FaST) Program is a cooperative effort between the Department of Energy (DOE) Office of Science and the National Science Foundation (NSF). Faculty from colleges and universities with limited research facilities, and from those institutions serving

317

IAEA specialists' meeting on carbon and oxygen collision data for fusion plasma research  

SciTech Connect

A brief overview is given of the status of the carbon and oxygen atomic data base for electron-impact excitation, ionization and recombination, and for spectroscopic data. Deficiencies for fusion plasma research applications are identified. Additional data are most critically needed for dielectronic and radiative recombination. 10 refs., 1 fig., 3 tabs.

Phaneuf, R.A.; Defrance, P.; Griffin, D.C.; Hahn, Y.; Pindzola, M.S.; Roszman, L.; Wiese, W.

1988-01-01T23:59:59.000Z

318

Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind  

E-Print Network (OSTI)

from renewables (wind power, solar power, hydropower, geothermal, ocean wave & tidal power, biomass energy resources (coal 43%, natural gas 19%, oil 6%, cogeneration 7%); ~21% by nuclear fission power) ~ 5 ~ 7 CO2 Emission (Tons/MW) Current Chinese plants 1.15 Current US plants 1.05 State of the art 0

Chen, Yang-Yuan

319

MIT Plasma Science & Fusion Center: research, alcator, publications...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Comparisons with GYRO E. Marmar Alcator C-Mod Research Highlights J. Rice Counter-Current Rotation in Alcator C-Mod LHCD Plasmas M. Reinke Flux Surface Assymetries in VUVSXR...

320

MIT Plasma Science & Fusion Center: research>alcator>introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

C-Mod Five Year Plan (2009-2013) Budget Planning Presentations C-Mod Graduate Student Research Alcator DX White Paper (Bibliography) X-Point Target Divertor in Alcator DX...

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ignition on the National Ignition Facility: A Path Towards Inertial Fusion Energy  

E-Print Network (OSTI)

to Arial 18 pt bold Name here Title or division here Date 00, 2008 LLNL-PRES-407907 #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 2 Two major possibilities for fusion energy #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 3 The NIF is nearing completion and will be conducting

322

Study of fusion dynamics using Skyrme energy density formalism with different surface corrections  

E-Print Network (OSTI)

Within the framework of Skyrme energy density formalism, we investigate the role of surface corrections on the fusion of colliding nuclei. For this, the coefficient of surface correction was varied between 1/36 and 4/36, and its impact was studied on about 180 reactions. Our detailed investigations indicate a linear relationship between the fusion barrier heights and strength of the surface corrections. Our analysis of the fusion barriers advocate the strength of surface correction of 1/36.

Ishwar Dutt; Narinder K. Dhiman

2010-11-19T23:59:59.000Z

323

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Glossary of Plasma Physics and Fusion Energy Research Browse | Search | Submit an Entry Introduction, Sources and Contributors This Glossary seeks to provide plain-language definitions of over 3600

324

Ongoing Fusion Research: Progress on Thick-Liquid Protected IFE Power Plant Design  

E-Print Network (OSTI)

First, I would like to thank Dr. Wayne Meier, the former Fusion Energy Division (FED) Chair and the 2002-2003 officers and members of the Executive Committee for their effort over the past year in helping FED move forward. I would also like to welcome the new officers and members of the Executive Committee, in particular Dr. Jake Blanchard as Vice-Chair and Dr. Jeff Latkowski as Secretary/Treasurer. In my first message as Chair of the Fusion Energy Division of the American Nuclear Society (ANS), I would like to address a number of topics ranging from national and international fusion developments to the latest news on FED, specifically: the ITER status, the Department of Energy (DOE) FY04 Fusion Budget, FESAC, ANS Division Metrics, and other FED news including TOFE. ITER The US is currently in negotiation to rejoin ITER. With the interest expressed by Korea and China to join ITER, there are now seven parties at the negotiation table: Canada, China, the European Union (EU), Japan, Korea, the Russian Federation and the US. The negotiations are being pursued over a series of meetings at three levels: the Senior

At Uc-berkeley

2003-01-01T23:59:59.000Z

325

Institute for Energy Research | Open Energy Information  

Open Energy Info (EERE)

Energy Research Energy Research Jump to: navigation, search Logo: Institute for Energy Research Name Institute for Energy Research Address 1415 S. Voss Rd. Place Houston, Texas Zip 77057 Region Texas Area Notes Completely funded by tax-deductible contributions. Public. Coordinates 29.7515335°, -95.5009716° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7515335,"lon":-95.5009716,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies  

E-Print Network (OSTI)

Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

2011-06-10T23:59:59.000Z

327

Scientists discuss progress toward magnetic fusion energy at...  

NLE Websites -- All DOE Office Websites (Extended Search)

world's most populous nation is pushing ahead with plans for a device called China's Fusion Engineering Test Reactor (CFETR) that would develop the technology for a...

328

Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Research The U.S. Department of Energy's Princeton Plasma Physics Laboratory is dedicated to developing fusion as a clean and abundant source of energy and to advancing the frontiers of plasma science. The Laboratory pursues these goals through experiments and computer simulations of the behavior of plasma, the hot electrically charged gas that fuels fusion reactions and has a wide range of practical applications.

329

Program on Technology Innovation: Assessment of Fusion Energy Options for Commercial Electricity Production  

Science Conference Proceedings (OSTI)

Fusion energy options were reviewed to assess technical readiness levels for commercial electricity production for the power industry. Magnetic and inertial confinement systems, in addition to nontraditional fusion concepts, were reviewed by a technical panel of experts, based on workshop presentations by the proponents of each technology. The results are summarized in this ...

2012-10-15T23:59:59.000Z

330

June 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source  

E-Print Network (OSTI)

's first large-scale, sustainable nuclear fusion reactor, an estimated $10 billion project that many than burning fossil fuels or even nuclear fission, which is used in nuclear reactors today but producesJune 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source By CRAIG S. SMITH PARIS

331

23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC  

Science Conference Proceedings (OSTI)

An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

Richard J. Hawryluk

2011-01-05T23:59:59.000Z

332

Accelerators for heavy ion inertial fusion: Progress and plans  

SciTech Connect

The Heavy Ion Inertial Fusion Program is the principal part of the Inertial Fusion Energy Program in the Office of Fusion Energy of the U.S. Department of Energy. The emphasis of the Heavy Ion Program is the development of accelerators for fusion power production. Target physics research and some elements of fusion chamber development are supported in the much larger Inertial Confinement Fusion Program, a dual purpose (defense and energy) program in the Defense Programs part of the Department of Energy. The accelerator research program will establish feasibility through a sequence of scaled experiments that will demonstrate key physics and engineering issues at low cost compared to other fusion programs. This paper discusses progress in the accelerator program and outlines how the planned research will address the key economic issues of inertial fusion energy.

Bangerter, R.O.; Friedman, A.; Herrmannsfeldt, W.B.

1994-08-01T23:59:59.000Z

333

White Paper on Magnetic Fusion Program Strategies  

E-Print Network (OSTI)

White Paper on Magnetic Fusion Program Strategies Prepared for The President's Committee May 16,1995 #12;Page 2 White Paper on Magnetic Fusion Program Strategies 1. Introduction Dramatic present our vision for the future of fusion energy research. In this white paper, following a summary

334

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION  

Office of Legacy Management (LM)

.' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :.. ,. Memo to Piles' CARNEGIE-MELLON SC&RCCYCLOTRON On October 23, 1975, W....

335

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research...

