Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted=  

E-Print Network [OSTI]

States plan to build a $5 billion fusion reactor, called the International Thermonuclear ExperimentalU.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted= print&position=top Page: 1 January 30, 2003 U.S. to Participate in Fusion Project By THE ASSOCIATED

2

Advanced fusion concepts: project summaries  

SciTech Connect (OSTI)

This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

None

1980-12-01T23:59:59.000Z

3

Fusion energy  

ScienceCinema (OSTI)

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-23T23:59:59.000Z

4

Fusion energy  

SciTech Connect (OSTI)

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-02T23:59:59.000Z

5

Fusion Plasma Theory project summaries  

SciTech Connect (OSTI)

This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

Not Available

1993-10-01T23:59:59.000Z

6

Fusion Simulation Project. Workshop sponsored by the U.S. Department of Energy Rockville, MD, May 16-18, 2007  

SciTech Connect (OSTI)

The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

None

2007-05-16T23:59:59.000Z

7

Fusion Simulation Project. Workshop Sponsored by the U.S. Department of Energy, Rockville, MD, May 16-18, 2007  

SciTech Connect (OSTI)

The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

Kritz, A.; Keyes, D.

2007-05-18T23:59:59.000Z

8

"50" Years of Fusion Research Fusion Innovation Research and Energy  

E-Print Network [OSTI]

Classified US Program on Controlled Thermonuclear Fusion (Project Sherwood) carried out until 1958 when"50" Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ Fi P th SFusion Fire Powers the Sun "W d t if k f i k ""We need to see if we can make fusion work

9

ITER Fusion Energy  

ScienceCinema (OSTI)

ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

Dr. Norbert Holtkamp

2010-01-08T23:59:59.000Z

10

Fusion Power Associates Fusion Energy Sciences Program  

E-Print Network [OSTI]

experiments ­ Further work on inertial fusion energy technology ­ Take advantage of opportunities in HEDP on several smaller experiments ­ Further work on inertial fusion energy technology · Focus IFE first wall

11

Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

12

How Fusion Energy Works  

Broader source: Energy.gov [DOE]

Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

13

on the Establishment of the ITER International Fusion Energy Organization for the Joint Implementation of the ITER Project  

E-Print Network [OSTI]

AGREEMENT on the Establishment of the ITER International Fusion Energy Organization for the Joint Fusion Energy Organization Article 2 Purpose of the ITER Organization Article 3 Functions of the ITER://fusionforenergy.europa.eu/downloads/aboutf4e/l_35820061216en00620081.pdf #12;Preamble The European Atomic Energy Community (hereinafter

14

Fusion Energy Sciences Program Mission  

E-Print Network [OSTI]

Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion power has the long-range potential to serve as an abundant and clean source of energy and recommends

15

Fusion Energy Program Presentation to  

E-Print Network [OSTI]

International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced MaterialsFusion Energy Program Presentation to Field Work Proposals Washington, D.C. N. Anne Davies Associate Director for Fusion energy Office of Energy Research March23, 1994 #12;FUSION ENERGY PROGRAM FYI

16

Status of Research on Fusion Energy and Plasma Turbulence  

E-Print Network [OSTI]

Status of Research on Fusion Energy and Plasma Turbulence Candy, Waltz (General Atomics) Greg Project · A DOE, Office of Fusion Energy Sciences, SciDAC (Scientific Discovery Through Advanced Computing_annual.html #12;#12;#12;Progress in Fusion Energy Outpaced Computers J.B. Lister #12;Progress in Fusion

Hammett, Greg

17

(Fusion energy research)  

SciTech Connect (OSTI)

This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

Phillips, C.A. (ed.)

1988-01-01T23:59:59.000Z

18

Bold Step by the World to Fusion Energy: ITER  

E-Print Network [OSTI]

THE DESIGN OF ITER · ITER PROJECT & ROLE OF THE UNITED STATES · PATH FROM ITER TO PRACTICAL FUSION POWER #12;Elements of a D-T Fusion Energy System ~ D-Li Plasma Heating Drivers or Confinement Balance of PlantD = nT = n TOTAL THERMAL ENERGY IN FUSION FUEL, DEFINE "ENERGY CONFINEMENT TIME", E ENERGY BALANCE dW d

19

Fusion: an energy source for synthetic fuels  

SciTech Connect (OSTI)

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

Fillo, J A; Powell, J; Steinberg, M

1980-01-01T23:59:59.000Z

20

50 Years of Fusion Research Fusion Innovation Research and Energy  

E-Print Network [OSTI]

, .... · Controlled Thermonuclear Fusion had great potential ­ Uncontrolled Thermonuclear fusion demonstrated in 19521 50 Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ SOFE 2009 June 1, 2009 San Diego, CA 92101 #12;2 #12;2 #12;3 Fusion Prior to Geneva 1958 · A period of rapid

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fusion project decision delayed ITER -NUCLEAR FUSION PROJECT  

E-Print Network [OSTI]

that are needed," said Hidekazu Tanaka, a senior official of the Japanese Education, Culture, Sports, Science at the level of an electricity- producing power station. Its goal will be to produce 500 megawatts of fusion

22

Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFunding availableFusion

23

Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFunding availableFusion Large

24

Report of the FESAC Inertial Fusion Energy Review Panel  

SciTech Connect (OSTI)

This article is a response to the Office of Energy Research of the US DOE from the Fusion Energy Advisory Committee on a review of the Inertial Fusion Energy Program. This response was solicited in response to one of the suggestions made as part of the advisory report `A Restructured Fusion Energy Sciences Program` submitted to the US DOE in early 1996. The charge directed that the committee provide an assessment of the content of an inertial fusion energy program that advances the scientific elements of the program and is consistent with the Fusion Energy Sciences Program, and budget projections over the next several years.

Sheffield, J.; Abdou, M.; Briggs, R. [and others

1996-12-01T23:59:59.000Z

25

The Daily Princetonian -International fusion project will use Princeton physics lab Summer Program  

E-Print Network [OSTI]

to determine the viability of exploiting cold fusion as an energy source around the world. Much of the researchThe Daily Princetonian - International fusion project will use Princeton physics lab Summer Program | Previous | Next | Calendar International fusion project will use Princeton physics lab By ABBY WILLIAMS

26

China To Build Its Own Fusion Reactor ENERGY TECH  

E-Print Network [OSTI]

Thermonuclear Experimental Reactor project reached agreement in Moscow Tuesday to construct the first fusion devices in thermonuclear reaction," and that "Chinese scientists started to develop a fusion operationChina To Build Its Own Fusion Reactor ENERGY TECH by Edward Lanfranco Beijing (UPI) July 1, 2005

27

Path toward fusion energy  

SciTech Connect (OSTI)

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

28

Realization of Fusion Energy: An alternative fusion roadmap  

E-Print Network [OSTI]

Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

29

Fusion Electricity A roadmap to the realisation of fusion energy  

E-Print Network [OSTI]

Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed association EURaToM University of latvia LATVIA lithuanian Energy Institute LITHUANIA Ministry of Education and Research ROMANIA Ministry of Education, science, culture and sport SLOVENIA centro de Investigaciones

30

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

31

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

32

JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER  

E-Print Network [OSTI]

JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergy Fusion fuel: deuterium et tritium Deuterium: plenty in the ocean Tritium: made in situ from Lithium

33

Introduction to Fusion Energy Jerry Hughes  

E-Print Network [OSTI]

;Terrestrial energy sources have their origin in the nuclear fusion reactions of stars Supernova produces Earth #12;Terrestrial energy sources have their origin in the nuclear fusion reactions of stars energy sources have their origin in the nuclear fusion reactions of stars Geothermal Nuclear fission

34

Laser Fusion Energy The High Average Power  

E-Print Network [OSTI]

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

35

Z-Pinch Fusion for Energy Applications  

SciTech Connect (OSTI)

Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

SPIELMAN,RICK B.

2000-01-01T23:59:59.000Z

36

United Press International: U.S. to join international fusion project Friday, January 31, 2003  

E-Print Network [OSTI]

Abraham said Thursday. Known as ITER -- from the Latin word meaning "the way" -- the project is intended, renewable, and commercially-available fusion energy by the middle of this century," Bush said in a written such an announcement at the university, where physicist Lyman Spitzer began America's first fusion research efforts

37

Fusion Energy Sciences Jobs  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC)Opportunities AdvancedOpportunitiesOffice

38

The Path to Magnetic Fusion Energy  

SciTech Connect (OSTI)

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL) [PPPL

2011-05-04T23:59:59.000Z

39

Distribution Category: Magnetic Fusion Energy  

E-Print Network [OSTI]

. Abdou Fusion Power Program October 1982 Invited paper presented at the International Conference by Mohamed A. Abdou ABSTRACT Key technological problems that influence tritium breeding in fusion blankets

Abdou, Mohamed

40

Plasma Physics and Fusion Energy Miklos Porkolab  

E-Print Network [OSTI]

Plasma Physics and Fusion Energy Miklos Porkolab MIT Plasma Science and Fusion Center Presented at the Fusion Power Associates Annual Meeting Washington, D.C. December 2-3, 2009 Porkolab_FPA_2009 #12;Proposed is sufficient physics to make ITER a success but much more to learn for DEMO grade plasmas See review talk

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sean Finnegan & Ann Satsangi Fusion Energy Sciences  

E-Print Network [OSTI]

Energy (IFE) science. #12;HEDLP definition "High-energy-density laboratory plasma (HEDLP) physicsSean Finnegan & Ann Satsangi Fusion Energy Sciences Program Management Team for HEDLP Fusion Power Associates15 December 2011 Comments on the DOE-SC Program in High Energy Density Laboratory Plasma Science

42

Journal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report  

E-Print Network [OSTI]

.2. A Brief History of Heavy Ion Fusion The heavy ion fusion approach to inertial fusion energy (IFEJournal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report on Inertial Fusion Energy 1 Ronald Davidson,2 Barrett Ripin, Mohamed Abdou, David E. Baldwin

Abdou, Mohamed

43

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

Kramer, Kevin James

2010-01-01T23:59:59.000Z

44

Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

. Benefits Total world energy consumption has increased by more than 50% during the past 25 years, and given,182 31,317 Total, Fusion Energy Sciences 280,683a 318,950 427,850 Public Law Authorizations: Public LawScience/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile

45

A Strategic Program Plan for Fusion Energy Sciences Fusion Energy Sciences  

E-Print Network [OSTI]

, while creating manageable waste and little risk to public safety and health. Making fusion energy a part light atoms such as those of hydrogen, holds great promise for clean and abundant energy produc- tionA Strategic Program Plan for Fusion Energy Sciences 1 Fusion Energy Sciences #12;2 Bringing

46

ITER pioneers receive prestigious Russian energy prize of June in Saint Petersburg, three pioneers of the international fusion project  

E-Print Network [OSTI]

Vladimir Putin, president of the Russian Federation. The laureates -- the Russian academician Evgeniy speech during the prize ceremony, President Putin said: "I will emphasize that as one of the world Putin in Saint Petersburg earlier today. Evgeniy Velikhov is one of the founders of the ITER project

47

Journal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review Panel  

E-Print Network [OSTI]

participation in the of the Fusion Energy Sciences Program of the Office of International Thermonuclear ReactorJournal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review. S. Department of Energy Fusion Energy Advisory Committee (FEAC) review of its Inertial Fusion Energy

Abdou, Mohamed

48

Fusion Engineering and Design 41 (1998) 393400 Economic goals and requirements for competitive fusion energy  

E-Print Network [OSTI]

optimization and selection in mind, tradeoffs among system power density, recirculating power, plant and methodology of cost projections for magnetic-fusion-energy central-station electric power plants have been near- term research and development programs, for fu- sion and other advanced generation systems

California at San Diego, University of

49

Role of Fusion Energy in a Sustainable Global Energy Strategy  

SciTech Connect (OSTI)

Fusion can play an important role in sustainable global energy because it has an available and unlimited fuel supply and location not restricted by climate or geography. Further, it emits no greenhouse gases. It has no potential for large energy releases in an accident, and no need for more than about 100 years retention for radioactive waste disposal. Substantial progress in the realization of fusion energy has been made during the past 20 years of research. It is now possible to produce significant amounts of energy from controlled deuterium and tritium (DT) reactions in the laboratory. This has led to a growing confidence in our ability to produce burning plasmas with significant energy gain in the next generation of fusion experiments. As success in fusion facilities has underpinned the scientific feasibility of fusion, the high cost of next-step fusion facilities has led to a shift in the focus of international fusion research towards a lower cost development path and an attractive end product. The increasing data base from fusion research allows conceptual fusion power plant studies, of both magnetic and inertial confinement approaches to fusion, to translate commercial requirements into the design features that must be met if fusion is to play a role in the world's energy mix; and identify key R and D items; and benchmark progress in fusion energy development. This paper addresses the question, ''Is mankind closer or farther away from controlled fusion than a few decades ago?'' We review the tremendous scientific progress during the last 10 years. We use the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements of an attractive fusion system with present achievements and to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the energy market.

Sheffield, J.

2001-03-07T23:59:59.000Z

50

SCIENTIFIC & COMPUTATIONAL CHALLENGES OF THE FUSION SIMULATION PROJECT (FSP)  

E-Print Network [OSTI]

used in ITER will be the same as those required in a power plant but additional R&D will be neededSCIENTIFIC & COMPUTATIONAL CHALLENGES OF THE FUSION SIMULATION PROJECT (FSP) SciDAC 2008 CONFERENCE of the Scientific and Technological Feasibility of Fusion Power · ITER is a truly dramatic step. For the first time

51

FESAC FUSION SIMULATION PROJECT (FSP) PANEL REPORT William Tang1  

E-Print Network [OSTI]

power plant (DEMO), further science and technology is needed to achieve the 2500 MW of continuous power1 FESAC FUSION SIMULATION PROJECT (FSP) PANEL REPORT William Tang1 , Riccardo Betti2 , Jeffrey) to FESAC, Dr. Raymond Orbach clearly identifies the overarching objective of the proposed Fusion Simulation

52

Cost increases at fusion project going critical David Kramer  

E-Print Network [OSTI]

Cost increases at fusion project going critical David Kramer Citation: Phys. Today 66(7), 24 (2013 Office to figure out how much the project will cost and what the US will have to pay. During a hearing. Congress can't evaluate the cost without a project baseline." Feinstein said she'd been told by DOE

53

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

aspects of a hybrid fusion-fission energy system called theof a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevin

Kramer, Kevin James

2010-01-01T23:59:59.000Z

54

Culham Centre for Fusion Energy Fusion -A clean future  

E-Print Network [OSTI]

, scientists and engineers are working to make fusion a real option for our electricity supply.At the forefront consumption is expected to grow dramatically over the next fifty years as the world's population expands; Governments are divided over whether to include nuclear fission in their energy portfolios; and renewable

55

EPRI Fusion Energy Assessment July 19, 2011  

E-Print Network [OSTI]

EPRI Fusion Energy Assessment July 19, 2011 Palo Alto, CA Roadmapping an MFE Strategy R.J. Fonck research program RJF EPRI 2011 #12;ACCELERATE MFE VIA FUSION NUCLEAR S&T PROGRAM IN ITER TIMEFRAME #12;THE development · Similar efforts, and results, pursued by international partners RJF EPRI 2011 #12;THE SEQUENCE

56

RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET  

E-Print Network [OSTI]

RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET A group called the Energy Efficiency Education-effective and environmentally sound energy- efficiency and renewable energy programs." Rep. Philip R. Sharp (D-IN) and chair the resolution, H. Con. Res. 188). Sharp said "For too long, cost-effectiveefficiencyand renewable energy

57

Pulsed Power Driven Fusion Energy  

SciTech Connect (OSTI)

Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

SLUTZ,STEPHEN A.

1999-11-22T23:59:59.000Z

58

Information Technology Systems for Fusion Industry and ITER Project  

SciTech Connect (OSTI)

The industrial developments in the fusion industry will have to overcome numerous technical challenges and will have a strong need for modern information technology (IT) systems.The fusion industry has manifested itself with an unprecedented international collaboration, the International Thermonuclear Experimental Reactor (ITER). Data accumulated in ITER will be the major output of the project and will create the knowledge base for a future fusion power plant. A modern and effective information infrastructure will be critical to the success of the ITER project.To accumulate and maintain the knowledge base at all stages of the project, we propose to build an integrated information system for ITER: ITER Information Plant (IIP). IIP will minimize lost experiment time and accelerate the understanding, interpretation, and planning of fusion experiments. IIP will allow to reap maximum benefits from the project's scientific and technological achievements, make the ITER results accessible to hundreds of researchers worldwide. This will facilitate collaboration, dramatically increasing the pace of scientific and technological discovery and the rate at which practical use is made of these discoveries.As the first of its kind, the ITER Information Plant could be used in the future as a prototype IT system for national and international fusion projects, in which multicountry collaboration, distributed work sites and operations are catalysts for success.

