National Library of Energy BETA

Sample records for fusion chart images

  1. Scientists meet to chart roadmap to fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists meet to chart roadmap to fusion By John Greenwald October 12, 2012 Tweet Widget Google Plus One Share on Facebook The crucial next steps on the roadmap to developing fusion energy will be the focus of more than 70 top fusion scientists and engineers from around the world who will gather at the University of California-Los Angeles (UCLA) this month. The Oct. 15-18 session will kick off a series of annual workshops under the auspices of the International Atomic Energy Agency (IAEA) that

  2. PNNL: Center for Molecular Electrocatalysis - Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enlarge Image | PDF version EFRC Organization Chart

  3. Organizational Chart

    Broader source: Energy.gov [DOE]

    Associate Under Secretary for the Office of Environment, Health, Safety and Security Organizational Chart

  4. Penta Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Penta Charts Penta Charts A penta chart is a concise one-page description of a specific technical topic, project or capability, created by individuals or teams at the Laboratory. Penta charts cover a wide range of technical capabilities at various stages of development. Contact Business Development Team Richard P. Feynman Center for Innovation Email Thermal Transistor for Energy Smart Buildings (pdf) Thermal Transistor for Energy Smart Buildings A new efficient approach for 3D hydrodynamics

  5. Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization Chart Organization Chart Organization Chart Printable PDF Mission Leadership

  6. Image fusion using sparse overcomplete feature dictionaries

    SciTech Connect (OSTI)

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  7. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    SciTech Connect (OSTI)

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  8. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOE Patents [OSTI]

    Gambhir, Sanjiv; Pritha, Ray

    2011-06-07

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  9. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOE Patents [OSTI]

    Gambhir; Sanjiv , Pritha; Ray

    2009-04-28

    Novel double and triple fusion reporter gene constructs harboring distinct imageable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  10. Organizational Chart | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chart Organizational Chart Organizational Chart More Documents & Publications IEA Organizational Chart Office of International Affairs Org Chart Chart of breakout of funds by major...

  11. Notices CHART

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    436 Federal Register / Vol. 78, No. 168 / Thursday, August 29, 2013 / Notices CHART 5-FIXED-RATE FEDERAL SUBSIDIZED AND UNSUBSIDIZED STAFFORD AND PLUS LOANS-Continued Loan type Student grade level First disbursed on or after First disbursed before Rate (percent) Unsubsidized ................................................... All Students .................................................... 7/1/2006 7/1/2010 6.80 PLUS ............................................................... Parents and

  12. Beam imaging diagnostics for heavy ion beam fusion experiments

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Prost, L.; Ghiorso, W.

    2003-05-01

    We are developing techniques for imaging beams in heavy-ion beam fusion experiments in the HIF-VNL in 2 to 4 transverse dimensions. The beams in current experiments range in energy from 50 keV to 2 MeV, with beam current densities from <10 to 200 mA/cm{sup 2}, and pulse lengths of 4 to 20 {micro}s. The beam energy will range up to 10 MeV in near-future beam experiments. The imaging techniques, based on kapton films and optical scintillators, complement and, in some cases, may replace mechanical slit scanners. The kapton film images represent a time-integrated image on the film exposed to the beam. The optical scintillator utilizes glass and ceramic scintillator material imaged by a fast, image-intensified CCD-based camera. We will discuss the techniques, results, and plans for implementation of the diagnostics on the beam experiments.

  13. Self-assessed performance improves statistical fusion of image labels

    SciTech Connect (OSTI)

    Bryan, Frederick W. Xu, Zhoubing; Asman, Andrew J.; Allen, Wade M.; Reich, Daniel S.; Landman, Bennett A.

    2014-03-15

    Purpose: Expert manual labeling is the gold standard for image segmentation, but this process is difficult, time-consuming, and prone to inter-individual differences. While fully automated methods have successfully targeted many anatomies, automated methods have not yet been developed for numerous essential structures (e.g., the internal structure of the spinal cord as seen on magnetic resonance imaging). Collaborative labeling is a new paradigm that offers a robust alternative that may realize both the throughput of automation and the guidance of experts. Yet, distributing manual labeling expertise across individuals and sites introduces potential human factors concerns (e.g., training, software usability) and statistical considerations (e.g., fusion of information, assessment of confidence, bias) that must be further explored. During the labeling process, it is simple to ask raters to self-assess the confidence of their labels, but this is rarely done and has not been previously quantitatively studied. Herein, the authors explore the utility of self-assessment in relation to automated assessment of rater performance in the context of statistical fusion. Methods: The authors conducted a study of 66 volumes manually labeled by 75 minimally trained human raters recruited from the university undergraduate population. Raters were given 15 min of training during which they were shown examples of correct segmentation, and the online segmentation tool was demonstrated. The volumes were labeled 2D slice-wise, and the slices were unordered. A self-assessed quality metric was produced by raters for each slice by marking a confidence bar superimposed on the slice. Volumes produced by both voting and statistical fusion algorithms were compared against a set of expert segmentations of the same volumes. Results: Labels for 8825 distinct slices were obtained. Simple majority voting resulted in statistically poorer performance than voting weighted by self-assessed performance

  14. Organizational Chart | Department of Energy

    Energy Savers [EERE]

    Chart Office presentation icon Organizational Chart More Documents & Publications IEA Organizational Chart Office of International Affairs Org Chart Chart of breakout of...

  15. Public Affairs Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Affairs Organization Chart Public Affairs Communications Community Public Affairs Org Chart Education Creative Services ⇒ Navigate Section Public Affairs Communications Community Public Affairs Org Chart Education Creative Services

  16. Hopper Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Hopper Job Size Charts Fractional Jobs The following charts show the fraction of hours used on Hopper in each of five job-core-size bins: 2014 Usage by Job Size Chart 2013 2012 2011 Large Jobs The following charts show the fraction of hours used on Hopper by jobs using greater than 16,384 cores: 2014 2013 2012 Usage by Job Size Chart 2011 Last edited: 2016-05-02 09:20:42

  17. Organization Chart - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSD Logo About Us People & Organization Research News & Events Safety Internal Resources Organization Chart Departments Scientific Staff Directory Committees Organization Chart...

  18. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports » Edison Job Size Charts Edison Job Size Charts Fraction of Hours Used per Job Size Note: Interactive charts with current and past Cori and Edison data are now available on MyNERSC This chart shows the fraction of hours used on Edison in each of 5 job-core-size bins. 2015 Usage by Job Size Chart 2014 Fraction of Hours Used by Big Jobs This chart shows the fraction of hours used on Edison by jobs using 16,384 or more cores. 2015 Usage by Job Size Chart 2014 Last edited: 2016-04-21

  19. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Organization Chart Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart ⇒ Navigate Section Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Berkeley Lab Organization Chart ESnet Protective Services ETA/ESDR ETA/EAEI ETA Chief Operating Officer Laboratory Council RIIO Sustainability Deputy Director Innovation & Partnerships Office Public Affairs Information Technology Office of the Chief Financial Officer Human

  20. Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Chart Download Other Organization Charts Computing, Environment, and Life Sciences Energy and Global Security Physical Science and Engineering Photon Sciences PDF icon argonne_org_chart

  1. Organizational Chart - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    94_v2.jpg Organizational Chart Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  2. GS Equivalency Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for General Schedule (i.e., annual) positions. The Chart provides guidance for Human Resource Specialists and Assistants in making qualification determinations when BPA...

  3. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy closer to reality Innovative imaging systems on the Wendelstein Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists peer into the roiling world of superhot plasmas. January 27, 2016 Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Contact Nick

  4. Organization Charts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Charts Jefferson Lab Organizational Chart 12 GeV Project Organization Accelerator Operations, Research & Development Division Chief Operating Officer Chief Financial Officer Information Technology Division & Chief Information Office Engineering Division Environment, Safety, Health & Quality Experimental Nuclear Physics Division Theory Center

  5. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    SciTech Connect (OSTI)

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ?60?000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (5075 GHz), significant improvement of noise temperature from the current 60?000 K to measured 4000 K has been obtained.

  6. Geophysical data fusion for subsurface imaging. Final report

    SciTech Connect (OSTI)

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites.

  7. IEA Organizational Chart | Department of Energy

    Energy Savers [EERE]

    IEA Organizational Chart IEA Organizational Chart More Documents & Publications Organizational Chart Office of International Affairs Org Chart Independent Oversight Review, Idaho...

  8. Multispectral image feature fusion for detecting land mines

    SciTech Connect (OSTI)

    Clark, G.A.; Fields, D.J.; Sherwood, R.J.

    1994-11-15

    Our system fuses information contained in registered images from multiple sensors to reduce the effect of clutter and improve the the ability to detect surface and buried land mines. The sensor suite currently consists if a camera that acquires images in sixible wavelength bands, du, dual-band infrared (5 micron and 10 micron) and ground penetrating radar. Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a variety of physical properties that are more separate in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, holes made by animals and natural processes, etc.) and some artifacts.

  9. Organization Chart | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Chart Organization Chart Organization Chart Printable PDF Mission Leadership

    Contact Us Business Operations Careers/ Human Resources Directory Diversity and Inclusion Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Organization Chart Organization Chart (org chart) Associated Files: PDF icon Organization chart (PDF)

  10. Business Operations Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Business Operations Organization Chart Office of Business Operations Michael Budney, Director Project Management Coordination Office Scott Hine, Director Information and Technology Services Office Steve VonVital, Director (Acting) Workforce Management Office Jennifer Blankenheim, Director Golden Field Office Timothy Meeks, Director

  11. Images of plasma disruption effects in the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Maqueda, R.J.; Wurden, G.A.

    1999-02-01

    Fast-framing imaging of visible radiation from magnetically confined plasmas has lately become a useful tool for both machine operation and physics studies. Using an intensified, commercial Kodak Ektapro imaging system, the effects of a plasma disruption were observed in the Tokamak Fusion Test Reactor (TFTR). The high-energy runaway electrons created soon after the disruption collide with the plasma facing components damaging this surface and producing a shower of debris that traverses the toroidal vessel and falls over the inner bumper limiter.

  12. org-chart.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizational Chart Spokespeople B.T. Fleming, S. Zeller August 2016 Beam T. Miceli A. Wickremasinghe Detector Physics B. Eberly J. Joshi Cross Sections A. Furmanski A. Schukraft Astro Particle & Exotics Y-T. Tsai S. Tufanli Oscillations M. Mooney J. Zennamo Neutrino Division: Computing Sector: Institutional Board Chair: G. Horton-Smith Computing Sector Liaison M. Kirby Reconstruction E. Snider T. Usher Simulations B. Seligman L. Jiang Data and MC Production M. Kirby J. Mousseau Release

  13. Office of International Affairs Organization Chart | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of International Affairs Organization Chart Office of International Affairs Organization Chart PDF icon IA Org Chart Updated June 2014 More Documents & Publications PI ...

  14. GeoVision Process Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Chart GeoVision Process Chart GeoVision Process Chart

  15. Chart of communications requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart of communications requirements Chart of communications requirements Chart of communications requirements for BGE Chart of communications requirements (109.11 KB) More Documents & Publications BGE Communications Requirements Lower Colorado River Authority Lower Colorado River Authority

  16. HC Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HC Organization Chart HC Organization Chart PDF version of the HC Organizational chart PDF icon 10-20-13 HCOrgChart.pdf More Documents & Publications Environmental Justice and ...

  17. MA-60 Org chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MA-60 Org chart MA-60 Org chart Updated May 5, 2016 OAM Org Chart (MA-60) 053016.png OAM Org Chart (MA-60) 053016.pdf (148.11 KB)

  18. PIC Transcribed Flip Chart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Workshop" versus "meeting" Could provide someone to take verbal comments Page 5 PIC Transcribed Flip Chart Notes Wednesday, October 31, 2012 300 Area Public Involvement...

  19. Development of the large neutron imaging system for inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rosse, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.

    2012-03-15

    Inertial confinement fusion (ICF) requires a high resolution ({approx}10 {mu}m) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MegaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 {mu}m were obtained and are compared to x-ray images of comparable resolution.

  20. Development of a neutron imaging diagnostic for inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Morgan, G. L.; Berggren, R. R.; Bradley, P. A.; Cverna, F. H.; Faulkner, J. R.; Gobby, P. L.; Oertel, J. A.; Swenson, F. J.; Tegtmeier, J. A.; Walton, R. B.

    2001-01-01

    Pinhole imaging of the neutron production in laser-driven inertial confinement fusion experiments can provide important information about the performance of various capsule designs. This requires the development of systems capable of spatial resolutions on the order of 5 {mu}m or less for source strengths of 10{sup 15} and greater. We have initiated a program which will lead to the achievement of such a system to be employed at the National Ignition Facility (NIF) facility. Calculated neutron output distributions for various capsule designs will be presented to illustrate the information which can be gained from neutron imaging and to demonstrate the requirements for a useful system. We will describe the lines-of-sight available at NIF for neutron imaging and explain how these can be utilized to reach the required parameters for neutron imaging. We will describe initial development work to be carried out at the Omega facility and the path which will lead to systems to be implemented at NIF. Beginning this year, preliminary experiments will be aimed at achieving resolutions of 30--60 {mu}m for direct-drive capsules with neutron outputs of about 10{sup 14}. The main thrust of these experiments will be to understand issues related to the fabrication and alignment of small diameter pinhole systems as well as the problems associated with signal-to-background ratios at the image plane. Subsequent experiments at Omega will be described. These efforts will be aimed at achieving resolutions of about 10 {mu}m. Proposed developments for new imaging systems as well as further refinement of pinhole techniques will be presented.

  1. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore » of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  2. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    SciTech Connect (OSTI)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  3. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    SciTech Connect (OSTI)

    Rosenberg, M. J. Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Pino, J.; Atzeni, S.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  4. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (IFC) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Sguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in DHe-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmoreof the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.less

  5. Chart of the Nuclides

    Energy Science and Technology Software Center (OSTI)

    1999-03-23

    Nucleus is an interactive PC-based graphical viewer of NUBASE nuclear property data. NUBASE contains experimentally known nuclear properties, together with some values that have been estimated from extrapolation of experimental data for 3010 nuclides. NUBASE also contains data on those isomeric states that have half-lives greater than 1 millisecond; there are 669 such nuclides of which 58 have more than one isomeric state. The latest version of NUCLEUS-CHART has been corrected to include the namesmore » and the chemical symbols of the elements 104 to 109 that have been finally adopted by the Commission on Nomenclature of Inorganic Chemistry (CNIC) of the International Union of Pure and Applied Chemistry (IUPAC). They differ from those recommended by the same commission a few years before and that were widely used in the evaluations AME''95 and NUBASE''97. It results in some shuffling of the names and symbols, that may cause confusion in the near future. At AMDC we''ll be as careful as possible to try to avoid such confusion. In advance we apologize if any will occur in the future and recommend the user to always double check these few names.« less

  6. WIP Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIP Organization Chart WIP Organization Chart This document contains the organizational chart for WIP. WIP Organizational Chart (80.19 KB) More Documents & Publications Federal Energy Management Program Organization Chart Emerging Technologies Program Overview - 2015 BTO Peer Review Emerging Technologies Program Overview - 2016 BTO Peer Review

  7. Business Operations Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Operations Organization Chart Business Operations Organization Chart A chart showing how the Office of Energy Efficiency and Renewable Energy's Business Operations office is organized. Business Operations org chart (93.51 KB) More Documents & Publications Office of Energy Efficiency and Renewable Energy Organization Chart Federal Information Technology Acquisition Reform Act (FITARA) Data Resources Amped Up! Volume 1, No.2

  8. PPPO Organization Chart | Department of Energy

    Energy Savers [EERE]

    Organization Chart PPPO Organization Chart PPPO Org Chart - 1-12-16 (74 FTEs).jpg PORTSMOUTH/PADUCAH PROJECT OFFICE PPPO LOGO-4 4-3.png PPPO Website Directory

  9. Ames Lab Org Chart | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Lab Org Chart Document Number: NA Effective Date: 01/2016 File (public): PDF icon ameslab_org_chart_01-01-16

  10. PI Organization Chart | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Office of Policy and International Affairs Organization Chart Office of International Affairs Organization Chart Microsoft PowerPoint - Nov...

  11. DOE Organization Chart- May 2015

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  12. ARRA Projects Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Chart ARRA Projects Chart A chart stating the grantee, DOE grant amount,non federal cost share,project lead organization,description,and partners. ARRA Projects Chart (69.68 KB) More Documents & Publications ARRA Project Info Combined 0112110.xls Missouri Recovery Act State Memo The Promise and Challenge of Algae as Renewable Sources of Biofuels

  13. US Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This document provides functional organization charts for all NRC Offices and Regions, and their components.

  14. US Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1986-11-30

    Functional organization charts for the NRC Commission Offices, Divisions, and Branches are presented.

  15. OSDBU Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » OSDBU Organization Chart OSDBU Organization Chart The organization chart for the Office of Small and Disadvantaged Business Utilization is being updated and should be available soon. More Documents & Publications Guidance of the Department of Energy Subcontracting Program SubcontractingGuidelines.doc&#0; Acquisition Guide Chapter 19 Update News & Blog Events Organization Chart

  16. Multiattribute probabilistic prostate elastic registration (MAPPER): Application to fusion of ultrasound and magnetic resonance imaging

    SciTech Connect (OSTI)

    Sparks, Rachel Barratt, Dean; Nicolas Bloch, B.; Feleppa, Ernest; Moses, Daniel; Ponsky, Lee; Madabhushi, Anant

    2015-03-15

    Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. In this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State

  17. A paediatric X-ray exposure chart

    SciTech Connect (OSTI)

    Knight, Stephen P

    2014-09-15

    The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies – body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-seconds (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior–posterior (AP)/posterior–anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes.

  18. Community Solar Program Comparison Chart

    Broader source: Energy.gov [DOE]

    This chart is a supplement to the "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development," provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  19. Tularosa Basin Play Fairway Analysis: Methodology Flow Charts

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Adam Brandt

    2015-11-15

    These images show the comprehensive methodology used for creation of a Play Fairway Analysis to explore the geothermal resource potential of the Tularosa Basin, New Mexico. The deterministic methodology was originated by the petroleum industry, but was custom-modified to function as a knowledge-based geothermal exploration tool. The stochastic PFA flow chart uses weights of evidence, and is data-driven.