336

Geoscience research for energy security  

Science Conference Proceedings (OSTI)

This report focuses on the nation's geoscience needs and recommends DOE activities to mitigate major problems that effect energy security. The report recommends new or redirected DOE geoscience research initiatives for oil and gas, coal, nuclear resources, structures and processes in the earth's crust, geothermal resources, oil shale, and waste disposal. In light of the current and near-term national energy requirements, federal budget constraints, and the diminished R and D efforts from the domestic energy industry, the Board recommends that DOE: assign highest geoscience research emphasis to shorter-term, energy priorities of the nation; particularly advanced oil and gas exploration and production technologies; establish in DOE an Office of Geoscience Research to develop and administer a strategic plan for geoscience research activities; establish oil and gas research centers within each of the six major oil and gas provinces of the United States to conduct and coordinate interdisciplinary problem-oriented research; increase oil and gas research funding by an initial annual increment of $50 million, primarily to support the regional research centers.

Not Available

1987-02-01T23:59:59.000Z

337

Production and measurement of engineered surfaces for inertial confinement fusion research  

SciTech Connect

Inertial Confinement Fusion uses the optical energy from a very high power laser to implode spherical capsules that contain a fuel mixture of deuterium and tritium. The capsules are made of either Beryllium, plastic, or glass and range from 0.1 mm to 2 mm in diameter. As a capsule implodes, thereby compressing the fuel to reach nuclear fusion conditions, it achieves temperatures of millions of degrees Centigrade and very high pressures. In this state, the capsule materials act like fluids and often a low density fluidic material will push on a higher density material which can be a very unstable condition depending upon the smoothness of the interface between the two materials. This unstable condition is called a hydrodynamic instabillity which results in the mixing of the two materials. If the mixing occurs between the fuel and a non-fuel material, it can stop the fusion reaction just like adding significant amounts of water to gasoline can stop the operation of an automobile. Another region in the capsule where surface roughness can cause capsule performance degradation is at a joint. For instance, many capsules are made of hemispheres that are joined together. If the joint surfaces are too rough, then there will an effective reduction in density at the joint. This density reduction can cause a non-uniform implosion which will reduce the fusion energy coming out of the capsule.

Day, Robert D [Los Alamos National Laboratory; Hatch, Douglas J [Los Alamos National Laboratory; Rivera, Gerald [Los Alamos National Laboratory

2011-01-19T23:59:59.000Z

338

Energy efficient residence: research results  

Science Conference Proceedings (OSTI)

This report on the design, construction, and monitoring of an energy efficient residence and a conventional comparison home by the National Association of Home Builders Research Foundation, Inc. The report describes the two homes in considerable detail, summarizes the results of the energy and other measurements, and evaluates many of the energy conservation techniques used. Finally, these results are synthesized with the foundation's other energy conservation experience into two lists of energy saving design tips for homes in both colder and warmer climates. Most of the design tips are accompanied by brief comments intended to aid in their interpretation and use.

Johnson, R.J.

1980-12-01T23:59:59.000Z

339

Emerging Energy Research | Open Energy Information  

Open Energy Info (EERE)

Research Research Jump to: navigation, search Logo: Emerging Energy Research Name Emerging Energy Research Address 700 Technology Square Place Cambridge, Massachusetts Zip 02139 Sector Services Website http://www.emerging-energy.com Coordinates 42.3640808°, -71.0927675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3640808,"lon":-71.0927675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

it is unlikely that nuclear fission power plants willIn the case of nuclear fission reactions, the fundamentalaspects of nuclear fusion and fission. This approach, termed

Kramer, Kevin James

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network (OSTI)

of Energy, Office of Science, Advanced Scientific Computingthe Directors of the Office of Science, Office of AdvancedDivision, and the Office of Fusion Energy Sciences.

Dart, Eli

2008-01-01T23:59:59.000Z

342

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

343

Methods of economic analysis applied to fusion research: discount rate determination and the fossil fuel price effect  

SciTech Connect

In current and previous efforts, ECON has provided a preliminary economic assessment of a fusion research program. Part of this effort was the demonstration of a methodology for the estimation of reactor system costs and risk and for the treatment of program alternatives as a series of steps (tests) to buy information, thereby controlling program risk and providing a sound economic rationale for properly constructed research programs. The first phase of work also identified two areas which greatly affect the overall economic evaluation of fusion research and which warranted further study in the second phase. This led to the two tasks of the second phase reported herein: (1) discount rate determination and (2) evaluation of the effect of the expectation of the introduction of fusion power on current fossil fuel prices. In the first task, various conceptual measures of the social rate of discount were reviewed and critiqued. In the second task, a benefit area that had been called out by ECON was further examined. Long-range R and D yields short-term benefits in the form of lower nonrenewable energy resource prices because the R and D provides an expectation of future competition for the remaining reserves at the time of technology availability. ECON developed a model of optimal OPEC petroleum pricing as a function of the expectation of future competing technologies. It was shown that the existence of this expectation lowers the optimal OPEC export price and that accelerated technology R and D programs should provide further price decreases. These price reductions translate into benefits to the U.S. of at least a billion dollars.

1978-09-25T23:59:59.000Z

344

A Novel Supercritical CO2 Power Cycle for Energy Conversion in Fusion Power Plants  

Science Conference Proceedings (OSTI)

DEMO and Next-Step Facilities / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

I. P. Serrano; J. I. Linares; A. Cantizano; B. Y. Moratilla

345

The U.S. Fusion Energy Sciences Program: Past, Present, and Future...  

NLE Websites -- All DOE Office Websites (Extended Search)

Success Stories Contact Us Index Home | ORNL | Events and Conferences The U.S. Fusion Energy Sciences Program: Past, Present, and Future Jul 22 2013 11:00 AM - 12:00 PM...

346

Research Councils UK Energy Programme www.rcuk.ac.uk/energy Executive Summary  

E-Print Network (OSTI)

energy source are major and the timescales are long and uncertain. Fusion is likely to contribute to energy systems after 2050. The potential of fusion energy to contribute as a major component of the future global energy system is sufficiently large that it should be pursued in the UK; this is an area of international excellence in terms of research and skilled people in the UK which is contributing to a global challenge. It needs continued funding for the long term, even when difficult financial choices are being made. A high-level schematic of the possible UK programme over the next 20 years is given below. In magnetic confinement fusion (MCF) the continued exploitation of JET, particularly through its ITER-like wall (~2011) and a proposed tritium campaign (~2013) mean that it is still highly relevant for validating ITER physics issues. However, towards the end of the next decade, JET will have closed, or be winding down, and global attention will turn to ITER as the next stage of the fusion fast track commences, but ITER alone will not be sufficient to realise fusion power and technology and materials development will also be crucial. Through an upgraded MAST, the UK can play a leading role in the development of a Component Test Facility (CTF) which may be important in reducing the risk for construction of the fusion demonstration reactor (DEMO), the step following ITER. The role for the UK in inertial confinement fusion (ICF) over the next 20 years is strongly tied to what happens at the US Department of Energys National Ignition Facility (NIF) in the next 2-3 years. The UK has displayed an impressive capability in coordinating the European ICF area through its leadership of the HiPER project and it would be most effective if this were to develop into a global collaboration to develop a plan to exploit NIF ignition towards fusion energy. The UK should continue to contribute to world-class research and international leadership in both MCF and ICF, particularly developing the technology pathway. We should maximise opportunities for global collaboration and develop a common programme between MCF and

unknown authors

2010-01-01T23:59:59.000Z

347

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Creating the Conditions for Fusion PLASMA CONFINEMENT AND HEATING Fusion requires high...