Putvinskaya, N.; Bulasheva, N.; Cole, G.; Dillon, T.; Frieman, E.; Sabado, M.; Schissel, D. (and others)

2005-04-15T23:59:59.000Z

59

Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century  

E-Print Network [OSTI]

that the main cause of recent global warming is atmospheric pollution 20th International Atomic Energy AgencyNuclear Fusion (Safe & low level radioactive(Safe & low level radioactive waste, no atmospheric pollution)waste, no atmospheric pollution) 20th International Atomic Energy Agency, Fusion Energy Conference, Vilamoura, Portugal

60

CALIFORNIA ENERGY Project Brochures  

E-Print Network [OSTI]

the integrated design, construction, and operation of building systems. The Integrated Energy SystemsCALIFORNIA ENERGY COMMISSION Project Brochures Integrated Energy Systems: Productivity and Building of a larger research effort called Integrated Energy Systems: Productivity and Building Science Program

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Panel  

E-Print Network [OSTI]

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review on a specific recommendation made by your Committee in its report, "A Restructured Fusion Energy Sciences Pro Committee report of 1990, we had taken as our highest priority in inertial fusion energy the development

Abdou, Mohamed

62

Alternative pathways to fusion energy (focus on Department of Energy  

E-Print Network [OSTI]

Alternative pathways to fusion energy (focus on Department of Energy Innovative Confinement for a restructured fusion energy science program [5] 1996 | FESAC: Opportunities in Alternative Confinement Concepts, suggests program for Innovative Concepts [1] 1995 | OTA TPX and the Alternates [2] 1995 | PCAST (given flat

63

An Assessment of the Department of Energy's Office of Fusion Energy  

E-Print Network [OSTI]

competences and with regard for appropriate balance. This project was supported by the Department of Energy reserved. Printed in the United States of America #12;The National Academy of Sciences is a privateAn Assessment of the Department of Energy's Office of Fusion Energy Sciences Program NATIONAL

64

MSc in Plasma Physics & Applications Laser Fusion Energy  

E-Print Network [OSTI]

. Thermonuclear fusion provides unlimited energy for all the world which is clean from long lived radioactiveMSc in Plasma Physics & Applications Laser Fusion Energy Why laser fusionDescription of the course fusion for energy production. This unique training scheme involves eight leading European centres

Paxton, Anthony T.

65

Fusion cross sections at deep subbarrier energies  

E-Print Network [OSTI]

A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisingly large surface diffusenesses required to fit recent high-precision fusion data.

K. Hagino; N. Rowley; M. Dasgupta

2003-02-12T23:59:59.000Z

66

Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy CrisisEnergy Crisis  

E-Print Network [OSTI]

Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy Crisis.maclellan@strath.ac.uk Introduction and Motivation What is Nuclear Fusion? Laser Plasma Interactions The world, and particularly is harnessing the power of nuclear fusion. It is however, extremely difficult to sustain a fusion reaction

Strathclyde, University of

67

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network [OSTI]

1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion

Najmabadi, Farrokh

68

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network [OSTI]

1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion

69

THE NATIONAL FUSION COLLABORATORY PROJECT: APPLYING GRID TECHNOLOGY FOR MAGNETIC FUSION RESEARCH  

E-Print Network [OSTI]

of advanced software tools that reduce technical barriers to collaboration and sharing on a national scale. Our vision is to make resources -- data, computers along with analysis, simulation and visualization-institutional collaboration on fusion experiments, and improving comparisons between experiments and theory. The project

Thompson, Mary R.

70

The National Ignition Facility (NIF) A Path to Fusion Energy  

SciTech Connect (OSTI)

Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

Moses, E

2006-11-27T23:59:59.000Z

71

Fusion Power Associates Annual Meeting and Symposium Fusion Energy: Preparing for the NIF and ITER Era  

E-Print Network [OSTI]

Fusion Power Associates Annual Meeting and Symposium Fusion Energy: Preparing for the NIF and ITER of Directors 8:20 Presentation of Awards ­ S. Dean, President, FPA 8:30 Fusion at the Department of Energy Technology Program­ Stan Milora, ORNL 1:40 Issues and Opportunities from ITER Review ­ R. Hawryluk, PPPL 2

72

http://science.energy.gov/fes Establishing the scien.fic basis for fusion energy  

E-Print Network [OSTI]

http://science.energy.gov/fes Establishing the scien.fic basis for fusion energy and plasma science goals · Office of Science role regarding fusion energy: establish university engagement and leadership. Fusion materials science will be an increasing

73

U. S. FUSION ENERGY FUTURE John A. Schmidt, Dan Jassby, Scott Larson, Maria Pueyo, and Paul H. Rutherford  

E-Print Network [OSTI]

with fusion development plans in Japan and Europe [e.g. 2]. The primary source of energy demand projections that was used as a basis for this assessment was the World Energy Council/IIASA Global Energy Perspectives [3U. S. FUSION ENERGY FUTURE John A. Schmidt, Dan Jassby, Scott Larson, Maria Pueyo, and Paul H

74

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

24 Department of Advanced Energy Nuclear Fusion Research Education Program 23 8 23 to Nuclear Fusion Research Education Program 277-8561 5-1-5 1 04-7136-4092 http://www.k.u-tokyo.ac.jp/fusion: nemoto@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12

Yamamoto, Hirosuke

75

Taming turbulence in magnetized plasmas: from fusion energy to  

E-Print Network [OSTI]

occurs (fusion of particle beams will not work...) Thermonuclear fusion in a confined plasma (T~10 keTaming turbulence in magnetized plasmas: from fusion energy to black hole accretion disks Troy?: In fusion plasmas turbulent leakage of heat and particles is a key issue. Sheared flow can suppress

76

Energy Sources Used for Fusion Welding  

E-Print Network [OSTI]

) Energy Sources Used for Fusion Welding Thomas W. Eagar, Massachusetts Institute of Technology WELDING AND JOINING processes are es- sential for the development of virtually every manufactured product this situation. First, welding and joining are multifaceted, both in terms of process variations (such as fas

Eagar, Thomas W.

77

Battleground Energy Recovery Project  

SciTech Connect (OSTI)

In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

Daniel Bullock

2011-12-31T23:59:59.000Z

78

Energy Efficiency Project Development  

SciTech Connect (OSTI)

The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

IUEP

2004-03-01T23:59:59.000Z

79

Liquid Vortex Shielding for Fusion Energy Applications  

SciTech Connect (OSTI)

Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

2005-05-15T23:59:59.000Z

80

The ITER Project: Advancing Hydrogen Fusion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience andFebruaryTheFarrel W.GreatProcess of

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy  

E-Print Network [OSTI]

-consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

82

Renewable energy projects approved  

Broader source: Energy.gov [DOE]

Two renewable energy projects representing a $100 million-plus investment by Las Vegas-based Nevada Power Co.a cost likely to be covered over time by the utility's customerswere approved Wednesday by state regulators.

83

DANCING WITH THE STARSDANCING WITH THE STARS QUEST FOR FUSION ENERGYQUEST FOR FUSION ENERGY  

E-Print Network [OSTI]

Selection London (1859) #12;Hermann von Helmholtz Conservation of Energy Conversion of Mechanical Energy of the =Sun 264 10 Watts? Potential energy Solar power out Su pu n's lifetime t 14 6 10 .sec= ?= The Sun wouldDANCING WITH THE STARSDANCING WITH THE STARS QUEST FOR FUSION ENERGYQUEST FOR FUSION ENERGY Abhay

84

Energy Scaling Laws for Distributed Inference in Random Fusion Networks  

E-Print Network [OSTI]

the minimum spanning tree, and above by a suboptimal policy, referred to as Data Fusion for Markov Random, the policy with the minimum average energy consumption is bounded below by the average energy of fusion along models, Eu- clidean random graphs, stochastic geometry and data fusion. I. INTRODUCTION WE consider

Yukich, Joseph E.

85

Projects | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergyProjectProjects Projects All 1703

86

Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers  

E-Print Network [OSTI]

The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

2006-01-25T23:59:59.000Z

87

Vintage DOE: What is Fusion | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vintage DOE: What is Fusion Vintage DOE: What is Fusion January 10, 2011 - 12:45pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public...

88

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

89

Renewable Energy & Energy Efficiency Projects: Loan Guarantee...  

Broader source: Energy.gov (indexed) [DOE]

Plenary III: Project Finance and Investment Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Valri Lightner, Assistant Director, Technical Division at...

90

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

E-Print Network [OSTI]

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

F. Muhammad Zamrun; K. Hagino; N. Takigawa

2006-06-07T23:59:59.000Z

91

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

SciTech Connect (OSTI)

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of 16O with 154,144Sm, 186W and 208Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two 64Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

Zamrun, Muhammad; Hagino, F. K.; Takigawa, N. [Department of Physics, Tohoku University, 980-8578 (Japan)

2006-08-14T23:59:59.000Z

92

Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program  

E-Print Network [OSTI]

, Livermore, CA 94551. 6 University of Wisconsin, Madison, WI 53706. 7 Columbia University, New York, NY 10027Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion

Abdou, Mohamed

93

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

23 Department of Advanced Energy Nuclear Fusion Research Education Program 22 8 24) (1) (2) (3) (4) (5) (6) (7) (8) #12;- 7 - 23 Guide to Nuclear Fusion Research Education@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12;- 3 - (1) TOEFL TOEIC

Yamamoto, Hirosuke

94

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

26 Department of Advanced Energy Nuclear Fusion Research Education Program 25 8 20) #12; 26 Guide to Nuclear Fusion Research Education Program 03-5841-6563 E-mail : ae: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 , 7 12 http://www. k.u-tokyo.ac.jp/fusion

Yamamoto, Hirosuke

95

Fusion Energy Advisory Committee (FEAC): Panel 7 report on Inertial Fusion Energy  

SciTech Connect (OSTI)

The charge to FEAC Panel 7 on inertial fusion energy (IFE) is encompassed in the four articles of correspondence. To briefly summarize, the scope of the panel`s review and analysis adhered to the following guidelines. (1) Consistent with previous recommendations by the Fusion Policy Advisory Committee (FPAC) and the National Academy of Science (NAS) panel on inertial fusion, the principal focus of FEAC Panel 7`s review and planning activities for next-generation experimental facilities in IFE was limited to heavy ions. (2) The panel considered the three budget cases: $5M, $10M, and $15M annual funding at constant level-of-effort (FY92 dollars), with a time horizon of about five years. (3) While limiting the analysis of next-generation experimental facilities to heavy ions, the panel assessed both the induction and rf linac approaches, and factored European plans into its considerations as well. (4) Finally, the panel identified high-priority areas in system studies and supporting IFE technologies, taking into account how IFE can benefit from related activities funded by the Office of Fusion Energy and by Defense Programs. This report presents the technical assessment, findings, and recommendations on inertial fusion energy prepared by FEAC Panel 7.

Davidson, R.; Ripin, B.; Abdou, M.; Baldwin, D.E.; Commisso, R.; Dean, S.O.; Herrmannsfeldt, W.; Lee, E.; Lindl, J.; McCrory, R. [Princeton Univ., NJ (United States)] [and others

1994-09-01T23:59:59.000Z

96

A roadmap to the realiza/on of fusion energy  

E-Print Network [OSTI]

A roadmap to the realiza/on of fusion energy Francesco Romanelli, EFDA STAC #12;Why a roadmap · The need for a long-term strategy on energy Strategic Energy Technology plan, Energy Roadmap 2050 · In this context, Fusion must

97

Friday February 20, 2004 Three compromise plans eyed for fusion project site  

E-Print Network [OSTI]

Friday February 20, 2004 Three compromise plans eyed for fusion project site A team of experts on an international nuclear fusion project has drawn up three compromise proposals in a bid to resolve the row over said. The six parties involved in the Thermonuclear Experimental Reactor (ITER) project have been

98

Monday, February 23, 2004 Decision on site for fusion project is put off again  

E-Print Network [OSTI]

Monday, February 23, 2004 Decision on site for fusion project is put off again VIENNA (Kyodo) The six parties involved in an international nuclear fusion project have again failed to decide on either in March. Senior officials of the parties to the International Thermonuclear Experimental Reactor project

99

France to win huge nuclear fusion project 10:42 24 June 2005  

E-Print Network [OSTI]

://www.newscientist.com/article.ns?id=mg18524831.100 22 January 2005 Weblinks International Thermonuclear Experimental Reactor http://www.ofes.fusionFrance to win huge nuclear fusion project 10:42 24 June 2005 NewScientist.com news service Rob Edwards A long and bitter dispute about where to site the world's largest nuclear fusion reactor looks all

100

Fusion energy | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFundingSciencesFusion

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Scientists discuss progress toward magnetic fusion energy at...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in...

102

Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind  

E-Print Network [OSTI]

from renewables (wind power, solar power, hydropower, geothermal, ocean wave & tidal power, biomass energy resources (coal 43%, natural gas 19%, oil 6%, cogeneration 7%); ~21% by nuclear fission power the Moon. #12;ADVANTAGES OF FUSION · Abundant Supply of Fuel (deuterium and tritium) · No Risk of Nuclear

Chen, Yang-Yuan

103

Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandIDLDRD Project ListProjects

104

Fun With Plasma Turbulence, From Fusion Energy to Black Holes  

E-Print Network [OSTI]

) & in astrophysics · Summarize status of fusion energy research · Cross-validation: statistical techniques useful Energy is Essentially Unchanged since 1980 Cumulative Funding 0 5000 10000 15000 20000 25000 30000 35000Fun With Plasma Turbulence, From Fusion Energy to Black Holes Greg Hammett Miller Visiting Research

Hammett, Greg

105

BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)  

E-Print Network [OSTI]

BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

106

ITER project to solve global energy problems 15/11/2005 18:29  

E-Print Network [OSTI]

project, which involves countries conducting extensive research on controlled thermonuclear fusion thermonuclear fusion, which is much safer than nuclear energy. Thermonuclear reactors cannot explode the way anything about thermonuclear fusion only fifty years ago. Nobel Prize winner Academician Igor Tamm and one

107

Z-inertial fusion energy: power plant final report FY 2006.  

SciTech Connect (OSTI)

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

2006-10-01T23:59:59.000Z

108

Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine  

SciTech Connect (OSTI)

The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

2010-11-30T23:59:59.000Z

109

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

Example of NIF fusion target hohlraum with multiple beamsimilar to those used on NIF. . . . . Overview of LFFHNES Nuclear Energy System NIF National Ignition Facility ODS

Kramer, Kevin James

2010-01-01T23:59:59.000Z

110

Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets  

SciTech Connect (OSTI)

Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.

Woolley, R.D.

1998-08-19T23:59:59.000Z

111

How Fusion Energy Works | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

32 likes Every four minutes, another American home or business goes solar, but how do solar panels turn sunlight into energy? We'll answer that question and more Learn More...

112

Baytown Energy Project  

E-Print Network [OSTI]

BAYTOWN ENERGY PROJECT John R. Porter Staff Engineer ExxonMobil Chemical Company Baytown, Texas Modernization in a mature industry, such as commodity chemicals, is a challenge. As new, efficient plants in Asia come on stream, older... plants must become more efficient just to remain competitive. Much of the equipment currently in service at the ExxonMobil Baytown Chemical Plant's aromatics recovery complex was built in the 1940's. While it is certainly profitable to stretch...

Porter, J.

2006-01-01T23:59:59.000Z

113

Fusion Energy Sciences Advisory Committee Strategic Planning  

E-Print Network [OSTI]

with excellent safety features and modest environmental impact that is available to all nations. The quest of the fusion fuel from within the reactor. Throughout its history, the quest for fusion has been a global

114

Fusion Energy: Visions of the Future  

E-Print Network [OSTI]

worldwide · X-ray/neutron applications · US teams at KSU, NSTec 2009: LPP Focus Fusion-1 lab begins

115

Energy and Utility Project Review  

Broader source: Energy.gov [DOE]

The DNR's Office of Energy and Environmental Analysis is responsible for coordinating the review of all proposed energy and utility projects in the state. The Office provides project management...

116

Heavy Ion Inertial Fusion Energy: Summaries of Program Elements  

SciTech Connect (OSTI)

The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

2011-02-28T23:59:59.000Z

117

Energy Research Project, Review (Minnesota)  

Broader source: Energy.gov [DOE]

The commissioner shall continuously identify, monitor, and evaluate research studies and demonstration projects pertaining to alternative energy and energy conservation systems and methodologies,...