  20. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; et al

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less

  1. Goals & Objectives Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Goals & Objectives Chart PDF icon goal and objectives chart.pdf Responsible Contacts Donna Friend HUMAN RESOURCES SPECIALIST E-mail donna.friend@hq.doe.dov Phone 202-586-5880 More ...

  2. Help:Motion Chart | Open Energy Information

    Open Energy Info (EERE)

    information, visit the Google Help page for Motion Charts Step 2 - Setting up the Chart Once you have the data in the google doc, and it is displaying the ranges you'd like, its...

  3. Project Management Coordination Office Organization Chart

    Broader source: Energy.gov [DOE]

    Project Management Coordination Office Organization Chart, U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

  4. US Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1990-08-15

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented in this document.

  5. US Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1990-04-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented in this document.

  6. Energy Systems Organization Charts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Organization Charts Charts showing the organizational structure of the Energy Systems Division and the Center for Transportation Research at Argonne. PDF icon es_org_chart_08-25-14.pdf PDF icon es_ctr_orgchart_07-01-16

  7. Physical Sciences & Engineering Directorate Organization Chart | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory About Us Awards and Achievements Organization Chart Contact Us Physical Sciences & Engineering Directorate Organization Chart PDF icon pse_org_chart.pdf

  8. Taming Plasma Fusion Snakes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taming Plasma Fusion Snakes Taming Plasma Fusion Snakes Supercomputer simulations move fusion energy closer to reality January 24, 2014 Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov SugiSnakes_2.jpg Researchers have been able to see and measure plasma snakes - corkscrew-shaped concentrations of plasma density in the center of a fusion plasma -- for years. 3D nonlinear plasma simulations conducted at NERSC are providing new insights into the formation and stability of these structures. Image

  9. DOE Organization Chart - February 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2015 DOE Organization Chart - February 2015 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOE Organization Chart - February 2015 (34.13 KB) More Documents & Publications DOE Organization Chart - May 2015 DOE Organization Chart - December 2014 DOE Organization Chart - October

  10. NNSA Service Center Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNSA Service Center Chart NNSA Service Center Chart Office of Chief Counsel at the NNSA Service Center in Albuquerque, NM NNSA Service Center Chart (504.86 KB) More Documents & Publications Technical Qualification Program Accreditation Schedule EIS-0466: Notice of Intent to Prepare an Environmental Impact Statement Federal Register Notice: National Nuclear Security Administration Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (S

  11. LLNL Energy Flow Charts | Open Energy Information

    Open Energy Info (EERE)

    Organization: Lawrence Livermore National Lab Sector: Energy Focus Area: Renewable Energy Topics: Pathways analysis References: LLNL Energy Flow Charts 1 Decision makers have...

  12. Federal Energy Management Program Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Timothy Unruh Sustainability Services Daniel Gore Sustainability, Legislative Affairs Nicolas Baker Large Campus Initiative Daniel Gore Fleet Tom Homan (Acting) Organization Chart ...

  13. Federal Energy Management Program Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Beverly Dyer Large Campus Initiative Daniel Gore Fleet Tom Homan (Acting) Organization Chart Technical Services Brad Gustafson Procurement Services Skye Schell Customer ...

  14. APS Organization Chart | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Organization Chart The Advanced Photon Source (APS) organization comprises three divisions and one project office. Advanced Photon Source Organization Photon Sciences Overview...

  15. Federal Energy Management Program Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart Technical Services Brad Gustafson Procurement Services Skye Schell Customer Service Hayes Jones Metering, Product Procurement, Water Saralyn Bunch Lab and Data Center ...

  16. CDM in Charts | Open Energy Information

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: CDM in Charts AgencyCompany Organization: Institute for Global Environmental Strategies Sector: Energy Topics: Implementation, Policiesdeployment...

  17. Office of International Affairs Org Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of International Affairs Org Chart Office of International Affairs Org Chart The Organizational Chart for the Office of International Affairs at the U.S. Department of Energy. The Organizational Chart for the Office of International Affairs at the U.S. Department of Energy. (104.38 KB) More Documents & Publications Office of International Affairs Organization Chart PI Organization Chart Office of Policy and International Affairs Organization Chart

  18. Office of Fossil Energy Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Fossil Energy Organization Chart Office of Fossil Energy Organization Chart FE Org Chart July 2016.pdf (274.67 KB) More Documents & Publications Federal Information Technology Acquisition Reform Act (FITARA) Data Resources DOE Organization Chart - October 22, 2012 DOE Organization Chart - February 2016

  19. Federal Energy Management Program Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Program Organization Chart Federal Energy Management Program Organization Chart Screenshot of the FEMP organization chart. Document shows the organization chart for the U.S. Department of Energy's Federal Energy Management Program. Download the FEMP organization chart. (273.52 KB)

  20. SU-E-I-23: Design and Clinical Application of External Marking Body in Multi- Mode Medical Images Registration and Fusion

    SciTech Connect (OSTI)

    Chen, Z; Gong, G

    2014-06-01

    Purpose: To design an external marking body (EMB) that could be visible on computed tomography (CT), magnetic resonance (MR), positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images and to investigate the use of the EMB for multiple medical images registration and fusion in the clinic. Methods: We generated a solution containing paramagnetic metal ions and iodide ions (CT'MR dual-visible solution) that could be viewed on CT and MR images and multi-mode image visible solution (MIVS) that could be obtained by mixing radioactive nuclear material. A globular plastic theca (diameter: 3–6 mm) that mothball the MIVS and the EMB was brought by filling MIVS. The EMBs were fixed on the patient surface and CT, MR, PET and SPECT scans were obtained. The feasibility of clinical application and the display and registration error of EMB among different image modalities were investigated. Results: The dual-visible solution was highly dense on CT images (HU>700). A high signal was also found in all MR scanning (T1, T2, STIR and FLAIR) images, and the signal was higher than subcutaneous fat. EMB with radioactive nuclear material caused a radionuclide concentration area on PET and SPECT images, and the signal of EMB was similar to or higher than tumor signals. The theca with MIVS was clearly visible on all the images without artifact, and the shape was round or oval with a sharp edge. The maximum diameter display error was 0.3 ± 0.2mm on CT and MRI images, and 1.0 ± 0.3mm on PET and SPECT images. In addition, the registration accuracy of the theca center among multi-mode images was less than 1mm. Conclusion: The application of EMB with MIVS improves the registration and fusion accuracy of multi-mode medical images. Furthermore, it has the potential to ameliorate disease diagnosis and treatment outcome.

  1. DOE ORGANIZATION CHART - JULY 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORGANIZATION CHART - JULY 2015 DOE ORGANIZATION CHART - JULY 2015 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships ...

  2. OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) ORGANIZATION CHART | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) ORGANIZATION CHART OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) ORGANIZATION CHART OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) ORGANIZATION CHART Download Printable Version Mission & Functions Statement for the Office of Environmental Management

  3. DOE Organization chart - May 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Organization chart - May 2016 DOE Organization chart - May 2016 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOECHART-2016-05.pdf (33.92 KB) More Documents & Publications DOE Organization Chart - February 2016 DOE Organization Chart - January 2016 DOE Organization Chart - May 2, 2014

  4. DOE Organization Chart - July 15, 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 15, 2013 DOE Organization Chart - July 15, 2013 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOE Organization Chart - July 15, 2013 (28.16 KB) More Documents & Publications DOE Organization Chart - July 23, 2013 DOE Organization Chart - May 2, 2014 DOE Organization Chart - October

  5. DOE Organization Chart - May 2, 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2, 2014 DOE Organization Chart - May 2, 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOE Organization Chart - May 2014 (76.75 KB) More Documents & Publications DOE Organization Chart - October 2014 DOE Organization Chart - April 8, 2014 DOE Organization Chart - January 17,

  6. DOE Organization Chart - October 22, 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 22, 2012 DOE Organization Chart - October 22, 2012 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOE Organizational Chart (77.6 KB) More Documents & Publications DOE Organization Chart - July 15, 2013 DOE Organization Chart - June 6, 2013 DOE Organization Chart - May 1, 2013

  7. DOE Organization Chart - April 8, 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 8, 2014 DOE Organization Chart - April 8, 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOE Organization Chart - April 8, 2014 (24.79 KB) More Documents & Publications DOE Organization Chart - May 2, 2014 DOE Organization Chart - October 2014 DOE Organization Chart - January 17

  8. DOE Organization Chart - December 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2014 DOE Organization Chart - December 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOE Organization Chart - December 2014 (117.46 KB) More Documents & Publications DOE Organization Chart - October 2014 DOE Organization Chart - May 2, 2014 DOE Organization Chart - April 8

  9. DOE Organization Chart - October 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2014 DOE Organization Chart - October 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOE Organization Chart - October 2014 (34.19 KB) More Documents & Publications DOE Organization Chart - May 2, 2014 DOE Organization Chart - April 8, 2014 DOE Organization Chart - January 17, 2014

  10. Office of Policy and International Affairs Organization Chart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Policy and International Affairs Organization Chart Office of Policy and International Affairs Organization Chart Office of Policy and International Affairs Organization...

  11. New Reports Chart Offshore Wind's Path Forward | Department of...

    Office of Environmental Management (EM)

    Reports Chart Offshore Wind's Path Forward New Reports Chart Offshore Wind's Path Forward ... The answer to this question, among many others, is explored in two new reports released ...

  12. DOE Organization Chart- December 16, 2013

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  13. DOE Organization Chart- August 7, 2013

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  14. DOE Organization Chart- June 6, 2013

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  15. DOE Organization Chart- October 6, 2011

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  16. DOE Organization Chart- May 21, 2013

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  17. DOE Organization Chart- June 25, 2012

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  18. DOE Organization Chart- May 1, 2013

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  19. Pay Chart | National Nuclear Security Administration | (NNSA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pay Chart NNSA Demonstration Project Career PathPay BandSalary Range Table Career Path Pay Band I Pay Band II Pay Band III Pay Band IV Engineering & Scientific (NN) GS-5 - GS-8 ...

  20. Joint Working Group for Fusion Safety | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Operations Careers/ Human Resources Directory Diversity and Inclusion Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Directory Diversity and Inclusion Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library Lab

  1. Fusion and Plasmas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion and Plasmas Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (113KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301)

  2. Office of Environmental Management (EM) Organization Chart | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Environmental Management (EM) Organization Chart Office of Environmental Management (EM) Organization Chart Office of Environmental Management (EM) Organization Chart (304.47 KB) More Documents & Publications Office of Environmental Management (EM) Organization Chart Portsmouth Paducah Project Office (PPPO) Organization Keynote Address DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program

  3. US Nuclear Regulatory Commission functional organization charts, March 15, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented.

  4. U. S. Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1989-07-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions and branches are presented.

  5. U. S. Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    Functional organization charts for the NRC Commission Offices, Divisions, Staffs and Branches are presented.

  6. Computing, Environment & Life Sciences Directorate Organization Chart |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Events About Us Organization Chart Staff Directory Career Opportunities Intranet About Us Intranet Argonne National Laboratory Computing, Environment and Life Sciences Organizations Facilities and Institutes News Events About Us Organization Chart Staff Directory Career Opportunities Computing, Environment & Life Sciences Directorate Organization Chart PDF icon cels_org_chart.pdf

  7. PPPL_OrgChart_01.2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnostic Development B. Stratton Innovative Fusion Concepts and Technology R. Majeski Projects: LTX, FRC Low Temperature Plasma Y. Raitses Beam Dynamics and Non-Neutral Plasmas ...

  8. Real-Time US-CT/MRI Image Fusion for Guidance of Thermal Ablation of Liver Tumors Undetectable with US: Results in 295 Cases

    SciTech Connect (OSTI)

    Mauri, Giovanni Cova, Luca; Beni, Stefano De; Ierace, Tiziana Tondolo, Tania Cerri, Anna; Goldberg, S. Nahum; Solbiati, Luigi

    2015-02-15

    PurposeThis study was designed to assess feasibility of US-CT/MRI fusion-guided ablation in liver tumors undetectable with US.MethodsFrom 2002 to 2012, 295 tumors (162 HCCs and 133 metastases; mean diameter 1.3 ± 0.6 cm, range 0.5–2.5 cm) detectable on contrast-enhanced CT/MRI, but completely undetectable with unenhanced US and either totally undetectable or incompletely conspicuous with contrast-enhanced US (CEUS), were treated in 215 sessions using either internally cooled radiofrequency or microwave with standard ablation protocols, guided by an image fusion system (Virtual Navigation System, Esaote S.p.A., Genova, Italy) that combines US with CT/ MRI images. Correct targeting and successful ablation of tumor were verified after 24 hours with CT or MRI.ResultsA total of 282 of 295 (95.6 %) tumors were correctly targeted with successful ablation achieved in 266 of 295 (90.2 %). Sixteen of 295 (5.4 %) tumors were correctly targeted, but unsuccessfully ablated, and 13 of 295 (4.4 %) tumors were unsuccessfully ablated due to inaccurate targeting. There were no perioperative deaths. Major complications were observed in 2 of the 215 treatments sessions (0.9 %).ConclusionsReal-time virtual navigation system with US-CT/MRI fusion imaging is precise for targeting and achieving successful ablation of target tumors undetectable with US alone. Therefore, a larger population could benefit from ultrasound guided ablation procedures.

  9. Chart of Nuclides from the National Nuclear Data Center (NNDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Chart of Nuclides is a software product that allows users to search and plot nuclear structure and nuclear decay data interactively. The Chart of Nuclides was developed by the National Nuclear Data Center (NNDC). It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Using the Chart of Nuclides, it is possible to search for nuclear level properties (energy, half-life, spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences),radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by the Chart of Nuclides can be seen in tables, level schemes and an interactive chart of nuclides. (From the Chart of Nuclides Description at http://www.nndc.bnl.gov/chart/help/index.jsp?product=chart)

  10. Nanoscience & Technology Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscience & Technology Organization Chart The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility, the Center for Nanoscale Materials, in addition to performing programmatic science activities. PDF icon NST Org Chart_March2016.pdf

  11. How to use streaming chart? | OpenEI Community

    Open Energy Info (EERE)

    use streaming chart? Home > Groups > Databus Hi, how do you use the built-in streaming chart? How do you form the URL for it? Thanks, Submitted by Hopcroft on 31 October, 2013 -...

  12. Must all charting and graphing code be written in javascript...

    Open Energy Info (EERE)

    Must all charting and graphing code be written in javascript? Home > Groups > Databus In the documentation chapter entitled Developing charts using 3rd party api, we are told that...

  13. Office of the Chief Financial Officer Organization Chart | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About Us » Office of the Chief Financial Officer Organization Chart Office of the Chief Financial Officer Organization Chart OCFOFrontOffice2015.jpg Leadership Organization Contact Us

  14. Charting a New Carbon Route to Development | Open Energy Information

    Open Energy Info (EERE)

    www.beta.undp.orgcontentundpenhomeourworkenvironmentandenergyfo Cost: Free Language: English Charting a New Carbon Route to Development Screenshot "UNDP recognizes the...

  15. US Nuclear Regulatory Commission functional organization charts. Revision 6

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The report consists entirely of organizational charts of the US NRC, with functional notes for each office. (GHT)

  16. US Nuclear Regulatory Commission functional organization charts, January 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented in this document.

  17. Environmental Impact Statements and Environmental Assessments Status Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Environmental Impact Statements and Environmental Assessments Status Chart Environmental Impact Statements and Environmental Assessments Status Chart The Status Chart provides the status of ongoing NEPA documents at the Department of Energy, including the dates of important milestones in the NEPA process, links to the project pages, and references to more information (updated monthly). This chart represents anticipated activity and is not a commitment for documentation

  18. Office of Energy Efficiency and Renewable Energy Organization Chart |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Office of Energy Efficiency and Renewable Energy Organization Chart Office of Energy Efficiency and Renewable Energy Organization Chart This chart shows how the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy is organized. EERE Organization Chart (294.34 KB) More Documents & Publications EA-1245: Finding of No Significant Impact EA-1761: Final Environmental Assessment EA-1875: Final Environmental Assessment Blog News Mission Leadership

  19. Office of Management Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Organization Chart Office of Management Organization Chart Following is the link to the latest Office of Management Organization Chart. MA_Org_Chart_Revised_06-02-16Rev01.pdf (35.02 KB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-321-A to Ea-325-A Emera Energy Svcs. Subsidiaries Application to Export Electric Energy OE Docket No. EA-328-A RBC Energy Services LP EA-392 Emera Energy Services Subsidiary No. 7 LLC

  20. Office of the General Counsel Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of the General Counsel Organization Chart Office of the General Counsel Organization Chart The following graphic is an organization chart for the Office of the General Counsel. The office is separated into four major departmental groups: Litigation, Regulation and Enforcement (GC-30) Environment and Compliance (GC-50) Transactions, Technology and Contractor Human Resources (GC-60) Energy Policy (GC-70) GCORG 2015 04 names (43.73 KB) More Documents & Publications DOE Organization Chart

  1. Federal Energy Management Program Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Director Dr. Timothy Unruh Fleet, Training, Sustainability, and Innovative Change Daniel Gore Sustainability, Legislative Affairs, Innovative Change Nicolas Baker Energy Exchange Daniel Gore Fleet Vehicles Tom Homan (Acting) Training Leslie Nicholls Organization Chart Technical Services Brad Gustafson Procurement Services Skye Schell Customer Service Hayes Jones Metering, Product Procurement, Water Saralyn Bunch Lab and Data Center Challenges RJ McIntosh (ORISE Fellow) Special Projects

  2. DOE Organization Chart - February 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2016 DOE Organization Chart - February 2016 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOECHART-NONAMES-2016-February-22.pdf (81.63 KB) More Documents & Publications DOE Organization Chart - January

  3. DOE Organization Chart - January 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2016 DOE Organization Chart - January 2016 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOECHART-NONAMES-2016-01.pdf (81.61 KB) More Documents & Publications DOE Organization Chart - February

  4. DOE Organization Chart - January 17, 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 17, 2014 DOE Organization Chart - January 17, 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOE Organization Chart - January 17, 2014 (24

  5. DOE Organization Chart - July 23, 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 23, 2013 DOE Organization Chart - July 23, 2013 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. DOE Organization Chart - July 23, 2013.pdf (77

  6. RAP Meeting Transcribed Flip Chart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flip Chart Notes February 15, 2012 Site-wide Permit Workshop May 3 1. Have "post-workshop" session to discuss HAB next steps 2. Recommend Ecology sponsors & facilitates Workshop - Ecology captures notes, but HAB members track issues of concern, too. 3. Web-ex for public when it fits 4. Pre-workshop meeting with HAB issue leaders (potential speakers) Page 1 300 Area HAB next steps... IM & Pam 1. Issue managers meet to review potential issues for HAB/committees 2. Bring back to

  7. Plasma fusion and cold fusion

    SciTech Connect (OSTI)

    Hideo, Kozima

    1996-12-31

    Fundamental problems of plasma fusion (controlled thermonuclear fusion) due to the contradicting demands of the magnetic confinement of plasma and suppression of instabilities occurring on and in plasma are surveyed in contrast with problems of cold fusion. Problems in cold fusion due to the complicated constituents and types of force are explained. Typical cold fusion events are explained by a model based on the presence of trapped neutrons in cold fusion materials. The events include Pons-Fleishmann effect, tritium anomaly, helium 4 production, and nuclear transmutation. Fundamental hypothesis of the model is an effectiveness of a new concept--neutron affinity of elements. The neutron affinity is defined and some bases supporting it are explained. Possible justification of the concept by statistical approach is given.