348

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 (8pp) doi:10.1088/0029-5515/50/1/014003  

E-Print Network (OSTI)

creation. References [1] Tamm I.E. 1959 Theory of the magnetic thermonuclear reactor, part I Plasma Physics.D. Theory of magnetic thermonuclear reactor, part 2 Plasma Physics and the Problem of ControlledIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003

349

Nuclear Energy Research and Development Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

350

Building Energy Retrofit Research: Multifamily Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Retrofit Research: Multifamily Sector Title Building Energy Retrofit Research: Multifamily Sector Publication Type Report Year of Publication 1985 Authors Diamond,...

351

Department of Energy Research Opportunities for Historically...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Research Opportunities for Historically Black Colleges and Universities Department of Energy Research Opportunities for Historically Black Colleges and...

352

A Plan for the Development of Magnetic Fusion Energy  

E-Print Network (OSTI)

seen fusion budgets rise and fall -- usually in sync with the price of oil. Expensive oil tends cards. "Nobody in the history of Texas Hold 'Em poker has ever won without some hole cards," he says

353

International Nuclear Energy Research Initiative: Annual Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sitesallmodulescontribredisredis.autoload.inc). You are here Home International Nuclear Energy Research Initiative: Annual Report 2005 International Nuclear Energy...

354

Commercial application of thermionic conversion using a fusion reactor energy source. A preliminary assessment  

DOE Green Energy (OSTI)

A preliminary assessment of using thermionic conversion as a topping cycle for fusion reactors is presented. Because of the absence of restrictive temperature limitations for fusion-reactor blankets, fusion reactors may offer significant advantages, compared to fission reactors and fossil-fuel energy sources, for utilizing thermionic topping cycles. A system with a thermionic topping cycle and a conventional steam-turbine generator that utilizes the heat rejected by the thermionic converters is presented for illustration. This system consists of conceptual laser-fusion reactors with high-temperature radiating reactor blankets serving as heat sources for the thermionic topping cycle. The design concept appears to be equally adaptable to magnetically confined fusion reactors. For the example analyzed, net conversion efficiencies of combined thermionic and steam-turbine cycles are high, exceeding 50 percent for some values of the operating parameters, and the cost of producing low-voltage direct current for electrochemical processing is low.

Frank, T.G.; Kern, E.A.; Booth, L.A.

1977-01-01T23:59:59.000Z

355

Researcher-guide networking: a case of renewable energy research  

Science Conference Proceedings (OSTI)

Renewable energy research has recently been seen as one of the most important areas of studies by budding doctoral researchers. The paper is an attempt to study the trends of renewable energy research on the basis of PhD dissertations database provided ... Keywords: doctoral dissertation, energy, renewable energy, social network analysis

Vipan Kumar, Rohit Sagar, Sapna A. Narula

2013-08-01T23:59:59.000Z

356

Money for Research, Not for Energy Bills: Finding Energy and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs Title Money for Research, Not for Energy Bills: Finding Energy and Cost...

357

Virtus Energy Research Association | Open Energy Information  

Open Energy Info (EERE)

Virtus Energy Research Association Virtus Energy Research Association Jump to: navigation, search Logo: Virtus Energy Research Association Name Virtus Energy Research Association Address 906 1/2 Congress Avenue Place Austin, Texas Zip 78701 Sector Services Product Photovoltaic, solar thermal, wind site/resource assessment, project evaluation, consulting Website http://www.vera.com/index.htm Coordinates 30.2625692°, -97.7448548° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2625692,"lon":-97.7448548,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Report of the Ad Hoc Committee on fusion plasma research facilities  

SciTech Connect

This report surveys the need for Fusion Plasma Research Facilities (FPRF) in advancing research in several areas of plasma and atomic physics that are essential to the CTR program and describes several device options for FPRF's. The major conclusions of the report are that there is an urgent need to provide such facilities and that the most significant contributions to CTR that would be made through these facilities are in the development of plasma diagnostics and measurements of atomic processes. (auth)

1976-04-30T23:59:59.000Z

359

Accelerator and Fusion Research Division annual report, October 1980-September 1981. Fiscal year, 1981  

SciTech Connect

Major accomplishments during fiscal year 1981 are presented. During the Laboratory's 50th anniversary celebrations, AFRD and the Nuclear Science Division formally dedicated the new (third) SuperHILAC injector that adds ions as heavy as uranium to the ion repertoire at LBL's national accelerator facilities. The Bevalac's new multiparticle detectors (the Heavy Ion Spectrometer System and the GSI-LBL Plastic Ball/Plastic Wall) were completed in time to take data before the mid-year shutdown to install the new vacuum liner, which passed a milestone in-place test with flying colors in September. The Bevalac biomedical program continued patient treatment with neon beams aimed at establishing a complete data base for a dedicated biomedical accelerator, the design of which NCI funded during the year. Our program to develop alternative Isabelle superconducting dipole magnets, which DOE initiated in FY80, proved the worth of a new magnet construction technique and set a world record - 7.6 Tesla at 1.8 K - with a model magnet in our upgraded test facility. Final test results at LBL were obtained by the Magnetic Fusion Energy Group on the powerful neutral beam injectors developed for Princeton's TFTR. The devices exceeded the original design requirements, thereby completing the six-year, multi-million-dollar NBSTF effort. The group also demonstrated the feasibility of efficient negative-ion-based neutral beam plasma heating for the future by generating 1 A of negative ions at 34 kV for 7 seconds using a newly developed source. Collaborations with other research centers continued, including: (1) the design of LBL/Exxon-dedicated beam lines for the Stanford Synchrotron Radiation Laboratory; (2) beam cooling tests at Fermilab and the design of a beam cooling system for a proton-antiproton facility there; and (3) the development of a high-current betatron for possible application to a free electron laser.

Johnson, R.K.; Thomson, H.A. (eds.)

1982-04-01T23:59:59.000Z

360

The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant  

SciTech Connect

Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

Simonen, T

2008-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say  

E-Print Network (OSTI)

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say A crystal with a strange property is at the heart of a clever method for inducing nuclear fusion in a tabletop-sized device-rays for medical therapies. Although the field of room-temperature fusion is littered with scandals and dubious

362

Aquafuel Research | Open Energy Information  

Open Energy Info (EERE)

Aquafuel Research Aquafuel Research Jump to: navigation, search Name Aquafuel Research Place Kent, England, United Kingdom Zip ME9 8HL Sector Renewable Energy Product England-based renewable energy company. Coordinates 41.150928°, -81.358223° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.150928,"lon":-81.358223,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

1980-12-31T23:59:59.000Z

364

Panel discussion: Progress and plans for magnetic fusion: Summary of comments on recent progress in fusion research at the Oak Ridge National Laboratory  

DOE Green Energy (OSTI)

Progress in fusion research is marked not so much by a few giant steps as by a continual number of small steps, which yield a steady advance toward the goal of producing a fusion reactor. During the past year, there have been two such steps in the Oak Ridge National Laboratory (ORNL) program: the experimental demonstration of access to the second stable region of beta in the Advanced Toroidal Facility (ATF); and the acceleration of a frozen hydrogen pellet by an intense electron beam. This paper discusses these steps.

Sheffield, J.

1989-01-01T23:59:59.000Z

365

Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers  

Science Conference Proceedings (OSTI)

Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

Deri, R J

2011-01-03T23:59:59.000Z

366

Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Picture of Z Machine Z machine contributes to clean-energy technologies The importance of Z in solving the world's energy challenges is directly connected to its fusion potential. Inertial confinement fusion for peaceful production of electricity has always been of interest to Sandia's pulsed power sciences. But today, in light of growing concern about the health of our planet and considering our escalating energy needs, the development of fusion technology is especially promising for several reasons First, the fuel needed for fusion is virtually limitless - deuterium, an isotope of hydrogen, is abundant in seawater; tritium is bred in the fusion power plant process. Half a bathtub full of seawater in a fusion reaction could produce as much energy as 40 train cars of coal.

367

DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...  