118

DOE Energy Challenge Project  

SciTech Connect (OSTI)

Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOEs interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

Frank Murray; Michael Schaepe

2009-04-24T23:59:59.000Z

119

Fusion-fission energy systems evaluation  

SciTech Connect (OSTI)

This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

1980-01-01T23:59:59.000Z

120

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network [OSTI]

cost direct plasma MHD direct conversion [38], as well as toT-lean targets and direct conversion for heavy ion fusion. [conversion loss of beam energy into x-rays. High ablation velocities with heavy ion direct

Logan, B.G.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Snowmass 2002: The Fusion Energy Sciences Summer Study  

SciTech Connect (OSTI)

The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will present a uniform technical assessment of the benefits of the three approaches. The draft report will be presented and extensively discussed during the July meeting, leading to a final report. This report will provide critical fusion community input to the decision process of FESAC and DOE in 2002-2003, and to the review of burning plasma science by the National Academy of Sciences called for by FESAC and Energy Legislation which was passed by the House of Representatives [H.R. 4]. Members of the fusion community are encouraged to participate in the Snowmass working groups.

N. Sauthoff; G. Navratil; R. Bangerter

2002-01-31T23:59:59.000Z

122

Midwest Energy Codes Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project 2014

123

Key Points of STFC and EPSRC's Fusion for Energy EPSRC and STFC Councils have agreed a revised strategy for fusion for energy  

E-Print Network [OSTI]

Key Points of STFC and EPSRC's Fusion for Energy Strategy EPSRC and STFC Councils have agreed a revised strategy for fusion for energy research: 1) EPSRC and STFC will support fusion research as a long and demonstrating leadership to realise the goal of fusion energy. 2) EPSRC will develop a long term base funding

124

Department of Advanced Energy Nuclear Fusion Research Education Program  

E-Print Network [OSTI]

25 Department of Advanced Energy Nuclear Fusion Research Education Program 24 8 21.Yasuhiro@jaxa.jp tel: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 12 http://www. k.u-tokyo.ac.jp/fusion 15 (1) (2) (1) (2) (3) (4) (5) (6) (7) (8) (9) #12;- 8 - 25 Guide to Nuclear

Yamamoto, Hirosuke

125

Thermonuclear Fusion Energy : Assessment and Next Step Ren Pellat  

E-Print Network [OSTI]

Thermonuclear Fusion Energy : Assessment and Next Step René Pellat High Commissioner at the French 2000, Rome Abstract Fifty years of thermonuclear fusion work with no insurmountable road blocks have is well advanced through the International Thermonuclear Experimental Reactor (ITER) programme, which has

126

Fusion Energy for Power Production: Status Assessment, Identification of Challenges and Strategic Plan for Commercialization  

E-Print Network [OSTI]

1 Fusion Energy for Power Production: Status Assessment, Identification of Challenges and Strategic in the Technical Assessment Committee (TAC) and 4) EPRI being the Program Manager for the project. Establish Plan for Commercialization March 2011 Phase I. Status Assessment and Identification of Challenges

127

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network [OSTI]

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

128

Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures  

E-Print Network [OSTI]

Fusion energy · Fusion powers the Sun, and all stars, in which light nuclei fuse together at high in excess of 100 million degrees, much higher than in the Sun. The hot hydrogen gas (known as a `plasma

129

France gets nuclear fusion plant France will get to host the project to build a 10bn-euro (6.6bn) nuclear fusion reactor, in  

E-Print Network [OSTI]

) nuclear fusion reactor, in the face of strong competition from Japan. The International Thermonuclear division, which is responsible for the UK's thermonuclear fusion programme, said the decisionFrance gets nuclear fusion plant France will get to host the project to build a 10bn-euro (£6.6bn

130

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002  

E-Print Network [OSTI]

Harnessing the energy of thermonuclear fusion reactions is one of the greatest challenges of our time. FusionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002 ITER on the road to fusion energy Kaname Ikeda Director

131

Adiabatic Heavy Ion Fusion Potentials for Fusion at Deep Sub-barrier Energies  

E-Print Network [OSTI]

The fusion cross sections from well above barrier to extreme sub-barrier energies have been analysed using the energy (E) and angular momentum (L) dependent barrier penetration model ({\\small{ELDBPM}}). From this analysis, the adiabatic limits of fusion barriers have been determined for a wide range of heavy ion systems. The empirical prescription of Wilzynska and Wilzynski has been used with modified radius parameter and surface tension coefficient values consistent with the parameterization of the nuclear masses. The adiabatic fusion barriers calculated from this prescription are in good agreement with the adiabatic barriers deduced from {\\small{ELDBPM}} fits to fusion data. The nuclear potential diffuseness is larger at adiabatic limit, resulting in a lower $\\hbar\\omega$ leading to increase of "logarithmic slope" observed at energies well below the barrier. The effective fusion barrier radius and curvature values are anomalously smaller than the predictions of known empirical prescriptions. A detailed comparison of the systematics of fusion barrier with and without L-dependence has been presented.

S. V. S. Sastry; S. Kailas; A. K. Mohanty; A. Saxena

2003-11-12T23:59:59.000Z

132

Overcoming Common Pitfalls: Energy Efficient Lighting Projects...  

Broader source: Energy.gov (indexed) [DOE]

Overcoming Common Pitfalls: Energy Efficient Lighting Projects Overcoming Common Pitfalls: Energy Efficient Lighting Projects Transcript Presentation More Documents & Publications...

133

ITER Project Status Fusion Energy Sciences  

E-Print Network [OSTI]

. Manufacturing of an ITER vacuum vessel segment in Korea 04/09/14 FESAC/Sauthoff 12 (Photos: KO DA) #12;Russia to capped value) ORNL 100% Tokamak Cooling Water System PPPL 75% Steady State Electrical Network PPPL 14 tooling stations #12;Central Solenoid Specs: 6 independent coil packs of cable-in- conduit conductor

134

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Process Tribal Renewable Energy Advanced Course: Project Development Process Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project...

135

Utility Energy Savings Contract Project  

Broader source: Energy.gov [DOE]

Presentation covers the Utility Energy Savings Contract Project and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

136

Developing Government Renewable Energy Projects  

SciTech Connect (OSTI)

The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INLs renewable energy experiences date back to the 1980s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the dos and donts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

2012-07-01T23:59:59.000Z

137

Placing Fusion in the spectrum of energy development  

E-Print Network [OSTI]

Exponential growth phase: energy production irrelevant My observations based on this graph. · First of all: since the exponential growth stops at typically 1% of the final capacity, the energy production during is irrelevant for energy production. #12;Niek Lopes Cardozo, Placing fusion in the energy development spectrum

138

Danish Energy Authority Project Document  

E-Print Network [OSTI]

Danish Energy Authority Project Document Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers #12;List of abbreviations DEA Danish Energy Authority EU EPB EU energy performance of buildings

139

Renewable Energy & Energy Efficiency Projects Loan Guarantee...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass Cone Drive Gearing Solutions LPO Projects Have Helped Reduce the Cost of Solar Energy 10 * PPA pricing data represents a levelized generation-weighted average of...

140

Fusion barrier distributions in systems with finite excitation energy  

E-Print Network [OSTI]

Eigen-channel approach to heavy-ion fusion reactions is exact only when the excitation energy of the intrinsic motion is zero. In order to take into account effects of finite excitation energy, we introduce an energy dependence to weight factors in the eigen-channel approximation. Using two channel problem, we show that the weight factors are slowly changing functions of incident energy. This suggests that the concept of the fusion barrier distribution still holds to a good approximation even when the excitation energy of the intrinsic motion is finite. A transition to the adiabatic tunneling, where the coupling leads to a static potential renormalization, is also discussed.

K. Hagino; N. Takigawa; A. B. Balantekin

1997-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fusion energy science: Clean, safe, and abundant energy through innovative science and technology  

SciTech Connect (OSTI)

Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.

None

2001-01-01T23:59:59.000Z

142

Continuous Improvement Energy Projects Reduce Energy Consumption  

E-Print Network [OSTI]

Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity...

Niemeyer, E.

2014-01-01T23:59:59.000Z

143

DTT Energy Reduction Project  

E-Print Network [OSTI]

DuPont Titanium Technologies has developed a sustainable growth strategy that includes an initiative focused on improving energy efficiency. The energy efficiency initiative is a disciplined approach that began with creation of an Energy...

Heinrich, C.

2004-01-01T23:59:59.000Z

144

Developing inertial fusion energy - Where do we go from here?  

SciTech Connect (OSTI)

Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

Meier, W.R.; Logan, G.

1996-06-11T23:59:59.000Z

145

The Path to Magnetic Fusion Energy  

E-Print Network [OSTI]

for U.S. fusion research. This presentation proposes a mission for a major new U.S. facility, leading-even behind us, it is now time to address the logically first of the combined physics and technology% Japan 13% U.S. 10% China 10% India 10% Russia 10% S. Korea China Europe India Japan (w/EU) South Korea U

Princeton Plasma Physics Laboratory

146

Energy Department to Help Tribes Advance Clean Energy Projects...  

Office of Environmental Management (EM)

Energy Department to Help Tribes Advance Clean Energy Projects and Increase Resiliency Energy Department to Help Tribes Advance Clean Energy Projects and Increase Resiliency...

147

May. 20, 2003. 01:00 AM Ottawa cool to fusion project cost  

E-Print Network [OSTI]

May. 20, 2003. 01:00 AM Ottawa cool to fusion project cost Reluctant to chip in $1B to test that would be built east of Toronto. The government fears major cost overruns on the experimental project REPORTER OTTAWA--The federal government is balking at the costs of taking over an Ontario-backed bid

148

Paths to fusion energy The next 30 years, the next 10 years  

E-Print Network [OSTI]

Paths to fusion energy The next 30 years, the next 10 years S. Prager The fusion era A roadmap to fusion energy discussed in US present GA PPPL MIT Plasma confinement research program #12;Issues for a fusion roadmap · Trade

149

Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

SciTech Connect (OSTI)

This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive M

Kramer, K

2010-04-08T23:59:59.000Z

150

QUEST2 Energy Project  

E-Print Network [OSTI]

In late 2004, Eastman Chemical Companys Kingsport Site Utilities Division embarked on a project to investigate operations in one of the large refrigeration systems serving one of the process areas. The intent of this effort was to develop a...

Clary, A. T.

2007-01-01T23:59:59.000Z

151

Forrest County Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

152

UBC adopts energy makeover project  

E-Print Network [OSTI]

May 2011 3 UBC adopts energy makeover project 15 Max Jones makes PhD history in the Okanagan 16. This adaptation may better their odds of surviving projected rises in water temperature because of climate change. "Things like tuition, student loans, the economy, whether they'll get a job when they graduate, high cost

Farrell, Anthony P.

153

Timely Delivery of Laser Inertial Fusion Energy Presentation prepared for  

E-Print Network [OSTI]

plant design · Delivery soon enough to make a difference to global energy imperatives. · Design basedTimely Delivery of Laser Inertial Fusion Energy Presentation prepared for Town Hall meeting must directly address the end-user requirement for commercial power 3 Plant Primary Criteria (partial

154

FUSION ENERGY SCIENCES SUMMER STUDY 2002 Gerald Navratil  

E-Print Network [OSTI]

-2003, and to the review of burning plasma science by the National Academy of Sciences called for by FESAC and EnergyPLANS FOR FUSION ENERGY SCIENCES SUMMER STUDY 2002 Gerald Navratil Columbia University American Physical Society - Division of Plasma Physics 2001 Annual Meeting, Long Beach, CA 29 October - 2 November

155

Energy Generation Project Permitting (Vermont)  

Broader source: Energy.gov [DOE]

The Vermont Energy Generation Siting Policy Commission is mandated to survey best practices for siting approval of electric generation projects (all facilities except for net- and group-net-metered...

156

Renewable Energy Project Bond Program  

Broader source: Energy.gov [DOE]

Legislation enacted in Idaho in April 2005 ([http://legislature.idaho.gov/legislation/2005/S1192.html Senate Bill 1192]) allows independent (non-utility) developers of renewable energy projects in...

157

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

158

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 1693­1709 PII: S0029-5515(03)67272-8 Fusion energy with lasers, direct drive targets.iop.org/NF/43/1693 Abstract A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy

Ghoniem, Nasr M.

159

RP-5 RENEWABLE ENERGY PROJECT  

SciTech Connect (OSTI)

This report is the first quarterly technical report for the RP-5 Renewable Energy Project. The report summarizes the work progress, effort and activities that took place during the period of July 12, 2002 (project inception) to September 30, 2002. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. This technical report covers all meetings and discussions that were conducted to identify and analyze potential renewable energy technologies and verify its feasibility and suitability for the project. The report covers the two-day Energy Charrette that was held at the Inland Empire Utilities Agency (IEUA) Headquarters Building on May 8-9, 2002 to brainstorm, evaluate and present all available renewable energy options along with their implementations. Although the Energy Charrette was held prior to awarding of the DOE Grant, the outcome of the Charrette forms the basis of the activities that took place after July 12, 2002. Therefore, the Energy Charrette is frequently referenced and discussed in this report. The report also discusses the Energy Meeting that took place on September 24, 2002 between IEUA and CH2M Hill to follow up on the various presentations and recommendations resulting from the Energy Charrette. It should be noted that no final equipment data or capacities have been presented in the report, as the Conceptual Design has not started yet. This report covers continuing effort and work to complete the Request for Proposal (RFP) for this project. The Executive Summary Section covers more details on the scope of work, which consists of the conceptual, preliminary and final design, and what has been accomplished during the report period. Tools and methods utilized in this project to identify renewable energy technologies are included in the ''Experimental'' Section. Finally, Project achievements, implications and importance in improving this kind of technology are summarized in the ''Conclusion'' Section.

Neil Clifton, P.E.; Eliza Jane Whitman; Jamal A. Zughbi, P.E.

2002-10-30T23:59:59.000Z

160

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Renewable Energy Project Planning and Implementation | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Planning and Implementation Renewable Energy Project Planning and Implementation Federal renewable energy projects can be large or small and managed by a third-party or the agency....

162

Industrial Energy Efficiency Projects Improve Competitiveness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

163

Comprehensive Energy Projects (CEP) and Innovative Financing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Comprehensive Energy Projects (CEP) and Innovative Financing Comprehensive Energy Projects (CEP) and Innovative Financing Presented at the Technology Transition Corporation and...

164

Uniform Methods Project Contacts | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Uniform Methods Project Contacts The primary contacts for the Uniform Methods Project are: U.S. Department of Energy Michael Li Carla Frisch National Renewable Energy...

165

Financing Mechanisms for Renewable Energy Projects | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Projects Financing Mechanisms for Renewable Energy Projects On December 5, 2013, the White House released Federal Leadership on Energy Management, a presidential memorandum...

166

Searchlight Wind Energy Project DEIS Appendix A  

Broader source: Energy.gov (indexed) [DOE]

Searchlight Wind Energy Project DEIS Appendix A Page | A Appendix A: Public Scoping Report SCOPING SUMMARY REPORT SEARCHLIGHT WIND ENERGY PROJECT ENVIRONMENTAL IMPACT STATEMENT...