  8. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    SciTech Connect (OSTI)

    Simpson, R. Danly, C.; Fatherley, V. E.; Merrill, F. E.; Volegov, P.; Wilde, C.; Christensen, K.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Skulina, K.

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  9. Fuel Cell Technologies Office Organization Chart and Contacts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel Cell Technologies Office Organization Chart and Contacts Fuel Cell Technologies Office Organization Chart and Contacts Fuel Cell Technologies Office Organization Chart and Contacts Contact Information U.S. Department of Energy - Fuel Cell Technologies Office General Contact Information 202-586-3388 fuelcells@ee.doe.gov Office Contacts Director Sunita Satyapal 202-586-2336 Sunita.Satyapal@ee.doe.gov Operations Supervisor and Technology Acceleration Program Manager Rick Farmer

  10. Energy and Global Security Directorate Organization Chart | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Energy and Global Security Directorate Organization Chart PDF icon egs_orgchart_07-07-16.pdf

  11. Widget:Motion Chart Visualizations | Open Energy Information

    Open Energy Info (EERE)

    References usenergyconsumption: SED data usconsumption2010: SED data worldenergysupply: OECD data Retrieved from "http:en.openei.orgwindex.php?titleWidget:MotionChartVisuali...

  12. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  13. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  14. US Nuclear Regulatory Commission organization charts and functional statements

    SciTech Connect (OSTI)

    1996-07-01

    This document is the US NRC organizational structure and chart as of July 1, 1996. It contains the org charts for the Commission, ACRS, ASLAB, Commission staff offices, Executive Director for Operations, Office of the Inspector General, Program offices, and regional offices.

  15. High Energy Physics Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Opportunities Staff Directory About HEP at Work Career Opportunities Staff Directory Argonne National Laboratory High Energy Physics Research Facilities Capabilities Initiatives Publications News & Events News & Events Upcoming Events Press Releases Feature Stories In the News Videos Downloads High Energy Physics Organization Chart PDF icon Org Chart 08-04-16.pdf

  16. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photons fusion 2012 Photons & Fusion Newsletter August 2012 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science ...

  17. SU-E-J-13: Six Degree of Freedom Image Fusion Accuracy for Cranial Target Localization On the Varian Edge Stereotactic Radiosurgery System: Comparison Between 2D/3D and KV CBCT Image Registration

    SciTech Connect (OSTI)

    Xu, H; Song, K; Chetty, I; Kim, J; Wen, N

    2015-06-15

    Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was also evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF

  18. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  19. User's Guide to the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Koran, William

    2012-02-28

    The intent of this user guide is to provide a brief description of the functionality of the Energy Charting and Metrics (ECAM) tool, including the expanded building re-tuning functionality developed for Pacific Northwest National laboratory (PNNL). This document describes the tool's general functions and features, and offers detailed instructions for PNNL building re-tuning charts, a feature in ECAM intended to help building owners and operators look at trend data (recommended 15-minute time intervals) in a series of charts (both time series and scatter) to analyze air-handler, zone, and central plant information gathered from a building automation system (BAS).

  20. Cold fusion, Alchemist's dream

    SciTech Connect (OSTI)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  1. Charting the Future of Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a market for energy storage technology. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As we continue to incorporate more renewable energy into the grid, energy storage technologies will be key to

  2. US ITER | Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why Fusion? US Fusion Research Educational Resources Why Fusion? Home > Why Fusion? What is Fusion? Fusion is a key element in long-term US energy plans. ITER will allow scientists to explore the physics of a burning plasma at energy densities close to that of a commercial power plant. This is a critical step towards producing and delivering electricity from fusion to the grid. Nuclear fusion occurs naturally in stars, like our sun. When hydrogen gets hot enough, the process of fusion

  3. US Nuclear Regulatory Commission functional organization charts, March 15, 1993. Revision 16

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented.

  4. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  5. DASHBOARDS & CONTROL CHARTS EXPERIENCES IN IMPROVING SAFETY AT HANFORD WASHINGTON

    SciTech Connect (OSTI)

    PREVETTE, S.S.

    2006-02-27

    The aim of this paper is to demonstrate the integration of safety methodology, quality tools, leadership, and teamwork at Hanford and their significant positive impact on safe performance of work. Dashboards, Leading Indicators, Control charts, Pareto Charts, Dr. W. Edward Deming's Red Bead Experiment, and Dr. Deming's System of Profound Knowledge have been the principal tools and theory of an integrated management system. Coupled with involved leadership and teamwork, they have led to significant improvements in worker safety and protection, and environmental restoration at one of the nation's largest nuclear cleanup sites.

  6. PPPL_OrgChart_05.04.2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B. Stratton Innovative Fusion Concepts and Technology R. Majeski Projects: LTX, FRC Plasma Technology and Off-Site Research Y. Raitses Projects: HTX, MNX,OSUR Beam...

  7. US Nuclear Regulatory Commission organization charts and functional statements

    SciTech Connect (OSTI)

    1996-08-19

    This document is the organizational chart for the US NRC. It contains organizational structure and functional statements for the following: (1) the Commission, (2) committees and boards, (3) staff offices, (4) office of the Inspector General, (5) executive director for operations, (6) program offices, and (7) regional offices.

  8. US Nuclear Regulatory Commission organization charts and functional statements

    SciTech Connect (OSTI)

    1997-11-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed.

  9. Minimizing glovebox glove breaches, Part 4: control charts

    SciTech Connect (OSTI)

    Cournoyer, M.E.; Lee, M.B.; Schreiber, S.

    2007-07-01

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebox gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program was developed to minimize and/or prevent unplanned openings in the glovebox environment, e.g., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation determine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. (authors)

  10. MINIMIZING GLOVEBOX GLOVE BREACHES, PART IV: CONTROL CHARTS

    SciTech Connect (OSTI)

    COURNOYER, MICHAEL E.; LEE, MICHELLE B.; SCHREIBER, STEPHEN B.

    2007-02-05

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium. isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebo gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program (GGIP) was developed to minimize and/or prevent unplanned openings in the glovebox environment, i.e., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation detennine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.

  11. Fusion Power Associates Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fpa awards Fusion Power Associates Awards Fusion Power Associates is "a non-profit, tax-exempt research and educational foundation, providing information on the status of fusion development and other applications of plasma science and fusion research". The Association makes awards in four categories: Distinguished Career Awards, Leadership Awards, Excellence in Fusion Engineering, and Special Awards. Since 1987, Distinguished Career Awards have been presented "to individuals who

  12. US Nuclear Regulatory Commission functional organization charts, January 31, 1992. Revision 15

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented in this document.

  13. U.S. Nuclear Regulatory Commission organization charts and functional statements. Revision 19

    SciTech Connect (OSTI)

    NONE

    1996-01-31

    Functional statements and organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented.

  14. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel.

  15. Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for ethanol.

  16. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas.

  17. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane.

  18. Electric Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for electric.

  19. CHART SUPPLEMENT TO ACQUISTION GUIDE CHAPTER 42.101, AUDIT REQUIREMENTS FOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NON-MANAGEMENT AND OPERATING CONTRACTS | Department of Energy CHART SUPPLEMENT TO ACQUISTION GUIDE CHAPTER 42.101, AUDIT REQUIREMENTS FOR NON-MANAGEMENT AND OPERATING CONTRACTS CHART SUPPLEMENT TO ACQUISTION GUIDE CHAPTER 42.101, AUDIT REQUIREMENTS FOR NON-MANAGEMENT AND OPERATING CONTRACTS The attached chart supplements the guidance in Acquisition Guide Chapter 42.101, Audit Requirements for Non-Management and Operating Contracts. The chart presents the audit services requirements discussed

  20. Elastic-plastic response charts for nuclear overpressures. Final report

    SciTech Connect (OSTI)

    Guice, L.K.; Kiger, S.A.

    1984-06-01

    The single-degree-of-freedom equation of motion for an elastic-plastic system with forcing functions that are representative of nuclear weapon simulations is nondimensionalized and solved. Numerical solutions are calculated by the Newmark Beta method, and response charts incorporating nondimensionalized structural and loading parameters for the Speicher-Brode nuclear pressure history description are provided. A computer code is presented for solving the elastic-plastic problem for Speicher-Brode overpressure as well as triangular-shaped overpressures.

  1. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    news Photons & Fusion Newsletter - 2014 May ARC Beamlet Profiles NIF Petawatt Laser Is on ... An article in the Feb. 12 online issue of the journal Nature reports that fusion fuel ...

  2. Fusion Forum 1981

    SciTech Connect (OSTI)

    Fowler, T.K.

    1981-07-28

    This review covers the basics of the fusion process. Some research programs and their present status are mentioned. (MOW)

  3. Magneto-Inertial Fusion

    SciTech Connect (OSTI)

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; Betti, R.; Bauer, B. S.; Lindemuth, I. R.; Siemon, R. E.; Miller, R. L.; Laberge, M.; Delage, M.

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  4. Cold fusion research

    SciTech Connect (OSTI)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  5. Hot and cold fusion

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This article presents an overview of research in cold fusion research and development in cold fusion at the Tokomak Fusion Test Reactor at the Princeton Plasma Physics Lab, and at the inertial containment facility at Lawrence Livermore National Lab. is described.

  6. Cold fusion coatings

    SciTech Connect (OSTI)

    Wachtler, W.R.

    1993-12-31

    Historically, fusion of metals was accomplished through the use of heat. Cold fusion has become a reality with metal to metal fusion occurring at room temperature. The basics of this new technology which can be done in tank, brush or solid form is covered in this paper.

  7. Viral membrane fusion

    SciTech Connect (OSTI)

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  8. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in

  9. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron...

  10. How Does Fusion Energy Work? | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Does Fusion Energy Work? By Raphael Rosen August 25, 2016 Tweet Widget Google Plus One Share on Facebook Fusion is the energy source of the sun and stars. (Photo by U.S. Department of Energy) Fusion is the energy source of the sun and stars. Click here to view a cool infographic about fusion energy from the U.S. Department of Energy. Contact Info PPPL Office of Communications Email: PPPL_OOC@pppl.gov Phone: 609-243-2755 Download Select and View High Resolution Images to Download Learn More

  11. Fusion: The controversy continues

    SciTech Connect (OSTI)

    1989-07-01

    Nuclear fusion-the power of the stars that promises mankind an inexhaustible supply of energy-seems concurrently much closer and still distant this month. The recent flurry of announcements concerning the achievement of a cold fusion reaction has-if nothing else-underscored the historic importance of the basic fusion reaction which uses hydrogen ions to fuel an energy-producing reaction.

  12. Fusion Communication Summit cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMUNICATIONS SUMMIT for U.S. Magnetic Fusion September 12-13, 2012 Princeton University - Frist Campus Center Princeton, New Jersey, USA Mission Statement Announcements...

  13. Glossary of fusion energy

    SciTech Connect (OSTI)

    Whitson, M.O.

    1982-01-01

    This glossary gives brief descriptions of approximately 400 terms used by the fusion community. Schematic diagrams and photographs of the major US experiments are also included. (MOW)

  14. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Photons & Fusion Newsletter May 2012 Reducing the Time to Grow Good Cryogenic Layers One of the most demanding aspects of preparing targets for NIF ignition experiments is...

  15. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2013 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question....

  16. Magnetic fusion reactor economics

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  17. Fusion and Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ignition Fusion and Ignition What is Fusion? Fusion is the process that powers the sun and the stars. Fusion describes what happens when the nuclei of light atoms overcome the electrical resistance that keeps them apart and get close enough to activate the strong nuclear force that holds them together, or "fuse." When fused, they form a bigger nucleus; two elements combine to create a different element at the level of the nucleus. Making elements fuse requires an enormous amount of

  18. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science on NIF: Exploring the Physics of Star Formation Article on MOIRE Optics on Cover of Applied Optics Mode 1 Drive Asymmetry in NIF Inertial Confinement Fusion...

  19. Dish Stirling High Performance Thermal Storage FY15Q3 Quad Chart...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Dish Stirling High Performance Thermal Storage FY15Q3 Quad Chart ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  20. Microsoft Word - 2015_0908_HAB_PIC_TranscribedFlipCharts.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Involvement and Communications Committee Transcribed Flip Chart Notes - September 8, 2015 Draft Advice principles: (Potentially for November advice) Coincide Board...

  1. Web-enabled Milestones Chart | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    Web-enabled Milestones Chart Over the last decade, numerous milestones have been achieved, ... search across federal government science with Science.gov 2004 dot First relevancy ...

  2. Web-enabled Milestones Chart | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    Web-enabled Milestones Chart Over the last decade, numerous milestones have been achieved, including many "firsts" in government web search technology. Mouse over the year to view ...

  3. Compressing turbulence to improve inertial confinement fusion experiments |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Compressing turbulence to improve inertial confinement fusion experiments By John Greenwald March 15, 2016 Tweet Widget Google Plus One Share on Facebook Compression of a turbulent plasma. Image by Seth Davidovits Compression of a turbulent plasma. Image by Seth Davidovits Physicists have long regarded plasma turbulence as unruly behavior that can limit the performance of fusion experiments. But new findings by researchers associated with the U.S. Department of

  4. Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johns, H. M.; Mancini, R. C.; Nagayama, T.; Mayes, D. C.; Tommasini, R.; Smalyuk, V. A.; Regan, S. P.; Delettrez, J. A.

    2016-01-25

    In warm target direct-drive ICF implosion experiments performed at the OMEGA laser facility, plastic microballoons doped with a titanium tracer layer in the shell and filled with deuterium gas were imploded using a low-adiabat shaped laser pulse. Continuum radiation emitted in the core is transmitted through the tracer layer and the resulting spectrum recorded with a gated multi-monochromatic x-ray imager (MMI). Titanium K-shell line absorption spectra observed in the data are due to transitions in L-shell titanium ions driven by the backlighting continuum. The MMI data consist of an array of spectrally resolved images of the implosion. These 2-D space-resolvedmore » titanium spectral features constrain the plasma conditions and areal density of the titanium doped region of the shell. The MMI data were processed to obtain narrow-band images and space resolved spectra of titanium spectral features. Shell areal density maps, ρL(x,y), extracted using a new method using both narrow-band images and space resolved spectra are confirmed to be consistent within uncertainties. We report plasma conditions in the titanium-doped region of electron temperature (Te) = 400±28eV, electron number density (Ne) = 8.5x1024±2.5x1024 cm-3, and average areal density <ρR> = 86±7mg/cm2. Fourier analysis of areal density maps reveals shell modulations caused by hydrodynamic instability growth near the fuel-shell interface in the deceleration phase. We observe significant structure in modes l = 2-9, dominated by l = 2. We extract a target breakup fraction of 7.1±1.5% from our Fourier analysis. A new method for estimating mix width is evaluated against existing literature and our target breakup fraction. We estimate a mix width of 10.5±1μm.« less

  5. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  6. Image

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    The computer side of the IMAGE project consists of a collection of Perl scripts that perform a variety of tasks; scripts are available to insert, update and delete data from the underlying Oracle database, download data from NCBI's Genbank and other sources, and generate data files for download by interested parties. Web scripts make up the tracking interface, and various tools available on the project web-site (image.llnl.gov) that provide a search interface to the database.

  7. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the

  8. Electropionics and fusion

    SciTech Connect (OSTI)

    Kenny, J.P. )

    1991-05-01

    This paper reports on the electropionic mass formula which does not differentiate between nuclei and elementary particles, but gives the deuteron a unique bifurcated space-time description. This hints at fusion products produced by anomalous intermediate mass states of 3026, 3194, and 3515 MeV/c{sup 2} that then decay to produce energy. Another unique possibility in electropionics is that no fusion of deuterons occurs, but the deuteron is changed by electron capture into a D-meson that then decays to produce observed cold fusion energies. All these cold fusion electropionic reactions violate baryon conservation but do produce energy yields consistent with reported cold fusion decay products and energy levels.

  9. Science DMZ Fuels Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ Fuels Fusion Research General Atomics remote controls fusion experiments, bridges...

  10. ChallengeX_2008_Team_Technologies_Chart.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ChallengeX_2008_Team_Technologies_Chart.pdf ChallengeX_2008_Team_Technologies_Chart.pdf (443.35 KB) More Documents & Publications The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles hd_hydrogen_2007.xls

  11. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  12. Data fusion in neutron and X-ray computed tomography

    SciTech Connect (OSTI)

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  13. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  14. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL FusEdWeb Educational Outreach: US ITER staff members are available for presentations on fusion energy and the ITER project to technical, civic, community, and student groups. ...

  15. Fusion-breeder program

    SciTech Connect (OSTI)

    Moir, R.W.

    1982-11-19

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  16. Cold nuclear fusion

    SciTech Connect (OSTI)

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  17. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  18. New imaging technique provides improved insight into controlling the plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in fusion experiments | Princeton Plasma Physics Lab New imaging technique provides improved insight into controlling the plasma in fusion experiments By John Greenwald December 9, 2013 Tweet Widget Google Plus One Share on Facebook Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. A key issue for the

  19. New imaging technique provides improved insight into controlling the plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in fusion experiments | Princeton Plasma Physics Lab New imaging technique provides improved insight into controlling the plasma in fusion experiments By John Greenwald December 9, 2013 Tweet Widget Google Plus One Share on Facebook Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. A key issue for the

  20. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect (OSTI)

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  1. Diagnosing magnetized liner inertial fusion experiments on Z

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; et al

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  2. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect (OSTI)

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  3. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect (OSTI)

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/?s), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 12 ns stagnation duration.