Office of Scientific and Technical Information (OSTI)

projects, and scientific research data related to advanced systems for fusion energy and nuclear power, primary scientific challenges addressed through the Incite...

368

Federal Wind Energy Research Program  

SciTech Connect

The Office of Program Analysis (OPA) undertook an assessment of 55 research projects sponsored by the Federal Wind Energy Research Program. This report summarizes the results of that review. In accordance with statue and policy guidance, the program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. Wind turbine research has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. Rating factors including project scientific and technical merit, appropriateness and level of innovation of the technical approach, quality of the project team, productivity, and probable impact on the program's mission. Each project was also given an overall evaluation supported with written comments. 1 fig.

1991-10-01T23:59:59.000Z

369

Fusion Policy Advisory Committee (FPAC)  

Science Conference Proceedings (OSTI)

This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

Not Available

1990-09-01T23:59:59.000Z

370

Annual Report of the EURATOM/UKAEA Fusion Programme 2007/08 2 General Introduction  

E-Print Network (OSTI)

of coal, and equal to the UK's per capita electricity consumption for 30 years. Figure 2.2: Half a bath and increasing industrialisation, the world is desperate for large amounts of energy generated without greenhouse Introduction 2.1 FUSION ENERGY RESEARCH 2.1.1 FUSION FOR ENERGY PRODUCTION Fusion is the fundamental energy

371

Annual Report of the EURATOM/CCFE Fusion Programme 2012/13 2 General Introduction  

E-Print Network (OSTI)

of coal, and equal to the UK's per capita electricity consumption for 30 years. Figure 2.2: Half a bath). With climate change and the need for increasing energy resources moving to the top of the world's governmental Introduction 2.1 FUSION ENERGY RESEARCH 2.1.1 FUSION FOR ENERGY PRODUCTION Fusion is the fundamental energy

372

Annual Report of the EURATOM/UKAEA Fusion Programme 2008/09 2 General Introduction  

E-Print Network (OSTI)

of coal, and equal to the UK's per capita electricity consumption for 30 years. Figure 2.2: Half a bath in MAST (right) With climate change and the need for increasing energy resources moving to the top Introduction 2.1 FUSION ENERGY RESEARCH 2.1.1 FUSION FOR ENERGY PRODUCTION Fusion is the fundamental energy

373

Annual Report of the EURATOM/CCFE Fusion Programme 2011/12 2 General Introduction  

E-Print Network (OSTI)

of coal, and equal to the UK's per capita electricity consumption for 30 years. Figure 2.2: Half a bath). With climate change and the need for increasing energy resources moving to the top of the world's governmental Introduction 2.1 FUSION ENERGY RESEARCH 2.1.1 FUSION FOR ENERGY PRODUCTION Fusion is the fundamental energy

374

Annual Report of the EURATOM/CCFE Fusion Programme 2009/10 2 General Introduction  

E-Print Network (OSTI)

of coal, and equal to the UK's per capita electricity consumption for 30 years. Figure 2.2: Half a bath) With climate change and the need for increasing energy resources moving to the top of the world's governmental Introduction 2.1 FUSION ENERGY RESEARCH 2.1.1 FUSION FOR ENERGY PRODUCTION Fusion is the fundamental energy

375

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH  

E-Print Network (OSTI)

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

376

Emerging Energy Research EER | Open Energy Information  

Open Energy Info (EERE)

EER EER Jump to: navigation, search Name Emerging Energy Research (EER) Place Cambridge, Massachusetts Zip 2139 Product Research and advisory company focused on new energy technologies, markets and strategies. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier  

E-Print Network (OSTI)

The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

2007-02-16T23:59:59.000Z

378

Atomic data for fusion  

DOE Green Energy (OSTI)

This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.) [eds.; Barnett, C.F.

1990-07-01T23:59:59.000Z

379

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network (OSTI)

Energy Research/ Energy System Integration Transmission-Research Program Energy System Integration Public InterestCommissions PIER Energy Systems Integration program for

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

380

Timely Delivery of Laser Inertial Fusion Energy Presentation prepared for  

E-Print Network (OSTI)

acceptability Timely delivery NIF-1210-20673s2.ppt · Pinnacle West Capital Corp · PG&E Corporation · Mid Generation · Exelon Generation Company · Southern California Edison Electric Power Utility needs NIF-0611 on direct evidence of fusion performance (NIF). · Use of available technology and materials that can

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stockpile tritium production from fusion  

SciTech Connect

A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century.

Lokke, W.A.; Fowler, T.K.

1986-03-21T23:59:59.000Z

382

Electra: An Electron Beam Pumped KrF Rep-Rate Laser System for Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

High Average Power Laser and Other IFE R&D / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1)

P. M. Burns et al.

383

NIF achieves record laser energy in pursuit of fusion ignition | National  

NLE Websites -- All DOE Office Websites (Extended Search)

achieves record laser energy in pursuit of fusion ignition | National achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF achieves record laser energy in pursuit ... NIF achieves record laser energy in pursuit of fusion ignition Posted By Office of Public Affairs NNSA Blog The NNSA's National Ignition Facility (NIF) surpassed a critical

384

Direct-Drive Inertial Fusion Research at the University of Rochester's Laboratory for Laser Energetics: A Review  

SciTech Connect

This paper reviews the status of direct-drive inertial confinement fusion (ICF) research at the University of Rochester's Laboratory for Laser Energetics (LLE). LLE's goal is to demonstrate direct-drive ignition on the National Ignition Facility (NIF) by 2014. Baseline "all-DT" NIF direct-drive ignition target designs have been developed that have a predicted gain of 45 (1-D) at a NIF drive energy of ~1.6 MJ. Significantly higher gains are calculated for targets that include a DT-wicked foam ablator. This paper also reviews the results of both warm fuel and initial cryogenic-fuel spherical target implosion experiments carried out on the OMEGA UV laser. The results of these experiments and design calculations increase confidence that the NIF direct-drive ICF ignition goal will be achieved.

McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Bahr, R.E.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Donaldson, W.R.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Jaanimagi, P.A.; Keck, R.L.; Kelly, J.H.; Kessler, T.J.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Lund, L.D.; Marozas, J.A.; McKenty, P.W.; Marshall, F.J.; Morse, S.F.B.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Roberts, S.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Thorp, K.A.; Yaakobi, B.; Zuegel, J.D.

2010-04-16T23:59:59.000Z

385

Grid computing and collaboration technology in support of fusion energy sciencesa)  

Science Conference Proceedings (OSTI)

Science research in general and magnetic fusion research in particular continue to grow in size and complexity resulting in a concurrent growth in collaborations between experimental sites and laboratories worldwide. The simultaneous increase in wide area network speeds has made it practical to envision distributed working environments that are as productive as traditionally collocated work. In computing power

D. P. Schissel

2005-01-01T23:59:59.000Z

386

REPORT FROM THE PLANNING WORKSHOP FUSION ENERGY SCIENCES PROGRAM  

E-Print Network (OSTI)

research recognizes the utility of plasma research to the nation's science and technology base beyond

387

Research Toward Zero Energy Homes  

SciTech Connect

This final report was compiled from the detailed annual reports that were submitted for efforts in 2008 and 2009, and from individual task reports from 2010. Reports, case studies, and presentations derived from this work are available through the Building America website. The BIRA team is led by ConSol, a leading provider of energy solutions for builders since 1983. In partnership with over fifty builders, developers, architects, manufactures, researchers, utilities, and agencies, research work was performed in California, Colorado, Utah, New Mexico, Washington, Oregon, and Hawaii and five (5) climate regions (Hot-Dry, Marine, Hot-Humid, Cold, and Hot/Mixed Dry). In addition to research work, the team provided technical assistance to our partners whose interests span the entire building process. During the three year budget period, the BIRA team performed analyses of several emerging technologies, prototype homes, and high performance communities through detailed computer simulations and extensive field monitoring to meet the required climate joule milestone targets.