167

Energy-Exchange Project  

SciTech Connect (OSTI)

The purpose of the study was to determine what energy savings can be achieved by coordinating the resources and requirements of two facilities, the 26th Ward Water Pollution Control Plant (WPCP) and a housing development named Starrett City with its own total energy system. It was determined that three energy exchange options were economically and technically feasible. These include: the transfer of digester gas produced at the 26th Ward to the boilers at the Starrett City's total energy plant (TEP); the transfer of hot water heated at the TEP to the 26th Ward for space and process heating; and the transfer of coal effluent waste water from the 26th Ward to the condenser cooling systems at the TEP. Technical information is presented to support the findings. The report addresses those tasks of the statement of work dedicated to data acquisition, analysis, and energy conservation strategies internal to the Starrett City TEP and the community it supplies as well as to the 26th Ward WPCP. (MCW)

Not Available

1982-04-01T23:59:59.000Z

168

Magnetic Confinement Fusion at the Crossroads  

E-Print Network [OSTI]

Matterhorn initiated at Princeton 1950s Classified US Project Sherwood on controlled thermonuclear fusionMagnetic Confinement Fusion at the Crossroads Michael Bell Princeton Plasma Physics Laboratory #12;MGB / UT / 070307 2 The Beginnings of Fusion Energy Research 1928 Concept of fusion reactions

Princeton Plasma Physics Laboratory

169

Science/Fusion Energy Sciences FY 2006 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

radioactive waste. A science-based approach to fusion offers the most deliberate path to commercial fusion chips for computers and other electronic devices, advanced video displays, innovative materials coatings, and the efficient destruction of chemical and radioactive wastes. The FES program is also pushing the boundaries

170

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

171

RP-5 RENEWABLE ENERGY PROJECT  

SciTech Connect (OSTI)

This is the second quarterly technical report for the RP-5 Renewable Energy Project. The report summarizes the work progress, effort and activities that took place during the period of October 1, 2002 to December 31, 2002. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. This technical report covers all meetings and discussions that were conducted in order to follow up on potential renewable energy technologies that were identified in the previous report; the technologies were analyzed for their feasibility, suitability and cost effectiveness for this project. This report covers the one-day conceptual design kickoff meeting that took place on November 4, 2002. The meeting was held to discuss the practicality and implementation of potential innovative technologies. Following the kickoff meeting, Inland Empire Utilities Agency (IEUA) and CH2M Hill, the Public Interest Energy Research (PIER) Consultant, held a meeting on December 2, 2002 to discuss the Conceptual Design Report outline and contents in order to clearly present each selected technology along with its evaluation, cost effectiveness and justification. A conference call also took place between the PIER Consultant and IEUA on December 13, 2002, to discuss the overall scope of work for this project. Major project activities in this period include expanded discussions on previous Energy Charrette decisions and recommendations, conceptual design kickoff meeting, conceptual design report, and deciding on the overall project scope of work.

Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

2003-01-30T23:59:59.000Z

172

Journal of Fusion Energy, VoL 10, No. 2. 1991 An Accelerated Fusion Power Development Plan1  

E-Print Network [OSTI]

considerably since the 1970's energy crisis. Once-vigorous energy programs have been cut to subcritical funding in water. The fusion process itself is clean: It leaves no polluting byproducts or ra- dioactive "ashes

173

Framework for a Road Map to Magnetic Fusion Energy Status Report  

E-Print Network [OSTI]

Framework for a Road Map to Magnetic Fusion Energy Status Report Dale Meade for U. S. Magnetic paths: 1) ITER plus Fusion Nuclear Science Facility leading to a Tokamak DEMO 2) ITER directly Fusion Program Leaders Working Group MIT Independent Activities Period Plasma Science and Fusion Center

174

Manhattan Project | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitorsfor ShadeProject Manhattan Project Manhattan

175

Technology spinoffs from the Magnetic Fusion Energy Program  

SciTech Connect (OSTI)

This document briefly describes eight new spin-offs from the fusion program: (1) cray timesharing system, (2) CRT touch panel, (3) magneform, (4) plasma separation process, (5) homopolar resistance welding, (6) plasma diagnostic development, (7) electrodeless microwave lamp, and (8) superconducting energy storage. (MOW)

Not Available

1984-02-01T23:59:59.000Z

176

Whistling Ridge Energy Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign

177

Energy Markets and Projections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 EastEIA-64A Annual

178

Solar Energy Science Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofat HomeAssurance:DesigningDeployment

179

Fusion Energy An Industry-Led Initiative  

E-Print Network [OSTI]

- Sunlight and its derivatives - Fission energy based on breeders - Clean coal (several hundreds of years

180

Tribal Energy Project Development Through ESCOs  

Broader source: Energy.gov [DOE]

Download presentation slides below for the Tribal Energy Project Development through Energy Service Companies (ESCOs) webinar on April 21, 2010.

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Project Management | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergyProject ManagementProject

182

ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program  

E-Print Network [OSTI]

ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program Stephen O. Dean for an expanded effort on the development of inertial fusion as an energy source is dis- cussed. It is argued that there should be a two-pronged, complementary approach to fusion energy development over the next two to three

183

Journal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion  

E-Print Network [OSTI]

Office of Fusion Energy (OFE). One might take as a reasonable assumption that first generation fusionJournal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion Technology Research energy program. Based on the new program plan, the parameters are a broad scientific and technology

Abdou, Mohamed

184

The Fusion Energy Program: The Role of TPX and Alternate Concepts  

E-Print Network [OSTI]

The Fusion Energy Program: The Role of TPX and Alternate Concepts February 1995 OTA-BP-ETI-141 GPO, The Fusion Energy Program: The Role of TPX and Alternate Concepts, OTA-BP-ETI-141 (Washington, DC: U of alternate concept research as conducted in the U.S. fusion energy program. While the focus of the study

185

U. S. Department of Energy project book  

SciTech Connect (OSTI)

This book covers representative projects in each program within the Department of Energy. The projects included were selected to provide an insight into the wide spectrum of projects authorized and under way in the Department. The projects described do not cover all projects authorized - they are merely representative. Descriptions, goals, and status are given for 29 energy projects, 4 scientific projects, and 5 defense projects. (RWR)

Not Available

1980-01-01T23:59:59.000Z

186

Project Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartmentEnergy GeneralSandy madeProject Managementprovides

187

EGS Projects | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S.7685DepartmentEnergy EERE-Funded Project AimsEGS

188

NIFS Fusion Engineering Research Project and Helical Demo FFHR-d1  

E-Print Network [OSTI]

NIFS Fusion Engineering Research Project and Helical Demo FFHR-d1 International Workshop on MFE. Large amount of DT fuel circulation is required in pellet injector. 3. But, the hydrogen inventory in solid hydrogen reservoir assuming = 40 s to solidify hydrogen gas. 3x1023/s ~1000 Pa·m3/s Sagara- 21

189

Pyramid Lake Renewable Energy Project  

SciTech Connect (OSTI)

The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.

John Jackson

2008-03-14T23:59:59.000Z

190

Chamber technology concepts for inertial fusion energy: Three recent examples  

SciTech Connect (OSTI)

The most serious challenges in the design of chambers for inertial fusion energy (IFE) are 1) protecting the first wall from fusion energy pulses on the order of several hundred megajoules released in the form of x rays, target debris, and high energy neutrons, and 2) operating the chamber at a pulse repetition rate of 5-10 Hz (i.e., re-establishing, the wall protection and chamber conditions needed for beam propagation to the target between pulses). In meeting these challenges, designers have capitalized on the ability to separate the fusion burn physics from the geometry and environment of the fusion chamber. Most recent conceptual designs use gases or flowing liquids inside the chamber. Thin liquid layers of molten salt or metal and low pressure, high-Z gases can protect the first wall from x rays and target debris, while thick liquid layers have the added benefit of protecting structures from fusion neutrons thereby significantly reducing the radiation damage and activation. The use of thick liquid walls is predicted to 1) reduce the cost of electricity by avoiding the cost and down time of changing damaged structures, and 2) reduce the cost of development by avoiding the cost of developing a new, low-activation material. Various schemes have been proposed to assure chamber clearing and renewal of the protective features at the required pulse rate. Representative chamber concepts are described, and key technical feasibility issues are identified for each class of chamber. Experimental activities (past, current, and proposed) to address these issues and technology research and development needs are discussed.

Meier, W.R.; Moir, R.W. [Lawrence Livermore National Lab., CA (United States); Abdou, M.A. [California Univ., Los Angeles, CA (United States)

1997-02-27T23:59:59.000Z

191

Energy Storage and Distributed Energy Generation Project, Final Project Report  

SciTech Connect (OSTI)

This report serves as a Final Report under the Energy Storage and Distribution Energy Generation Project carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nations grid. TECs research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.

Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

2008-03-31T23:59:59.000Z

192

Selling Energy Conservation Projects to Top Management  

E-Print Network [OSTI]

A guide to presenting proposals on Energy Conservation Projects by plant engineers to their top level management, in order to get approval for Energy Conservation Projects. Through the author's past experience he ascertained that many Energy...

Jonsson, K. A.

1983-01-01T23:59:59.000Z

193

Office of Fusion Energy computational review  

SciTech Connect (OSTI)

The LLNL MFE Theory and Computations Program supports computational efforts in the following areas: (1) Magnetohydrodynamic equilibrium and stability; (2) Fluid and kinetic edge plasma simulation and modeling; (3) Kinetic and fluid core turbulent transport simulation; (4) Comprehensive tokamak modeling (CORSICA Project) - transport, MHD equilibrium and stability, edge physics, heating, turbulent transport, etc. and (5) Other: ECRH ray tracing, reflectometry, plasma processing. This report discusses algorithm and codes pertaining to these areas.

Cohen, B.I.; Cohen, R.H.; Byers, J.A. [and others

1996-03-06T23:59:59.000Z

194

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010 (12pp) doi:10.1088/0029-5515/49/10/104010  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010. Zwingmann CEA, IRFM, F-13108 St Paul-lez-Durance, France 1 Associazione EURATOM-ENEA sulla Fusione, C;Nucl. Fusion 49 (2009) 104010 G. Giruzzi et al 9 LJAD, U.M.R. C.N.R.S. No 6621, Universit´e de Nice

?cole Normale Supérieure

195

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

SciTech Connect (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

Gerber, Richard

2014-05-02T23:59:59.000Z

196

Nuclear Fusion Energy Research Ghassan Antar  

E-Print Network [OSTI]

to address these issues. In particular there has been consistent emphasis on nuclear reactor accidents since the Chernobyl accident by the International Atomic Energy Agency (IAEA) and the World Meteorological

Shihadeh, Alan

197

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy  

E-Print Network [OSTI]

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy Applications: from the "Very Cold, CA January 25, 2008 #12;January 25, 2008/ARR 2 Unique Set of Conditions Associated with Fusion · Realization of fusion energy imposes considerable challenges in the areas of engineering, physics and material

Raffray, A. René

198

Multi-University Research to Advance Discovery Fusion Energy Science using a  

E-Print Network [OSTI]

Dept of Applied Physics and Applied Math, Columbia University, New York, NY Plasma Science and FusionMulti-University Research to Advance Discovery Fusion Energy Science using a Superconducting Center, MIT, Cambridge, MA Outline · Intermediate scale discovery fusion energy science needs support

199

January 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research  

E-Print Network [OSTI]

; to build a fusion reactor, and build a fusion power plant There has been tremendous progress in fusion energy research is an exciting, fast-moving international research area #12;January 14, 2014 MIT PSFC IAP car's gas engine Your fireplace Gravitational force: Falling water transforms potential energy

200

Energy Project Development, Finance, and Commissioning Resources...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Financing FEMP Sample RFP Documents. Other Resources: Energy Efficiency for Water-Wastewater Projects RFP Guidance Project Finance Innovative financing solutions that enable...

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

SciTech Connect (OSTI)

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

202

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014001 (11pp) doi:10.1088/0029-5515/50/1/014001  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014001 its worth. Looking at the way forward, this vision constitutes a strong basis to harness fusion energy Cabinet of the French High Commissioner for Atomic Energy CEA, 91191 Gif-sur-Yvette, France Received 19

203

Rep-Rated Target Injection for Inertial Fusion Energy  

SciTech Connect (OSTI)

Inertial Fusion Energy (IFE) with laser drivers is a pulsed power generation system that relies on repetitive, high-speed injection of targets into a fusion reactor. To produce an economically viable IFE power plant the targets must be injected into the reactor at a rate between 5 and 10 Hz.To survive the injection process, direct drive (laser fusion) targets (spherical capsules) are placed into protective sabots. The sabots separate from the target and are stripped off before entering the reactor chamber. Indirect drive (heavy ion fusion) utilizes a hohlraum surrounding the spherical capsule and enters the chamber as one piece.In our target injection demonstration system, the sabots or hohlraums are injected into a vacuum system with a light gas gun using helium as a propellant. To achieve pulsed operation a rep-rated injection system has been developed. For a viable power plant we must be able to fire continuously at 6 Hz. This demonstration system is currently set up to allow bursts of up to 12 targets at 6 Hz. Using the current system, tests have been successfully run with direct drive targets to show sabot separation under vacuum and at barrel exit velocities of {approx}400 m/s.The existing revolver system along with operational data will be presented.

Frey, D.T.; Goodin, D.T.; Stemke, R.W.; Petzoldt, R.W.; Drake, T.J.; Egli, W.; Vermillion, B.A.; Klasen, R.; Cleary, M.M

2005-05-15T23:59:59.000Z

204

Princeton Plasma Physics Lab - Fusion energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary Author Last Nameenergy The energy

205

EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project...  

Broader source: Energy.gov (indexed) [DOE]

EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV Documents...

206

Energy Strategic Planning & Sufficiency Project  

SciTech Connect (OSTI)

This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

Retziaff, Greg

2005-03-30T23:59:59.000Z

207

Project Benefits | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches the First ofDepartment of EnergyProject

208

Alaska Renewable Energy Fund Grants for Renewable Energy Projects  

Broader source: Energy.gov [DOE]

The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

209

Project Profiles | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 ProgramID Project

210

START Projects | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 ThisAprilOCTOBERSTART Projects

211

Fusion Energy Sciences Review Meeting Logistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFundingSciences

212

Hydrogen Hydrogen FusionFusionFusionFusionFusionFusion  

E-Print Network [OSTI]

100.000 years LNGS Laboratori Nazionali del Gran Sasso Borexino THE THERMONUCLEAR FUSION REACTIONHydrogen Hydrogen Fusion Deuterium FusionFusionFusionFusionFusionFusion THE SUN AS BOREXINO SEES

Heiz, Ulrich

213

Hydrogen Energy California Project | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History

214

Designing Radiation Resistance in Materials for Fusion Energy  

SciTech Connect (OSTI)

Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

Zinkle, Steven J [University of Tennessee (UT)] [University of Tennessee (UT); Snead, Lance Lewis [ORNL] [ORNL

2014-01-01T23:59:59.000Z

215

Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics  

SciTech Connect (OSTI)

The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

Stelmack, Larry

2003-11-17T23:59:59.000Z

216

Renewable Energy Project Refinement Webinar  

Broader source: Energy.gov [DOE]

Attendees will become familiar with the three components of project refinement: project financing strategies, off-taker agreements, and vendor selection. Project refinement obstacles, particularly...

217

RENOTER Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RENOTER Project RENOTER Project Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE...

218

Chamber and target technology development for inertial fusion energy  

SciTech Connect (OSTI)

Fusion chambers and high pulse-rate target systems for inertial fusion energy (IFE) must: regenerate chamber conditions suitable for target injection, laser propagation, and ignition at rates of 5 to 10 Hz; extract fusion energy at temperatures high enough for efficient conversion to electricity; breed tritium and fuel targets with minimum tritium inventory; manufacture targets at low cost; inject those targets with sufficient accuracy for high energy gain; assure adequate lifetime of the chamber and beam interface (final optics); minimize radioactive waste levels and annual volumes; and minimize radiation releases under normal operating and accident conditions. The primary goal of the US IFE program over the next four years (Phase I) is to develop the basis for a Proof-of-Performance-level driver and target chamber called the Integrated Research Experiment (IRE). The IRE will explore beam transport and focusing through prototypical chamber environment and will intercept surrogate targets at high pulse rep-rate. The IRE will not have enough driver energy to ignite targets, and it will be a non-nuclear facility. IRE options are being developed for both heavy ion and laser driven IFE. Fig. 1 shows that Phase I is prerequisite to an IRE, and the IRE plus NIF (Phase II) is prerequisite to a high-pulse rate. Engineering Test Facility and DEMO for IFE, leading to an attractive fusion power plant. This report deals with the Phase-I R&D needs for the chamber, driver/chamber interface (i.e., magnets for accelerators and optics for lasers), target fabrication, and target injection; it is meant to be part of a more comprehensive IFE development plan which will include driver technology and target design R&D. Because of limited R&D funds, especially in Phase I, it is not possible to address the critical issues for all possible chamber and target technology options for heavy ion or laser fusion. On the other hand, there is risk in addressing only one approach to each technology option. Therefore, in the following description of these specific feasibility issues, we try to strike a balance between narrowing the range of recommended R&D options to minimize cost, and keeping enough R&D options to minimize risk.

Abdou, M; Besenbruch, G; Duke, J; Forman, L; Goodin, D; Gulec, K; Hoffer, J; Khater, H; Kulcinsky, G; Latkowski, J F; Logan, B G; Margevicious, B; Meier, W R; Moir, R W; Morley, N; Nobile, A; Payne, S; Peterson, P F; Peterson, R; Petzoldt, R; Schultz, K; Steckle, W; Sviatoslavsky, L; Tillack, M; Ying, A

1999-04-07T23:59:59.000Z

219

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

220

Searchlight Wind Energy Project FEIS Appendix B  

Office of Environmental Management (EM)

Bird and Bat Conservation Strategy Searchlight BBCS i October 2012 Searchlight Wind Energy Project Bird and Bat Conservation Strategy Prepared for: Duke Energy Renewables 550...