  4. USVI Energy Road Map: Charting the Course to a Clean Energy Future...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. ...

  5. Scale of Things Chart | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale of Things Chart Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW

  6. State of the Union Remarks on Energy in Four Charts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Union Remarks on Energy in Four Charts State of the Union Remarks on Energy in Four Charts January 22, 2015 - 10:23am Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of Public Affairs More State of the Union Coverage Interested in hearing the President's energy and climate change related remarks from the State of the Union? Watch the video! In Tuesday's State of the Union

  7. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage

  8. 6 Charts that Will Make You Optimistic About America's Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future | Department of Energy Charts that Will Make You Optimistic About America's Clean Energy Future 6 Charts that Will Make You Optimistic About America's Clean Energy Future November 13, 2015 - 1:05pm Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Clean Energy & Climate A new MIT report explores how rapid growth of solar and wind energy could help nations around the world meet -- and beat -- their targets for reducing

  9. USVI Energy Road Map: Charting the Course to a Clean Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands | Department of Energy USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the

  10. United States Industrial Motor-Driven Systems Market Assessment: Charting a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Energy Savings for Industry | Department of Energy Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry This paper is an overview of the results of a market assessment commissioned by the DOE Motor Challenge program in 1995 to better understand the characteristics of the installed population of motor systems in the manufacturing

  11. Fusion Technologies for Laser Inertial Fusion Energy (LIFE) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Fusion Technologies for Laser Inertial Fusion Energy (LIFE) Authors: Kramer, K J ; Latkowski, J F ; Abbott, R P ; Anklam, T P ; Dunne, A M ; El-Dasher, B S ; Flowers, D L ; ...

  12. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  13. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  14. On impact fusion

    SciTech Connect (OSTI)

    Winterberg, F.

    1997-04-15

    Impact fusion is a promising, but much less developed road towards inertial confinement fusion. It offers an excellent solution to the so-called stand-off problem for thermonuclear microexplosions but is confronted with the challenge to accelerate macroscopic particles to the needed high velocities of 10{sup 2}-10{sup 3} km/s. To reach these velocities, two ways have been studied in the past. The electric acceleration of a beam of microparticles, with the particles as small as large clusters, and the magnetic acceleration of gram-size ferromagnetic or superconducting projectiles. For the generation of an intense burst of soft X-rays used for the indirect drive, impact fusion may offer new promising possibilities.

  15. Peaceful Uses of Fusion

    DOE R&D Accomplishments [OSTI]

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  16. Simulation of Fusion Plasmas

    ScienceCinema (OSTI)

    Holland, Chris [UC San Diego, San Diego, California, United States

    2010-01-08

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  17. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the

  18. Atomic data for fusion

    SciTech Connect (OSTI)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  19. Fusion welding process

    DOE Patents [OSTI]

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  20. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  1. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  2. Physics (selected articles). [Nuclear fusion

    SciTech Connect (OSTI)

    Shiyao, Z.; Zesheng, C.; Xiaolung, X.; Qiang, H.

    1982-09-01

    Controlled nuclear fusion as a new energy source was investigated. It will be possible in the 1980's to obtain thermal nuclear ignition, and in the early 2000's nuclear fusion may be used to supplement the energy shortage. It is predicted that in the 2000's nuclear fusion will occupy an important position as a global source of energy.

  3. Nattoh model for cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1989-12-01

    A hypothetical model, the Nattoh model, is proposed to answer the questions that result from cold fusion experiments. This model proposes the formation of a small cluster of deuterons and examines the feasibility of many-body fusion reactions. The gamma-ray spectrum, heat production, neutron emissions, and fusion products are discussed.

  4. The distribution of an illustrated timeline wall chart and teacher's guide of 20th century physics

    SciTech Connect (OSTI)

    Schwartz, Brian

    2000-12-26

    The American Physical Society's part of its centennial celebration in March of 1999 decided to develop a timeline wall chart on the history of 20th century physics. This resulted in eleven consecutive posters, which when mounted side by side, create a 23-foot mural. The timeline exhibits and describes the millstones of physics in images and words. The timeline functions as a chronology, a work of art, a permanent open textbook, and a gigantic photo album covering a hundred years in the life of the community of physicists and the existence of the American Physical Society. Each of the eleven posters begins with a brief essay that places a major scientific achievement of the decade in its historical context. Large portraits of the essays' subjects include youthful photographs of Marie Curie, Albert Einstein, and Richard Feynman among others, to help put a face on science. Below the essays, a total of over 130 individual discoveries and inventions, explained in dated text boxes with accompanying images, form the backbone of the timeline. For ease of comprehension, this wealth of material is organized into five color-coded story lines the stretch horizontally across the hundred years of the 20th century. The five story lines are: Cosmic Scale, relate the story of astrophysics and cosmology; Human Scale, refers to the physics of the more familiar distances from the global to the microscopic; Atomic Scale, focuses on the submicroscopic world of atoms, nuclei and quarks; Living World, chronicles the interaction of physics with biology and medicine; Technology, traces the applications of physic to everyday living. Woven into the bottom border of the timeline are period images of significant works of art, architecture, and technological artifacts such as telephones, automobiles, aircraft, computers, and appliances. The last poster, covering the years since 1995, differs from the others. Its essay concerns the prospect for physics into the next century, and is illustrated

  5. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  6. (Fusion energy research)

    SciTech Connect (OSTI)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  7. Modular Aneutronic Fusion Engine

    SciTech Connect (OSTI)

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  8. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 / december Photons & Fusion Newsletter December 2011 MIT Plasma Science Lab Develops NIF Diagnostics A typical NIF experiment is over in a few billionths of a second. Obtaining meaningful information about what occurs during this extremely brief time period, in and around a tiny target, has required the design and development of a new breed of detectors, cameras, and other diagnostic instruments, many of which have been created through partnerships with universities and national

  9. Cooling Fusion in a Flash | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash

  10. Dish Stirling High Performance Thermal Storage FY14Q3 Quad Chart.

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Dish Stirling High Performance Thermal Storage FY14Q3 Quad Chart. Citation Details In-Document Search Title: Dish Stirling High Performance Thermal Storage FY14Q3 Quad Chart. Abstract not provided. Authors: Andraka, Charles E. Publication Date: 2014-07-01 OSTI Identifier: 1171437 Report Number(s): SAND2014-15691R 533649 DOE Contract Number: AC04-94AL85000 Resource Type: Technical Report Research Org: Sandia National Laboratories (SNL-NM), Albuquerque, NM

  11. Dish Stirling High Performance Thermal Storage FY14Q4 Quad Chart.

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Dish Stirling High Performance Thermal Storage FY14Q4 Quad Chart. Citation Details In-Document Search Title: Dish Stirling High Performance Thermal Storage FY14Q4 Quad Chart. Abstract not provided. Authors: Andraka, Charles E. Publication Date: 2014-10-01 OSTI Identifier: 1172801 Report Number(s): SAND2014-18924R 540572 DOE Contract Number: AC04-94AL85000 Resource Type: Technical Report Research Org: Sandia National Laboratories (SNL-NM), Albuquerque, NM

  12. Dish Stirling High Performance Thermal Storage FY15Q1 Quad Chart (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Dish Stirling High Performance Thermal Storage FY15Q1 Quad Chart Citation Details In-Document Search Title: Dish Stirling High Performance Thermal Storage FY15Q1 Quad Chart Abstract not provided. Authors: Andraka, Charles E. [1] + Show Author Affiliations Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) Publication Date: 2015-04-01 OSTI Identifier: 1177973 Report Number(s): SAND2015-2562R 579876 DOE Contract Number: AC04-94AL85000 Resource Type:

  13. Dish Stirling High Performance Thermal Storage FY15Q2 Quad Chart (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Dish Stirling High Performance Thermal Storage FY15Q2 Quad Chart Citation Details In-Document Search Title: Dish Stirling High Performance Thermal Storage FY15Q2 Quad Chart Abstract not provided. Authors: Andraka, Charles E. [1] + Show Author Affiliations Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) Publication Date: 2015-04-01 OSTI Identifier: 1178621 Report Number(s): SAND2015-2914R 583301 DOE Contract Number: AC04-94AL85000

  14. Dish Stirling High Performance Thermal Storage FY15Q3 Quad Chart (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Dish Stirling High Performance Thermal Storage FY15Q3 Quad Chart Citation Details In-Document Search Title: Dish Stirling High Performance Thermal Storage FY15Q3 Quad Chart Abstract not provided. Authors: Andraka, Charles E. [1] + Show Author Affiliations Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) Publication Date: 2015-08-01 OSTI Identifier: 1211552 Report Number(s): SAND2015--6472R 598782 DOE Contract Number: AC04-94AL85000 Resource Type:

  15. Fusion Technologies for Laser Inertial Fusion Energy (LIFE) ...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: 7th International Conference on Inertial Fusion Sciences and Applications, Bordeaux, France, Sep 12 - Sep 16, 2011 Research Org: ...

  16. COLLOQUIUM: Magnetized Target Fusion Work at General Fusion | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab December 18, 2014, 12:30pm to 2:00pm Colloquia MBG Auditorium COLLOQUIUM: Magnetized Target Fusion Work at General Fusion Dr. Michel Laberge General Fusion FOR THIS COLLOQUIUM - PLEASE NOTE SPECIAL TIME OF 12:30PM General Fusion is working on compressing a Compact Torus in liquid metal using an acoustic wave generated by compressed gas pistons. This approach has attractive reactor engineering features: strongly reduced neutrons damage (1E-5 reduction in neutron flux with

  17. Peregrinations on cold fusion

    SciTech Connect (OSTI)

    Turner, L.

    1989-01-01

    Attention is focused on the possibility of resonance-enhanced deuteron Coulomb barrier penetration. Because of the many-body nature of the interactions of room-temperature deuterons diffusing through a lattice possessing deuterons in many of the interstitial positions, the diffusing deuterons can resonate on the atomic scale in the potential wells bounded by the ascending walls of adjacent Coulomb barriers and thereby penetrate the Coulomb barriers in a fashion vastly underestimated by two-body calculations in which wells for possible resonance are absent. Indeed, perhaps the lack of robust reproducibility in cold fusion originates from the narrowness of such transmission resonances. 4 refs., 1 fig.

  18. Fusion Science to Prepare

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Recent DIII-D research has provided significant new in- formation for the physics basis of key scientific issues for successful operation of ITER and future steady state fu- sion tokamaks, including control of edge localized modes (ELMs), plasma

  19. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  20. U.S. Nuclear Regulatory Commission organization charts and functional statements. Revision 18

    SciTech Connect (OSTI)

    1995-07-23

    This document (NUREG-0325) is the current US NRC organization chart, listing all NRC offices and regions and their components down through the branch level as of July 23, 1995. Functional statements of each position are given, as is the name of the individual holding the position.

  1. How Fusion Energy Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as ...

  2. The possible hot nature of cold fusion

    SciTech Connect (OSTI)

    Kuehne, R.W. )

    1994-03-01

    Based on the model of micro hot fusion, the neutron emission rate of cold fusion is determined without the need for fine-tuning parameters. Moreover, the experimental conditions that are essential to reproduce fusion are determined. 84 refs.

  3. Application of Hotelling’s T{sup 2} charts in monitoring quality parameters in a drinking water supply system

    SciTech Connect (OSTI)

    Costa, Mafalda T.; Carolino, Elisabete; Oliveira, Teresa A.

    2015-03-10

    In water supply systems with distribution networkthe most critical aspects of control and Monitoring of water quality, which generates crises system, are the effects of cross-contamination originated by the network typology. The classics of control of quality systems through the application of Shewhart charts are generally difficult to manage in real time due to the high number of charts that must be completed and evaluated. As an alternative to the traditional control systems with Shewhart charts, this study aimed to apply a simplified methodology of a monitoring plan quality parameters in a drinking water distribution, by applying Hotelling’s T{sup 2} charts and supplemented with Shewhart charts with Bonferroni limits system, whenever instabilities with processes were detected.

  4. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Fusion Policy Advisory Committee (FPAC)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

  6. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  7. Cold fusion; Myth versus reality

    SciTech Connect (OSTI)

    Rabinowitz, M. )

    1990-01-01

    Experiments indicate that several different nuclear reactions are taking place. Some of the experiments point to D-D fusion with a cominant tritium channel as one of the reactions. The article notes a similarity between Prometheus and the discoveries of cold fusion.

  8. Imaging of molybdenum erosion and thermography at visible wavelengths...

    Office of Scientific and Technical Information (OSTI)

    AND MOLECULAR PHYSICS; 47 OTHER INSTRUMENTATION; 29 ENERGY PLANNING, POLICY AND ECONOMY; 70 PLASMA PHYSICS AND FUSION Word Cloud More Like This Full Text preview image File ...

  9. CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS...

    Office of Scientific and Technical Information (OSTI)

    MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS AFFECTING FUSION. Henderson, Ian M.; Paxton, Walter F Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque,...

  10. American Fusion News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Fusion News General Atomics (GA) December 4, 2012 The Scorpion's Strategy: "Catch and Subdue" December 4, 2012 Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment ...

  11. CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal Article: CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS AFFECTING FUSION. Citation Details In-Document Search Title: CONTROL OF MECHANICALLY ACTIVATED...

  12. Prospects for practical fusion power

    SciTech Connect (OSTI)

    Dean, S.O.

    1980-12-01

    The prospects for practical fusion power received a substantial shot in the arm recently when the President signed into law the Magnetic Fusion Engineering Act of 1980. This new law directs the Secretary of Energy to ''initiate at the earliest practical time each activity which he deems necessary to achieve the national goal for operation of a commercial demonstration plant at the turn of the twenty-first century''. The new law is in consonance with the conclusions of two panels which reviewed the status of magnetic fusion energy research during 1980. A Fusion Advisory Panel to the House Science and Technology Committee, chaired by Dr. Robert L. Hirsch of EXXON, concluded that ''fusion can be made commercial before 2000 if a national commitment is made soon''. And, the Department of Energy's Energy Research Advisory Board (ERAB), chaired by Dr. Solomon J. Buchsbaum of Bell Laboratories, concluded that ''recent progress in plasma confinement has been impressive'' and that ''as a result of this progress, the U.S. is now ready to embark on the next step toward the goal of achieving economic fusion power: the exploration of the engineering feasibility of fusion''. The basis for optimism that fusion will become a practical energy source around the turn of the century is three-fold: (1) dramatic scientific progress has occurred on a broad front during the past few years; (2) key fusion technologies have been developed for several large fusion facilities now under construction; and (3) a growing cadre of engineers have been identifying the engineering development tasks required for practical systems.

  13. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  14. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  15. Multiple shell fusion targets

    DOE Patents [OSTI]

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  16. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  17. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  18. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  19. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect (OSTI)

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  20. Prospects for bubble fusion

    SciTech Connect (OSTI)

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  1. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cover of Journal of Applied Physics Image on the cover of the March 28 issue of the Journal of Applied Physics shows the computed temperature field inside a NIF target...

  2. Interval Data Analysis with the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Katipamula, Srinivas; Koran, William

    2011-07-07

    Analyzing whole building interval data is an inexpensive but effective way to identify and improve building operations, and ultimately save money. Utilizing the Energy Charting and Metrics Tool (ECAM) add-in for Microsoft Excel, building operators and managers can begin implementing changes to their Building Automation System (BAS) after trending the interval data. The two data components needed for full analyses are whole building electricity consumption (kW or kWh) and outdoor air temperature (OAT). Using these two pieces of information, a series of plots and charts and be created in ECAM to monitor the buildings performance over time, gain knowledge of how the building is operating, and make adjustments to the BAS to improve efficiency and start saving money.

  3. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect (OSTI)

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  4. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  5. Deuterium fusion through nonequilibrium induction

    SciTech Connect (OSTI)

    Fang, P.H. )

    1991-03-01

    This paper presents a deuterium fusion system that is based on the induction of fusion through a nonequilibrium thermodynamical configuration. Mechanical excitation using ultrasound is applied to a palladium electrode with deuterium-containing liquid, a mixture of palladium powder and deuterium-containing liquid, and a system of palladium and a highly compressed deuterium gas that approximates a deuterium solid. The ultrasound, when coupled with the medium of these systems, instantaneously creates a high temperature and pressure that would induce fusion between deuterons.

  6. Microsoft PowerPoint - PM Org Chart w-DivCh Names (002)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organizational Chart Office of Project Management Oversight and Assessments (PM) PM-1 Paul Bosco Director Under Secretary for Management and Performance (S3) Tony Ermovick PM-20 Departmental Project Oversight Melvin Frank PM-30 Project Management Policy & Systems Linda Ott PM-40 Professional Development PM-2 Michael Peek Deputy Director New Organization Effective: July 12, 2015 John White PM-10 Project Assessments Jay Glascock Chief of Staff

  7. Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart Paul Denholm, Matthew O'Connell, Gregory Brinkman, and Jennie Jorgenson National Renewable Energy Laboratory Technical Report NREL/TP-6A20-65023 November 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  8. Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    pipeline safety) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: DOT/NHTS (crashworthiness) EPA (emissions) Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and

  9. Organizational Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Shalf Jeff Broughton Katie Antypas Jay Srinivasan Nick Wright Brent Draney Elizabeth Bautista Shane Cannon Prabhat David Skinner Richard Gerber Damian Hazen Last edited:...

  10. Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Counsel David Sosinski Chief Financial Officer Jay Johnson LANS, LLC Executive ... Sciences Associate Director Mary Hockaday Theory, Simulation, & Computation Associate ...

  11. Coresident sensor fusion and compression using the wavelet transform

    SciTech Connect (OSTI)

    Yocky, D.A.

    1996-03-11

    Imagery from coresident sensor platforms, such as unmanned aerial vehicles, can be combined using, multiresolution decomposition of the sensor images by means of the two-dimensional wavelet transform. The wavelet approach uses the combination of spatial/spectral information at multiple scales to create a fused image. This can be done in both an ad hoc or model-based approach. We compare results from commercial ``fusion`` software and the ad hoc, wavelet approach. Results show the wavelet approach outperforms the commercial algorithms and also supports efficient compression of the fused image.