Robert Hammon

2010-12-31T23:59:59.000Z

388

Fossil Energy's HBCU Research Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that goal. Fossil Energy's HBCU Research Activities More Documents & Publications Fossil Energy Today - Third Quarter, 2012 Fossil Energy Today - First Quarter, 2011...

389

Cold fusion, Alchemist's dream  

SciTech Connect

In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

Clayton, E.D.

1989-09-01T23:59:59.000Z

390

Proliferation Risks of Magneetic Fusion Energy: Clandestine Production, Covert Production and Breakout  

Science Conference Proceedings (OSTI)

Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material inn a declared facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

A. Glaser and R.J. Goldston

2012-03-13T23:59:59.000Z

391

Fusion Implementation  

SciTech Connect

If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

J.A. Schmidt

2002-02-20T23:59:59.000Z

392

Fusion Education | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits of FES » Fusion Benefits of FES » Fusion Education Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Benefits of FES Fusion Education Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences Program includes a diverse set of disciplines - from modern plasma physics theories dealing with chaotic systems of energetic particles and waves to more conventional engineering problems of applied electromagnetism. Throughout the scientific programs supported by

393

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

394

Fusion Energy Sciences Advisory Committee (FESAC) Homepage | U.S. DOE  

Office of Science (SC) Website

FESAC Home FESAC Home Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors FES Home Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences Advisory Committee (FESAC) has been Chartered .pdf file (140KB) pursuant to Section 14(a)(2)(A) of the Federal Advisory Committee Act Public Law 92-463, and Section 101-6.1015, title 41 Code of Federal Regulations. The committee provides independent advice to the Director of the Office of Science on complex scientific and technological issues that arise in the planning, implementation, and management of the fusion energy sciences program. The current charter is in effect until August 2015. Committee Members .pdf file (28KB) are drawn from universities, national

395

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

of the available energy is wasted and how that energy couldof the available energy is wasted and how that energy could

Kramer, Kevin James

2010-01-01T23:59:59.000Z

396

Research Facilities & Centers | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Energy Clean Energy Research Areas Research Highlights Facilities and Centers BioEnergy Science Center Building Technologies Research and Integration Center Carbon Fiber Technology Facility Center For Structural Molecular Biology Climate Change Science Institute Joint Institute for Biological Sciences Manufacturing Demonstration Facility National Transportation Research Center Tools & Resources News and Awards Supporting Organizations Clean Energy Home | Science & Discovery | Clean Energy | Facilities and Centers SHARE Facilities, Centers Welcome Industry, Academia Oak Ridge National Laboratory facilities and capabilities together provide a unique environment for Clean Energy research. For example, as the lead institution for DOE's BioEnergy Science Center, ORNL is pioneering

397

Fusion to get bulk of proposed EC research funding 26 April 2005  

E-Print Network (OSTI)

to be debated by the European Union ahead of adoption next year. The budget for research into nuclear energy. Meanwhile, the total budget proposed by the EC for research into non-nuclear energy in the FP7 is 2 the International Thermonuclear Experimental Reactor (Iter) project. The fission programme focuses on practical

398

Basic Research Needs: Catalysis for Energy  

DOE Green Energy (OSTI)

The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

2008-03-11T23:59:59.000Z

399

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Coal Research University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research proposals. Today approximately 16 percent of the Office of Fossil Energy's annual R&D funding goes to academic institutions. The University Coal Research Program Universities have traditionally fared well in the Energy Department's open competitions for federal research grants and contracts. In 1979, however, the Department took an additional step to encourage greater university participation in its fossil energy program. The agency set aside funding for a special university-only competition that required professors to conduct cutting-edge research alongside students who were pursuing advanced

400

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks  

E-Print Network (OSTI)

addresses a transmission energy problem for wireless sensoranalog case. The energy planning problem will be formulatedrest of this paper. Energy Planning Problem Formulation and

Huang, Yi

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Department of Energy Announces 24 Nuclear Energy Research Awards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

402

U.S. Department of Energy Announces Energy Frontier Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Frontier Research Centers Summit & Forum U.S. Department of Energy Announces Energy Frontier Research Centers Summit & Forum March 4, 2011 - 12:00am Addthis Washington, D.C....

403

University Research Reactor Task Force to the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

404

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

on Energy Demand and Conservation. 1979 (in press). Brooks.Look at Energy Conservation," Papers and Proceedings,Research Opportunities," in Conservation and Public Policy,

Hollander, Jack M.

2011-01-01T23:59:59.000Z

405

Maximum Building Energy Efficiency Research Laboratory secures...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Network - Maximum Building Energy Efficiency Research Laboratory secures LEED Gold July 01, 2013 The recently completed 14.3m Maximum Building Energy Efficiency...

406

Nanyang Technological University's New Energy Research Institute...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanyang Technological University's New Energy Research Institute: Grids, Energy Systems and Sustainable Building Technologies Programs Speaker(s): King Jet Tseng Subodh Mhaisalkar...

407

National Energy Research Scientific Computing Center (NERSC)...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contract to Cray August 5, 2009 BERKELEY, CA - The Department of Energy's (DOE) National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National...

408

Overview of nonelectrical applications of fusion  

DOE Green Energy (OSTI)

The potential for, and importance of, nonelectrical applications of fusion energy is discussed. Three possibilities are reviewed in some detail: fusion-fission hybrids for fissile fuel production; high-temperature electrolysis and thermochemical processes for hydrogen production; and high-temperature steam for coal gasification. The hybrid could be an early application of fusion if this route is identified as a desirable goal. Hydrogen production and coal gasification processes appear feasible and could be developed as a part of the conventional fusion blanket research and development. The question of economics, particularly in view of the high capital cost of fusion plants, remains an open issue requiring more study.

Miley, G.H.

1979-01-01T23:59:59.000Z

409

MIT Plasma Science & Fusion Center: research>alcator>introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Information Publications & News Meetings & Seminars Contact Information Physics Research Fusion Technology & Engineering Plasma Technology Waves & Beams Useful Links Quarterly Review, Thursday, July 14, 2005 10:00 Steve Wolfe: Status of the run campaign, and research operations weeks JOULE target 10:15 Yijun Lin: Status of "all metal wall" JOULE target 10:30 Ron Parker: Lower Hybrid status 10:45 Jim Irby: Cryopump status 10:55 Bob Granetz: DNB status 11:05 Bob Granetz: Disruption mitigation by massive gas puff -- experiments and plans 11:15 Brian LaBombard: Rotation and H-mode scrape-off layer flows, the role of the X-point and connections to the L-H power threshold in Alcator C-Mod 77 Massachusetts Avenue, NW16, Cambridge, MA 02139, info@psfc.mit.edu

410

UNLV Center for Energy Research CER | Open Energy Information  

Open Energy Info (EERE)

UNLV Center for Energy Research CER UNLV Center for Energy Research CER Jump to: navigation, search Name UNLV Center for Energy Research (CER) Place Las Vegas, Nevada Zip 89154 4027 Product The Center for Energy Research is a focus area for research, information exchange, and education in energy topics. References UNLV Center for Energy Research (CER)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. UNLV Center for Energy Research (CER) is a company located in Las Vegas, Nevada . References ↑ "UNLV Center for Energy Research (CER)" Retrieved from "http://en.openei.org/w/index.php?title=UNLV_Center_for_Energy_Research_CER&oldid=352568" Categories: Clean Energy Organizations

411

Fusion Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Intro Fusion Education Research DIII-D Internal Site Opportunities Virtual DIII-D Collaborators Countries Physics Eng Physics Operations Diagnostics Computing IFT IFT Site ITER ITER Site FDF Theory Collaborators Conferences GA-Hosted Room Reservations Fusion Meetings Plasma Publications Presentations Images Brochures Posters Movies Corporate General Atomics Products Visitor GA Fusion Hotels Internal Users GA Internal Site DIII-D General Experimental Science Experimental Science Home 2013 Experimental Campaign Burning Plasma Physics Dynamics & Control Boundary and Pedestal ELM Control Operations Diagnostics Computing Support Visitors DIII-D Web Access Help IFT ITER-GA Theory Research Highlights Personnel Links Policies Safety Comp Support Trouble Ticket Eng/Design Fusion Webmail Phone Book

412

Recyclable transmission line concept for z-pinch driven inertial fusion energy.  