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Renewable Energy Projects in Indian Country  

Broader source: Energy.gov [DOE]

At the fifth annual Renewable Energy Projects in Indian Country Conference, tribal leaders and professionals will discuss the significant opportunities for energy development in Indian Country, as...

222

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006  

E-Print Network [OSTI]

.57.-z, 89.30.Ji 1. Laser and laser fusion from past and present to future In 1917, Albert EinsteinIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 energized implosion could be utilized for energy generation. Today, there are many facilities worldwide

223

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020 (12pp) doi:10.1088/0029-5515/49/9/095020  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020-scale fluctuations, in contrast to present day experiments where, in general, relatively low energy fast ions of alpha particles produced in DT reactions as the main heating source. Fusion alphas, with small

Zonca, Fulvio

224

Sustainable Energy Revolving Loan Fund PROJECT APPLICATION  

E-Print Network [OSTI]

1 Sustainable Energy Revolving Loan Fund PROJECT APPLICATION I. Project Administration 1. Project;2 III. Estimated Annual Energy Savings SHOW CALCULATIONS, RATIONALE AND/OR METHODOLOGY Attach additional documentation if needed Estimated Energy Savings Estimated Financial Savings ELECTRICAL Kilowatt hour and

Escher, Christine

225

START Renewable Energy Project Development Assistance  

Broader source: Energy.gov [DOE]

The DOE Office of Indian Energy is now accepting applications for the third round of the Strategic Technical Assistance Response Team (START) Renewable Energy Project Development Assistance Program to provide Tribes with technical assistance with furthering the development of community- and commercial-scale renewable energy projects. Applications are due May 1, 2015, and up to five projects will be selected in June 2015.

226

Advanced Energy Projects: FY 1993, Research summaries  

SciTech Connect (OSTI)

AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

Not Available

1993-09-01T23:59:59.000Z

227

Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as  

E-Print Network [OSTI]

scientific breakeven." E. Moses, Status of the NIF Project, Lawrence Livermore National Laboratory Report: "Laser fusion experiments, facilities, and diagnostics at Lawrence Livermore National Laboratory", by H of 1 defines scientific breakeven. (This is therefore a Livermore definition!) The recent National

228

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

229

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 Introduction to Panel Discussions  

E-Print Network [OSTI]

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 -- Introduction to Panel Discussions Whither Fusion Research? Robert L. Hirsch' . An unnamed former fusion program director retired and felt he needed some friend appeared before the major monk for his annual two words, which were, " Room cold." The monk nodded

230

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of 2002. GTI worked with DOE to develop the Statement of Work for the supplemental activities. DOE granted an interim extension of the project until the end of January 2002 to complete the contract paperwork. GTI worked with Calla Energy to develop request for continued funding to proceed with Phase II, submitted to DOE on November 1, 2001.

Unknown

2001-12-31T23:59:59.000Z

231

Utility Energy Service Contracts for Renewable Energy Projects  

Broader source: Energy.gov [DOE]

Utility energy service contracts (UESCs) offer Federal agencies an effective means to implement energy efficiency, renewable energy, and water efficiency projects. In a UESC, a utility arranges...

232

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER  

E-Print Network [OSTI]

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER Don Steiner, Jeffrey Freidberg Farrokh Najmabadi William Nevins , and John Perkins The Energy Issues Working Group on Long-Term Visions energy production in the next century? 2. What is fusion's potential for penetrating the energy market

Najmabadi, Farrokh

233

Fiscalini Farms Biomass Energy Project  

SciTech Connect (OSTI)

In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

2011-09-30T23:59:59.000Z

234

The ITER Project: International Collaboration to Demonstrate Nuclear Fusion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience andFebruaryTheFarrel W.GreatProcess of|

235

Office of Energy Project Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 Wholesale Power Rate SchedulesOffice of EEREEnergy Project

236

Beryllium pressure vessels for creep tests in magnetic fusion energy  

SciTech Connect (OSTI)

Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

Neef, W.S.

1990-07-20T23:59:59.000Z

237

Fusion Energy Division progress report, 1 January 1990--31 December 1991  

SciTech Connect (OSTI)

The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1994-03-01T23:59:59.000Z

238

Fusion Energy Division: Annual progress report, period ending December 31, 1987  

SciTech Connect (OSTI)

The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

1988-11-01T23:59:59.000Z

239

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network [OSTI]

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

I. Casinos

2008-05-22T23:59:59.000Z

240

Understanding Leasing Options for Energy Projects  

E-Print Network [OSTI]

UNDERSTANDING LEASING OPTIONS FOR ENERGY PROJECTS Baker Davenport Davenport Finance Company Richmond, Virginia Industrials often find it difficult to fund energy projects with internal monies. Energy projects must compete with the company...?s ?core? assets for capital dollars. Leasing can be used to overcome some of these hurdles. Topics of discussion will include several key leasing structures, with benefits and disadvantages noted. Project financing is also discussed as a way...

Davenport, B.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-09-30T23:59:59.000Z

242

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-06-30T23:59:59.000Z

243

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-03-31T23:59:59.000Z

244

Energy Efficient Electronics Cooling Project  

SciTech Connect (OSTI)

Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

2012-02-17T23:59:59.000Z

245

Energy Conservation Tax Credits- Competitively-Selected Projects (Corporate)  

Broader source: Energy.gov [DOE]

The Oregon Department of Energy periodically releases Opportunity Announcements for tax credits for energy conservation projects. Energy conservation projects include projects with investments for...

246

Energy Conservation Tax Credits- Small Premium Projects (Corporate)  

Broader source: Energy.gov [DOE]

The Oregon Department of Energy periodically releases Opportunity Announcements for tax credits for energy conservation projects. Energy conservation projects include projects with investments for...

247

48C Qualifying Advanced Energy Project Credit Questions | Department...  

Broader source: Energy.gov (indexed) [DOE]

48C Qualifying Advanced Energy Project Credit Questions 48C Qualifying Advanced Energy Project Credit Questions 48C Qualifying Advanced Energy Project Credit Questions More...

248

EIS-0470: Cape Wind Energy Project, Final General Conformity...  

Broader source: Energy.gov (indexed) [DOE]

70: Cape Wind Energy Project, Final General Conformity Determination EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final...

249

Energy Conservation Tax Credits- Competitively-Selected Projects (Personal)  

Broader source: Energy.gov [DOE]

The Oregon Department of Energy periodically releases Opportunity Announcements for tax credits for energy conservation projects. Energy conservation projects include projects with investments for...

250

Energy Conservation Tax Credits- Small Premium Projects (Personal)  

Broader source: Energy.gov [DOE]

The Oregon Department of Energy periodically releases Opportunity Announcements for tax credits for energy conservation projects. Energy conservation projects include projects with investments for...

251

Stateline Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewName Stateline Wind Energy Project

252

Jobs and Renewable Energy Project  

SciTech Connect (OSTI)

Early in 2002, REPP developed the Jobs Calculator, a tool that calculates the number of direct jobs resulting from renewable energy development under RPS (Renewable Portfolio Standard) legislation or other programs to accelerate renewable energy development. The calculator is based on a survey of current industry practices to assess the number and type of jobs that will result from the enactment of a RPS. This project built upon and significantly enhanced the initial Jobs Calculator model by (1) expanding the survey to include other renewable technologies (the original model was limited to wind, solar PV and biomass co-firing technologies); (2) more precisely calculating the economic development benefits related to renewable energy development; (3) completing and regularly updating the survey of the commercially active renewable energy firms to determine kinds and number of jobs directly created; and (4) developing and implementing a technology to locate where the economic activity related to each type of renewable technology is likely to occur. REPP worked directly with groups in the State of Nevada to interpret the results and develop policies to capture as much of the economic benefits as possible for the state through technology selection, training program options, and outreach to manufacturing groups.

Sterzinger, George

2006-12-19T23:59:59.000Z

253

AVTA: 2010 Ford Fusion HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTA …Ford Fusion HEV

254

NERSC Role in Fusion Energy Science Research Katherine Yelick  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -News,Advanced ScientificFusion

255

Nevada Renewable Energy Projects June 10, 2009  

E-Print Network [OSTI]

Nevada Renewable Energy Projects June 10, 2009 WASHOE ELKO HUMBOLDT EUREKA LANDER PERSHING Winnemucca Reno Carson City Tonopah Ely Las Vegas Pahrump Project Type and Dispostion Solar Energy ROW, Pending Wind Testing ROW, Authorized Wind Energy ROW, Pending Geothermal Energy Leases, Authorized

Laughlin, Robert B.

256

Accelerator Fusion Research Division 1991 summary of activities  

SciTech Connect (OSTI)

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

257

Accelerator & Fusion Research Division 1991 summary of activities  

SciTech Connect (OSTI)

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

258

Fusion Energy Division annual progress report, period ending December 31, 1989  

SciTech Connect (OSTI)

The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1991-07-01T23:59:59.000Z

259

Feb-15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION  

E-Print Network [OSTI]

Feb-15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION NEUTRONS by D.L. JASSBY the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides the same electrical energy requirement per available blanket neutron when the blanket coverage

260

Feb15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION  

E-Print Network [OSTI]

Feb15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION NEUTRONS by D.L. JASSBY the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides the same electrical energy requirement per available blanket neutron when the blanket coverage

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Introduction to Magnetic Thermonuclear Fusion and  

E-Print Network [OSTI]

Introduction to Magnetic Thermonuclear Fusion and Related Research Projects Ghassan Antar Fusion 2. Research on Turbulence (Theory and Experiment) 3. Research on Disruptions 4. Research on Plasma Facing Components #12;Ghassan Y. ANTAR 3 Fusion Occurs when Two Nuclei Unite to Form One The Energy

Shihadeh, Alan

262

ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

PROJECT STAFF

2001-09-01T23:59:59.000Z

263

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

264

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

Unknown

2001-07-01T23:59:59.000Z

265

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

Francis S. Lau

2003-09-01T23:59:59.000Z

266

Fusion Power: A Strategic Choice for the Future Energy Provision. Why is So Much Time Wasted for Decision Making?  

SciTech Connect (OSTI)

From a general analysis of the world energy issue, it is argued that an affordable, clean and reliable energy supply will have to consist of a portfolio of primary energy sources, a large fraction of which will be converted to a secondary carrier in large baseload plants. Because of all future uncertainties, it would be irresponsible not to include thermonuclear fusion as one of the future possibilities for electricity generation.The author tries to understand why nuclear-fusion research is not considered of strategic importance by the major world powers. The fusion programs of the USA and Europe are taken as prime examples to illustrate the 'hesitation'. Europe is now advocating a socalled 'fast-track' approach, thereby seemingly abandoning the 'classic' time frame towards fusion that it has projected for many years. The US 'oscillatory' attitude towards ITER in relation to its domestic program is a second case study that is looked at.From the real history of the ITER design and the 'siting' issue, one can try to understand how important fusion is considered by these world powers. Not words are important, but deeds. Fast tracks are nice to talk about, but timely decisions need to be taken and sufficient money is to be provided. More fundamental understanding of fusion plasma physics is important, but in the end, real hardware devices must be constructed to move along the path of power plant implementation.The author tries to make a balance of where fusion power research is at this moment, and where, according to his views, it should be going.

D'haeseleer, William D

2005-04-15T23:59:59.000Z

267

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-10-01T23:59:59.000Z

268

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 055018 (13pp) doi:10.1088/0029-5515/49/5/055018  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 055018 experimental and theoretical status of the most basic issues of FRC stability, confinement, and current drive field line linear systems as fusion reactors. We also develop scaling relations for extrapolation from

Washington at Seattle, University of

269

DEPARTMENT OF ENERGY Since 2001, the Administration  

E-Print Network [OSTI]

Gen, the Carbon Sequestration Leadership Forum, and the International Thermonuclear Experimental Reactor fusion to the International Thermonuclear Experimental Reactor fusion energy project. Accelerating Breakthroughs

270

ROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL THERMONUCLEAR EXPERIMENTAL  

E-Print Network [OSTI]

THERMONUCLEAR EXPERIMENTAL REACTOR Rôle de l'énergie de fusion dans la production énergétique du 21 e siècle etROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL be improved to contribute to this issue. Fusion is an energy source of the Sun and the Star. It is a quite

271

Successful Tribal Renewable Energy Projects | Department of Energy  

Office of Environmental Management (EM)

Successful Tribal Renewable Energy Projects Successful Tribal Renewable Energy Projects August 26, 2015 11:00AM to 12:30PM MDT In the past two years there have been many successful...

272

LANL Fusion Energy Sciences ResearchLANL Fusion Energy Sciences Research G. A. Wurden  

E-Print Network [OSTI]

for the U.S. Department of Energy's NNSA UNCLASSIFIED #12;| Los Alamos National Laboratory | Abstract mitigation (US-ITER) Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED April 2013

273

Projected Benefits of Federal Energy Efficiency and  

E-Print Network [OSTI]

Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs FY 2008 Budget is clean, abundant, reliable, and affordable #12;Projected Benefits of Federal Energy Efficiency Coordinator: Michael Leifman o Biomass: Zia Haq, Tien Nguyen o Buildings: Jerry Dion, David Boomsma o Federal

274

Third Party Financing of Alternate Energy Projects  

E-Print Network [OSTI]

of financing alternate energy projects. By the term 'alternate energy' most financial people mean a project which will sell at least part of its total energy output to an electric utility, taking advantage of the rules of PURPA already outlines for you by Marty...

Jones, A. C.

1983-01-01T23:59:59.000Z

275

Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...  

Open Energy Info (EERE)

Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStraitTidalEnergyProject,TenaxEnergyTropicalTidalTestCentre,&o...

276

Energy Efficiency Projects: Overcoming Internal Barriers to Implementa...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency Projects: Overcoming Internal Barriers to Implementation Energy Efficiency Projects: Overcoming Internal Barriers to Implementation This presentation discusses...

277

SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion  

SciTech Connect (OSTI)

This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large portion of national program efforts are organized around coordinated efforts to develop promising operational scenarios. Substantial efforts to develop integrated plasma modeling codes are also underway in the U.S., Europe and Japan. As a result of the highly collaborative nature of FES research, the community is facing new and unique challenges. While FES has a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of available tools. The NFC Project was initiated to address these challenges by creating and deploying collaborative software tools. The original objective of the NFC project was to develop and deploy a national FES 'Grid' (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

2006-08-31T23:59:59.000Z

278

Making it Easier to Complete Clean Energy Projects with Qualified...  

Broader source: Energy.gov (indexed) [DOE]

Making it Easier to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs) Making it Easier to Complete Clean Energy Projects with Qualified Energy...

279

Analysis & Projections - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

that project energy consumption for marketed energy sources plus distributed solar and geothermal energy. Both the RDM and CDM include projections of energy consumption by...

280

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Fusion Technology at  

E-Print Network [OSTI]

, very challenging heat transfer and material problem critical to the success of fusion which drives 10 of 11 Some current research at CCFE · "Heat Transfer enhancement for fusion power plant divertors at CCFE David Hancock #12;PhD and Masters Open Day 15th November 2012slide 2 of 11 Objectives · The role

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MDU Solar Energy Project Case Study  

Broader source: Energy.gov [DOE]

Presentation covers the MDU Solar Energy Project Case Study and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

282

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 1  

E-Print Network [OSTI]

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 1, EURATOM-Association, D-85748, Germany G. Tardini1, C. Forest2, O. Gruber1, P. Mc Carthy3, A. Gude1, L Fusion Energy Conference, Chengdu, China, 16-21 October 2006 2 Motivation: ITER performance Mukhovatov V

283

THE PATH TOWARD MAGNETIC FUSION ENERGY DEMONSTRATON AND THE ROLE OF ITER  

E-Print Network [OSTI]

/chemical/mechanical/electromagnetic interactions. Nuclear components are located inside the vacuum vessel where tolerance for failure is low to enable a transition to fusion energy demonstration (DEMO). Fusion Nuclear Science and Technology (FNST energy system. FNST development requires DT plasma-based testing facilities in which the main loading

Abdou, Mohamed

284

Fusion Energy Sciences Advisory Committee Meeting March 1-2, 2007  

E-Print Network [OSTI]

Fusion Energy Sciences Advisory Committee Meeting March 1-2, 2007 Marriott Hotel/301-590-0044 9751 Approval Professor Stewart Prager, FESAC Chair 8:35 Annual Ethics Briefing Office of the General Counsel. Raymond L. Orbach, Under Secretary of Science 12:30 Lunch 1:30 Fusion Energy Sciences FY 2008 Budget Tom

285

Fusion Energy Sciences Advisory Committee Meeting March 7-8, 2011  

E-Print Network [OSTI]

Fusion Energy Sciences Advisory Committee Meeting March 7-8, 2011 Agenda DoubleTree Bethesda Hotel Ethics Briefing Mr. Brian Plesser, Office of the General Counsel 9:00 Welcome, Meeting Agenda, Associate Director for Fusion Energy Sciences 12:30 Lunch 1:30 ITER Update: Accomplishments, Status

286

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 of nuclear energy in the form of nuclear fission were established with the nuclear powered submarine Research and Energy®, 48 Oakland Street, Princeton, NJ 08540, USA E-mail: dmeade@pppl.gov Received 6 August

287

Issued March 2004 Global Climate & Energy Project  

E-Print Network [OSTI]

University Objective The objective of this project is to develop optimized nanocomposite materials for high of the project Design of Nanotube-Metal Nanocluster Complex Meeting the Hydrogen Storage Material RequirementsIssued March 2004 Global Climate & Energy Project STANFORD UNIVERSITY Nanomaterials Engineering

Prinz, Friedrich B.