  12. Overgeneration from Solar Energy in California - A Field Guide to the Duck Chart

    SciTech Connect (OSTI)

    Denholm, Paul; Brinkman, Gregory; Jorgenson, Jennie

    2015-11-01

    In 2013, the California Independent System Operator published the "duck chart,"" which shows a significant drop in mid-day net load on a spring day as solar photovoltaics (PV) are added to the system. The chart raises concerns that the conventional power system will be unable to accommodate the ramp rate and range needed to fully utilize solar energy, particularly on days characterized by the duck shape. This could result in "overgeneration"" and curtailed renewable energy, increasing its costs and reducing its environmental benefits. This paper explores the duck chart in detail, examining how much PV might need to be curtailed if additional grid flexibility measures are not taken, and how curtailment rates can be decreased by changing grid operational practices. It finds that under business-as-usual types of assumptions and corresponding levels of grid flexibility in California, solar penetrations as low as 20 percent of annual energy could lead to marginal curtailment rates that exceed 30 percent. However, by allowing (or requiring) distributed PV and storage (including new installations that are part of the California storage mandate) to provide grid services, system flexibility could be greatly enhanced. Doing so could significantly reduce curtailment and allow much greater penetration of variable generation resources in achieving a 50 percent renewable portfolio standard. Overall, the work described in this paper points to the need to fully integrate distributed resources into grid system planning and operations to allow maximum use of the solar resource.

  13. Overgeneration from Solar Energy in California. A Field Guide to the Duck Chart

    SciTech Connect (OSTI)

    Denholm, Paul; O'Connell, Matthew; Brinkman, Gregory; Jorgenson, Jennie

    2015-11-01

    In 2013, the California Independent System Operator published the 'duck chart,' which shows a significant drop in mid-day net load on a spring day as solar photovoltaics (PV) are added to the system. The chart raises concerns that the conventional power system will be unable to accommodate the ramp rate and range needed to fully utilize solar energy, particularly on days characterized by the duck shape. This could result in 'overgeneration' and curtailed renewable energy, increasing its costs and reducing its environmental benefits. This paper explores the duck chart in detail, examining how much PV might need to be curtailed if additional grid flexibility measures are not taken, and how curtailment rates can be decreased by changing grid operational practices. It finds that under "business-as-usual"" types of assumptions and corresponding levels of grid flexibility in California, solar penetrations as low as 20% of annual energy could lead to marginal curtailment rates that exceed 30%. However, by allowing (or requiring) distributed PV and storage (including new installations that are part of the California storage mandate) to provide grid services, system flexibility could be greatly enhanced. Doing so could significantly reduce curtailment and allow much greater penetration of variable generation resources. Overall, the work described in this paper points to the need to fully integrate distributed resources into grid system planning and operations to allow maximum use of the solar resource.

  14. Poster — Thur Eve — 09: Evaluation of electrical impedance and computed tomography fusion algorithms using an anthropomorphic phantom

    SciTech Connect (OSTI)

    Chugh, Brige Paul; Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal

    2014-08-15

    Integration of biological conductivity information provided by Electrical Impedance Tomography (EIT) with anatomical information provided by Computed Tomography (CT) imaging could improve the ability to characterize tissues in clinical applications. In this paper, we report results of our study which compared the fusion of EIT with CT using three different image fusion algorithms, namely: weighted averaging, wavelet fusion, and ROI indexing. The ROI indexing method of fusion involves segmenting the regions of interest from the CT image and replacing the pixels with the pixels of the EIT image. The three algorithms were applied to a CT and EIT image of an anthropomorphic phantom, constructed out of five acrylic contrast targets with varying diameter embedded in a base of gelatin bolus. The imaging performance was assessed using Detectability and Structural Similarity Index Measure (SSIM). Wavelet fusion and ROI-indexing resulted in lower Detectability (by 35% and 47%, respectively) yet higher SSIM (by 66% and 73%, respectively) than weighted averaging. Our results suggest that wavelet fusion and ROI-indexing yielded more consistent and optimal fusion performance than weighted averaging.

  15. Fusion reactor design | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactor design Subscribe to RSS - Fusion reactor design The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator. How Does Fusion Energy Work? Click here to view a cool infographic about fusion energy from the U.S. Department of Energy. Read more about How Does Fusion Energy Work? How Does Fusion Energy Work? Fusion is the energy source of the sun and stars.

  16. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  17. Condensed hydrogen for thermonuclear fusion

    SciTech Connect (OSTI)

    Kucheyev, S. O.; Hamza, A. V.

    2010-11-15

    Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

  18. The reality of cold fusion

    SciTech Connect (OSTI)

    Case, L.C. )

    1991-12-01

    Despite the unreproducibility, doubt, and controversy involved in the question of the cold fusion of deuterium, enough good data have been published to clearly indicate the reality of some sort of nuclear fusion. Yamaguchi and Niushioka reported a thrice-repeated event in which large amounts of heat and definite bursts of neutrons evolved simultaneously with considerable out-gassing of absorbed deuterium. These results are consistent with nuclear fusion and not with a chemical reaction. In this paper a detailed mechanism is proposed that is consistent with these events and that also generally explains many of the scattered indications of cold fusion that have been reported. There must be an adventitiously large enough presence of tritium to initiate the nuclear reaction. The results of previously successful experiments cannot now be reproduced because currently available D{sub 2}O (and D{sub 2}) is so low in adventitious tritium as to preclude initiation of the nuclear reaction.

  19. Laser fusion monthly -- August 1980

    SciTech Connect (OSTI)

    Ahlstrom, H.G.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  20. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect (OSTI)

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of net tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  1. Tritium accountancy in fusion systems

    SciTech Connect (OSTI)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S.; Moore, M.L.

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  2. Prospects for Tokamak Fusion Reactors

    SciTech Connect (OSTI)

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  3. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations:

  4. Cold fusion in condensed matter

    SciTech Connect (OSTI)

    Schommers, W.; Politis, C. )

    1989-01-01

    A model for cold fusion in condensed matter is proposed (cold fusion of deuterons in palladium). It is assumed that the palladium-deuterium system forms an alloy, i.e., it is assumed that Pd ions as well as d/sup +/ ions are embedded in an uniform background of negative charge (conduction electrons). The model is based on an interaction potential for deuterons in solid palladium which has been estimated by means of a theoretical picture well known in the physics of liquids. In particular, the following effects are possible: 1. Cold fusion in condensed matter can take place. 2. The observed energy should be larger than that given by the fusion reactions. 3. Hitherto unknown nuclear processes must not be postulated as reported by Fleischmann and Pons. 4. The deuterons are mobile. 5. The deuterons can form close-packed clusters, and in principle a fusion reaction can take place within such a cluster. 6. Not only /sup 3/He should be produced in Pd but possible /sup 4/He too. From their theoretical picture, it can be concluded that experimental results will be strongly dependent on the condition of the materials used in the experiments. This can possible explain that only a part of experiments could show up cold fusion. A well defined condition (lattice defects, different phases, impurities, etc.) of the materials is probably the most critical point in connection with the observation of cold fusion in condensed matter. The effect should also be influenced by lattice dilatations. Experiments with other materials instead of palladium (e.g. vanadium, titanium, lanthanide metals, and different alloys) should be probably more informative.

  5. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect (OSTI)

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  6. Overview of Fusion-Fission Hybrid Blankets for Laser Inertial...

    Office of Scientific and Technical Information (OSTI)

    Conference: Overview of Fusion-Fission Hybrid Blankets for Laser Inertial Fusion Energy (LIFE) Engine Citation Details In-Document Search Title: Overview of Fusion-Fission Hybrid ...

  7. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  8. Office of Inertial Confinement Fusion | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inertial Confinement Fusion | National Nuclear Security Administration Facebook Twitter ... Blog Home Office of Inertial Confinement Fusion Office of Inertial Confinement Fusion ...

  9. Using Radio Waves to Control Fusion Plasma Density

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics ...

  10. Placing Fusion Power on a Pedestal | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Placing Fusion Power on a Pedestal American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Placing Fusion Power on a Pedestal

  11. Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment American Fusion News Category: General Atomics (GA) Link: Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...

  12. Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Devices with Lithium Conditioned Carbon Walls American Fusion News Category: U.S. Universities Link: Deuterium Uptake in Magnetic Fusion Devices with Lithium ...

  13. Overview of Fusion-Fission Hybrid Blankets for Laser Inertial...

    Office of Scientific and Technical Information (OSTI)

    Hybrid Blankets for Laser Inertial Fusion Energy (LIFE) Engine Citation Details In-Document Search Title: Overview of Fusion-Fission Hybrid Blankets for Laser Inertial Fusion ...

  14. COLLOQUIUM: Progress towards fusion on NIF and Z requires new plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurement capabilities | Princeton Plasma Physics Lab June 3, 2015, 3:00pm to 4:30pm Colloquia MBG Auditorium COLLOQUIUM: Progress towards fusion on NIF and Z requires new plasma measurement capabilities Dr. Joe Kilkenny LLNL/GA Dr. Greg Rochau SNL There is significant progress towards fusion on NIF and Z with alpha particle heating on NIF and modest neutron yields on Z. However future progress requires advances in measurement capabilities. Examples of high speed xray imaging, optical

  15. Attachment 1 - PIC Transcribed Flip Chart Notes Final Meeting Summary Page 12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - PIC Transcribed Flip Chart Notes Final Meeting Summary Page 12 Public Involvement Committee September 4, 2013 Strategic Planning: Quarters by month * Q1: Oct. - Dec. * Q2: Jan - March * Q3: April - June * Q4: July - Sept. Page 1 Strategic Planning: 2014 Topics (Interactive activity) * = priority topic for discussion at meeting; �= priority for future discussion | Quarter prioritized for discussion (Q1, Q2, Q3, Q4) * 100-F Proposed Plan | *** Q2 * 100 D-H Proposed Plan * Draft Land

  16. (Meeting on fusion reactor materials)

    SciTech Connect (OSTI)

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  17. Method for vacuum fusion bonding

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  18. Fusion bonding and alignment fixture

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  19. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect (OSTI)

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  20. CONTROL CHART DASHBOARDS MANAGING YOUR NUMBERS INSTEAD OF YOU NUMBER MANAGING YOU

    SciTech Connect (OSTI)

    PREVETTE, S.S.

    2006-11-15

    This paper, which documents Fluor Hanford's application of Statistical Process Control (SPC) and Dashboards to support planning and decision making, is a sequel to ''Leading with Leading Indicators'' that was presented at WM 05. This year's paper provides more detail on management's use of SPC and control charts and discusses their integration into an executive summary using the popular color-cod3ed dashboard methodology. Fluor Hanford has applied SPC in a non-traditional (that is non-manufacturing) manner. Dr. Shewhart's 75-year-old control-chart methodologies have been updated to modern data processing, but are still founded on his sound, tried and true principles. These methods are playing a key role in safety and quality at what has been called the world's largest environmental cleanup project. The US Department of Energy's (DOE's) Hanford Site played a pivotal role in the nation's defense, beginning in the 1940s when it was established as part of the Manhattan Project. After more than 50 years of producing nuclear weapons, Hanford--which covers 586 square miles in southeastern Washington state--is now focused on three outcomes: (1) restoring the Columbia River corridor for multiple uses; (2) transitioning the central plateau to support long-term waste management; and (3) putting DOE assets to work for the future.

  1. Generic magnetic fusion reactor cost assessment

    SciTech Connect (OSTI)

    Sheffield, J.

    1984-01-01

    A generic D-T burning magnetic fusion reactor model shows that within the constraints set by generic limitations it is possible for magnetic fusion to be a competitive source of electricity in the 21st century.

  2. Advanced energy conversion methods for cold fusion

    SciTech Connect (OSTI)

    Prelas, M.A. )

    1989-09-01

    If cold fusion is verified, then the next important question deals with how it can be used to produce energy. Several direct energy conversion concepts for use with cold fusion are discussed.

  3. Cold fusion catalyzed by muons and electrons

    SciTech Connect (OSTI)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  4. Z-Pinch Fusion for Energy Applications

    SciTech Connect (OSTI)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  5. The Tokamak Fusion Test Reactor (TFTR) Story

    SciTech Connect (OSTI)

    2015-08-05

    Princeton Plasma Physics Laboratory provides an overview of the purpose, mission, and progress of the Tokamak Fusion Test Reactor experiment.

  6. 1994 International Sherwood Fusion Theory Conference

    SciTech Connect (OSTI)

    1994-04-01

    This report contains the abstracts of the paper presented at the 1994 International Sherwood Fusion Theory Conference.

  7. Breakthrough: Neutron Science for the Fusion Mission

    SciTech Connect (OSTI)

    McGreevy, Robert

    2012-04-24

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  8. Exo-endo cellulase fusion protein

    DOE Patents [OSTI]

    Bower, Benjamin S.; Larenas, Edmund A.; Mitchinson, Colin

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  9. Tokamak Fusion Test Reactor (TFTR) Closing

    SciTech Connect (OSTI)

    2015-08-05

    Closing remarks are provided in honor of the scientists whom worked diligently on the Tokamak Fusion Test Reactor (TFTR) experiment.

  10. Tokamak Fusion Test Reactor (TFTR) First Plasma

    SciTech Connect (OSTI)

    2015-08-05

    The Tokamak Fusion Test Reactor (TFTR) First Plasma experiment was implemented at the Princeton Plasma Physics Laboratory.

  11. Experimental Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Fusion Research PPPL fusion research centers on the National Spherical Torus Experiment (NSTX), which is undergoing a $94 million upgrade that will make it the most powerful experimental fusion facility, or tokamak, of its type in the world when work is completed in 2014. Experiments will test the ability of the upgraded spherical facility to maintain a high-performance plasma under conditions of extreme heat and power. Results could strongly influence the design of future fusion

  12. Theoretical Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Theoretical Fusion Research About Theory Department The fusion energy sciences mission of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) is to help provide the scientific foundations for establishing magnetic confinement as an attractive, technically

  13. Possible natural cold fusion in the atmosphere

    SciTech Connect (OSTI)

    Hawkins, N. )

    1991-07-01

    Nongeological natural cold fusion effects in meteoroelectrical disequilibria are possible, and various laboratory simulations of these effects are being studied.

  14. Possible in-lattice confinement fusion (LCF)

    SciTech Connect (OSTI)

    Kawarasaki, Y.

    1996-05-01

    New scheme of a nuclear fusion reactor system is proposed, the basic concept of which comes from ingenious combination of hitherto developed techniques and verified facts; (1) so-called cold fusion (CF), (2) plasma of both magnetic confinement fusion (MCF) and inertial confinement fusion (ICF), and (3) accelerator-based D-T (D) neutron source. Through the comparison of the characteristics among ICF, LCF, and MCF, the feasibility of the LCFs is discussed. {copyright} {ital 1996 American Institute of Physics.}

  15. Breakthrough: Neutron Science for the Fusion Mission

    ScienceCinema (OSTI)

    McGreevy, Robert

    2014-06-03

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  16. Cold fusion anomalies more perplexing than ever

    SciTech Connect (OSTI)

    Dagani, R

    1989-11-01

    This article addresses the debate over research on cold fusion. Analysis is made of the research efforts that have taken place since cold fusion was first thought to have been discovered in Utah. Research in the Soviet Union on the cold fusion phenomenon is also discussed.

  17. Senate targets fusion, backs NIF

    SciTech Connect (OSTI)

    Lawler, A.

    1995-08-01

    This article discusses a budget approved by the Senate Appropriations Committee which funds the fusion program even lower than the drastically reduced level the House approved in July. Work on the International Thermonuclear Experimental Reactor (ITER) would continue but the Tokamak Physics Experiment would be halted. At the same time, the Senate bill allots money to start work on the National Ignition Facility (NIF).

  18. Data security on the national fusion grid

    SciTech Connect (OSTI)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  19. Security on the US Fusion Grid

    SciTech Connect (OSTI)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  20. Particle beam fusion progress report for 1989

    SciTech Connect (OSTI)

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

  1. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  2. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect (OSTI)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  3. FUSION WELDING METHOD AND APPARATUS

    DOE Patents [OSTI]

    Wyman, W.L.; Steinkamp, W.I.

    1961-01-17

    An apparatus for the fusion welding of metal pieces at a joint is described. The apparatus comprises a highvacuum chamber enclosing the metal pieces and a thermionic filament emitter. Sufficient power is applied to the emitter so that when the electron emission therefrom is focused on the joint it has sufficient energy to melt the metal pieces, ionize the metallic vapor abcve the molten metal, and establish an arc discharge between the joint and the emitter.

  4. Fusion Institutions | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Institutions Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research Fusion

  5. Fusion Links | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Links Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research Fusion Links Print

  6. Fusion Nuclear Science Pathways Assessment

    SciTech Connect (OSTI)

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  7. Fusion On Earth | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Fusion On Earth Publication File: PDF icon Fusion On Earth Publication Type: Brochures

  8. PPPL Races Ahead with Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides

  9. Hydrogen Fusion An Opportunity for Global Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process of Hydrogen Fusion Hydrogen fusion, the process that powers our sun and the stars, is the most fundamental energy source in the visible universe. Directly, it provides sunlight, while indirectly it is the driver behind all "renewable" energies (solar-thermal and photovoltaic, wind, biomass and ocean- thermal). Even the fossil fuels (oil, gas and coal), which were derived over long periods of time from ancient biomass, are by-products of hydrogen fusion. The energy released

  10. Review of alternative concepts for magnetic fusion

    SciTech Connect (OSTI)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given.

  11. Tritium Gas Processing for Magnetic Fusion

    Office of Environmental Management (EM)

    Processing for Magnetic Fusion SRNL-STI-2014-00168 Bernice Rogers Clean Energy - Savannah River National Laboratory April 24, 2014 The views and opinions expressed herein do not necessarily reflect those of any international organization, the US Government SRNL-STI-2014-00168 Presentation Outline * Background Information * Simplified Fusion Fuel Cycle * Select Requirements Fuel Cycle * Confinement * Process * Summary 2 3 What is Fusion? Small Atom Small Atom Large Atom ENERGY + 4 deuterium

  12. Observation of stars produced during cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1992-12-01

    It has been indicated tht multiple-neutron nuclei such as quad-neutrons can be emitted during cold fusion. These multiple-neutrons might bombard the nuclei of materials outside a cold fusion cell to cause nuclear reactions. In this paper, observations of nuclear emulsions that were irradiated during a cold fusion experiment with heavy water and palladium foil are described. Various traces, like stars, showing nuclear reactions caused by the multiple-neutrons have been clearly observed.