SciTech Connect

Recyclable transmission lines (RTL)s are being studied as a means to repetitively drive z pinches to generate fusion energy. We have shown previously that the RTL mass can be quite modest. Minimizing the RTL mass reduces recycling costs and the impulse delivered to the first wall of a fusion chamber. Despite this reduction in mass, a few seconds will be needed to reload an RTL after each subsequent shot. This is in comparison to other inertial fusion approaches that expect to fire up to ten capsules per second. Thus a larger fusion yield is needed to compensate for the slower repetition rate in a z-pinch driven fusion reactor. We present preliminary designs of z-pinch driven fusion capsules that provide an adequate yield of 1-4 GJ. We also present numerical simulations of the effect of these fairly large fusion yields on the RTL and the first wall of the reactor chamber. These simulations were performed with and without a neutron absorbing blanket surrounding the fusion explosion. We find that the RTL will be fully vaporized out to a radius of about 3 meters assuming normal incidence. However, at large enough radius the RTL will remain in either the liquid or solid state and this portion of the RTL could fragment and become shrapnel. We show that a dynamic fragmentation theory can be used to estimate the size of these fragmented particles. We discuss how proper design of the RTL can allow this shrapnel to be directed away from the sensitive mechanical parts of the reactor chamber.

De Groot, J. S. (University of California, Davis, CA); Olson, Craig Lee; Cochrane, Kyle Robert (Ktech Corporation, Albuquerque, NM); Slutz, Stephen A.; Vesey, Roger Alan; Peterson, Per F. (University of California, Berkeley, CA)

2003-12-01T23:59:59.000Z

413

Data security on the national fusion grid  

SciTech Connect

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

414

Security on the US Fusion Grid  

SciTech Connect

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

415

Our Research Achievements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective environmental practices and data development, making...

416

Fusion Energy Sciences User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

FES User Facilities FES User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 FES User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences program supports the operation of the following national scientific user facilities: DIII-D Tokamak Facility: External link DIII-D, located at General Atomics in San Diego, California, is the largest magnetic fusion facility in the U.S. and is operated as a DOE national user facility. DIII-D has been a major contributor to the world fusion program

417

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

418

Center For Energy and Environmental Policy Research  

E-Print Network (OSTI)

Center For Energy and Environmental Policy Research What Should the Government do to Encourage for Energy and Environmental Policy Research (CEEPR) is a joint center of the Department of Economics on behalf of the Center for Energy and Environmental Policy Research (CEEPR), (a joint centre

Deutch, John

419

Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier  

E-Print Network (OSTI)

Measurement of fusion cross sections for the 6,7Li + 24Mg reactions by the characteristic gamma-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these gamma-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The decrease of fusion cross sections with increase of energy is consistent with the fact that other channels, in particular breakup open up with increase of bombarding energy. This shows that there is neither inhibition nor enhancement of fusion cross sections for these systems at above or below the barrier. The critical angular momenta (lcr) deduced from the fusion cross sections are found to have an energy dependence similar to other Li - induced reactions.

M. Ray; A. Mukherjee; M. K. Pradhan; Ritesh Kshetri; M. Saha Sarkar; R. Palit; I. Majumdar; P. K. Joshi; H. C. Jain; B. Dasmahapatra

2008-05-07T23:59:59.000Z

420

Collaborative Technologies for Distributed Science - Fusion Energy and High-Energy Physics (A25539)  

E-Print Network (OSTI)

General Atomics Report GA-A25539 (2006)24th Symposium on Fusion Technology Warsaw, pl, 2006999613320

Schissel, D.P.

2006-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour How Fusion Reactions Work THE NUCLEAR PHYSICS OF FUSION Fusion of light (low-mass)...

422

Energy Research at the University of Regina  

E-Print Network (OSTI)

Energy Research at the University of Regina The University of Regina has long understood, there was recognition that the availability of energy is fundamental to that growth. For these reasons, the University made energy (as a part of energy and environment) one of its thematic research areas in 2000

Argerami, Martin

423

California Energy Balance ENVIRONMENTAL AREA RESEARCH  

E-Print Network (OSTI)

California Energy Balance Database ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www produced an energy balance for California with a database called California Energy Balance (CALEB--factors such as fuel prices, changes in type of industries located in California, and increased energy efficiency

424

Third Energy Research Summit Dr. Vania Croce  

E-Print Network (OSTI)

, nuclear and conventional energy, transmission and supply were present. This document reports the outputs could coordinate joint research council/industry summer schools, regionally based industrial energyThird Energy Research Summit May 2007 Author: Dr. Vania Croce Portfolio Manager - Energy EPSRC

425

Audit of energy research telecommunications data networks  

Science Conference Proceedings (OSTI)

The Department of Energy's (DOE) Office of Energy Research is implementing a new telecommunications data network called the Energy Sciences Network (ESNET). The purpose of our audit was to determine if ESNET will be a cost-effective means of upgrading networking support for Energy Research programs.

Not Available

1989-07-20T23:59:59.000Z

426

Overview of BNL's Solar Energy Research Plans  

E-Print Network (OSTI)

Overview of BNL's Solar Energy Research Plans March 2011 #12;2 Why Solar Energy Research at BNL BNL's capabilities can advance solar energy In the Northeast #12;North Array Field South Array Field Variability and Non-Dispatchability · Solar energy varies · Solar generation cannot be dispatched when needed

Homes, Christopher C.

427

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

428

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

429

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION  

Office of Legacy Management (LM)

.' :h I : .' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :~.. ,. Memo to Piles' CARNEGIE-MELLON S~C&RCCYCLOTRON On October 23, 1975, W. J. McCool (HQOS), E. K. Loop (HQ-OS), R. E. Allen (HQ-OS), J. Pingel (CH), B. 3. Davis (CH), R. Drucker (CR-BAO) and I met at Germantown to discuss the clean-up of radio- activity at the Saxonburg accelerator site. After discussion, we concluded acceptable criteria would include removal of all material necessary to reduce the residual surface activity to a maximum ofO.04 mR/hr above ambient background. Since ambient backgrounds is 0.03 to 0.05 &/hr, the above 0.04 mR/hr criterion will essentially be the 0.08 mR/hr (induced +background) case discussed previously.

430

Advanced research in solar-energy storage  

DOE Green Energy (OSTI)

The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

Luft, W.

1983-01-01T23:59:59.000Z

431

DANCING WITH THE STARSDANCING WITH THE STARS QUEST FOR FUSION ENERGYQUEST FOR FUSION ENERGY  

E-Print Network (OSTI)

AS A COAL POWER PLANTTHE SUN AS A COAL POWER PLANT What is the mass of the Sun ?? What is the power output of the Sun ?? How much energy is released in burning coal ?? #12;THE SUN AS A COAL POWER PLANTTHE SUN AS A COAL POWER PLANT 30 2 10 ?M kg Power output of the 264 10=Sun Watts? 2 42 0 /C kgO CO MJ+ + Sun

432

Energy Research Project, Review (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

identify, monitor, and evaluate research studies and demonstration projects pertaining to alternative energy and energy conservation systems and methodologies, including: (1) solar...