288

Fusion Energy Division progress report, January 1, 1992--December 31, 1994  

SciTech Connect (OSTI)

The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

1995-09-01T23:59:59.000Z

289

Atomic Physics in the Quest for Fusion Energy and ITER  

SciTech Connect (OSTI)

The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

Charles H. Skinner

2008-02-27T23:59:59.000Z

290

Starpower: The U.S. and the International Quest for Fusion Energy  

E-Print Network [OSTI]

of this report) #12;. Foreword Fusion research, offering the hope of an energy technology with an essentially un with the requirements for develop- ment of a usefuI energy technology. The report does not analyze inertial confinement

291

fusion  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A en Responding to Emergencies7/%2A

292

Twelve Steps to Successful Energy Project Management  

E-Print Network [OSTI]

by following twelve steps. These steps, which can be grouped into three phases, are outlined in the accompanying flow chart. Phase l, project initiation, includes idea generation, project defi nition and scope, preliminary economics, project support...-range reward for a valuable energy con servation suggestion generally is individual recognition. If interest and participation in the program are to continue, all ideas should be responded to promptly. ~2. Project Definition and Scope (Specifi ?~_tions...

Smith, W. P.

293

Ignition on the National Ignition Facility: A Path Towards Inertial Fusion Energy  

E-Print Network [OSTI]

to Arial 18 pt bold Name here Title or division here Date 00, 2008 LLNL-PRES-407907 #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 2 Two major possibilities for fusion energy #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 3 The NIF is nearing completion and will be conducting

294

Energy Monitoring of Software project-team  

E-Print Network [OSTI]

Energy Monitoring of Software Systems project-team Romain Rouvoy Aurélien Bourdon Adel Noureddine Lionel Seinturier firstname.lastname@inria.fr #12;ICT & Energy 2% of the global energy consumption in 2007 [1] [1] Gartner #12;ICT & Energy [1] 2008 ICT report, Ecology Ministry 13.5% of the electricity

Lefèvre, Laurent

295

Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects  

E-Print Network [OSTI]

of Industrial Energy-Efficiency and Electric Power Projectsof Industrial Energy-Efficiency and Electric Power ProjectsOf Industrial Energy-Efficiency And Electric Power Projects

2001-01-01T23:59:59.000Z

296

TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

Dunne, A M

2010-11-30T23:59:59.000Z

297

Financing Energy Projects in Dow  

E-Print Network [OSTI]

Energy conservation as a formal program in Dow originated in the early 1970's. From 1972 until the end of 1983, DOW recorded an energy performance improvement in excess of 30%. The essential features of the energy conservation program which...

Dingwall, D. C.

1984-01-01T23:59:59.000Z

298

ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Storage and Management of Elemental Mercury (DOEEIS-0423-S1) 11. Hanford Natural Gas Pipeline EIS, Richland, WA (DOEEIS-0467) FOSSIL ENERGY 12. Hydrogen Energy California's...

299

Tribal Renewable Energy Advanced Course: Community Scale Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Community Scale Project Development Tribal Renewable Energy Advanced Course: Community Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

300

Tribal Renewable Energy Advanced Course: Facility Scale Project...  

Broader source: Energy.gov (indexed) [DOE]

Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EERE Project Management Center Database PIA, The Office of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy...

302

Save Energy Now - South Carolina Project Fact Sheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

- South Carolina Project Fact Sheet Save Energy Now - South Carolina Project Fact Sheet This fact sheet contains details regarding a Save Energy Now industrial energy efficiency...

303

Power of the Sun: NERSC and Fusion Energy Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Scientific Computing Center (NERSC), established in 1974 as the Controlled Thermonuclear Research Computer Center and later renamed the National Magnetic Fusion...

304

Current state of magnetic-fusion energy research  

SciTech Connect (OSTI)

With the improved understanding of plasma physics, progress is being made on several approaches to magnetic confinement for controlled thermonuclear fusion.

Johnson, J.L.; Weimer, K.E.

1983-02-01T23:59:59.000Z

305

Advanced Energy Projects FY 1996 research summaries  

SciTech Connect (OSTI)

The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

NONE

1996-09-01T23:59:59.000Z

306

MHK Projects/Penobscot Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Projects3.362° ProjectVerona Island, ME

307

Wind Energy Education and Outreach Project  

SciTech Connect (OSTI)

The purpose of Illinois State University??s wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

David G. Loomis

2011-04-15T23:59:59.000Z

308

Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber  

E-Print Network [OSTI]

-cooled lithium blanket, a helium-cooled solid breeder blanket, and a dual-coolant lithium lead blanket of the reference blanket. Keywords-Laser fusion; lithium blanket; solid breeder; lithium lead; tritium breedingNeutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber M

Raffray, A. Ren

309

Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies  

E-Print Network [OSTI]

Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

2011-06-10T23:59:59.000Z

310

Fusion of {sup 6}Li with {sup 159}Tb at near-barrier energies  

SciTech Connect (OSTI)

Complete and incomplete fusion cross sections for {sup 6}Li + {sup 159}Tb have been measured at energies around the Coulomb barrier by the {gamma}-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by {approx}34% compared to coupled-channel calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data for {sup 11,10}B + {sup 159}Tb and {sup 7}Li + {sup 159}Tb shows that the extent of suppression is correlated with the {alpha} separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction {sup 6}Li + {sup 159}Tb at below-barrier energies are primarily due to the d transfer to unbound states of {sup 159}Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

Pradhan, M. K.; Mukherjee, A.; Basu, P.; Goswami, A.; Kshetri, R.; Roy, Subinit; Chowdhury, P. Roy; Sarkar, M. Saha; Palit, R.; Parkar, V. V.; Santra, S.; Ray, M. [Nuclear Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata-700064 (India); Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005 (India); Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Department of Physics, Behala College, Parnasree, Kolkata-700060 (India)

2011-06-15T23:59:59.000Z

311

Department of Energy Paves Way for Additional Clean Energy Projects...  

Energy Savers [EERE]

manufacturing sector, which is part of the Administration's long-term plan to create new green energy jobs. The solicitation will seek applications for projects that manufacture...

312

Awareness Program Fuels Energy Savings Projects  

E-Print Network [OSTI]

AWARENESS PROGRAM FUELS ENERGY SAVINGS PROJECTS ALEKS M. KLIDZEJS Senior Mechanical Engineer 3M Company Saint Paul, Minnesota ABSTRACT Energy awareness concepts were incorporated as part of a plant energy survey and played a major part... in the followup program. Plant manager support was received and multi-disciplinary task group was established to review and recommend energy saving potentials. Beyond instilling traditional benefits of an awareness program, capital expenditure energy savings...

Klidzejs, A. M.

313

START Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to implementation. Alaska Native Villages Education and Training Energy Resource Library Funding Opportunities Military Initiative Newsletter Roundtables START Program...

314

Renewable Energy and Energy Efficiency Project Financing  

Broader source: Energy.gov [DOE]

The Illinois Finance Authority (IFA) is a state conduit issuer of tax-exempt bonds and credit enhancement for projects in Illinois. The IFA funding is available to commercial as well as non-profit...

315

Renewable Energy Project Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Northeast U.S. Solar Policy: Sunny, With a Chance of...FIT? State Level Incentives for Biogas-Fuel Cell Projects Home About FEMP Program Areas Laws & Requirements Training...

316

Combined Opportunities in Energy & Water Conservation Projects  

E-Print Network [OSTI]

, and East Bay Municipal Utility District. Figure 2: Minimum Cost of Energy Savings vs. Percent Daily Savings measures of cost-effectiveness. In order to do this, we: ~ Determined total potential residential energyCombined Opportunities in Energy & Water Conservation Projects A.Keller, S. Hughes, S. Bennett, M

Keller, Arturo A.

317

Renewable Energy Project Development Assistance (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

Not Available

2013-07-01T23:59:59.000Z

318

Energy chief tells Jersey: Fusion's back Secretary, at top research lab in Plainsboro, says country resuming international effort  

E-Print Network [OSTI]

plan to build a $5 billion fusion reactor, called the International Thermonuclear Experimental ReactorEnergy chief tells Jersey: Fusion's back Secretary, at top research lab in Plainsboro, says country States plans to resume participation in an international collaboration to develop fusion energy

319

What's an ideal energy efficiency project?  

E-Print Network [OSTI]

What?s an ideal energy efficiency project? 1 The Supermarket Industry 2 Supermarket Industry ? The?Project ? The?Challenges ? The?Benefits 3 How it started 4 The Project ? Supermarkets?? built?to?waste ?No...?natural?lighting?or?poor?design ? Excessive?artificial?lighting ?Open?refrigerated?cabinets ?Massive?heat/cool?fighting 5 What does this cause? ?Very?large?lighting?loads ? Increased?glare ?Huge?refrigeration?loads ?Cold?customers ? Increased?space?heating ?Poor...

Dazeley, J.

2012-01-01T23:59:59.000Z

320

Nuclear Data for Fusion Energy Technologies: Requests, Status and Development Needs  

SciTech Connect (OSTI)

The current status of nuclear data evaluations for fusion technologies is reviewed. Well-qualified data are available for neutronics and activation calculations of fusion power reactors and the next-step device ITER, the International Thermonuclear Experimental Reactor. Major challenges for the further development of fusion nuclear data arise from the needs of the long-term fusion programme. In particular, co-variance data are required for uncertainty assessments of nuclear responses. Further, the nuclear data libraries need to be extended to higher energies above 20 MeV to enable neutronics and activation calculations of IFMIF, the International Fusion Material Irradiation Facility. A significant experimental effort is required in this field to provide a reliable and sound database for the evaluation of cross-section data in the higher energy range.

Fischer, U. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Postfach 3640, D-76021 Karlsruhe (Germany); Batistoni, P. [Associazione Euratom-ENEA sulla Fusione, ENEA Fusion Divison, Via E. Fermi 27, I-00044 Frascati (Italy); Cheng, E. [TSI Research, Inc., P.O. Box 2754, Rancho Santa Fe, CA 92067 (United States); Forrest, R.A. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Nishitani, T. [Fusion Neutronics Laboratory, JAERI, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

2005-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Guidelines for Home Energy Professionals Project (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Guidelines for Home Energy Professionals Project (Fact Sheet), Guidelines For Home Energy Professionals, Energy Efficiency & Renewable Energy (EERE) Guidelines for Home Energy...

322

Department of Energy ITER Project  

E-Print Network [OSTI]

of operation to meet demand, and manageable waste. Currently, the ITER project is at the stage where the final responsible for procurements of in-kind hardware in its own territory with its own currency, a direct) for the base estimate consisting of about $4 billion for ITER hardware, initial spares, buildings

323

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network [OSTI]

of Energy, Office of Science, Advanced Scientific Computingthe Directors of the Office of Science, Office of AdvancedDivision, and the Office of Fusion Energy Sciences.

Dart, Eli

2008-01-01T23:59:59.000Z

324

Shovel Ready Energy Project Grants (Florida)  

Broader source: Energy.gov [DOE]

This program leverages Floridas state energy grant initiatives to identify shovel-ready projects that can be expeditiously implemented through available SEP funding. The goal is to provide...

325

DEPARTMENT OF ENERGY EERE PROJECT ~ANAGEMENT CENTER  

Broader source: Energy.gov (indexed) [DOE]

ANAGEMENT CENTER NlPA DETERMINATION RECIPIENT:Minnesota Department of Commerce PROJECT TITLE: State Energy Program , Program Year 2012 Formula Grants Page 1 of2 STATE: MN Funding...

326

Model Ordinance for Renewable Energy Projects  

Broader source: Energy.gov [DOE]

'''''NOTE: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for renewable energy projects. While it was developed by the Oregon...

327

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2Greenville Bend ProjectHannibalhere

328

MHK Projects/Ogdensburg Kinetic Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Projects Jump to: navigation,Trials

329

MHK Projects/Tidal Energy Project Portugal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK ProjectRose BendReach District

330

Project Based Energy Conservation vs. Management Based Energy Conservation  

E-Print Network [OSTI]

Basic American Foods (BAF) is the largest potato dehydrator worldwide. This paper will trace the shift from a Project Based to Management Based energy conservation program. Second only to raw material, energy is one of the highest expenses at BAF...

Judy, K.; O'Brien, S.

331

Baytown Olefins Plant 2003 Energy Efficiency Projects  

E-Print Network [OSTI]

BAYTOWN OLEFINS PLANT 2003 ENERGY EFFICIENCY PROJECTS Chad Reimann, ExxonMobil Chemical Company Company: ExxonMobil Chemical Company Entity: Baytown, Texas Olefins Plant Category: Significant Improvement in Manufacturing - Project... - Exceptional Merit ExxonMobil?s Global Energy Mangagement System (G-EMS) was initiated at Baytown in 2000 with three core objectives: operate existing facilities more efficiently through improved work practices; identify investment opportunities to employ...

Reimann, C.

2005-01-01T23:59:59.000Z

332

Granite Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon,Granite Springs Geothermal Project Project

333

Global Climate and Energy Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel * As a thermodynamic cycle... * As a petroleum-derived fuel... * As an engine... * As an energy pioneer... SI CI Stability, Power,... Knock Heat Loss, Stress,......

334

ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...  

Office of Environmental Management (EM)

EIS (DOEEIS-0481) ELECTRICITY DELIVERY AND ENERGY RELIABILITY 2. Presidential Permit Application, Northern Pass Transmission LLC, NH (DOEEIS-0463) 3. Plains and Eastern...

335

Windows Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy This webinar is partpresentationJoshuaThe

336

Integrated Projects | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7 InspectionDepartmentInt'lModules for

337

World Energy Projection System model documentation  

SciTech Connect (OSTI)

The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

Hutzler, M.J.; Anderson, A.T.

1997-09-01T23:59:59.000Z

338

Advanced energy projects; FY 1995 research summaries  

SciTech Connect (OSTI)

The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

NONE

1995-09-01T23:59:59.000Z

339

Canastota Renewable Energy Facility Project  

SciTech Connect (OSTI)

The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

Blake, Jillian; Hunt, Allen

2013-12-13T23:59:59.000Z

340

Reference Projections Energy and Emissions  

E-Print Network [OSTI]

national and international evaluations and preparations of energy, climate and air pollution policy industry. In the Global Economy scenario, the share of coal in electricity production also increases due to the construction of new coal plants. The share of renewable energy, especially wind and biomass, increases rapidly

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydropower Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImageis

342

Hydrothermal Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImageisHydropower

343

Is nuclear fusion a sustainable energy form? A. M. Bradshaw  

E-Print Network [OSTI]

multipliers foreseen for fusion power plants, in particular beryllium, represent a major supply problem, or virtual, limitlessness of supply, which can be defined, albeit arbitrarily, as corresponding to a few

344

Minneapolis, Minnesota: Energy Pathways Project  

Broader source: Energy.gov [DOE]

This presentation features Brian Ross, a consultant for the City of Minneapolis, Minnesota with CR Planning. Ross provides an overview of how Minneapolis created a local energy vision for its...

345

Humbolt Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy Resources Jump to: navigation, searchHumbolt

346

Ponnequin Wind Energy Project Weld County, Colorado  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

NONE

1997-08-01T23:59:59.000Z

347

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick hereInformationPaimpol

348

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 (3pp) doi:10.1088/0029-5515/53/4/042001  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA Received 9 directly (e.g. by spectroscopy), integration of the post-exposure W deposition showed that a net effective

Harilal, S. S.