  13. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    1993-12-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  14. Sandia National Laboratories: Inertial Confinement Fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inertial Confinement Fusion Magnetized Liner Inertial Fusion (MagLIF) Centered on magnetically driven implosions Alt text Fusion: The ultimate energy source Einstein's famous equation, E = mc2, tells us that a small amount of mass can be converted into a large amount of energy. This powerful equation is at the center of fusion energy - the idea that light nuclei, e.g. deuterium and tritium (isotopes of hydrogen) can be smashed together to form particles, e.g. a neutron and a helium nuclei, of

  15. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

    1983-05-09

    This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

  16. How Fusion Energy Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as opposed to fission where the nucleus of an atom is split apart). The scientific basis underlying fusion energy is known as plasma physics. Plasma is one of the one of the four fundamental states of matter and makes up 99 percent of the visible universe. On a basic level, a plasma is a hot ionized gas. The ultimate goal of

  17. Magneto-inertial fusion (MIF) needs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magneto-inertial fusion (MIF) needs a credible demonstration of the key physics principles ... Such an achievement, modeled and understood, would be a clear demonstration of the ...

  18. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  19. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    SciTech Connect (OSTI)

    Bush, R.T. )

    1992-09-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM.

  20. A New Scheme for Stigmatic X-ray Imaging with Large Magnification...

    Office of Scientific and Technical Information (OSTI)

    F; Beiersdorfer, P; Wang, E; Sanchez del Rio, M; Caughey, T A 70 PLASMA PHYSICS AND FUSION TECHNOLOGY X-ray Imaging X-ray Imaging This paper describes a new x-ray scheme for...

  1. Fusion Rockets for Planetary Defense

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED Fusion Rockets for Planetary Defense Glen Wurden Los Alamos National Laboratory PPPL Colloquium March 16, 2016 LA-UR-15-xxxx LA-UR-16-21396 | Los Alamos National Laboratory | Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED My collaborators on this topic: T. E. Weber 1 , P. J. Turchi 2 , P. B. Parks 3 , T. E. Evans 3 , S. A. Cohen 4 , J. T.

  2. Laser fusion pulse shape controller

    DOE Patents [OSTI]

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  3. A Control Chart Approach for Representing and Mining Data Streams with Shape Based Similarity

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A

    2014-01-01

    The mining of data streams for online condition monitoring is a challenging task in several domains including (electric) power grid system, intelligent manufacturing, and consumer science. Considering a power grid application in which thousands of sensors, called the phasor measurement units, are deployed on the power grid network to continuously collect streams of digital data for real-time situational awareness and system management. Depending on design, each sensor could stream between ten and sixty data samples per second. The myriad of sensory data captured could convey deeper insights about sequence of events in real-time and before major damages are done. However, the timely processing and analysis of these high-velocity and high-volume data streams is a challenge. Hence, a new data processing and transformation approach, based on the concept of control charts, for representing sequence of data streams from sensors is proposed. In addition, an application of the proposed approach for enhancing data mining tasks such as clustering using real-world power grid data streams is presented. The results indicate that the proposed approach is very efficient for data streams storage and manipulation.

  4. fusion

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of...

  5. fusion

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of intense...

  6. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    SciTech Connect (OSTI)

    Wu, Anna M

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called â??diabodiesâ?, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2. Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.

  7. Modeling of Heat and Mass Transfer in Fusion Welding (Book) ...

    Office of Scientific and Technical Information (OSTI)

    Book: Modeling of Heat and Mass Transfer in Fusion Welding Citation Details In-Document Search Title: Modeling of Heat and Mass Transfer in Fusion Welding In fusion welding, parts...

  8. Summary of Assessment of Prospects for Inertial Fusion Energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Summary of Assessment of Prospects for Inertial Fusion Energy American Fusion News Category: National Ignition Facility Link: Summary of Assessment of Prospects for Inertial Fusion Energy

  9. Fusion breeder: its potential role and prospects

    SciTech Connect (OSTI)

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

  10. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  11. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  12. Plasmas are Hot and Fusion is Cool

    SciTech Connect (OSTI)

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  13. Cold fusion observed with ordinary water

    SciTech Connect (OSTI)

    Matsumoto, T. )

    1990-05-01

    This paper describes a cold fusion electrolysis experiment using ordinary water. A Ge(Li) detector is used to observe signals up to {approx}130 keV; these signals show the occurrence of fusion reactions in ordinary water. The mechanism for the emission of radiation is discussed by the Nattoh model.

  14. Inertial-confinement fusion with lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Betti, R.; Hurricane, O. A.

    2016-05-03

    Here, the quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related tomore » the safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less

  15. Laser-fusion rocket for interplanetary propulsion

    SciTech Connect (OSTI)

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  16. COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard ... issues for successful operation of ITER and future steady state fusion tokamaks, ...

  17. Controlled Nuclear Fusion (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Title: Controlled Nuclear Fusion The objective of controlled nuclear fusion research is to develop a major economic source of energy that should be readily available to all ...

  18. Control of a laser inertial confinement fusion-fission power...

    Office of Scientific and Technical Information (OSTI)

    Control of a laser inertial confinement fusion-fission power plant Title: Control of a laser inertial confinement fusion-fission power plant A laser inertial-confinement ...

  19. A Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel A. Cohen This invention ... The small, clean stable fusion power plant, based on the Field Reverse Configuration, ...

  20. Better Fusion Plasma Operating Scenarios are Being Explored and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Fusion Plasma Operating Scenarios are Being Explored and Extended on the Alcator ... Better Fusion Plasma Operating Scenarios are Being Explored and Extended on the Alcator ...

  1. Physicist Zoe Martin's fusion quest: a stellar future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoe Martin's fusion quest: a stellar future Physicist Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues ...

  2. The Heavy Ion Fusion Science Virtual National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Science Virtual National Laboratory Python in a Parallel Environment Dave Grote - LLNL & LBNL NUG2013 User Day Wednesday, February 15, 2013 Slide 2 The Heavy Ion Fusion ...

  3. LIFE: The Case for Early Commercialization of Fusion Energy ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: LIFE: The Case for Early Commercialization of Fusion Energy Citation Details In-Document Search Title: LIFE: The Case for Early Commercialization of Fusion Energy ...

  4. Ab initio calculations of light-ion fusion reactions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Recent applications to light nuclei scattering and fusion reactions relevant to energy production in stars and Earth based fusion facilities, such as the deuterium-sup 3He ...

  5. Controlled Nuclear Fusion (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: Controlled Nuclear Fusion Citation Details In-Document Search Title: Controlled Nuclear Fusion You are accessing a document from the Department of Energy's (DOE) SciTech ...

  6. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities Citation Details In-Document Search Title: Highly Charged Ions in Magnetic Fusion ...

  7. COLLOQUIUM: The Lockheed Martin Compact Fusion Reactor | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COLLOQUIUM: The Lockheed Martin Compact Fusion Reactor Dr. Thomas McGuire Lockheed Martin Lockheed Martin Skunkworks is developing a compact fusion reactor concept, CFR. The novel ...

  8. Fusion-Fission Hybrid for Fissile Fuel Production without Processing...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fusion-Fission Hybrid for Fissile Fuel Production without Processing Citation Details In-Document Search Title: Fusion-Fission Hybrid for Fissile Fuel Production ...

  9. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    Magnetic Fusion Energy Power Plant with Thick Liquid-Walls Citation Details In-Document Search Title: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick ...

  10. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details In-Document Search Title: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Authors: Moir, R ...

  11. Fission barriers at the end of the chart of the nuclides

    SciTech Connect (OSTI)

    Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Mumpower, Matthew

    2015-02-12

    We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) and the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.

  12. Fission barriers at the end of the chart of the nuclides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Mumpower, Matthew

    2015-02-12

    We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) andmore » the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.« less

  13. Fission barriers at the end of the chart of the nuclides

    SciTech Connect (OSTI)

    Mller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Mumpower, Matthew

    2015-02-12

    We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ? A ? 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (?) and the spherical-harmonic (?) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (?,?) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on ?-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.

  14. Vanadium recycling for fusion reactors

    SciTech Connect (OSTI)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  15. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  16. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  17. Laser-driven fusion reactor

    DOE Patents [OSTI]

    Hedstrom, J.C.

    1973-10-01

    A laser-driven fusion reactor consisting of concentric spherical vessels in which the thermonuclear energy is derived from a deuterium-tritium (D + T) burn within a pellet'', located at the center of the vessels and initiated by a laser pulse. The resulting alpha -particle energy and a small fraction of the neutron energy are deposited within the pellet; this pellet energy is eventually transformed into sensible heat of lithium in a condenser outside the vessels. The remaining neutron energy is dissipated in a lithium blanket, located within the concentric vessels, where the fuel ingredient, tritium, is also produced. The heat content of the blanket and of the condenser lithium is eventually transferred to a conventional thermodynamic plant where the thermal energy is converted to electrical energy in a steam Rankine cycle. (Official Gazette)

  18. Progress in Heavy Ion Fusion

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B.

    1988-09-01

    The progress of the field of Heavy Ion Fusion has been documented in the proceedings of the series of International Symposia that, in recent years, have occurred every second year. The latest of these conferences was hosted by Gesellshaft fuer Schwerionenforshung (GSI) in Darmstadt, West Germany, June 28-30, 1988. For this report, a few highlights from the conference are selected, stressing experimental progress and prospects for future advances. A little extra time is devoted to report on the developments at the Lawrence Berkeley Laboratory (LBL) which is the center for most of the HIFAR program. The Director of the HIFAR program at LBL is Denis Keefe, who presented the HIF report at the last two of the meetings in this series, and in whose place the author is appearing now. 4 refs., 1 fig.

  19. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  20. Inertial-confinement-fusion targets

    SciTech Connect (OSTI)

    Hendricks, C.D.

    1982-08-10

    Much of the research in laser fusion has been done using simple ball on-stalk targets filled with a deuterium-tritium mixture. The targets operated in the exploding pusher mode in which the laser energy was delivered in a very short time (approx. 100 ps or less) and was absorbed by the glass wall of the target. The high energy density in the glass literally exploded the shell with the inward moving glass compressing the DT fuel to high temperatures and moderate densities. Temperatures achieved were high enough to produce DT reactions and accompanying thermonuclear neutrons and alpha particles. The primary criteria imposed on the target builders were: (1) wall thickness, (2) sphere diameter, and (3) fuel in the sphere.

  1. Fusion utility in the Knudsen layer

    SciTech Connect (OSTI)

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-09-15

    In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  2. Fusion Utility in the Knudsen Layer

    SciTech Connect (OSTI)

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-08-01

    In inertial confi nement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared to those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer e ffect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate restoring the reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  3. Fusion roadmapping | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. Stewart Prager Stewart Prager is the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the "Madison Symmetric Torus" (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also

  4. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  5. Fusion energy development: Breakeven and beyond: Keynote address

    SciTech Connect (OSTI)

    Furth, H.P.

    1988-02-01

    The scientific feasibility, technological inevitability, and economic necessity of fusion as an energy source are discussed.

  6. COLLOQUIUM: Fusion Rockets for Planetary Defense | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016, 4:15pm to 5:30pm MBG AUDITORIUM COLLOQUIUM: Fusion Rockets for Planetary Defense Dr. Glen Wurden Los Alamos National Laboratory Contact Information Coordinator(s): Ms....

  7. PPPL Races Ahead with Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the mysteri- ous density limit, they can spiral apart into a flash of light. "The big ... Coordinating Key Research | Summer 2013 8 uest New Paths to Fusion Energy Wonder Weld: ...

  8. 1995 International Sherwood Fusion Theory Conference

    SciTech Connect (OSTI)

    1995-07-01

    This book is a guide to the 1995 International Sherwood Fusion Theory Conference. It consists largely of abstracts of the oral and poster presentations that were to be made, and gives some general information about the conference and its schedule.

  9. Deuteron-induced fusion in various environments

    SciTech Connect (OSTI)

    Hale, G.M.; Talley, T.L.

    1994-04-01

    The theory of deuteron-induced fusion will be discussed, first in free space, then in muonic molecules where the Coulomb repulsion is highly screened. It will be shown how a consistent description of the d + t reactions can be obtained in these environments using R-matrix theory. We compare fusion rates obtained from the time-dependent scattering theory with those implied by the partial widths of the resonance associated with muon-catalyzed d-t fusion. Finally, some speculative comments are made about how the d + d reactions might proceed in other media, such as metallic lattices. The unusual properties of states associated with ``shadow`` poles might account for some of the strange results seen in cold fusion experiments. We emphasize that the same methods can, and should, be used to describe this situation as well as the other two well-established phenomena.

  10. On a weak flavor for cold fusion

    SciTech Connect (OSTI)

    Chatterjee, L. . Dept. of Physics)

    1991-11-01

    In this paper the possibility of recent reports of cold fusion in deuterated metals being manifestations of primal nucleoweak reactions catalyzed by the host environment is investigated. Resulting experimental signatures are predicted.

  11. Fluidized wall for protecting fusion chamber walls

    DOE Patents [OSTI]

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  12. Fusion Power | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Fusion Power For centuries, the way in which the sun and stars produce their energy remained a mystery to man.

  13. Learn More about Fusion & Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    education Learn More about Fusion & Lasers How Lasers Work Learn how lasers were developed and how they work. Outreach NIF & Photon Science researchers take learning opportunities on the road. Glossary Don't know what something means? Find definitions of terms related to NIF, fusion, and photon science in our glossary. For Teachers LLNL's Science Education Program provides professional development instruction to in-service and pre-service teachers. For Kids See how we make giant crystals

  14. Possible ways to achieve cold fusion. III

    SciTech Connect (OSTI)

    Tisenko, Yu.A.

    1994-12-01

    It is suggested that a deuteron {open_quotes}microaccelerator{close_quotes} be constructed in order to achieve cold fusion. This accelerator would operate on the basis of a glow discharge near a charged Pd-D powder grain in low-density gaseous D{sub 2}. Possible parameters of such an accelerator are calculated. The heat released as a result of fusion is estimated, as is the intensity of the deuteron flux.

  15. Review of the `cold fusion` effect

    SciTech Connect (OSTI)

    Storms, E.

    1996-09-01

    More than 190 studies reporting evidence for the `cold fusion` effect are evaluated. New work has answered criticisms by eliminating many of the suggested errors. Evidence for large and reproducible energy generation as well as various nuclear reactions, in addition to fusion, from a variety of environments and methods in accumulating. The field can no longer be dismissed by invoking obvious error or prosaic explanations. 192 refs., 12 figs., 10 tabs.

  16. Fusion welding of refractory metals

    SciTech Connect (OSTI)

    Robino, C.V.

    1991-01-01

    The refractory metals of Groups 5B and 6B and their alloys display a variety of unique physical and mechanical characteristics in addition to their high melting points. In turn, these characteristics make these materials strong candidates for severe service and specialized applications. However, these materials also present a variety of challenges with respect to both fabrication weldability and the in-service behavior of weldments, many of which are related to the dominant effects of interstitial impurities. This work reviews current understanding of the physical and joining metallurgy of these metals and their alloys with emphasis on fusion welding. Of specific interest are the role of impurities and alloy chemistry in fabrication and service weldability, the material processing route, eg. vacuum melting vs. powder metallurgy, the importance of welding process procedures and variables, weldment mechanical properties, and fracture behavior. Specific examples from the various alloy systems are used to illustrate general metallurgical and joining characteristics of this class of materials. 34 refs., 14 figs., 3 tabs.

  17. Cold versus hot fusion deuterium branching ratios

    SciTech Connect (OSTI)

    Fox, H.; Bass, R.

    1995-12-31

    A major source of misunderstanding of the nature of cold nuclear fusion has been the expectation that the deuterium branching ratios occurring within a palladium lattice would be consistent with the gas-plasma branching ratios. This misunderstanding has led to the concept of the dead graduate student, the 1989`s feverish but fruitless search for neutron emissions from cold fusion reactors, and the follow-on condemnation of the new science of cold fusion. The experimental facts are that in a properly loaded palladium lattice, the deuterium fusion produces neutrons at little above background, a greatly less-than-expected production of tritium (the tritium desert), and substantially more helium-4 than is observed in hot plasma physics. The experimental evidence is now compelling (800 reports of success from 30 countries) that cold nuclear fusion is a reality, that the branching ratios are unexpected, and that a new science is struggling to be recognized. Commercialization of some types of cold fusion devices has already begun.

  18. Quality Assurance Peer Review Chart Rounds in 2011: A Survey of Academic Institutions in the United States

    SciTech Connect (OSTI)

    Lawrence, Yaacov Richard; Whiton, Michal A.; Department of Radiation Oncology, Skagit Valley Hospital Regional Cancer Care Center, Mt. Vernon, Washington ; Symon, Zvi; Sackler School of Medicine, Tel Aviv University ; Wuthrick, Evan J.; Department of Radiation Oncology, Ohio State University, Columbus, Ohio ; Doyle, Laura; Harrison, Amy S.; Dicker, Adam P.

    2012-11-01

    Purpose: In light of concerns regarding the quality of radiation treatment delivery, we surveyed the practice of quality assurance peer review chart rounds at American academic institutions. Methods and Materials: An anonymous web-based survey was sent to the chief resident of each institution across the United States. Results: The response rate was 80% (57/71). The median amount of time spent per patient was 2.7 minutes (range, 0.6-14.4). The mean attendance by senior physicians and residents was 73% and 93%, respectively. A physicist was consistently present at peer review rounds in 66% of departments. There was a close association between attendance by senior physicians and departmental organization: in departments with protected time policies, good attendance was 81% vs. 31% without protected time (p = 0.001), and in departments that documented attendance, attending presence was 69% vs. 29% in departments without documentation (p < 0.05). More than 80% of institutions peer review all external beam therapy courses; however, rates were much lower for other modalities (radiosurgery 58%, brachytherapy 40%-47%). Patient history, chart documentation, and dose prescription were always peer reviewed in >75% of institutions, whereas dosimetric details (beams, wedges), isodose coverage, intensity-modulated radiation therapy constraints, and dose-volume histograms were always peer reviewed in 63%, 59%, 42%, and 50% of cases, respectively. Chart rounds led to both minor (defined as a small multileaf collimator change/repeated port film) and major (change to dose prescription or replan with dosimetry) treatment changes. Whereas at the majority of institutions changes were rare (<10% of cases), 39% and 11% of institutions reported that minor and major changes, respectively, were made to more than 10% of cases. Conclusion: The implementation of peer review chart rounds seems inconsistent across American academic institutions. Brachytherapy and radiosurgical procedures are

  19. User's Guide to Pre-Processing Data in Universal Translator 2 for the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.