433

Fusion devices  

SciTech Connect

Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included. (RME)

Fowler, T.K.

1977-10-11T23:59:59.000Z

434

Department of Energy to Host Inaugural Energy Frontier Research Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Host Inaugural Energy Frontier Research to Host Inaugural Energy Frontier Research Center Summit Department of Energy to Host Inaugural Energy Frontier Research Center Summit May 24, 2011 - 12:00am Addthis WASHINGTON, D.C. - On Wednesday, May 25, U.S. Department of Energy Secretary Steven Chu will welcome nearly 1,000 of America's top energy researchers to Washington, D.C. for the inaugural Science for the Nation's Energy Future: The Energy Frontier Research Centers Summit and Forum. The three-day public conference will showcase early successes of DOE's Energy Frontier Research Centers (EFRC). It will also bring together scientists and energy policy leaders to explore the challenges and opportunities in applying America's extraordinary scientific and technical resources to helping shape our clean energy future.

435

Studies of fast electron transport in the problems of inertial fusion energy  

E-Print Network (OSTI)

In the existing natural fusion reactors, stars, the gravityto the construction of the fusion reactor. In the magneticwould be for real fusion reactor conditions. The analysis of

Frolov, Boris K.

2006-01-01T23:59:59.000Z

436

Office of Fusion Energy Sciences FY 2006 Congressional Budget  

E-Print Network (OSTI)

.8 52.1 50.1 NSTX Research 16.4 16.5 16.2 Experimental Plasma Research 21.1 21.8 18.8 IFE/HEDP 13.9 15

437

Spherical Torus (Spherical Tokamak) on the Path to Fusion Energy  

E-Print Network (OSTI)

USBPO-ITPA activities in preparation for burning plasma research in ITER using physics breadth provided and benefits from USBPO-ITPA in preparing for burning plasma research on ITER "Locked mode" threshold n

438

Energy Subgroup B July 27, 1999 1999 Fusion Summer Study  

E-Print Network (OSTI)

STEPS WERE DISCUSSED: + Devices For Burning Plasma Research ITER-RC, FIRE, IGNITOR, DTST, JET will carry out its burning plasma research on the NIF and plans to carry out its high time-average power to the Performance Extension stage. MFE has opportunities to carry out its burning plasma research in either

439

Performance requirements of an inertial-fusion-energy source for hydrogen production  

DOE Green Energy (OSTI)

Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances.

Hovingh, J.

1983-01-01T23:59:59.000Z

440

Fossil Energy Research & Development (R&D) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Research & Development (R&D) Fossil Energy Research & Development (R&D) Microsoft Word - FE PSRP 08-19-09 3.doc More Documents & Publications Microsoft Word - PSRP...

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

IREC Catalan Institute for Energy Research | Open Energy Information  

Open Energy Info (EERE)

IREC Catalan Institute for Energy Research IREC Catalan Institute for Energy Research Jump to: navigation, search Name IREC (Catalan Institute for Energy Research) Place Barcelona, Spain Sector Renewable Energy, Wind energy Product String representation "The Catalonia I ... Mediterranean." is too long. References IREC (Catalan Institute for Energy Research)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. IREC (Catalan Institute for Energy Research) is a company located in Barcelona, Spain . References ↑ "IREC (Catalan Institute for Energy Research)" Retrieved from "http://en.openei.org/w/index.php?title=IREC_Catalan_Institute_for_Energy_Research&oldid=347119" Categories:

442

US Biomass Energy Research Association BERA | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Research Association BERA Biomass Energy Research Association BERA Jump to: navigation, search Name US Biomass Energy Research Association (BERA) Place Washington, Washington, DC Zip DC 20003 Sector Biomass Product Aims to faciliate understanding and promotion of biomass energy or waste-to-energy systems. References US Biomass Energy Research Association (BERA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Biomass Energy Research Association (BERA) is a company located in Washington, Washington, DC . References ↑ "US Biomass Energy Research Association (BERA)" Retrieved from "http://en.openei.org/w/index.php?title=US_Biomass_Energy_Research_Association_BERA&oldid=352594

443

Energy System Analysis at SINTEF Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

1989. His main areas of work include distributed energy systems, energy system planning, operation and control, ancillary services, frequency and power control, and power flow...

444

Longitudinal Tracking of Direct Drive Inertial Fusion Targets  

Science Conference Proceedings (OSTI)

Technical Paper / The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers

J. D. Spalding; L. C. Carlson; M. S. Tillack; N. B. Alexander; D. T. Goodin; R. W. Petzoldt

445

TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

Dunne, A M

2010-11-30T23:59:59.000Z

446

Energy Department Requests Proposals for Advanced Scientific...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

biology, fusion science, groundwater modeling, high energy physics, nuclear physics, quantum chromodynamics, materials sciences, radiation transport and turbulence. Research...

447

Energy Secretary Moniz Dedicates Clean Energy Research Center, New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moniz Dedicates Clean Energy Research Center, New Moniz Dedicates Clean Energy Research Center, New Supercomputer Energy Secretary Moniz Dedicates Clean Energy Research Center, New Supercomputer September 11, 2013 - 3:03pm Addthis News Media Contact (202) 586-4940 DENVER, Colo. - During a visit to the National Renewable Energy Laboratory (NREL) in Golden, Colorado, Energy Secretary Ernest Moniz today dedicated the nation's first major research facility focused on clean energy grid integration and wide-scale deployment. The new Energy Systems Integration Facility (ESIF) will help manufacturers, utilities and public and private sector researchers overcome the challenges of integrating clean energy and energy efficiency technologies into today's energy infrastructure. "Strong partnerships between our national laboratories and America's

448

Department of Energy to Host Energy Frontier Research Center Summit |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Host Energy Frontier Research Center Summit to Host Energy Frontier Research Center Summit Department of Energy to Host Energy Frontier Research Center Summit May 24, 2011 - 12:00am Addthis Washington, DC - Beginning Wednesday, May 25 U.S. Secretary of Energy Steven Chu will welcome nearly 1,000 of America's top energy researchers to Washington, D.C. for the inaugural Science for the Nation's Energy Future: The Energy Frontier Research Centers Summit and Forum. The three-day event will bring together scientists and energy policy leaders to explore the challenges and opportunities in applying America's extraordinary scientific and technical resources to helping shape our clean energy future. Secretary Chu will give the opening keynote address on Wednesday, May 25 and discuss how technology and innovation can help solve the nation's energy needs.

449

Proposal to utilize fusion reactor energy sources for chemical process applications  

DOE Green Energy (OSTI)

We propose to study the utilization of high-temperature (approximately 2000-2500K) process heat from fusion reactors for large-scale chemical process applications. Of particular interest is the decomposition reaction, CO/sub 2/ ..-->.. CO + /sup 1///sub 2/O/sub 2/, which at 2500K should yield approximately 60 percent conversion to CO if O/sub 2/ is partially removed through an oxide membrane. Hydrogen can be derived from CO at lower temperatures by reacting CO with steam, and C can also be derived from CO by a disproportionation into C and CO/sub 2/ at approximately 1000K. These chemicals, CO, H/sub 2/, and C, form the basis for a multitude of non-electrical energy applications in the areas of transportation, industrial processes, and residential and commercial uses. In addition to the CO/sub 2/ decomposition process, we propose to explore a variety of ideas and evaluate them for scientific and economic merit. A follow-on research and development program will be proposed if the ideas prove promising.

Krikorian, O. H.