349

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10.1088/0029-5515/54/4/043016  

E-Print Network [OSTI]

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10. Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University the developed volume-of-fluid magnetohydrodynamic code. The effects of plasma velocity and magnetic field

Harilal, S. S.

350

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10.1088/0029-5515/54/2/023004  

E-Print Network [OSTI]

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10 Tatyana Sizyuk and Ahmed Hassanein Center for Materials under Extreme Environment, School of Nuclear for publication 17 December 2013 Published 21 January 2014 Abstract The plasma shielding effect is a well

Harilal, S. S.

351

and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 (13pp) doi:10.1088/0029-5515/48/2/024016  

E-Print Network [OSTI]

and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 devices Milan Rajkovi´c1 , Milos Skori´c2 , Knut Sølna3 and Ghassan Antar4 1 Institute of Nuclear Sciences the issue of estimating the variable power law behavior of spectral densities is addressed. The analysis

Solna, Knut

352

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005  

E-Print Network [OSTI]

#12;IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained, but the associated vessel erosion also impairs the awaited viability of long lasting discharges. It is thus

Farge, Marie

353

Technical Feasibility of Fusion Energy Extension of the Fusion Program and Basic  

E-Print Network [OSTI]

-Fired Power Plant 31 1.3.4 Radioactive Waste and Environmental Adaptability 35 1.3.4.1 Classification of the Radioactive Waste 35 1.3.4.2 Long Term Risks of Radioactive Waste Disposal from a Fusion Reactor and A Light of Minor Actinides 54 1.3.7.3 Production of Radioactive Isotopes 55 1.3.7.4 Development of Multipurpose Use

354

Tribal Renewable Energy Advanced Course: Commercial Scale Project...  

Broader source: Energy.gov (indexed) [DOE]

Commercial Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course...

355

Tribal Renewable Energy Webinar on Project Implementation and...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Webinar on Project Implementation and Operations & Maintenance on Aug. 8 Tribal Renewable Energy Webinar on Project Implementation and Operations & Maintenance on...

356

START Program for Renewable Energy Project Development Assistance...  

Broader source: Energy.gov (indexed) [DOE]

Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance The Strategic Technical Assistance Response Team...

357

START Program for Renewable Energy Project Development Assistance...  

Office of Environmental Management (EM)

START Program for Renewable Energy Project Development Assistance - Round Three Application START Program for Renewable Energy Project Development Assistance - Round Three...

358

EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...  

Broader source: Energy.gov (indexed) [DOE]

0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape...

359

Uniform Methods Project for Determining Energy Efficiency Program...  

Energy Savers [EERE]

for Determining Energy Efficiency Program Savings Uniform Methods Project for Determining Energy Efficiency Program Savings Under the Uniform Methods Project, DOE is developing a...

360

About the Uniform Methods Project | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methods Project The Uniform Methods Project is developing Methods for Determining Energy Efficiency Savings for Specific Measures through collaboration with energy efficiency...

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas...  

Office of Environmental Management (EM)

Clean Energy, LLC for the proposed Texas Clean Energy Project. The Project would use coal-based integrated gasification combined-cycle technology to generate electricity and...

362

Energy Savings Performance Contract Project Assistance for Agencies...  

Broader source: Energy.gov (indexed) [DOE]

Savings Performance Contract Project Assistance for Agencies Energy Savings Performance Contract Project Assistance for Agencies Fact sheet details an overview of Federal Energy...

363

US. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...  

Broader source: Energy.gov (indexed) [DOE]

""'' US. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:Office of the Govemor, Nevada Siale Office of Energy PROJECT TITLE: Program Year 2012...

364

Energy Department Announces the SUN Project, Empowering Urban...  

Energy Savers [EERE]

Energy Department Announces the SUN Project, Empowering Urban Native Youth in STEM Education Energy Department Announces the SUN Project, Empowering Urban Native Youth in STEM...

365

START Program for Renewable Energy Project Development Assistance...  

Energy Savers [EERE]

Program for Renewable Energy Project Development Assistance Non-Disclosure Agreement START Program for Renewable Energy Project Development Assistance Non-Disclosure Agreement...

366

DOE Alaska Native Village Renewable Energy Project Development...  

Energy Savers [EERE]

Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

367

North Dakota: EERE-Funded Project Recycles Energy, Generates...  

Office of Environmental Management (EM)

North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - 2:58pm Addthis...

368

Reducing Industrial Energy Intensity in the Southeast Project...  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Intensity in the Southeast Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet This fact sheet contains details regarding...

369

Save Energy Now for Maryland Industry Project Fact Sheet | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Maryland Industry Project Fact Sheet More Documents & Publications Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet Idaho Save Energy Now - Industries of...

370

Save Energy Now! Pennsylvania Project Fact Sheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Ohio Center for Industrial Energy Efficiency Fact Sheet Expanding the WisconSEN Program Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact...

371

Project SEEBECK Saving Energy Effectively By Engaging in Collaborative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Project SEEBECK Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge Project SEEBECK Saving Energy Effectively By Engaging in Collaborative...

372

Community- and Facility-Scale Tribal Renewable Energy Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance...

373

Guidelines for Home Energy Professionals Project (Brochure)  

SciTech Connect (OSTI)

The Guidelines for Home Energy Professionals is a collaboration between the U.S. Department of Energy (DOE) and a wide range of home energy performance industry professionals. The Guidelines project, managed by the National Renewable Energy Laboratory (NREL) for DOE, addresses the need for a highly-skilled weatherization workforce equipped to complete consistent, high-quality home energy upgrades for single-family homes, multifamily homes, and manufactured housing. In doing so, it helps increase energy efficiency in housing, which can mitigate climate change, one of the major challenges of the 21st century.

Not Available

2014-03-01T23:59:59.000Z

374

Vineyard Energy Project Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside, Nebraska (Utility Company) JumpSmart

375

Advanced energy projects FY 1994 research summaries  

SciTech Connect (OSTI)

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

Not Available

1994-09-01T23:59:59.000Z

376

Project Checklists | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 Program Update:

377

MHK Projects/Helena Reach Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /Tidal Project

378

Alaska Renewable Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska

379

Project Management | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment of

380

Magnesium Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature CombustionGlassMackle Company:And10

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Past Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWaterMaryAbout UsEnergyRockyAbout

382

Project Catalyst | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows,Progressive Lighting

383

Project Frog | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows,Progressive LightingFrog Jump

384

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say  

E-Print Network [OSTI]

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say A crystal with a strange property is at the heart of a clever method for inducing nuclear fusion in a tabletop-sized device-rays for medical therapies. Although the field of room-temperature fusion is littered with scandals and dubious

385

Perspective on Fusion Energy Presentation at TWAS-ARO Meeting Bibliotheca Alexandria  

E-Print Network [OSTI]

for Energy Science & Technology (UCLA) President, Council of Energy Research and Education Leaders, CEREL (electricity ~ $1 trillion / yr) The world energy use is growing - to lift people out of poverty, to improve be used to produce electricity and hydrogen, and for desalination. 4 #12;8 Fusion Research is about

Abdou, Mohamed

386

April 2015 Project Dashboard | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015 Project Dashboard April 2015 Project

387

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT SMART GRID ROADMAP FOR RENEWABLES INTEGRATION JULY 2013 CEC5002010029 Prepared for: California Energy Commission Prepared by: California Energy Commission Dave Michel Project Manager Mike Gravely Office Manager Energy Efficiency

388

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT SMUD OFFPEAK OVERCOOLING PROJECT DECEMBER 2007 CEC5002013066 Prepared for: California Energy Commission Prepared by: Davis Energy Group #12; PREPARED BY: Primary Author(s): David Springer Davis Energy Group Davis, CA

389

Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies.  

SciTech Connect (OSTI)

The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the 'stiffness' of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

Jiang, C. L.; Back, B. B.; Esbensen, H.; Janssens, R. V. F.; Rehm, K. E.; Physics

2006-01-01T23:59:59.000Z

390

Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies  

E-Print Network [OSTI]

The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the "stiffness" of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the $Q$-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

C. L. Jiang; B. B. Back; H. Esbensen; R. V. F. Janssens; abd K. E. Rehm

2005-08-01T23:59:59.000Z

391

Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies  

SciTech Connect (OSTI)

The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the ''stiffness'' of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

Jiang, C.L.; Back, B.B.; Esbensen, H.; Janssens, R.V.F.; Rehm, K.E. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2006-01-15T23:59:59.000Z

392

Appliance Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s)Excel workbook (version 5.2) isof

393

Project Funding | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of Energy 2:52pm Addthis InAbout » Program

394

MHK Projects | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 - Water UseMGT

395

MHK Projects/ | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 - Water UseMGTJump to:

396

RENOTER Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList? | DepartmentEnergy RECOVERYnote: TheRENOTER

397

Project Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartment ofThermoChem RecoveryA09linksDepartment ofReadThis

398

Advanced energy projects FY 1997 research summaries  

SciTech Connect (OSTI)

The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

NONE

1997-09-01T23:59:59.000Z

399

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

400

Funding Federal Energy and Water Projects (Fact Sheets)  

SciTech Connect (OSTI)

Overview of alternative financing mechanisms available to Federal agencies to fund renewable energy and energy efficiency projects.

Not Available

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Short-term energy outlook quarterly projections. Third quarter 1997  

SciTech Connect (OSTI)

This document presents the 1997 third quarter short term energy projections. Information is presented for fossil fuels and renewable energy.

NONE

1997-07-01T23:59:59.000Z

402

Project Sponsors: Department of Energy Clean Energy Systems  

E-Print Network [OSTI]

Project Sponsors: Department of Energy Clean Energy Systems An Original Equipment Manufacturer (confidential) ADVANCED POWER & ENERGY PROGRAM www.apep.uci.edu RESULTS CO2 capture approaching 100 and in the gasifier in the case of a fuel such as coal). O2 purity typically greater than 95% is required to meet

Mease, Kenneth D.

403

Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions  

E-Print Network [OSTI]

Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.

Kai Wen; Fumihiko Sakata; Zhu-Xia Li; Xi-Zhen Wu; Ying-Xun Zhang; Shan-Gui Zhou

2014-11-08T23:59:59.000Z

404

Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei  

E-Print Network [OSTI]

The Skyrme energy-density functional approach has been extended to study the massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parameterized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with $Z_1Z_2fusion reactions, for example, the $^{238}$U-induced reactions and $^{48}$Ca+$^{208}$Pb the capture excitation functions have been reproduced remarkable well. The influence of structure effects in the reaction partners on the capture cross sections are studied with our parameterized barrier distribution. Through comparing the reactions induced by double-magic nucleus $^{48}$Ca and by $^{32}$S and $^{35}$Cl, the 'threshold-like' behavior in the capture excitation function for $^{48}$Ca induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with $^{36}$S, $^{37}$Cl, $^{48}$Ca and $^{50}$Ti bombarding on $^{248}$Cm, $^{247,249}$Bk, $^{250,252,254}$Cf and $^{252,254}$Es, and as well as the reactions lead to the same compound nucleus with Z=120 and N=182 are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

Ning Wang; Xizhen Wu; Zhuxia Li; Min Liu; Werner Scheid

2006-09-18T23:59:59.000Z

405

Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei  

SciTech Connect (OSTI)

The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

Wang Ning; Scheid, Werner [Institute for Theoretical Physics at Justus-Liebig-University, D-35392 Giessen (Germany); Wu Xizhen; Liu Min [China Institute of Atomic Energy, Beijing 102413 (China); Li Zhuxia [China Institute of Atomic Energy, Beijing 102413 (China); Institute of Theoretical Physics, Chinese Academic of Science, Beijing 100080 (China); Nuclear Theory Center of National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China)

2006-10-15T23:59:59.000Z

406

Northwest Energy Coalition Renewable Northwest Project Natural Resources Defense Council  

E-Print Network [OSTI]

Northwest Energy Coalition Renewable Northwest Project Natural Resources Defense Council December 9 Coalition [Nancy Hirsh] Renewable Northwest Project[Rachel Shimshak] Natural Resources Defense Council Power Administration in Power Supply The Northwest Energy Coalition, Renewable Northwest Project, Sierra

407

NREL: Energy Analysis - Transportation Energy Futures Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff

408

Bayonne Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:Sector Biomass

409

Virginia Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside, Nebraska (UtilityVirginia

410

HTS Cable Projects | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable Projects Fact sheet describing

411

Project Peer Reviews | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergyProject ManagementProjectPeer

412

Lac Courte Oreilles Energy Analysis Project  

SciTech Connect (OSTI)

The Lac Courte Oreilles Tribe applied for first step funding in 2007 and was awarded in October of that year. We wanted to perform an audit to begin fulfilling two commitments we made to our membership and resolutions that we adopted. One was the Kyoto Protocol and reduce our carbon emissions by 25% and to produce 25% of our energy by sustainable means. To complete these goals we needed to begin with first assessing what our carbon emissions are and begin taking the steps to conserve on the energy we currently use. The First Step Grant gave us the opportunity to do this. Upon funding the Energy Project was formed under the umbrella of the LCO Public Works Department and Denise Johnson was hired as the coordinator. She quickly began fulfilling the objectives of the project. Denise began by contact the LCO College and hiring interns who were able to go to each Tribal entity and perform line logging to read and document the energy used for each electrical appliance. Data was also gathered for one full year from each entity for all their utility bills (gasoline, electric, natural gas, fuel oil, etc.). Relationships were formed with the Green Team and other Green Committees in the area that could assist us in this undertaking. The Energy Task Force was of great assistance as well recommending other committees and guidance to completing our project. The data was gathered, compiled and placed into spreadsheets that would be understandable for anyone who didn't have a background in Renewable Resources. While gathering the data Denise was also looking for ways to conserve energy usage, policies changes to implement and any possible viable renewable energy resources. Changes in the social behaviors of our members and employees will require further education by workshops, energy fairs, etc.. This will be looked into and done in coordination with our schools. The renewable resources seem most feasible are wind resources as well as Bio Mass both of which need further assessment and funding to do so will be sought. While we already are in ownership of a Hydro Dam it is currently not functioning to its full capacity we are seeking operation and maintenance firm proposals and funding sources. One of our biggest accomplishment this project gave us was our total Carbon Emissions 9989.45 tons, this will be the number that we will use to base our reductions from. It will help us achieve our goals we have set for ourselves in achieving the Kyoto Protocol and saving our Earth for our future generations. Another major accomplishment and lesson learned is we need to educate ourselves and our people on how to conserve energy to both impact the environment and our own budgets. The Lac Courte Oreilles (LCO) Energy Analysis Project will perform an energy audit to gather information on the Tribe's energy usage and determine the carbon emissions. By performing the audit we will be able to identify areas where conservation efforts are most viable and recommend policies that can be implemented. These steps will enable LCO to begin achieving the goals that have been set by the Tribal Governing Board and adopted through resolutions. The goals are to reduce emissions by 25% and to produce 25% of its energy using sustainable sources. The project objectives were very definitive to assist the Tribe in achieving its goals; reducing carbon emissions and obtaining a sustainable source of energy. The following were the outlined objectives: (1) Coordinate LCO's current and future conservation and renewable energy projects; (2) Establish working relationships with outside entities to share information and collaborate on future projects; (3) Complete energy audit and analyze LCO's energy load and carbon emissions; (4) Identify policy changes, education programs and conservation efforts which are appropriate for the LCO Reservation; and (5) Create a plan to identify the most cost effective renewable energy options for LCO.

Leslie Isham; Denise Johnson

2009-04-01T23:59:59.000Z

413

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Broader source: Energy.gov [DOE]

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

414

Contacts for Integrating Renewable Energy into Federal Construction Projects  

Broader source: Energy.gov [DOE]

Contacts to learn more about integrating renewable energy technologies into Federal construction projects.