    2011-11-30

    This document is a user's guide for the Energy Charting and Metrics Tool to facilitate the examination of energy information from buildings, reducing the time spent analyzing trend and utility meter data. This user guide was generated to help pre-process data with the intention of utilizing the Energy Charting and Metrics (ECAM) tool to improve building operational efficiency. There are numerous occasions when the metered data that is received from the building automation system (BAS) isn't in the right format acceptable for ECAM. This includes, but isn't limited to, cases such as inconsistent time-stamps for the trends (e.g., each trend has its own time-stamp), data with holes (e.g., some time-stamps have data and others are missing data), each point in the BAS is trended and exported into an individual .csv or .txt file, the time-stamp is unrecognizable by ECAM, etc. After reading through this user guide, the user should be able to pre-process all data files and be ready to use this data in ECAM to improve their building operational efficiency.

  20. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  1. HEDP and new directions for fusion energy

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  2. Review of the Inertial Fusion Energy Program

    SciTech Connect (OSTI)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  3. Dynamical limitations to heavy-ion fusion

    SciTech Connect (OSTI)

    Back, B.B.

    1983-01-01

    In spite of the many attempts to synthesize superheavy elements in recent years, these efforts have not yet been successful. Recent improved theoretical models of heavy-ion fusion reactions suggest that the formation of super-heavy elements is hindered by the dynamics of the process. Several recent experiments lend support to these theories. The necessity of an excess radial velocity (extra push) over the Coulomb barrier in order to induce fusion is observed experimentally as predicted by the theory. So is a new reaction mechanism, called quasi-fission which tend to exhaust the part of the reaction cross section, which would otherwise lead to fusion. The present study shows that the angular distribution of fragments from quasi-fission processes are very sensitive to the occurrence of this reaction mechanism. A slight modification of one parameter in the theory demanded by the observation of quasi-fission for lighter projectiles via the angular distributions, has the consequence of posing even more-stringent limitations on heavy-ion-fusion reactions. This reduces even further the possibility for synthesizing and identifying superheavy elements in heavy-ion-fusion reactions.

  4. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QA & What is fusion? Fusion, the energy source of the sun and stars, is the most efficient process for converting mass into energy (E = mc 2 ). The fusion process is environmentally benign and does not emit gases that contribute to global warming or acid rain. Abundant fuel supplies for fusion are available that could meet the needs of the world's population for more than 10,000 years if the fusion process is harnessed successfully. When will fusion successfully produce useable energy? The

  5. DOE and Fusion Links | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE and Fusion Links United States Department of Energy U.S. Department of Energy Office of Science Office of Fusion Energy Sciences U.S. D.O.E. Princeton Site Office Map showing U.S. Fusion Program Participants U.S. D.O.E. Science Laboratories U.S. D.O.E. User Facilities U.S. D.O.E. Funding Opportunities Other Fusion Research Sites United States Sites General Atomics (GA) MIT Plasma Science and Fusion Center U.S. ITER National Ignition Facility (NIF) American Fusion News International Sites

  6. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cellcell fusion

    SciTech Connect (OSTI)

    Nakamura, Haruhiko; Nakashima, Tomoki; Hayashi, Mikihito; Izawa, Naohiro; Yasui, Tetsuro; Aburatani, Hiroyuki; Tanaka, Sakae; Takayanagi, Hiroshi

    2014-12-12

    Highlights: Identification of epigenetically regulated genes during osteoclastogenesis. Pcdh7 is regulated by H3K4me3 and H3K27me3 during osteoclastogenesis. Pcdh7 expression is increased by RANKL during osteoclastogenesis. Establishment of novel cell fusion analysis for osteoclasts by imaging cytometer. Pcdh7 regulates osteoclastogenesis by promoting cell fusion related gene expressions. - Abstract: Gene expression is dependent not only on genomic sequences, but also epigenetic control, in which the regulation of chromatin by histone modification plays a crucial role. Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) are related to transcriptionally activated and silenced sequences, respectively. Osteoclasts, the multinucleated cells that resorb bone, are generated by the fusion of precursor cells of monocyte/macrophage lineage. To elucidate the molecular and epigenetic regulation of osteoclast differentiation, we performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis for H3K4me3 and H3K27me3 in combination with RNA sequencing. We focused on the histone modification change from H3K4me3(+)H3K27me3(+) to H3K4me3(+)H3K27me3() and identified the protocadherin-7 gene (Pcdh7) to be among the genes epigenetically regulated during osteoclastogenesis. Pcdh7 was induced by RANKL stimulation in an NFAT-dependent manner. The knockdown of Pcdh7 inhibited RANKL-induced osteoclast differentiation due to the impairment of cellcell fusion, accompanied by a decreased expression of the fusion-related genes Dcstamp, Ocstamp and Atp6v0d2. This study demonstrates that Pcdh7 plays a key role in osteoclastogenesis by promoting cellcell fusion.

  7. Palladium metallurgy and cold fusion; Some remarks

    SciTech Connect (OSTI)

    Murr, L.E. )

    1990-04-01

    In this paper the recent confusion surrounding claims for the observation of cold fusion involving palladium electrodes in electrochemical cells containing deuterium might be clarified to some extent if the palladium metallurgy, particularly in the context of fundamental microstructures, are accurately defined. Both the palladium/hydrogen and palladium/deuterium systems have been extensively investigated, and it is asserted more than two decades ago that the palladium/hydrogen system was perhaps the most extensively, experimentally investigated metal/gas system. Ordinary hydrogen absorbed in palladium fused to form helium, while in the 1940's Wilner actually observed the fusion reaction at the center of the current cold fusion controversy: d + d {yields} {sup 3}He + n (where d = {sup 2}H represents a deuteron, and n is a neutron). In the experiment by Wilner, a deuterium-saturated palladium sheet was bombarded with accelerated deuterons. The product neutrons (n) were slowed by paraffin wax and detected by the activation of silver.

  8. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  9. The international fusion materials irradiation facility

    SciTech Connect (OSTI)

    Shannon, T.E.; Cozzani, F.; Crandall, D.H.; Wiffen, F.W.; Ehrlich, K.; Katsuta, H.; Kondo, T.; Teplyakov, V.; Zavialsky, L.

    1994-12-31

    It is widely agreed that the development of materials for fusion systems requires a high flux, 14 MeV neutron source. The European Union, Japan, Russia and the US have initiated the conceptual design of such a facility. This activity, under the International Energy Agency (IEA) Fusion Materials Agreement, will develop the design for an accelerator-based D-Li system. The first organizational meeting was held in June 1994. This paper describes the system to be studied and the approach to be followed to complete the conceptual design by early 1997.

  10. Radiological Dose Calculations for Fusion Facilities

    SciTech Connect (OSTI)

    Michael L. Abbott; Lee C. Cadwallader; David A. Petti

    2003-04-01

    This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

  11. First wall for polarized fusion reactors

    DOE Patents [OSTI]

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  12. Driven reconnection in magnetic fusion experiments

    SciTech Connect (OSTI)

    Fitzpatrick, R.

    1995-11-01

    Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can any detrimental effects be alleviated? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistance MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effects of error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.).

  13. Solenoid transport for heavy ion fusion

    SciTech Connect (OSTI)

    Lee, Edward

    2004-06-15

    Solenoid transport of high current, heavy ion beams is considered for several stages of a heavy ion fusion driver. In general this option is more efficient than magnetic quadrupole transport at sufficiently low kinetic energy and/or large e/m, and for this reason it has been employed in electron induction linacs. Ideally an ion beam would be transported in a state of Brillouin flow, i.e. cold in the transverse plane and spinning at one half the cyclotron frequency. The design of appropriate solenoids and the equilibrium and stability of transported ion beams are discussed. An outline of application to a fusion driver is also presented.

  14. Magnetized liner inertial fusion (MagLIF)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetized liner inertial fusion (MagLIF) [1] is an inertial confinement fusion (ICF) scheme using cylindrical compression of magnetized, preheated DT gas. A 10 - 30 T axial magnetic field reduces electron thermal conductivity allowing near-adiabatic compression at implosion velocities of order 100 km/s, much lower than the 300 km/s or more required for conventional ICF. Preheating to at least 100 eV ensures that keV temperatures are reached with a convergence ratio no greater than 30. The

  15. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2005-05-15

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard associated with compressed gas cylinders and methods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  16. Accelerator & Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  17. Accelerator and fusion research division. 1992 Summary of activities

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  18. Accelerator Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  19. What Causes Electron Heat Loss in Fusion Plasma?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Causes Heat Loss in Fusion Plasmas? What Causes Electron Heat Loss in Fusion Plasma? 3D ... but one of the most basic is heating plasma-hot gas composed of electrons and charged ...

  20. PPPL engineer named winner of the 2013 Fusion Technology Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineer named winner of the 2013 Fusion Technology Award By John Greenwald May 1, 2013 ... advice is sought by engineers around the world, has won the 2013 Fusion Technology Award. ...

  1. Fusion diagnostic developed at PPPL sheds light on plasma behavior...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion diagnostic developed at PPPL sheds light on plasma behavior at EAST By Kitta ... (PPPL) has enabled a research team at a fusion energy experiment in China to observe--in ...

  2. Vintage DOE: What is Fusion | Department of Energy

    Office of Environmental Management (EM)

    Vintage DOE: What is Fusion Vintage DOE: What is Fusion January 10, 2011 - 12:45pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public ...

  3. 10 Facts You Should Know About Fusion Energy | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Facts You Should Know About Fusion Energy By Larry Bernard January 25, 2016 Tweet ... Stars - and there are billions and billions of them - produce energy by fusion of light ...

  4. COLLOQUIUM: Progress towards fusion on NIF and Z requires new...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    towards fusion on NIF and Z requires new plasma measurement capabilities Dr. Joe Kilkenny LLNLGA Dr. Greg Rochau SNL There is significant progress towards fusion on NIF and Z ...

  5. Advanced fission and fossil plant economics-implications for fusion

    SciTech Connect (OSTI)

    Delene, J.G.

    1994-09-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

  6. Advanced fission and fossil plant economics-implications for fusion

    SciTech Connect (OSTI)

    Delene, J.G.

    1994-11-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for base-load electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

  7. MIT's Plasma Science Fusion Center: Tokamak Experiments Come Clean about

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impurity Transport | Princeton Plasma Physics Lab Tokamak Experiments Come Clean about Impurity Transport American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: Tokamak Experiments Come Clean about Impurity Transport

  8. Comparison of CT and MR-CT Fusion for Prostate Post-Implant Dosimetry

    SciTech Connect (OSTI)

    Maletz, Kristina L.; Ennis, Ronald D.; Ostenson, Jason; Pevsner, Alexander; Kagen, Alexander; Wernick, Iddo

    2012-04-01

    Purpose: The use of T2 MR for postimplant dosimetry (PID) after prostate brachytherapy allows more anatomically accurate and precise contouring but does not readily permit seed identification. We developed a reproducible technique for performing MR-CT fusion and compared the resulting dosimetry to standard CT-based PID. Methods and Materials: CT and T1-weighted MR images for 45 patients were fused and aligned based on seed distribution. The T2-weighted MR image was then fused to the aligned T1. Reproducibility of the fusion technique was tested by inter- and intraobserver variability for 13 patients. Dosimetry was computed for the prostate as a whole and for the prostate divided into anterior and posterior sectors of the base, mid-prostate, and apex. Results: Inter- and intraobserver variability for the fusion technique showed less than 1% variation in D90. MR-CT fusion D90 and CT D90 were nearly equivalent for the whole prostate, but differed depending on the identification of superior extent of the base (p = 0.007) and on MR/CT prostate volume ratio (p = 0.03). Sector analysis showed a decrease in MR-CT fusion D90 in the anterior base (ratio 0.93 {+-}0.25, p < 0.05) and an increase in MR-CT fusion D90 in the apex (p < 0.05). The volume of extraprostatic tissue encompassed by the V100 is greater on MR than CT. Factors associated with this difference are the MR/CT volume ratio (p < 0.001) and the difference in identification of the inferior extent of the apex (p = 0.03). Conclusions: We developed a reproducible MR-CT fusion technique that allows MR-based dosimetry. Comparing the resulting postimplant dosimetry with standard CT dosimetry shows several differences, including adequacy of coverage of the base and conformity of the dosimetry around the apex. Given the advantage of MR-based tissue definition, further study of MR-based dosimetry is warranted.

  9. Fusion Machines of the World | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Machines of the World NSTX-U IS ONE OF AN ELITE GROUP of magnetic fusion facilities scattered across the globe. These powerful and complex machines are advancing mankind's quest to harness fusion as a safe, clean and abundant source of energy for producing electricity. Here is a selection of major facilities. Publication File: PDF icon NSTX-U_presskit_print_FusionMachines-World

  10. MIT Plasma Science & Fusion Center: research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research Fusion Technology & Engineering Plasma Technology Waves & Beams Useful...

  11. Plasma Turbulence Simulations Reveal Promising Insight for Fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy By Argonne ... Davis; Stephane Ethier, Princeton Plasma Physics Laboratory) Simulation of ...

  12. Status of inertial fusion in the United States

    SciTech Connect (OSTI)

    Coleman, L.

    1991-10-01

    This report briefly discusses the concept, progress, and direction of inertial confinement fusion in the United States. (LSP)

  13. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seguin, F. H.; Li, C. K.; DeCiantis, J. L.; Frenje, J. A.; Rygg, J. R.; Petrasso, R. D.; Marshall, F. J.; Smalyuk, V.; Glebov, V. Yu.; Knauer, J. P.; et al

    2016-03-22

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Here, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  14. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    SciTech Connect (OSTI)

    Yang Shangbin; Zhang Hongqi

    2012-10-10

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  15. Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edge Transport | Princeton Plasma Physics Lab Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport American Fusion News Category: U.S. Universities Link: Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport

  16. Assessment of the Fusion Energy Sciences Program. Final Report

    SciTech Connect (OSTI)

    2001-05-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study.

  17. Dynamic microscopic theory of fusion using DC-TDHF

    SciTech Connect (OSTI)

    Umar, A. S.; Oberacker, V. E.; Keser, R.; Maruhn, J. A.; Reinhard, P.-G.

    2012-10-20

    The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a fully microscopic approach for calculating heavy-ion interaction potentials and fusion cross sections below and above the fusion barrier. We discuss recent applications of DC-TDHF method to fusion of light and heavy systems.

  18. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  19. Background: Energy's holy grail. [The quest for controlled fusion

    SciTech Connect (OSTI)

    Not Available

    1993-01-22

    This article presents a brief history of the pursuit and development of fusion as a power source. Starting with the 1950s through the present, the research efforts of the US and other countries is highlighted, including a chronology of hey developments. Other topics discussed include cold fusion and magnetic versus inertial fusion issues.

  20. Observation of heavy elements produced during explosive cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T.; Kurokawa, K. )

    1991-11-01

    This paper reports on many-body fusion reactions that may take place during cold fusion. Heavy elements are observed that might have been produced by such reactions during electrolysis of heavy water. Elements such as sodium, magnesium, aluminum, and zinc are observed inside grain-shaped defects in a palladium rod used in a cold fusion experiment.

  1. On fusion/fission chain reactions in the Fleischmann-Pons cold fusion experiment

    SciTech Connect (OSTI)

    Anghaie, S.; Froelich, P.; Monkhorst, H.J. )

    1990-05-01

    In this paper the possibility of fusion/fission chain reactions following d-d source reactions in electrochemical cold fusion experiments have been investigated. The recycling factors for the charged particles in fusion reactions with consumable nuclei deuteron, {sup 6}Li nd {sup 7}Li, are estimated. It is concluded that, based on the established nuclear fusion cross sections and electronic stopping power, the recycling factor is four to five orders of magnitude less than required for close to critical conditions. It is argued that the cross generation of charged particles by neutrons does not play a significant role in this process, even if increased densities at the surface of electrodes do occur.

  2. Response to FESAC survey, Non-Fusion Connections to Fusion Energy...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Response to FESAC survey, Non-Fusion ... Due to the iconic status of the pillars of the Eagle Nebula, this research will bring ...

  3. Fusion Simulation Program Definition. Final report

    SciTech Connect (OSTI)

    Cary, John R.

    2012-09-05

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.

  4. Fusion proteins useful for producing pinene

    DOE Patents [OSTI]

    Peralta-Yahya, Pamela P.; Keasling, Jay D

    2016-06-28

    The present invention provides for a modified host cell comprising a heterologous pinene synthase (PS), or enzymatically active fragment or variant thereof, and optionally a geranyl pyrophosphate synthase (GPPS), or enzymatically active fragment or variant thereof, or a fusion protein comprising: (a) a PS and (b) a GPPS linked by a linker.

  5. Safeguard Requirements for Fusion Power Plants

    SciTech Connect (OSTI)

    Robert J. Goldston and Alexander Glaser

    2012-08-10

    Nuclear proliferation risks from magnetic fusion energy associated with access to fissile materials can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production and diversion of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state openly produces fissile material in violation of international agreements. The degree of risk in each of these categories is assessed, taking into account both state and non-state actors, and it is found that safeguards are required for fusion energy to be highly attractive from a non-proliferation standpoint. Specific safeguard requirements and R&D needs are outlined for each category of risk, and the technical capability of the ITER experiment, under construction, to contribute to this R&D is noted. A preliminary analysis indicates a potential legal pathway for fusion power systems to be brought under the Treaty for the Non-Proliferation of Nuclear Weapons. "Vertical" proliferation risks associated with tritium and with the knowledge that can be gained from inertial fusion energy R&D are outlined.

  6. Target fabrication for particle beam fusion

    SciTech Connect (OSTI)

    Bieg, K.W.; Chang, J.

    1980-01-01

    Near-term exploding pusher targets for electron or light ion beam driven fusion are typically several mm in diameter and have relatively thick shells (rho r approx. 0.001 to 0.03 gm/cm/sup 2/). Current fabrication techniques utilize parylene polymer coatings on leachable mandrels.