1977-09-22T23:59:59.000Z

450

ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WA (DOEEIS-0467) FOSSIL ENERGY 12. Hydrogen Energy California's Integrated Gasification Combined Cycle Project, CA (DOEEIS-0431) 13. FutureGen 2.0 (DOEEIS-0460) 14. Lake...

451

Journal of Energy & Environmental Research  

NLE Websites -- All DOE Office Websites (Extended Search)

anced Resources International, Inc. Hugh D. Guthrie U.S. Depa rtment of Energy, National Energy Technology Laboratory Journal Papers-Modeling 87 Engineering Feasibility of CO 2...

452

Beijing Solar Energy Research Institute BSERI | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Research Institute BSERI Solar Energy Research Institute BSERI Jump to: navigation, search Name Beijing Solar Energy Research Institute (BSERI) Place Beijing, Beijing Municipality, China Zip 100083 Sector Solar Product Founded in 1979, this institute is known as one of the biggest solar energy R&D institutions in China. References Beijing Solar Energy Research Institute (BSERI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Solar Energy Research Institute (BSERI) is a company located in Beijing, Beijing Municipality, China . References ↑ "Beijing Solar Energy Research Institute (BSERI)" Retrieved from "http://en.openei.org/w/index.php?title=Beijing_Solar_Energy_Research_Institute_BSERI&oldid=342636"

453

Beams, brightness, and background: Using active spectroscopy techniques for precision measurements in fusion plasma research  

Science Conference Proceedings (OSTI)

The use of an injected neutral beam-either a dedicated diagnostic beam or the main heating beams-to localize and enhance plasma spectroscopic measurements can be exploited for a number of key physics issues in magnetic confinement fusion research, yielding detailed profile information on thermal and fast ion parameters, the radial electric field, plasma current density, and turbulent transport. The ability to make these measurements has played a significant role in much of our recent progress in the scientific understanding of fusion plasmas. The measurements can utilize emission from excited state transitions either from plasma ions or from the beam atoms themselves. The primary requirement is that the beam 'probe' interacts with the plasma in a known fashion. Advantages of active spectroscopy include high spatial resolution due to the enhanced localization of the emission and the use of appropriate imaging optics, background rejection through the appropriate modulation and timing of the beam and emission collection/detection system, and the ability of the beam to populate emitter states that are either nonexistent or too dim to utilize effectively in the case of standard or passive spectroscopy. In addition, some active techniques offer the diagnostician unique information because of the specific quantum physics responsible for the emission. This paper will describe the general principles behind a successful active spectroscopic measurement, emphasize specific techniques that facilitate the measurements and include several successful examples of their implementation, briefly touching on some of the more important physics results. It concludes with a few remarks about the relevance and requirements of active spectroscopic techniques for future burning plasma experiments.

Thomas, Dan M. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

2012-05-15T23:59:59.000Z

454

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

455

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS A chart listing the recipients of the 2006 Nuclear Energy Research Initiative Awards. 2006...

456

2006 Nuclear Energy Research Initiative Awards | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Initiative Awards 2006 Nuclear Energy Research Initiative Awards This is the list of winners from the 2006 Nuclear Energy Research Initiative Awards. 2006...

457

Grid Storage and the Energy Frontier Research Centers | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

458

Clark Atlanta Universities (CAU) Energy Related Research Capabilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Atlanta Universities (CAU) Energy Related Research Capabilities Clark Atlanta Universities (CAU) Energy Related Research Capabilities How energy related research has helped...

459

Researching Energy Use in Hospitals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Research Projects » Researching Energy Use Commercial Buildings » Research Projects » Researching Energy Use in Hospitals Researching Energy Use in Hospitals The Building Technologies Office (BTO) is monitoring hospitals to help facility and energy managers identify ways to save energy. Hospital professionals find it challenging to identify "energy hogs" in their buildings because the industry lacks actual energy use data for mechanical systems and devices. Professionals have asked for real-world information to identify cost-effective energy saving opportunities. This research ultimately will help hospitals improve energy efficiency, freeing up funding to improve healthcare services. Photo of a radiology technician assisting a patient into a 64-slice CT Scanner for diagnostic testing.

460

Vintage DOE: What is Fusion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the time this video was made. Among the latest advancements, the Department of Energy's NIF laser located at the National Ignition Facility in California recently set two new...

Note: This page contains sample records for the topic "fusion energy research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Department of Energy Awards $92 Million for Groundbreaking Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards $92 Million for Groundbreaking Energy Department of Energy Awards $92 Million for Groundbreaking Energy Research Projects Department of Energy Awards $92 Million for Groundbreaking Energy Research Projects July 12, 2010 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced 43 cutting-edge research projects that aim to dramatically improve how the U.S. uses and produces energy. Funded with $92 million from the American Recovery and Reinvestment Act through the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E), today's selections focus on accelerating innovation in green technology while increasing America's competitiveness in grid scale energy storage, power electronics and building efficiency. "These innovative ideas will play a critical role in our energy security

462

Extending the Capabilities of the DIII-D Plasma Control System for Worldwide Fusion Research Collaborations (A26193)  

E-Print Network (OSTI)

Proc. Of 25th Symposium On Fusion Technology, Rostock, Germany, 2008; To Be Published In Fusion Eng. Design25th Symposium on Fusion Technology Rostock, DE, 2008999614990

Penaflor, B.G.

2008-08-21T23:59:59.000Z

463

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

Science Conference Proceedings (OSTI)

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote collaboration with the control room of a Tokamak running an experiment. This is especially important since the current plans for ITER assume that this problem will be solved.

Tierney, Brian; Dart, Eli; Tierney, Brian

2008-07-10T23:59:59.000Z

464

EERE Postdoctoral Research Awards: Energy Efficiency and Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Postdoctoral Research Awards Contacts to someone by E-mail Share EERE Postdoctoral Research Awards: Energy Efficiency and Renewable Energy...

465

Energy Department to Award $100 Million for Energy Frontier Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Award $100 Million for Energy Frontier to Award $100 Million for Energy Frontier Research Centers Energy Department to Award $100 Million for Energy Frontier Research Centers September 30, 2013 - 4:39pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - U.S. Energy Secretary Ernest Moniz today announced a proposed $100 million in FY2014 funding for Energy Frontier Research Centers to accelerate the scientific breakthroughs needed to build a new 21st-century energy economy. Research supported by this initiative will enable fundamental advances in energy production and use. "Transforming how we generate, transmit, store and use energy is one of the greatest scientific challenges we face in the changing energy landscape," said Secretary Moniz. "This funding will help fuel innovative solutions as we move toward next generation energy systems."

466

Energy Department - Electric Power Research Institute Cooperation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooperation to Increase Energy Efficiency March 6, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI)...

467

NREL: Energy Systems Integration - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Energy systems integration optimizes the design and performance of electrical, thermal, and fuel systems at different but interrelated scales, ranging from...

468

Energy Frontier Research Centers | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage. And Argonne is a key partner in two other Centers: the Argonne-Northwestern Solar Energy Research Center and the Center for Emergent Superconductivity. Argonne's...

469

NERSC: National Energy Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

and share massive bio-imaging datasets. Read More National Energy Research Scientific Computing Center Computing at NERSC OURSYSTEMS GETTINGSTARTED DOCUMENTATIONFOR USERS...

470

NREL: Energy Storage - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Photo of thermal imaging of a battery. Advancing energy storage devices is a crucial pathway in the development of fuel cell, hybrid electric, and electric...

471

Arrowhead Research Corporation | Open Energy Information  

Open Energy Info (EERE)

Zip 91106 Product Diversified nanotechnology company focusing on electronics, life sciences, and energy products. References Arrowhead Research Corporation1 LinkedIn...