415

Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier  

E-Print Network [OSTI]

The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

2007-02-16T23:59:59.000Z

416

Status of the HAPL Program Laser Fusion Energy  

E-Print Network [OSTI]

-optics Government Labs 1. NRL 2. LLNL 3. SNL 4. LANL 5. ORNL 6. PPPL 7. SRNL Industry 1. General Atomics 2. L3/PSD 3 still need to do Electricity or Hydrogen Generator Reaction chamber Spherical pellet Pellet factory* Threat spectra Fusion Test Facility: Gain > 50 @ 500 kJ 2 different simulations** Simulations Codes

417

A Plan for the Deveiopment of Magnetic Fusion Energy  

E-Print Network [OSTI]

source for meeting future base-loadelectricity needs. Fusion fuel supply is widely available, controlof plasma-wall interactions, tritium processing, developmentof low-activationradiation-damage that relies more heavily on internationalcollaboration. Since about 611 billion (1990 dollars) have been spent

418

Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets  

E-Print Network [OSTI]

for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum maintenance cost To put the capital cost issue into perspective, consider the following comparison, which incorporate niobium, a rare and expensive material compared to copper or aluminum. In addition to the direct

419

Fairbanks Geothermal Energy Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxideof EnergyFactDepartment ofCeramics

420

Wales Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane8031909°,Wales Wind Energy

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Texas Clean Energy Project | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysisof EnergyPeterTestingTexas

422

Gary Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFORTechnologyGammaGary Wind

423

Advanced Fossil Energy Projects Loan Guarantee Solicitation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021Fossil Energy Projects Loan

424

Project of the Month | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartmentEnergy GeneralSandy madeProject

425

MHK Projects/Sara Bend Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project CitySantona Wave Energy ParkSara

426

MHK Projects/Scotlandville Bend Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project CitySantona Wave Energy

427

MHK Projects/Algiers Cutoff Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHK ProjectsCutoff

428

MHK Projects/Brilliant Point Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 <Convent, LA Project

429

MHK Projects/Humboldt County Wave Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /Tidal ProjectCA

430

MHK Projects/Walker Bend Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClickKembla <Greenville, MS Project

431

Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project  

Broader source: Energy.gov [DOE]

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

432

Scientific Issues and Gaps for High-Performance Steady-State Burning-Plasmas Fusion Innovation Research and Energy  

E-Print Network [OSTI]

Innovation Research and Energy Princeton, NJ 08540 Introduction Fusion energy is a potential energy source for an electricity producing power plant. Recently, the FESAC Priorities, Gaps and Opportunities Panel identified, and extracting plasma exhaust power) Theme C ­ Harnessing the Power of Fusion (extracting neutron power, breeding

433

Recent EFDA work on Pulsed DEMO, August 2012, TOFE T N Todd Culham Centre for Fusion Energy, Oxfordshire  

E-Print Network [OSTI]

) · Start-up power requirements, energy storage strategy · Energy storage systems available Energy, Oxfordshire The Future of Nuclear Power: Fusion Recent EFDA work on pulsed DEMO The UK fusion experimental demonstrations of simultaneous HH, N etc... But is ITB OK in DEMO (sustainable)? Alpha confinement

434

THE FOREST AND THE TREES The development of fusion energy only occupies a very small part of the  

E-Print Network [OSTI]

THE FOREST AND THE TREES Jay Kesner MIT PSFC The development of fusion energy only occupies a very small part of the world's energy picture and the fusion community often has difficulty seeing the forest and scientifically and also whether it will provide a path to commercial energy. Looking at the "forest", big

435

TSINGHUA -MIT China Energy & Climate Project  

E-Print Network [OSTI]

TSINGHUA - MIT China Energy & Climate Project Will economic restructuring in China reduce trade to: discover new interactions among natural and human climate system components; objectively assess future; and improve methods to model, monitor and verify greenhouse gas emissions and climatic impacts

436

NAVFAC Ocean Thermal Energy Conversion (OTEC) Project  

E-Print Network [OSTI]

NAVFAC Ocean Thermal Energy Conversion (OTEC) Project Contract Number N62583-09-C-0083 CDRL A014 OTEC Mini-Spar Pilot Plant 9 December 2011 OTEC-2011-001-4 Prepared for: Naval Facilities; distribution is unlimited. #12; Configuration Report and Development Plan Volume 4 Site Specific OTEC

437

Issued March 2012 Global Climate & Energy Project  

E-Print Network [OSTI]

Issued March 2012 Global Climate & Energy Project STANFORD UNIVERSITY Reactivity of CO2 underground. The research team will focus on understanding the chemical reactions that occur when CO2, researchers will determine the optimum geochemical conditions for converting captured CO2 into carbonates

Straight, Aaron

438

Fusion of light proton-rich exotic nuclei at near-barrier energies  

E-Print Network [OSTI]

We study theoretically fusion of the light proton-rich exotic nuclei $^{17}$F and $^8$B at near-barrier energies in order to investigate the possible role of breakup processes on their fusion cross sections. To this end, coupled channel calculations are performed considering the couplings to the breakup channels of these projectiles. In case of $^{17}$F, the coupling arising out of the inelastic excitation from the ground state to the bound excited state and its couplings to the continuum have also been taken into consideration. It is found that the inelastic excitation/breakup of $^{17}$F affect the fusion cross sections very nominally even for a heavy target like Pb. On the other hand, calculations for fusion of the one-proton halo nucleus $^8$B on a Pb target show a significant suppression of the complete fusion cross section above the Coulomb barrier. This is due to the larger breakup probability of $^8$B as compared to that of $^{17}$F. However, even for $^8$B, there is little change in the complete fusion cross sections as compared to the no-coupling case at sub-barrier energies.

P. Banerjee; K. Krishan; S. Bhattacharya; C. Bhattacharya

2002-02-08T23:59:59.000Z

439

The Fusion Hybrid as a Response to William Parkins' Letter to Science Magazine Wallace Manheimer  

E-Print Network [OSTI]

the kinetic energy of the neutron to boil water, it uses the neutron's potential energy to create about ten advocated that the fusion project shift its focus from pure fusion to the fusion hybrid (4- 7). These paper uranium with a once through fuel cycle (and of course more than can be supplied by oil or natural gas

440

Senator Dianne Feinstein Statement on the Fusion Energy Sciences Act of 2001  

E-Print Network [OSTI]

, keeping natural gas prices reasonable, and bringing new supplies of power online are the key objectives I and polluting. Beyond expanding renewable energy sources such as those from the sun and the wind, fusion holds energy source with major environmental advantages. As a co-sponsor of this legislation, I hope to see

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Administration's Proposed Budget for Fusion Energy Sciences in FY 2015  

E-Print Network [OSTI]

The Administration's Proposed Budget for Fusion Energy Sciences in FY 2015 E.J. Synakowski Associate Director Office of Science, U.S. Department of Energy March 7, 2014 #12;This proposal reflects reveal that ITER has significant problems to overcome. This proposal supports the Administration

442

Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmasa...  

E-Print Network [OSTI]

, Albuquerque, New Mexico, 87185-1196, USA 2 University of Nevada, Reno, Nevada 89557, USA 3 Lawrence Livermore for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion more energy and the backlight must be bright enough to overwhelm the plasma self-emission

443

New England Wind Energy Education Project (NEWEEP)  

SciTech Connect (OSTI)

Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

2012-04-25T23:59:59.000Z

444

Tribal Renewable Energy Advanced Course: Project Financing Concepts...  

Broader source: Energy.gov (indexed) [DOE]

Concepts Tribal Renewable Energy Advanced Course: Project Financing Concepts Watch the DOE Office of Indian Energy's advanced renewable energy course entitled "Tribal Renewable...

445

Tribal Renewable Energy Advanced Course: Project Financing Process...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process and Structures Tribal Renewable Energy Advanced Course: Project Financing Process and Structures Watch the DOE Office of Indian Energy renewable energy course entitled...

446

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

supplies, dry cooling systi Energy Research and Development Division FINAL PROJECT REPORT INLET AIR SPRAY COOLINGUse Energy Efficiency Renewable Energy Technologies Transportation Inlet Air Spray Cooling

447

American Recovery & Reinvestment Act, ARRA, clean energy projects...  

Energy Savers [EERE]

Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA, clean...

448

Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Mississippi.

449

Panel 3, Necessary Conditions for Hydrogen Energy Storage Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Necessary Conditions for Hydrogen Energy Storage Projects to Succeed in North America Rob Harvey Director, Energy Storage Hydrogen Energy Storage for Grid and Transportation...

450

Supporting Texas Manufacturing to "Save Energy Now" Project Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Texas.

451

Have You Seen Renewable Energy Projects While Traveling? | Department...  

Broader source: Energy.gov (indexed) [DOE]

Have You Seen Renewable Energy Projects While Traveling? Have You Seen Renewable Energy Projects While Traveling? July 7, 2011 - 8:32am Addthis Since we blog about energy...

452

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

The California Energy Commission's Geothermal Resources Development Account Geothermal Planning Projects support of geothermal resource elements, or geothermal components of energy elements, for inclusion in the localPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT STRUCTURING A DIRECT

453

CRYOGENICS FOR FUSION  

SciTech Connect (OSTI)

Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to 'fusion for energy' will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

Dauguet, P.; Bonneton, M.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F. [Air Liquide Advanced Technology Division BP15, ZI Les Engenieres, 38360 Sassenage (France); Gistau-Baguer, G. M.; Boissin, J. C. [Consultants, Grenoble (France)

2008-03-16T23:59:59.000Z

454

Inertial fusion energy: A clearer view of the environmental and safety perspectives  

SciTech Connect (OSTI)

If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

Latkowski, J.F.

1996-11-01T23:59:59.000Z

455

Diode-pumped solid-state laser driver experiments for inertial fusion energy applications  

SciTech Connect (OSTI)

Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.

Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

1995-07-11T23:59:59.000Z

456

Initiatives and Projects Contacts | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossaryEnergyImportant|NewsEnergy& Projects

457

Improving Project Management | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment ofDepartment of EnergyImproving Project

458

Project Management Coordination Office | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergy ProgressProjectEnergy

459

Active Project Justification Statement | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout -------------------------ISMActive Project

460

Project of the Month | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID ProjectBaseloadProjectJanuary

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

""",,,,. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Broader source: Energy.gov (indexed) [DOE]

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlilINATION RECIPIENT:University of Tennessee PROJECT TITLE : Rooftop Solar Challenge: Inducing PV Market...

462

Energy Department Announces New University-Led Projects to Create...  

Office of Environmental Management (EM)

University-Led Projects to Create More Efficient, Lower Cost Concentrating Solar Power Systems Energy Department Announces New University-Led Projects to Create More Efficient,...

463

Department of Energy Completes Five Recovery Act Projects - Moves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Five Recovery Act Projects - Moves Closer to Completing Recovery Act Funded Work at Oak Ridge Site Department of Energy Completes Five Recovery Act Projects - Moves Closer to...

464

Energy Design Assistance Project Tracker - 2014 BTO Peer Review...  

Energy Savers [EERE]

checks of energy model designs, and generates project documentation and reports for commercial buildings. The ultimate goal of this project is to develop cost control best...

465

DOE Regional Tribal Energy Project Development and Finance Workshops...  

Energy Savers [EERE]

with renewable energy project experts, get hands-on training on how to use technology resource assessment tools, and hear project case studies and lessons learned from other...

466

Project Management Plans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Plans Project Management Plans The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to...

467

December 2014 Project Dashboard | Department of Energy  

Office of Environmental Management (EM)

December 2014 Project Dashboard December 2014 Project Dashboard December 2014 Project Dashboard.pdf More Documents & Publications 2011-05-19 Project Dashboard.xls...

468

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks  

E-Print Network [OSTI]

of routing tree establishment, transmission energy planninglarge gap of energy between the single-hop tree and theThe routing tree ?nding and the transmission energy planning

Huang, Yi

2010-01-01T23:59:59.000Z

469

Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program  

SciTech Connect (OSTI)

This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

None

2000-12-01T23:59:59.000Z

470

Impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants  

SciTech Connect (OSTI)

Sisolak et al. defined two methods for the approximation of pulsed irradiation: the steady-state (SS) and the equivalent steady-state (ESS) methods. Both methods have been shown to greatly simplify the process of calculating radionuclide inventories. However, they are not accurate when applied to magnetic fusion energy (MFF) and inertial fusion energy (IFE) experimental facilities. In the work reported here, an attempt has been made to evaluate the accuracy of the SS and ESS methods as they might be applied to typical MFE and IFE power plants. 18 refs., 6 figs.

Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [Univ. of California, Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

471

Security on the US Fusion Grid  

SciTech Connect (OSTI)

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

472

Data security on the national fusion grid  

SciTech Connect (OSTI)

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

473

Feasibility Study --Project Full Breeze By the Wind Energy Projects in Action (WEPA) Full Breeze Project team  

E-Print Network [OSTI]

Feasibility Study -- Project Full Breeze By the Wind Energy Projects in Action (WEPA) Full Breeze Department of Facilities approached the wind energy sub-community in the spring of 2009 to assist in a study

474

Recyclable transmission line concept for z-pinch driven inertial fusion energy.  

SciTech Connect (OSTI)

Recyclable transmission lines (RTL)s are being studied as a means to repetitively drive z pinches to generate fusion energy. We have shown previously that the RTL mass can be quite modest. Minimizing the RTL mass reduces recycling costs and the impulse delivered to the first wall of a fusion chamber. Despite this reduction in mass, a few seconds will be needed to reload an RTL after each subsequent shot. This is in comparison to other inertial fusion approaches that expect to fire up to ten capsules per second. Thus a larger fusion yield is needed to compensate for the slower repetition rate in a z-pinch driven fusion reactor. We present preliminary designs of z-pinch driven fusion capsules that provide an adequate yield of 1-4 GJ. We also present numerical simulations of the effect of these fairly large fusion yields on the RTL and the first wall of the reactor chamber. These simulations were performed with and without a neutron absorbing blanket surrounding the fusion explosion. We find that the RTL will be fully vaporized out to a radius of about 3 meters assuming normal incidence. However, at large enough radius the RTL will remain in either the liquid or solid state and this portion of the RTL could fragment and become shrapnel. We show that a dynamic fragmentation theory can be used to estimate the size of these fragmented particles. We discuss how proper design of the RTL can allow this shrapnel to be directed away from the sensitive mechanical parts of the reactor chamber.

De Groot, J. S. (University of California, Davis, CA); Olson, Craig Lee; Cochrane, Kyle Robert (Ktech Corporation, Albuquerque, NM); Slutz, Stephen A.; Vesey, Roger Alan; Peterson, Per F. (University of California, Berkeley, CA)

2003-12-01T23:59:59.000Z

475

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT GREENGUIDE FOR SUSTAINABLE ENERGY EFFICIENT REFRIGERATED STORAGE FACILITIES MARCH 2013 CEC-500-2013-145 Prepared for: California Energy for: California Energy Commission Anish Gautam Contract Manager Virginia Lew Office Manager Energy

476

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY AND ENERGY EFFICIENCY IN CALIFORNIA AIR QUALITY MANAGEMENT DISTRICTS DECEMBER 2011 CEC5002013047 Prepared for: California Energy Commission Prepared by: Synapse Energy

477

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ENERGY for: California Energy Commission Prepared by: San Diego State Research Foundation #12: California Energy Commission Raquel Kravitz Program Manager Fernando Pina Office Manager Energy Systems

478

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ENERGY for: California Energy Commission Prepared by: San Diego State Research Foundation #12 Energy Commission Raquel E. Kravitz Program Manager Fernando Pina Office Manager Energy Systems Research

479

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF PIEZOELECTRIC MATERIALS FOR ROADWAY ENERGY HARVESTING Cost of Energy and Demonstration Roadmap Prepared for: California Energy Commission Prepared by: DNV KEMA Energy & Sustainability JANUARY 2014 CEC5002013007

480

anterior cervical fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

Note: This page contains sample records for the topic "fusion energy project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

alkaline phosphatase fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

482

antibody fusion proteins: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

483

abl fusion gene: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

484

acyltransferase gfp fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

485

albumin fusion proteins: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

486

anatomical information fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

487

antigen fusion proteins: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

488

affects myoblast fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

489

anterior spinal fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

490

anterior vertebral fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

491

anterior interbody fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

492

acquired motor fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

493

angiography fusion images: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

494

alloy fusion safety: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

495

altered fusion transcript: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

496

artificial gene fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

497

activate membrane fusion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

498

Journal of Fusion Energy, Vol. 20, No. 3, September 2001 ( 2002) Report of the FESAC Panel on a Burning Plasma Program  

E-Print Network [OSTI]

- ence, although it is not designed to be the sole burning plasma facility in the world.Fusion energy methods of energy production, are strong reasons to pursue fusion energy now. vened for this purposeJournal of Fusion Energy, Vol. 20, No. 3, September 2001 ( 2002) Report of the FESAC Panel

Najmabadi, Farrokh

499

Energy Strategic Planning & Self-Sufficiency Project  

SciTech Connect (OSTI)

This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

Greg Retzlaff

2005-03-30T23:59:59.000Z

500

Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants*  

E-Print Network [OSTI]

final optics in a laser inertial fusion energy (IFE) power plant. The amount of laser light the GILMM1 Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants* R. W. Moir November 29, 1999 Lawrence Livermore National Laboratory

California at Los Angeles, University of