  7. Portuguese research program on nuclear fusion

    SciTech Connect (OSTI)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-12-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described.

  8. Interference phenomena observed during cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. )

    1992-03-01

    In this paper the interference phenomena of waves observed during a cold fusion experiment are described. Nuclear emissions have successfully recorded two different interference phenomena of waves from an electrolyzing cell. It is inferred that the waves might be gravitational and antigravitational waves, which can be expected to be radiated from gravity decays of quad-neutrons.

  9. Cold fusion studies in the USSR

    SciTech Connect (OSTI)

    Tsarev, V.A. ); Worledge, D.H. )

    1992-08-01

    In this paper work presented at the first Soviet National Conference on Cold Nuclear Fusion, which took place in March 1991 in Dubna and Moscow, is reviewed. In addition to an integrated view of the experimental and theoretical work, a description is given of some additional contributions that had appeared in the Soviet literature before the conference.

  10. Cold fusion; The story behind the headlines

    SciTech Connect (OSTI)

    Ault, M.R.

    1991-06-01

    This article looks at the cold fusion issue which got a lot of attention in 1989. It provides interesting background information, a brief explanation of the experimental methods and problems encountered, and the basis for some of the controversy. The current state of the research effort is also outlined.

  11. Neutron measurements in search of cold fusion

    SciTech Connect (OSTI)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T. )

    1991-05-10

    We have conducted a search for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 140 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of the naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also observed to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observed neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior.

  12. Could spectator electrons legalize cold fusion

    SciTech Connect (OSTI)

    Chatterjee, L. . Dept. of Physics)

    1990-12-01

    In this paper the possibility of spectator electrons driving cold d-d fusion in condensed matter to an observation threshold is considered, along with the consequences on the branching ratio of the exit channels. The intrinsic dominance of the t-p channel due to the increased phase space is demonstrated.

  13. nuclear fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fusion Los Alamos plasma research shows promise for future compact accelerators The team in front of Los Alamos' Trident Laser Target Chamber. Back, from left: Tom Shimada, Sha-Marie Reid, Adam Sefkow, Miguel Santiago, and Chris Hamilton. Front, from left: Russ Mortensen, Chengkun Huang, Sasi Palaniyappan, Juan Fernandez, Cort Gautier and Randy Johnson. A

  14. Magnetized Target Fusion Collaboration. Final report

    SciTech Connect (OSTI)

    John Slough

    2012-04-18

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with

  15. Deuterium concentration and cold fusion; Rate distributions in palladium

    SciTech Connect (OSTI)

    Rogers, V.C.; Sandquist, G.M.; Nielson, K.K. )

    1989-12-01

    Cold fusion reactions and excess heat production have been reported in the electrolysis of heavy water with a palladium metal cathode. Solution of the standard diffusion equation for deuterium without fusion indicates that the deuterium concentration distribution rapidly becomes constant in the palladium lattice. Solution of the nonlinear diffusion equation for deuterium undergoing fusion also gives constant deuterium concentrations, suggesting that any fusion occurs uniformly throughout the palladium lattice. The hypothesis that fusion reactions occur predominantly at the palladium surface is shown to be inconsistent with experimental data.

  16. Gated monochromatic x-ray imager

    SciTech Connect (OSTI)

    Oertel, J.A.; Archuleta, T.; Clark, L.

    1995-09-01

    We have recently developed a gated monochromatic x-ray imaging diagnostic for the national Inertial-Confinement Fusion (ICF) program. This new imaging system will be one of the primary diagnostics to be utilized on University of Rochester`s Omega laser fusion facility. The new diagnostic is based upon a Kirkpatrick-Baez (KB) microscope dispersed by diffraction crystals, as first described by Marshall and Su. The dispersed images are gated by four individual proximity focused microchannel plates and recorded on film. Spectral coverage is tunable up to 8 keV, spectral resolution has been measured at 20 eV, temporal resolution is 80 ps, and spatial resolution is better than 10 {mu}m.

  17. Overview of US Fusion Energy Programs: January 1993

    SciTech Connect (OSTI)

    Crandall, D.H.

    1994-09-01

    The US Fusion Program is in {open_quotes}Transition.{close_quotes} This happens so infrequently that no one knows exactly what to expect; it makes everyone a little skittish. Program leadership does make a difference; Secretary Watkins was a positive force for fusion. Energy Research Director Happer remains in his position and is a positive force for scientific quality. Secretary O`Leary has stated that {open_quotes}Fusion energy holds great promise as an element of the nation`s long-term energy supply.{close_quotes} While new leaders may seek new directions with important implications for fusion, it seems reasonable to expect that, for fusion, such changes are likely to emerge slowly. Thus the assumption now is that the fusion priorities remain unchanged. In the spirit of optimism surrounding the new administration, the Fusion Energy Program`s intention is to make as much progress as possible on the course presently established.

  18. Direct asymmetry measurement of temperature and density spatial distributions in inertial confinement fusion plasmas from pinhole space-resolved spectra

    SciTech Connect (OSTI)

    Nagayama, T.; Mancini, R. C.; Florido, R.; Mayes, D.; Tommasini, R.; Koch, J. A.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.

    2014-05-15

    Two-dimensional space-resolved temperature and density images of an inertial confinement fusion (ICF) implosion core have been diagnosed for the first time. Argon-doped, direct-drive ICF experiments were performed at the Omega Laser Facility and a collection of two-dimensional space-resolved spectra were obtained from an array of gated, spectrally resolved pinhole images recorded by a multi-monochromatic x-ray imager. Detailed spectral analysis revealed asymmetries of the core not just in shape and size but in the temperature and density spatial distributions, thus characterizing the core with an unprecedented level of detail.

  19. Macron Formed Liner Compression as a Practical Method for Enabling Magneto-Inertial Fusion

    SciTech Connect (OSTI)

    Slough, John

    2011-12-10

    of megagauss magnetic field compression by a small array of full scale macrons. In addition the physics of the compression of an FRC to fusion conditions will be undertaken with a smaller scale MFL. The timescale for testing will be rapidly accelerated by taking advantage of other facilities at MSNW where the target FRC will be created and translated inside the MFL just prior to implosion of the MFL. Experimental success would establish the concept at the “proof of principle” level and the following phase III effort would focus on the full development of the concept into a fusion gain device. Successful operation would lead to several benefits in various fields. It would have application to high energy density physics, as well as nuclear waste transmutation and alternate fission fuel cycles. The smaller scale device could find immediate application as an intense source of neutrons for diagnostic imaging and non-invasive object interrogation.

  20. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect (OSTI)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  1. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    SciTech Connect (OSTI)

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.; MacKay, R. Jock

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtained from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance

  2. The search for solid state fusion lasers

    SciTech Connect (OSTI)

    Weber, M.J. )

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs.

  3. Generalized Lawson Criteria for Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Tipton, Robert E.

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  4. Multishell inertial-confinement-fusion target

    SciTech Connect (OSTI)

    Holland, J.R.; Del Vecchio, R.M.

    1981-06-01

    This disclosure relates to fusion targets. It deals particularly with the production of multishell inertial confinement fusion targets. The fuel pellet within such targets is designed to compress isentropically under laser or particle irradiation. When a short pulse at extremely high power density strikes the target containing deuterium-tritium fuel, the resulting plasma is confined briefly by its own inertia. Thermonuclear energy can be released in less time than it takes the fuel pellet to blow apart. However, efficient thermonuclear burn requires that the plasma must remain intact at extremely high temperatures and densities for a time sufficient to allow a large fraction of the nuclei to react. Development of multishell targets has been directed at this problem.

  5. Experiments of one-point cold fusion

    SciTech Connect (OSTI)

    Matsumoto, Takaaki )

    1993-11-01

    Experiments of one-point cold fusion have been performed by electrical discharging in ordinary and heavy water mixed with 0.6 mol/l potassium carbonate. A platinum pin anode was located perpendicular to a copper plate cathode. After discharge, the surfaces of the copper plates were examined by an optical microscope. Many ring spots caused by gravity decay of single and di-neutrons were separately distributed on the plates. Furthermore, several kinds of traces that might be produced by itonic hydrogen clusters and by tiny black and white holes were observed. The mechanisms of cold fusion by electrical discharge are also discussed in terms of the Nattoh model. 13 refs., 12 figs.

  6. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect (OSTI)

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  7. Magnet operating experience review for fusion applications

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  8. First wall for polarized fusion reactors

    DOE Patents [OSTI]

    Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.

    1988-01-01

    Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

  9. Inertial Confinement Fusion | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Evaluation Inertial Confinement Fusion Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber (National Ignition Facility, Lawrence Livermore National Laboratory) The Office of ICF provides experimental capabilities and scientific understanding in high energy density physics (HEDP) necessary to ensure a safe, secure, and effective nuclear weapons stockpile without underground testing. The demonstration of

  10. Inertial confinement fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Evaluation Inertial Confinement Fusion Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber (National Ignition Facility, Lawrence Livermore National Laboratory) The Office of ICF provides experimental capabilities and scientific understanding in high energy density physics (HEDP) necessary to ensure a safe, secure, and effective nuclear weapons stockpile without underground testing. The demonstration of

  11. AN ACOUSTICALLY DRIVEN MAGNETIZED TARGET FUSION REACTOR

    SciTech Connect (OSTI)

    Laberge, Michel

    2009-07-26

    We propose a new acoustic compression scheme for a MTF power plant. A strong acoustic wave is produced by piston impacts. The wave focuses in liquid PbLi to compress a pre-formed FRC plasma. Simulations indicate the possibility of building an economical 60 MWe power plant. A proof-of-principle experiment produces a small D-D fusion yield of 2000 neutrons per shot.

  12. Possible resonant mechanism of cold fusion

    SciTech Connect (OSTI)

    Zakowicz, W. )

    1991-01-01

    This paper discusses a hypothesis of resonant deuteron-deuteron interaction under cold fusion conditions. The resonance may exist due to a combination of an attractive nuclear interaction at close distances and a repulsive Coulomb potential at large distances. The energy of such resonances may be very low. This effect may increase the reaction cross section and reaction rates in high-density deuteron hydrides.

  13. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  14. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  15. Thermochemical hydrogen production based on magnetic fusion

    SciTech Connect (OSTI)

    Krikorian, O.H.; Brown, L.C.

    1982-06-10

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO/sub 3/ decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars.

  16. Shell effects in fusion of heavy nuclei

    SciTech Connect (OSTI)

    Moeller, P.; Nix, J.R.

    1997-12-31

    The spontaneous-fission properties of Fm isotopes undergo dramatic changes between {sup 256}Fm and {sup 258} Fm. The fission fragments of the former isotope are mass asymmetric with kinetic energies of about 200 MeV, whereas the fission fragments of the latter isotope are symmetric with kinetic energies of about 235 MeV. This rapid change occurs because the division into nearly doubly magic fragments near {sup 132}Sn becomes possible and opens up new valleys in the fission potential-energy surface. In the cold-fusion reactions leading to the heaviest elements, the nearly doubly magic targets and/or projectiles may give rise to important features associated with this magicity. Cold fusion is thought to favor heavy-element formation because it leads to low excitation energies of the compound nuclei. We investigate how near-magic targets and projectiles may lead to persistent survivability of the shells in the fusion valley as the ions merge, in addition to their effect on the compound-nucleus excitation energy.

  17. A Fusion Development Facility on the Critical Path to Fusion Energy

    SciTech Connect (OSTI)

    Chan, V. S.; Stambaugh, R

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  18. A fusion development facility on the critical path to fusion energy

    SciTech Connect (OSTI)

    Chan, Dr. Vincent; Canik, John; Peng, Yueng Kay Martin

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  19. Solid Deuterium-Tritium Surface Roughness In A Beryllium Inertial Confinement Fusion Shell

    SciTech Connect (OSTI)

    Kozioziemski, B J; Sater, J D; Moody, J D; Montgomery, D S; Gautier, C

    2006-04-19

    Solid deuterium-tritium (D-T) fuel layers for inertial confinement fusion experiments were formed inside of a 2 mm diameter beryllium shell and were characterized using phase-contrast enhanced x-ray imaging. The solid D-T surface roughness is found to be 0.4 {micro}m for modes 7-128 at 1.5 K below the melting temperature. The layer roughness is found to increase with decreasing temperature, in agreement with previous visible light characterization studies. However, phase-contrast enhanced x-ray imaging provides a more robust surface roughness measurement than visible light methods. The new x-ray imaging results demonstrate clearly that the surface roughness decreases with time for solid D-T layers held at 1.5 K below the melting temperature.

  20. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect (OSTI)

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  1. A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; Parks, P. B.; Evans, T. E.; Cohen, S. A.; Cassibry, J. T.; Campbell, E. M.

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We also lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. Deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass is also be possible.

  2. Angular momentum effects in fusion-fission and fusion-evaporation reactions

    SciTech Connect (OSTI)

    Plasil, F.

    1980-01-01

    The study of heavy-ion fusion reactions is complicated by the possible contributions of several mechanisms. The various types of heavy-ion-induced fission are discussed. Then compound-nucleus fission is considered with reference to fission barriers deduced from heavy-ion-induced fission. Next, the problems associated with measured values of evaporation-residue cross sections and the angular momentum dependence of incomplete fusion are examined. Finally, the de-excitation of compound nuclei is again taken up, this time with reference to the greatly enhanced ..cap alpha.. emission predicted on the basis of the rotating liquid drop model. 24 figures. (RWR)

  3. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect (OSTI)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics, (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  4. A new vision for fusion energy research: Fusion rocket engines for planetary defense

    SciTech Connect (OSTI)

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; Parks, P. B.; Evans, T. E.; Cohen, S. A.; Cassibry, J. T.; Campbell, E. M.

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.

  5. Fission-reactor experiments for fusion-materials research

    SciTech Connect (OSTI)

    Grossbeck, M.L.; Bloom, E.E.; Woods, J.W.; Vitek, J.M.; Thomas, K.R.

    1982-01-01

    The US Fusion Materials Program makes extensive use of fission reactors to study the effects of simulated fusion environments on materials and to develop improved alloys for fusion reactor service. The fast reactor, EBR-II, and the mixed spectrum reactors, HFIR and ORR, are all used in the fusion program. The HFIR and ORR produce helium from transmutations of nickel in a two-step thermal neutron absorption reaction beginning with /sup 58/Ni, and the fast neutrons in these reactors produce atomic displacements. The simultaneous effects of these phenomena produce damage similar to the very high energy neutrons of a fusion reactor. This paper describes irradiation capsules for mechanical property specimens used in the HFIR and the ORR. A neutron spectral tailoring experiment to achieve the fusion reactor He:dpa ratio will be discussed.

  6. Scientific and technological advancements in inertial fusion energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  7. Scientific and technological advancements in inertial fusion energy

    SciTech Connect (OSTI)

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  8. The neutron imaging diagnostic at NIF (invited)

    SciTech Connect (OSTI)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Bower, D.; Dzenitis, J. M.; and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  9. Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image Gallery News & Publications ESnet News Publications and Presentations Galleries Image Gallery Video Gallery ESnet Awards and Honors Contact Us Media Jon Bashor, ...

  10. Theoretical and experimental studies on the cold nuclear fusion phenomena

    SciTech Connect (OSTI)

    Harith, M.A. . Faculty of Science); Palleschi, V.; Salvetti, A.; Salvetti, G.; Singh, D.P.; Vaselli, M. )

    1990-07-01

    A realistic estimate of the interionic potential that may account for the experimentally observed fusion rates ({approx}10{sup {minus}23} deuterium-deuterium fusion/s) in palladium is presented. Moreover, some preliminary calorimetric studies on the hydrogen absorption process in palladium, performed in a cell with pressure up to 20 bars, are discussed. A detailed analysis of the sensitivity and calibration of the calorimetric system is also presented.

  11. AVTA: 2010 Ford Fusion HEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ford Fusion HEV Testing Results AVTA: 2010 Ford Fusion HEV Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric

  12. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  13. Experimental study of nuclear fusion reactions in muonic molecular systems

    SciTech Connect (OSTI)

    Bogdanova, L. N.

    2013-03-15

    Since the pioneering discovery of the muon catalysis by Alvarez [L. W. Alvarez, K. Brander, F. S. Crawford, et al., Phys. Rev. 105, 1127 (1957)], considerable efforts were aimed at observation of various fusion processes. Results of these studies facilitated understanding the properties of lightest nuclei and dynamics of low-energy fusion reactions. There still remain unsolved theoretical and experimental problems, especially in case of pt fusion.

  14. Large Scale Production Computing and Storage Requirements for Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences" is organized by the Department of Energy's Office of Fusion Energy Sciences (FES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to

  15. Chuck Kessel Wins the 2015 Fusion Technology Award | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Chuck Kessel Wins the 2015 Fusion Technology Award By Raphael Rosen July 13, 2015 Tweet Widget Google Plus One Share on Facebook Chuck Kessel, a principal engineer at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), has won the 2015 Fusion Technology Award. The honor, from the Institute of Electrical and Electronics Engineers' (IEEE) Nuclear and Plasma Sciences Society, recognizes outstanding contributions to fusion engineering and technology.

  16. Development of aerogel-lined targets for inertial confinement fusion

    Office of Scientific and Technical Information (OSTI)

    experiments (Thesis/Dissertation) | SciTech Connect Thesis/Dissertation: Development of aerogel-lined targets for inertial confinement fusion experiments Citation Details In-Document Search Title: Development of aerogel-lined targets for inertial confinement fusion experiments This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD

  17. Direct Fusion Drive for a Human Mars Orbital Mission

    SciTech Connect (OSTI)

    Paluszek, Michael; Pajer, Gary; Razin, Yosef; Slonaker, James; Cohen, Samuel; Feder, Russ; Griffin, Kevin; Walsh, Matthew

    2014-08-01

    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  18. Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy By Argonne National Laboratory March 31, 2014 Tweet Widget Google Plus One Share on Facebook Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of California, Davis; Stephane Ethier, Princeton Plasma Physics Laboratory) Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of

  19. Fusion Nuclear Science and Technology Program - Status and Plans...

    Office of Environmental Management (EM)

    Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research Presentation from the 34th Tritium Focus Group Meeting held in ...

  20. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research Presentation from the 35th Tritium Focus Group Meeting held in ...